Явление электромагнитной индукции


СОДЕРЖАНИЕ:

Явление электромагнитной индукции

ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ

§1 Явление электромагнитной индукции.

Закон Фарадея

а) В соленоид, замкнутый на гальванометр, вдвигается и выдвигается постоянный магнит. На гальванометре будет отклонение стрелки, и оно будет тем больше, чем быстрее происходит вдвижение и выдвижение. При изменении полюсов магнита направление отклонения стрелки изменится.

б) В соленоид, замкнутый на гальванометр, вставлена катушка (другой соленоид), через которую пропускается ток. При включении и выключении (т.е. при любом изменении тока) происходит отклонение стрелки гальванометра. Направление отклонения изменяется при включении – выключении, уменьшении – увеличении тока, вдвигании – выдвигании катушек.

Явление электромагнитной индукции заключается в том, что в замкнутом проводящем контуре при изменении потока магнитной индукции, охватываемого этим контуром, возникает индукционный (наведенный) электрический ток.

Возникновение индукционного тока означает, что в контуре действует электродвижущая сила ? i – ЭДС индукции.

В 1834 г. Э.Х. Ленц установил закон, позволяющий определить направление индукционного тока.

Правило Ленца : индукционный ток в контуре всегда имеет такое направление, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызвавшего этот индукционный ток.

Знак минус в законе Фарадея является математическим выражением правила Ленца.

Если контур, в котором индуцируется ЭДС, состоит не из одного витка, а из N витков (например, соленоид), то если витки соединены последовательно, ? i будет равна сумме ЭДС, индуцируемых в каждом из витков в отдельности:

— потокосцепление или полный магнитный поток.

Т.к. Ф B = BScosα , то для того чтобы изменить магнитный поток Ф можно изменить:

1) магнитное поле ;

§2 Вращение рамки в магнитном поле

Явление электромагнитной индукции используется для преобразования механической энергии и энергии электрического тока в генераторах.

Рамка площадью S вращается в однородном магнитном поле ( ) равномерно с постоянной угловой скоростью ω.

Т.к. частота сети , то для увеличения нужно увеличивать В и S . В можно увеличить, применяя мощные постоянные магниты, или в электромагнитах пропускать большие токи. Сердечник электромагнита выбирают с большим µ. Для увеличения S используют многовитковые обмотки.

Если через рамку, помещенную в магнитном поле, пропускать электрический ток, то на нее будет действовать вращающий момент

и рамка начнет вращаться. На этом принципе основана работа электродвигателей, предназначенных для превращения электрической энергии в механическую.

§3 Токи Фуко.

Индукционные токи могут возбуждаться и в сплошных массивных проводниках. В этом случае их называют токами Фуко или вихревыми токами. Электрическое сопротивление массивного проводника мало, поэтому токи Фуко могут достигать очень большой силы.

Токи Фуко, как и индукционные токи в линейных проводниках, подчиняются правилу Ленца: их магнитное поле направлено так, чтобы противодействовать изменению магнитного поля, индуцирующего вихревые токи. Поэтому движущиеся в сильном магнитном поле хорошие проводники испытывают сильное торможение, обусловленное взаимодействием токов Фуко с магнитным полем. Это используют для демпфирования (успокоения) подвижных частей гальванометров, сейсмографов и т.п. Тепловое действие токов Фуко используется в индукционных плавильных печах.

Для уменьшения токов Фуко сердечники трансформаторов делают из отдельных пластин и пластины перпендикулярны токам Фуко.

Вследствие возникновения вихревых токов быстропеременный ток неравномерно распределен по сечению провода — он вытесняется на поверхность проводника — скин-эффект. Поэтому на высоких частотах используют полые провода.

§4 Индуктивность контура.

Самоиндукция

В любом случае, когда по контуру протекает электрический ток, создается магнитное поле. При этом всегда имеется магнитный поток Ф, проходящий через поверхность, ограниченную рассматриваемым контуром. Любое изменение силы тока в контуре приводит к изменению магнитного поля, сцепленного с контуром, а это в свою очередь вызывает появление индукционного тока. Это явление получило название явления самоиндукции: возникновение Э ДС индукции в проводнике при изменении в нем тока.

Из закона Био-Савара-Лапласа следует

т.е. магнитный поток, сцепленный с контуром, пропорционален току I в контуре

[ L ] = Гн (Генри). 1 Гн — индуктивность такого контура, магнитный поток самоиндукции которого при токе 1 А равен 1 Вб .

Рассчитаем индуктивность L соленоида:

магнитная индукция В соленоида

т.е. индуктивность зависит от геометрических размеров соленоида ( ), числа витков и магнитной проницаемости сердечника соленоида. Поэтому можно сказать, что индуктивность L аналог емкости С уединенного проводника, которая также зависит от геометрических размеров, от формы и диэлектрической проницаемости среды.

Применяя к явлению самоиндукции закон Фарадея, получим, что Э ДС самоиндукции

где знак минус, обусловленный правилом Ленца, показывает, что наличие индуктивности в контуре приводит к замедлению изменения тока в нем. Если ток со временем возрастает, то , и т.е. ток самоиндукции направлен навстречу току, обусловленному внешним источником и тормозит его возрастание. Если ток со временем убывает, то и т.е. индукционный ток имеет такое же направление, как и убывающий ток в контуре, и замедляет его убывание. Следовательно, контур, обладающий индуктивностью, имеет электрическую инертность, заключающуюся в том, что любое изменение тока тормозится, тем сильнее, чем больше индуктивность контура.

ИНФОФИЗ — мой мир.

Весь мир в твоих руках — все будет так, как ты захочешь

Адрес: г. Новороссийск
Телефон: Номер телефона
Почта: kalinelena@yandex.ru

Весь мир в твоих руках — все будет так, как ты захочешь

Как сказал.

Тестирование

Урок 36. Лекция 36. Электромагнитная индукция. Правило Ленца.

Взаимная связь электрических и магнитных полей была установлена выдающимся английским физиком М. Фарадеем в 1831 г. Он открыл явление электромагнитной индукции. Оно заключается в возникновении электрического тока в замкнутом проводящем контуре при изменении во времени магнитного потока, пронизывающего контур.

Явление электромагнитной индукции заключается в возникновении электрического тока в замкнутом контуре при изменении магнитного потока, пронизывающего контур.

