Аналого-цифровые преобразователи

Аналого-цифровые преобразователи.

Существуют четыре типа аналого-цифровых преобразователей, кардинально отличающиеся по принципам преобразования и
архитектурным решениям: АЦП на основе метода поразрядного
уравновешивания, «считающие» АЦП, высокопроизводительные АЦП и
ΣΔ-преобразователи.

Аналого-цифровые преобразователи на основе метода поразрядного уравновешивания (другое название – АЦП последовательного приближения; SAR-ADC: Successive Approximation Register ADC) в течение десятилетий остаются основным и наиболее используемым преобразовательным устройством среди всех типов АЦП. Хорошо сбалансированный по таким трудно совместимым показателям, как разрядность/быстродействие, технологическая сложность/разрядность потребляемая мощность/быстродействие, этот преобразователь почти всегда рассматривается первым кандидатом для использования в большинстве разработок

Рис. 1. Структурная схема АЦП поразрядного уравновешивания.

На рис. 1 показана структурная схема, поясняющая принцип работы аналого-цифрового преобразователя. Уравновешивание начинается с запоминания мгновенного значения сигнала (выборки сигнала; предположим, Х = 21) в устройстве выборки хранения (УВХ = SHA – Sample & Hold Amplifier). На первом такте компаратор сравнивает значение сигнала с напряжением ЦАПа, равным Eref/2, где Eref – шкала преобразователя. Если сигнал больше напряжения ЦАПа, то в старший разряд выходного регистра записывается 1, а напряжение ЦАПа так и остаётся равным Eref/2 (оставляем Х = 16). На следующем такте к нему добавляется Eref/4, происходит новое сравнение (с Х = 16 + 8) и компаратор определяет значение очередного разряда (= 0, оставляем Х = 16 + 0) и т. д., пока все разряды не будут определены. Понятно, что для N-разрядного преобразования необходимо N тактов.

Рис. 2. Временная диаграмма работы SAR ADC. В процессе преобразования напряжение ЦАПа всё точнее приближается к входному.

На рис. П2 представлена временная диаграмма, откуда становится понятным, почему одно из названий алгоритма – последовательное приближение.

Параметры АЦП в первую очередь определяются свойствами цифроаналогового преобразователя: быстродействием и точностью его работы, а также – качеством работы устройства выборки-хранения и компаратора. В современных АЦП поразрядного уравновешивания, выполненных по технологии с переключаемыми конденсаторами, устройство выборки-хранения и ЦАП совмещены. За счёт высокого качества современных фотолитографических процессов удаётся выдержать двоичное соотношение разрядов ЦАПа, образованных конденсаторами, до значений 1/218. Поэтому разрядность современных АЦП поразрядного уравновешивания, выполненных по технологии с переключаемыми конденсаторами, достигает 18 при времени преобразования 1,2 мкс.

«Считающие» преобразователи обязательно содержат счётчик, а выходной код получается в результате подсчёта импульсов, частота или количество которых определяются входным сигналом.

Наиболее известным и распространённым представителем этого типа преобразователей является АЦП, использующий классический метод двухтактного интегрирования. Метод поразрядного уравновешивания, является фундаментом для всех универсальных АЦП. Так, метод двухтактного интегрирования и его модификации являются основой для построения прецизионных медленных АЦП и цифровых вольтметров.

Рис. 3. а) Структурная схема АЦП двухтактного интегрирования; б) временная диаграмма его работы при постоянном входном напряжении

Каждый электрик должен знать:  Максимальная токовая защита

Структурная схема устройства показана на рис. 3, а диаграмма, поясняющая принцип действия, – ниже на этом же рисунке. Метод двухтактного интегрирования основан на преобразовании входного сигнала во временной интервал. Сначала входное напряжение подключается через ключ SW1 к входу интегратора на время Т. После окончания интегрирования входного сигнала к входу интегратора подключается опорное напряжение противоположной полярности по отношению к интегралу от входного сигнала. Компаратором фиксируется момент времени tХ, когда величина напряжения на выходе интегратора достигнет начального (нулевого) значения. Из условия равенства зарядов на емкости получим

Таким образом, результат интегрирования зависит только от величины опорного напряжения и времени его интегрирования и не зависит от величины номиналов резистора R и емкости С, что, собственно, и даёт возможность добиться высокой точности от такого преобразователя. Если входное напряжение постоянно (Vin = const), то, используя один и тот же тактовый генератор для организации интервала Т и подсчёта tx, можно исключить требование к стабильности частоты тактового генератора:

