Характеристики ЦАП


СОДЕРЖАНИЕ:

Это интересно!

OLED-технология — перспективное решение для систем освещения?

Технология OLED (Organic Light-Emitting Diode — органический светодиод, ОСД) — следующий шаг на пути эволюции твердотельного освещения (Solid State Lighting, SSL), источником которого служат полупроводники, а не нить накала или газ. Твердотельные источники света являются наиболее энергоэффективными, имеют более длительный срок службы и более экологичны. В статье, представляющей собой авторизованный перевод [1, 2], рассматриваются характеристики ОСД и возможности их применения.

Альтернативный источник питания для Hi-Fi-систем

Можно ли просто соединить последовательно два импульсных ИП, чтобы получить симметричный ИП для УМ? В чем «подводные камни» и как повысить качество ИП? На все эти вопросы отвечают инженеры Elektor.

Цифровой USB-термометр BM1707 с мониторингом температуры через интернет

Цифровой термометр ВМ1707 осуществляет измерение температуры и термостатирование с возможностью передачи данных через интернет. Приведены описание и общий вид устройства, электрическая схема и рекомендуемое расположение элементов на печатной плате.

Ссылки

Реклама

По вопросам размещения рекламы обращайтесь в отдел рекламы

Реклама наших партнеров

10 сентября

ЦАП. Так ли все просто?

В статье рассмотрены принцип работы и основные параметры цифро-аналоговых преобразователей. Даны рекомендации по выбору и проектированию ЦАП.

Цифро-аналоговый преобразователь — устройство для перевода цифровых данных в аналоговый сигнал. Это своеобразный мост между аналоговой и цифровой частями схемы. Сфера применения ЦАП очень широка. Это — усилители звука, аудиокодеки, обработка видео, устройства отображения, системы распознавания данных, калибровка датчиков и других измерительных устройств, схемы управления двигателями, системы распределения данных, цифровые потенциометры, программируемое радио (SDR) и т.д.

Принцип работы

Принцип работы ЦАП заключается в суммировании аналоговых сигналов (ток или напряжение). Суммирование производится с коэффициентами, равными нулю или единице в зависимости от значения соответствующего разряда кода. Выходной сигнал ЦАП может иметь форму тока, напряжения или заряда. Преобразователи с токовым выходом используются в основном в прецизионных и высокочастотных схемах. Для определенности мы будем рассматривать ЦАП с выходным напряжением, как наиболее распространенные. Из таблицы 1 видно, что максимальное выходное напряжение на 1 МЗР (младший значащий разряд входного кода) ниже напряжения полной шкалы (ПШ). Некоторые ЦАП позволяют использовать всю шкалу.

Табл. 1. Сигналы четырехразрядного ЦАП (опорное напряжение 5 В)

Выходное
напряжение, В

Характеристики ЦАП

Наиболее важные характеристики ЦАП — это разрядность, шаг квантования (разрешающая способность) и точность преобразования.

Передаточная характеристика (ПХ) — зависимость выходного сигнала ЦАП от входных данных.

Разрядность (N) — количество бит во входном коде.

Разрешение — это выходное напряжение, соответствующее 1 МЗР. Оно зависит от количества разрядов и определяет точность преобразования сигнала.

Частота дискретизации (частота Найквиста) — максимальная частота, на которой ЦАП может работать, выдавая на выходе корректный результат. В соответствии с теоремой Котельникова, для корректного воспроизведения аналогового сигнала из цифровой формы необходимо, чтобы частота дискретизации была не меньше удвоенной максимальной частоты в спектре сигнала.

Полная шкала — диапазон значений выходного сигнала.

Монотонность — участок на ПХ, где наклон постоянен. На этом участке ЦАП линеен.

Время установления — интервал времени от момента изменения входного кода до окончательного вхождения выходного сигнала в заданный диапазон отклонения.

Выходной выброс — это переходный процесс, возникающий во время смены входных данных. Величина выброса зависит от количества переключаемых разрядов.

Погрешность смещения нуля — разность между фактическим и идеальным выходным сигналом, когда на входе ноль.

Погрешность ПШ — разница между фактическим выходным напряжением и напряжением ПШ.

Погрешность усиления — отклонение наклона ПХ от идеального.

Дифференциальная нелинейность — разность приращений выходных сигналов, соответствующих смежным соседним кодам.

Интегральная нелинейность — максимальное отклонение реальной ПХ от прямой линии.

Классификация

Цифро-аналоговые преобразователи делятся по типу входных данных на последовательные и параллельные. По разрядности выделяют ЦАП с повышенной точностью (большая разрядность, N≥14) или с высоким быстродействием (6—8 разрядов). Выходной сигнал может иметь форму напряжения, тока или заряда.

Рассмотрим некоторые структуры ЦАП. Простейшим ЦАП является взвешивающий (делитель Кельвина), структура которого показана на рисунке 1. Каждому биту преобразуемого двоичного кода соответствует резистор или источник тока, подключенный на общую точку суммирования. Сила тока источника (или проводимость резистора) пропорциональна весу бита, которому он соответствует. N-разрядный ЦАП содержит 2N одинаковых последовательно соединенных резистора и 2N ключа (обычно КМОП), по одному между каждым узлом цепи и выходом.

Рис. 1. Структура взвешивающего ЦАП

Взвешивающий метод — один из самых быстрых, однако характеризуется наименьшей точностью. Обычно такой ЦАП имеет выход по напряжению и отличается хорошей монотонностью. Если все резисторы одинаковы, ЦАП линеен. Недостаток данной модели — относительно высокий выходной импеданс и большое количество резисторов и ключей.

ЦАП на матрице R–2R . Это одна из наиболее распространенных структур (см. рис. 2). Здесь используются только две величины сопротивлений, находящихся в отношении 2:1. Количество резисторов равно 2N. Резистивный делитель можно использовать в качестве ЦАП двумя способами, в режиме напряжения и режиме тока (они также известны как нормальный и инверсный режимы). Главное преимущество ЦАП с выходом по напряжению заключается в том, что выходной импеданс постоянен. Второе достоинство — отсутствие емкостных токов в нагрузке. Недостатки данной структуры: во-первых, опорный источник должен иметь очень низкий импеданс; во-вторых, для регулирования усиления нельзя использовать резистор, включенный последовательно с опорным источником. В токовом режиме это допустимо, однако выбросы в токовой схеме больше. С другой стороны, ключи находятся под потенциалом земли, поэтому защита от большого перепада напряжений не требуется.

Рис. 2. ЦАП на R–2R матрице с выходом в форме напряжения

В сигма-дельта ЦАП (см. рис. 3) преобразование осуществляется с помощью сигма-дельта модуляции, когда квантование осуществляется всего одним разрядом, но с частотой, в десятки и сотни раз превышающей частоту Найквиста. Как видно из рисунка 4, сигма-дельта модулятор преобразует входной сигнал в последовательный непрерывный поток нулей и единиц. Если входной сигнал близок к положительному краю полной шкалы, в битовом потоке на выходе больше единиц, чем нулей, и наоборот, если сигнал ближе к отрицательному краю, то больше нулей. Для сигнала, близкого к середине шкалы, количество нулей и единиц примерно одинаково.

Рис. 3. Общая структура сигма-дельта ЦАП
Рис. 4. Принцип работы сигма-дельта модулятора

Интерполяционный фильтр представляет собой цифровую схему, которая принимает данные, поступающие с низкой частотой дискретизации, вставляет нули в поток данных, увеличивая тем самым частоту дискретизации, затем применяет алгоритм интерполяции и выдает данные с высокой частотой дискретизации. Выходное напряжение одноразрядного ЦАП переключается между равными по значению положительным и отрицательным опорными напряжениями. Выход фильтруется аналоговым ФНЧ.

Перемножающий ЦАП работает с различными опорными сигналами, в т.ч. переменного тока. Выходной сигнал пропорционален произведению опорного напряжения на дробный эквивалент цифрового входного числа.

Сегментированные (гибридные) преобразователи . При проектировании конкретного ЦАП может оказаться так, что ни одна из базовых структур не подходит, и придется комбинировать различные структуры для получения ЦАП с высоким разрешением и требуемыми характеристиками.

Подбор ЦАП

Для выбора подходящего ЦАП необходимо определить требования, которым должны соответствовать его параметры. В первую очередь это — разрядность, разрешение, время установления выходного сигнала (быстродействие), интерфейс подключения, напряжение питания и т.д. Обычно при проектировании устройства сначала выбирается его главный элемент — вычислительное ядро (процессор, ПЛИС, МК и т.д.), который определяет интерфейс обмена с остальными элементами схемы. В таблице 2 приведены четыре наиболее распространенных интерфейса для ЦАП.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ЦАП

Разрешающая способность [1] — основная характеристика ЦАП, определяемая числом разрядов N. Обычно ЦАП, преобразующий Л-разрядные двоич-

ные коды, должен оосспсчить 2 различных значении выходного сигнала с разрешающей способностью 1 / (2’^ — 1). Отличие реального значения разрешающей способности от теоретического обусловлено погрешностями узлов и шумами ЦАП. Точность ЦАП определяется значениями абсолютной погрешности, нелинейностью, дифференциальной нелинейностью, нестабильностью опорного источника напряжения, влиянием нагрузки и другими факторами.

Абсолютная погрешность 5ШК — это отклонение значения выходного напряжения (тока) от номинального расчетного, соответствующего конечной точке характеристики преобразования. Эта величина измеряется в единицах младшего значащего разряда (МЗР). Нелинейность 5л характеризует идентичность минимальных приращений выходного сигнала во всем диапазоне преобразования и определяется как наибольшее отклонение выходного сигнала от прямой линии абсолютной точности, проведенной через нуль и точку максимального значения выходного сигнала. Значение нелинейности не должно превышать ±0,5 единицы МЗР, но бывают исключения.

Дифференциальная нелинейность 6Л дИФ характеризует идентичность

соседних приращений сигнала. Ее определяют как минимальную разность погрешности нелинейности двух соседних квантов в выходном сигнале. В идеале значение 6Л дИФ не должно превышать удвоенное значение погрешности нелинейности. Если значение бл дИФ больше единицы МЗР, то преобразователь считается немонотонным, т. е. при равномерном возрастании входного кода на его выходе сигнал растет неравномерно.

