Действующие значения тока и напряжения

СОДЕРЖАНИЕ:

§ 32. Активное сопротивление. Действующие значения силы тока и напряжения

Перейдем к более детальному рассмотрению процессов, которые происходят в цепи, подключенной к источнику переменного напряжения.

Сила тока в цепи с резистором. Пусть цепь состоит из соединительных проводов и нагрузки с малой индуктивностью и большим сопротивлением R (рис. 4.10). Эту величину, которую мы до сих пор называли электрическим сопротивлением или просто сопротивлением, теперь будем называть активным сопротивлением.

Сопротивление R называется активным, потому что при наличии нагрузки, обладающей этим сопротивлением, цепь поглощает энергию, поступающую от генератора. Эта энергия превращается во внутреннюю энергию проводников — они нагреваются. Будем считать, что напряжение на зажимах цепи меняется по гармоническому закону:

Как и в случае постоянного тока, мгновенное значение силы тока прямо пропорционально мгновенному значению напряжения. Поэтому для нахождения мгновенного значения силы тока можно применить закон Ома:

В проводнике с активным сопротивлением колебания силы тока совпадают по фазе с колебаниями напряжения (рис. 4.11), а амплитуда силы тока определяется равенством

Мощность в цепи с резистором. В цепи переменного тока промышленной частоты (v = 50 Гц) сила тока и напряжение изменяются сравнительно быстро. Поэтому при прохождении тока по проводнику, например по нити электрической лампочки, количество выделенной энергии также будет быстро меняться со временем. Но этих быстрых изменений мы не замечаем.

Как правило, нам нужно бывает знать среднюю мощность тока на участке цепи за большой промежуток времени, включающий много периодов. Для этого достаточно найти среднюю мощность за один период. Под средней за период мощностью переменного тока понимают отношение суммарной энергии, поступающей в цепь за период, к периоду.

Мощность в цепи постоянного тока на участке с сопротивлением R определяется формулой

На протяжении очень малого интервала времени переменный ток можно считать практически постоянным. Поэтому мгновенная мощность в цепи переменного тока на участке, имеющем активное сопротивление R, определяется формулой

Найдем среднее значение мощности за период. Для этого сначала преобразуем формулу (4.19), подставляя в нее выражение (4.16) для силы тока и используя известное из математики соотношение

График зависимости мгновенной мощности от времени изображен на рисунке 4.12, а. Согласно графику (рис. 4.12, б), на протяжении одной восьмой периода, когда cos 2ωt > 0, мощность в любой момент времени больше, чем Зато на протяжении следующей восьмой части периода, когда cos 2ωt 2 R = UI.

Колебания силы тока в цепи с резистором совпадают по фазе с колебаниями напряжения, а мощность определяется действующими значениями силы тока и напряжения.

Вопросы к параграфу

1. Чему равна амплитуда напряжения в осветительных сетях переменного тока, рассчитанных на напряжение 220 В?

2. Что называют действующими значениями силы тока и напряжения?

Определить действующее значение. Действующие значения силы тока и напряжения

Переменный ток долгое время не находил практического применения. Это было связано с тем, что первые генераторы электрической энергии вырабатывали постоянный ток, который вполне удовлетворял технологическим процессам электрохимии, а двигатели постоянного тока обладают хорошими регулировочными характеристиками. Однако по мере развития производства постоянный ток все менее стал удовлетворять возрастающим требованиям экономичного электроснабжения. Переменный ток дал возможность эффективного дробления электрической энергии и изменения величины напряжения с помощью трансформаторов. Появилась возможность производства электроэнергии на крупных электростанциях с последующим экономичным ее распределением потребителям, увеличился радиус электроснабжения.

В настоящее время центральное производство и распределение электрической энергии осуществляется в основном на переменном токе. Цепи с изменяющимися – переменными – токами по сравнению с цепями постоянного тока имеют ряд особенностей. Переменные токи и напряжения вызывают переменные электрические и магнитные поля. В результате изменения этих полей в цепях возникают явления самоиндукции и взаимной индукции, которые оказывают самое существенное влияние на процессы, протекающие в цепях, усложняя их анализ.

Переменным током (напряжением, ЭДС и т.д.)называется ток (напряжение, ЭДС и т.д.), изменяющийся во времени. Токи, значения которых повторяются через равные промежутки времени в одной и той же последовательности, называются периодическими, а наименьший промежуток времени, через который эти повторения наблюдаются, — периодом Т. Для периодического тока имеем

Диапазон частот, применяемых в технике: от сверхнизких частот (0.01¸10 Гц – в системах автоматического регулирования, в аналоговой вычислительной технике) – до сверхвысоких (3000 ¸ 300000 МГц – миллиметровые волны: радиолокация, радиоастрономия). В РФ промышленная частота f = 50Гц .

Мгновенное значение переменной величины есть функция времени. Ее принято обозначать строчной буквой:

i — мгновенное значение тока ;

u – мгновенное значение напряжения ;

е — мгновенное значение ЭДС ;

р — мгновенное значение мощности .

Наибольшее мгновенное значение переменной величины за период называется амплитудой (ее принято обозначать заглавной буквой с индексом m ).

Действующее значение переменного тока

Значение периодического тока, равное такому значению постоянного тока, который за время одного периода произведет тот же самый тепловой или электродинамический эффект, что и периодический ток, называют действующим значением периодического тока:

Аналогично определяются действующие значения ЭДС и напряжения.

Синусоидально изменяющийся ток

Из всех возможных форм периодических токов наибольшее распространение получил синусоидальный ток. По сравнению с другими видами тока синусоидальный ток имеет то преимущество, что позволяет в общем случае наиболее экономично осуществлять производство, передачу, распределение и использование электрической энергии. Только при использовании синусоидального тока удается сохранить неизменными формы кривых напряжений и токов на всех участках сложной линейной цепи. Теория синусоидального тока является ключом к пониманию теории других цепей.

Изображение синусоидальных эдс, напряжений и токов на плоскости декартовых координат

Синусоидальные токи и напряжения можно изобразить графически, записать при помощи уравнений с тригонометрическими функциями, представить в виде векторов на декартовой плоскости или комплексными числами.

Приведенным на рис. 1, 2 графикам двух синусоидальных ЭДС е 1 и е 2 соответствуют уравнения:

Значения аргументов синусоидальных функций иназываютсяфазами синусоид, а значение фазы в начальный момент времени (t =0): и —начальной фазой ( ).

Величину , характеризующую скорость изменения фазового угла, называютугловой частотой. Так как фазовый угол синусоиды за время одного периода Т изменяется на рад., то угловая частота есть , гдеf– частота.

При совместном рассмотрении двух синусоидальных величин одной частоты разность их фазовых углов, равную разности начальных фаз, называют углом сдвига фаз .

Для синусоидальных ЭДС е 1 и е 2 угол сдвига фаз:

Векторное изображение синусоидально изменяющихся величин

На декартовой плоскости из начала координат проводят векторы, равные по модулю амплитудным значениям синусоидальных величин, и вращают эти векторы против часовой стрелки (в ТОЭ данное направление принято за положительное ) с угловой частотой, равной w . Фазовый угол при вращении отсчитывается от положительной полуоси абсцисс. Проекции вращающихся векторов на ось ординат равны мгновенным значениям ЭДС е 1 и е 2 (рис. 3). Совокупность векторов, изображающих синусоидально изменяющиеся ЭДС, напряжения и токи, называют векторными диаграммами. При построении векторных диаграмм векторы удобно располагать для начального момента времени (t =0), что вытекает из равенства угловых частот синусоидальных величин и эквивалентно тому, что система декартовых координат сама вращается против часовой стрелки со скоростью w . Таким образом, в этой системе координат векторы неподвижны (рис. 4). Векторные диаграммы нашли широкое применение при анализе цепей синусоидального тока. Их применение делает расчет цепи более наглядным и простым. Это упрощение заключается в том, что сложение и вычитание мгновенных значений величин можно заменить сложением и вычитанием соответствующих векторов.

Пусть, например, в точке разветвления цепи (рис. 5) общий ток равен сумме токовидвух ветвей:

Дополнительные сведения

В англоязычной технической литературе для обозначения действующего значения употребляется термин «effective value » — в дословном переводе «эффективная величина »

В электротехнике приборы электромагнитной, электродинамической и тепловой систем реагируют на действующее значение.

Источники

  • «Справочник по физике», Яворский Б. М., Детлаф А. А., изд. «Наука», 1979 г.1
  • Курс физики. А. А. Детлаф, Б. М. Яворский М.: Высш. шк., 1989. § 28.3, п.5
  • «Теоретические основы электротехники», Л. А. Бессонов: Высш. шк., 1996. § 7.8 — § 7.10

Ссылки

См. также

  • Список параметров напряжения и силы электрического тока

Wikimedia Foundation . 2010 .

Смотреть что такое «Действующее значение переменного тока» в других словарях:

действующее значение переменного тока

эффективное значение переменного тока — efektinė srovė statusas T sritis Standartizacija ir metrologija apibrėžtis Apibrėžtį žr. priede. priedas(ai) Grafinis formatas atitikmenys: angl. effective current; root mean square current vok. Effektivstrom, m rus. действующее значение… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

действующее значение тока — Среднеквадратичное значение периодического электрического тока за период. Примечание — Аналогично определяют действующие значения периодических электрического напряжения, электродвижущей силы, магнитного потока и т. д. [ГОСТ Р 52002 2003]… …

В электротехнике среднее квадратичное за период значение переменного тока, напряжения, электродвижущей силы, магнитодвижущей силы, магнитного потока и т. п. Действующее значение синусоидального тока и напряжения в раз меньше их амплитудных… … Большой Энциклопедический словарь

— (электротехн.), среднее квадратичное за период значение переменного тока, напряжения, эдс, магнитодвижущей силы, магнитного потока и т. п. Действующие значения синусоидального тока и напряжения в √2 раз меньше их амплитудных значений. * * *… … Энциклопедический словарь

Ср. квадратичное за период значение переменного тока, напряжения, эдс, магнитодвижущей силы, магн. потока и т. п. Д. з. синусоидального тока и напряжения в кв. корень из 2 раз меньше их амплитудных значений … Естествознание. Энциклопедический словарь

ГОСТ Р МЭК 60252-2-2008: Конденсаторы для двигателей переменного тока. Часть 2. Пусковые конденсаторы — Терминология ГОСТ Р МЭК 60252 2 2008: Конденсаторы для двигателей переменного тока. Часть 2. Пусковые конденсаторы оригинал документа: 1.3.11 длительность рабочего цикла (duty cycle duration): Общее время одного нагружения (подачи напряжения) и… … Словарь-справочник терминов нормативно-технической документации

истинное действующее значение Справочник технического переводчика

истинное действующее значение — [Интент] Прибор, измеряющий несинусоидальный электрический сигнал, например, имеющий форму импульсов или отрезков синусоиды, с учетом всех гармоник этого сигнала, является прибором, определяющим истинное действующее значение этого сигнала.… … Справочник технического переводчика

истинное действующее значение — [Интент] Прибор, измеряющий несинусоидальный электрический сигнал, например, имеющий форму импульсов или отрезков синусоиды, с учетом всех гармоник этого сигнала, является прибором, определяющим истинное действующее значение этого сигнала.… … Справочник технического переводчика

При расчете цепей переменного тока обычно пользуются понятием действующих (эффективных) значений переменного тока, напряжения и э. д. с.

