Биполярные транзисторы устройство, принцип действия, схемы включения


СОДЕРЖАНИЕ:

Биполярный транзистор.

Биполярный транзистор — электронный полупроводниковый прибор, один из типов транзисторов, предназначенный для усиления, генерирования и преобразования электрических сигналов. Транзистор называется биполярный, поскольку в работе прибора одновременно участвуют два типа носителей заряда – электроны и дырки. Этим он отличается от униполярного (полевого) транзистора, в работе которого участвует только один тип носителей заряда.

Принцип работы обоих типов транзисторов похож на работу водяного крана, который регулирует водяной поток, только через транзистор проходит поток электронов. У биполярных транзисторов через прибор проходят два тока — основной «большой» ток, и управляющий «маленький» ток. Мощность основного тока зависит от мощности управляющего. У полевых транзисторов через прибор проходит только один ток, мощность которого зависит от электромагнитного поля. В данной статье рассмотрим подробнее работу биполярного транзистора.

Устройство биполярного транзистора.

Биполярный транзистор состоит из трех слоев полупроводника и двух PN-переходов. Различают PNP и NPN транзисторы по типу чередования дырочной и электронной проводимостей. Это похоже на два диода, соединенных лицом к лицу или наоборот.

У биполярного транзистора три контакта (электрода). Контакт, выходящий из центрального слоя, называется база (base). Крайние электроды носят названия коллектор и эмиттер (collector и emitter). Прослойка базы очень тонкая относительно коллектора и эмиттера. В дополнение к этому, области полупроводников по краям транзистора несимметричны. Слой полупроводника со стороны коллектора немного толще, чем со стороны эмиттера. Это необходимо для правильной работы транзистора.

Работа биполярного транзистора.

Рассмотрим физические процессы, происходящие во время работы биполярного транзистора. Для примера возьмем модель NPN. Принцип работы транзистора PNP аналогичен, только полярность напряжения между коллектором и эмиттером будет противоположной.

Как уже говорилось в статье о типах проводимости в полупроводниках, в веществе P-типа находятся положительно заряженные ионы — дырки. Вещество N-типа насыщено отрицательно заряженными электронами. В транзисторе концентрация электронов в области N значительно превышает концентрацию дырок в области P.

Подключим источник напряжения между коллектором и эмиттером VКЭ (VCE). Под его действием, электроны из верхней N части начнут притягиваться к плюсу и собираться возле коллектора. Однако ток не сможет идти, потому что электрическое поле источника напряжения не достигает эмиттера. Этому мешает толстая прослойка полупроводника коллектора плюс прослойка полупроводника базы.

Теперь подключим напряжение между базой и эмиттером VBE, но значительно ниже чем VCE (для кремниевых транзисторов минимальное необходимое VBE — 0.6V). Поскольку прослойка P очень тонкая, плюс источника напряжения подключенного к базе, сможет «дотянуться» своим электрическим полем до N области эмиттера. Под его действием электроны направятся к базе. Часть из них начнет заполнять находящиеся там дырки (рекомбинировать). Другая часть не найдет себе свободную дырку, потому что концентрация дырок в базе гораздо ниже концентрации электронов в эмиттере.

В результате центральный слой базы обогащается свободными электронами. Большинство из них направится в сторону коллектора, поскольку там напряжение намного выше. Так же этому способствует очень маленькая толщина центрального слоя. Какая-то часть электронов, хоть гораздо меньшая, все равно потечет в сторону плюса базы.

В итоге мы получаем два тока: маленький — от базы к эмиттеру IBE, и большой — от коллектора к эмиттеру ICE.

Если увеличить напряжение на базе, то в прослойке P соберется еще больше электронов. В результате немного усилится ток базы, и значительно усилится ток коллектора. Таким образом, при небольшом изменении тока базы I B , сильно меняется ток коллектора I С. Так и происходит усиление сигнала в биполярном транзисторе. Cоотношение тока коллектора IС к току базы IB называется коэффициентом усиления по току. Обозначается β, hfe или h21e, в зависимости от специфики расчетов, проводимых с транзистором.

Простейший усилитель на биполярном транзисторе

Рассмотрим детальнее принцип усиления сигнала в электрической плоскости на примере схемы. Заранее оговорюсь, что такая схема не совсем правильная. Никто не подключает источник постоянного напряжения напрямую к источнику переменного. Но в данном случае, так будет проще и нагляднее для понимания самого механизма усиления с помощью биполярного транзистора. Так же, сама техника расчетов в приведенном ниже примере носит несколько упрощенный характер.

1.Описание основных элементов цепи

Итак, допустим в нашем распоряжении транзистор с коэффициентом усиления 200 (β = 200). Со стороны коллектора подключим относительно мощный источник питания в 20V, за счет энергии которого будет происходить усиление. Со стороны базы транзистора подсоединим слабый источник питания в 2V. К нему последовательно подсоединим источник переменного напряжения в форме синуса, с амплитудой колебаний в 0.1V. Это будет сигнал, который нужно усилить. Резистор Rb возле базы необходим для того, чтобы ограничить ток, идущий от источника сигнала, обычно обладающего слабой мощностью.

2. Расчет входного тока базы Ib

Теперь посчитаем ток базы Ib. Поскольку мы имеем дело с переменным напряжением, нужно посчитать два значения тока – при максимальном напряжении (Vmax) и минимальном (Vmin). Назовем эти значения тока соответственно — Ibmax и Ibmin.

Также, для того чтобы посчитать ток базы, необходимо знать напряжение база-эмиттер VBE. Между базой и эмиттером располагается один PN-переход. Получается, что ток базы «встречает» на своем пути полупроводниковый диод. Напряжение, при котором полупроводниковый диод начинает проводить — около 0.6V. Не будем вдаваться в подробности вольт-амперных характеристик диода, и для простоты расчетов возьмем приближенную модель, согласно которой напряжение на проводящем ток диоде всегда 0.6V. Значит, напряжение между базой и эмиттером VBE = 0.6V. А поскольку эмиттер подключен к земле (VE = 0), то напряжение от базы до земли тоже 0.6V (VB = 0.6V).

Посчитаем Ibmax и Ibmin с помощью закона Ома:

2. Расчет выходного тока коллектора IС

Теперь, зная коэффициент усиления (β = 200), можно с легкостью посчитать максимальное и минимальное значения тока коллектора ( Icmax и Icmin).

3. Расчет выходного напряжения Vout

Осталось посчитать напряжение на выходе нашего усилителя Vout. В данной цепи — это напряжение на коллекторе VC.

Через резистор Rc течет ток коллектора, который мы уже посчитали. Осталось подставить значения:

4. Анализ результатов

Как видно из результатов, VCmax получился меньше чем VCmin. Это произошло из-за того, что напряжение на резисторе VRc отнимается от напряжения питания VCC. Однако в большинстве случаев это не имеет значения, поскольку нас интересует переменная составляющая сигнала – амплитуда, которая увеличилась c 0.1V до 1V. Частота и синусоидальная форма сигнала не изменились. Конечно же, соотношение Vout/Vin в десять раз — далеко на самый лучший показатель для усилителя, однако для иллюстрации процесса усиления вполне подойдет.

