Дельта-функция

Дельта-функция

Существуют различные взгляды на понятие дельта-функции. Получающиеся при этом объекты, вообще говоря, различны, однако обладают рядом общих характерных свойств. Все указанные ниже конструкции естественно обобщаются на случаи пространств большей размерности 1)» border=»0″ />.

Интуитивное определение

Дельта-функцию (функция Дирака) одной вещественной переменной можно представлять себе как «функцию» , для которой выполняются следующие равенства:

То есть эта функция не равна нулю только в точке x=0 , где она обращается в бесконечность таким образом, чтобы её интеграл по любой окрестности x=0 был равен 1. В этом смысле понятие дельта-функции аналогично физическим понятиям точечной массы или точечного заряда. Аналогичные условия верны и для дельта-функций, определённых на

Эти равенства не принято считать определением дельта-функции, однако во многих учебниках по физике она определяется именно так, и этого достаточно для решения физических задач. Отметим, что помимо этого неявно предполагается равенство

(фильтрующее свойство) для любой функции f . Оно не следует даже формально из указанного выше тождества, так как, вообще говоря, значение этого интеграла также могло бы включать в себя производные от f . Именно это происходит с производными от дельта-функции, которые также почти всюду равны 0 и обращаются в бесконечность при x=0 .

Каждый электрик должен знать:  Конструкция

Классическое определение

Дельта-функция определяется как линейный непрерывный функционал на некотором функциональном пространстве (пространстве основных функций). В зависимости от цели и желаемых свойств, это может быть пространство функций с компактным носителем, пространство функций, быстро убывающих на бесконечности, гладких функций на многообразии, аналитических функций и т. д. Для того, чтобы были определены производные дельта-функции с хорошими свойствами, во всех случаях основные функции берутся бесконечно дифференцируемыми, пространство основных функций также должно быть полным метрическим пространством. Общий подход к обобщённым функциям см. в соответствующей статье. Такие обобщённые функции также называют распределениями.

Мы рассмотрим самый простой вариант. В качестве пространства основных функций рассмотрим пространство всех бесконечно дифференцируемых функций на отрезке. Последовательность сходится к , если на любом компакте функции сходятся к равномерно вместе со всеми своими производными:

Каждый электрик должен знать:  Выбивает УЗО после замыкания нуля и земли

Это локально выпуклое метризуемое пространство. Дельта-функцию определим как функционал , такой что

Непрерывность означает, что если , то . Здесь — значение функционала на функции . Для удобства это записывают как

Заметим, что при таком подходе интегральная запись есть не больше, чем формальное обозначение, облегчающее восприятие формул.

Дельта-функция по Коломбо

Используемому для работы с дельта-функцией интегральному выражению можно придать смысл, близкий к интуитивному, в рамках теории алгебры обобщённых функций Коломбо [1] .

Пусть — множество бесконечно дифференцируемых функций с компактным носителем, то есть не равных нулю лишь на ограниченном множестве. Рассмотрим множество функций

Обобщённая функция — это класс эквивалентности функций бесконечно дифференцируемых по x при каждом и удовлетворяющих некоторому условию умеренности (полагая и все её производные по x достаточно медленно растут при ). Две функции полагаются эквивалентными, если , где — ещё один класс функций с ограничениями на рост при

Дельта-функция определяется как Преимущество подхода Коломбо в том, что его обобщённые функции образуют коммутативную ассоциативную алгебру, при этом на множество обобщённых функций естественно продолжаются понятия интегрирования, дифференцирования, пределов, даже значения в точке. В этом смысле на дельта-функцию действительно можно смотреть как на функцию, равную 0 везде, кроме точки 0, и равную бесконечности в нуле, так как теория Коломбо включает в себя теорию бесконечно больших и бесконечно малых чисел, аналогично нестандартному анализу.

Каждый электрик должен знать:  Сечение провода для предохранителя на 2 А - как выбрать

Подход Егорова

Аналогичная теория обобщённых функций была изложена в работе Ю. В. Егорова [2] . Хотя она не эквивалентна теории Коломбо, конструкция значительно проще и обладает большинством желаемых свойств.

Обобщённая функция — это класс эквивалентности последовательностей Последовательности и считаются эквивалентными, если для любого компакта функции последовательностей совпадают на начиная с некоторого номера:

N\colon f_k|_\Omega=<\tilde f>_k|_\Omega.» border=»0″ />

Всевозможные операции над последовательностями (умножение, сложение, интегрирование, дифференцирование, композиция, …) определяются покомпонентно. Например, интеграл по множеству I определяется как класс эквивалентности последовательности

Две обобщённые функции слабо равны, если для любой бесконечно гладкой функции

При этом дельта-функция определяется любой дельта-образной последовательностью (см. ниже), все такие обобщённые функции слабо равны.

Добавить комментарий