Действующие значения тока, напряжения и э. д. с. обозначаются прописными буквами .

На шкалах измерительных приборов и технической документации также указываются действующие значения величин.

Действующее значение переменного тока равно значению такого эквивалентного постоянного тока, который, проходя через то же сопротивление, что и переменный ток, выделяет в нем за период то же количество тепла.

Количество тепла, выделенное переменным током в со противлении за бесконечно малый промежуток времени

а за период переменного тока Т

Приравняв Полученное выражение количеству тепла выделенному в том же сопротивлении постоянным током за то же время Т, получим:

Сократив общий множитель , получим действующее значение тока

Рис. 5-8. График переменного тока и квадрата тока.

На рис. 5-8 построена кривая мгновенных значений тока i и кривая квадратов мгновенных значений Площадь, ограниченная последней кривой и осью абсцисс, представляет собой в некотором масштабе величину, определяемую выражением Высота прямоугольника равновеликого площади, ограниченной кривой и осью абсцисс, равная среднему значению ординат кривой представляет собой квадрат действующего значения тока

Если ток изменяется по закону синуса, т. е.

Аналогично для действующих значений синусоидальных напряжений и э. д. с. можно написать:

Кроме действующего значения тока и напряжения, иногда пользуются еще понятием среднего значения тбка и напряжения.

Среднее значение синусоидального тока за период равно нулю, так как в течение первой половины периода определенное количество электричества Q проходит через поперечное сечение проводника в прямом направлении. В течение второй половины периода то же количество электричества проходит через сечение проводника в обратном направлении. Следовательно, количество электричества, прошедшее через сечение проводника за период, равно нулю, равно нулю и среднее за период значение синусоидального тока.

Поэтому среднее значение синусоидального тока вычисляют за полупериод, в течение которого ток остается положительным. Среднее значение тока равно отношению количества электричества, прошедшего через сечение проводника за половину периода, к продолжительности этого полупериода.

Эффективным (действующим) называют значение переменного тока равное величине эквивалентного постоянного тока, который при прохождении через такое же сопротивление, что и переменный ток выделяет на нем то же количество тепла за одинаковые промежутки времени.

Количественная связь амплитуд силы и напряжения переменного тока и эффективных значений

Количество тепла, которое выделяется переменным током на сопротивлении $R$ за малый промежуток времени $dt$, равно:

Тогда за один период переменный ток выделяет тепла ($W$):

Обозначим через $I_$ силу постоянного тока, который на сопротивлении $R$ выделяет такое же количество тепла ($W$), как и переменный ток $I$ за время равное периоду колебаний переменного тока ($T$). Тогда выразим $W$ через постоянный ток и приравняем выражение к правой части уравнения (2), имеем:

Выразим из уравнения (3) силу эквивалентного постоянного тока, получим:

Если сила тока изменяется по синусоидальному закону:

подставим выражение (5) для переменного тока в формулу (4), тогда величина постоянного тока выразится как:

Следовательно, выражение (6) может быть преобразовано к виду:

где $I_$ называют эффективным значением силы тока. Аналогично записывают выражения для эффективных (действующих) значений напряжений:

Применение действующих значений тока и напряжения

Когда в электротехнике говорят о силе переменного тока и напряжении, то имеют в виду их эффективные значения. В частности, вольтметры и амперметры градуируют обычно на эффективные значения. Следовательно, максимальное значение напряжения в цепи переменного тока примерно в 1,5 раза больше того, что показывает вольтметр. Этот факт следует учесть при расчете изоляторов, исследовании проблем безопасности.

Эффективные значения используют для характеристики формы сигнала переменного тока (напряжения). Так, вводят коэффициент амплитуды ($k_a$). равный:

и коэффициент формы ($k_f$):

где $I_=\frac<2><\pi >\cdot I_m$ —средневыпрямленное значение силы тока.

Для синусоидального тока $k_a=\sqrt<2>,\ k_f=\frac<\pi ><2\sqrt<2>>=1,11.$

Задание: Напряжение, которое показал вольтметр равно $U=220 В$. Какова амплитуда напряжения?

Как было сказано, вольтметры и амперметры обычно градуируют на действующие значения напряжения (силу тока), следовательно, прибор показывает в наших обозначениях $U_=220\ В.$ В соответствии с известным соотношением:

найдем амплитудное значение напряжения, как:

Ответ: $U_m\approx 310,2\ В.$

Задание: Как связана мощность переменного тока на сопротивлении $R$ и эффективные значения тока и напряжения?

Среднее значение мощности переменного тока в цепи равно

где $cos\varphi $- коэффициент мощности, который показывает эффективность передачи мощности от источника тока к потребителю. С другой стороны средние мощности тока на отдельных элементах цепи $\left\langle P_\right\rangle =0,\left\langle P_\right\rangle =0,\left\langle P_\right\rangle =\frac<1><2>_mR,$ а результирующая мощность может быть найдена как сумма мощностей:

\[\left\langle P\right\rangle =\left\langle P_\right\rangle +\left\langle P_\right\rangle +\left\langle P_\right\rangle \left(2.2\right).\]

Следовательно, можно записать, что:

\[\left\langle P\right\rangle =P_=\frac<1><2>_mR=\frac<2>\left(2.3\right),\]

где $I_m\ $- амплитуда силы тока, $U_m$ — амплитуда внешнего напряжения, $\varphi$ — разность фаз между силой тока и напряжением.

У постоянного тока мгновенная мощность совпадает со средней. Для $I_$=const можно положить $cos\varphi =1,\ $значит формулу (2.3) можно записать как:

если вместо амплитудных значений ($U_m\ и\ I_m$) использовать их эффективные (действующие) значения:

Следовательно, мощность тока можно записать как:

где $cos \varphi$ — коэффициент мощности. В технике этот коэффициент делают как можно большим. При малом $cos\varphi $ для того, чтобы в цепи выделялась необходимая мощность нужно пропускать большой ток, что ведет к росту потерь в подводящих проводах.

Такую же мощность (как в выражении (2.3)) развивает постоянный ток, сила которого представлена в формуле (2.5).

Ответ: $P_=U_I_cos\varphi .$

Переменный синусоидальный ток в течение периода имеет разные секундные значения. Естественно поставить вопрос, какое же значение тока будет измеряться амперметром, включенным в цепь?

При расчетах цепей переменного тока, также при электронных измерениях неловко воспользоваться моментальными либо амплитудными значениями токов и напряжений, а их средние значения за период равны нулю. Не считая того, об электронном эффекте временами изменяющегося тока (о количестве выделенной теплоты, о совершенной работе и т. д.) нельзя судить по амплитуде этого тока.

Более комфортным оказалось введение понятий так именуемых действующих значений тока и напряжения . В базу этих понятий положено термическое (либо механическое) действие тока, не зависящее от его направления.

— это значение неизменного тока, при котором за период переменного тока в проводнике выделяется столько же теплоты, сколько и при переменном токе.

Для оценки деяния, производимого переменным током, мы сравним его деяния с термическим эффектом неизменного тока.

Мощность Р неизменного тока I , проходящего через сопротивление r , будет Р = Р 2 r .

Мощность переменного тока выразится как средний эффект моментальной мощности I 2 r за целый период либо среднее значение от (Im х sinω t ) 2 х r за то же время.

Пусть среднее значение t2 за период будет М. Приравнивая мощность неизменного тока и мощность при переменном токе, имеем: I 2 r = Mr, откуда I = √ M ,

Величина I именуется действующим значением переменного тока.

Среднее значение i2 при переменном токе определим последующим образом.

Построим синусоидальную кривую конфигурации тока. Возведя в квадрат каждое секундное значение тока, получим кривую зависимости Р от времени.

Обе половины этой кривой лежат выше горизонтальной оси, потому что отрицательные значения тока (-i ) во 2-ой половине периода, будучи построены в квадрат, дают положительные величины.

Построим прямоугольник с основанием Т и площадью, равной площади, ограниченной кривой i 2 и горизонтальной осью. Высота прямоугольника М будет соответствовать среднему значению Р за период. Это значение за период, вычисленное с помощью высшей арифметики, будет равно 1/2I 2 m . Как следует, М = 1/2I 2 m

Потому что действующее значение I переменного тока равно I = √ M , то совсем I = Im / √ 2

Аналогично зависимость меж действующим и амплитудным значениями для напряжения U и Е имеет вид:

U = Um / √ 2 , E= Em / √ 2

Действующие значения переменных величин обозначаются строчными знаками без индексов (I , U, Е).

На основании произнесенного выше можно сказать, что действующее значение переменного тока равно такому неизменному току, который, проходя через то же сопротивление, что и переменный ток, за то же время выделяет такое же количество энергии.

Электроизмерительные приборы (амперметры, вольтметры), включенные в цепь переменного тока, демонстрируют действующие значения тока либо напряжения.

При построении векторных диаграмм удобнее откладывать не амплитудные, а действующие значения векторов. Для этого длины векторов уменьшают в √ 2 раз. От этого размещение векторов на диаграмме не меняется.

Каждый электрик должен знать:  Конденсаторные установки компенсации реактивной мощности

Действующие значения тока и напряжения

Переменным называется ток, который изменяется с течением времени:

Мгновенным значением переменного тока называется его значение в фиксированный момент времени.

