Что такое селективность защит в электроустановках

СОДЕРЖАНИЕ:

Селективность автоматических выключателей

Давайте разберемся, что такое селективность автоматических выключателей. При перегрузке или коротком замыкании в линии электросети должен сработать автоматический выключатель. При этом нам хочется, чтобы отключилась минимальная часть потребителей, а остальные продолжали работать. При правильно настроенной селективности, должен сработать только автомат аварийной линии, а групповой автомат должен остаться включенным. Таким образом, селективность автоматических выключателей — это такой подбор устройств в одной системе, при котором в случае аварийной ситуации на любом ее участке, отключение производилось одним автоматом, который отвечает только за данный участок, а другие автоматы при этом не срабатывали. Другими словами, селективность — согласование работы установленных последовательно защитных аппаратов таким образом, чтобы в случае перегрузки или короткого замыкания отключалась только та часть установки, в которой возникла неисправность.

Какая может быть селективность при защите, построенной на обычных модульных автоматических выключателях? Мы располагаем выбором номинального тока и характеристики срабатывания: B, C и D. Невелик выбор, но не у всех есть возможность даже этим набором располагать: автоматы типов B и D продаются далеко не во всех магазинах. Еще одна проблема — далеко не везде токи КЗ достигают величины, достаточной для срабатывания автоматов с характеристикой D. Если промышленные автоматы могут иметь фиксированную или регулируемую выдержку времени при срабатывании, то модульные автоматы такой роскоши не позволяют. Рассмотрим типичный пример щитка квартиры или небольшого дома:

Здесь мы видим общий вводной автомат на 25А с характеристикой срабатывания С, две отходящих линии на розетки, защищенных автоматами С16, и одну линию на освещение, защищенную автоматом В10. В зоне перегрузки обычно селективность соблюдается, а вот в зоне короткого замыкания не всё так просто. Ток срабатывания мгновенного расцепителя у автоматов типа В находится в пределах (3÷5)In, а у автоматов типа С в пределах (5÷10)In. Причем заранее неизвестно, какая будет кратность срабатывания у конкретного автомата.

Например, у одного выключателя с характеристикой С она может быть равна 5, у другого из этой же коробки — 8 или 10. Допустим, мгновенный расцепитель АВ0 срабатывает при 5In, АВ1 — при 5In, АВ2 — при 10Inа ток короткого замыкания в точках К2-К4 равен 150А. При замыкании в точке К2 ток будет достаточен для срабатывания как АВ1, так и АВ0, с точкой К4 ситуация аналогичная. Какой из двух автоматов сработает раньше, либо они сработают оба — неизвестно, как получится. При замыкании в точке К3 автомат АВ2 по отсечке вообще не сработает, АВ0 отключится раньше. То есть селективности при коротком замыкании у нас нет вообще.

При токе замыкания 100А ситуация будет получше, потому что мгновенный расцепитель АВ0 при этом токе не будет срабатывать. АВ1 и АВ3 сработают мгновенно, а вот более грубый АВ2 так же, как и АВ0 будет работать в зоне перегрузки. Обратимся к графику. Для АВ0 кратность тока равна 4, время срабатывания от 2 до 6 секунд. Для АВ2 кратность равна 6, время срабатывания от 1 до 3.5 секунд. Тоже есть вероятность того, что АВ0 сработает раньше. Тоже нет полной селективности.

Мы рассмотрели довольно малые токи короткого замыкания, которые обычно бывают в слабых, сильно перегруженных сетях, либо на отдаленных розетках, в удлинителях и т.п. Чаще они имеют более высокие значения, и при этом все автоматы работают в зоне отсечки. И какой из них сработает раньше, какой позже — это как повезет. Хороший вариант — поставить групповой автомат (АВ0 в нашем примере) с небольшой задержкой при срабатывании (полагаю, было бы достаточно 0.1-0.2с), но таких модульных автоматов в нашем ширпотребе нет. Может быть, если есть возможность, имеет смысл АВ0 взять с характеристикой D. А АВ1 и АВ2 подобрать так, чтобы кратность срабатывания была поближе к минимальной. Брать АВ0 более высокого номинала не стоит, так как он не будет уже выполнять функции подстраховки нижестоящих автоматов.

У модульных автоматических выключателей есть еще такой параметр, как класс токоограничения, который фактически отражает быстродействие электромагнитного расцепителя. Казалось бы — чем быстрей, тем лучше, но для селективности имеет смысл поставить групповой автомат с более медленным срабатыванием, чтобы при КЗ на какой-то отходящей линии он не срабатывал вместе с автоматом этой линии. Хотя нет гарантий того, что автомат с меньшим классом токоограничения сработает медленней автомата с более высоким классом. Вряд ли все производители придерживаются единых норм по этому параметру. Но если есть возможность поставить автомат с более высоким классом токоограничения на отходящую линию, то стоит так сделать.

При проектировании рассчитываются токи короткого замыкания в определенных точках электросети. На этих данных строится защита — так, чтобы при коротком замыкании или перегрузке в максимуме случаев срабатывал только один автомат, а именно тот, который расположен ближе всего со стороны источника питания. В домашних условиях такой расчет провести не так уж и сложно, но обычно его не делают, а просто придерживаются такого правила: номинал автомата, находящегося со стороны потребителя, должен быть меньше, чем у автомата, находящегося со стороны источника. Если вы прочитали и ничего не поняли, то могу порекомендовать небольшой видеоролик с ютуба:

Полной селективности на таких автоматах почти никогда не удается добиться, поэтому обычно приходят к какому-то разумному компромиссу. Но производители знают о такой проблеме, и разрабатывают селективные модульные автоматы. Например, ABB уже несколько лет производит селективные модульные автоматические выключатели S750DR номиналом от 0,5 до 63А, внешне очень похожие на обычные автоматы, но с существенными отличиями внутри. В каталоге АВВ приводит следующую схему:

Честно говоря, я ожидал увидеть немного другое. В моем представлении, устройство автомата должно было отличаться от обычного лишь механизмом замедления срабатывания электромагнитного расцепителя. На деле оказалось все сложней. В каждом полюсе автомата S750DR два токовых пути, соответственно и два силовых контакта. При появлении сверхтока в цепи, главный контакт размыкается моментально, но ток через автомат проходит по дополнительному пути, через верхний по схеме контакт. В этой цепи стоит резистор 0.5 Ом. Естественно, он не рассчитан на длительное протекание тока, но доли секунды он выдержит. За это время должен разомкнуться нижестоящий автомат. Если этого не происходит, то быстродействующий селективный тепловой расцепитель разорвет изолирующий контакт и селективный автомат оказывается в отключенном состоянии. Иначе — селективный биметалл остывает и главный контакт автоматически переходит во включенное состояние. Я не знаю, откуда у автомата берутся силы на возврат главного контакта во включенное состояние, но производитель утверждает, что автомат работает именно так. Цена таких автоматов немалая: порядка 4-5 тыс. рублей за полюс. Называются автоматы S751DR, S752DR, S753DR, S754DR, где последняя цифра означает количество полюсов.

Также на отечественном рынке предлагаются модульные селективные автоматы от Hager. Например, вот такая модель Hager HTS350E. 3 полюса, 50А, характеристика Е. Стоит порядка 28 тыс. рублей.

Токоограничивающая селективность

В селективных автоматических выключателях реализована токоограничивающая селективность. Она обеспечивается за счёт конструктивных особенностей аппарата: резистора сопротивлением 0,5 Ом и способности устройства быстро размыкать контакты в случае появления к.з. (примерно за 1 мс), что приводит к возникновению между ними дуги, которая также представляет собой сопротивление. При этом осуществляется резервная защита автоматического выключателя со стороны нагрузки, что позволяет минимизировать воздействие аварии на всю установку и сети питания.

Благодаря токоограничивающей селективности можно выбирать нижестоящий автоматический выключатель с предельной отключающей способностью ниже, чем ожидаемый ток короткого замыкания. «В случае аварии вышестоящий селективный аппарат ограничит сверхтоки введением сопротивления дуги в цепь к.з. Устройство снизит протекающий ток и поможет нижестоящему модульному устройству отключить повреждение, – поясняет Павел Томашёв(АББ). — Таким образом, за счёт дополнительного токоограничения вышестоящего аппарата серии S750DRотключающая способность нижестоящего автоматического выключателя увеличивается».

Рис. 3. Поддержка следующих за S 750 DR
автоматических выключателей при коротком замыкании

Как показано на рис. 3, независимо от номинального тока аппарата S 750 DR при коротком замыкании значительно снижаются ток к.з. и удельная пропускаемая энергия.

Инженеры-проектировщики систем электроснабжения уже успели оценить новую разработку. По словам специалистов, серия S750DR значительно упрощает процесс разработки технической документации, так как отпадает необходимость в использовании таблиц селективности и специальных программ подбора оборудования. Удобна новая разработка и с точки зрения эксплуатации – аппарат оснащён встроенной блокировочной панелью. Она позволяет фиксировать положение рычага управления, что исключает возможность доступа посторонних лиц к управлению устройством. Блокировка не влияет на защитные свойства аппарата: расцепитель сработает и предотвратит неполадки в сети, несмотря на фиксацию рычага во включённом положении.

Проектирование селективной установки — задача сложная и трудоёмкая. Подходить к её выполнению нужно ответственно: любая ошибка чревата авариями, которые могут повлечь за собой тяжёлые последствия для персонала и оборудования. Именно поэтому селективность должна обеспечиваться на разных уровнях. Современное оборудование позволяет добиться полной координации работы электрических аппаратов.

1«Чистыми» сетями называют сети электроснабжения компьютеров и другой офисной техники, чувствительной к скачкам напряжения.

2Подробнее о различных технологиях обеспечения селективности в сетях электроснабжения можно прочитать по ссылке.

Селективность УЗО — что это такое?