Немонотонность — это возможность уменьшения (в отдельных случаях) выходного сигнала при нарастании входного кода. Это можно рассмотреть на примере попытки увеличить разрешающую способность преобразователя путем построения составного ЦАП, получающегося из двух идентичных преобразователей и суммирующего усилителя (рис. 5.4). Казалось бы, в такой схеме разрядность ЦАП увеличена в два раза. На самом деле это далеко не так.

Неидентичносгь этих ЦАП приводит к немонотонности результирующей характеристики, поэтому такие схемы не следует применять.

На рис. 5.3-5.6 показаны примеры некорректной работы ЦАП, когда на вход ЦАП подастся линейно нарастающий код. Например, на рис. 5.5 показан вид сигнала с нарушением, о котором сказано выше, возникающим вследствие недостаточного напряжения питания (например, 12 В вместо положенных 15 В). Работу ЦАП часто сопровождают острые пики большой амплитуды в выходном сигнале, возникающие из-за разности времен открывания и закрывания аналоговых ключей. Наибольшее значение этих выбросов происходит при переключении старших разрядов и может достигать половины динамического диапазона выходного сигнала. Это следует учитывать при использовании ЦАП для управления такими устройствами, которые не допускают шилообразных помех.

Рис. 5.2. Пример некорректного способа повышения разрядности ЦАП

Например, при управлении током полупроводникового лазера даже небольшой и очень кратковременный скачок питающего тока может привести к необратимой деградации лазера. Для устранения этого броска могут применяться сглаживающие цепи и иные меры, но это не вполне корректно. Следует добиваться прежде всего правильной работы ЦАП. В частности, при использовании ЦАП на основе КМОП-ключей следует обеспечивать соответствие применяемых напряжений питания паспортным значениям, поскольку при недостаточном напряжении на затворах ключей они могут срабатывать не полностью и не при всех комбинациях управляющих кодов.

Рис. 5.3. Нарушение работы ЦАП вследствие недостаточного напряжения питания

Рис. 5.4. Нарушение работы ЦАП по некорректной схеме по рис. 5.2 вследствие неточности подбора коэффициентов

Рис. 5.5. Немонотонность — характерное нарушение работы ЦАП составленного по некорректной схеме, показанной на рис. 5.2, вследствие неточности подбора коэффициентов

Рис. 5.6. Другой пример немонотонности по тем же причинам, что и на рис. 5.4 и 5.5

Из динамических параметров наиболее существенны нижеследующие.

  • 1. Время установления /уст — это интервал времени от подачи входного сигнала до вхождения выходного сигнала в заданные пределы.
  • 2. Максимальная частота преобразования /ПРБ — это наибольшая частота дискретизации, при которой параметры ЦАП соответствуют заданным значениям.

В отечественной литературе разделяют прецизионные и быстродействующие ЦЛП. Прецизионные ЦЛП имеют 6 (отношение максимального выходного напряжения к минимальному). При такой разрядности прецизионным ЦАП следовало называть такой ЦАП, нелинейность которого не превышает относительный вес младшего разряда, т. е. для указанного случая желательно 5Л

Реферат: Цифро-аналоговые преобразователи (ЦАП)

Министерство образования и науки Украины

Одесская национальная морская академия

Кафедра морской электроники

по дисциплине «Системы сбора и обработки телеметрической информации»

Проверил: ст. преподаватель

2. Общие сведения

3. Последовательные ЦАП

4. Параллельные ЦАП

5. Применение ЦАП

6. Параметры ЦАП

7. Список использованной литературы

ВВЕДЕНИЕ


Последние десятилетия обусловлены широким внедрением в отрасли народного хозяйства средств микроэлектроники и вычислительной техники, обмен информацией с которыми обеспечивается линейными аналоговыми и цифровыми преобразователями (АЦП и ЦАП).

Современный этап характеризуется больших и сверхбольших интегральных схем ЦАП и АЦП обладающими высокими эксплуатационными параметрами: быстродействием, малыми погрешностями, многоразрядностью. Включение БИС ЦАП и АЦП единым, функционально законченным блоком сильно упростило внедрение их в приборы и установки, используемые как в научных исследованиях, так и в промышленности и дало возможность быстрого обмена информацией между аналоговыми и цифровыми устройствами.

Цифро-аналоговый преобразователь (ЦАП) предназначен для преобразования числа, определенного, как правило, в виде двоичного кода, в напряжение или ток, пропорциональные значению цифрового кода. Схемотехника цифро-аналоговых преобразователей весьма разнообразна. На рис. 1 представлена классификационная схема ЦАП по схемотехническим признакам. Кроме этого, ИМС цифро-аналоговых преобразователей классифицируются по следующим признакам:

o По виду выходного сигнала: с токовым выходом и выходом в виде напряжения.

o По типу цифрового интерфейса: с последовательным вводом и с параллельным вводом входного кода.

o По числу ЦАП на кристалле: одноканальные и многоканальные.

o По быстродействию: умеренного и высокого быстродействия.

Рис. 1. Классификация ЦАП

ЦАП с широтно-импульсной модуляцией

Очень часто ЦАП входит в состав микропроцессорных систем. В этом случае, если не требуется высокое быстродействие, цифро-аналоговое преобразование может быть очень просто осуществлено с помощью широтно-импульсной модуляции (ШИМ). Схема ЦАП с ШИМ приведена на рис. 1а.

Рис. 1. ЦАП с широтно-импульсной модуляцией

Наиболее просто организуется цифро-аналоговое преобразование в том случае, если микроконтроллер имеет встроенную функцию широтно-импульсного преобразования (например, AT90S8515 фирмы Atmel или 87С51GB фирмы Intel). Выход ШИМ управляет ключом S . В зависимости от заданной разрядности преобразования (для контроллера AT90S8515 возможны режимы 8, 9 и 10 бит) контроллер с помощью своего таймера/счетчика формирует последовательность импульсов, относительная длительность которых g =t и /Т определяется соотношением

где N — разрядность преобразования, а D — преобразуемый код. Фильтр нижних частот сглаживает импульсы, выделяя среднее значение напряжения. В результате выходное напряжение преобразователя

Рассмотренная схема обеспечивает почти идеальную линейность преобразования, не содержит прецизионных элементов (за исключением источника опорного напряжения). Основной ее недостаток — низкое быстродействие.

Последовательный ЦАП на переключаемых конденсаторах

Рассмотренная выше схема ЦАП с ШИМ вначале преобразует цифровой код во временной интервал, который формируется с помощью двоичного счетчика квант за квантом, поэтому для получения N -разрядного преобразования необходимы 2 N временных квантов (тактов). Схема последовательного ЦАП, приведенная на рис. 2, позволяет выполнить цифро-аналоговое преобразование за значительно меньшее число тактов.

В этой схеме емкости конденсаторов С 1 и С 2 равны. Перед началом цикла преобразования конденсатор С 2 разряжается ключом S 4 . Входное двоичное слово задается в виде последовательного кода. Его преобразование осуществляется последовательно, начиная с младшего разряда d . Каждый такт преобразования состоит из двух полутактов. В первом полутакте конденсатор С 1 заряжается до опорного напряжения U оп при d =1 посредством замыкания ключа S 1 или разряжается до нуля при d =0 путем замыкания ключа S 2 . Во втором полутакте при разомкнутых ключах S 1 , S 2 и S 4 замыкается ключ S 3 , что вызывает деление заряда пополам между С 1 и С 2 . В результате получаем

Пока на конденсаторе С 2 сохраняется заряд, процедура заряда конденсатора С 1 должна быть повторена для следующего разряда d 1 входного слова. После нового цикла перезарядки напряжение на конденсаторах будет

Точно также выполняется преобразование для остальных разрядов слова. В результате для N -разрядного ЦАП выходное напряжение будет равно

Если требуется сохранять результат преобразования сколь-нибудь продолжительное время, к выходу схемы следует подключить УВХ. После окончания цикла преобразования следует провести цикл выборки, перевести УВХ в режим хранения и вновь начать преобразование.

Таким образом, представленная схема выполняет преобразование входного кода за 2N квантов, что значительно меньше, чем у ЦАП с ШИМ. Здесь требуется только два согласованных конденсатора небольшой емкости. Конфигурация аналоговой части схемы не зависит от разрядности преобразуемого кода. Однако по быстродействию последовательный ЦАП значительно уступает параллельным цифро-аналоговым преобразователям, что ограничивает область его применения.

Большинство схем параллельных ЦАП основано на суммировании токов, сила каждого из которых пропорциональна весу цифрового двоичного разряда, причем должны суммироваться только токи разрядов, значения которых равны 1. Пусть, например, требуется преобразовать двоичный четырехразрядный код в аналоговый сигнал тока. У четвертого, старшего значащего разряда (СЗР) вес будет равен 2 3 =8, у третьего разряда — 2 2 =4, у второго — 2 1 =2 и у младшего (МЗР) — 2 0 =1. Если вес МЗР IМЗР =1 мА, то IСЗР =8 мА, а максимальный выходной ток преобразователя Iвых.макс =15 мА и соответствует коду 11112 . Понятно, что коду 10012 , например, будет соответствовать Iвых =9 мА и т.д. Следовательно, требуется построить схему, обеспечивающую генерацию и коммутацию по заданным законам точных весовых токов. Простейшая схема, реализующая указанный принцип, приведена на рис. 3.

Сопротивления резисторов выбирают так, чтобы при замкнутых ключах через них протекал ток, соответствующий весу разряда. Ключ должен быть замкнут тогда, когда соответствующий ему бит входного слова равен единице. Выходной ток определяется соотношением

При высокой разрядности ЦАП токозадающие резисторы должны быть согласованы с высокой точностью. Наиболее жесткие требования по точности предъявляются к резисторам старших разрядов, поскольку разброс токов в них не должен превышать тока младшего разряда. Поэтому разброс сопротивления в k-м разряде должен быть меньше, чем

Из этого условия следует, что разброс сопротивления резистора, например, в четвертом разряде не должен превышать 3%, а в 10-м разряде — 0,05% и т.д.