Периодическим называют такой переменный ток, мгновенные значения которого повторяются через равные промежутки времени:

— период переменного тока, т.е. наименьший промежуток времени, по истечении которого мгновенные значения тока повторяются в той же последовательности.

Простейшим типом периодического тока является гармонический ток:

где амплитуда тока;
полная фаза колебания;
начальная фаза колебания (при );
круговая частота (угловая скорость).

где — частота переменного периодического тока, численно равная числу периодов в 1секунду:

Гармонический ток можно представить в виде проекции на вертикальную ось вращающегося вектора (рис.3.1).

Действующим или эффективным значением гармонического тока называется значение такого постоянного тока, который протекая через одно и тоже неизменное сопротивление за период времени выделяет такое же количество тепла, что и рассматриваемый гармонический ток.

Между амплитудным и действующим значением гармонического тока существует простая связь:

Аналогично для напряжения и ЭДС:

Для мгновенных значений достаточно медленно изменяющихся переменных ЭДС и токов справедливы основные законы постоянного тока в их наиболее общей форме.

При этом следует иметь в виду, что сопротивление одной и той же электрической цепи для постоянного и переменного токов не совпадают . Так один и тот же резистор для постоянного и переменного токов имеет разное электрическое сопротивление.

Основными элементами электрической цепи переменного тока являются активное сопротивление, индуктивность и ёмкость.

Активное сопротивление представляет собой элемент электрической цепи, в котором при прохождении тока происходит необратимый процесс преобразования электрической энергии в тепловую.

Численное значение активного сопротивления определяется отношением мощности, расходуемой на тепло к квадрату действующего значения переменного тока:

Необходимо помнить, что

В цепи переменного тока с активным сопротивлением ток и напряжение совпадают по фазе (рис.3.2).

Тогда на основании закона Ома для участка цепи без ЭДС:

Подставляя (1) в (2) получим:

Начальная фаза тока .

Начальная фаза напряжения .

Разность фаз между напряжением и током:

В цепи с активным сопротивлением мгновенные, амплитудные и действующие значения напряжения и тока связаны законом Ома:

Индуктивность — это элемент электрической цепи, способный накапливать энергию магнитного поля.

В цепи переменного тока с индуктивностью напряжение опережает по фазе ток на (рис.3.3). Покажем это.

При прохождении переменного тока в индуктивности возникает ЭДС самоиндукции:

На основании закона Ома для участка цепи с ЭДС можно записать:

где — мгновенное напряжение на индуктивности, уравновешивающее ЭДС самоиндукции.

Начальная фаза тока .

Начальная фаза напряжения .

Разность фаз между напряжением и током:

ЭДС самоиндукции отстаёт по фазе от тока на угол , так как .

Таким образом, в цепи переменного тока с индуктивностью амплитудные и действующие значения напряжения и тока формально связаны законом Ома:

где — индуктивное сопротивление, измеряемое в [Ом]. Это расчётная величина, которая не имеет физического смысла.

Ёмкость — это элемент электрической цепи, способный накапливать энергию электрического поля.

В цепи переменного тока с ёмкостью напряжение отстаёт по фазе от тока на угол (рис.3.4). Докажем это.

Это напряжение приложено к конденсатору от внешнего источника. Оно уравновешивает ЭДС ёмкости (аналогичную ЭДС самоиндукции в катушке индуктивности), которая возникает при наличии зарядов на обкладках конденсатора.

На основании закона Ома для участка цепи с ЭДС можно записать:

За положительное направление тока в соответствии с законом сохранения электрического заряда принимается направление, при котором заряды покидают обкладки конденсатора:

Подставляя значение , получим:

Начальная фаза напряжения .

Начальная фаза тока .

Разность фаз между напряжением и током:

При этом ЭДС ёмкости опережает по фазе ток на угол . Таким образом, в цепи переменного тока с ёмкостью амплитудные и действующие значения напряжения и тока формально связаны законом Ома:

где — ёмкостное сопротивление, измеряемое в [Ом].

Это расчётная величина, которая не имеет физического смысла.

В общем случае в состав цепи переменного тока могут входить и активное сопротивление, и ёмкость, и индуктивность. Все эти элементы могут быть соединены между собой как последовательно, так и параллельно. На рисунке 3.5 показана схема последовательного соединения указанных элементов и соответствующая им векторная диаграмма для тока и напряжений.

В цепи, состоящей из последовательно соединённых , и через все элементы протекает один и тот же ток:

Падение напряжения на элементах цепи:

Приложенное мгновенное значение напряжения равно сумме мгновенных падений напряжения на отдельных элементах цепи:

Сложение этих гармонических напряжений произведено в векторной форме (рис.3.5). Порядок построения векторной диаграммы обозначен цифрами.

— активная составляющая напряжения.

— реактивная составляющая напряжения.

Из векторной диаграммы следует, что

— полное сопротивление цепи;

— активная составляющая сопротивления цепи;

— реактивная составляющая сопротивления цепи.

Условились индуктивное сопротивление считать положительным, а ёмкостное — отрицательным.

Поэтому реактивное сопротивление цепи в зависимости от знака может иметь либо индуктивный характер X_c)$ X_c)$»>, либо ёмкостный характер .

Реактивные сопротивления , и зависят от частоты. Соответствующие графики приведены на рисунке3.6.

В зависимости от знака реактивного сопротивления треугольники напряжений могут иметь вид:

Угол положителен при отстающем и отрицателен при опережающем токе.

Если все стороны треугольников напряжений (рис.3.7) разделить на амплитуду тока, то получатся соответствующие треугольники сопротивлений (рис.3.8).

Угол всегда отсчитывается от к .

Из треугольников сопротивлений (рис.3.8) следует ряд важных соотношений:

На частоте полное реактивное сопротивление цепи становится равным нулю и цепь из , и ведёт себя как чисто активное сопротивление:

где активное сопротивление катушки индуктивности;
активное сопротивление конденсатора;
активное сопротивление внешнего резистора.

Состояние электрической цепи на частоте носит название резонанса напряжений.

Работа в цепи переменного тока за время одного периода выражается формулой:

где и — действующие (эффективные) значения напряжения и тока.

Средняя за период мощность называется активной мощностью:

Она расходуется в активном сопротивлении цепи переменного тока.

Наряду с изложенным необходимо иметь в виду, что любая реальная катушка индуктивности как и любой реальный конденсатор при работе в цепи переменного тока имеют не только реактивные, но и активные сопротивления. На рисунке3.9 показаны реальные катушка индуктивности и конденсатор и их эквивалентные схемы:

Действующие значения тока и напряжения

В помощь тем, кто начал изучать электротехнику и иногда путается в расчетах комплексных токов и напряжений, и создан этот калькулятор.

Напомним, что мгновенное значения переменного тока может быть выражено в виде гармонического колебания

где — какой либо момент времени

Таким же способом можно представить и мгновенное значения напряжения

Если мы попытаемся оценить какой же среднее значение тока будет за какой то определенный период, мы столкнемся с определенными трудностями.

Так как мгновенный ток за период может принимать как положительные так и отрицательные значения, то сложив их, мы получим что среднее значения тока равно нулю. Но такого быть не может.

Ток прошедший за этот период, сделал же какую то работу, он же не мог исчезнуть без ничего, не оставив следов.

Какую же работу может сделать ток прошедший через проводник? Самый простой и ощущаемый процесс это нагревание проводника. А по закону Джоуля-Ленца, который определяет сколько же электрической энергии уходит в тепловую, есть связь между нагревом(выделением теплоты) и проходящим через проводник значением тока.

Таким образом экспериментально, а потом уже и теоретически определили, что между амплитудой тока и «средним» значением ( правильно его назвать действующим ) есть простое соотношение.

Именно действующее значении тока, выполняет работу и участвует в вычислениях мощности. Именно это значение показывает вольтметр когда мы измеряем напряжение переменного тока.

Такие же рассуждения насчет напряжения приводят нас к подобной формуле.

Мы также гармоническое колебание можем представить в комплексном виде ( показательной форме )

Это не наша прихоть. Это лишь желание упростить вычисления которые встречаются в электротехнике.

Например при сложении двух периодически изменяющихся значений тока, лучше использовать векторное сложение. А что такое векторное сложение, как не работа с комплексными числами? И так во всем в электротехнике.

Поэтому мы можем значение действительного тока выразить вот так

Тогда, зная комплексные значения тока или напряжения в виде ,мы можем узнать модуль действительной величины тока , а также начальную фазу

Комплексное сопротивление

Комплексное сопротивление рассчитывается по общеизвестной формуле Ома

Z — обозначает что сопротивление комплексное.

Примеры расчетов

Напряжение и ток пассивного двухполюсника равны

U=3-5i

I=7+3i

Найти мгновенные значения напряжения и тока .

Модули действующих значений Напряжения и тока

Мгновенные значения напряжения и тока

Разницу между фазами тока и напряжения

Активная и реактивная составляющая тока и напряжения

Ток и напряжение. Виды и правила. Работа и характеристики

Ток и напряжение являются количественными параметрами, применяемыми в электрических схемах. Чаще всего эти величины меняются с течением времени, иначе не было бы смысла в действии электрической схемы.

Напряжение

Условно напряжение обозначается буквой «U». Работа, затраченная на перемещение единицы заряда из точки, имеющей малый потенциал в точку с большим потенциалом, является напряжением между этими двумя точками. Другими словами, это энергия, освобождаемая после перехода единицы заряда от высокого потенциала к малому.

Напряжение еще могут называть разностью потенциалов, а также электродвижущей силой. Этот параметр измеряется в вольтах. Чтобы переместить 1 кулон заряда между двумя точками, которые имеют напряжение 1 вольт, нужно выполнить работу в 1 джоуль. Кулонами измеряются электрические заряды. 1 кулон равен заряду 6х10 18 электронов.

Напряжение разделяется на несколько видов, в зависимости от видов тока.
  • Постоянное напряжение . Оно присутствует в электростатических цепях и цепях постоянного тока.
  • Переменное напряжение . Этот вид напряжения имеется в цепях с синусоидальными и переменными токами. В случае синусоидального тока рассматриваются такие характеристики напряжения, как:
    амплитуда колебаний напряжения – это максимальное его отклонение от оси абсцисс;
    — мгновенное напряжение, которое выражается в определенный момент времени;
    — действующее напряжение, определяется по выполняемой активной работе 1-го полупериода;
    — средневыпрямленное напряжение, определяемое по модулю величины выпрямленного напряжения за один гармонический период.