Магнитным потоком Φ через площадь S контура называют величину Ф = BScosα

где B – модуль вектора магнитной индукции, α – угол между вектором B и нормалью n к плоскости контура.

Явление электромагнитной индукции Фарадей исследовал с помощью двух изолированных друг от друга проволочных спиралей, намотанных на деревянную катушку. Одна спираль была присоединена к гальванической батарее, а другая — к гальванометру, регистрирующему слабые токи. В моменты замыкания и размыкания цепи первой спира­ли стрелка гальванометра в цепи второй спирали отклонялась.

Опыты Фарадея по исследованию ЭМИ можно разделить на две серии:

Объяснение опыта: При внесении магнита в катушку, соединенную с амперметром в цепи возникает индукционный ток. При удалении так же возникает индукционный ток, но другого направления. Видно, что индукционный ток зависит от направления движения магнита, и каким полюсом он вносится. Сила тока зависит от скорости движения магнита.

Объяснение опыта: электрический ток в катушке 2 возникает в моменты замыкания и размыкания ключа в цепи катушки 1. Видно, что направление тока зависит от того, замыкаюи или размыкают цепь катушки 1, т.е. от того, увеличивается (при замыкании цепи) или уменьшаетя (при размыкании цепи) магнитный поток. пронизывающий 1-ю катушку.

Проводя многочисленные опыты Фарадей установил, что в замкнутых проводящих контурах электрический ток возникает лишь в тех случаях, когда они находятся в переменном магнитном поле, независимо от того, каким способом достигается изменение потока индукции магнитного поля во времени.

Ток, возникающий при явлении электромагнитной индукции, называют индукционным.

Строго говоря, при движении контура в магнитном поле генерируется не определенный ток (который зависит от сопротивления), а определенная э. д. с.

Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции E инд, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус:

Эта формула выражает закон Фарадея: э. д. с. индукции равна скорости изменения магнитного потока через поверхность, ограни­ченную контуром.

Знак минус в формуле отражает правило Ленца.

В 1833 году Ленц опытным путем доказал утверждение, которое называется правилом Ленца: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

При возрастании магнитного потока Ф>0, а ε инд При уменьшении магнитного потока Ф инд > 0, т.е. магнитное поле индукционного тока увеличивает убывающий магнитный поток через контур.

Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии: если магнитное поле через контур увеличивается, то ток в контуре направлен так, что его магнитное поле направлено против внешнего, а если внешнее магнитное поле через контур уменьшается, то ток направлен так, что его магнитное поле поддерживает это убывающее магнитное поле.

ЭДС индукции зависит от разных причин. Если вдвигать в катушку один раз сильный магнит, а в другой — слабый, то показания прибора в первом случае будут более высокими. Они будут более высокими и в том случае, когда магнит движется быстро. В каждом из проведённых в этой работе опыте направление индукционного тока определяется правилом Ленца. Порядок определения направления индукционного тока показан на рисунке.

На рисунке синим цветом обозначены силовые линии магнитного поля постоянного магнита и линии магнитного поля индукционного тока. Силовые линии магнитного поля всегда направлены от N к S – от северного полюса к южному полюсу магнита.

По правилу Ленца индукционный электрический ток в проводнике, возникающий при изменении магнитного потока, направлен таким образом, что его магнитное поле противодействует изменению магнитного потока. Поэтому в катушке направление силовых линий магнитного поля противоположно силовым линиям постоянного магнита, ведь магнит движется в сторону катушки. Направление тока находим по правилу буравчика: если буравчик (с правой нарезкой) ввинчивать так, чтобы его поступательное движение совпало с направлением линий индукции в катушке, тогда направление вращения рукоятки буравчика совпадает с направлением индукционного тока.

Поэтому ток через миллиамперметр течёт слева направо, как показано на рисунке красной стрелкой. В случае, когда магнит отодвигается от катушки, силовые линии магнитного поля индукционного тока будут совпадать по направлению с силовыми линиями постоянного магнита, и ток будет течь справа налево.

Изменение магнитного потока , пронизывающего замкнутый контур, может происходить по двум причинам.

1. Магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле. Возникновение ЭДС индукции объясняется действием силы Лоренца на свободные заряды в движущихся проводниках.. Электродвижущая сила в цепи — это результат действия сторонних сил, т.е. сил неэлектрического происхождения. Сила Лоренца играет в этом случае роль сторонней силы, под действием которой происходит разделение зарядов, в результате чего на концах проводника по­является разность потенциалов.

Рассмотрим в качестве примера возникновение ЭДС индукции в прямоугольном контуре, помещенном в однородное магнитное поле В, перпендикулярное плоскости контура. Пусть одна из сторон контура длиной l скользит со скоростью v по двум другим сторонам.

На свободные заряды на этом участке контура действует сила Лоренца. Составляющая силы Лоренца, действующая на свободный электрон, связанная с переносной скоростью v зарядов, направлена вдоль проводника. Эта составляющая указана на рис. 3. Это она играет роль сторонней силы. Ее модуль равен FЛ = eυB

Э. д. с. индукции в проводнике характеризует работу по перемещению единичного положительного заряда вдоль проводника.

По определению ЭДС

В других неподвижных частях контура сторонняя сила равна нулю. Соотношению для инд можно придать привычный вид. За времы Δt площадь контура изменяется на ΔS = lυΔt. Изменение магнитного потока за это время равно ΔΦ = BlυΔt. Следовательно,

Если сопротивление всей цепи равно R, то по ней будет протекать индукционный ток, равный

За время Δt на сопротивлении R выделится джоулево тепло

Возникает вопрос: откуда берется эта энергия, ведь сила Лоренца работы не совершает! Этот парадокс возник потому, что мы учли работу только одной составляющей силы Лоренца. При протекании индукционного тока по проводнику, находящемуся в магнитном поле, на свободные заряды действует еще одна составляющая силы Лоренца, связанная с относительной скоростью движения зарядов вдоль проводника. Эта составляющая ответственна за появление силы Ампера FA . Для случая, изображенного на рис. 3, модуль силы Ампера равен FA = IBl. Сила Ампера направлена навстречу движения проводника; поэтому она совершает отрицательную механическую работу. За время Δt эта работа Aмех равна

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Джоулево тепло в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

При движении провод­ника вправо свободные электроны, содержащиеся в нем, будут двигаться также вправо, т. е. возникает конвекционный ток. Направление этого тока обратно направлению движения электронов.