Итак, подытожим принцип работы усилителя на биполярном транзисторе. Через базу течет ток Ib, несущий в себе постоянную и переменную составляющие. Постоянная составляющая нужна для того чтобы PN-переход между базой и эмиттером начал проводить – «открылся». Переменная составляющая – это, собственно, сам сигнал (полезная информация). Сила тока коллектор-эмиттер внутри транзистора – это результат умножения тока базы на коэффициент усиления β. В свою очередь, напряжение на резисторе Rc над коллектором – результат умножения усиленного тока коллектора на значение резистора.

Таким образом, на вывод Vout поступает сигнал с увеличенной амплитудой колебаний, но с сохранившейся формой и частотой. Важно подчеркнуть, что энергию для усиления транзистор берет у источника питания VCC. Если напряжения питания будет недостаточно, транзистор не сможет полноценно работать, и выходной сигнал может получится с искажениями.

Режимы работы биполярного транзистора

В соответствии уровням напряжения на электродах транзистора, различают четыре режима его работы:

  • Режим отсечки (cut off mode).
  • Активный режим (active mode).
  • Режим насыщения (saturation mode).
  • Инверсный ражим (reverse mode ).

Режим отсечки

Когда напряжение база-эмиттер ниже, чем 0.6V — 0.7V, PN-переход между базой и эмиттером закрыт. В таком состоянии у транзистора отсутствует ток базы. В результате тока коллектора тоже не будет, поскольку в базе нет свободных электронов, готовых двигаться в сторону напряжения на коллекторе. Получается, что транзистор как бы заперт, и говорят, что он находится в режиме отсечки.

Активный режим

В активном режиме напряжение на базе достаточное, для того чтобы PN-переход между базой и эмиттером открылся. В этом состоянии у транзистора присутствуют токи базы и коллектора. Ток коллектора равняется току базы, умноженном на коэффициент усиления. Т.е активным режимом называют нормальный рабочий режим транзистора, который используют для усиления.

Режим насыщения

Иногда ток базы может оказаться слишком большим. В результате мощности питания просто не хватит для обеспечения такой величины тока коллектора, которая бы соответствовала коэффициенту усиления транзистора. В режиме насыщения ток коллектора будет максимальным, который может обеспечить источник питания, и не будет зависеть от тока базы. В таком состоянии транзистор не способен усиливать сигнал, поскольку ток коллектора не реагирует на изменения тока базы.

В режиме насыщения проводимость транзистора максимальна, и он больше подходит для функции переключателя (ключа) в состоянии «включен». Аналогично, в режиме отсечки проводимость транзистора минимальна, и это соответствует переключателю в состоянии «выключен».

Инверсный режим

В данном режиме коллектор и эмиттер меняются ролями: коллекторный PN-переход смещен в прямом направлении, а эмиттерный – в обратном. В результате ток из базы течет в коллектор. Область полупроводника коллектора несимметрична эмиттеру, и коэффициент усиления в инверсном режиме получается ниже, чем в нормальном активном режиме. Конструкция транзистора выполнена таким образом, чтобы он максимально эффективно работал в активном режиме. Поэтому в инверсном режиме транзистор практически не используют.

Основные параметры биполярного транзистора.

Коэффициент усиления по току – соотношение тока коллектора IС к току базы IB. Обозначается β, hfe или h21e, в зависимости от специфики расчетов, проводимых с транзисторов.

β — величина постоянная для одного транзистора, и зависит от физического строения прибора. Высокий коэффициент усиления исчисляется в сотнях единиц, низкий — в десятках. Для двух отдельных транзисторов одного типа, даже если во время производства они были “соседями по конвейеру”, β может немного отличаться. Эта характеристика биполярного транзистора является, пожалуй, самой важной. Если другими параметрами прибора довольно часто можно пренебречь в расчетах, то коэффициентом усиления по току практически невозможно.

Входное сопротивление – сопротивление в транзисторе, которое «встречает» ток базы. Обозначается Rin (Rвх). Чем оно больше — тем лучше для усилительных характеристик прибора, поскольку со стороны базы обычно находиться источник слабого сигнала, у которого нужно потреблять как можно меньше тока. Идеальный вариант – это когда входное сопротивление равняется бесконечность.

Rвх для среднестатистического биполярного транзистора составляет несколько сотен КΩ (килоом). Здесь биполярный транзистор очень сильно проигрывает полевому транзистору, где входное сопротивление доходит до сотен ГΩ (гигаом).

Выходная проводимость — проводимость транзистора между коллектором и эмиттером. Чем больше выходная проводимость, тем больше тока коллектор-эмиттер сможет проходить через транзистор при меньшей мощности.

Также с увеличением выходной проводимости (или уменьшением выходного сопротивления) увеличивается максимальная нагрузка, которую может выдержать усилитель при незначительных потерях общего коэффициента усиления. Например, если транзистор с низкой выходной проводимостью усиливает сигнал в 100 раз без нагрузки, то при подсоединении нагрузки в 1 КΩ, он уже будет усиливать всего в 50 раз. У транзистора, с таким же коэффициентом усиления, но с большей выходной проводимостью, падение усиления будет меньше. Идеальный вариант – это когда выходная проводимость равняется бесконечность (или выходное сопротивление Rout = 0 (Rвых = 0)).

Частотная характеристика – зависимость коэффициента усиления транзистора от частоты входящего сигнала. С повышением частоты, способность транзистора усиливать сигнал постепенно падает. Причиной тому являются паразитные емкости, образовавшиеся в PN-переходах. На изменения входного сигнала в базе транзистор реагирует не мгновенно, а с определенным замедлением, обусловленным затратой времени на наполнение зарядом этих емкостей. Поэтому, при очень высоких частотах, транзистор просто не успевает среагировать и полностью усилить сигнал.

Каждый электрик должен знать:  Сечение кабеля для водонагревателя мощностью 5 кВт

Биполярный транзистор. Принцип работы. Применение. Типы, виды, категории, классификация.

Все о биполярном транзисторе. Принцип работы. Применение в схемах. Свойства. Классификация. (10+)

Биполярный транзистор. Принцип работы. Применение. Типы, виды, категории, классификация

Биполярный транзистор (БТ) — электронный прибор, который используется практически во всех современных электронных схемах, или как отдельный элемент, или в составе интегральных микросхем. Что такое биполярный транзистор?

Настоящая статья является заглавной для цикла, посвященного схемотехнике биполярных транзисторов. Планируется выход еще ряда статей. Подпишитесь, чтобы узнавать о выходе новых статей, если Вам это интересно.

Математическая модель биполярного транзистора. Обозначение.

Вашему вниманию подборка материалов:

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Биполярный транзистор имеет три вывода. Выводы называются: Эмиттер, Коллектор, База. Биполярный транзистор обладает следующим свойством, обуславливающим его применение. [ток цепи коллектор — эмиттер] = h * [ток цепи база — эмиттер]. h — коэффициент передачи тока. С точки зрения инженера — схемотехника любой прибор, обладающий таким свойством, может называться транзистором вне зависимости от его внутреннего устройства.

Биполярный транзистор позволяет силой одного тока регулировать силу другого.

Биполярный транзистор может быть устроен так, что ток втекает через базу или коллектор и вытекает через эмиттер, то есть на базу и коллектор подается положительное напряжение относительно эмиттера. Про такой транзистор говорят, что он имеет структуру NPN. У других биполярных транзисторов ток вытекает через базу или коллектор и втекает через эмиттер, то есть на базу и коллектор подается отрицательное напряжение относительно эмиттера. Про такой транзистор говорят, что он имеет структуру PNP.