При передаче электроэнергии по воздушным линиям устройство опор и их размеры зависят от величины применяемого напряжения. Величина напряжения между фазами называется линейным напряжением , а напряжение между землей и каждой из фаз – фазным напряжением . Такое правило применимо для всех типов воздушных линий. В России в электрических бытовых сетях, стандартным является трехфазное напряжение с линейным напряжением 380 вольт, и фазным значением напряжения 220 вольт.

Электрический ток

Ток в электрической цепи является скоростью движения электронов в определенной точке, измеряется в амперах, и обозначается на схемах буквой «I». Также используются и производные единицы ампера с соответствующими приставками милли-, микро-, нано и т.д. Ток размером в 1 ампер образуется передвижением единицы заряда в 1 кулон за 1 секунду.

Условно считается, что ток в электрической цепи течет по направлению от положительного потенциала к отрицательному. Однако, из курса физики известно, что электрон движется в противоположном направлении.

Необходимо знать, что напряжение измеряется между 2-мя точками на схеме, а ток течет через одну конкретную точку схемы, либо через ее элемент. Поэтому, если кто-то употребляет выражение «напряжение в сопротивлении», то это неверно и неграмотно. Но часто идет речь о напряжении в определенной точке схемы. При этом имеется ввиду напряжение между землей и этой точкой.

Напряжение образуется от воздействия на электрические заряды в генераторах, батареях, солнечных элементах и других устройствах. Ток возникает путем приложения напряжения к двум точкам на схеме.

Чтобы понять, что такое ток и напряжение, правильнее будет воспользоваться осциллографом. На нем можно увидеть ток и напряжение, которые меняют свои значения во времени. На практике элементы электрической цепи соединены проводниками. В определенных точках элементы цепи имеют свое значение напряжения.

Ток и напряжение подчиняются правилам:
  • Сумма токов, входящих в точку, равняется сумме токов, выходящих из точки (правило сохранения заряда). Такое правило является законом Кирхгофа для тока. Точка входа и выхода тока в этом случае называется узлом. Следствием из этого закона является следующее утверждение: в последовательной электрической цепи группы элементов величина тока для всех точек одинакова.
  • В параллельной схеме элементов напряжение на всех элементах одинаково. Иначе говоря, сумма падений напряжений в замкнутом контуре равна нулю. Этот закон Кирхгофа применяется для напряжений.
  • Работа, выполненная в единицу времени схемой (мощность), выражается следующим образом: Р = U*I. Мощность измеряется в ваттах. Работа величиной 1 джоуль, выполненная за 1 секунду, равна 1 ватту. Мощность распространяется в виде теплоты, расходуется на совершение механической работы (в электродвигателях), преобразуется в излучение различного вида, накапливается в емкостях или батареях. При проектировании сложных электрических систем, одной из проблем является тепловая нагрузка системы.
Характеристика электрического тока

Обязательным условием существования тока в электрической цепи является замкнутый контур. Если контур цепи разрывается, то ток прекращается.

По такому принципу действуют все защиты и выключатели в электротехнике. Они разрывают электрическую цепь подвижными механическими контактами, и этим прекращают течение тока, выключая устройство.

В энергетической промышленности электрический ток возникает внутри проводников тока, которые выполнены в виде шин, кабелей, проводов и других частей, проводящих ток.

Также существуют другие способы создания внутреннего тока в:
  • Жидкостях и газах за счет передвижения заряженных ионов.
  • Вакууме, газе и воздухе с помощью термоэлектронной эмиссии.
  • Полупроводниках, вследствие движения носителей заряда.
Условия возникновения электрического тока:
  • Нагревание проводников (не сверхпроводников).
  • Приложение к носителям заряда разности потенциалов.
  • Химическая реакция с выделением новых веществ.
  • Воздействие магнитного поля на проводник.
Формы сигнала тока:
  • Прямая линия.
  • Переменная синусоида гармоники.
  • Меандром, похожий на синусоиду, но имеющий острые углы (иногда углы могут сглаживаться).
  • Пульсирующая форма одного направления, с амплитудой, колеблющейся от нуля до наибольшей величины по определенному закону.
Виды работы электрического тока:
  • Световое излучение, создающееся приборами освещения.
  • Создание тепла с помощью нагревательных элементов.
  • Механическая работа (вращение электродвигателей, действие других электрических устройств).
  • Создание электромагнитного излучения.
Отрицательные явления, вызываемые электрическим током:
  • Перегрев контактов и токоведущих частей.
  • Возникновение вихревых токов в сердечниках электрических устройств.
  • Электромагнитные излучения во внешнюю среду.

Создатели электрических устройств и различных схем при проектировании должны учитывать вышеперечисленные свойства электрического тока в своих разработках. Например, вредное влияние вихревых токов в электродвигателях, трансформаторах и генераторах снижается путем шихтовки сердечников, применяемых для пропускания магнитных потоков. Шихтовка сердечника – это его изготовление не из цельного куска металла, а из набора отдельных тонких пластин специальной электротехнической стали.

Но, с другой стороны, вихревые токи используют для работы микроволновых печей, духовок, действующих по принципу магнитной индукции. Поэтому, можно сказать, что вихревые токи оказывают не только вред, но и пользу.

Переменный ток с сигналом в форме синусоиды может различаться частотой колебаний за единицу времени. В нашей стране промышленная частота тока электрических устройств стандартная, и равна 50 герцам. В некоторых странах используется частота тока 60 герц.

Для различных целей в электротехнике и радиотехнике используют другие значения частоты:
  • Низкочастотные сигналы с меньшей величиной частоты тока.
  • Высокочастотные сигналы, которые намного выше частоты тока промышленного использования.

Считается, что электрический ток возникает при движении электронов внутри проводника, поэтому он называется током проводимости. Но существует и другой вид электрического тока, который получил название конвекционного. Он возникает при движении заряженных макротел, например, капель дождя.

Электрический ток в металлах

Движение электронов при воздействии на них постоянной силы сравнивают с парашютистом, который снижается на землю. В этих двух случаях происходит равномерное движение. На парашютиста действует сила тяжести, а противостоит ей сила сопротивления воздуха. На движение электронов действует сила электрического поля, а сопротивляются этому движению ионы решеток кристаллов. Средняя скорость электронов достигает постоянного значения, так же как и скорость парашютиста.

В металлическом проводнике скорость движения одного электрона равна 0,1 мм в секунду, а скорость электрического тока около 300 тысяч км в секунду. Это объясняется тем, что электрический ток течет только там, где к заряженным частицам приложено напряжение. Поэтому достигается большая скорость протекания тока.

При перемещении электронов в кристаллической решетке существует следующая закономерность. Электроны сталкиваются не со всеми встречными ионами, а только с каждым десятым из них. Это объясняется законами квантовой механики, которые можно упрощенно объяснить следующим образом.

Движению электронов мешают большие ионы, которые оказывают сопротивление. Это особенно заметно при нагревании металлов, когда тяжелые ионы «качаются», увеличиваются в размерах и уменьшают электропроводность решеток кристаллов проводника. Поэтому при нагревании металлов всегда увеличивается их сопротивление. При снижении температуры повышается электрическая проводимость. При снижении температуры металла до абсолютного нуля можно добиться эффекта сверхпроводимости.

Двойкам нет

Переменный ток оценивается его действием, эквивалентной действия постоянного тока.

Активным сопротивлением называют такое сопротивление проводника, в котором электрическая энергия необратимо превращается во внутреннюю. Пусть напряжение в цепи переменного тока изменяется по гармоничным законом. Под действием переменного электрического поля в проводнике возникает переменный ток, частота и фаза колебаний которого совпадает с частотой и фазой колебания напряжения.

Амплитудное значение силы тока равна отношению амплитудного значения напряжения к сопротивлению проводника. Мощность тока равна произведению силы тока и напряжения. Тогда активное сопротивление можно определить как отношение мощности переменного тока на участке цепи к квадрату действующей силы тока.

Действующим значением силы тока называется сила постоянного тока, благодаря которой в проводнике выделяется за одинаковое время такое же количество теплоты, что и переменным током. Найти действующее значение силы тока можно как отношение амплитудного значения силы тока до квадратного корня из двух.

Действующее значение напряжения также в корень из двух меньше его амплитудного значения.

Напряжение цепи переменного тока

Переменное напряжение — это напряжение, которое изменяется с течением времени. Далее будем рассматривать только гармоническое переменное напряжение (изменяется по синусоиде).

Где u = u(t) — мгновенное значение переменного напряжения [В].

Um — максимальное значение напряжения (амплитудное значение) [В].

f — частота равная числу колебаний в 1 секунду (единица частоты f — герц (Гц) или с -1 )

ω — угловая частота (омега) (единица угловой частоты — рад/с или с -1 )

ω = 2πf = 2π/T

Аргумент синуса, т. е. (ωt + Ψ), называют фазой. Фаза характеризует состояние колебания (числовое значение) в данный момент времени t.

Рассмотрим параметры напряжения в бытовой электросети.

Все мы знаем, что у нас дома в розетке поступает переменный ток, с напряжением 220 вольт и частотой 50 герц (в идеальных условиях) на самом деле допускается не большая погрешность как в меньшую, так и в большую сторону так, что не удивляйтесь если ваш вольтметр покажет не 220, а например 210 или даже 230 В.).

Большинство приборов измеряет не амплитудное, а действующее значение переменного напряжения, тока, мощности так, что если мы говорим что у нас напряжение сети 220, 380 В и т. д. то имеется виду именно действующие значения.

  • Действующее значение напряжения U = 220 В.
  • Амплитудное значение напряжения цепи переменного токаUm = U*√2 = 220 *√2 = 311 В.
  • Угловая частота ω = 2πf = 3,14*2*50 = 314рад/с.
  • Начальная фаза Ψ = 0град.
  • Мгновенное значениеu= 311sin(314t)В.