где N – количество тактов на этапе интегрирования, Nx – измеренное значение, τ – длительность такта. Как видно, результат не зависит от τ. Есть и ещё одно привлекательное качество АЦП двухтактного интегрирования – эффективное подавление высокочастотных и сетевых помех. Можно получить формулу, описывающую выходной сигнал интегратора при подаче на его вход синусоидального сигнала с амплитудой E и частотой F:

Нетрудно заметить, что с ростом частоты сигнала амплитуда на выходе падает, как 1/F, и, кроме того, при F = k/T (k = 1,2,…) обращается в 0. Таким образом, если время интегрирования сделать кратным периоду сети, то будет достигнуто отмеченное выше подавление сетевых помех.

Рис. 4. Частотная зависимость амплитуды выходного сигнала интегратора с временем интегрирования Т

Частотная зависимость амплитуды выходного сигнала интегратора показана на рис. 4. Именно этим обстоятельством объясняется широкое применение этих устройств в прецизионных системах питания электрофизических установок. Следует учесть также и относительно небольшие аппаратные затраты для построения интегрирующего АЦП, в результате чего аналоговая часть может быть сделана гальванически изолированной, «плавающей». Вследствие этого появляется возможность организации многоканальных, прецизионных измерительных систем с территориально разнесёнными источниками сигналов, что весьма актуально на крупных физических комплексах, а также при измерениях магнитных полей с помощью датчиков Холла.

Интегрирующие АЦП широко используются для измерения постоянных или медленно меняющихся напряжений и токов и являются основой прецизионных вольтметров. Кроме того, интегрирование входного сигнала в данном типе преобразователя даёт возможность применить его для измерения постоянных магнитных полей с помощью перемещаемых катушек.

Второй, хорошо известный преобразователь из группы «считающих АЦП» – это устройство, преобразующее напряжение в частоту (Voltage-toFrequency Converter – VFC). Его работа также основана на интегрировании сигнала, вследствие чего он хорошо измеряет «зашумлённые» сигналы и

Каждый электрик должен знать:  Напряжение на корпусе стиральной машины и сетевой фильтр

может быть сделан достаточно точным. Наиболее известны два схемотехнических решения преобразования напряжения в частоту: управляемый током мультивибратор (current-steering multivibrator) и преобразователь с уравновешиванием заряда (charge-balance converter).

Рис. 5. Блок-схема преобразователя с уравновешиванием заряда.

Более точным является второй тип преобразователя напряжения в частоту. Его блок-схема показана на рис. 5. Входной сигнал подаётся на интегратор и при достижении им порога, с конденсатора отбирается строго определённый заряд, определяемый генератором тока и длительностью его подключения. Входной сигнал интегрируется без пауз, таким образом, заряд не теряется, что даёт возможность увеличивать разрядность при удлинении времени счёта. В современных устройствах длительность подключения генератора тока задаётся цифровым одновибратором (precision one-shot), поэтому и точность, и разрешающую способность удаётся довести до уровня 18 бит.

Есть два важных качества преобразователей напряжение-частота, которые крайне полезны в физических приложениях. На первое мы уже обращали внимание – возможность увеличения разрядности при увеличении времени счёта. Это свойство активно используется в магнитометрах (Fluxmeters), измеряющих сигналы с перемещаемых в магнитном поле катушек, поскольку позволяет достигать времени интегрирования/перемещения в десятки секунд. И второе, важное в физических применениях, свойство – это лёгкость гальванической изоляции преобразователя напряжение-частота. Действительно, потребляемая мощность всего несколько милливатт, малые габариты, хорошие точностные характеристики, передача выходного кода по одному проводу делают незаменимыми преобразователи напряжение-частота в высоковольтных системах.

К высокопроизводительным АЦП с некоторой долей условности можно

отнести преобразователи, производительность которых превышает 10 MSPS. Тем самым из данного типа исключаются АЦП поразрядного уравновешивания и будут рассматриваться более производительные архитектуры.