На схемах биполярный транзистор обозначается, как показано на рисунке.

Идеальный биполярный транзистор

Идеальный БТ имеет фиксированный, постоянный, не зависящий от тока и внешних условий, например, температуры, коэффициент передачи тока. Он не имеет внутреннего сопротивления, индуктивности, емкости. Регулирование тока происходит мгновенно, без задержки во времени.

Ток базы не зависит от напряжения, входное сопротивление стремится к нулю, то есть изменение тока базы не приводит к изменению напряжения на базе относительно эмиттера.

Идеальный биполярный транзистор никогда не нагревается, так как имеет совершенное охлаждение. Идеальный БТ имеет нулевые размеры, не занимает место на плате. Он не шумит. Его выходной ток строго зависит от входного, без посторонних помех.

Идеальный биполярный транзистор выдерживает любое напряжение и любой ток. У идеального БТ ток коллектора не зависит от напряжения коллектор — эмиттер, которое может изменяться от нуля до бесконечности.

Реальные биполярные транзисторы. Классификация, виды, типы.

Если бы БТ на самом деле был идеальным, то нужен был бы всего один тип транзистора — ПИБТ (просто идеальный биполярный транзистор). Его можно было бы применять во всех схемах. В реальности все не так хорошо. Причем улучшение одних параметров транзистора, обычно приводит к ухудшению других. Именно этим обусловлено наличие большого разнообразия типов и видов транзисторов, так как для различных схем важны некоторые определенные параметры, но не важны другие, ими можно пожертвовать.

Реальный биполярный транзистор обладает коэффициентом передачи тока, зависящим от самого тока, температуры, частоты и еще ряда внешних параметров. Значения коэффициента передачи тока могут быть от 8 до 1000 и более.

Реальный БТ обладает индуктивностью выводов (как будто последовательно с выводами подключили маленькие катушки индуктивности) и емкостью между коллектором и эмиттером, коллектором и базой, базой и эмиттером. Эти параметры влияют на применимость БТ в высокочастотных схемах. В зависимости от них различают низкочастотные, среднечастотные, высокочастотные и сверхвысокочастотные биполярные транзисторы

Реальный БТ обладает внутренним сопротивлением (как будто последовательно с выводами подключили маленькие резисторы), ограниченными возможностями по рассеиванию тепла, которое неизбежно выделяется при работе прибора, некоторым конечным напряжением насыщения коллектор — эмиттер (если напряжение на коллекторе меньше, то ток через коллектор не пойдет, даже если в цепи базы ток есть). Напряжение насыщения коллектор — эмиттер — очень важный параметр, так как он влияет на потери и нагрев, когда транзистор работает в ключевом режиме, ведь потери мощности в ключевом режиме, когда транзистор открыт, как раз равны току коллектора умножить на напряжение насыщения коллектор — эмиттер. Таким образом, биполярные транзисторы подразделяются на маломощные, средней мощности и мощные. Кроме того, выделяют биполярные транзисторы — ключи, специально предназначенные для работы в режиме ключа.

Реальный БТ имеет ограничения сверху по напряжению коллектор — эмиттер. Превышение этого напряжения чревато пробоем и разрушением элемента. В зависимости от максимального напряжения коллектор — эмиттер биполярные транзисторы разделяют на низковольтные и высоковольтные.

Еще выделяют малошумящие и термостабильные биполярные транзисторы.

Особенности применения биполярных транзисторов в схемах

Главной бедой транзисторной схемотехники является то, что ей предшествовала ламповая. Большинство схематических решений, которые сейчас применяются, заимствованы из того периода и адаптированы под особенности транзисторов. Однако при всей своей кажущейся схожести, на самом деле электронная лампа и транзистор — приборы совершенно разные. У электронной лампы ток выходной цепи регулируется напряжением во входной, а у транзистора — током во входной цепи. Это отличие — принципиальное для схемотехники.

Попытка адаптировать решения для электронных ламп под транзисторы обычно сводит на нет все их преимущества. Получается на корове седло. Пересмотр многих схемных решений, создание именно транзисторных схем во многих областях еще ждет своего часа.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи.

Проверка биполярного, полевого транзисторов, МОП, FET, MOSFET. Провери.
Как проверить исправность биполярного и полевого транзисторов. Методика испытани.

Практика проектирования электронных схем. Самоучитель электроники.
Искусство разработки устройств. Элементная база радиоэлектроники. Типовые схемы.

Транзисторы КТ503, 2Т503. Справочник, справочные данные, параметры, цо.
Характеристики и применение биполярных транзисторов КТ503 (КТ503А, КТ503Б, КТ503.

Силовой импульсный преобразователь, источник синуса, синусоиды, синусо.
Принцип работы, самостоятельное изготовление и наладка импульсного силового прео.

Инвертирующий импульсный преобразователь напряжения, источник питания.
Как работает инвертирующий стабилизатор напряжения. Где он применяется. Описание.

Биполярный транзистор

Биполя́рный транзи́стор — трёхэлектродный полупроводниковый прибор, один из типов транзисторов. В полупроводниковой структуре сформированы 2 p-n перехода и перенос заряда в приборе осуществляется носителями 2 видов — электронами и дырками. Именно поэтому прибор получил название «биполярный».

Применяется в электронных устройствах для усиления генерации электрических колебаний и в качестве переключающего ток элемента, например, в логических электронных схемах.

Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости. По этому способу чередования различают n-p-n и p-n-p транзисторы (n (negative) — электронный тип примесной проводимости, p (positive) — дырочный).

Работа биполярного транзистора, в отличие от полевого транзистора, основана на переносе зарядов одновременно двух типов, носителями которых являются электроны и дырки (от слова «би» — «два»). Схематическое устройство транзистора показано на втором рисунке.

Электрод, подключённый к среднему слою, называют базой, электроды, подключённые ко внешним слоям, называют эмиттером и коллектором. С точки зрения типов проводимостей эмиттерный и коллекторный слои не различимы. Но практически, при изготовлении транзисторов, для улучшения электрических параметров прибора они существенно различаются степенью легирования примесями. Эмиттерный слой сильно легированный, коллекторный легируется слабо, что обеспечивает повышение допустимого коллекторного напряжения. Величина пробойного обратного напряжения эмиттерного перехода некритична, так как обычно в электронных схемах транзисторы работают с прямосмещенным эмиттерным p-n-переходом, кроме того, сильное легирование эмиттерного слоя обеспечивает лучшую инжекцию неосновных носителей в базовый слой, что увеличивает коэффициент передачи по току в схемах с общей базой. Кроме того, площадь коллекторного p-n-перехода при изготовлении делается существенно больше площади эмиттерного перехода, что обеспечивает лучший сбор неосновных носителей из базового слоя и улучшает коэффициент передачи.

Для повышения быстродействия (частотных параметров) биполярного транзистора толщину базового слоя нужно делать тоньше, так как толщиной базового слоя, в том числе, определяется время «пролёта» (диффузии в бездрейфовых приборах) неосновных носителей, но, при снижении толщины базы, снижается предельное коллекторное напряжение, поэтому толщину базового слоя выбирают исходя из разумного компромисса.