C.Действующие значения тока и напряжения

A. Возможность трансформирования.

B. Минимальные потери при передаче по проводам.

C. Возможность использования ламп накаливания.

D. Удобное питание бытовой техники.

E. Преимуществ нет.

2.В большинстве стран мира принята частота синусоидального тока для электроэнергетических установок 50 Гц. Уменьшение частоты:

A. Невозможно из-за особенностей работы электроэнергетических установок.

Каждый электрик должен знать:  Современные клеммы для соединения проводов

B. Неприемлемо, так как при этом становится заметным мигание ламп накаливания.

C. Ведет к увеличению потерь в проводах.

D. Ведет к перегреву проводов.

3.Повышение частот синусоидального тока для электроэнергетических установок 50 Гц нежелательно:

A. Т. к. при этом становится заметным мигание ламп накаливания.

B. Из-за особенностей работы электроэнергетических установок.

D. Т. к. за счет увеличения ЭДС самоиндукции ухудшается режим передачи энергии по проводам.

E. Ведет к перегреву проводов.

4.Основная единица магнитного потока в системе СИ:

C. Вебер.

5.Потокосцепление магнитного потока со всеми витками катушки:

B. .

D. .

7.ЭДС самоиндукции в катушке зависит:

A. От активного сопротивления катушки.

B. От частоты протекающего через нее тока.

D. От температуры окружающей среды.

E. От направления тока.

8.Энергия магнитного поля катушки:

B. .

9.Какое из утверждений для напряжения между выводами катушки неверно:

D. .

10.Индуктивный элемент обладает свойством:

A.Преобразовывать энергию электрического тока в тепловую.

B.Накапливать энергию в виде энергии электрического поля.

C.Накапливать энергию в виде энергии магнитного поля.

E.Не пропускать через себя постоянный ток.

11.Единица измерения электрической емкости в системе СИ:

E.Фарад.

12.При введение в зазор между пластинами конденсатора диэлектрика емкость конденсатора:

C.Увеличится.

D.Станет равной нулю.

E.В зависимости от вида диэлектрика либо увеличится, либо уменьшится.

13.Емкость плоского конденсатора:

B. .

14.Энергия электрического поля конденсатора W:

A. .

15.Ток в линейном емкостном элементе определяется:

B. .

16.Среднее значение синусоидального тока:

A.Определяется за период и равно .

B.Определяется за полупериод и равно .

C.При всех условиях равно нулю.

17.Действующее значение синусоидального тока:

E. .

18.На электрическом приборе указано «220 В, 6 А». Это:

A.Амплитудные значения тока и напряжения.

B.Среднее значения тока и напряжения.

C.Действующие значения тока и напряжения.

D.Действующее значение напряжения и амплитудное – тока.

E.Среднее значение напряжения и действующее – тока.

19.При расчете цепи синусоидального тока удобнее использовать напряжение и токи, представленные в виде:

D.Комплексных чисел.

20.Синусоидальный ток, записан в виде тригонометрической функции . Соответствующее ему комплексное значение тока :

C. .

21.Активное сопротивление в цепи синусоидального тока:

Связь действующего и амплитудного напряжения. Действующие значения силы тока и напряжения

Силу переменного тока (напряжения) можно охарактеризовать при помощи амплитуды. Однако амплитудное значение тока непросто измерить экспериментально. Силу переменного тока удобно связать с каким-либо действием, производимым током, не зависящим от его направления. Таковым является, например, тепловое действие тока. Поворот стрелки амперметра, измеряющего переменный ток, вызывается удлинением нити, которая нагревается при прохождении по ней тока.

Действующим илиэффективным значением переменного тока (напряжения) называется такое значение постоянного тока, при котором на активном сопротивлении выделяется за период такое же количество теплоты, как и при переменном токе.

Свяжем эффективное значение тока с его амплитудным значением. Для этого рассчитаем количество теплоты, выделяемое на активном сопротивлении переменным током за время, равное периоду колебаний. Напомним, что по закону Джоуля-Ленца количество теплоты, выделяющееся на участке цепи cсопротивлениемприпостоянном токе за время , определяется по формуле

. Переменный ток можно считать постоянным только в течение очень малых промежутков времени

. Поделим период колебаний на очень большое число малых промежутков времени

, выделяемое на сопротивлении за время

. Общее количество теплоты, выделяемое за период, найдется суммированием теплот, выделяемых за отдельные малые промежутки времени, или, другими словами, интегрированием:

Сила тока в цепи изменяется по синусоидальному закону

Опуская вычисления, связанные с интегрированием, запишем окончательный результат

Если бы по цепи шёл некоторый постоянный ток , то за время, равное , выделилось бы тепло

. По определению постоянный ток , оказывающий такое же тепловое действие, что и переменный, будет равен эффективному значению переменного тока

. Находим эффективное значение силы тока, приравнивая теплоты, выделяемые за период, в случаях постоянного и переменного токов

Очевидно, точно такое же соотношение связывает эффективное и амплитудное значения напряжения в цепи с синусоидальным переменным током:

Например, стандартное напряжение в сети 220 В – это эффективное напряжение. По формуле (4.29) легко посчитать, что амплитудное значение напряжения в этом случае будет равно 311 В.

4.4.5. Мощность в цепи переменного тока

Пусть на некотором участке цепи с переменным током сдвиг фаз между током и напряжением равен , т.е. сила тока и напряжение изменяются по законам:

Тогда мгновенное значение мощности, выделяемой на участке цепи,

Мощность изменяется со временем. Поэтому можно говорить лишь о ее среднем значении. Определим среднюю мощность, выделяемую в течение достаточно длительного промежутка времени (во много раз превосходящего период колебаний):

С использованием известной тригонометрической формулы

усреднять не нужно, так как она не зависит от времени, следовательно:

За длительное время значение косинуса много раз успевает измениться, принимая как отрицательные, так и положительные значения в пределах от (1) до 1. Понятно, что среднее во времени значение косинуса равно нулю

Выражая амплитуды тока и напряжения через их эффективные значения по формулам (4.28) и (4.29), получим

Мощность, выделяемая на участке цепи с переменным током, зависит от эффективных значений тока и напряжения и сдвига фаз между током и напряжением . Например, если участок цепи состоит из одного только активного сопротивления, то

. Если участок цепи содержит только индуктивность или только ёмкость, то

Объяснить среднее нулевое значение мощности, выделяемой на индуктивности и ёмкости можно следующим образом. Индуктивность и ёмкость лишь заимствуют энергию у генератора, а затем возвращают её обратно. Конденсатор заряжается, а затем разряжается. Сила тока в катушке увеличивается, затем снова спадает до нуля и т. д. Именно по той причине, что на индуктивном и ёмкостном сопротивлениях средняя расходуемая генератором энергия равна нулю, их назвали реактивными. На активном же сопротивлении средняя мощность отлична от нуля. Другими словами провод с сопротивлением при протекании по нему тока нагревается. И энергия, выделяемая в виде тепла, назад в генератор уже не возвращается.

Если участок цепи содержит несколько элементов, то сдвига фаз может быть иным. Например, в случае участка цепи, изображенного на рис. 4.5, сдвиг фаз между током и напряжением определяется по формуле (4.27).

Пример 4.7. К генератору переменного синусоидального тока подключён резистор с сопротивлением . Во сколько раз изменится средняя мощность, расходуемая генератором, если к резистору подключить катушку с индуктивным сопротивлением

а) последовательно, б) параллельно (рис. 4.10)? Активным сопротивлением катушки пренебречь.

Решение. Когда к генератору подключено одно только активное сопротивление , расходуемая мощность

Рассмотрим цепь на рис. 4.10, а. В примере 4.6 было определено амплитудное значение силы тока генератора:

. Из векторной диаграммы на рис. 4.11,а определяем сдвиг фаз между током и напряжением генератора

В результате средняя расходуемая генератором мощность

Ответ: при последовательном включении в цепь индуктивности средняя мощность, расходуемая генератором, уменьшится в 2 раза.

Рассмотрим цепь на рис. 4.10,б. В примере 4.6 было определено амплитудное значение силы тока генератора

. Из векторной диаграммы на рис. 4.11,б определяем сдвиг фаз между током и напряжением генератора

Тогда средняя мощность, расходуемая генератором

Ответ: при параллельном включении индуктивности средняя мощность, расходуемая генератором, не изменяется.

Как известно, переменная э.д.с. индукции вызывает в цепи переменный ток. При наибольшем значении э.д.с. сила тока будет иметь максимальное значение и наоборот. Это явление называется совпадением по фазе. Несмотря на то что значения силы тока могут колебаться от нуля и до определенного максимального значения, имеются приборы, с помощью которых можно замерить силу переменного тока.

Характеристикой переменного тока могут быть действия, которые не зависят от направления тока и могут быть такими же, как и при постоянном токе. К таким действиям можно отнести тепловое. К примеру, переменный ток протекает через проводник с заданным сопротивлением. Через определенный промежуток времени в этом проводнике выделится какое-то количество тепла. Можно подобрать такое значение силы постоянного тока, чтобы на этом же проводнике за то же время выделялось этим током такое же количество тепла, что и при переменном токе. Такое значение постоянного тока называется действующим значением силы переменного тока.

В данное время в мировой промышленной практике широко распространен трехфазный переменный ток , который имеет множество преимуществ перед однофазным током. Трехфазной называют такую систему, которая имеет три электрические цепи со своими переменными э.д.с. с одинаковыми амплитудами и частотой, но сдвинутые по фазе относительно друг друга на 120° или на 1/3 периода. Каждая такая цепь называется фазой.

Для получения трехфазной системы нужно взять три одинаковых генератора переменного однофазного тока, соединить их роторы между собой, чтобы они не меняли свое положение при вращении. Статорные обмотки этих генераторов должны быть повернуты относительно друг друга на 120° в сторону вращения ротора. Пример такой системы показан на рис. 3.4.б.

Согласно вышеперечисленным условиям, выясняется, что э.д.с., возникающая во втором генераторе, не будет успевать измениться, по сравнению с э.д.с. первого генератора, т. е. она будет опаздывать на 120°. Э.д.с. третьего генератора также будет опаздывать по отношению ко второму на 120°.

Однако такой способ получения переменного трехфазного тока весьма громоздкий и экономически невыгодный. Чтобы упростить задачу, нужно все статорные обмотки генераторов совместить в одном корпусе. Такой генератор получил название генератор трехфазного тока (рис. 3.4.а). Когда ротор начинает вращаться, в каждой обмотке возникает

Рис. 3.4. Пример трехфазной системы переменного тока

а) генератор трёхфазного тока; б) с тремя генераторами;

изменяющаяся э.д.с. индукции. Из-за того что происходит сдвиг обмоток в пространстве, фазы колебаний в них также сдвигаются относительно друг друга на 120°.