Рассмотренная схема при всей ее простоте обладает целым букетом недостатков. Во-первых, при различных входных кодах ток, потребляемый от источника опорного напряжения (ИОН), будет различным, а это повлияет на величину выходного напряжения ИОН. Во-вторых, значения сопротивлений весовых резисторов могут различаться в тысячи раз, а это делает весьма затруднительной реализацию этих резисторов в полупроводниковых ИМС. Кроме того, сопротивление резисторов старших разрядов в многоразрядных ЦАП может быть соизмеримым с сопротивлением замкнутого ключа, а это приведет к погрешности преобразования. В-третьих, в этой схеме к разомкнутым ключам прикладывается значительное напряжение, что усложняет их построение.

Эти недостатки устранены в схеме ЦАП AD7520 (отечественный аналог 572ПА1), разработанном фирмой Analog Devices в 1973 году, которая в настоящее время является по существу промышленным стандартом (по ней выполнены многие серийные модели ЦАП). Указанная схема представлена на рис. 4. В качестве ключей здесь используются МОП-транзисторы.

Рис. 4. Схема ЦАП с переключателями и матрицей постоянного импеданса

В этой схеме задание весовых коэффициентов ступеней преобразователя осуществляют посредством последовательного деления опорного напряжения с помощью резистивной матрицы постоянного импеданса. Основной элемент такой матрицы представляет собой делитель напряжения (рис. 5), который должен удовлетворять следующему условию: если он нагружен на сопротивление Rн , то его входное сопротивление Rвх также должно принимать значение Rн . Коэффициент ослабления цепи a=U2 /U1 при этой нагрузке должен иметь заданное значение. При выполнении этих условий получаем следующие выражения для сопротивлений:

При двоичном кодировании a =0,5. Если положить Rн =2R, то Rs =R и Rp =2R в соответствии с рис.4.

Поскольку в любом положении переключателей Sk они соединяют нижние выводы резисторов с общей шиной схемы, источник опорного напряжения нагружен на постоянное входное сопротивление Rвх =R. Это гарантирует неизменность опорного напряжения при любом входном коде ЦАП.

Согласно рис. 4, выходные токи схемы определяются соотношениями

Поскольку нижние выводы резисторов 2R матрицы при любом состоянии переключателей Sk соединены с общей шиной схемы через низкое сопротивление замкнутых ключей, напряжения на ключах всегда небольшие, в пределах нескольких милливольт. Это упрощает построение ключей и схем управления ими и позволяет использовать опорное напряжение из широкого диапазона, в том числе и различной полярности. Поскольку выходной ток ЦАП зависит от Uоп линейно (см. (8)), преобразователи такого типа можно использовать для умножения аналогового сигнала (подавая его на вход опорного напряжения) на цифровой код. Такие ЦАП называют перемножающими (MDAC).

Точность этой схемы снижает то обстоятельство, что для ЦАП, имеющих высокую разрядность, необходимо согласовывать сопротивления R ключей с разрядными токами. Особенно это важно для ключей старших разрядов. Например, в 10-разрядном ЦАП AD7520 ключевые МОП-транзисторы шести старших разрядов сделаны разными по площади и их сопротивление R нарастает согласно двоичному коду (20, 40, 80, : , 640 Ом). Таким способом уравниваются (до 10 мВ) падения напряжения на ключах первых шести разрядов, что обеспечивает монотонность и линейность переходной характеристики ЦАП. 12-разрядный ЦАП 572ПА2 имеет дифференциальную нелинейность до 0,025% (1 МЗР).

ЦАП на МОП ключах имеют относительно низкое быстродействие из-за большой входной емкости МОП-ключей. Тот же 572ПА2 имеет время установления выходного тока при смене входного кода от 000. 0 до 111. 1, равное 15 мкс. 12-разрядный DAC7611 фирмы Burr-Braun имеет время установления выходного напряжения 10 мкс. В то же время ЦАП на МОП-ключах имеют минимальную мощность потребления. Тот же DAC7611 потребляет всего 2,5 мВт. В последнее время появились модели ЦАП рассмотренного выше типа с более высоким быстродействием. Так 12-разрядный AD7943 имеет время установления тока 0,6 мкс и потребляемую мощность всего 25 мкВт. Малое собственное потребление позволяет запитывать такие микромощные ЦАП прямо от источника опорного напряжения. При этом они могут даже не иметь вывода для подключения ИОН, например, AD5321.

ЦАП на источниках тока

ЦАП на источниках тока обладают более высокой точностью. В отличие от предыдущего варианта, в котором весовые токи формируются резисторами сравнительно небольшого сопротивления и, как следствие, зависят от сопротивления ключей и нагрузки, в данном случае весовые токи обеспечиваются транзисторными источниками тока, имеющими высокое динамическое сопротивление. Упрощенная схема ЦАП на источниках тока приведена на рис. 6.

Рис. 6. Схема ЦАП на источниках тока

Весовые токи формируются с помощью резистивной матрицы. Потенциалы баз транзисторов одинаковы, а чтобы были равны и потенциалы эмиттеров всех транзисторов, площади их эмиттеров делают различными в соответствии с весовыми коэффициентами. Правый резистор матрицы подключен не к общей шине, как на схеме рис. 4, а к двум параллельно включенным одинаковым транзисторам VT и VTн , в результате чего ток через VT равен половине тока через VT1 . Входное напряжение для резистивной матрицы создается с помощью опорного транзистора VTоп и операционного усилителя ОУ1, выходное напряжение которого устанавливается таким, что коллекторный ток транзистора VTоп принимает значение Iоп . Выходной ток для N-разрядного ЦАП

Характерными примерами ЦАП на переключателях тока с биполярными транзисторами в качестве ключей являются 12-разрядный 594ПА1 с временем установления 3,5 мкс и погрешностью линейности не более 0,012% и 12-разрядный AD565, имеющий время установления 0,2 мкс при такой же погрешности линейности. Еще более высоким быстродействием обладает AD668, имеющий время установления 90 нс и ту же погрешность линейности. Из новых разработок можно отметить 14-разрядный AD9764 со временем установления 35 нс и погрешностью линейности не более 0,01%. В качестве переключателей тока Sk часто используются биполярные дифференциальные каскады, в которых транзисторы работают в активном режиме. Это позволяет сократить время установления до единиц наносекунд. Схема переключателя тока на дифференциальных усилителях приведена на рис. 7.

Дифференциальные каскады VT1 -VT3 и VT’ 1 -VT’ 3 образованы из стандартных ЭСЛ вентилей. Ток Ik , протекающий через вывод коллектора выходного эмиттерного повторителя является выходным током ячейки. Если на цифровой вход Dk подается напряжение высокого уровня, то транзистор VT3 открывается, а транзистор VT’ 3 закрывается. Выходной ток определяется выражением

Точность значительно повышается, если резистор Rэ заменить источником постоянного тока, как в схеме на рис. 6. Благодаря симметрии схемы существует возможность формирования двух выходных токов — прямого и инверсного. Наиболее быстродействующие модели подобных ЦАП имеют входные ЭСЛ-уровни. Примером может служить 12-ти разрядный МАХ555, имеющий время установления 4 нс до уровня 0,1%. Поскольку выходные сигналы таких ЦАП захватывают радиочастотный диапазон, они имеют выходное сопротивление 50 или 75 ом, которое должно быть согласовано с волновым сопротивлением кабеля, подключаемого к выходу преобразователя.

Схемы применения цифро-аналоговых преобразователей относятся не только к области преобразования код — аналог. Пользуясь их свойствами можно определять произведения двух или более сигналов, строить делители функций, аналоговые звенья, управляемые от микроконтроллеров, такие как аттенюаторы, интеграторы. Важной областью применения ЦАП являются также генераторы сигналов, в том числе сигналов произвольной формы. Ниже рассмотрены некоторые схемы обработки сигналов, включающие ЦА-преобразователи.

Обработка чисел, имеющих знак

До сих пор при описании цифро-аналоговых преобразователей входная цифровая информация представлялась в виде чисел натурального ряда (униполярных). Обработка целых чисел (биполярных) имеет определенные особенности. Обычно двоичные целые числа представляются с использованием дополнительного кода. Таким путем с помощью восьми разрядов можно представить числа в диапазоне от -128 до +127. При вводе чисел в ЦАП этот диапазон чисел сдвигают до 0. 255 путем прибавления 128. Числа, большие 128, при этом считаются положительными, а числа, меньшие 128, — отрицательными. Среднее число 128 соответствует нулю. Такое представление чисел со знаком, называется смещенным кодом. Прибавление числа, составляющего половину полной шкалы данной разрядности (в нашем примере это 128), можно легко выполнить путем инверсии старшего (знакового) разряда. Соответствие рассмотренных кодов иллюстрируется табл. 1.

Связь между цифровыми и аналоговыми величинами

Характеристики ЦАП

ЦАП применяется всегда, когда надо преобразовать сигнал из цифрового представления в аналоговое, например, в проигрывателях компакт-дисков (Audio CD).