С устройством защитного отключения (УЗО) знакомы многие. Современная электрическая сеть не обходится без этого элемента защитной автоматики. Основная цель его монтажа – обезопасить человека от воздействия электричества и от возгораний, вызванных токовыми утечками. Такие аварийные ситуации могут возникнуть из-за изношенной старой изоляции проводников или некачественного соединения электропроводки. Чтобы подобные аварии вовремя обнаружить и не дать им перерасти в пожар или электротравму, устанавливают устройства защитного отключения. При монтаже двухуровневой защиты применяют селективное УЗО. Что это за устройство? Чем оно отличается от обыкновенного? Какие ещё бывают виды и типы УЗО? Ниже ответим на все эти вопросы.

Что такое селективность?

Основной целью селективности является избирательность, то есть защитная автоматика выбирает только повреждённый участок и отсекает его от рабочей сети. При этом должны быть исключены нежелательные обесточения других потребителей.

Чтобы вам было понятно, рассмотрим это на простом примере.

Для обеспечения селективности защитная автоматика в распределительном щитке подключается последовательно по такой схеме:

  • После вводного автомата установлено общее селективное УЗО на вводе.
  • Также несколько отдельных устройств защитного отключения смонтированы в качестве групповой защиты. Здесь схемы могут различаться. Есть вариант установить УЗО отдельно на каждую комнату. Можно разделить защиту для розеточной и осветительной групп. Чаще всего применяется схема, когда для каждого элемента мощной бытовой техники (водонагревателя, стиральной машинки, электрической печи, кондиционера) устанавливается отдельное устройство защитного отключения.

Вводное селективное УЗО должно иметь определённую выдержку времени (от 0,06 до 0,5 с).

Наглядно про селективность УЗО на видео:

Если в стиральной машине произошла аварийная ситуация, например, пробой изоляции, то на её корпусе появится некий потенциал. Когда в квартире трёхпроводная электрическая сеть, то есть имеется защитное заземление, то УЗО отреагирует сразу и путём отключения прекратит подачу питания из сети на стиральную машину. В случае двухпроводной сети (без защитного заземления) УЗО никак не реагирует на эту ситуацию до тех пор, пока к корпусу стиральной машинки не прикоснётся человек.

В этот момент он начнёт играть роль проводника для прохождения токовой утечки на землю, и тогда устройство отключается.

Селективность в данной ситуации заключается в срабатывании УЗО, которое к месту повреждения располагается ближе, то есть группового, защищающего именно машинку. Устройство на вводе должно оставаться в рабочем положении. Это и есть принцип избирательности. Таким образом, селективность позволяет обойтись минимальными потерями, то есть обесточенной остаётся только стиральная машина, вся остальная техника в квартире продолжает работать. Также за счёт селективности облегчается поиск повреждённого участка – какое УЗО отключилось, в той группе и есть неисправность.

Обеспечение селективной работы

Для обеспечения селективности нескольких УЗО, подключенных последовательно, нужно правильно их выбрать по значениям тока и времени. Главную роль играют такие параметры УЗО, как временные и токовые уставки. Эти устройства отличаются от остальной автоматики тем, что их селективность может быть выставлена не только по значению времени, но и по току.

Исходя из временного интервала селективное УЗО имеет две разновидности:

  • Тип «S» с выдержкой времени 0,15-0,5 с.
  • Тип «G» с выдержкой времени 0,06-0,08 с.

Обратите внимание на то, что обыкновенное УЗО без функции селективности срабатывает через 0,02-0,03 с после обнаружения утечки тока. Такое устройство устанавливают для отходящих групповых потребителей, а тип «S» или «G» подходит для монтажа на входе (вблизи с источником питания).

Способ обеспечения селективности УЗО на видео:

Запомните, что вышестоящее УЗО должно иметь в три раза большую выдержку по времени, чем у устройств, защищающих отходящие линии. Аналогичная разница нужна и в варианте, когда селективная работа выстраивается по номинальному дифференциальному току отключения. Эта величина у вводного устройства должна в три раза превосходить ток групповой защиты.

Если сказать проще, вводное УЗО при возникновении утечки фиксирует разницу в величинах входного и выходного тока, но не реагирует. Оно как бы даёт возможность отработать нижестоящим устройствам. И только в том случае, если по какой-то причине эти устройства не сработали (из-за поломки самого УЗО либо допущенных ошибок при коммутировании схемы), через определённое время отключится селективное УЗО на вводе. Оно является своего рода подстраховкой групповым устройствам.

Есть ещё один случай, когда отработает вводное устройство – если токовая утечка возникнет между ним и групповым УЗО, расположенным ниже. Чтобы было понятнее, объясним на примере. Предположим вводное устройство вместе со счётчиком электроэнергии и общим автоматом смонтированы в распределительном щите, расположенном на улице. А устройства для отходящих линий установлены в щите, который расположен внутри дома. Если на кабеле между этими двумя щитами возникнет токовая утечка, то среагирует и отключится селективное УЗО на вводе.

Селективность – хорошо это или плохо – на видео:

Классификация устройств по форме токовой утечки

Практически все характеристики отображаются на корпусах устройств защитного отключения. Там указываются номинальные параметры, схема подключения и некоторые буквенные символы. Мы уже рассмотрели выше, что значат английские буквы «S» и «G», а что характеризует обозначение «В», «А» и «АС»? Эта маркировка УЗО означает разные формы токовых утечек, на которые реагирует устройство:

  1. Тип «АС» – наиболее распространённый и доступный в финансовом плане. Эти УЗО отключаются при появлении в сетях мгновенных или плавно нарастающих переменных токовых утечек синусоидальной формы.
  1. Тип «А». Эти устройства реагируют, так же как и «АС» на синусоидальные переменные токовые утечки, плюс ещё и на постоянные пульсирующие формы тока. Цена УЗО типа «А» выше за счёт того, что они контролируют не только переменные, но и постоянные утечки.
  2. Тип «В». Эти устройства в жилых квартирах и домах практически не применяются, чаще их устанавливают в производственных помещениях. Они осуществляют контроль сразу за тремя формами токовых утечек: постоянной пульсирующей, выпрямленной и переменной синусоидальной.

Все мы отлично знаем, что наша бытовая электрическая сеть имеет переменную синусоидальную форму. Казалось бы, что достаточно устанавливать УЗО «АС», зачем ещё нужны какие-то «А» и «В»? Но если вы внимательно прочитаете характеристики современной бытовой техники, то обнаружите, что в большинстве своём приборы оборудованы полупроводниковыми блоками питания. Когда синусоида доходит до этого элемента, то преобразуется в импульсный полупериод. Если повреждение произойдёт в этом месте, то устройство «АС» не обнаружит постоянную токовую утечку и не сработает.

Рекомендуем внимательно изучать паспорт на бытовую технику, перед тем как отправитесь покупать УЗО. Производитель зачастую указывает, через какой тип («А» или «АС») необходимо выполнить подключение.

Разновидности УЗО по принципу действия

По принципу действия бывает УЗО электронное и электромеханическое.

Для работы электронного устройства недостаточно появления токовой утечки, обязательно необходима ещё питающая сеть. Его схема дополнена электронным встроенным усилителем, получающим питание от внешних источников электричества. И если по какой-то причине на этот усилитель не будет поступать напряжение, устройство не сработает. По этой причине электромеханическое УЗО считается более надёжным, чем электронное, и получило большее распространение.

Рассмотрим, как конструктивно устроено и по какому принципу работает электромеханическое УЗО. Оно состоит из четырёх основных узлов: расцепляющего механизма и электромагнитного реле (они работают в связке), самого трансформатора дифференциального тока и проверочного элемента.

К трансформатору подключены встречные обмотки фазы и ноля. При нормальном режиме сети эти провода способствуют наведению в трансформаторном сердечнике магнитных потоков, имеющих относительно друг друга встречное направление. За счёт противоположной направленности сумма этих потоков равна нулю.

Электромагнитное реле подключено во вторичную трансформаторную обмотку и при нормальном режиме сети находится в покое. Как только появляется утечка, по проводам фазы и нуля начинают течь различные токовые величины. В итоге на трансформаторном сердечнике магнитные поля будут отличаться теперь не только по направлению, но и по величине. Сумма магнитных потоков больше не равна нолю. Ток, появившийся во вторичной трансформаторной обмотке, в определённый момент достигает значения, при котором работает электромагнитного реле. Соответственно сразу же среагирует расцепляющий механизм и УЗО отключается.

Каждый электрик должен знать:  Регулирование яркости светодиодов

Всё-таки до сих пор механика преимущественнее электроники, поэтому при покупке выбирайте электромеханическое УЗО.

Полезные советы по выбору устройств

  • При выборе учтите, что есть ещё типы УЗО, различные по конструктивному исполнению. Устройства с двумя полюсами монтируют в однофазной сети, для трёхфазной следует выбирать УЗО с четырьмя полюсами.
  • Если позволяют финансовые возможности, то целесообразнее будет применение дифференциальных автоматов. Это устройство представляет собой два защитных элемента, скомбинированных в одном корпусе (УЗО и автоматический выключатель).

Как уже неоднократно говорилось, устройство защитного отключения всегда следует ставить в схему последовательно с автоматом. Если устанавливать их для каждого отдельного потребителя, то распределительный щиток получится больших размеров, в нём неудобно будет производить компоновку такого количества элементов, а дифавтоматов понадобится в два раза меньше.

  • Описание практически всех характеристик устройства вы найдёте на корпусе. При выборе следует обратить внимание на параметры номинального рабочего тока – величины, которую УЗО пропускает через себя продолжительное время. Второй важной характеристикой является величина номинального отключающего дифференциального тока, при котором происходит срабатывание устройства.

Чтобы обеспечить защиту людей, выбирайте УЗО на 6, 10, 30, 100 мА. УЗО на 300 мА эффективно защитит от возгораний, его монтируют на вводе, а уже потом устанавливают устройства с большей чувствительностью. Защитить розеточные и осветительные группы можно с помощью УЗО на 30 мА, для оборудования ванных комнат и мощной бытовой техники (котлов, бойлеров) покупайте устройства с номинальным током отключения 10 мА.