Содержание

Устройство и принцип действия [ править ]

В первых транзисторах в качестве полупроводникового материала использовался металлический германий. В настоящее (2015 г.) время их изготавливают в основном из монокристаллического кремния и монокристаллического арсенида галлия. Благодаря очень высокой подвижности носителей в арсениде галлия приборы на его основе обладают высоким быстродействием и используются в сверхбыстродействующих логических схемах и в схемах СВЧ-усилителей.

Биполярный транзистор состоит из трёх различным образом легированных полупроводниковых слоёв: эмиттера E (Э), базы B (Б) и коллектора C (К). В зависимости от чередования типа проводимости этих слоёв различают n-p-n (эмиттер − n-полупроводник, база − p-полупроводник, коллектор − n-полупроводник) и p-n-p транзисторы. К каждому из слоёв подключены проводящие невыпрямляющие контакты [1] .

Слой базы расположен между эмиттерным и коллекторным слоями и слаболегирован, поэтому имеет большое электрическое сопротивление. Общая площадь контакта база-эмиттер выполняется значительно меньше площади контакта коллектор-база (это делается по двум причинам — большая площадь перехода коллектор-база увеличивает вероятность захвата неосновных носителей заряда из базы в коллектор и, так как в рабочем режиме переход коллектор-база обычно включен с обратным смещением, при работе в коллекторном переходе выделяется основная доля тепла, рассеиваемого прибором, повышение площади способствует лучшему отводу тепла от коллекторного перехода), поэтому реальный биполярный транзистор общего применения является несимметричным устройством (технически нецелесообразно менять местами эмиттер и коллектор и получить в результате аналогичный исходному биполярный транзистор — инверсное включение).

В активном усилительном режиме работы транзистор включён так, что его эмиттерный переход смещён в прямом направлении (открыт), а коллекторный переход смещён в обратном направлении (закрыт).

Для определённости рассмотрим работу n-p-n транзистора, все рассуждения повторяются абсолютно аналогично для случая p-n-p транзистора, с заменой слова «электроны» на «дырки», и наоборот, а также с заменой всех напряжений на противоположные по знаку. В n-p-n транзисторе электроны, основные носители заряда в эмиттере, проходят через открытый переход эмиттер-база (инжектируются) в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками). Однако, из-за того что базу делают очень тонкой и сравнительно слабо легированной, бо́льшая часть электронов, инжектированных из эмиттера, диффундирует в область коллектора, так как время рекомбинации относительно велико [2] . Сильное электрическое поле обратно смещённого коллекторного перехода захватывает неосновные носители из базы (электроны), и переносит их в коллекторный слой. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб + Iк).

Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк = α Iэ) называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α 0,9—0,999. Чем больше коэффициент, тем эффективней транзистор передаёт ток. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер. Поэтому в широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен β = α/(1 − α), от 10 до 1000. Таким образом, малым током базы можно управлять значительно бо́льшим током коллектора.

Режимы работы биполярного транзистора [ править ]

Напряжения
на эмиттере,
базе,
коллекторе
( )
Смещение
перехода
база-эмиттер
для типа n-p-n
Смещение
перехода
база-коллектор
для типа n-p-n
Режим
для типа n-p-n
прямое обратное нормальный
активный режим
U_C» src=»http://wp.wiki-wiki.ru/wp/images/math/c/e/7/ce7c5b4210601dfba47dbbedae341663.png» /> прямое прямое режим насыщения
U_B обратное обратное режим отсечки
U_B > U_C» src=»http://wp.wiki-wiki.ru/wp/images/math/f/f/b/ffb4b8866d0b28ed4d2b98c7a524ce41.png» /> обратное прямое инверсный
активный режим
Напряжения
на эмиттере,
базе,
коллекторе
( )
Смещение
перехода
база-эмиттер
для типа p-n-p
Смещение
перехода
база-коллектор
для типа p-n-p
Режим
для типа p-n-p
обратное прямое инверсный
активный режим
U_C» src=»http://wp.wiki-wiki.ru/wp/images/math/c/e/7/ce7c5b4210601dfba47dbbedae341663.png» /> обратное обратное режим отсечки
U_B прямое прямое режим насыщения
U_B > U_C» src=»http://wp.wiki-wiki.ru/wp/images/math/f/f/b/ffb4b8866d0b28ed4d2b98c7a524ce41.png» /> прямое обратное нормальный
активный режим

Нормальный активный режим [ править ]

Переход эмиттер-база включен в прямом направлении (открыт), а переход коллектор-база — в обратном (закрыт):

Инверсный активный режим [ править ]

Эмиттерный переход имеет обратное смещение, а коллекторный переход — прямое: UКБ>0; UЭБ Режим насыщения [ править ]

Оба p-n перехода смещены в прямом направлении (оба открыты). Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения. Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками Uэб и Uкб. В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнётся проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (IЭ. нас) и коллектора (IК. нас).

Напряжение насыщения коллектор-эмиттер (UКЭ. нас) — это падение напряжения на открытом транзисторе (смысловой аналог RСИ. отк у полевых транзисторов). Аналогично напряжение насыщения база-эмиттер (UБЭ. нас) — это падение напряжения между базой и эмиттером на открытом транзисторе.

Режим отсечки [ править ]

В данном режиме оба p-n перехода смещены в обратном направлении. Режиму отсечки соответствует условие UЭБ Барьерный режим [ править ]

В данном режиме база транзистора по постоянному току соединена накоротко или через небольшой резистор с его коллектором, а в коллекторную или в эмиттерную цепь транзистора включается резистор, задающий ток через транзистор. В таком включении транзистор представляет собой своеобразный диод, включенный последовательно с токозадающим резистором. Подобные схемы каскадов отличаются малым количеством комплектующих, хорошей развязкой по высокой частоте, большим рабочим диапазоном температур, нечувствительностью к параметрам транзисторов.

Каждый электрик должен знать:  Тест по электробезопасности 2 группа онлайн с ответами

Схемы включения [ править ]

Любая схема включения транзистора характеризуется двумя основными показателями:

Схема включения с общей базой [ править ]

Схема включения с общим эмиттером [ править ]

  • Коэффициент усиления по току: Iвых/Iвх = Iк/Iб = Iк/(Iэ-Iк) = α/(1-α) = β [β>>1].
  • Входное сопротивление: Rвх = Uвх/Iвх = Uбэ/Iб.

Достоинства

  • Большой коэффициент усиления по току.
  • Большой коэффициент усиления по напряжению.
  • Наибольшее усиление мощности.
  • Можно обойтись одним источником питания.
  • Выходное переменное напряжение инвертируется относительно входного.

Недостатки

  • Имеет меньшую температурную стабильность. Частотные свойства такого включения по сравнению со схемой с общей базой существенно хуже, что обусловлено эффектом Миллера.

Схема с общим коллектором [ править ]

  • Коэффициент усиления по току: Iвых/Iвх = Iэ/Iб = Iэ/(Iэ-Iк) = 1/(1-α) = β [β>>1].
  • Входное сопротивление: Rвх = Uвх/Iвх = (Uбэ + Uкэ)/Iб.

Достоинства

  • Большое входное сопротивление.
  • Малое выходное сопротивление.

Недостатки

  • Коэффициент усиления по напряжению немного меньше 1.

Схему с таким включением часто называют «эмиттерным повторителем».