На каждый движущийся электрон со стороны магнитного поля действует сила Лоренца Fл. Заряд электрона — отрицательный. Поэтому сила Лоренца направлена вниз.

Под действием этой силы электроны будут двигаться вниз, поэтому в нижней части проводника l накапли­ваются отрицательные заряды, а в верхней — положительные. Образуется разность потенциалов φ1 — φ2, в проводнике возникает электрическое поле напряженностью Е, которое препятствует дальнейшему перемещению электро­нов.

В момент, когда сила Fэл = еЕ, действующая на заряды со стороны этого электрического поля, станет равной по модулю силе Fл = evBsinα, действую­щей на заряды со стороны магнитного поля, т.е. при еЕ = evBsinα или Е = vBsinα , заряды перестанут перемещаться.

Напряженность электрического поля Е в движущемся проводнике длиной l и разность потенциалов φ1 — φ2 связаны между собой соотношением

Если такой проводник замкнуть, то по цепи пойдет ток. Таким образом, на концах проводника индуцируется э.д. с.

2. Вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре . В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике. Следовательно, электрическое поле, порожденное изменяющимся магнитным полем, не является потенциальным. Его называют вихревым электрическим полем . Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом (1861 г.).

Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея.

Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной: в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца; в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Явление электромагнитной индукции лежит в основе действия электриче­ских генераторов. Если равномерно вращать проволочную рамку в однородном магнитном поле, то возникает индуцированный ток, периодически изменяющий свое направление. Даже одиночная рамка, вращающаяся в однородном маг­нитном поле, представляет собой генератор переменного тока. Более сложные генераторы обычно являются улучшенными вариантами такого устройства.

Явление электромагнитной индукции (стр. 1 из 3)

Волжский Институт Строительства и Технологий

(филиал) государственного образовательного Учреждения

Высшего профессионального образования

«Волгоградский Государственный Архитектурно-Строительный Университет»

для студентов специальности

«Экономика и управление на предприятии (строительство)»

сокращённой заочной формы обучения

Выполнил : студент группы ЭУП-3-09

Шатова Оксана Сергеевна

Адрес: г. Волжский, ул. Мира, 94-9

План курсовой работы:

1. Теория : Явление электромагнитной индукции.

Задачи №№ 11, 21, 31, 41, 51, 61, 71, 81, 91, 101.

материалам пособия «Физика — справочные материалы» Кабардин О.Ф.

1. Теоретическая часть. Явление электромагнитной индукции.

Если электрический ток, как показали опыты Эрстеда, создает магнитное поле, то не может ли в свою очередь магнитное поле вызывать электрический ток в проводнике? Многие ученые с помощью опытов пытались найти ответ на этот вопрос, но первым решил эту задачу Майкл Фарадей (1791 — 1867).
В 1831 г. Фарадей обнаружил, что в замкнутом проводящем контуре при изменении магнитного поля возникает электрический ток. Этот ток назвали индукционным током.
Индукционный ток в катушке из металлической проволоки возникает при вдвигании магнита внутрь катушки и при выдвигании магнита из катушки (рис. 192),

а также при изменении силы тока во второй катушке, магнитное поле которой пронизывает первую катушку (рис. 193).

Явление возникновения электрического тока в замкнутом проводящем контуре при изменениях магнитного поля, пронизывающего контур, называется электромагнитной индукцией..Появление электрического тока в замкнутом контуре при изменениях магнитного поля, пронизывающего контур, свидетельствует о действии в контуре сторонних сил неэлектростатической природы или о возникновении ЭДС индукции. Количественное описание явления электромагнитной индукции дается на основе установления связи между ЭДС индукции и физической величиной, называемой магнитным потоком.
Магнитный поток. Для плоского контура, расположенного в однородном магнитном поле (рис. 194), магнитным потоком Ф через поверхность площадью S называют величину, равную произведению модуля вектора магнитной индукции

Правило Ленца. Опыт показывает, что направление индукционного тока в контуре зависит от того, возрастает или убывает магнитный поток, пронизывающий контур, а также от направления вектора индукции магнитного поля относительно контура. Общее правило, позволяющее определить направление индукционного тока в контуре, было установлено в 1833 г. Э. X. Ленцем.
Правило Ленца можно наглядно показать с помощью легкого алюминиевого кольца (рис. 195).

Опыт показывает, что при внесении постоянного магнита кольцо отталкивается от него, а при удалении притягивается к магниту. Результат опытов не зависит от полярности магнита.Отталкивание и притяжение сплошного кольца объясняется возникновением индукционного тока в кольце при изменениях магнитного потока через кольцо и действием на индукционный ток магнитного поля. Очевидно, что при вдвигании магнита в кольцо индукционный ток в нем имеет такое направление, что созданное этим током магнитное поле противодействует внешнему магнитному полю, а при выдвигании магнита индукционный ток в нем имеет такое направление, что вектор индукции его магнитного поля совпадает по направлению с вектором индукции внешнего поля.
Общая формулировка правила Ленца:возникающий в замкнутом контуре индукционный ток имеет такое направление, что созданный им магнитный поток через площадь, ограниченную контуром, стремится компенсировать то изменение магнитного потока, которым вызывается данный ток.
Закон электромагнитной индукции. Экспериментальное исследование зависимости ЭДС индукции от изменения магнитного потока привело к установлению закона электромагнитной индукции:ЭДС индукции в замкнутом контуре пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контуром.
В СИ единица магнитного потока выбрана такой, чтобы коэффициент пропорциональности между ЭДС индукции и изменением магнитного потока был равен единице. При этом закон электромагнитной индукции формулируется следующим образом: ЭДС индукции в замкнутом контуре равна модулю скорости изменения магнитного потока через поверхность, ограниченную контуром:

С учетом правила Ленца закон электромагнитной индукции записывается следующим образом:

ЭДС индукции в катушке. Если в последовательно соединенных контурах происходят одинаковые изменения магнитного потока, то ЭДС индукции в них равна сумме ЭДС индукции в каждом из контуров. Поэтому при изменении магнитного потока в катушке, состоящей из n одинаковых витков провода, общая ЭДС индукции в n раз больше ЭДС индукции в одиночном контуре:

Единица магнитного потока. Единица магнитного потока в Международной системе единиц называется вебером (Вб). Она определяется на основании использования закона электромагнитной индукции. Магнитный поток через площадь, ограниченную замкнутым контуром, равен 1 Вб, если при равномерном убывании этого потока до нуля за 1 с в контуре возникает ЭДС индукции 1 В:

Для однородного магнитного поля на основании уравнения (54.1) следует, что его магнитная индукция равна 1 Тл, если магнитный поток через контур площадью 1 м 2 равен 1 Вб:

Вихревое электрическое поле. Закон электромагнитной индукции (54.3) по известной скорости изменения магнитного потока позволяет найти значение ЭДС индукции в контуре и при известном значении электрического сопротивления контура вычислить силу тока в контуре. Однако при этом остается нераскрытым физический смысл явления электромагнитной индукции. Рассмотрим это явление подробнее.