  • Если позволят финансы, старайтесь приобретать устройства известных европейских фирм («АВВ», «Legrand», «Schneider Electric», «Siemens» и «Моеllеr»). Разница в цене, конечно, ощутимая, но она гарантирует надёжность и качество. Среди российских производителей можно посоветовать продукцию «КЭАЗ», «ИЭК», «DEKraft». Не покупайте УЗО на рынке, чтобы избежать приобретения подделок, отправляйтесь только в специализированные магазины.

Подробнее про выбор УЗО на видео:

Прежде чем начать монтаж защитной автоматики в квартире, определитесь, с помощью каких устройств вы это сделаете – дифавтоматов или УЗО. Для надёжности применяйте двухуровневую защиту с установкой на вводе селективного устройства. Основные советы по выбору мы вам предоставили. Если что-то осталось непонятным, то лучше обратитесь за помощью к профессиональным электрикам, потому что даже продавцы в магазинах электротоваров не всегда могут дать необходимую консультацию в плане выбора УЗО.

Лекция №15-16 Релейная защита в системе электроснабжения предприятия

Читайте также:

  1. A) Конституционно-правовая защита
  2. C) Зависимость предприятия от цен и тарифов на товары и услуги естественных монополий
  3. D) Защита семьи
  4. H) Защита фактических предпосылок свободной прессы
  5. II. Игра в системе трансляции деятельности и обучения
  6. II. Операционная стратегия на примере отдельного предприятия.
  7. III. ОПЛАТА ТРУДА на ПРЕДПРИЯТИЯХ железнодорожноГО транспортА
  8. IV ступень максимальная токовая защита нулевой последовательности
  9. IV. ЗАЩИТА КУРСОВОЙ РАБОТЫ
  10. R) Защита от заклинивания ротора
  11. SNW анализ внутренних факторов предприятия
  12. STEEP-анализ внешних факторов предприятия

Назначение, требования и принципы релейной защиты

Система электроснабжения промышленного предприятия образована множеством электроустановок, в процессе эксплуатации которых по различным причинам могут возникать повреждения, грозящие аварией, порчей дорогостоящего оборудования и материалов или расстройством сложного технологического процесса. Развитие повреждения может быть приостановлено быстрым отключением поврежденного участка при помощи специальных устройств релейной защиты. Наиболее опасный вид повреждений — короткие замыкания, при которых релейная защита действует на отключение. Таким образом основное назначение релейной защиты состоит в быстром отключении поврежденного участка от неповрежденной части электрической сети.

Кроме повреждений могут иметь место ненормальные режимы работы: перегрузка, падение напряжения, понижение частоты, выделение газа или понижение уровня масла в расширителе трансформатора, замыкание на землю одной фазы в сети с изолированной нейтралью и др. При этом нет необходимости в немедленном отключении оборудования, так как эти явления не представляют непосредственной опасности для оборудования и могут самоустраняться. В этом случае преждевременное отключение может принести вред, а не пользу. Второе назначение релейной защиты — воспринимать нарушения нормальных режимов работы оборудования, давать предупредительнй сигнал обслуживающему персоналу или производить отключение оборудования с выдержкой времени.

Требования к релейной защите: быстродействие; селективность или избирательность; чувствительность; надежность.

Быстродействие — быстрое отключение поврежденного участка, предотвращающее или уменьшающее размеры повреждения и расстройство работы потребителей неповрежденной части. В основном время отключения находится в пределах 0,06-0,15 с, когда напряжение понижается в неповрежденной части до 60-70 % от номинального допускается 0,5-1 с (рис. 14.1).

Селективность или избирательность — способность защиты определять место повреждения и отключать только ближайший к нему выключатель. Если по какой-либо причине ближайший к месту повреждения участок не отключится, то должен отключиться выключатель следующий к источнику питания.

Рис. 14.1. Пояснение принципа быстродействия релейной защиты при коротком замыкании (КЗ)

Различают защиты с абсолютной селективностью, относительной и неселективные.

Защиты с абсолютной селективностью срабатывают на участке, где они установлены. Обычно принцип их действия основан на сравнении комплексов токов или их фаз в начале и конце защищаемого участка. К таким защитам относится, например, дифференциальная (быстродействующая защита). Защиты с относительной селективностью срабатывают при коротком замыкании как на защищаемом участке, так и на предыдущем (защиты с выдержкой времени: токовые, токовые направленные, дистанционные). Неселективные защиты предусматривают специально.

Принцип селективности релейной защиты можно пояснить на примере схемы рис. 14.2. При коротком замыкании в точке К1 должен отключиться с помощью средств релейной защиты выключатель Q2, что обеспечивает селективность. Если одновременно с Q2 релейная защита отключит и Q4 (теряет питание двигатель M1), а то и Q5, то теряют питание все двигатели. Такое действие и называется неселективным.

Чувствительность — способность релейной защиты реагировать на возможные повреждения при минимальных режимах работы системы электроснабжения (минимальное изменение воздействующей величины) характеризуется коэффициентом чувствительности:

где I (2) к (min) — минимальное значение тока двухфазного короткого замыкания в конце защищаемого участка; Iс з — ток срабатывания защиты.

Для токовых отсечек Кч должен быть больше 2, для максимальных токовых защит Кч > 1,5.

Надежность — свойство правильно и безотказно действовать на отключение поврежденного оборудования (обеспечивается возможно более простой схемой).

Рис. 14.2. Пояснение принципа селективности

Хотя электроника получает широкое распространение, релейная зашита, основанная на электромеханических реле остается основной на многих предприятиях. Проходная характеристика такой релейной защиты — релейная, элементы которой имеют различные свойства при одной основной характеристике (рис. 14.3). При достижении параметра Хвх значения Хвх.сраб реле срабатывает, замыкает свои контакты и появляется параметр Хвых. С уменьшением Хвх до значения Хвозвр реле возвращается в исходное состояние.

Рис. 14.3. Релейная характеристика

Релейная защита цеховых трасформаторных подстанций, виды защит. Максимальная токовая защита.

Релейная защита трансформаторов цеховых трансформаторных подстанций зависит от типа коммутационных аппаратов, установленных на стороне высшего и низшего напряжения, и включает в себя следующие виды:

От межфазных коротких замыканий на стороне высшего напряжения — предохранители (в случае применения выключателей нагрузки); максимальная токовая защита; иногда, по условию обеспечения селективности, устанав­ливается токовая отсечка.

От однофазных замыканий на землю на стороне низкого напряжения — автоматические выключатели на стороне низкого напряжения или специальная защита нулевой последовательности, установленная в нулевом проводе на стороне низкого напряжения.

От повреждений внутри кожуха и понижения уровня масла — газовая защита (рис. 14.17, а, б), устанавливаемая на трансформаторах мощностью 400 кВА и выше; у герметически закрытых трансформаторов, не имеющих расширителя, вместо газового реле устанавливают реле повышения внутритрансформаторного давления, работающего на отключение.

От перегрузки (максимальная) — токовая защита.

Ток срабатывания максимальной токовой защиты от межфазных коротких замыканий рассчитывается по двум условиям.

Второе условие — обеспечение бездействия защиты после работы АВР на стороне 0,4 кВ:

Iраб.рез.(mах) — максимальный рабочий ток секции 0,4 кВ, которая подключается к рассматриваемому трансформатору при срабатывании устройства АВР, принимается равным (0,65-0,7)Iном.транс; Iраб(mах) — максимальный рабочий ток рассматриваемого трансформатора, который в схеме с АВР не должен превышать (0,65-0,7)Iном.транс, чтобы не допускать опасной перегрузки трансформатора после действия АВР.

Из двух значений Iс.з выбирается наибольший.

Проверка чувствительности максимальной токовой защиты осуществляется по двухфазному КЗ за трансформатором:

где I (2) к(min) — ток двухфазного короткого замыкания в минимальном режиме на стороне низкого напряжения трансформатора, приведенный к стороне высшего напряжения по однофазному КЗ на стороне 0,4 кВ,

где I (1) к — ток однофазного КЗ на стороне низкого напряжения трансформатора, приведенный к стороне высшего напряжения.

В случае, если не обеспечивается необходимый коэффициент чувствительности, то дополнительно устанавливается специальная защита нулевой последовательности на стороне 0,4 кВ, предназначенная для работы при однофазных КЗ на землю.

Ток срабатывания максимальной токовой защиты от перегрузок выбирается из условия

где Iном — номинальный ток защищаемого трансформатора.

Выдержка времени принимается больше на ступень селективности, чем время срабатывания защиты от межфазных КЗ.

Отстройка защиты от однофазных коротких замыканий на землю производится от наибольшего допустимого тока небаланса в нулевом проводе трансформатора в нормальном режиме:

Коэффициент чувствительности для основной зоны защиты

Ток срабатывания токовой отсечки рассчитывают по выражению

где I (3) к(max) — ток трехфазного КЗ на стороне низкого напряжения трансформатора, приведенный к стороне высокого напряжения; kотс = 1,6.

Коэффициент чувствительности определяют при двухфазном КЗ в месте установки отсечки:

Релейная защита кабельных линий

Для кабельных линий предусмотрена установка релейной защиты:

Защита от межфазных коротких замыканий. Для кабельных линий напряжением выше 1 кВ применяют максимальную токовую защиту и токовую отсечку, ниже 1 кВ — плавкие предохранители и автоматические выключатели.

Защита от замыканий одной из фаз на землю. В сетях с глухим заземлением нейтрали защита действует на отключение поврежденного участка, с изолированной нейтралью — защита действует на сигнал. На кабельных линиях 6-10 кВ устанавливают максимальную токовую защиту нулевой последовательности. В кабельных линиях 6-10 кВ с заземленной через реактор нейтралью применяют устройства сигнализации замыканий УСЗ, реагирующие на сумму высших гармоник в токе замыкания на землю.

Ток срабатывания токовой отсечки выбирают исходя из условия

где kотс= 1,3÷1,4 — коэффициент отстройки; I (3) к(max) — наибольшее начальное значение периодической составляющей тока короткого замыкания.