Основные параметры [ править ]

  • Коэффициент передачи по току.
  • Входное сопротивление.
  • Выходная проводимость.
  • Обратный ток коллектор-эмиттер.
  • Время включения.
  • Предельная частота коэффициента передачи тока базы.
  • Обратный ток коллектора.
  • Максимально допустимый ток.
  • Граничная частота коэффициента передачи тока в схеме с общим эмиттером.

Параметры транзистора делятся на собственные (первичные) и вторичные. Собственные параметры характеризуют свойства транзистора, независимо от схемы его включения. В качестве основных собственных параметров принимают:

  • коэффициент усиления по току α;
  • сопротивления эмиттера, коллектора и базы переменному току rэ, rк, rб, которые представляют собой:
    • rэ — сумму сопротивлений эмиттерной области и эмиттерного перехода;
    • rк — сумму сопротивлений коллекторной области и коллекторного перехода;
    • rб — поперечное сопротивление базы.

Вторичные параметры различны для различных схем включения транзистора и, вследствие его нелинейности, справедливы только для низких частот и малых амплитуд сигналов. Для вторичных параметров предложено несколько систем параметров и соответствующих им эквивалентных схем. Основными считаются смешанные (гибридные) параметры, обозначаемые буквой «h».

Входное сопротивление — сопротивление транзистора входному переменному току при коротком замыкании на выходе. Изменение входного тока является результатом изменения входного напряжения, без влияния обратной связи от выходного напряжения.

Коэффициент обратной связи по напряжению показывает, какая доля выходного переменного напряжения передаётся на вход транзистора вследствие обратной связи в нём. Во входной цепи транзистора нет переменного тока, и изменение напряжения на входе происходит только в результате изменения выходного напряжения.

Коэффициент передачи тока (коэффициент усиления по току) показывает усиление переменного тока при нулевом сопротивлении нагрузки. Выходной ток зависит только от входного тока без влияния выходного напряжения.

Выходная проводимость — внутренняя проводимость для переменного тока между выходными зажимами. Выходной ток изменяется под влиянием выходного напряжения.

Зависимость между переменными токами и напряжениями транзистора выражается уравнениями:

В зависимости от схемы включения транзистора к цифровым индексам h-параметров добавляются буквы: «э» — для схемы ОЭ, «б» — для схемы ОБ, «к» — для схемы ОК.

Собственные параметры транзистора связаны с h-параметрами, например для схемы ОЭ:

С повышением частоты вредное влияние на работу транзистора начинает оказывать ёмкость коллекторного перехода Cк. Сопротивление ёмкости уменьшается, снижается ток через сопротивление нагрузки и, следовательно, коэффициенты усиления α и β. Сопротивление ёмкости эмиттерного перехода Cэ также снижается, однако она шунтируется малым сопротивлением перехода rэ и в большинстве случаев может не учитываться. Кроме того, при повышении частоты происходит дополнительное снижение коэффициента β в результате отставания фазы тока коллектора от фазы тока эмиттера, которое вызвано инерционностью процесса перемещения носителей через базу от эммитерного перехода к коллекторному и инерционностью процессов накопления и рассасывания заряда в базе. Частоты, на которых происходит снижение коэффициентов α и β на 3 дБ, называются граничными частотами коэффициента передачи тока для схем ОБ и ОЭ соответственно.

В импульсном режиме импульс тока коллектора начинается с запаздыванием на время задержки τз относительно импульса входного тока, что вызвано конечным временем пробега носителей через базу. По мере накопления носителей в базе ток коллектора нарастает в течение длительности фронта τф. Временем включения транзистора называется τвкл = τз + τф.

Биполярные транзисторы — понятие и виды. Классификация и особенности категории «Биполярные транзисторы» 2020, 2020.

Читайте также

1. БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ С УПРАВЛЯЕМЫМ p-n -ПЕРЕХОДОМ Основными элементами устройств, применяемых для усиления мощности электрических сигналов, являются транзисторы. Они выпускаются в виде отдельных элементов или входят в состав интегральных микросхем. Транзисторы. [читать подробнее].

Транзисторы подразделяют на два основных класса: биполярные и полевые. Биполярным транзистором называют полупроводниковый прибор с двумя взаимодействующими электрическими переходами и тремя (или более) выводами, усилительные свойства которого обусловлены явлениями. [читать подробнее].

В 1958 г. американские ученые Дж. Бардин и В. Браттейн создали полупроводниковый триод, или транзистор (Нобелевская премия В. Шокли, Дж. Бардина, У. Браттейна). Это событие имело громадное значение для развития полупроводниковой электроники. Транзисторная структура легла в. [читать подробнее].

В 1958 г. американские ученые Дж. Бардин и В. Браттейн создали полупроводниковый триод, или транзистор (Нобелевская премия В. Шокли, Дж. Бардина, У. Браттейна). Это событие имело громадное значение для развития полупроводниковой электроники. Транзисторная структура легла в. [читать подробнее].

Пробой p-n-перехода. Под пробоем понимают значительное уменьшение обратного сопротивления, сопровождающееся возрастанием обратного тока при увеличении приложенного напряжения. Существует три типа пробоев: туннельный, лавинный и тепловой. Туннельный пробой связан с. [читать подробнее].

Биполярным транзистором называется полупроводниковый прибор, имеющий три области с различными типами проводимости. Две крайние области обладают одинаковым типом проводимости, а средняя область – противоположной проводимостью. Транзисторы n-p-n –типа с. [читать подробнее].

Транзистором называют трехэлектродный полупроводниковый прибор служащий для усиления мощности электрических сигнален Кроме усиления транзисторы используют для генерирования сигналов, их различных преобразований и решения других задач электронной техники. . [читать подробнее].

Транзисторы. ЛЕКЦИЯ 9 Транзистор &. [читать подробнее].

Транзисторы. ЛЕКЦИЯ 9 Транзистор &. [читать подробнее].

От английских слов transfer – переносить и резистор — электронный прибор на основе полупроводникового кристалла, имеющий три (или более) электрода (вывода) (но не ног), предназначен для усиления, генерирования, преобразования электрических колебаний. Изобретен американскими. [читать подробнее].

Биполярные транзисторы. 1. Назначение и классификация биполярных транзисторов. 2. Устройство и принцип действия биполярных транзисторов. 3.Тиристоры. — презентация

Презентация была опубликована 4 года назад пользователемВалентина Соколова

Похожие презентации

Презентация на тему: » Биполярные транзисторы. 1. Назначение и классификация биполярных транзисторов. 2. Устройство и принцип действия биполярных транзисторов. 3.Тиристоры.» — Транскрипт:

2 1. Назначение и классификация биполярных транзисторов. 2. Устройство и принцип действия биполярных транзисторов. 3.Тиристоры.