Типы ЦАП

Наиболее общие типы электронных ЦАП:

  • широтно-импульсный модулятор — простейший тип ЦАП. Стабильный источник тока или напряжения периодически включается на время, пропорциональное преобразуемому цифровому коду, далее полученная импульсная последовательность фильтруется аналоговым фильтром низких частот. Такой способ часто используется для управления скоростью электромоторов, а также становится популярным в Hi-Fi (класс аппаратуры) аудиотехнике;
  • ЦАП передискретизации, такие как дельта-сигма ЦАП, основаны на изменяемой плотности импульсов. Передискретизация позволяет использовать ЦАП с меньшей разрядностью для достижения большей разрядности итогового преобразования; часто дельта-сигма ЦАП строится на основе простейшего однобитного ЦАП, который является практически линейным. На ЦАП малой разрядности поступает импульсный сигнал с модулированной плотностью импульсов (c постоянной длительностью импульса, но с изменяемой скважностью), создаваемый с использованием отрицательной обратной связи. Отрицательная обратная связь выступает в роли фильтра высоких частот для шума квантования. Большинство ЦАП большой разрядности (более 16 бит) построены на этом принципе вследствие его высокой линейности и низкой стоимости. Быстродействие дельта-сигма ЦАП достигает сотни тысяч отсчетов в секунду, разрядность — до 24 бит. Для генерации сигнала с модулированной плотностью импульсов может быть использован простой дельта-сигма модулятор первого порядка или более высокого порядка как MASH (англ.Multi stage noise SHaping ). С увеличением частоты передискретизации смягчаются требования, предъявляемые к выходному фильтру низких частот и улучшается подавление шума квантования;
  • взвешивающий ЦАП, в котором каждому биту преобразуемого двоичного кода соответствует резистор или источник тока, подключенный на общую точку суммирования. Сила тока источника (проводимость резистора) пропорциональна весу бита, которому он соответсвует. Таким образом, все ненулевые биты кода суммируются с весом. Взвешивающий метод один из самых быстрых, но ему свойственна низкая точность из-за необходимости наличия набора множества различных прецизионных источников или резисторов. По этой причине взвешивающие ЦАП имеют разрядность не более восьми бит;
  • цепная R-2R схема является вариацией взвешивающего ЦАП. В R-2R ЦАП взвешенные значения создаются в специальной схеме, состоящей из резисторов с сопротивлениями R и 2R. Это позволяет существенно улучшить точность по сравнению с обычным взвешивающим ЦАП, т.к. сравнительно просто изготовить набор прецизионных элементов с одинаковыми параметрами. Недостатком метода является более низкая скорость вследствие паразитной емкости;
  • сегментный ЦАП содержит по одному источнку тока или резистору на каждое возможное значение выходного сигнала. Так, например, восьмибитный ЦАП этого типа содержит 255 сегментов, а 16-битный — 65535. Теоретически, сегментные ЦАП имеют самое высокое быстродействие, т.к. для преобразования достаточно замкнуть один ключ, соответствующий входному коду;
  • гибридные ЦАП используют комбинацию перечисленных выше способов. Большинство микросхем ЦАП относится к этому типу; выбор конкретного набора способов является компромисом между быстродействием, точностью и стоимостью ЦАП.

Характеристики

ЦАП находятся в начале аналогового тракта любой системы, поэтому параметры ЦАП во многом определяют параметры всей системы в целом. Далее перечислены наиболее важные характеристики ЦАП.

  • Разрядность — количество различных уровней выходного сигнала, которые ЦАП может воспроизвести. Обычно задается в битах; количество бит есть логарифм по основанию 2 от количества уровней. Например, однобитный ЦАП способен воспроизвести два ( 2 1 ) уровня, а восьмибитный — 256 ( 2 8 ) уровней. Разрядность тесно связана с эффективной разрядностью (англ.ENOB — Effective Number of Bits ), которая показывает реальное разрешение, достижимое на данном ЦАП.
  • Максимальная частота дискретизации — максимальная частота, на которой ЦАП может работать, выдавая на выходе корректный результат. В соответствии с теоремой Шенона-Найквиста (известной также как теорема Котельникова), для корректного воспроизведения аналогового сигнала из цифровой формы необходимо, чтобы частота дискретизации была не менее, чем удвоенная максимальная частота в спектре сигнала. Например, для воспроизведения всего слышимого человеком звукового диапазона частот (обычно от 16 до 20 000 Гц), спектр которого простирается до 20 кГц, необходимо, чтобы звуковой сигнал был дискретизован с частотой не менее 40 кГц. Стандарт Audio CD устанавливает частоту дискретизации звукового сигнала 44,1 кГц; для воспроизведения данного сигнала понадобится ЦАП, способный работать на этой частоте. В дешевых компьютерных звуковых картах частота дискретизации составляет 48 кГц. Сигналы, дискретизованные на других частотах, подвергаются передискретизации до 48 кГц, что частично ухудшает качество сигнала.
  • Монотонность — свойство ЦАП увеличивать аналоговый выходной сигнал при увеличении входного кода.
  • THD+N (суммарные гармонические искажения + шум) — мера искажений и шума вносимых в сигнал ЦАПом. Выражается в процентах мощности гармоник и шума в выходном сигнале. Важный параметр при малосигнальных применениях ЦАП.

  • Динамический диапазон — соотношение наибольшего и наименьшего сигналов, которые может воспроизвести ЦАП, выражается в децибелах. Данный параметр связан с разрядностью и шумовым порогом.
  • Статические характеристики:
    • DNL (дифференциальная нелинейность) характеризует, насколько приращение аналогового сигнала, полученное при увеличении кода на 1 младший значащий разряд (МЗР), отличается от правильного значения;
    • INL (интегральная нелинейность) характеризует, насколько передаточная характеристика ЦАП отличается от идеальной. Идеальная характеристика строго линейна; INL показывает, насколько напряжение на выходе ЦАП при заданном коде отстоит от линейной характеристики; выражается в МЗР;
    • усиление;
    • смещение.
  • Частотные характеристики:
    • SNDR (отношение сигнал/шум+искажения) характеризует в децибелах отношение мощности выходного сигнала к суммарной мощности шума и гармонических искажений;
    • HDi (коэффициент i-й гармоники) характеризует отношение i-й гармоники к основной гармонике;
    • THD (коэффициент гармонических искажений) — отношение суммарной мощности всех гармоник (кроме первой) к мощности первой гармоники.

Как выбрать преобразователь аудиосигнала

АЦП, ЦАП: зачем нужен преобразователь аудиосигнала?

ЦАП – цифро-аналоговый преобразователь – нужен для преобразования аудиосигнала из цифрого формата в аналоговый; обычно, для передачи в усилитель или немедленного озвучивания.

Все современные форматы записи аудио используют цифровое представление. И треки на CD или blu-ray дисках, и mp3-файлы, и музыка с iTunes – все они хранятся в цифровом формате. И для того, чтобы воспроизвести эту запись, её надо преобразовать в аналоговый сигнал – эту функцию и выполняет цифро-аналоговый преобразователь. Встроенный ЦАП присутствует в любом устройстве, воспроизводящем музыку. Но часто бывает, что качество проигрывания одних и тех же аудиофайлов (или треков с одного и того же диска) на разных плеерах заметно отличается. Если при этом используются одинаковые усилители и наушники, значит, проблема в ЦАП плеера.

Аудиосигнал, прошедший через низкокачественный ЦАП

ЦАПы бывают разные: дешевые преобразователи с низким энергопотреблением (часто используемые производителями в мобильных устройствах) имеют низкое быстродействие и малую разрядность, что сильно сказывается на качестве звука.

Если у мобильного устройства есть цифровой выход (S/PDIF или USB), можно подключить к нему внешний ЦАП — это гарантирует высокое качество преобразования цифрового звука в аналоговый.

Кроме того, внешний ЦАП может оказаться очень полезным при прослушивании музыки, записанной в loseless-форматах (форматах записи аудио без потерь качества) с высокой дискретизацией, обеспечивающей максимальное подобие записи и оригинала. Поскольку распространяются такие записи, в основном, через Интернет, часто их прослушивают прямо с компьютера. Но качественная звуковая карта редко встречается на ноутбуках и планшетах, да и встроенные в материнскую плату десктопного компьютера звуковые карты не отличаются высоким качеством. И в этом случае весь смысл прослушивания loseless музыки теряется абсолютно. Ситуацию можно исправить, если на компьютере есть цифровой аудиовыход, например, S/PDIF. Подключив к нему ЦАП с частотой дискретизации и разрядностью не меньшей, чем у прослушиваемой записи, можно получить аналоговый сигнал высокого качества.

Еще один приятный бонус можно получить, приобретя ЦАП с поддержкой Bluetooth. Это позволит слушать отличную музыку на подключенных к преобразователю динамиках, не будучи «привязанным» к нему проводами. Для мобильного компьютера (планшета или ноутбука) это может оказаться очень удобным. Кроме того, с таким преобразователем вы сможете проигрывать музыку с других устройств, поддерживающих Bluetooth и легко переключаться между ними.

АЦП – аналого-цифровой преобразователь – нужен, наоборот, для преобразования аналогового аудиосигнала в цифровой формат. АЦП будет незаменим при оцифровке (переводе в цифровой формат) старых аналоговых записей: на грампластинках, аудио и видеокассетах. Также АЦП потребуется при записи в цифровом виде «живого» звука с микрофона. Плееры с функцией записи и компьютерные звуковые карты имеют встроенный АЦП, но если вам важно качество оцифровки, лучше доверить эту задачу специализированному устройству.

Несмотря на совершенно противоположные задачи, АЦП и ЦАП обладают некоторыми общими характеристиками, оказывающими большое влияние на качество преобразования.

Характеристики преобразователей аудиосигнала.

Количество отсчетов в секунду — частота дискретизации

Для АЦП частота дискретизации определяет, с какой частотой преобразователь будет измерять амплитуду аналогового сигнала и передавать её в цифровом виде. Для ЦАП – наоборот, с какой частотой цифровые данные будут конвертироваться в аналоговый сигнал.

Чем выше частота дискретизации, тем результат преобразования ближе к исходному сигналу. Казалось бы, чем выше этот показатель, тем лучше. Но, согласно теореме Котельникова, для передачи сигнала любой частоты достаточно частоты дискретизации, вдвое большей частоты самого сигнала. С учетом того, что самая высокая частота, различимая на слух – 20 кГц (у большинства людей верхняя граница слышимого звука вообще проходит в районе 15-18 кГц), частоты дискретизации в 40 кГц должно быть достаточно для качественной оцифровки любого звука. Частота дискретизации audio CD: 44.1 кГц, и максимальная частота дискретизации mp-3 файлов: 48 кГц, выбраны как раз исходя из этого критерия. Соответственно, ЦАП, проигрывающий аудиотреки и mp3-файлы, должен иметь частоту дискретизации не менее 48 кГц, иначе звук будет искажаться.

Зеленым цветом показан исходный аудиосигнал, состоящий из нескольких гармоник, близких к 20 кГц. Малиновым цветом обозначен цифровой сигнал, дискретизированный с частотой 44.1 кГц. Синим цветом обозначен аналоговый сигнал, восстановленный из цифрового. Хорошо заметны потери в начале и конце отрезка.