Для того чтобы подсоединить трехфазный генератор переменного тока к цепи, нужно иметь 6 проводов. Для уменьшения количества проводов обмотки генератора и приемников нужно соединить между собой, образовав трехфазную систему. Данных соединений два: звезда и треугольник. При использовании и того и другого способа можно сэкономить электропроводку.

Обычно генератор трехфазного тока изображают в виде 3 статорных обмоток, которые располагаются друг к другу под углом 120°. Начала обмоток принято обозначать буквами А, В, С , а концы — X, Y, Z . В случае, когда концы статорных обмоток соединены в одну общую точку (нулевая точка генератора), способ соединения называется «звезда». В этом случае к началам обмоток присоединяются провода, называемые линейными (рис. 3.5 слева).

Точно так же можно соединять и приемники (рис. 3.5., справа). В этом случае провод, который соединяет нулевую точку генератора и приемников, называется нулевой. Данная система трехфазного тока имеет два разных напряжения: между линейным и нулевым проводами или, что то же самое, между началом и концом любой обмотки статора. Такая величина называется фазным напряжением ( ). Поскольку цепь трехфазная, то линейное напряжение будет в v3 раз больше фазного, т. е.: Uл = v3Uф.

Рисунок 3.6. Пример соединения треугольником

При использовании данного способа соединения конец X первой обмотки генератора подключают к началу В второй его обмотки, конец Y второй обмотки — к началу С третьей обмотки, конец Z третьей обмотки — к началу А первой обмотки. Пример соединения показан на рис. 3.6. При данном способе соединения фазных обмоток и подключении трехфазного генератора к трехпроводной линии линейное напряжение по своему значению сравнивается с фазным: Uф = Uл

1. Перечислите основные параметры, характеризующие переменный ток.

2. Дайте определение частоты и единицы её измерения.

3. Дайте определение амплитуды и единицы её измерения.

4. Дайте определение периода и единицы его измерения.

5. Отличие простейшего генератора трёхфазного тока от генератора однофазного тока.

6. Что такое фаза?

7. Что представляет собой ротор генератора трёхфазного тока?

8. Почему сдвинуты по фазе обмотки статора генератора трёхфазного тока?

9. Особенность симметричной системы трёх фаз.

10. Принцип соединения фазных обмоток трёхфазных генераторов и трансформаторов по схеме «звезда».

11. Принцип соединения фазных обмоток трёхфазных генераторов и трансформаторов по схеме «треугольник».

3.2. Виды сопротивлений в цепях переменного тока

В цепях переменного тока сопротивления разделяют на активные и реактивные.

В активных сопротивлениях , включенных в цепь переменного тока, электрическая энергия преобразуется в тепловую. Активным сопротивлением R обладают, например, провода электрических линий, обмотки электрических машин и т.д.

В реактивных сопротивлениях электрическая энергия, вырабатываемая источником, не расходуется. При включении реактивного сопротивления в цепь переменного тока возникает лишь обмен энергией между ним и источником электрической энергии. Реактивное сопротивление создают индуктивности и ёмкости.

Если не учитывать взаимное влияние отдельных элементов электрической цепи, то в общем случае электрическая цепь синусоидального тока может быть представлена тремя пассивными элементами: активным сопротивлением R, индуктивностью L и емкостью C.

Активное сопротивление в цепи переменного тока .

При включении в цепь переменного тока активного сопротивления, ток и напряжение совпадают по фазе (рис. 3.7) и изменяются по одному и тому же cинусоидальному закону: u=U m sinωt . Они одновременно достигают своих максимальных значений и одновременно проходят через нуль (рис. 3.7.б).

Для цепи переменного тока, содержащей только активное сопротивление, закон Ома имеет такую же форму, как и для цепи постоянного тока: I=U/R.

Электрическая мощность р в цепи с активным сопротивлением в любой момент времени равна произведению мгновенных значений силы тока i и напряжения u : p=ui .

Рисунок 3.7. Схема включения в цепь переменного тока активного сопротивления R (a), кривые тока i , напряжения u и мощности p (б) и векторная диаграмма.

Из графика видно, что изменение мощности происходит с двойной частотой по отношению к изменению тока и напряжения, т.е. один период изменения мощности соответствует половине периода изменения тока и напряжения. Все значения мощности положительные, это означает, что энергия передается от источника к потребителю.

Средняя мощность Рcp , потребляемая активным сопротивлением, P=UI=I 2 R – это и есть активная мощность.

Под индуктивностью L будем понимать элемент электрической цепи (катушку индуктивности, потерями которой можно пренебречь), способный запасать энергию в своём магнитном поле, который не имеет активного сопротивления и ёмкостиС (рис.3.8).

При включении в цепь переменного тока индуктивности, изменяющийся ток непрерывно индуцирует в ней э.д.с. самоиндукции e L = LΔi/Δt, где Δi/Δt – скорость изменения тока.

Когда угол ωt равен 90° и 270° скорость изменения тока Δi/Δt =0, поэтому э.д.с. e L =0.

Скорость изменения тока будет наибольшей, когда угол ωt равен 0°, 180° и 360°. В эти минуты времени э.д.с. имеет наибольшее значение.

Кривая мощности представляет собой синусоиду, которая изменяется с двойной частотой по сравнению с частотой изменения тока и напряжения. Мощность имеет положительные и отрицательные значения, т.е. возникает непрерывный колебательный процесс обмена энергией между источником и индуктивностью.

Рисунок 3.8. Схема включения в цепь переменного тока индуктивности (а), кривые тока i , напряжения u , э.д.с. e L (б) и векторная диаграмма (в)

Э.д.с. самоиндукции согласно правилу Ленца направлена так, чтобы препятствовать изменению тока. В первую четверть периода, когда ток увеличивается, э.д.с. имеет отрицательное значение (направлена против тока).

Во вторую четверть периода, когда ток уменьшается, э.д.с. имеет положительное значение (совпадает по направлению с током).

В третью четверть периода ток меняет своё направление и увеличивается, поэтому э.д.с. направлена против тока и имеет положительное значение.

В четвёртую четверть периода ток уменьшается и э.д.с. самоиндукции стремится поддержать прежнее положение тока и имеет отрицательное значение. В результате ток отстает от напряжения по фазе на угол 90 О.

Сопротивление катушки или проводника переменному току, вызванное действием э.д.с. самоиндукции, называется индуктивным сопротивлением Х L [Ом]. Индуктивное сопротивление не зависит от материала катушки и от площади поперечного сечения проводника.

В цепях переменного тока катушки индуктивности соединяют последовательно и параллельно.

При последовательном соединении катушек эквивалентная индуктивность и эквивалентное индуктивное сопротивление X L э будут равны:

Lэ=L 1 +L 2 +… X L э=X L 1 +X L 2 +…

1/Lэ=1/L 1 +1/L 2 +… 1/X L э=1/X L 1 +1/X L 2 +…

1. Какие виды сопротивления в цепях переменного тока Вы знаете?

2. Что значит активное сопротивление?

3. Что такое реактивное сопротивление?

4. Какие элементы цепи создают реактивное сопротивление?

5. Что такое активная мощность?

1. Дайте определение индуктивности.

2. Что происходит в первую четверть периода колебательного процесса обмена энергией между источником и индуктивностью?

3. Что происходит во вторую четверть периода колебательного процесса обмена энергией между источником и индуктивностью?

4. Дайте определение индуктивного сопротивления.

3.3. Конденсаторы. Ёмкость в цепи переменного тока

Конденсатор – устройство, способное накапливать электрические заряды.

Простейший конденсатор представляет собой две металлические пластины (электроды), разделенные диэлектриком.

Каждый конденсатор характеризуется номинальной емкостью и допустимым напряжением. Напряжение конденсатора указывают на корпусе, и превышать его нельзя. Конденсаторы различаются формой электродов (плоский), типом диэлектрика и ёмкостью (постоянной и переменной).

Действующим значением силы тока I называется сила постоянного тока, выделяющего в проводнике за то же время такое же количество теплоты, что и переменный ток.

Как видно из рисунка, в каждый момент времени величины напряжения и силы тока принимают различные значения. Поэтому, чтобы судить о величине силы тока и напряжения переменного тока, пользуются действующим значением силы тока и напряжения. Чтобы определить действующее значение силы переменного тока, его приравнивают к силе постоянного тока, которое выделило бы в проводнике такое же количество тепла, как и переменный ток.

Трансформатор, содержащий в первичной обмотке 300 витков, включен в сеть переменного тока с действующим напряжением 220 В. Вторичная цепь трансформатора питает нагрузку с активным сопротивлением 50 Ом. Найти действующее значение силы тока во вторичной цепи, если падение напряжения во вторичной обмотке трансформатора, содержащей 165 витков, равно 50 В.

Таким образом, при замене операции извлечения корня сравнением время, за которое интегрируемый сигнал с ГЛИН станет равен интегралу от квадрата измеренной силы тока, пропорционально действующему значению силы тока. До этого К2 был открыт в течение времени т и пропускал на счетчик СИ импульсы с генератора тактовых импульсов ГТИ. Число импульсов TV / гтит записанное в СЧ, пропорционально действующему значению силы тока. Это число хранится в / 77, а по окончании цикла измерения отображается на ЦИ.

Как и при механических колебаниях, в случае электрических колебаний обычно нас не интересуют значения силы тока, напряжения и других величин в каждый момент времени. Важны общие характеристики колебаний, такие, как амплитуда, период, частота, действующие значения силы тока и напряжения и средняя мощность. Именно действующие значения силы тока и напряжения регистрируют амперметры и вольтметры переменного тока.

Рх o jjFr В слУчае т — н — СУХОЙ лампы применяют способ термометра, подвешиваемого вблизи генераторной лампы, и отмечают его показание. Затем, разрывая цепь колебательного контура генератора, дают на сетку генераторной лампы положительный потенциал до тех пор, пока термометр не по. Беря в последнем случае величины 1а и Еа как исходные, определяем Рх из соотношения Рх1а Еа. Мощность в антенне определяется по ф-ле Рх — / /, где РЯ — мощность eW, ra — активное сопротивление антенны в Q и 1а — действующее значение силы тока в антенне в А. По скольку по современным международным нормам под мощностью передатчика принято понимать мощность в антенне, то упомянутая выше ф-ла определяет одновременно и мощность передатчика.