4 Транзисторами называются полупроводниковые электронные приборы, предназначенные для усиления, генерирования и преобразования электрических сигналов

5 Транзистор полупроводниковый преобразовательный элемент, имеющий не менее трёх выводов и способный усиливать мощность за счет ээнергиии ввнешнего источника питания. а счет энергии внешнего источника питания. Транзистор нелинейный активный элемент

7 Классификация транзисторов по основному полупроводниковому материалу Германиевые Germanium (Ge), 32 Кремниевые Silicium (Si), 14 Арсенид-галлиевые (GaAs) химическое соединение галлия и мышьяка

8 Классификация транзисторов по принципу действия биполярные полевые (униполярные)

9 Классификация транзисторов по частоте НЧ (30 МГц)

10 Классификация транзисторов по мощности ММ (3 Вт) мощные

11 Устройство и принцип действия биполярных транзисторов n-p-n p-n-p база коллектор эмиттер n рn р Э Б К Э Б К р n база коллектор эмиттер p np n p

12 Действие биполярного транзистора (БТ) основано на использовании носителей зарядов обоих знаков: дырок и электронов. Управление протекающим через БТ током осуществляется с помощью другого управляющего тока. БТ управляется током.

15 Режимы работы биполярного транзистора 1. активный режим «эмиттер-база» открыт, «коллектор-база» закрыт 2. инверсный режим «эмиттер- база» закрыт, «коллектор — база» открыт 3. режим насыщения «эмиттер — база» закрыт, «коллектор — база» открыт 4. режим отсечки «эмиттер – база» закрыт, «коллектор — база» закрыт

16 Тиристоры Т иристоры полупроводниковые приборы с тремя (или более) р-n переходами, которые имеют два устойчивых состояния и применяются как мощные электронные ключи. Закрытое состояние — состояние низкой проводимости Открытое состояние -состояние высокой проводимости

18 диодные тиристоры — динисторы триодные тиристоры — тиристоры

19 Динисторы применяются в виде бесконтактных переключательных устройств.

20 Принцип действия. Основные носители зарядов переходят из анода в базу 1, а из катода – в базу 2, где они становятся неосновными и в базах происходит интенсивная рекомбинация зарядов, в результате которой количество свободных носителей зарядов уменьшается. Эти носители заряда подходят к коллекторному переходу, поле которых для них будет ускоряющим, затем проходят базу и переходят через открытый эмиттерный переход, т. к. в базах они опять становятся основными. Пройдя эмиттерные переходы, электроны переходят в анод, а дырки – в катод, где они вторично становятся неосновными и вторично происходит интенсивная рекомбинация. В результате количество зарядов, прошедших через динистор, будет очень мало и прямой ток также будет очень мал. При увеличении напряжения прямой ток незначительно возрастает, т. к. увеличивается скорость движения носителей, а интенсивность рекомбинации уменьшается. При увеличении напряжения до определённой величины происходит электрический пробой коллекторного перехода. Сопротивление динистора резко уменьшается, ток через него сильно увеличивается и падение напряжения на нём значительно уменьшается — динистор перешёл из выключенного состояния во включённое.

21 Триодные тиристоры можно включать при напряжениях, меньших напряжения включения динистора

22 Параметры тиристоров КУ208 Тип прибора U обр.,п, U обр.,max, В U сс.,п, U сс.,max, В I ос.,и, АI ос.,ср., I ос.,п., А U ос.,и, U ос., В U у.,нот, ВI сс.,п., I сс., мА КУ208А100* 105*

23 Параметры тиристоров КУ203 Тип прибора U обр.,п, U обр.,max, В U сс.,п, U сс.,max, В I ос.,и, АI ос.,ср., I ос.,п., А U ос.,и, U ос., В U у.,нот, ВI сс.,п., I сс., мА КУ203Д ,1

24 Тиристор C106M1-MOT (4A/600V) TO126 [1722] Minimum order: 1

25 Штыревой кремниевый тиристор

26 Корейские ученые создали нанотранзистор Транзистор состоит из шести атомов углерода, помещенных между двумя золотыми электродами. Такой транзистор позволит уменьшить размер микросхем, тем самым повысив их производительность, и снизить энергопотребление. Из собранных образцов рабочими оказываются лишь 15%.Пока нет технологии, позволяющей строить микросхемы с использованием таких транзисторов.

27 CХЕМЫ ВКЛЮЧЕНИЯ БИПОЛЯРНЫХ ТРАНЗИСТОРОВ

28 1. Схемы включения биполярных транзисторов с общей базой. 2. Схемы включения биполярных транзисторов с общим коллектором. 3. Схемы включения биполярных транзисторов с общим эмиттером.

29 1. Схемы включения биполярных транзисторов с общей базой (ОБ)

30 2. Схемы включения биполярных транзисторов с общим коллектором (ОК) (эмиттерный повторитель)

31 3. Схемы включения биполярных транзисторов с общим эмиттером (ОЭ)

32 Сводная таблица параметров схем включения биполярных транзисторов Тип цепи Входное сопротивление Выходное сопротивление Усиление по напряжению Усиление по току Усиление по мощности ОБЩАЯ БАЗА ОБ Низкое Высокое Меньше 1Среднее ОБЩИЙ ЭМИТТЕР ОЭ Среднее Высокое ОБЩИЙ КОЛЛЕКТОР ОК Высокое НизкоеМеньше 1Среднее

34 1. Назначение и классификация полевых транзисторов. 2. Устройство и принцип действия полевых транзисторов с управляющим p-n переходом. 3. Полевые транзисторы с изолированным затвором.

35 Полевой транзистор – это полупроводниковый прибор, имеющий три электрода: исток, сток и затвор, в котором ток создается только основными носителями заряда. Управление током осуществляется электрическим полем, которое создается приложением напряжения к управляющему электроду.

36 1. Назначение и классификация полевых транзисторов. полевые транзисторы делятся на два вида: с управляющим р-п-переходом — канальные; управление током достигается путем изменения сечения канала; с изолированным затвором – МДП-транзисторы ( металл – диэлектрик — полупроводник).

37 МДП – транзисторы делятся на два вида -с индуцированным каналом — со встроенным каналом. в МОП– транзисторах (металл-окисел-полупроводник) в качестве диэлектрика используются оксиды, например, SiО2

38 2. Устройство и принцип действия полевых транзисторов с управляющим p-n переходом.

39 Полевой транзистор с управляющим p-n переходом

41 Предельные режимы Параметр Величина UСИ МАКС, В 3.5 UЗИ МАКС, В –2.5 UЗС МАКС, В –6.0 Р МАКС, м Вт 35 Т, град С – Малошумящие арсенид-галлиевые полевые СВЧ транзисторы типа 3П374А,Б,В-2,5 предназначены для применения в приемо-усилительной аппаратуре с общей герметизацией. Диапазон частот 4-18 ГГц; — Коэффициент усиления по мощности КУР опт>10 дБ (12 ГГц); — Коэффициент шума КШ мин 10 дБ (12 ГГц); — Коэффициент шума КШ мин»>

42 3. Полевые транзисторы с изолированным затвором МДП-транзисторы (металл-диэлектрик-полупроводник) МОП-транзисторы (металл-окисел-полупроводник МДП –транзистор со встроенным каналом

43 МДП — транзистор с индуцированным каналом

44 МНОП – транзистор с плавающим затвором М — металл, Н – сплав HSi3N4, О – оксид металла, П – полупроводник Принцип действия этих транзисторов основан на том, что в сильных электрических полях электроны могут проникать в диэлектрик на глубину до 1 мкм. Применяются в интегральных микросхемах ЗУ в виде ячейки для хранения 1 бит информации

45 Разработан полевой транзистором (FET) с двойным плавающим затвором на основе аморфного полупроводника индий- галлий- цинк-оксид. Хранит данные в виде электрического заряда, позволит создавать на его базе ячейки памяти, размером в 16 нм.