Теоретически, такой частоты дискретизации должно быть достаточно, но практически иногда возникает надобность в большей частоте: реальный аудиосигнал не полностью отвечает требованиям теоремы Котельникова и при определенных условиях сигнал может искажаться. Поэтому у ценителей чистого звука популярны записи с частотой дискретизации 96 кГц.

Частота дискретизации ЦАП выше, чем у исходного файла, на качество звука не влияет, поэтому приобретать ЦАП с частотой дискретизации выше 48 кГц имеет смысл, только если вы собираетесь прослушивать с его помощью blu-ray и DVD-аудио или loseless музыку с частотой дискретизации, большей 48 кГц.

Если вы твердо нацелились на приобретение преобразователя с частотой дискретизации выше 48 кГц, то экономить на покупке не стоит. ЦАП, как и любое другое аудиоустройство, добавляет в сигнал собственный шум. У недорогих моделей шумность может быть довольно высокой, а с учетом высокой частоты дискретизации, на выходе такого преобразователя может появиться опасный для динамиков ультразвуковой шум. Да и в слышимом диапазоне шумность может оказаться настолько высокой, что это затмит весь выигрыш от повышения частоты дискретизации.

Чем выше разрядность, тем выше точность измерения или восстановления амплитуды сигнала

Разрядность – вторая характеристика, непосредственно влияющая на качество преобразования.

Разрядность ЦАП должна соответствовать разрядности аудиофайла. Если разрядность ЦАП будет ниже, он, скорее всего, просто не сможет преобразовать этот файл.

Треки audio CD имеют разрядность 16 бит. Это подразумевает 65536 градаций амплитуды – в большинстве случаев этого достаточно. Но теоретически, в идеальных условиях, человеческое ухо способно обеспечить большее разрешение. И если о разнице между записями с дискретизацией 96 кГц и 48 кГц можно спорить, то отличить 16-битный звук от 24-битного при отсутствии фонового шума могут многие люди с хорошим слухом. Поэтому, если ЦАП предполагается использовать для прослушивания DVD и Blu-ray аудио, следует выбирать модель с разрядностью 24.

Чем выше разрядность АЦП, тем с большей точностью измеряется амплитуда звукового сигнала.

При выборе АЦП следует исходить из того, какие задачи с его помощью предполагается решать: для оцифровывания «шумных» аудиозаписей со старых магнитофонных лент высокая разрядность АЦП не нужна. Если же вы планируете получить качественную цифровую запись со студийного микрофона, имеет смысл воспользоваться 24-битным АЦП.

Количество каналов определяет, какой звук сможет преобразовывать устройство. Двухканальный преобразователь сможет обрабатывать стерео и моно звук. Но для преобразования сигнала формата Dolby Digital или Dolby TrueHD понадобится, соответственно, шести- или восьмиканальный преобразователь.

Соотношение сигнал/шум определяет уровень шума, добавляемого в сигнал преобразователем. Чем выше этот показатель, тем более чистым остается сигнал, проходящий через преобразователь. Для прослушивания музыки нежелательно, чтобы этот показатель был ниже 75 дБ. Hi-Fi аппаратура обеспечивает минимум 90 дБ, а высококачественные Hi-End устройства способны обеспечить отношение сигнал/шум в 110-120 дБ и выше.

ЦАП должен иметь цифровой вход – это может быть S/PDIF, USB или Bluetooth. Выход у ЦАП аналоговый — «джек» (jack) или «тюльпаны» (RCA). У АЦП все наоборот – аналоговый вход и цифровой выход. Хорошо, если преобразователь имеет несколько различных входов и выходов – это расширяет возможности по подключению к нему различных устройств. Если же вход на преобразователе один, убедитесь, что аналогичный выход есть на устройстве, к которому предполагается его подключать.

Преобразователи аудиосигнала скорее относятся к студийному и домашнему оборудованию, поэтому питание большинства преобразователей производится от сети 220В. Но существуют и преобразователи, которые питаются от аккумуляторов и могут быть использованы автономно. Это может оказаться удобным при использовании преобразователя с мобильным устройством – ноутбуком, планшетом, смартфоном или плеером.

Некоторые преобразователи получают питание через разъем micro-USB, при этом получать (или передавать) аудиосигнал через этот разъем они не могут. Если вам важно, чтобы ЦАП мог читать аудиофайлы на USB-носителях, перед покупкой убедитесь, что USB на устройстве используется не только для питания.

Классификация ЦАП. Свойства и основные характеристики преобразователей.

Рис. 1. Классификация ЦАП

ЦАП находятся в начале аналогового тракта любой системы, поэтому параметры ЦАП во многом определяют параметры всей системы в целом. Далее перечислены наиболее важные характеристики ЦАП.

· Разрядность — количество различных уровней выходного сигнала, которые ЦАП может воспроизвести. Обычно задается в битах; количество бит есть логарифм по основанию 2 от количества уровней. Например, однобитный ЦАП способен воспроизвести два ( ) уровня, а восьмибитный — 256 ( ) уровней. Разрядность тесно связана с эффективной разрядностью (англ. ENOB, Effective Number of Bits), которая показывает реальное разрешение, достижимое на данном ЦАП.

· Максимальная частота дискретизации — максимальная частота, на которой ЦАП может работать, выдавая на выходе корректный результат. В соответствии с теоремой Котельникова, для корректного воспроизведения аналогового сигнала из цифровой формы необходимо, чтобы частота дискретизации была не менее, чем удвоенная максимальная частота в спектре сигнала. Например, для воспроизведения всего слышимого человеком звукового диапазона частот, спектр которого простирается до 20 кГц, необходимо, чтобы звуковой сигнал был дискретизован с частотой не менее 40 кГц. Стандарт Audio CD устанавливает частоту дискретизации звукового сигнала 44,1 кГц; для воспроизведения данного сигнала понадобится ЦАП, способный работать на этой частоте. В дешевых компьютерных звуковых картах частота дискретизации составляет 48 кГц. Сигналы, дискретизованные на других частотах, подвергаются передискретизации до 48 кГц, что частично ухудшает качество сигнала.

· Монотонность — свойство ЦАП увеличивать аналоговый выходной сигнал при увеличении входного кода.

· THD+N (суммарные гармонические искажения + шум) — мера искажений и шума вносимых в сигнал ЦАПом. Выражается в процентах мощности гармоник и шума в выходном сигнале. Важный параметр при малосигнальных применениях ЦАП.

· Динамический диапазон — соотношение наибольшего и наименьшего сигналов, которые может воспроизвести ЦАП, выражается в децибелах. Данный параметр связан с разрядностью и шумовым порогом.

· DNL (дифференциальная нелинейность) — характеризует, насколько приращение аналогового сигнала, полученное при увеличении кода на 1 младший значащий разряд (МЗР), отличается от правильного значения;

· INL (интегральная нелинейность) — характеризует, насколько передаточная характеристика ЦАП отличается от идеальной. Идеальная характеристика строго линейна; INL показывает, насколько напряжение на выходе ЦАП при заданном коде отстоит от линейной характеристики; выражается в МЗР;

· SNDR (отношение сигнал/шум+искажения) — характеризует в децибелах отношение мощности выходного сигнала к суммарной мощности шума и гармонических искажений;

· HDi (коэффициент i-й гармоники) — характеризует отношение i-й гармоники к основной гармонике;

· THD (коэффициент гармонических искажений) — отношение суммарной мощности всех гармоник (кроме первой) к мощности первой гармоники.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Основные характеристики и параметры ЦАП

Основными характеристиками ЦАП являются:количество разрядов, быстродействие, точность преобразования, потребляемая мощность.Кроме того, схемы ЦАП можно классифицировать по принципу действия, виду выходного сигнала, полярности выходного сигнала, элементной базе и др.

По принципу действия наибольшее распространение получили ЦАП с суммированием токов и с делением напряжения.

По полярности выходного напряжения ЦАП принято делить на однополярные и двухполярные.

Управляющий код, подаваемый на вход ЦАП, может быть различным: двоичным, двоично-десятичным, Грея, унитарным и др. Кроме того, различными могут быть и уровни сигналов на входе ЦАП. При формировании выходного напряжения ЦАП под действием управляющего кода обычно используются источники опорного напряжения. В зависимости от вида источника опорного напряжения ЦАП делят на две группы: с постоянным опорным напряжением и с изменяющимся опорным напряжением.

Все параметры ЦАП можно разделить на две группы: статические и динамические.

К статическим параметрам ЦАП относят: разрешающую способность, погрешность преобразовании, диапазон значений выходного сигнала, смещение нулевого уровня и характеристики управляющего кода.

К динамическим параметрам ЦАП относят: время установления цифрового сигнала, предельную частоту преобразования и динамическую погрешность.

Разрешающая способность ЦАП определяется как величина, обратная максимальному количеству градаций выходного сигнала. Иногда разрешающую способность оценивают выходным напряжением при изменении входного кода на единицу младшего разряда, то естьшагом квантования. Очевидно, что чем больше разрядность ЦАП, тем выше его разрешающая способность.

Погрешность преобразования ЦАП принято делить на статическую и динамическую. С ростом кода на входе ЦАП растёт и выходное напряжение, однако при увеличении напряжения могут быть отклонения от линейной зависимости. Статической погрешностью, или погрешностью нелинейности, называют максимальное отклонение выходного напряжения от идеальной прямой во всем диапазоне преобразования. Абсолютная статическая погрешность измеряется в конечной точке шкалы преобразования, т. е. при максимальном выходном сигнале.

Динамическая погрешность ЦАП определяется отличием выходной величины (тока или напряжения) от стационарного значения при скачкообразном изменении цифрового кода на входе.

Напряжение смещения нуля определяется выходным напряжением при входном коде, соответствующем нулевому значению.

Время установления tуст – это интервал времени от подачи входного кода до вхождения выходного сигнала в заданные пределы, определяемые погрешностью.

Максимальная частота преобразования– наибольшая частота дискретизации, при которой все параметры ЦАП соответствуют заданным значениям.