Ток срабатывания максимальной токовой защиты:

где kотс = 1,1÷1,2; kв коэффициент возврата реле; kс.з.п коэффициент самозапуска; Iн(mах) — максимальный ток нагрузки кабельной линии с учетом перегрузочной способности питаемой установки, например трансформатора.

Релейная защита двигателей напряжением до 1кВ

Релейная защита двигателей напряжением до 1 кВ (рис. 14.19) выполняется в основном в соответствии с требованиями к релейной защите высоковольтных электродвигателей, но на элементной базе коммутационных аппаратов до 1 кВ. Предусматривается защита от следующих режимов:

— от многофазных коротких замыканий устанавливаются плавкие предохранители или максимальные токовые реле, используются также аппараты, совмещающие устройства защиты и управления — магнитные пускатели и автоматические выключатели;

Рис. 14.19. Схема защиты электродвигателя напряжением до 1 кВ с магнитным пускателем

от перегрузки применяются тепловые реле;

— от однофазных замыканий на землю используются реле тока, подключенные к трансформатору тока нулевой последовательности;

от потери питания и понижения напряжения устанавливается магнитный пускатель или контактор, автоматически отключающийся при снижении напряжения до (0,6÷0,7)Uном.

Автоматический ввод резерва.

При секционированном выполнении шин понизительных подстанций автоматическое включение резервных источников электропитания намного повышает надежность работы потребителей, приближая степень взаиморезервирования. В то же время сохраняются преимущества одностороннего питания в отношении упрощения устройств релейной защиты и уменьшения тока КЗ (последнее обстоятельство облегчает работу силовых выключателей и позволяет удешевить стоимость сооружения). При раздельной работе секций создается большая независимость одной секции от другой. Отключение источника основного питания вызывает погасание осветительной нагрузки и торможение асинхронных электродвигателей, присоединенных к отключенной секции шин. Чем быстрее будет подано напряжение от резервного источника, тем меньше снизится частота вращения электродвигателей, меньше будет ток при включении устройством АВР источника и тем легче и быстрее произойдет последующий самозапуск.

АВР является эффективным средством, повышающим надежность электроснабжения (успешность действия АВР составляет 90-95 %), поэтому этот вид автоматики широко применяется на подстанциях основных и распределительных сетей. Выполнение АВР также обязательно для собственных нужд станции.

Основные требования, предъявляемые к устройствам АВР на подстанциях, к шинам которых подключены только асинхронные двигатели и осветительная нагрузка (синхронные двигатели и конденсаторные батареи отсутствуют): устройство АВР должно приводиться в действие при исчезновении напряжения на шинах по любой причине (в том числе и при ошибочных отключениях коммутационного аппарата в цепи питания; исключение — потеря питания вследствие действия АЧР); включение резервного источника питания следует осуществлять сразу и только после отключения выключателя в цепи рабочего; собственное время действия АВР должно быть минимальным; действие АВР должно быть однократным, для чего необходимо ограничивать длительность команды на включение резервного оборудования.

Для нормального функционирования средств АВР необходим расчет ряда уставок.

Микропроцессорная защита электроустановок.

Рассмотренные устройства защиты, выполненные на базе электромехани­ческих реле или с использованием полупроводниковых элементов и аналоговых интегральных микросхем, имели различные технические реализации.

Особенность их — жесткая логика первой научной картины мира. И хотя они еще долго будут находить применение, особенно для алгоритмов простых повреждений, несомненно их вытеснение новым поколением защит с цифровой обработкой информации. Их отличает высокий уровень унификации элементов, гибкость, возможность реализации сложных алгоритмов выявления повреждений, развитая система функционального контроля, уменьшение расходов на обслуживание.

Выделяют основные принципы микропроцессорной системы защиты с цифровой обработкой информации: неявное резервирование, унификацию, модульность, функциональную децентрализацию, специализацию обработки информации, единство информационной базы, комплектность, гибкость. Возникновение неисправностей в аппаратной и программной частях предотвращаются путем перераспределения задач между элементами системы в полном объеме или с потерей некоторых второстепенных функций. Вероятность отказа системы в целом снижается.

Информационное обеспечение системы основано на параметрах входных сигналов: амплитуды, фазовые сдвиги и частота, а также их интегральные значения. Помехи, вызванные переходными процессами и сопровождающиеся появлением апериодических и гармонических составляющих, обусловливают погрешности, снижаемые предварительной фильтрацией входных токов и напряжений. В результате синусоидальный сигнал содержит информацию об основной гармонике входной величины. Наиболее широко используется цифровая обработка отсчетов мгновенных значений синусоидальных сигналов и их ортогональных составляющих.

В цифровых системах применяют определение амплитуд и фаз синусоидальных сигналов с использованием ортогональных составляющих, для получения которых используют метод Фурье и его модификации. Метод обеспечивает полное подавление во входном сигнале постоянной составляющей и гармоник с частотами, кратными ω при заданном Δt.

Принципиальную возможность для определения информационных параметров входных сигналов обеспечивает времяимпульсный метод, основанный на замене синусоидального процесса последовательностью импульсов прямоугольной формы. Их длительности содержат информацию об амплитудах, частоте и фазовых сдвигах сигналов.

Формирование ортогональных составляющих входных сигналов в измерительных органах микропроцессорных защит обеспечивается в аналоговом, цифровом или смешанном видах с помощью формирователей. Аналоговые, усложняющие эту часть и не исключающие фазочастотные погрешности преобразования, используют активные фазоповоротные элементы с фазочастотными характеристиками, смешенными на угол π/2. При цифровой обработке ортогональные составляющие, если сигнал синусоидальный, могут быть получены по его мгновенным значениям, зафиксированным с интервалом Т/4, где Т — период сигнала.

Дата добавления: 2014-12-08 ; Просмотров: 770 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

ПУЭ. Раздел 3. Защита и автоматика

Раздел 3. Защита и автоматика

Глава 3.1. Защита электрических сетей напряжением до 1 кВ

Область применения, определения

3.1.1. Настоящая глава Правил распространяется на защиту электрических сетей до 1 кВ, сооружаемых как внутри, так и вне зданий. Дополнительные требования к защите сетей указанного напряжения, вызванные особенностями различных электроустановок, приведены в других главах Правил.

3.1.2. Аппаратом защиты называется аппарат, автоматически отключающий защищаемую электрическую цепь при ненормальных режимах.

Требования к аппаратам защиты

3.1.3. Аппараты защиты по своей отключающей способности должны соответствовать максимальному значению тока КЗ в начале защищаемого участка электрической сети (см. также гл. 1.4).

Допускается установка аппаратов защиты, нестойких к максимальным значениям тока КЗ, а также выбранных по значению одноразовой предельной коммутационной способности, если защищающий их групповой аппарат или ближайший аппарат, расположенный по направлению к источнику питания, обеспечивает мгновенное отключение тока КЗ, для чего необходимо, чтобы ток уставки мгновенно действующего расцепителя (отсечки) указанных аппаратов был меньше тока одноразовой коммутационной способности каждого из группы нестойких аппаратов, и если такое неселективное отключение всей группы аппаратов не грозит аварией, порчей дорогостоящего оборудования и материалов или расстройством сложного технологического процесса.

3.1.4. Номинальные токи плавких вставок предохранителей и токи уставок автоматических выключателей, служащих для защиты отдельных участков сети, во всех случаях следует выбирать по возможности наименьшими по расчетным токам этих участков или по номинальным токам электроприемников, но таким образом, чтобы аппараты защиты не отключали электроустановки при кратковременных перегрузках (пусковые токи, пики технологических нагрузок, токи при самозапуске и т. п.).

3.1.5. В качестве аппаратов защиты должны применяться автоматические выключатели или предохранители. Для обеспечения требований быстродействия, чувствительности или селективности допускается при необходимости применение устройств защиты с использованием выносных реле (реле косвенного действия).

3.1.6. Автоматические выключатели и предохранители пробочного типа должны присоединяться к сети так, чтобы при вывинченной пробке предохранителя (автоматического выключателя) винтовая гильза предохранителя (автоматического выключателя) оставалась без напряжения. При одностороннем питании присоединение питающего проводника (кабеля или провода) к аппарату защиты должно выполняться, как правило, к неподвижным контактам.

3.1.7. Каждый аппарат защиты должен иметь надпись, указывающую значения номинального тока аппарата, уставки расцепителя и номинального тока плавкой вставки, требующиеся для защищаемой им сети. Надписи рекомендуется наносить на аппарате или схеме, расположенной вблизи места установки аппаратов защиты.

Выбор защиты

3.1.8. Электрические сети должны иметь защиту от токов короткого замыкания, обеспечивающую по возможности наименьшее время отключения и требования селективности.

Защита должна обеспечивать отключение поврежденного участка при КЗ в конце защищаемой линии: одно-, двух- и трехфазных — в сетях с глухозаземленной нейтралью; двух- и трехфазных — в сетях с изолированной нейтралью.

Каждый электрик должен знать:  Классификация систем управления по алгоритму функционирования

Надежное отключение поврежденного участка сети обеспечивается, если отношение наименьшего расчетного тока КЗ к номинальному току плавкой вставки предохранителя или расцепителя автоматического выключателя будет не менее значений, приведенных в 1.7.79 и 7.3.139.

3.1.9. В сетях, защищаемых только от токов КЗ (не требующих защиты от перегрузки согласно 3.1.10), за исключением протяженных сетей, например сельских, коммунальных, допускается не выполнять расчетной проверки приведенной в 1.7.79 и 7.3.139 кратности тока КЗ, если обеспечено условие, чтобы по отношению к длительно допустимым токовым нагрузкам проводников, приведенным в таблицах гл. 1.3, аппараты защиты имели кратность не более:

  • 300% для номинального тока плавкой вставки предохранителя;
  • 450% для тока уставки автоматического выключателя, имеющего только максимальный мгновенно действующий расцепитель (отсечку);
  • 100% для номинального тока расцепителя автоматического выключателя с нерегулируемой обратно зависящей от тока характеристикой (независимо от наличия или отсутствия отсечки);
  • 125% для тока трогания расцепителя автоматического выключателя с регулируемой обратной зависящей от тока характеристикой; если на этом автоматическом выключателе имеется еще отсечка, то ее кратность тока срабатывания не ограничивается.