Тепловые измерители имеют наиболее широкое практич. Действие тепловых измерителей состоит в удлинении тонкой проволоки при нагревании ее проходящим по ней переменным током высокой частоты. Сам по себе эффект ограничивает пределы применимости таких измерителей токами от нескольких тА до 1 — 3 А в зависимости от материала тонкой проволоки, примененной в измерителе. Применяются сплавы серебра с платиной, платины с иридием и др. Если сплав применяется в виде проволоки, то она имеет диаметр сотых долей мм. При ленте толщина составляет 0 01 мм, ширина 3 мм и длина 25 — 30 мм. Удлинение нити нагреваемым током пропорционально квадрату действующего значения силы тока. Перемещение по шкале измерителя стрелки, связанной с той же проволокой с помощью особой подвижной системы, обычно пропорционально квадратному корню из действующей силы тока. Из-за этого шкалы тепловых измерителей имеют неравномерные интервалы между делениями.

Каждый электрик должен знать:  Электропроводка определения, классификация. Основные составляющие

В данном случае колебания тока являются гармоническими (график колебаний — синусоида) и вынужденными, поскольку параметры колебаний (частота, амплитуда) определяются внешним источником — генератором. Некоторые электротехнические устройства (например, колебательный контур) способны генерировать свободные гармонические колебания электрического тока. По левой ветви рамки — от нас и, поскольку в этом случае через клемму а течет ток в направлении, обратном показанному на рис. 12.1, ее полярность — минус. Поскольку при данном положении рамки сила тока имеет наибольшее значение, фаза колебаний может быть г / 2 или 3 / 2ir, в зависимости от того, какое направление тока в рамке мы принимаем за положительное. Сравнивая формулу (12.1) и заданную зависимость, нетрудно заметить, что 1т 10 А и ш 4тград / с. Далее, используя формулу (12.2), определяем частоту колебаний (отв. Используя закон Джоуля — Ленца (Q I2Rt), определяем действующее значение силы тока (отв.

Действительное значение тока. Действующее значение напряжения

>> Активное сопротивление. Действующие значения силы тока и напряжения

§ 32 АКТИВНОЕ СОПРОТИВЛЕНИЕ. ДЕЙСТВУЮЩИЕ ЗНАЧЕНИЯ СИЛЫ ТОКА И НАПРЯЖЕНИЯ

Перейдем к более детальному рассмотрению процессов, которые происходят в цепи, подключенной к источнику переменного напряжения.

Сила тока в цени с резистором. Пусть цепь состоит из соединительных проводов и нагрузки с малой индуктивностью и большим сопротивлением R (рис. 4.10). Эту величину, которую мы до сих пор называли электрическим сопротивлением или просто сопротивлением, теперь будем называть активным сопротивлением.

В проводнике с активным сопротивлением колебания силы тока совпадают по фазе с колебаниями напряже ния (рис. 4.11), а амплитуда силы тока определяется равенством

Мощность в цепи с резистором. В цепи переменного тока промышленной частоты (v = 50 Гц) сила тока и напряжение изменяются сравнительно быстро. Поэтому при прохождении тока по проводнику, например по нити электрической лампочки, количество выделенной энергии также будет быстро меняться со временем. Но этих быстрых изменений мы не замечаем.

Как правило, нам нужно бывает знать среднюю мощ ностъ тока на участке цепи за большой промежуток времени, включающий много периодов. Для этого достаточно найчи среднюю мощность за один период. Под средней за период, мощностью переменного тока понимают отношение суммарной энергии , поступающей в цепь за период, к периоду.

Мощность в цепи постоянного тока на участке с сопротивлением R определяется формулой

На протяжении очень малого интервала времени переменный ток можно считать практически постоянным.

Поэтому мгновенная моoность в цепи переменного тока на участке, имеющем активное сопротивление R, определяется формулой

Найдем среднее значение мощности за период. Для этого сначала преобразуем формулу (4.19), подставляя в нее выражение (4.16) для силы тока и используя известное из математики соотношение

График зависимости мгновенной мощности от времени изображен на рисунке 4.12, а. Согласно графику (рис. 4.12, б.), на протяжении одной восьмой периода, когда , мощность в любой момент времени больше, чем . Зато на протяжении следующей восьмой части периода, когда cos 2t R при протекании через него синусоидального тока амплитудой I m в течении периода T период . Теперь, чтобы найти чему в данном случае равен действующий ток нам надо исходить из того, что на том же самом резисторе R за то же самое время T период выделится то же самое количество энергии Q. Поэтому мы можем записать

Если не совсем понятно, откуда здесь взялась левая часть, рекомендую вам повторить статью про закон Джоуля-Ленца . А мы тем временем выразим действующее значение тока I действ . из этого выражения, предварительно сократив все, что можно

Вот такой вот результат, господа. Действующее значение переменного синусоидального тока в корень из двух раз меньше его амплитудного значения. Хорошо запомните этот результат, это важный вывод.

Вообще говоря никто не мешает по аналогии с током ввести действующее значение напряжения . При этом у нас зависимость мощности от времени примет вот такой вид

Именно его мы будем подставлять под интеграл и выполнять все преобразования. Господа, каждый из вас может на досуге при желании это проделать, я же просто приведу конечный результат, поскольку он полностью аналогичен случаю с током. Итак, действующее значение напряжения синусоидального тока равно

Как видим, аналогия полнейшая. Действующее значения напряжения точно также в корень из двух раз меньше амплитуды.

Подобным образом можно рассчитать действующее значение тока и напряжения для сигнала абсолютно любой формы: надо только лишь записать закон изменения мощности для этого сигнала и выполнить пошагово все вышеописанные преобразования.

Все вы, наверняка, слышали, что у нас в розетках напряжение 220 В. А каких вольт? У нас ведь теперь есть два термина — амплитудное и действующее значение. Так вот, оказывается, что 220 В в розетках — это действующее значение! Вольтметры и амперметры , включаемые в цепи переменного тока показывают именно действующие значения. А форму сигнала вообще и его амплитуду в частности можно посмотреть с помощью осциллографа. Ну, мы же уже говорили, что всем интересны деньги, то бишь работа тока, а не какая-то там непонятная амплитуда. Тем не менее давайте-ка все-таки определим, чему равна амплитуда напряжения в наших с вами сетях. Пользуясь только что написанной формулой, можно записать

Вот так вот, господа. В розетках у нас, оказывается, синус с амплитудой аж 311 В, а не 220, как можно было подумать сначала. Что бы убрать все сомнения представлю вам картинку, как выглядит закон изменения напряжения в наших розетках (помним, что частота сети равна 50 Гц или, что тоже самое, период равен 20 мс). Этот закон представлен на рисунке 1.

Рисунок 1 — Закон изменения напряжения в розетках

И специально для вас, господа, я посмотрел напряжение в розетке с помощью осциллографа. Смотрел я его через делитель напряжения 1:5. То есть форма сигнала полностью сохранится, а амплитуда сигнала на экране осциллографа будет в пять раз меньше, чем на самом деле в розетке. Зачем я так сделал? Да просто потому, что из-за большого размаха входного напряжения картинка целиком не влезает на экран осциллографа.

ВНИМАНИЕ! Если у вас нет достаточного опыта работы с высоким напряжением, если вы абсолютно четко не представляете себе как могут течь токи при измерениях в гальванически не отвязанных от сети цепях, настоятельно не рекомендую проводить подобный эксперимент самостоятельно, это опасно! Дело в том, что при подобных измерениях с помощью осциллографа, подключенного к розетке с заземлением есть очень большой шанс что произойдет короткое замыкание через внутренние земли осциллографа и прибор сгорит без возможности восстановления! А если делать эти измерения с помощью осциллографа, подключенного к розетке без заземления , на его корпусе, кабелях и разъемах может присутствовать смертельно опасный потенциал! Это не шутки, господа, если нет понимания, почему это так, лучше этого не делать, тем более, что осциллограммы уже сняты и вы можете их наблюдать на рисунке 2.

Рисунок 2 — Осциллограмма напряжения в розетке (делитель 1:5)

На рисунке 2 мы видим, что амплитуда синуса составляет около 62 вольт, а частота — ровно 50 Гц. Помня, что мы смотрим через делитель напряжения, который делит входное напряжение на 5, мы можем рассчитать реальную величину напряжения в розетке, она равна

Как мы видим, результат измерения очень близок к теоретическому, не смотря на погрешность измерения осциллографа и неидеальность резисторов делителя напряжения. Это свидетельствует о том, что все наши расчеты верны.

На этом на сегодня все, господа. Сегодня мы узнали, что такое действующий ток и действующее напряжение, научились их рассчитывать и проверили результаты расчетов на практике. Спасибо что прочитали это и до новых статей!

Вступайте в нашу

Действующие значения силы тока и напряжения

Как известно, переменная э.д.с. индукции вызывает в цепи переменный ток. При наибольшем значении э.д.с. сила тока будет иметь максимальное значение и наоборот. Это явление называется совпадением по фазе. Несмотря на то что значения силы тока могут колебаться от нуля и до определенного максимального значения, имеются приборы, с помощью которых можно замерить силу переменного тока.

Характеристикой переменного тока могут быть действия, которые не зависят от направления тока и могут быть такими же, как и при постоянном токе. К таким действиям можно отнести тепловое. К примеру, переменный ток протекает через проводник с заданным сопротивлением. Через определенный промежуток времени в этом проводнике выделится какое-то количество тепла. Можно подобрать такое значение силы постоянного тока, чтобы на этом же проводнике за то же время выделялось этим током такое же количество тепла, что и при переменном токе. Такое значение постоянного тока называется действующим значением силы переменного тока.

В данное время в мировой промышленной практике широко распространен трехфазный переменный ток , который имеет множество преимуществ перед однофазным током. Трехфазной называют такую систему, которая имеет три электрические цепи со своими переменными э.д.с. с одинаковыми амплитудами и частотой, но сдвинутые по фазе относительно друг друга на 120° или на 1/3 периода. Каждая такая цепь называется фазой.

Для получения трехфазной системы нужно взять три одинаковых генератора переменного однофазного тока, соединить их роторы между собой, чтобы они не меняли свое положение при вращении. Статорные обмотки этих генераторов должны быть повернуты относительно друг друга на 120° в сторону вращения ротора. Пример такой системы показан на рис. 3.4.б.

