Биполярные фототранзисторы

Биполярные фототранзисторы

Схема включения транзистора с общей базой

Схема включения транзистора с общим коллектором

Схема включения транзистора с общим эмиттером

Схемы включения биполярных транзисторов

Между базой и эмиттером транзистора, включённого по схеме с общим эмиттером, подсоединяют источник сигнала, а к коллектору – нагрузку. К эмиттеру транзистора подключают полюсы одинаковых знаков источников питания. Входным током каскада выступает ток базы транзистора, а выходным током – ток коллектора. Это показано на рисунке 20, на примере включения в электрическую цепь биполярного p-n-p транзистора.

Рисунок 20 – Схема с общим эмиттером транзистор p-n-p

На практике обходятся одним источником питания, а не двумя. Направление протекания тока по выводам транзистора дано на рисунке. Включение n-p-n транзистора совершенно аналогично включению p-n-p транзистора, однако в данном случае придётся поменять полярность обоих источников питания.

Рисунок 21 – Схема с общим эмиттером транзистор n-p-n

Коэффициент усиления каскада равен отношению тока коллектора к току базы и обычно может достигать от десятков до нескольких сотен. Транзистор, включённый по схеме с общим эмиттером, теоретически может дать максимальное усиление сигнала по мощности, относительно других вариантов включения транзистора. Входное сопротивление рассматриваемого каскада, равное отношению напряжения база-эмиттер к току базы, лежит в пределах от сотен до тысяч ом. Это меньше, чем у каскада с транзистором, подсоединённым по схеме с общим коллектором. Выходной сигнал каскада с общим эмиттером обладает фазовым сдвигом в 180° относительно входного сигнала. Флюктуации температуры оказывают значительное влияние на режим работы транзистора, включённого по схеме с общим эмиттером, и поэтому следует применять специальные цепи температурной стабилизации. В связи с тем, что сопротивление коллекторного перехода транзистора в рассмотренном каскаде выше, чем в каскаде с общей базой, то необходимо больше времени на рекомбинацию носителей заряда, а, следовательно, каскад с общим эмиттером обладает худшим частотным свойством.

Каждый электрик должен знать:  Как сделать простой датчик уровня воды, жидкости в баке из шприца и куска проволоки своими руками.

К эмиттеру транзистора, включённого по схеме с общим коллектором, подсоединяют нагрузку, на базу подают входной сигнал. Входным током каскада является ток базы транзистора, а выходным током – ток эмиттера. Это отражено на рисунке 22, на котором изображена схема включения биполярного p-n-p транзистора.

Рисунок 22 – Схема с общим коллектором транзистор p-n-p

С нагрузочного резистора, включённого последовательно с выводом эмиттера, снимают выходной сигнал. Вход каскада обладает высоким сопротивлением, обычно от десятых долей мегаома до нескольких мегаом из-за того, что коллекторный переход транзистора заперт. А выходное сопротивление каскада – напротив, мало, что позволяет использовать такие каскады для согласования предшествующего каскада с нагрузкой. Каскад с транзистором, включённым по схеме с общим коллектором, не усиливает напряжение, но усиливает ток (обычно в 10 … 100 раз). Фаза входного напряжения сигнала, подаваемого на каскад, совпадает с фазой выходного напряжения, т.е. отсутствует его инверсия. Именно из-за сохранения фазы входного и выходного сигнала каскад с общим коллектором носит другое название – эмиттерного повторителя. Температурные и частотные свойства эмиттерного повторителя хуже, чем у каскада, в котором транзистор подключён по схеме с общей базой.

Каждый электрик должен знать:  Провод ПНСВ технические характеристики, расшифровка и применение

Рисунок 23 – Схема с общей базой транзистор p-n-p

В каскаде, собранном по схеме с общей базой, напряжение входного сигнала подают между эмиттером и базой транзистора, а выходное напряжение снимают с выводов коллектор-база. Включение транзистора p-n-p структуры по схеме с общей базой приведено на рисунке 23.

В данном случае эмиттерный переход компонента открыт и велика его проводимость. Входное сопротивление каскада невелико и обычно лежит в пределах от единиц до сотни Ом, что относят к недостатку описываемого включения транзистора. Кроме того, для функционирования каскада с транзистором, включённым по схеме с общей базой, необходимо два отдельных источника питания, а коэффициент усиления каскада по току меньше единицы. Коэффициент усиления каскада по напряжению часто достигает от десятков до нескольких сотен раз.

К достоинствам нужно отнести возможность функционирования каскада на существенно более высокой частоте по сравнению с двумя другими вариантами включения транзистора, и слабое влияние на работу каскада флюктуаций температуры. Именно поэтому каскады с транзисторами, включёнными по схеме с общей базой, часто используют для усиления высокочастотных сигналов.

Фототранзистором называют транзистор, чувствительный к облучающему его световому потоку. Обычно дискретный фототранзистор по конструкции похож на дискретный транзистор, с тем отличием, что в герметичном корпусе фототранзистора есть окно, например, из стекла или прозрачной специальной пластмассы, через которое излучение попадает на область базы фототранзистора. Включение фототранзистора в электрическую цепь таково, что к эмиттеру подключают положительный полюс внешнего источника питания, к коллектору подсоединяют нагрузочный резистор, к которому в свою очередь подключают отрицательный полюс источника питания. При облучении области базы происходит генерация носителей зарядов. Наибольшая концентрация основных носителей заряда будет в базе, что приведёт к открытию фототранзистора, а неосновные носители заряда будут мигрировать в коллекторный переход. Следовательно, облучение фототранзистора приводит к увеличению тока его коллектора. Чем больше будет освещённость области базы, тем существенней станет ток коллектора фототранзистора. Таким образом, фототранзистором можно управлять и как обычным биполярным транзистором, варьируя током базы, и как светочувствительным прибором. К важным параметрам фототранзистора относят темновой ток, ток при освещении и интегральную чувствительность. Темновой ток – это ток коллектора при отсутствии облучения. Ток при освещении – ток коллектора при наличии облучения. Интегральная чувствительность – это отношение силы тока коллектора у подключённого фототранзистора к величине светового потока.

Каждый электрик должен знать:  Плавится распределительная коробка при включении стиральной машинки

Фототранзисторы применяют в оптронах, устройствах автоматики и телеуправления, в приборах уличного освещения и пр.

Не нашли то, что искали? Воспользуйтесь поиском:

Добавить комментарий