Наличие аппаратов защиты с завышенными уставками тока не является обоснованием для увеличения сечения проводников сверх указанных в гл. 1.3.

3.1.10. Сети внутри помещений, выполненные открыто проложенными проводниками с горючей наружной оболочкой или изоляцией, должны быть защищены от перегрузки.

Кроме того, должны быть защищены от перегрузки сети внутри помещений:

  • осветительные сети в жилых и общественных зданиях, в торговых помещениях, служебно-бытовых помещениях промышленных предприятий, включая сети для бытовых и переносных электроприемников (утюгов, чайников, плиток, комнатных холодильников, пылесосов, стиральных и швейных машин и т. п.), а также в пожароопасных зонах;
  • силовые сети на промышленных предприятиях, в жилых и общественных зданиях, торговых помещениях — только в случаях, когда по условиям технологического процесса или по режиму работы сети может возникать длительная перегрузка проводников;
  • сети всех видов во взрывоопасных зонах — согласно требованиям 7.3.94.

3.1.11. В сетях, защищаемых от перегрузок (см. 3.1.10), проводники следует выбирать по расчетному току, при этом должно быть обеспечено условие, чтобы по отношению к длительно допустимым токовым нагрузкам, приведенным в таблицах гл. 1.3, аппараты защиты имели кратность не более:

  • 80% для номинального тока плавкой вставки или тока уставки автоматического выключателя, имеющего только максимальный мгновенно действующий расцепитель (отсечку), — для проводников с поливинилхлоридной, резиновой и аналогичной по тепловым характеристикам изоляцией; для проводников, прокладываемых в невзрывоопасных производственных помещениях промышленных предприятий, допускается 100%;
  • 100% для номинального тока плавкой вставки или тока уставки автоматического выключателя, имеющего только максимальный мгновенно действующий расцепитель (отсечку), — для кабелей с бумажной изоляцией;
  • 100% для номинального тока расцепителя автоматического выключателя с нерегулируемой обратно зависящей от тока характеристикой (независимо от наличия или отсутствия отсечки) — для проводников всех марок;
  • 100% для тока трогания расцепителя автоматического выключателя с регулируемой обратно зависящей от тока характеристикой — для проводников с поливинилхлоридной, резиновой и аналогичной по тепловым характеристикам изоляцией;
  • 125% для тока трогания расцепителя автоматического выключателя с регулируемой обратно зависящей от тока характеристикой — для кабелей с бумажной изоляцией и изоляцией из вулканизированного полиэтилена.

3.1.12. Длительно допустимая токовая нагрузка проводников ответвлений к короткозамкнутым электродвигателям должна быть не менее:

  • 100% номинального тока электродвигателя в невзрывоопасных зонах;
  • 125% номинального тока электродвигателя во взрывоопасных зонах.

Соотношения между длительно допустимой нагрузкой проводников к короткозамкнутым электродвигателям и уставками аппаратов защиты в любом случае не должны превышать указанных в 3.1.9 (см. также 7.3.97).

3.1.13. В случаях, когда требуемая допустимая длительная токовая нагрузка проводника, определенная по 3.1.9 и 3.1.11, не совпадает с данными таблиц допустимых нагрузок, приведенных в гл. 1.3, допускается применение проводника ближайшего меньшего сечения, но не менее, чем это требуется по расчетному току.

Места установки аппаратов защиты

3.1.14. Аппараты защиты следует располагать по возможности в доступных для обслуживания местах таким образом, чтобы была исключена возможность их механических повреждений. Установка их должна быть выполнена так, чтобы при оперировании с ними или при их действии были исключены опасность для обслуживающего персонала и возможность повреждения окружающих предметов.

Аппараты защиты с открытыми токоведущими частями должны быть доступны для обслуживания только квалифицированному персоналу.

3.1.15. Аппараты защиты следует устанавливать, как правило, в местах сети, где сечение проводника уменьшается (по направлению к месту потребления электроэнергии) или где это необходимо для обеспечения чувствительности и селективности защиты (см. также 3.1.16 и 3.1.19).

3.1.16. Аппараты защиты должны устанавливаться непосредственно в местах присоединения защищаемых проводников к питающей линии. Допускается в случаях необходимости принимать длину участка между питающей линией и аппаратом защиты ответвления до 6 м. Проводники на этом участке могут иметь сечение меньше, чем сечение проводников питающей линии, но не менее сечения проводников после аппарата защиты.

Для ответвлений, выполняемых в труднодоступных местах (например, на большой высоте), аппараты защиты допускается устанавливать на расстоянии до 30 м от точки ответвления в удобном для обслуживания месте (например, на вводе в распределительный пункт, в пусковом устройстве электроприемника и др.). При этом сечение проводников ответвления должно быть не менее сечения, определяемого расчетным током, но должно обеспечивать не менее 10% пропускной способности защищенного участка питающей линии. Прокладка проводников ответвлений в указанных случаях (при длинах ответвлений до 6 и до 30 м) должна производиться при горючих наружных оболочке или изоляции проводников — в трубах, металлорукавах, или коробах, в остальных случаях, кроме кабельных сооружений, пожароопасных и взрывоопасных зон, — открыто на конструкциях при условии их защиты от возможных механических повреждений.

3.1.17. При защите сетей предохранителями последние должны устанавливаться на всех нормально незаземленных полюсах или фазах. Установка предохранителей в нулевых рабочих проводниках запрещается.

3.1.18. При защите сетей с глухозаземленной нейтралью автоматическими выключателями расцепители их должны устанавливаться во всех нормально незаземленных проводниках (см. также 7.3.99).

При защите сетей с изолированной нейтралью в трехпроводных сетях трехфазного тока и двухпроводных сетях однофазного или постоянного тока допускается устанавливать расцепители автоматических выключателей в двух фазах при трехпроводных сетях и в одной фазе (полюсе) при двухпроводных. При этом в пределах одной и той же электроустановки защиту следует осуществлять в одних и тех же фазах (полюсах).

Расцепители в нулевых проводниках допускается устанавливать лишь при условии, что при их срабатывании отключаются от сети одновременно все проводники, находящиеся под напряжением.

3.1.19. Аппараты защиты допускается не устанавливать, если это целесообразно по условиям эксплуатации, в местах:

  1. ответвления проводников от шин щита к аппаратам, установленным на том же щите; при этом проводники должны выбираться по расчетному току ответвления;
  2. снижения сечения питающей линии по ее длине и на ответвлениях от нее, если защита предыдущего участка линии защищает участок со сниженным сечением проводников или если незащищенные участки линии или ответвления от нее выполнены проводниками, выбранными с сечением не менее половины сечения проводников защищенного участка линии;
  3. ответвления от питающей линии к электроприемникам малой мощности, если питающая их линия защищена аппаратом с уставкой не более 25 А для силовых электроприемников и бытовых электроприборов, а для светильников — согласно 6.2.2;
  4. ответвления от питающей линии проводников цепей измерений, управления и сигнализации, если эти проводники не выходят за пределы соответствующих машин или щита или если эти проводники выходят за их пределы, но электропроводка выполнена в трубах или имеет негорючую оболочку.

Не допускается устанавливать аппараты защиты в местах присоединения к питающей линии таких цепей управления, сигнализации и измерения, отключение которых может повлечь за собой опасные последствия (отключение пожарных насосов, вентиляторов, предотвращающих образование взрывоопасных смесей, некоторых механизмов собственных нужд электростанций и т. п.). Во всех случаях такие цепи должны выполняться проводниками в трубах или иметь негорючую оболочку. Сечение этих цепей должно быть не менее приведенных в 3.4.4.

Что такое селективность защиты?

Содержание:

  • Что это такое?
  • Основные функции
  • Виды селективной защиты
  • Карта селективности

В первую очередь, понятие «селективность» включает в себя защитный механизм и отлаженную работу неких приборов, состоящих из отдельных элементов, последовательно подключенных между собой. Зачастую такими приборами служат различные виды автоматов, предохранителей, УЗО и т.д. Результатом их работы является предупреждение «сгорания» электромеханизмов в случае возникновения угроз. Схема селективной работы автоматических выключателей и УЗО в щитке предоставлена ниже:

Преимуществом данной системы является ее свойство отключать лишь необходимые участки, при этом вся остальная система остается в рабочем состоянии. Единственным условием при этом остается согласованность защитных устройств между собой.

Итак, основными функциями селективной защиты являются:

  • обеспечение безопасности электроприборов и сотрудников;
  • мгновенное определение и отключение зоны питания, в которой произошла поломка, без других отключений, которые прекратят подачу электроэнергии в местах стабильной работы техники;
  • снижение влияния негативных последствий на остальные части электромеханизмов;
  • уменьшение нагрузки на составные установки и предотвращение поломок в неисправной зоне;
  • обеспечение максимально возможного непрерывного электроснабжения высокого качества;
  • обеспечение беспрерывности рабочего процесса;
  • обеспечение квалифицированной поддержки в том случае, если сама защита, отвечающая за размыкание, придет в неисправность;
  • поддержка оптимального функционирования установки;
  • обеспечение простоты в эксплуатации и экономической эффективности.

Виды селективной защиты

Селективность защитной аппаратуры разделяется на следующие виды:

  • Полная. Задействовано два аппарата с последовательным подключением, при воздействии сверхтоков срабатывает защита только одного, который находится ближе к зоне неисправности.
  • Частичная. Подобна полной, но защита действует только до определенного показателя сверхтока.
  • Временная. В цепь включается несколько автоматов с одинаковыми токовыми характеристиками, но разной выдержкой по времени. В результате от самого ближнего к неисправности, до самого отдаленного автоматического выключателя, аппараты друг друга страхуют (например, самый ближний сработает через 0,02 с, следующий через 0,5 с, ну и последний через 1 с, если остальные 2 не сработают).
  • Токовая. Если говорить грубо, то принцип действия токовой селективности защит аналогичен временной, но только выдержка происходит не по времени, а по величине тока. К примеру, автоматические выключатели устанавливаются на вводе 25А, далее 16А, а потом 10А. При этом время отключения у них может быть одинаковое.