46 Продукция Integra Technologies: -транзисторы для применения в диапазонах VHF/UHF (непрерывный режим)транзисторы для применения в диапазонах VHF/UHF (непрерывный режим) -транзисторы для применения в системах связи и опознавания -транзисторы для применения в радарах VHF/UHF/L — диапазонов VHF/UHF/L — диапазонов -Транзисторы для применения в радарах S — диапазонаS — диапазона -усилительные субмодули (паллеты)усилительные субмодули (паллеты) усилители в транзисторном корпусе для применения в S-диапазоне

Каждый электрик должен знать:  Выбивает автомат на греющем кабеле - причина

47 Транзисторы на углеродных нанотрубках откроют эру производства дешевых электронных устройств — так считают разработчики этой новой технологии ( международная команда ученых из университета Аалто в Финляндии и университета Нагои в Японии)

Биполярный транзистор:
устройство и схемы включения

Транзисторы являются полупроводниковыми приборами, основной задачей которых — усиление электрических сигналов. Они бывают биполярные и полевые. Наиболее распространенные — это биполярные транзисторы.

Типы биполярных транзисторов

Биполярные транзисторы классифицируются по следующим типам:
1. По исходному материалу — германий или кремний.
2. По технологии производства — сплавные, эпитаксиально-планарные, конверсионные и пр.
3. По механизму движения носителей зарядов — дрейфовые и диффузионные.
4. По рассеиваемой мощности — маломощные (до 0,3 Вт), средней мощности (от 0,3 до 3 Вт) и мощные (больше 3 Вт).
5. По диапазону рабочих частот — низкой частоты (до 3 МГц), средней (от 3 до 30 МГц), высокой (от 30 до 300 МГЦ), сверх высокой частоты (более 300 МГц).

Устройство биполярного транзистора

Основой биполярного транзистора является небольшой кристалл, называемый базой ( Б ). На нем с противоположных сторон кристалла находятся две спайки (области) из индия, сплава олова с фосфором и др., которые называются эмиттером ( Э ) и коллектором ( К ). При образовании спаек, между базой с эмиттером и коллектором, образуются два p-n перехода. Эти области всегда имеют одинаковый тип проводимости (p или n), а средняя область (база) — другого типа(n или р). Поэтому биполярные транзисторы разделяются на типы: с р-n-p и n-p-n проводимостью. Принцип действиия у них одинаковый, но имеют противоположную полярность питания.

Коллекторный переход больше по площади эмиттерного и эти переходы расположены на очень малом расстоянии мажду собой ( до десятков микрон).

Если взять отдельно Б-Э и Б-К переходы, то они представляют собой два соединенных диода. Но соединив два отдельных диода мы не получим транзистора, потому, что эти переходы находятся на двух отдельных кристаллах диодов. А в биполярном транзисторе — на одном кристалле , где и происходит между ними взаимодействие — транзисторный эффект, который и делает транзистор усилительным устройством.

Процесс усиления биполярного транзистора

Чтобы биполярный транзистор с n-p-n переходом (обратной проводимости) начал усиливать сигнал, на него нужно подать, кроме питания на эмиттер и коллектор, еще и небольшое напряжение смещения на базу. Это смещение открывает транзистор и через него, в направлении от эмиттера к коллектору, начнет протекать управляемый базой ток. Между базой и эмиттером тоже течет управляющий ток, но по величине он намного меньше, чем коллекторно — эмиттерный.

Можно сделать вывод, что основное свойство биполярного транзистора — это управление малым базовым током большим коллекторным током.

Для наглядности на рисунке приведен водно — механический аналог биполярного транзистора с n-p-n проводимостью. На нем видно, что небольшая струя из базовой трубы управляет большой струей воды из коллекторной и эмиттерных труб. При этом струя из змиттерной трубы будет состоять из сумм потоков базовой и коллекторных труб.

Напряжение смещения меряют на базе, относительно напряжению на эмиттере.

Напряжения эти разные по полярности и величине напряжения, в зависимости от типа проводимости транзистора. На базе биполярных транзисторов прямой проводимости (p-n-p, германиевые) — минус 0,1-0,4 вольта, а у транзисторов обратной проводимости (n-p-n, кремний) — плюс 0,4-0,8 вольта.

Схемы включения биполярного транзистора

У биполярного транзистора есть три вывода: эмиттер, коллектор и база. На два из них приходит сигнал, а с двух других он снимается, т.к. один из них общий для входа и выхода сигнала. Так вот, какой электрод включен на общую шину, такова и cхема включения: с общим эмиттером ( ОЭ ), общей базой ( ОБ ) или общим коллектором ( ОК ).

а) Схема включения биполярного транзистора с ОЭ на практике применяется наиболее часто. В приведенной схеме входной сигнал переменного тока подается между базой и эмиттером через разделительный конденсатор Ср, чтобы отсечь постоянное напряжение от предыдущего каскада и не влиять по питанию на следующий каскад. Усиленный сигнал снимается с коллектора и общего вывода. Эта схема включения дает усиление как по току, так и по напряжению. Такое включение будет иметь большое выходное сопротивление (до десятков килоОм и зависит от значения Rк), но малое входное (500-1000 Ом).

б) На следующей схеме показано включение с ОК . Биполярный транзистор в этом случае работает как усилитель тока и величина напряжения на входе и выходе почти не отличаются друг от друга. Особенностью такого включения является большое входное сопротивление (от 10 кОм до 500 кОм), что дает хорошее согласование с каскадом источника сигнала. Также фаза выходного сигнала совпадает с фазой входного сигнала (нет «перевертывания» выходного сигнала, как в схеме с ОЭ). Поэтому такое включение называют эмиттерным повторителем. А вот выходное сопротивление его мало, которое очень зависит от сопротивления нагрузки Rэ.

в) В схеме с ОБ базу «заземляем» на общий провод через конденсатор Сб. В этом случае транзистор усиливает только по напряжению, а по току усиления нет. Входное сопротивление его небольшое (десятки Ом), и используется такое включение, в основном, в генераторах.

Влияние величины напряжения смещения на выходной сигнал

Для работы биполярного транзистора необходимо на базу подать начальное смещение, чтобы между базой и эмиттером протекал постоянный управляющий ток. Это делают при помощи сопротивления Rб, величина которого и определяет ток управления транзистором. Ток выбирают в зависимости от
a) типа транзистора,
b) для чего нужен этот каскад,
c) какова амплитуда входного сигнала,
d) какой величины нужен выходной сигнал,
e) величины коэффициента передачи транзистора.

В качестве примера рассмотрим схему каскада, где для подачи смещения на базу стоит переменный резистор. 1. При движке резистора в верхнем положении ток базы будет мал и недостаточен для открытия транзистора. Если амплитуда входного сигнала будет выше минимального напряжения открытия транзистора, то он начнет пропускать часть отрицательной полуволны сигнала. Но т.к. сигнал «перевертывается» по фазе каскадом, то на выходе он будет положительным.