По совокупности параметров ЦАП принято делить на три группы: общего применения, прецизионные и быстродействующие. Быстродействующие ЦАП имеют время установления меньше 100 нс. К прецизионным относят ЦАП, имеющие погрешность нелинейности менее 0,1%.

Параметры и характеристики АЦП и ЦАП

ЦИФРО-АНАЛОГОВЫЕ И АНАЛОГО-ЦИФРОВЫЕ

ПРЕОБРАЗОВАТЕЛИ

Общие сведения

Преобразование между аналоговыми и цифровыми величинами — основная операция в современных аудио-, видеосистемах, в системах связи, вычислительных и управляющих системах, поскольку природные сигналы являются аналоговыми, а большинство практических методов их передачи, обработки и хранения информации — цифровыми. Преобразование в цифровую форму происходит с помощью аналого – цифровых преобразователей

(АЦП), расположенных у источника информации, и восстановление тех же самых сигналов с помощью ЦАП, расположенных в оконечном устройстве. В результате реализуются высокоскоростные помехоустойчивые, малошумящие и дешевые системы передачи данных на большие расстояния.

ЦАП можно представить как цифровой управляемый потенциометр, который создает на выходе аналоговый сигнал (напряжение или ток), отображающий нормированную часть его заданной шкалы выходного сигнала. Если опорное напряжение изменяется в соответствии с аналоговым сигналом, то выходной сигнал пропорционален произведению цифрового числа и аналогового входного сигнала. Полярность произведения зависит от полярности аналогового сигнала, цифровой системы кодирования и характера преобразования. Если АЦП воспринимает опорные сигналы как положительной, так и отрицательной полярности и цифровой сигнал биполярный, то происходит четырехквадратное умножение.


В АЦП цифровое число на выходе зависит от отношения преобразуемого входного сигнала к опорному сигналу, соответствующему полной шкале. Если опорный сигнал изменяется согласно изменению второго входного аналогового сигнала, то цифровой сигнал на выходе будет пропорционален отношению аналогового и опорного сигналов.

Таким образом, «измеритель отношений» АЦП может быть представлен как делитель аналоговых сигналов с цифровым выходом.

Параметры и характеристики АЦП и ЦАП

Система электрических параметров преобразователей, отражающая особенности их построения и функционирования, объединяет несколько десятков параметров. Далее приведены важнейшие из них, рекомендован­ные для включения в нормативно-техническую документацию и наиболее полно описывающие работу преобразователей в статическом и динами­ческом режимах при воздействии внешних факторов. Международные буквенные обозначения электрических параметров указаны в скобках.

Число разрядов b (b) — количество разрядов кода, связанного с анало­говой величиной, которое может воспринимать ЦАП или вырабатывать АЦП. Для двоичных АЦП и ЦАП под числом разрядов понимается двоичный логарифм максимального числа кодовых комбинаций на входе ЦАП или выходе АЦП.

Коэффициент преобразования КПР (G) — отношение приращения вы­ходного сигнала к приращению входного сигнала для линейной харак­теристики преобразования.

Абсолютная погрешность преобразования в конечной точке шкалы δПШFS) – отклонение значения входного для АЦП и выходного для ЦАП напряжения (тока) от номинального значения, соответствующего конечной точке характеристики преобразования (рис. ). Для АЦП и ЦАП, работающих с опорным напряжением от внешнего источника, δПШ определяется без учета вносимой источником опорного напряжения (ИОН) погрешности. Измеряется δПШ в единицах младшего разряда преобразования (МР).

Напряжение смещения нуля на входе UВХ0 (U10) – приведенное ко входу напряжение, характеризующее отклонение начала характеристики АЦП от заданного значения (рис. 14.3). Измеряется UBX в единицах МР.

Напряжение смещения нуля на выходе UВЫХ0 (UО0) напряжение по­стоянного тока на выходе ЦАП при входном коде, соответствующем ну­левому значению выходного напряжения (см. рис. 14.3). Измеряется в единицах МР. Значение напряжения смещения нуля на входе — выходе преобразователей определяет параллельный сдвиг действительной ха­рактеристики преобразования, не вносит нелинейности. В технической литературе указанные параметры иногда называют аддитивной погреш­ностью.

Нелинейность ЦАП δЛL) — отклонение действительной характе­ристики преобразования от оговоренной прямой линии (см. рис. 14.2). Нелинейность АЦП δЛL) — отклонение от оговоренной прямой линии точек характеристики преобразования, делящих пополам расстояние между средними значениями уровней квантования (см. рис.14.3). Нели­нейность измеряется в процентах от значения диапазона входного (выходного) сигнала или в единицах МР. Под оговоренной прямой ли­нией понимают идеализированную линейную характеристику преобра­зования, относительно которой действительная характеристика имеет минимальную нелинейность. Распространен вариант ее проведения че­рез начальную (нулевую) и конечную точки шкалы преобразования.

Дифференциальная нелинейность δЛld) отклонение разности двух аначоговых сигналов, соответствующих соседним кодам, от значе­ния единицы МР (см. рис. 14.3). Измеряется δld в процентах от значе­ния диапазона входного (выходного) сигнала или в единицах МР. Пре­вышение δld значения ±1 МР приводит к немонотонности характери­стики преобразования.

Монотонность характеристики преобразования — идентичность знака приращения мгновенных значений входного и выходного сигна­лов преобразователя (см рис. 14.3).

Время преобразования tПРБ) — интервал времени от момента за­данного изменения сигнала на входе АЦП (аналоговом или цифровом) до появления на его выходе соответствующего устойчивого кода. δПШ

Максимальная частота преобразования fПРБ МАХ . (fС МАХ) — наиболь­шая частота дискретизации, при которой заданные параметры соот­ветствуют установленным нормам.

Время установления выходного напряжения или тока tУСТU, , tУСТI (tsu , tSi)-интервал времени от момента заданного изменения кода на входе ЦАП до момента, при котором выходное аналоговое напряжение или ток окончательно войдут в зону шириной 1 МР или другой огово­ренной величины, симметрично расположенную относительно устано­вившегося значения.

Выброс выходного напряжения (тока) gl определяется амплитудой импульса напряжения (тока) на выходе ЦАП при заданном изменении кода (рис. 14.4). Одна из причин возникновения выбросов заключается в неидентичности характеристик переключения аналоговых пере­ключателей в разрядах ЦАП. Наиболее значительны выбросы при сме­не кодовой комбинации 011. 11 на 100. 00. Тогда в переключении уча­ствуют все разрядные переключатели и возможен один из двух вариантов (А или Б), показанных на рис. 14.4. Если переключатель старшего разряда ЦАП замкнется раньше, чем разомкнутся переключатели млад­ших разрядов (вариант А), то на выходе преобразователя появится по­ложительный выброс. Если же переключатель старшего разряда ра­зомкнётся позже, чем это сделают переключатели младших разрядов (вариант Б), то на выходе ЦАП появится отрицательный выброс.

Температурная стабильность АЦП и ЦАП характеризуется температурными коэффициентами напряжения (тока), смещения нуля на входе U10 (I10)и выходе UО0 (IО0)нелинейности δL, дифферен­циальной нелинейности δld, абсолютной погрешности преобразования в конечной точке шкалы δFS.

Схема ЦАП. Цифро-аналоговые преобразователи: типы, классификация, принцип работы, назначение

В электронике схема ЦАП представляет собой своеобразную систему. Именно она преобразует цифровой сигнал в аналоговый.

Существует несколько схем ЦАП. Пригодность для конкретного применения определяется показателями качества, включая разрешение, максимальную частоту дискретизации и другие.

Цифро-аналоговое преобразование может ухудшить посыл сигнала, поэтому необходимо найти такой инструмент, который имеет незначительные ошибки с точки зрения применения.

Приложения

ЦАП, как правило, применяются в музыкальных проигрывателях с целью переустройства числовых потоков информации в аналоговые аудиосигналы. Они, кроме того, используются в телевизорах и мобильных телефонах с целью переустройства, соответственно, видеоданных в видеосигналы, которые подсоединяются к драйверам экрана с целью отражения монохроматических либо разноцветных изображений.

Именно эти два приложения используют схемы ЦАП на противоположных концах компромисса между плотностью и количеством пикселей. Аудио — это низкочастотный тип с высоким разрешением, а видео — высокочастотный вариант с низким и средним изображением.

Из-за сложности и необходимости точно подобранных компонентов все, кроме самых специализированных ЦАП, реализованы в виде интегральных микросхем (ИС). Дискретные связи, как правило, являются чрезвычайно быстродействующими энергосберегающими типами с низким разрешением, которые используются в военных радиолокационных системах. Очень высокоскоростное испытательное оборудование, особенно пробоотборные осциллографы, также могут использовать дискретные ЦАП.

Обзор

Частично-постоянный выходной сигнал обычного ЦАП без фильтра встраивается практически в любое устройство, а начальное изображение или конечная полоса пропускания конструкции сглаживают отклик шага в непрерывную кривую.

Отвечая на вопрос: «Что такое ЦАП?», стоит отметить, что данный компонент преобразует абстрактное число конечной точности (обычно двоичная цифра с фиксированной запятой) в физическую величину (например, напряжение или давление). В частности, цифро-аналоговое преобразование часто используется для изменения данных временных рядов в непрерывно изменяющийся физический сигнал.

Идеальный ЦАП преобразует абстрактные цифры в концептуальную последовательность импульсов, которые затем обрабатываются с помощью фильтра реконструкции, используя некоторую форму интерполяции для заполнения данных между импульсами. Обычный практический цифро-аналоговый преобразователь изменяет числа в кусочно-постоянную функцию, составленную из последовательности прямоугольных моделей, которые создаются с удержанием нулевого порядка. Кроме того, отвечая на вопрос: «Что такое ЦАП?» стоит отметить и другие методы (например, основанные на дельта-сигма-модуляции). Они создают выход с модулированной плотностью импульсов, который можно аналогичным образом фильтровать для получения плавно изменяющегося сигнала.

Согласно теореме отсчетов Найквиста-Шеннона ЦАП может реконструировать исходную вибрацию из выборочных данных при условии, что его зона внедрения соответствует определенным требованиям (например, импульс основной полосы частот с линией пропускания меньшей плотности). Цифровая выборка представляет ошибку квантования, которая проявляется как шум низкого уровня в восстановленном сигнале.