  • Времятоковая. Кроме реакции механизмов защиты на ток, также определяется время этой реакции.
  • Зонная. При выявлении нарушения порога тока срабатывание установки позволяет точно определить неисправную зону и отключить подачу электричества только в ней.
  • Энергетическая. Все процессы по предотвращению поломки происходят в литом корпусе автоматического выключателя. Отключение происходит за такой малый срок, что отметка максимального значения тока не достигает своего результата.

    Также селективность защиты может быть абсолютной и относительной. В первом случае отключается только поврежденный участок цепи. По такому принципу работают предохранители, установленные в электроприборах. Относительная селективность защищает не только «свой участок», но и соседний, если в нем не отработала абсолютная селективная защита.

    Обязательно необходимо упомянуть о карте селективности, которая будет вам необходима «как воздух» для максимальной токовой защиты. Сама карта представляет собой определенную схему, построенную в осях, где отображаются все совокупности времятоковых характеристик установленных аппаратов. Пример предоставлен ниже:

    Мы уже говорили, что все защитные аппараты должны быть подключены по-очереди друг за другом. И на карте отображают характеристики именно этих приборов. Главными правилами при чертежах карт являются: установки защит должны исходить от одного напряжения; масштаб необходимо выбирать с расчетом того, что будет видны все граничные точки; необходимо указать не только защитные свойства, но и максимальные и минимальные показатели коротких замыканий в расчетных точках схемы.

    Стоит отметить, что в сегодняшней практике крепко закрепилось отсутствие карт селективности в проектах, особенно при небольших напряжениях. И это нарушение всех норм проектирования, которое в итоге и является результатом отключения электричества у потребителей.

    Напоследок рекомендуем просмотреть полезное видео по теме:

    Теперь вы знаете, что такое селективность защиты электрической сети и для чего она нужна. Если есть вопросы, можете задавать их на нашем форуме для электриков.

    Виды повреждений и ненормальных режимов в сетях электроснабжения и электроустановках.

    Назначение релейной защиты. Требования, предъявляемые к релейной защите

    Назначением релейной защиты (РЗ) является выявление поврежденного элемента и быстрейшее его отключение от энергосистемы. Кроме того, устройства релейной защиты должны предупреждать повреждение элемента энергосистемы в случае возникновения ненормального и опасного для него режима работы (перегрузка, неполнофазный режим и др.).

    Основные требования, предъявляемые к устройствам релейной защиты:

    · Селективность — способность устройства релейной защиты выявить и отключить именно поврежденный элемент энергосистемы, а не какой-либо иной, хотя при наличии короткого замыкания нарушается нормальная работа многих элементов энергосистемы.

    · Быстродействие — способность релейной защиты в кратчайший промежуток времени (лучше всего мгновенно) выявить и отключить поврежденный элемент энергосистемы.

    · Чувствительность — способность устройства релейной защиты четко отличать режим короткого замыкания любого вида (трехфазное, двухфазное, однофазное короткое замыкание) от всевозможных, даже утяжеленных режимов работы защищаемого объекта при отсутствии короткого замыкания.

    · Надежность — отсутствие отказов или ложных срабатываний релейной защиты, что обеспечивается как функциональной, так и аппаратной надежностью устройства защиты.

    Устройства релейной защиты реагируют, естественно, на значения параметров режима защищаемого объекта (ток, напряжение, направление мощности и др.). По способу обеспечения селективности устройства релейной защиты подразделяются на две группы: с относительной селективностью и с абсолютной селективностью. Селективность защит первой группы обеспечивается выбором значений параметров срабатывания (уставок) защиты, а селективность защит второй группы обеспечивается принципом их действия, т.е. защиты с абсолютной селективностью по принципу своего действия не реагируют на внешние по отношению к защищаемому объекту КЗ. К защитам с относительной селективностью относятся в основном токовые и дистанционные защиты, а к защитам с абсолютной селективностью продольные и поперечные дифференциальные защиты, направленные защиты с высокочастотной блокировкой, дифференциально-фазные защиты, а также защиты, реагирующие на неэлектрические параметры (газовая защита трансформатора, дуговая защита шин и др.).

    Виды повреждений и ненормальных режимов в сетях электроснабжения и электроустановках.

    Повреждения в электрической системе чаще всего возникают на линиях сетей. Повреждения в обмотках электрических машин, и особенно таких аппаратов, как трансформаторы и автотрансформаторы, бывают реже, иногда имеют специфический характер, обусловленный их выполнением (межвитковые КЗ) и могут привести к тяжелым последствиям.

    При многофазных КЗ в поврежденных линиях протекают большие токи, которые должны отключаться релейной защитой.

    Однофазные КЗ представляют для системы в целом также тяжелый вид повреждения, хотя и не такой опасный с точки зрения устойчивости и сохранения нагрузки, чем многофазные КЗ. Поэтому установка достаточно быстродействующей защиты от этого вида повреждения является также необходимой. Защита может действовать на отключение трех фаз или только одной поврежденной с последующим ее автоматическим повторным включением.

    Однофазные КЗ характеризуются появлением симметричных составляющих всех последовательностей. Особенно эффективным оказывается использование для защиты от коротких замыканий на землю слагающих нулевой последовательности (независимость от рабочих токов, напряжений и т. п.)

    При однофазном замыкании на землю в сетях с малым током замыкания на землю искажаются только фазные напряжения. Треугольник междуфазных напряжений остается неизменным. Поэтому к фазам нагрузки продолжают подводиться нормальные напряжения и бесперебойная работа потребителей не нарушается. Токи в месте пробоя имеют небольшие значения и быстро произвести большие нарушения не могут.

    Таким образом, однофазные замыкания при правильно поддерживаемом режиме заземления нейтрали непосредственной опасности для потребителей и сети в целом не представляют. Поэтому защиту от замыкания на землю в рассматриваемых сетях выполняют обычно действующей только на сигнал. В наиболее простом виде – это устройства контроля изоляции, устанавливаемые на шинах питающих установок (например, на шинах низшего напряжения 6-10 кВ понизительных подстанций).

    Режим не является опасным видом повреждения и допускается работа в течении двух часов.

    В сетях с изолированной нейтралью опасным видом повреждения является двойное замыкание на землю.Требует немедленного отключения. Целесообразно автоматически отключать только одно место пробоя. При этом предполагается, что пробой во втором месте может самоликвидироваться или будет устранен обслуживающим персоналом.

    Отключение одного места повреждения повышает надежность электроснабжения потребителей. Обеспечение отключения по возможности одного места повреждения (примерно в 2/3 случаев) осуществляется посредством двухфазного (а не трехфазного) исполнения защит.

    Двойные замыкания на землю возникают обычно в местах с ослабленной изоляцией, в основном вследствие перенапряжений, появляющихся в системе при однофазных замыканиях на землю.

    При отказе в работе части фаз автоматических выключателей (характерно для воздушных выключателей с пофазным приводом) может возникнуть разрыв фазы.

    Разрыв фазы линии в отличие от КЗ непосредственной опасности для системы может не представлять и не требовать немедленной ликвидации, однако появляющиеся при этом составляющие токов и напряжений обратной и нулевой последовательности могут обусловить ряд нежелательных последствий. Поэтому разрыв фазы в ряде случаев было бы желательно автоматически селективно ликвидировать (так часто и удается делать, если разрыв сочетается с КЗ на том же участке).

    Некоторые типы защит обратной и нулевой последовательности воспринимают появление несимметрии от разрыва подобно КЗ на том же участке и вне его. Если их срабатывание недопустимо, должны приниматься соответствующие меры.

    1) Перегрузки или КЗ, возникающие где-либо на других элементах системы, обуславливающие сверхтоки (то есть токи превышающие номинальные для данной линии).

    Приводят к нагреву машин и аппаратов, оказывают термическое воздействие и ускоренный износ проводов. От сверхтоков, вызванных внешними КЗ, обычно используется защита, действующая как резервная в случаях отказа защит или выключателей поврежденного элемента. При сверхтоках перегрузки немедленного отключения не требуется. Необходима сигнализация.

    2) Колебания напряжения и токов при качаниях и нарушениях синхронизма. Повышения или понижения напряжения.

    Наиболее часто интенсивные качания возникают вследствие недостаточно быстрого отключения КЗ в системе. В наиболее тяжелых случаях возможно возникновение кратковременного или затяжного нарушения синхронизма.

    Опасный режимы, контролируются устройствами автоматики.

    3) Понижение частоты.

    Опасный режим, контролируется устройством автоматики – автоматической частотной разгрузкой.

    Основные виды повреждений и ненормальных режимов работы сетей приведены в таблице 1.

    Дата добавления: 2015-01-19 ; просмотров: 427 ; Нарушение авторских прав

    Селективность работы УЗО

    Читайте также:

    1. А. Однофазное прикосновение в сетях с заземленной нейтралью
    2. Аэродромные средства электроснабжения ВС
    3. Боевые повреждения черепа и головного мозга. Классификация закрытых и открытых повреждений. Первая помощь, особенности транспортировки раненых, первая врачебная помощь.
    4. в электрических сетях
    5. В1. Роль российских ученых в развитии систем электроснабжения
    6. В2. Проблемы развития систем электроснабжения
    7. В3. Перспективы развития систем электроснабжения
    8. Виды повреждений спинного мозга. Периоды ТБСМ
    9. Виды телесных повреждений в результате механической травмы.
    Каждый электрик должен знать:  Параметры и схемы выпрямителей
    Главная // Наша библиотека // Справочник // УЗО // Селективность работы УЗО

    Для обеспечения селективной работы нескольких УЗО в радиальных схемах электроснабжения необходимо учитывать следующие факторы. В силу очень высокого быстродействия УЗО практически невозможно обеспечить селективность действия УЗО по току утечки при значениях уставок на соседних ступенях защиты, например, 10 и 30 мА, или 30 и 100 мА.