Возникновение электрического тока в замкнутом контуре свидетельствует о том, что при изменении магнитного потока, пронизывающего контур, на свободные электрические заряды в контуре действуют силы. Провод контура неподвижен, неподвижными можно считать свободные электрические заряды в нем. На неподвижные электрические заряды может действовать только электрическое поле. Следовательно, при любом изменении магнитного поля в окружающем пространстве возникает электрическое поле. Это электрическое поле и приводит в движение свободные электрические заряды в контуре, создавая индукционный электрический ток. Электрическое поле, возникающее при изменениях магнитного поля, называют вихревым электрическим полем.

Работа сил вихревого электрического поля по перемещению электрических зарядов и является работой сторонних сил, источником ЭДС индукции.

Вихревое электрическое поле отличается от электростатического поля тем, что оно не связано с электрическими зарядами, его линии напряженности представляют собой замкнутые линии. Работа сил вихревого электрического поля при движении электри ческого заряда по замкнутой линии может быть отлична от нуля.

ЭДС индукции в движущихся проводниках. Явление электромагнитной индукции наблюдается и в тех случаях, когда магнитное поле не изменяется во времени, но магнитный поток через контур изменяется из-за движения проводников контура в магнитном поле. В этом случае причиной возникновения ЭДС индукции является не вихревое электрическое поле, а сила Лоренца.

Рассмотрим прямоугольный контур в однородном магнитном поле, вектор индукции

Явление электромагнитной индукции

Переменное магнитное поле, возбуждаемое изменяющимся током, создаёт в окружающем пространстве электрическое поле, которое в свою очередь возбуждает магнитное поле, и т.д. Взаимно порождая друг друга, эти поля образуют единое переменное электромагнитное поле — электромагнитную волну. Возникнув в том месте, где есть провод с током, электромагнитное поле распространяется в пространстве со скоростью света -300000 км/с.

В спектре частот разные места занимают радиоволны, свет, рентгеновское излучение и другие электромагнитные излучения. Их обычно характеризуют непрерывно связанными между собой электрическими и магнитными полями.

В настоящее время под магнитным полем понимают особую форму материи состоящую из заряженных частиц. В современной физике пучки заряженных частиц используют для проникновения в глубь атомов с целью их изучения. Сила, с которой действует магнитное поле на движущуюся заряженную частицу, называется силой Лоренца.

Метод основан на применении закона Фарадея для проводника в магнитном поле: в потоке электропроводящей жидкости, движущейся в магнитном поле наводится ЭДС, пропорциональная скорости потока, преобразуемая электронной частью в электрический аналоговый/цифровой сигнал.

Генератор постоянного тока

В режиме генератора якорь машины вращается под действием внешнего момента. Между полюсами статора имеется постоянный магнитный поток, пронизывающий якорь. Проводники обмотки якоря движутся в магнитном поле и, следовательно, в них индуктируется ЭДС, направление которой можно определить по правилу «правой руки». При этом на одной щетке возникает положительный потенциал относительно второй. Если к зажимам генератора подключить нагрузку, то в ней пойдет ток.

Трансформаторы широко применяются при передаче электрической энергии на большие расстояния, распределении ее между приемниками, а также в различных выпрямительных, усилительных, сигнализационных и других устройствах.

Преобразование энергии в трансформаторе осуществляется переменным магнитным полем. Трансформатор представляет собой сердечник из тонких стальных изолированных одна от другой пластин, на котором помещаются две, а иногда и больше обмоток (катушек) из изолированного провода. Обмотка, к которой присоединяется источник электрической энергии переменного тока, называется первичной обмоткой, остальные обмотки — вторичными.

Если во вторичной обмотке трансформатора намотано в три раза больше витков, чем в первичной, то магнитное поле, созданное в сердечнике первичной обмоткой, пересекая витки вторичной обмотки, создаст в ней в три раза больше напряжение.

Применив трансформатор с обратным соотношением витков, можно так же легко и просто получить пониженное напряжение.

Явление электромагнитной индукции

В статьях ранее было рассмотрено, что при движении в магнитном поле на заряженные частицы действует сила Лоренца.

Также известно, что в каждом проводнике содержатся свободные электроны. Если данный проводник (ток в нем не протекает) перемещать в магнитном поле, то каждый электрон, который находится в проводнике, подвергнется воздействию силы Лоренца. Представим, что отрезок проводника длиной l движется перпендикулярно вектору магнитной индукции:

Линии магнитной индукции В перпендикулярны картинке в направлении от нас (обозначено крестиками). Сила Лоренца будет равна:

V – скорость движения в магнитном поле проводника, e – заряд электрона, В – магнитная индукция внешнего поля, а угол между V и В равен 90 0 (sin α = 1).

В проводнике произойдет перемещение зарядов под воздействием силы Лоренца и на концах проводника возникнет некая разность потенциалов φ1 — φ2. Возникшее электрическое поле Е будет препятствовать перемещению зарядов и их дальнейшее движение прекратится. Сила, с которой электрическое поле будет воздействовать на электрон:

Е – напряженность электрического поля в проводнике.

Силы FЛ и FЭ будут равные по своей величине, но противоположны по направлению:

Разность потенциалов и напряженность электрического поля в движущемся проводнике длиной l связаны соотношением:

Если данную цепь замкнуть, то по ней начнет протекать электрический ток. Движущийся в магнитном поле участок цепи можно рассмотреть как «своеобразный источник тока», обладающий определенной электродвижущей силой, которую называют электродвижущей силой индукции.