Упрощенная функциональная схема 8-битного инструмента

Сразу же стоит отметить, что самой популярной моделью является цифро-аналоговый преобразователь Real Cable NANO-DAC. ЦАП является частью передовой технологии, которая внесла значительный вклад в цифровую революцию. Для иллюстрации стоит рассмотреть типичные междугородние телефонные звонки.

Голос вызывающего абонента преобразуется в аналоговый электрический сигнал с помощью микрофона, а затем данный импульс изменяется уже в цифровой поток вместе с ЦАП. Вслед за тем последний разделяется на сетевые пакеты, где он может быть отправлен вместе с другими цифровыми данными. И это может быть необязательно аудио.

Затем пакеты принимаются в месте назначения, но каждый из них может идти по совершенно разному маршруту и даже не достигать места назначения в правильном порядке и в нужное время. Цифровые речевые данные затем извлекаются из пакетов и собираются в поток общих данных. ЦАП преобразует это обратно в аналоговый электрический сигнал, который приводит в действие аудиоусилитель (например, цифро-аналоговый преобразователь Real Cable NANO-DAC). А он, в свою очередь, активирует громкоговоритель, который, наконец, производит необходимый звук.

Аудио

Большинство современных акустических сигналов хранятся в цифровом виде (например, MP3 и CD). Для того чтобы их можно было услышать через динамики, они должны быть преобразованы в похожий импульс. Таким образом можно найти цифро-аналоговый преобразователь для телевизора, проигрывателя компакт-дисков, цифровых музыкальных систем и звуковых карт для ПК.

Специализированные автономные ЦАП также можно найти в высококачественных Hi-Fi системах. Обычно они принимают цифровой выход совместимого проигрывателя компакт-дисков или выделенного транспорта и преобразуют сигнал в аналоговый выход линейного уровня, который затем можно подавать в усилитель для управления динамиками.

Подобные цифро-аналоговые преобразователи можно найти в цифровых столбцах, таких как колонки USB, и в звуковых картах.

В приложениях, использующих трансляцию голоса по IP, источник должен быть сначала оцифрован для передачи, поэтому он подвергается преобразованию через АЦП, а затем преобразовывается в аналоговый с использованием ЦАП на принимающей стороне. Например, такой способ применяется для некоторых цифро-аналоговых преобразователей (телевизор).

Изображение

Сэмплирование имеет тенденцию работать в совершенно ином масштабе, в целом, благодаря крайне нелинейному отклику как электронно-лучевых трубок (для которых предназначалось подавляющее большинство работ по созданию цифрового видео), так и человеческого глаза, используя гамма-кривую для обеспечения появление равномерно распределенных ступеней яркости по всему динамическому диапазону дисплея. Отсюда необходимость использования RAMDAC в компьютерных видеоприложениях с довольно глубоким цветовым разрешением, чтобы непрактично создавать жестко закодированное значение в ЦАП для каждого выходного уровня каждого канала (например, для Atari ST или Sega Genesis понадобится 24 таких значения; для 24-битной видеокарты потребуется 768).

Учитывая это врожденное искажение, для телевизионного или видеопроектора нередко правдиво заявляется, что линейный коэффициент контрастности (разница между самыми темными и яркими выходными уровнями) составляет 1 000:1 или более. Это эквивалентно 10 битам верности звука, даже если он может только принимать сигналы с 8-битной точностью и использовать ЖК-панель, отображающую едва лишь шесть или семь бит на канал. На этой основе публикуются обзоры ЦАПов.

Видеосигналы от цифрового источника, такого как компьютер, должны быть преобразованы в аналоговую форму, если необходимо их отображение на мониторе. С 2007 года похожие входы использовались чаще, чем цифровые, но это изменилось, так как плоские дисплеи с подключениями DVI или HDMI стали более распространенными. Однако ЦАП для видео встроен в любой цифровой видеоплейер с такими же выходами. Цифро-аналоговый преобразователь звука обычно интегрируется с некоторой памятью (ОЗУ), которая содержит таблицы реорганизации для гамма-коррекции, контрастности и яркости, чтобы создать приспособление под названием RAMDAC.

Устройство, которое отдаленно связано с ЦАП, представляет собой потенциометр с цифровым управлением, используемый для улавливания сигнала.

Механическая конструкция

Например, в печатной машинке IBM Selectric уже используется неручной ЦАП для управления шариком.

Схема цифро-аналогового преобразователя выглядит так.

Однобитовый механический привод принимает два положения: одно при включении, другое при выключении. Движение нескольких однобитовых исполнительных механизмов может быть объединено и взвешено с помощью устройства без колебаний для получения более точных шагов.

Именно пишущая машинка IBM Selectric использует такую систему.

Основные типы цифро-аналоговых преобразователей

  1. Широтно-импульсный модулятор, где стабильный ток или напряжение переключается в низкочастотный аналоговый фильтр с длительностью, определяемой с помощью цифрового входного кода. Этот метод зачастую применяется с целью управления скоростью электродвигателя и затемнения светодиодных ламп.
  2. Цифро-аналоговый аудио-преобразователь с избыточной дискретизацией или интерполяционные ЦАП, например, использующие дельта-сигма-модуляцию, используют метод изменений плотности импульсов. Скорости более 100 тысяч выборок в секунду (например, 180 кГц) и разрешение 28 бит достижимы с помощью устройства с дельта-сигмой.
  3. Двоично-взвешенный элемент, который содержит отдельные электрические компоненты для каждого бита ЦАП, подключенного к точке суммирования. Именно она может складывать операционный усилитель. Сила тока источника пропорциональна весу бита, которому он соответствует. Таким образом, все ненулевые биты кода суммируются с весом. Это происходит, поскольку они имеют в распоряжении один и тот же источник напряжения. Это единственный из наиболее быстрых способов преобразования, но он не идеален. Так как есть проблема: низкая верность из-за больших данных, необходимых для каждого отдельного напряжения или тока. Такие высокоточные компоненты дорогие, поэтому этот тип моделей обычно ограничен 8-битным разрешением или даже меньше. Коммутируемый резистор имеет назначение цифро-аналоговых преобразователей в параллельных источниках сети. Отдельные экземпляры включены в электричество на основе цифрового входа. Принцип работы цифро-аналогового преобразователя этого типа заключается в коммутируемом источнике тока ЦАП, из которого выбираются разные ключи на основе числового входа. Он включает синхронную конденсаторную линию. Эти единичные элементы подключаются или отключаются с помощью специального механизма (лапки), который находится около всех штекеров.
  4. Цифро-аналоговые преобразователи лестничного типа, который представляет собой бинарный-взвешенный элемент. Он, в свою очередь, использует повторяющуюся структуру каскадных значений резистора R и 2R. Это повышает точность из-за относительной простоты изготовления механизма с одинаковым номиналом (или источников тока).
  5. Последовательное наступление либо цикличный ЦАП, который один за другим строит выходные данные в течение каждого этапа. Отдельные биты цифрового входа обрабатываются всеми разъемами, пока не будет учтен весь объект.
  6. Термометр — кодированный ЦАП, который содержит равный резистор или ток-источник сегмент для каждого возможного значения выхода ЦАП. 8-разрядный ЦАП градусника будет располагать 255 элементами, а 16-заряженный ЦАП термометра будет иметь 65 535 частей. Это, пожалуй, самая быстрая и высокоточная архитектура ЦАП, но за счет высокой стоимости. Благодаря этому типу ЦАП достигнуты скорости преобразования более одного миллиарда выборок в секунду.
  7. Гибридные ЦАПы, которые используют комбинацию вышеуказанных методов в одном преобразователе. Большинство интегральных микросхем ЦАП относятся к этому типу из-за сложности одновременного получения низкой стоимости, большой скорости и правильности в одном приборе.
  8. Сегментированный ЦАП, который объединяет принцип кодирования термометра для старших разрядов и двоичного взвешивания для младших компонентов. Таким образом достигается компромисс между точностью (с помощью принципа кодирования термометра) и количеством резисторов или источников тока (с использованием бинарного взвешивания). Глубокое устройство с двойным действием означает сегментацию 0 %, а конструкция с полным термометрическим кодированием — имеет 100 %.

Большинство DACS, представленные в этом списке, полагаются на постоянное опорное напряжение, чтобы создать их выходное значение. В качестве альтернативы умножающий ЦАП принимает переменное входное напряжение для их преобразования. Это накладывает дополнительные конструктивные ограничения на полосу пропускания схемы реорганизации. Теперь понятно, для чего нужны цифро-аналоговые преобразователи разных видов.

Производительность

ЦАП очень важны для плодотворности системы. Наиболее значительные характеристики этих устройств — это разрешение, которое создано для применения цифро-аналогового преобразователя.

Количество возможных выходных уровней, которые ЦАП предназначены для воспроизведения, обычно указывается как количество битов, которые оно использует, именно это является основанием два логарифма числа уровней. Например, 1-битный ЦАП предназначен для воспроизведения двух, тогда как 8-битный создан для 256 схем. Дополнение связано с эффективным числом битов, которое является измерением фактического позволения, достигнутого ЦАП. Разрешение определяет глубину цвета в видеоприложениях и битовую частоту звука в аудиоустройствах.

Максимальная частота

Измерение наибольшей скорости, на которой схема ЦАП может работать и при этом вырабатывать правильный выходной сигнал, определяет взаимосвязь между ним и шириной полосы дискретизированного сигнала. Как указано выше, теорема отсчетов Найквиста – Шеннона связывает непрерывные и дискретные сигналы и утверждает, что любой сигнал может быть восстановлен с любой точностью по своим дискретным отчетам.

Монотонность

Это понятие означает способность аналогового выхода ЦАП перемещаться только в направлении, в котором движется цифровой вход. Эта характеристика очень важна для ЦАП, используемых как низкий источник сигнала частоты.

Общее гармоническое искажение и шум (THD + N)

Измерение искривлений и посторонних звуков, вносимых ЦАП в сигнал, выражается в процентах от общей мощности нежелательных гармонических искажений и шума, которые сопровождают желаемый сигнал. Это очень важная характеристика для приложений ЦАП с динамическим и малым выходом.