При рассмотрении предыдущих типов АЦП интуитивно предполагалось, что компаратор выполняет эту функцию мгновенно. Такой подход был вполне оправдан, поскольку в рассмотренных выше АЦП существенными являются быстродействие элементов, определяющих точность ЦАПов, ключей, усилителей и только в последнюю очередь компаратора. В высокопроизводительных схемах быстродействие компаратора должно учитываться, так как его динамические характеристики оказывают определяющее влияние на параметры преобразователя.

Вначале остановимся на простейших функциях и свойствах компаратора. Компаратор представляет собой усилитель с дифференциальным входом, большим коэффициентом усиления, позволяющим достигнуть высокой разрешающей способности, и формирователем выходных уровней. Если сигнал на входе ниже порога Vref,

выход принимает значение «0», если выше – то «1», поэтому компаратор является аналого-цифровым преобразователем с разрядностью 1 бит.

Так как от компаратора требуется и большой коэффициент, и высокое быстродействие, к чему стремятся разработчики, схема становится неустойчивой в линейном режиме, т. е. при значениях сигнала, близких к

порогу Vref или равных ему.

Каждый электрик должен знать:  Сработал автомат в щитке, после включения все работает

Первый способ преодоления проблемы – введение небольшой положительной обратной связи, т. е. гистерезиса. Этот приём широко распространён, однако он не позволяет достигнуть предельной, по сравнению с шумами, разрешающей способности, поскольку последняя не может превышать величины гистерезиса.

Второй способ – снижение коэффициента усиления до уровня устойчивой работы и включение полной (100 %) положительной обратной связи через некоторое время после начала сравнения. Такие компараторы применяются в одном из наиболее быстродействующих преобразователей – параллельных АЦП (Flash ADC). Рассмотрим структурную схему параллельного 3-битового АЦП,

Рассмотрим структурную схему параллельного 3-битового АЦП, показанную на рис. 6. Входной сигнал подаётся параллельно на все компараторы, а опорные напряжения разнесены друг от друга на величину младшего разряда с помощью лестничного делителя. Значения выходов компараторов образуют так называемый «термометрический» код, который затем преобразуется в двоичный. Для получения N-разрядного кода необходимо 2N-1 компараторов.

Параллельные аналого-цифровые преобразователи стали фундаментом для двух современных высокопроизводительных архитектур: конвейерных параллельно-последовательных схем (Pipeline ADCs), ориентированных на получение 12–14–16 бит при сохранении высокого быстродействия, и схем с аналоговой свёрткой сигнала (Folding ADCs), нацеленных на сверхбыстродействие (более 1GSPS) при разрядности 6–8–10 бит.

АЦП, использующих аналоговую свёртку сигнала. Образцы достигают производительности 2 GSPS при разрядности 10 бит. Кристаллы выполнены по npn-технологии, рассеивают 4,5 Вт и стоили на момент выпуска около $ 5000/шт.

Архитектура ΣΔ–АЦП. Анализ работы Δ-модулятора показал, что для уверенного кодирования относительно низкочастотных сигналов необходима очень высокая тактовая частота в устройстве. Эта особенность не позволила системам с Δ-модулятором достигнуть практических успехов. В то же время теоретические аспекты устройств, использующих тактирование с частотой, много выше, чем частоты сигнала (так называемая передискретизация, или oversampling в оригинальной транскрипции), привлекли внимание и стали предметом исследований. Вскоре был предложен модифицированный вариант Δ-модулятора (рис. 8.).

Рис. П8. Модифицированная схема Δ-модулятора, содержащая интегратор в цепи ошибки.

Рассмотрим на качественном уровне работу схемы. Будем предполагать,что компаратор и ЦАП идеальны и тактируются частотой kFs, много выше предельной частоты в спектре сигнала (в теории ΣΔ-АЦП распространение получило обозначение частоты модулятора как kFs в предположении, что Fs– частота выдачи кодов, соответствующая теореме отсчётов [1], а k –коэффициент передискретизации – «oversampling ratio»). Предположим также, что шаг квантования q бесконечно мал. Тогда комбинацию «компаратор + ЦАП» справедливо рассматривать как линейное звено, имеющее единичный коэффициент передачи и не вносящее искажений. С учётом этих предположений можно написать:

, где X – сигнал на входе, Y – сигнал на выходе, τ – постоянная времени интегратора, обратная величина которой является частотой ω1 единичного усиления интегратора. Напомним, что схема предназначена для работы в низкочастотной области, поэтому примем ω

Добавить комментарий