Индуцируемую электродвижущую силу можно подсчитать по формулам:

Где α угол между векторами V и В.

Выразим ЭДС индукции εинд через магнитный поток индукции Ф, в момент когда проводник движется перпендикулярно полю (sin α = 1). Скорость движения проводника в этом случае равна:

dx – это элементарное перемещение проводника в направлении, перпендикулярном вектору магнитной индукции В, которое совершается за время dt. Тогда получим:

Но ldx = dS – площадь, которую проводник описывает в магнитном поле, а произведение:

Это магнитный поток, пронизывающий площадь dS. Поэтому формулу выше можно представить в виде:

Отсюда можно сделать вывод, ЭДС электромагнитной индукции в контуре будет пропорциональна скорости изменения магнитного потока сквозь поверхность, ограниченную этим контуром.

Данное соотношение называется законом Фарадея – Максвелла.

Явление электромагнитной индукции

Согласно закону электромагнитной индукции Фарадея (в СИ):

— электродвижущая сила, действующая вдоль произвольно выбранного контура, — магнитный поток через поверхность, натянутую на этот контур.

Знак «минус» в формуле отражает правило Ленца, названное так по имени русского физика Э. Х. Ленца:

Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.

Для катушки, находящейся в переменном магнитном поле, закон Фарадея можно записать следующим образом:

— электродвижущая сила, — число витков, — магнитный поток через один виток, — потокосцепление катушки.

Векторная форма

В дифференциальной форме закон Фарадея можно записать в следующем виде:

В интегральной форме (эквивалентной):

Здесь — напряжённость электрического поля, — магнитная индукция, — произвольная поверхность, — её граница. Контур интегрирования подразумевается фиксированным (неподвижным).

Следует отметить, что закон Фарадея в такой форме, очевидно, описывает лишь ту часть ЭДС, что возникает при изменении магнитного потока через контур за счёт изменения со временем самого поля без изменения (движения) границ контура (об учете последнего см. ниже).

  • В этом виде закон Фарадея входит в систему уравнений Максвелла для электромагнитного поля (в дифференциальной или интегральной форме соответственно) [1] .


Если же, скажем, магнитное поле постоянно, а магнитный поток изменяется вследствие движения границ контура (например, при увеличении его площади), то возникающая ЭДС порождается силами, удерживающими заряды на контуре (в проводнике) и силой Лоренца, порождаемой прямым действием магнитного поля на движущиеся (с контуром) заряды. При этом равенство продолжает соблюдаться, но ЭДС в левой части теперь не сводится к (которое в данном частном примере вообще равно нулю). В общем случае (когда и магнитное поле меняется со временем, и контур движется или меняет форму) последняя формула верна так же, но ЭДС в левой части в таком случае есть сумма обоих слагаемых, упомянутых выше (то есть порождается частично вихревым электрическим полем, а частично силой Лоренца и силой реакции движущегося проводника).

  • Некоторые авторы, например, М. Лившиц в журнале «Квант» за 1998 год [2] отрицают корректность применения термина закон Фарадея или закон электромагнитной индукции и т. п. к формуле в случае подвижного контура (оставляя для обозначения этого случая или его объединения со случаем изменения магнитного поля, например, термин правило потока) [3] . В таком понимании закон Фарадея — это закон, касающийся лишь циркуляции электрического поля (но не ЭДС, создаваемой с участием силы Лоренца), и в этом понимании понятие закон Фарадея в точности совпадает с содержанием соответствующего уравнения Максвелла.
  • Однако возможность (пусть с некоторыми оговорками, уточняющими область применимости) совпадающей формулировки «правила потока» с законом электромагнитной индукции нельзя назвать чисто случайной. Дело в том, что, по крайней мере для определенных ситуаций, это совпадение оказывается очевидным проявлением принципа относительности. А именно, например, для случая относительного движения катушки с присоединенным к ней вольтметром, измеряющим ЭДС, и источника магнитного поля (постоянного магнита или другой катушки с током), в системе отсчета, связанной с первой катушкой, ЭДС оказывается равной именно циркуляции электрического поля, тогда как в системе отсчета, связанной с источником магнитного поля (магнитом), происхождение ЭДС связано с действием силы Лоренца на движущиеся с первой катушкой носители заряда. Однако та и другая ЭДС обязаны совпадать, поскольку вольтметр показывает одну и ту же величину, независимо от того, для какой системы отсчета мы ее рассчитали.

Потенциальная форма

При выражении магнитного поля через векторный потенциал закон Фарадея принимает вид:

(в случае отсутствия безвихревого поля, то есть тогда, когда электрическое поле порождается полностью только изменением магнитного, то есть электромагнитной индукцией).

В общем случае, при учёте и безвихревого (например, электростатического) поля имеем:

Поскольку вектор магнитной индукции по определению выражается через векторный потенциал так:

то можно подставить это выражение в

и, поменяв местами дифференцирование по времени и пространственным координатам (ротор):

Отсюда, поскольку полностью определяется правой частью последнего уравнения, видно, что вихревая часть электрического поля (та часть, которая имеет ротор, в отличие от безвихревого поля ) — полностью определяется выражением

Т.е. в случае отсутствия безвихревой части можно записать

а в общем случае

История

В 1820 г. Ганс Христиан Эрстед показал, что протекающий по цепи электрический ток вызывает отклонение магнитной стрелки. Если электрический ток порождает магнетизм, то с магнетизмом должно быть связано появление электрического тока. Эта мысль захватила английского ученого М. Фарадея. «Превратить магнетизм в электричество», — записал он в 1822 г. в своём дневнике. Многие годы настойчиво ставил он различные опыты, но безуспешно, и только 29 августа 1831 г. наступил триумф: он открыл явление электромагнитной индукции. Установка, на которой Фарадей сделал своё открытие, заключалась в том, что Фарадей изготовил кольцо из мягкого железа примерно 2 см шириной и 15 см диаметром и намотал много витков медной проволоки на каждой половине кольца. Цепь одной обмотки замыкала проволока, в её витках находилась магнитная стрелка, удаленная настолько, чтобы не сказывалось действие магнетизма, созданного в кольце. Через вторую обмотку пропускался ток от батареи гальванических элементов. При включении тока магнитная стрелка совершала несколько колебаний и успокаивалась; когда ток прерывали, стрелка снова колебалась. Выяснилось, что стрелка отклонялась в одну сторону при включении тока и в другую, когда ток прерывался. М. Фарадей установил, что «превращать магнетизм в электричество» можно и с помощью обыкновенного магнита.