    Необходимо также учитывать, что на практике утечка тока в электроустановке вовсе не обязательно плавно увеличивается по мере старения изоляции, появления мелких дефектов и т.д. Возможны пробой изоляции или ее серьезное повреждение, когда ток утечки мгновенно достигает значения, превышающего уставки устройств на обеих ступенях защиты. Логично, что в этих случаях возможно срабатывание любого из УЗО, установленных последовательно в цепи. Селективность работы УЗО может быть обеспечена применением модификаций УЗО с задержкой срабатывания (УЗО с индексами «S» или «G»).

    УЗО с индексом «S» имеют выдержку времени от 0,13 до 0,5 с, с индексом «G» — меньшую выдержку. Важно учесть, что УЗО, работающие с выдержкой по времени, находятся более долгое время под воздействием экстремальных токов, поэтому к ним предъявляются повышенные требования по условному току короткого замыкания Inc, термической и динамической стойкости, коммутационной способности и т.д.

    На рис. 1. приведены времятоковые характеристики УЗО без выдержки времени с номинальным отключающим дифференциальным током IΔn= 30 мА и УЗО с выдержкой времени (характеристика «S») с номинальным отключающим дифференциальным током IΔn = 300 мА. Во Франции широко практикуется применение селективных УЗО как весьма эффективное противопожарное мероприятие. На главном вводе в распределительном щите электроустановки, как правило, устанавливают УЗО противопожарного назначения типа «S» с номинальным отключающим дифференциальным током 300 или 500 мА.

    Рис. 1. Времятоковые характеристики УЗО А — характеристика УЗО типа «S», IΔn=300 мА; Б — характеристика УЗО общего применения, IΔn=30 мА

    Характеристики, представленные на риc. 1, иллюстрируют принцип селективности работы УЗО обычного типа в сочетании с УЗО типа «S». Примеры схем с 2-мя и 3-мя уровнями селективности приведены на рис. 2.

    Рис. 2. Примеры схем с 2-мя и 3-мя уровнями селективности

    В Германии, Австрии устройства с выдержкой времени применяются в меньшей степени, предпочтение отдается радиальным (лучевым) схемам с более чувствительными УЗО, выполняющими как электрозащитные, так и противопожарные функции.

    Что такое селективность защит в электроустановках

    Александр Саженков, департамент маркетинга ЗАО «Шнейдер Электрик»

    При проектировании и эксплуатации современных систем электроснабжения низкого напряжения (НН) наиболее важной задачей является обеспечение селективности аппаратов защиты, т.е. координации их рабочих характеристик при любых типах повреждения [1–4].
    При решении этой задачи можно выделить три характерных уровня системы электроснабжения (см. рис. 1), каждый из которых имеет различные особенности и предъявляет свои требования к аппаратам защиты [3, 4].

    Рис. 1. Система электроснабжения низкого напряжения

    Уровень А. Главный распределительный щит (ГРЩ)

    ГРЩ является наиболее важной частью сети НН, которой свойственны:

    • высокие требования к бесперебойности электроснабжения, так как ложное срабатывание аппарата на этом уровне приводит к отключению большого числа потребителей;
    • относительно высокие значения токов короткого замыкания (КЗ) в силу близости к источнику питания;
    • большие номинальные токи, так как вся нагрузка нижерасположенной сети питается от секций ГРЩ.

    На этом уровне в качестве вводных аппаратов наиболее часто применяются нетокоограничивающие воздушные автоматические выключатели (англ. Air Circuit Breakers – ACB). Эти аппараты согласно ГОСТ Р 50030.2 и МЭК 60947.2 относятся к категории применения «Б», для которой нормируется величина кратковременно допустимого сквозного тока КЗ (Icw, кА действ. знач.). Это позволяет данным аппаратам срабатывать с заданной выдержкой времени, которая устанавливается на блоке контроля и управления. Задача производителя при этом заключается в том, чтобы автоматический выключатель категории «Б» имел значение Icw, близкое или равное значению предельной отключающей способности (Icu, кА действ. знач.), т.е. чтобы он обеспечивал временную селективность с нижестоящими аппаратами при токах КЗ вплоть до значения своей предельной отключающей способности.
    При этом не менее важно, чтобы рабочая отключающая способность аппарата (Ics, кА действ. знач.) была равна предельной (Icu), т.е. Ics = 100%Icu. Это позволяет аппарату не менее трех раз отключать ток короткого замыкания, равный предельной отключающей способности автоматического выключателя.
    Всем этим особенностям и требованиям в полной мере удовлетворяют аппараты серии Masterpact NT и NW торговой марки Merlin Gerin компании Schne > В некоторых случаях необходимо, чтобы близкие короткие замыкания относительно вводных аппаратов (например, КЗ на сборных шинах ГРЩ) отключались ранее, чем установленная на вводном аппарате выдержка времени защиты от КЗ. В этом случае компания Schneider Electric предлагает использовать так называемую «логическую» селективность, которая реализуется посредством передачи информации по контрольному проводу. Этот провод соединяет аппараты, охваченные «логической селективностью». В аварийном режиме выключатель, расположенный выше повреждения, обнаруживает его и посылает сигнал блокировки на верхний уровень, т.е. вышестоящему выключателю. В этом случае вышестоящий аппарат будет работать с заданной на расцепителе выдержкой времени. В случае, если вышестоящий автоматический выключатель не получает сигнал блокировки, например при КЗ на шинах ГРЩ, он срабатывает мгновенно.
    Таким образом, применяемые на ГРЩ вводные аппараты Masterpact категории «Б» обеспечивают временную селективность при токах КЗ вплоть до своей предельной отключающей способности, имеют функцию логической селективности и характеристику Ics = Icu.

    Уровень Б. Промежуточные распределительные щиты (вторичное распределение)

    Особенностями этого уровня системы электроснабжения НН по-прежнему являются повышенные требования к бесперебойности питания, высокие значения ожидаемых токов КЗ, необходимость снижения тепловых и электродинамических воздействий токов КЗ на электроустановку (особенно на кабельные линии). Поэтому на этом уровне наиболее часто применяются токоограничивающие автоматические выключатели в литом корпусе (англ. Moulded Сase Сircuit Breakers – MCCB), относящиеся, как правило, к категории «А».
    В предложении компании Schneider Electric к аппаратам MCCB относится серия Compact NS, имеющая ряд принципиальных технических преимуществ по сравнению с аналогичными аппаратами других производителей (см. далее).

    Уровень В. Конечное распределение

    Основными требованиями этого уровня, как правило, являются обеспечение эффективного токоограничения и электробезопасность (т.к. аппараты этого уровня наиболее часто защищают непосредственно конечного потребителя). Поэтому на этом уровне применяются модульные токоограничивающие автоматические выключатели (англ. MCB), относящиеся к категории «А». В предложении компании Schneider Electric к аппаратам MCB относится серия Multi 9, представляющая собой широкий ряд изделий (автоматические выключатели, УЗО, дифференциальные автоматические выключатели, устройства управления освещением и многое другое) и имеющая ряд запатентованных технических решений аналогично сериям Masterpact и Compact NS.

    Координация защит

    Как уже отмечалось выше, между аппаратами категории «Б» на ГРЩ и нижестоящими аппаратами наиболее часто используется временная (реже логическая) селективность. Этот вид селективности обеспечивается за счет смещения или сдвига времятоковых характеристик последовательно расположенных автоматических выключателей по оси времени (см. рис. 2). Селективность данного вида может быть проверена путем наложения времятоковых характеристик аппаратов или при помощи таблиц селективности. Последние представляют собой наглядный и удобный в использовании инструмент. Рассмотрим примерс применением таблиц селективности.

    Рис. 2. Временная селективность между последовательно расположенными автоматическими выключателями D1 и D2

    Пример 1.

    Необходимо проверить обеспечение селективности между аппаратами Masterpact NT H1 630A Micrologic 2.0 и Compact NS 400N STR23SE. Для этого выполняются две простые операции: 1) В таблицах селективности находится рассматриваемое сочетание вышестоящего и нижестоящего аппаратов; 2) На пересечении соответствующего столбца и строки в таблице указывается результат:

    • «T» означает полную селективность (т.е. селективность рассматриваемой пары аппаратов обеспечивается при токах КЗ вплоть до предельной отключающей способности нижестоящего аппарата IcuD2);
    • Число означает, что селективность обеспечивается частично, т.е. только если ожидаемый ток КЗ меньше указанного в таблице значения (согласно ГОСТ 50030.2 указываемое в таблице значение означает предельный ток селективности – Is);
    • пустая клетка означает отсутствие селективности.

    На рис. 3 показано, что селективность между рассматриваемыми аппаратами является полной (T – англ. Total).

    Наиболее сложным видом координации защитных аппаратов является случай, когда рассматриваемая пара автоматических выключателей относится к токоограничивающим. В таком случае анализ селективности путем наложения времятоковых характеристик не дает точной и полной картины, так как при относительно высоких значениях тока КЗ кривые имеют так называемую зону неопределенности. В этой зоне, т.е. при высоких значениях токов КЗ, токоограничивающие аппараты могут находиться уже в «дуговой» зоне, т.е. их контакты за счет специальной конструкции будут отталкиваться для введения в цепь КЗ дополнительного сопротивления дуги и ограничения таким образом протекаемого тока КЗ.
    Поэтому координация токоограничивающих аппаратов согласно МЭК 60947.2 (ГОСТ 50030.2) может быть гарантирована только производителем, который обязан проводить испытания и подтверждать таким образом этот тип координации. Результатом этих испытаний и гарантией обеспечения селективности между токоограничивающими аппаратами являются уже упомянутые ранее таблицы селективности. Рассмотрим пример для проверки селективности между токоограничивающими аппаратами Compact NS.