2. При движении движка вниз напряжение смещения увеличивается и каскад входит в нормальный режим при котором выходной сигнал уже не искажается. 3. Чем ниже движок резистора, тем больше смещение. Транзистор уже не «реагирует» на отрицательный полупериод сигнала и пропускает только часть положительной полуволны. Если двигать движок еще ниже, то ток базы войдет в режим насыщения, при котором входной сигнал не вызывает изменение тока коллектора и сигнал на выходе исчезает. Поэтому, при настройке усилителей важно определить такой ток смещения, чтобы при нужном усилении не было искажения выходного сигнала. И это можно сделать при помощи осциллографа.

Что такое биполярный транзистор и как его проверить

Добрый день, друзья!

Сегодня мы продолжим знакомиться с электронными «кирпичиками» компьютерного «железа». Мы уже рассматривали с вами, как устроены полевые транзисторы, которые обязательно присутствуют на каждой материнской плате компьютера.

Усаживайтесь поудобнее – сейчас мы сделаем интеллектуально усилие и попытаемся разобраться, как устроен

Биполярный транзистор

Биполярный транзистор – это полупроводниковый прибор, который широко применяется в электронных изделиях, в том числе и компьютерных блоках питания.

Слово «транзистор» (transistor) образовано от двух английских слов – «translate» и «resistor», что означает «преобразователь сопротивления».

Слово «биполярный» говорит о том, что ток в приборе вызывается заряженными частицами двух полярностей – отрицательной (электронами) и положительной (так называемыми «дырками»).

«Дырка» — это не жаргон, а вполне себе научный термин. «Дырка» — это не скомпенсированный положительный заряд или, иными словами, отсутствие электрона в кристаллической решетке полупроводника.

Биполярный транзистор представляет собой трехслойную структуру с чередующимися видами полупроводников.

Так как существуют полупроводники двух видов, положительные (positive, p-типа) и отрицательные (negative, n-типа), то может быть два типа такой структуры – p-n-p и n-p-n.

Средняя область такой структуры называется базой, а крайние области – эмиттером и коллектором.

На схемах биполярные транзисторы обозначаются определенным образом (см рисунок). Видим, что транзистор представляет собой, по существу, да p-n перехода, соединенных последовательно.

Вопрос на засыпку – почему нельзя заменить транзистор двумя диодами? Ведь в каждом из них есть p-n переход, не так ли? Включил два диода последовательно – и дело в шляпе!

Нет! Дело в том, что базу в транзисторе во время изготовления делают очень тонкой, чего никак нельзя достичь при соединении двух отдельных диодов.

Принцип работы биполярного транзистора

Отношение тока коллектора к току базы называется коэффициентом усиления по току и может составлять величину от нескольких единиц до нескольких сотен.

Интересно отметить, что у маломощных транзисторов он чаще всего больше, чем у мощных (а не наоборот, как можно было бы подумать).

Это напоминает работу полевого транзистора (ПТ).

Разница в том, что в отличие от затвора ПТ, при управлении ток базы всегда присутствует, т.е. на управление всегда тратится какая-то мощность.

Чем больше напряжение между эмиттером и базой, тем больше ток базы и, соответственно, больше ток коллектора. Однако любой транзистор имеет максимально допустимые значения напряжений между эмиттером и базой и между эмиттером и коллектором. За превышение этих параметров придется расплачиваться новым транзистором.

В рабочем режиме обычно переход база-эмиттер открыт, а переход база-коллектор закрыт.

Биполярный транзистор, подобно реле, может работать и в ключевом режиме. Если подать некоторый достаточный ток в базу (замкнуть кнопку S1), транзистор будет хорошо открыт. Лампа зажжется.

При этом сопротивление между эмиттером и коллектором будет небольшим.

Падение напряжения на участке эмиттер – коллектор будет составлять величину в несколько десятых долей вольта.

Если затем прекратить подавать ток в базу (разомкнуть S1), транзистор закроется, т.е. сопротивление между эмиттером и коллектором станет очень большим.

Как проверить биполярный транзистор?

Так как биполярный транзистор представляет собой два p-n перехода, то проверить его цифровым тестером достаточно просто.

Надо установить переключатель работы тестера в положение проверки диодов, присоединив один щуп к базе, а второй – поочередно к эмиттеру и коллектору.

По сути, мы просто последовательно проверяем исправность p-n переходов.

Такой переход может быть или открыт, или закрыт.

Затем надо изменить полярность щупов и повторить измерения.

В одном случае тестер покажет падение напряжение на переходах эмиттер – база и коллектор – база 0,6 – 0,7 В (оба перехода открыты).

Во втором случае оба перехода будут закрыты, и тестер зафиксирует это.

Следует отметить, что в рабочем режиме чаще всего один из переходов транзистора открыт, а второй закрыт.

Измерение коэффициента передачи биполярного транзистора по току

Если в тестере имеется возможность измерения коэффициента передачи по току, то проверить работоспособность транзистора можно, установив выводы транзистора в соответствующие гнезда.

Коэффициент передачи по току – это отношение тока коллектора к току базы.

Чем больше коэффициент передачи, тем большим током коллектора может управлять ток базы при прочих равных условиях.

Цоколевку (наименование выводов) и другие данные можно взять из data sheets (справочных данных) на соответствующий транзистор. Data sheets можно найти в Интернете через поисковые системы.

Тестер покажет на дисплее коэффициент передачи (усиления) тока, который нужно сравнить со справочными данными.

Коэффициент передачи тока маломощных транзисторов может достигать нескольких сотен.

У мощных транзисторов он существенно меньше – несколько единиц или десятков.

Однако существуют мощные транзисторы с коэффициентом передачи в несколько сотен или тысяч. Это так называемые пары Дарлингтона.

Пара Дарлингтона представляет собой два транзистора. Выходной ток первого транзистора является входным током для второго.

Общий коэффициент передачи тока – это произведение коэффициентов первого и второго транзисторов.

Пара Дарлингтона делается в общем корпусе, но ее можно сделать и из двух отдельных транзисторов.

Встроенная диодная защита

Некоторые транзисторы (мощные и высоковольтные) могут быть защищены от обратного напряжения встроенным диодом.

Таким образом, если подключить щупы тестера к эмиттеру и коллектору в режиме проверки диодов, то он покажет те же 0,6 – 0,7 В (если диод смещен в прямом направлении) или «запертый диод» (если диод смещен в обратном направлении).

Если же тестер покажет какое-то небольшое напряжение, да еще в обоих направлениях, то транзистор однозначно пробит и подлежит замене. Закоротку можно определить и в режиме измерения сопротивления – тестер покажет малое сопротивление.

Встречается (к счастью, достаточно редко) «подлая» неисправность транзисторов. Это когда он поначалу работает, а по истечению некоторого времени (или по прогреву) меняет свои параметры или отказывает вообще.

Если выпаять такой транзистор и проверить тестером, то он успеет остыть до присоединения щупов, и тестер покажет, что он нормальный. Убедиться в этом лучше всего заменой «подозрительного» транзистора в устройстве.

В заключение скажем, что биполярный транзистор – одна из основных «железок» в электронике. Хорошо бы научиться узнавать – «живы» эти «железки» или нет. Конечно, я дал вам, уважаемые читатели, очень упрощенную картину.

В действительности, работа биполярного транзистора описывается многими формулами, существуют многие их разновидности, но это сложная наука. Желающим копнуть глубже могу порекомендовать чудесную книгу Хоровица и Хилла «Искусство схемотехники».

Транзисторы для ваших экспериментов можно купить здесь:

Добавить комментарий