Диапазон

Измерение разницы между самым большим и маленьким сигналами, которые ЦАП может воспроизводить, выраженное в децибелах обычно связано с разрешением и уровнем шума.

Другие измерения, такие как искажение фазы и джиттер, также могут быть очень важны для некоторых приложений. В них есть те (например, беспроводная передача данных, композитное видео), которые могут даже полагаться на точное получение сигналов с фазовой регулировкой.

Линейная выборка звука PCM обычно работает на основе разрешения каждого бита, эквивалентного шести децибелам амплитуды (увеличение громкости или точности в два раза).

Нелинейные кодировки PCM (A-law / μ-law, ADPCM, NICAM) пытаются улучшить их эффективные динамические диапазоны различными способами — логарифмическими размерами шага между уровнями выходного звука, представленными каждым битом данных.

Классификация цифро-аналоговых преобразователей

Классификация по нелинейности разделяет их на:

  1. Отличительная нелинейность, которая показывает, насколько два соседних кодовых значения отклоняются от безукоризненного шага 1 LSB.
  2. Накопленная нелинейность показывает, насколько передачи ЦАП отклоняется от идеальной.

То есть идеальной характеристикой обычно является прямая линия. INL показывает, насколько фактическое напряжение при данном значении кода отличается от этой линии в младших битах.

Усиление

В конечном итоге шум ограничивается тепловым гулом, создаваемым пассивными компонентами, такими как резисторы. Для аудиоприложений и при комнатной температуре такой звук обычно составляет чуть менее 1 мкВ (микровольт) белого сигнала. Это ограничивает продуктивность менее 20 бит даже в 24-битных ЦАП.

Производительность в частотной области

Динамический диапазон без паразитов (SFDR) указывает в дБ касательство мощностей преобразованного основного сигнала и наибольшего нежелательного выброса.

Отношение шума и искажения (SNDR) указывает в дБ свойство мощностей преобразованного основного звука к его сумме.

Общее слаженное искажение (THD) является сложением мощностей всех HDi.

Если максимальная ошибка DNL меньше 1 LSB, то цифро-аналоговый преобразователь гарантированно будет однообразным. Однако многие монотонные инструменты могут иметь максимальное значение DNL больше 1 LSB.

Производительность во временной области:

  1. Импульсная зона глитча (энергия глюка).
  2. Неопределенность ответа.
  3. Время нелинейности (ТНЛ).

Основные операции ЦАП

Аналого-цифровой преобразователь принимает точное число (чаще всего двоичное количество с фиксированной запятой) и преобразует его в физическую величину (например, напряжение или давление). ЦАП часто используются для реорганизации данных временных рядов конечной точности в непрерывно изменяющийся физический сигнал.

Идеальный цифро-аналоговый преобразователь берет абстрактные числа из последовательности импульсов, которые затем обрабатываются с использованием формы интерполяции для заполнения данных между сигналами. Обычный цифро-аналоговый преобразователь помещает числа в кусочно-постоянную функцию, состоящую из последовательности прямоугольных значений, которая моделируется с удержанием нулевого порядка.

Преобразователь восстанавливает исходные сигналы так, чтобы его полоса пропускания соответствовала определенным требованиям. Цифровая выборка сопровождается ошибками квантования, которые создают шум низкого уровня. Именно он добавляется к восстановленному сигналу. Минимальная амплитуда аналогового звука, который может привести к изменению цифрового, называется наименьшим значащим битом (LSB). А ошибка (округления), возникающая между аналоговым и цифровым сигналами, называется погрешностью квантования.

«Кристальный звук», сравнительное тестирование миниатюрных внешних USB ЦАП: Schiit Fulla, Сambr >

Schiit Fulla, Сambridge Audio Dacmagic XS, AudioQuest DragonFly Red, FiiO Alpen 2 E17K, M-Audio Micro DAC 24/192

Название: Цифро-аналоговые преобразователи (ЦАП)
Раздел: Рефераты по коммуникации и связи
Тип: реферат Добавлен 21:35:17 16 мая 2009 Похожие работы
Просмотров: 6080 Комментариев: 14 Оценило: 6 человек Средний балл: 4.5 Оценка: 5 Скачать
  • О проекте «Кристальный звук»
  • Сравнительное тестирование наушников Beats Pro и Oppo PM-3
  • «Кристальный звук», сравнительное тестирование внешних USB ЦАП для мобильных устройств / декабрь-2014: Creative Sound Blaster E5, Oppo HA-2, Denon DA-10, Tento Porta DAC 1866, FiiO F18 Kunlun, Venture Craft Go DAP BXD
  • Методика тестирования
  • Оборудование
  • Словарь терминов
  • Измерения
  • Награды

Понятие ЦАП в русском языке — это прямой аналог аббревиатуры DAC в английском. Может означать как специализированную микросхему преобразователя из цифры в аналог, так и готовое законченное устройство. USB ЦАП означает внешнюю звуковую карту, которая служит исключительно для прослушивания музыки, в 90% случаев такие ЦАП не имеют аналоговых входов. Зато у USB ЦАП практически наверняка имеется мощный специализированный наушниковый усилитель, который позволяет подключать практически все распространенные модели наушников, кроме экзотики. USB ЦАП, как правило, обеспечивает намного более качественное звучание, чем интегрированный звук или массовые звуковые карты, а также зачастую поддерживает форматы высокого разрешения и DSD-воспроизведение без конвертации. В последнее время USB ЦАП вытеснили звуковые карты в кругу любителей музыки. Обновления в этой области ведутся непрерывно и вызывают огромный интерес.

Участники сегодняшнего тестирования интересны тем, что все они оригинальны и весьма доступны по цене. При этом нет ни одного устройства на навязшей в зубах начинке бюджетных устройств, типа WM8740. Все ЦАПы очень интересны и заслуживают внимания. Форм-фактор устройств миниатюрный. Основной сценарий — использование с наушниками, а не с колонками. Но это и не мобильные ЦАП. Хотя некоторые из устройств могут играть c телефоном, использовать их таким образом можно только в настольном варианте. Ходить по улице с ненадежной связкой из переходников не получится, а про низкую громкость при питании от телефона даже и говорить не хочется.

Поэтому для всех тестируемых устройств больше всего подходит определение «миниатюрные внешние ЦАПы», основной вариант для подключения которых — USB-порт ноутбука. На это же намекают ну очень короткие USB-кабели в комплекте либо наличие разъема USB и регулировки громкости прямо на корпусе ЦАПа. В принципе, опциональный качественный удлинитель довольно легко позволит подключить такой ЦАП и к настольному компьютеру. Но все же для настольной системы лучше поискать стационарный ЦАП со своим питанием. Об этом — как-нибудь в другой раз.

Мы приводим параметры, заявленные производителями, в ознакомительных целях. Не нужно по ним выбирать устройство! Если устройства примерно одного уровня, нет перепада в классе, то делать выбор по цифрам — очень плохая идея. Не лучше, чем по цвету упаковки. Зачастую паспортные измерения сделаны в разных условиях и по разным методикам. Часто измеряют при очень высоком уровне сигнала — для получения высоких характеристик сигнал/шум и высокой мощности. В реальной эксплуатации все эти максимальные характеристики смысла не имеют, так как измерены на керамических резисторах эквивалентного сопротивления. Подключение 16-омных наушников к усилителю с 2 ВRMS приведет к мгновенному выходу их из строя или к проблемам со слухом.

Зачем производитель тогда вообще указывает какие-то цифры? Причины разные. Часто высокие параметры являются предметом гордости разработчика, инструментом маркетинга или могут быть востребованы в одном случае из тысячи, при подключении экзотической аппаратуры. Измеренные параметры реального устройства могут сильно отличаться от паспортных, причем отличия чаще в лучшую сторону. В паспорте приводятся цифры с запасом на дрейф комплектующих или просто выбрана ближайшая красивая цифра. Считается, что 0,01% или 0,005% выглядит лучше, чем 0,003857%, а сигнал/шум 100 дБ выглядит привлекательнее, чем 103,76 дБ, так как круглое число вызывает меньше беспокойства у людей с цифробоязнью.

Перейдем к участникам тестирования.

Тестировавшиеся устройства

Schiit Fulla

FiiO — чисто китайская компания, где всё проектируют и производят 100%-ные китайцы. Однако их мобильные ЦАПы и усилители весьма интересные, популярные, не очень дорогие в сравнении с брендами первой величины. Такой очень крепкий середнячок.

Это единственный ЦАП с аккумулятором внутри, однако мобильные устройства не определяют его как ЦАП (как это происходит в случае FiiO E18), а на картинке производителя нарисован только ноутбук. Более того, есть официальный ответ производителя: это ЦАП только для ноутбуков, с телефоном он работать и не должен. 15 часов батарейки нужны, видимо, для более чистого питания устройства, либо производитель не смог заставить уверенно работать E17K с телефонами и «переобулся на лету» с позиционированием устройства.

Внутри стоит экономичный контроллер SA9027 (наше тестирование — определенно бенефис Saviaudio). Микросхема ЦАП PCM5102 (сигнал/шум 112 дБ, КГ+шум −93 дБ) довольно популярна в бюджетных устройствах. Однако все можно простить за OLED-экран и цельнометаллический корпус — очень эффектно смотрится! Аналоговая часть также не подкачала: полевики в ОУ OPA1642 + мощный токовый буфер LMH6643. Драйвер ASIO есть. DSD есть (software-driven). Поддержка до 96 кГц.

Что нам не очень понравилось: на экране устройства всегда фигурирует надпись 16 бит 48 кГц, независимо от поступающего по USB формата. Как поясняет производитель, цифры на экране не отражают режим работы ЦАП устройства (!). Они показывают некие внутренние режимы работы. Например, при отключении USB выводится надпись «16 бит 32 кГц». При воспроизведении DSD выводится 24 бит 96 кГц. К устройству прилагается табличка с расшифровкой. Ноу комментс.

Каждый электрик должен знать:  Термоусадочная трубка размеры, характеристики, правила пользования
Добавить комментарий