В это же время американский физик Джозеф Генри также успешно проводил опыты по индукции токов, но пока он собирался опубликовать результаты своих опытов, в печати появилось сообщение М. Фарадея об открытии им электромагнитной индукции.

М. Фарадей стремился использовать открытое им явление, чтобы получить новый источник электричества.

Школьная Энциклопедия

Nav view search

Навигация

Искать

Электромагнитная индукция

Электрические и магнитные явления тесно связаны. И если ток порождает магнетизм, то должно существовать и обратное явление — появление электрического тока при движении магнита. Так рассуждал английский учёный Майкл Фарадей, в 1822 г. сделавший в своём лабораторном дневнике следующую запись: «Превратить магнетизм в электричество».

Этому событию предшествовало открытие явления электромагнетизма датским физиком Хансом Кристианом Эрстедом, обнаружившим возникновение магнитного поля вокруг проводника с током. Много лет Фарадей проводил различные эксперименты, но первые опыты не принесли ему удачи. Основная причина была в том, что учёный не знал, что лишь переменное магнитное поле способно создать электрический ток. Реальный результат удалось получить лишь в 1831 г.

Опыты Фарадея

Нажать на картинку

В опыте, проделанном 29 августа 1931 г., учёный обмотал витками проводов противоположные стороны жел езного кольца. Один провод он соединил с гальванометром. В момент подключения второго провода к батарее стрелка гальванометра резко отклонялась и возвращалась в исходное положение. Такая же картина наблюдалась и при размыкании контакта с батареей. Это означало, что в цепи появлялся электрический ток. Он возникал в результате того, что силовые линии магнитного поля, созданного витками первого провода, пересекали витки второго провода и генерировали в них ток.

Через несколько недель был проведен опыт с постоянным магнитом. Фарадей подключил гальванометр к катушке из медной проволоки. Затем резким движением втолкнул внутрь магнитный стержень цилиндрической формы. В этот момент стрелка гальванометра также резко качнулась. Когда стержень извлекался из катушки, стрелка качнулась также, но в противоположную сторону. И так происходило каждый раз, когда магнит вталкивался или выталкивался из катушки. То есть ток появлялся в контуре при движении магнита в нём. Так Фарадею удалось «превратить магнетизм в электричество».

Фарадей в лаборатории

Ток в катушке появляется также, если вместо постоянного магнита внутри неё перемещать другую катушку, подключенную к источнику тока.

Во всех этих случаях происходило изменение магнитного потока, пронизывающего контур катушки, что приводило к появлению электрического тока в замкнутом контуре. Это явление навали электромагнитной индукцией, а ток – индукционным током.

Известно, что ток в замкнутом контуре существует, если в нём поддерживает разность потенциалов с помощью электродвижущей силы (ЭДС). Следовательно, при изменении магнитного потока в контуре такая ЭДС в нём и возникает. Она называется ЭДС индукции.

Закон Фарадея

Величина электромагнитной индукции не зависит от того, по какой причине меняется магнитный поток – изменяется ли само магнитное поле или контур движется в нём. Она зависит от скорости изменения магнитного потока, пронизывающего контур.

где ε – ЭДС, действующая вдоль контура ;

На величину ЭДС катушки в переменном магнитном поле влияет число витков в ней и величина магнитного потока. Закон Фарадея в этом случае выглядит так:

где N – число витков;

ФВ – магнитный поток через один виток;

Ψ – потокосцепление, или суммарный магнитный поток, сцепляющийся со всеми витками катушки.

Ф i – поток, проходящий через один виток.

Даже слабый магнит может создать большой ток индукции, если скорость движения этого магнита высока.

Так как индукционный ток возникает в проводниках при изменении магнитного потока, пронизывающего их, то в проводнике, который движется в неподвижном магнитном поле, он появится тоже. Направление тока индукции в этом случае зависит от направления движения проводника и определяется по правилу правой руки: «Если расположить ладонь правой руки таким образом, чтобы в неё входили силовые линии магнитного поля, а отогнутый на 90 0 большой палец показывал бы направление движения проводника, то вытянутые 4 пальца укажут направление индуцированной ЭДС и направление тока в проводнике».

Правило Ленца

Эмилий Христианович Ленц

Направление тока индукции определяется по правилу, которое действует во всех случаях, когда такой ток возникает. Это правило сформулировал российский физик балтийского происхождения Эмилий Христианович Ленц: «Индукционный ток, возникающий в замкнутом контуре, имеет такое направление, что создаваемый им магнитный поток противодействует изменению того магнитного потока, который этот ток вызвал.

Нужно заметить, что такой вывод был сделан учёным на основании результатов опытов. Ленц создал прибор, состоящий из свободно вращающейся алюминиевой пластинки, на одном конце которой было закреплено сплошное кольцо из алюминия, а на другом – кольцо с надрезом.

Если магнит приближали к сплошному кольцу, оно отталкивалось и начинало «убегать».

Нажать на картинку

При отдалении магнита кольцо стремилось догнать его.

Нажать на картинку

Ничего подобного не наблюдалось с разрезанным кольцом.

Ленц объяснил это тем, что в первом случае индукционный ток создаёт магнитное поле, линии индукции которого направлены противоположно линиям индукции внешнего магнитного поля. Во втором случае линии индукции магнитного поля, созданного индукционным током, совпадают по направлению с линиями индукции поля постоянного магнита. В разрезанном кольце ток индукции не возникает, поэтому оно не может взаимодействовать с магнитом.

Согласно правилу Ленца при увеличении внешнего магнитного потока индукционный ток будет иметь такое направление, что созданное им магнитное поле будет препятствовать такому увеличению. Если же внешний магнитный поток уменьшается, то магнитное поле индукционного тока будет поддерживать его и не давать ему уменьшаться.

Генератор электрического тока

Генератор переменного тока

О ткрытие Фарадеем электромагнитной индукции позволило использовать это явление на практике.