    Пример 2.

    Необходимо проверить обеспечение селективности между аппаратами Compact NS 400N с расцепителем STR23SE и Compact NS 100N с расцепителем TM-100D. Аналогично примеру 1, на рис. 4. показана таблица селективности для рассматриваемой пары аппаратов.
    Из данной таблицы следует, что селективность между двумя токоограничивающими аппаратами Compact NS 400 и NS 100 является полной (T). При этом важно отметить, что рассмотренные в примерах 1 и 2 таблицы селективности могут быть применимы только в том случае, если рассматриваемые аппараты выбраны при условиях:
    ICU D1 Iкз ожид., (1)
    ICU D2 Iкз ожид., (2)
    т.е. если их предельная отключающая способность выше ожидаемого тока КЗ (см. рис. 5). Таким образом, вышеуказанные таблицы селективности применяются в том случае, если аппараты D1 и D2 выбраны при условиях (1) и (2), а предел селективности равен предельной отключающей способности нижестоящего аппарата (ICU D2) в случае, если в таблице указана буква «Т».

    Рис. 5. Условия применения таблиц селективности

    Каскадное соединение / резервная защита

    В то же время стандарт МЭК 60947.2 (ГОСТ 50030.2) допускает выбирать нижестоящий автоматический выключатель D2 с предельной отключающей способностью (ICU D2) ниже, чем ожидаемый ток КЗ, если он расположен за токоограничивающим аппаратом D1. В таком случае вышестоящий аппарат D1 ограничивает большие токи КЗ за счет введения сопротивления дуги (напряжения дуги) в цепь КЗ, т.е. снижает протекаемый ток и помогает нижестоящему аппарату D2 отключить повреждение. Таким образом, за счет дополнительного токоограничения вышестоящего аппарата D1 отключающая способность нижестоящего аппарата D2 увеличивается. Этот принцип каскадного соединения получил название согласно ГОСТ 50030.2 «Резервная защита» (фр. fili­ation, англ. back-up). Увеличенное значение отключающей способности нижестоящего аппарата D2 указывается производителем в таблицах каскадного соединения (см. рис. 6).

    Рис. 6. Увеличенная отключающая способность нижестоящих аппаратов (Multi 9 серия C60) за счет каскадного соединения c вышестоящим аппаратом Compact NS 100N

    Очевидно, что применение этого принципа позволяет значительно снизить стоимость аппаратов отходящих линий, так как их требуемая отключающая способность (ICU D2) оказывается меньшей. Принцип каскадного соединения автоматических выключателей (фр. filiation, англ. back-up) предлагается в настоящее время большинством ведущих электротехнических компаний. Но, к сожалению, ни одна из них не может гарантировать селективной работы аппаратов при использовании данного принципа. Это объясняется тем, что при применении традиционных токоограничивающих аппаратов в большинстве случаев отключение тока КЗ осуществляется вышестоящим аппаратом D1, который, как отмечалось выше, отбрасывает контакты и вводит дополнительное сопротивление дуги в цепь КЗ для «оказания помощи» нижестоящему аппарату (D2) отключить ток короткого замыкания.
    Применение уникального принципа рото-активного размыкания силовых контактов в серии токоограничивающих аппаратов Compact NS позволяет решить данную проблему. Ниже приводится описание этого принципа (см. рис. 7):

    Рис. 7. Принцип рото-активного размыкания аппаратов Compact NS

    Каждый полюс выключателя имеет изолированную конструкцию в виде оболочки. Внутри нее при возникновении определенного значения тока КЗ подвижный контакт начинает поворачиваться за счет электромагнитных сил отталкивания между контактами. При этом создаются две последовательные дуги.

    Пружинно-поршневой механизм использует давление, которое создается энергией дуги. Когда давление достигает определенного порога (примерно при 25 Iном), происходит быстрое, «рефлексное» отключение спустя примерно 3 мс после отталкивания контактов.
    Если давление не достигает этого порога, то его оказывается недостаточно для «рефлексного» отключения, но сопротивление двух последовательных дуг при этом ограничивает ток короткого замыкания.
    Таким образом, вышестоящий аппарат (D1) способен помочь нижестоящему аппарату (D2) отключить ток короткого замыкания, не отключаясь при этом.
    Наглядно отобразить этот принцип можно также при помощи кривых энергии I2t последовательно расположенных аппаратов в цепи КЗ (см. рис. 8).
    Из рисунка 8 видно, что в процессе токоограничения участвует не только нижестоящий аппарат D2, но и вышестоящий аппарат D1 (см. кривую «отталк. конт.»). Однако отключение аппарата D1 не происходит, так как кривая «несраб.» оказывается выше.

    Рис. 8. Кривые энергии последовательно расположенных аппаратов в цепи КЗ

    Таким образом, применение уникальных технологий в аппаратах Compact NS позволяет одновременно решить две задачи, которые на первый взгляд кажутся противоречивыми:

    1) обеспечить очень эффективное токоограничение, позволяющее значительно улучшить условия термической и динамической стойкости кабельных линий, шин и т.д.;
    2) надежно обеспечить селективность с нижестоящими аппаратами как при стандартном подходе, когда ICU D1 и ICU D2 больше IКЗ ОЖИД. (см. пример 1 и пример 2), так и при использовании «каскадного соединения» (фр. filiation, англ. back-up), когда ICU D2

    Требования к релейной защите

    К устройствам релейной защиты предъявляют 4 основных требования:

    1. Селективность – способность отключать только поврежденный участок сети.

    Основное условие для обеспечения надёжного электроснабжения потребителей.

    2. Быстродействие – главное условие для сохранения устойчивости параллельной работы генераторов. Уменьшается время снижения напряжения у потребителей, повышается эффективность АПВ, уменьшается ущерб для оборудования.

    Критерий – остаточное напряжение не менее 60 % от номинального. Кроме того, нужно учитывать и время срабатывания выключателей:

    tоткл=tз+tв, (1.1)

    где tз – время действия защиты,

    tв – время отключения выключателя – 0,15…0,06 с.

    Быстродействующей считается защита, имеющая диапазон срабатывания – 0,1…0,2 с, самые быстродействующие – 0,02…0,04 с.

    В ряде случаев требование быстродействия является определяющим.

    Быстродействующие защиты могут быть и неселективными, для исправления неселективности используется АПВ.

    3. Чувствительность – для реагирования на отклонения от нормального режима.

    Резервирование следующего участка – важное требование. Если защита по принципу своего действия не работает за пределами основной зоны, ставят специальную резервную защиту.

    Чувствительность защиты должна быть такой, чтобы она действовала при КЗ в конце установленной зоны действия в минимальном режиме системы.

    Чувствительность защиты характеризуется коэффициентом чувствительности kч:

    где Iк.мин – минимальный ток КЗ,

    Iс.з – ток срабатывания защиты.

    4. Надежность. Защита должна безотказно работать при КЗ в пределах установленной для неё зоны и не должна ложно срабатывать в режимах, при которых её работа не предусматривается.

    Форум / Электрика / Селективность защиты

    Селективность защиты

    02 июня 2006 г., 09:35

    страницы: 1 2

    Re: Селективность защиты

    02 июня 2006 г., 09:46

    Re: Селективность защиты

    02 июня 2006 г., 10:01

    Re: Селективность защиты

    02 июня 2006 г., 10:05

    Re: Селективность защиты

    02 июня 2006 г., 10:15

    Re: Селективность защиты

    02 июня 2006 г., 10:24

    обратиться цитировать

    2 ALL:

    Почему все здесь так любят автоматы на магистральных линия?

    «С индуктивностью всё просто,
    ток отстаёт на девяносто»
    /учитель ТОЭ/

    Re: Селективность защиты

    02 июня 2006 г., 10:54

    Re: Селективность защиты

    02 июня 2006 г., 11:00

    Re: Селективность защиты

    02 июня 2006 г., 11:07

    Re: Селективность защиты

    02 июня 2006 г., 11:07

    Re: Селективность защиты

    02 июня 2006 г., 11:08

    Re: Селективность защиты

    02 июня 2006 г., 11:10

    Re: Селективность защиты

    02 июня 2006 г., 11:48

    обратиться цитировать

    Селективность — это свойство системы защиты от аварийных токов, при которой происходит последовательное во времени отключение участков цепи от потребителя до источника. Наиболее очевидно это на примере судна, если коротнет кипятильник, то Г должен отключаться в последнюю очередь иначе при отключении всего и вся жизненно-важные механизмы обесточатся.

    Установка автоматов с последовательно уменьшающимся номиналов селективность обеспечивает в малой степени, так как, ток кз может запросто перескочить уставку всех автоматов. и ситуация с отключившимися автоматами по всей линии кз вплоть до вводного не редкость(ну не будешь же ставить автоматы на 100, 140, 200 А на линии 3*1,5 — 3*4 — 3*10, только желая попасть в величины тока КЗ по участкам, и нарушив тем самым защиту по нагреву проводников). кста, с вводными автоматами вообще смешно, если это дорогая весч, то он вполне может отключится раньше всех.

    Селективность в прямом смысле достигается только за счет автоматов с регулируемой задержкой срабатывания.

    Селектвиность должна обеспечиваться для защиты устройств преобразования энергии, источников энергии, для объектов, представляющих опасность в случае отключения для работающих людей и окружающей среды. Для всего прочего выполнять требование селективности не требуется без особых причин на то.

    А автоматы и так надо ставить с уменьшающимися номиналами, если правильно защищать кабели.

    Re: Селективность защиты

    02 июня 2006 г., 11:57

    обратиться цитировать

    ВЫВОД (ИМХО)
    По возможности не используйте автоматы как вводное устройство.
    В магистральных линиях используйте предохранители, так как у них нет магнитного расцепителя.

    «С индуктивностью всё просто,
    ток отстаёт на девяносто»
    /учитель ТОЭ/

  • Добавить комментарий