Согласно вышеперечисленным условиям, выясняется, что э.д.с., возникающая во втором генераторе, не будет успевать измениться, по сравнению с э.д.с. первого генератора, т. е. она будет опаздывать на 120°. Э.д.с. третьего генератора также будет опаздывать по отношению ко второму на 120°.

Однако такой способ получения переменного трехфазного тока весьма громоздкий и экономически невыгодный. Чтобы упростить задачу, нужно все статорные обмотки генераторов совместить в одном корпусе. Такой генератор получил название генератор трехфазного тока (рис. 3.4.а). Когда ротор начинает вращаться, в каждой обмотке возникает

Рис. 3.4. Пример трехфазной системы переменного тока

а) генератор трёхфазного тока; б) с тремя генераторами;

изменяющаяся э.д.с. индукции. Из-за того что происходит сдвиг обмоток в пространстве, фазы колебаний в них также сдвигаются относительно друг друга на 120°.

Для того чтобы подсоединить трехфазный генератор переменного тока к цепи, нужно иметь 6 проводов. Для уменьшения количества проводов обмотки генератора и приемников нужно соединить между собой, образовав трехфазную систему. Данных соединений два: звезда и треугольник. При использовании и того и другого способа можно сэкономить электропроводку.

Обычно генератор трехфазного тока изображают в виде 3 статорных обмоток, которые располагаются друг к другу под углом 120°. Начала обмоток принято обозначать буквами А, В, С , а концы — X, Y, Z . В случае, когда концы статорных обмоток соединены в одну общую точку (нулевая точка генератора), способ соединения называется «звезда». В этом случае к началам обмоток присоединяются провода, называемые линейными (рис. 3.5 слева).

Точно так же можно соединять и приемники (рис. 3.5., справа). В этом случае провод, который соединяет нулевую точку генератора и приемников, называется нулевой. Данная система трехфазного тока имеет два разных напряжения: между линейным и нулевым проводами или, что то же самое, между началом и концом любой обмотки статора. Такая величина называется фазным напряжением ( ). Поскольку цепь трехфазная, то линейное напряжение будет в v3 раз больше фазного, т. е.: Uл = v3Uф.

Силу переменного тока (напряжения) можно охарактеризовать при помощи амплитуды. Однако амплитудное значение тока непросто измерить экспериментально. Силу переменного тока удобно связать с каким-либо действием, производимым током, не зависящим от его направления. Таковым является, например, тепловое действие тока. Поворот стрелки амперметра, измеряющего переменный ток, вызывается удлинением нити, которая нагревается при прохождении по ней тока.

Действующим илиэффективным значением переменного тока (напряжения) называется такое значение постоянного тока, при котором на активном сопротивлении выделяется за период такое же количество теплоты, как и при переменном токе.

Свяжем эффективное значение тока с его амплитудным значением. Для этого рассчитаем количество теплоты, выделяемое на активном сопротивлении переменным током за время, равное периоду колебаний. Напомним, что по закону Джоуля-Ленца количество теплоты, выделяющееся на участке цепи cсопротивлениемприпостоянном токе за время , определяется по формуле
. Переменный ток можно считать постоянным только в течение очень малых промежутков времени
. Поделим период колебаний на очень большое число малых промежутков времени
. Количество теплоты
, выделяемое на сопротивлении за время
:
. Общее количество теплоты, выделяемое за период, найдется суммированием теплот, выделяемых за отдельные малые промежутки времени, или, другими словами, интегрированием:

Сила тока в цепи изменяется по синусоидальному закону

Опуская вычисления, связанные с интегрированием, запишем окончательный результат

Если бы по цепи шёл некоторый постоянный ток , то за время, равное , выделилось бы тепло
. По определению постоянный ток , оказывающий такое же тепловое действие, что и переменный, будет равен эффективному значению переменного тока
. Находим эффективное значение силы тока, приравнивая теплоты, выделяемые за период, в случаях постоянного и переменного токов

Очевидно, точно такое же соотношение связывает эффективное и амплитудное значения напряжения в цепи с синусоидальным переменным током:

Например, стандартное напряжение в сети 220 В – это эффективное напряжение. По формуле (4.29) легко посчитать, что амплитудное значение напряжения в этом случае будет равно 311 В.

4.4.5. Мощность в цепи переменного тока

Пусть на некотором участке цепи с переменным током сдвиг фаз между током и напряжением равен , т.е. сила тока и напряжение изменяются по законам:

Тогда мгновенное значение мощности, выделяемой на участке цепи,

Мощность изменяется со временем. Поэтому можно говорить лишь о ее среднем значении. Определим среднюю мощность, выделяемую в течение достаточно длительного промежутка времени (во много раз превосходящего период колебаний):

С использованием известной тригонометрической формулы

Величину
усреднять не нужно, так как она не зависит от времени, следовательно:

За длительное время значение косинуса много раз успевает измениться, принимая как отрицательные, так и положительные значения в пределах от (1) до 1. Понятно, что среднее во времени значение косинуса равно нулю

Выражая амплитуды тока и напряжения через их эффективные значения по формулам (4.28) и (4.29), получим

Мощность, выделяемая на участке цепи с переменным током, зависит от эффективных значений тока и напряжения и сдвига фаз между током и напряжением . Например, если участок цепи состоит из одного только активного сопротивления, то
и
. Если участок цепи содержит только индуктивность или только ёмкость, то
и
.

Объяснить среднее нулевое значение мощности, выделяемой на индуктивности и ёмкости можно следующим образом. Индуктивность и ёмкость лишь заимствуют энергию у генератора, а затем возвращают её обратно. Конденсатор заряжается, а затем разряжается. Сила тока в катушке увеличивается, затем снова спадает до нуля и т. д. Именно по той причине, что на индуктивном и ёмкостном сопротивлениях средняя расходуемая генератором энергия равна нулю, их назвали реактивными. На активном же сопротивлении средняя мощность отлична от нуля. Другими словами провод с сопротивлением при протекании по нему тока нагревается. И энергия, выделяемая в виде тепла, назад в генератор уже не возвращается.

Если участок цепи содержит несколько элементов, то сдвига фаз может быть иным. Например, в случае участка цепи, изображенного на рис. 4.5, сдвиг фаз между током и напряжением определяется по формуле (4.27).

Пример 4.7. К генератору переменного синусоидального тока подключён резистор с сопротивлением . Во сколько раз изменится средняя мощность, расходуемая генератором, если к резистору подключить катушку с индуктивным сопротивлением
а) последовательно, б) параллельно (рис. 4.10)? Активным сопротивлением катушки пренебречь.

Решение. Когда к генератору подключено одно только активное сопротивление , расходуемая мощность

Рассмотрим цепь на рис. 4.10, а. В примере 4.6 было определено амплитудное значение силы тока генератора:
. Из векторной диаграммы на рис. 4.11,а определяем сдвиг фаз между током и напряжением генератора

В результате средняя расходуемая генератором мощность

Ответ: при последовательном включении в цепь индуктивности средняя мощность, расходуемая генератором, уменьшится в 2 раза.

Рассмотрим цепь на рис. 4.10,б. В примере 4.6 было определено амплитудное значение силы тока генератора
. Из векторной диаграммы на рис. 4.11,б определяем сдвиг фаз между током и напряжением генератора

Тогда средняя мощность, расходуемая генератором

Ответ: при параллельном включении индуктивности средняя мощность, расходуемая генератором, не изменяется.

Переменный синусоидальный ток в течение периода имеет различные мгновенные значения. Естественно поставить вопрос, какое же значение тока будет измеряться амперметром, включенным в цепь?

При расчетах цепей переменного тока, а также при электрических измерениях неудобно пользоваться мгновенными или амплитудными значениями токов и напряжений, а их средние значения за период равны нулю. Кроме того, об электрическом эффекте периодически изменяющегося тока (о количестве выделенной теплоты, о совершенной работе и т. д.) нельзя судить по амплитуде этого тока.

Наиболее удобным оказалось введение понятий так называемых действующих значений тока и напряжения . В основу этих понятий положено тепловое (или механическое) действие тока, не зависящее от его направления.

Это значение постоянного тока, при котором за период переменного тока в проводнике выделяется столько же теплоты, сколько и при переменном токе.

Для оценки действия, производимого , мы сравним его действия с тепловым эффектом постоянного тока.

Мощность Р постоянного тока I , проходящего через сопротивление r , будет Р = Р 2 r .

Мощность переменного тока выразится как средний эффект мгновенной мощности I 2 r за целый период или среднее значение от (Im х sinω t ) 2 х r за то же время.

Пусть среднее значение t2 за период будет М. Приравнивая мощность постоянного тока и мощность при переменном токе, имеем: I 2 r = Mr, откуда I = √ M ,

Величина I называется действующим значением переменного тока.

Среднее значение i2 при переменном токе определим следующим образом.

Построим синусоидальную кривую изменения тока. Возведя в квадрат каждое мгновенное значение тока, получим кривую зависимости Р от времени.

Обе половины этой кривой лежат выше горизонтальной оси, так как отрицательные значения тока (-i ) во второй половине периода, будучи возведены в квадрат, дают положительные величины.

Построим прямоугольник с основанием Т и площадью, равной площади, ограниченной кривой i 2 и горизонтальной осью. Высота прямоугольника М будет соответствовать среднему значению Р за период. Это значение за период, вычисленное при помощи высшей математики, будет равно 1/2I 2 m . Следовательно, М = 1/2I 2 m

Так как действующее значение I переменного тока равно I = √ M , то окончательно I = Im / √ 2

Аналогично зависимость между действующим и амплитудным значениями для напряжения U и Е имеет вид:

U = Um / √ 2 E= Em / √ 2

Действующие значения переменных величин обозначаются прописными буквами без индексов (I , U, Е).

На основании сказанного выше можно сказать, что действующее значение переменного тока равно такому постоянному току, который, проходя через то же сопротивление, что и переменный ток, за то же время выделяет такое же количество энергии.

Электроизмерительные приборы (амперметры, вольтметры), включенные в цепь переменного тока, показывают действующие значения тока или напряжения.

При построении векторных диаграмм удобнее откладывать не амплитудные, а действующие значения векторов. Для этого длины векторов уменьшают в √ 2 раз. От этого расположение векторов на диаграмме не изменяется.

Добавить комментарий