Что произойдёт, если вращать катушку с бо льшим количеством витков из металлической проволоки в неподвижном магнитном поле? Магнитный поток, пронизывающий контур катушки, будет постоянно меняться. И в ней возникнет ЭДС электромагнитной индукции. Значит, такая конструкция может вырабатывать электрический ток. На этом принципе основана работа генераторов переменного тока.

Генератор состоит из 2 частей – ротора и статора. Ротор — это подвижная часть. В генераторах малой мощности чаще всего вращается постоянный магнит. В мощных генераторах вместо постоянного магнита используют электромагнит. Вращаясь, ротор создаёт изменяющийся магнитный поток, который и генерирует электрический ток индукции в витках обмотки, расположенной в пазах неподвижной части генератора – статоре. Ротор приводят во вращение двигателем. Это может быть паровая машина, водяная турбина и др.

Трансформатор

Это, пожалуй, самые распространённое устройство в электротехнике, предназначенное для преобразования электрического тока и напряжения. Трансформаторы используются в радиотехнике и электронике. Без них невозможна передача электроэнергии на большие расстояния.

Простейший трансформатор состоит из двух катушек, имеющих общий металлический сердечник. Переменный ток, подаваемый на одну из катушек, создаёт в ней переменное магнитное поле, которое усиливается сердечником. Магнитный поток этого поля, пронизывая витки второй катушки, создаёт в ней индукционный электрический ток. Так как величина ЭДС индукции зависит от числа витков, то меняя их соотношение в катушках, можно менять и величину тока. Это очень важно, например, при передаче электроэнергии на большие расстояния. Ведь при транспортировке происходят большие потери, из-за того, что провода нагреваются. Уменьшив с помощью трансформатора ток, эти потери снижают. Но при этом напряжение увеличивается. На конечном этапе с помощью понижающего трансформатора снижают напряжение и увеличивают ток. Конечно, такие трансформаторы устроены гораздо сложнее.

Нельзя не сказать о том, что не только Фарадей пытался создать индукционный ток. Подобные эксперименты проводил также известный американский физик Джозеф Генри. И ему удалось добиться успеха практически одновременно с Фарадеем. Но Фарадей опередил его, опубликовав сообщение о сделанном им открытии раньше Генри.

Явление электромагнитной индукции

Явление электромагнитной индукции – это то, что заставляет работать электрические двигатели, позволяет генераторам вырабатывать электричество. Именно его открытие в начале XIX века привело к активному развитию таких отраслей, как энергетика, станкостроение, транспорт. Также данное явление широко применяется в медицине, радиовещании, при производстве расходомеров – счетчиков учета электроэнергии.

О том, в чем суть этого явления, когда и кто его открыл, что такое индуктивность и самоиндукция, какой энергией характеризуется совокупность магнитных силовых линий, будет рассказано в этой статье.

Явление электромагнитной индукции

Классическое определение этого явления гласит, что оно представляет собой появление упорядоченного движения заряженных частиц в замкнутом проводящем ток контуре (проводнике) при изменении проходящей через него, создаваемой постоянным магнитом совокупности силовых магнитных линий.

На заметку. Впервые обнаружить описываемое в статье явление экспериментальным путем получилось в 1831 году у известного ученого-физика Майкла Фарадея. Для своих опытов он использовал железное кольцо с намотанными с двух противоположных сторон витками медного провода, которые были соединены с гальваническим элементом и магнитной стрелкой. При подключении к первой обмотке гальванического элемента стрелка некоторое время двигалась, после чего останавливалась, после его отключения – плавно возвращалась в первоначальное положение. Подобные движения стрелки позволили предположить, что упорядоченное движение носителей электрических зарядов может возникать под воздействием совокупности силовых магнитных линий, источником которых служит первая обмотка.

Магнитный поток

Данное явление представляет собой совокупность силовых линий, проходящих через определённое сечение проводника или замкнутого токопроводящего контура.

Рассчитывается модуль этой величины Ф по следующей формуле:

Ф= B×S×Cos ​α​, где:

  • В – модуль вектора создаваемой силовыми линиями индукции;
  • S – площадь поверхности​, через которую проходит поток силовых линий;
  • ​α​ – угол между векторами силовых линий индукции и нормали (т.е. перпендикуляром к пронизываемой силовыми магнитными линиями плоскости).

Измеряется данная величина в Веберах (Вб).

Закон электромагнитной индукции Фарадея

Данный фундаментальный закон имеет следующую формулировку: при любых изменениях магнитного потока, проходящего через проводящий контур, происходит возникновение электродвижущей силы (сокращенно ЭДС), значение которой прямо пропорционально скорости, с которой изменяется магнитный поток.

Отображением данной закономерности является следующая формула:

Ɛi = – ΔФ/Δt, где:

  • Ɛi – появляющаяся в токопроводящем контуре электродвижущая сила индукции;
  • ΔФ/Δt – скорость, с которой изменяется проходящий через замкнутый контур магнитный поток.

Таким образом, сила индукционного тока, образующегося в токопроводящем замкнутом контуре при воздействии на него электродвижущей силы, будет зависеть от того, с какой скоростью изменяется проходящий через него поток силовых линий магнита.

Векторная форма

В векторной форме этот закон выражается следующей формулой:

Согласно этой записи, напряжённость (E) электрического поля индукционного тока возрастает при увеличении скорости изменения потока B с силовыми линиями, пересекающими замкнутый контур.

Потенциальная форма

При помощи векторного потенциала закон электромагнитной индукции имеет следующую запись:

E =ΔA/Δt, где:

  • Е – напряженность электрического поля, порождаемого индукционным током;
  • ΔA/Δt – изменение векторного потенциала магнитного поля, проходящего через замкнутый контур, являющийся частью замкнутой цепи проводника.

Правило Ленца

Как гласит данное правило, на направление индукционного тока влияют вызвавшие его причины (факторы). Если значение Ф возрастает, то порождаемый им ток препятствует его увеличению. Если значение Ф убывает, происходит обратное: индукционный ток меняет направление, начиная препятствовать уменьшению плотности проходящих через контур силовых линий магнитного поля. Поэтому в формуле закона Фарадея содержится знак « минус».

