Формулы и уравнения векторной алгебры

Высшая математика

    Основные определения.

Вектор (геометрический вектор) — это направленный отрезок (отрезок, у которого одна граничная точка считается начальной, другая – конечной).
На чертеже вектор обозначается стрелкой

над буквенным обозначением вектора также ставится стрелка .
Вектор, фигурирующий в определении, носит название связанного, или закрепленного вектора.

  • Закрепленный вектор — это направленный отрезок АВ, началом которого является точка А, а концом — точка В.
    Свободный вектор — это множество всех закрепленных векторов, получающихся из фиксированного закрепленного вектора с помощью параллельного переноса. Обозначается .
    Если же точка приложения вектора (точка A для вектора ) может быть выбрана произвольно, вектор называется свободным.
    Если точка приложения может двигаться по линии действия вектора, говорят о скользящем векторе. Иначе говоря, свободный вектор является представителем бесконечного множества связанных или скользящих векторов.
  • Нулевой вектор — это вектор, у которого начало и конец совпадают:
  • Коллинеарные векторы — это векторы, которые лежат на одной прямой, либо на параллельных прямых.
    Нулевой вектор коллинеарен любому вектору.
  • Три вектора называются компланарными, если они лежат в одной плоскости или в параллельных плоскостях.
    Если тройка векторов содержит нулевой вектор или пару коллинеарных векторов, то эти векторы компланарны.
  • Длина вектора (модуль) — это расстояние между началом и концом вектора. Обозначение: или
  • Два вектора равны, если они коллинеарны, имеют одинаковую длину и направление. Например,
  • Добавить комментарий