Взаимодействие магнита с контуром

В качестве наглядного примера взаимодействия магнита и контура в сделанную из медного провода катушку помещают магнит. Если магнит медленно вставлять внутрь катушки, происходит постепенное увеличение пересекающего ее витки создаваемого магнитом потока. Появляющееся вследствие такой манипуляции упорядоченное движение частиц в катушке будет направлено по часовой стрелке, создавая собственное магнитное поле, ослабляющее поле магнита, отталкивая его тем самым от катушки.

Если магнит отдаляют от контура, его поток уменьшается, а заряженные частицы начинают двигаться против часовой стрелки, вследствие чего возникающая совокупность силовых магнитных линий будет притягивать магнит.

На заметку. В случае с незамкнутым (открытым) контуром: металлическим или алюминиевым кольцом, имеющим прорезь; катушкой, витки которой не замкнуты через амперметр, источник питания, данная закономерность, как и правило Ленца, не работает.

Вихревое электрическое поле

Изменяющееся во времени и пространстве магнитное поле является источником появления вихревого имеющего замкнутые силовые линии электрического поля. Его воздействие объясняет упорядоченное перемещение единичных зарядов в проводнике, находящемся в (статичном) неподвижном состоянии.

Направление силовых линий электрического поля подчиняется правилу Ленца и правилу «буравчика».

Индуктивность

Проходя по контуру, электрический ток способствует образование вокруг него совокупности магнитных силовых линий. Согласно формуле Ф = L×I​, создаваемый магнитом поток Ф пропорционально зависит от силы тока I​.

Таким образом, под индуктивностью L понимают коэффициент соотношения ​ магнитного потока Ф и силы тока I,​ протекающего по контуру. Рассчитывают данную величину по следующей формуле:

Единицей измерения этой физической величины является Генри (Гн). 1 Гн – это индуктивность, образующаяся в замкнутом контуре, в котором сила тока изменяется на 1 Ампер, а величина напряжения в нем составляет 1 Вольт.

Самоиндукция

При изменениях значения силы тока в проводнике либо токопроводящей катушке происходит изменение магнитного потока, пронизывающего его. В результате в проводнике появляется электродвижущая сила самоиндукции, значение которой определяется по следующей формуле:

ƐiS = – ΔФ/Δt= –L(ΔI/Δt).

Энергия магнитного поля

Совокупность магнитных силовых линий имеет определенный запас энергии. Так как данное явление в контуре обусловлено протеканием по нему электрического тока, то и количество такой энергии зависит от величины затрат источников (генераторов, гальванических элементов) на создание тока. Рассчитывается эта величина (Wмаг.п) по следующей математической формуле:

На заметку. С практической точки зрения, значение данной величины оказывает влияние на мощность электрических агрегатов: электродвигателей, генераторов. Чем больше мощность силовых линий, образуемых обмотками или постоянными магнитами статора и ротора, тем выше крутящий момент и мощность двигателя, больше его КПД.

Основные формулы

Основные формулы для явления магнитной индукции указаны на рисунке ниже.

Поняв, в чем заключается суть явления электромагнитной индукции, можно разобраться в том, как работают электродвигатели, генераторы. Эти знания, помимо большой теоретической ценности, имеет достаточно полезное практическое применение, позволяя самостоятельно находить, в ряде случаев и устранять, неисправности агрегатов, не прибегая к дорогостоящим услугам специалистов.

Видео

Более подробно и наглядно об описанном в данной статье явлении можно узнать в следующем видео.

Явление электромагнитной индукции

Т.к. вопросов по первой части не поступило, я делаю вывод, что пока всё понятно. Правда по генератору тоже никто ничего не написал, значит будем разбираться подробнее.

Итак, это схема простйшего электрогенератора:

При вращении рамки в постоянном магнитном поле в ней возникает электрический ток, называемый индукционным, а сам процесс называется электромагнитной индукцией:

«Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. Электромагнитная индукция была открыта Майклом Фарадеем 29 августа 1831 года. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током».

У этого тока есть одно важное свойство, которое для одних стало возможностью скрыть правду, а для других – простым объяснением, почему для получения большего количества энергии от генератора нужно приложить большую силу для его вращения. В Вики это звучит так:

«Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток».

В реальном генераторе это происходит так: при приближении части рамки к северному полюсу магнита в этой части рамки возникает ЭДС и северный магнитный полюс. Два одноимённых магнитных полюса начинают отталкиваться и возникает сопротивление вращению рамки. Во второй части рамки происходит тоже самое, только с южным полюсом. Чем быстрее вращается генератор, тем быстрее меняется магнитное поле в рамке, а значит возникает бОльший ток, соответственно бОльшее магнитное поле и бОльшее сопротивление вращению. Этого оказалось достаточно, чтобы заявить о соблюдении закона сохранения энергии: хотите больше энергии – приложите большее усилие. Очень многим этого хватило и теперь эти убеждения сложно переломить. Однако давайте рассмотрим процесс индукции чуть внимательнее. Я уже писал об этом в посте «Зарождение».

Итак, при приближении рамки к магнитному полюсу, в ней возникает ток и такой же магнитный полюс, который начинает оказывать сопротивление движению. А что происходит с магнитным полем магнита?

Оно ослабевает, переходя в электрическую энергию? Нет. Иначе при увеличении скорости вращения генератора и увеличении тока всё больше магнитного поля переходило бы в электричество и сопротивление вращению наоборот уменьшалось бы.

Оно переходит на проводник, разделяется, но в сумме остаётся таким же? Нет. Тогда бы усилие для вращения генератора не менялось от скорости и нагрузки.

На самом деле оно остаётся без изменений, а суммарное магнитное поле ещё и увеличивается на поле, возникшее вокруг проводника. Магнит при этом не теряет своей энергии и это доказывается десятилетиями работы генераторов на постоянных магнитах. Тогда откуда появляется энергия в проводнике? Кинетическая энергия вращения превращается в электрическую? Правда? А если ничего не вращать? Вы знаете как работает электрический трансформатор? Например такой:

«Работа трансформатора основана на двух базовых принципах:
Изменяющийся во времени электрический ток создаёт изменяющееся во времени магнитное поле (электромагнетизм).
Изменение магнитного потока, проходящего через обмотку, создаёт ЭДС в этой обмотке (электромагнитная индукция).
На одну из обмоток, называемую первичной обмоткой, подаётся напряжение от внешнего источника. Протекающий по первичной обмотке переменный ток намагничивания создаёт переменный магнитный поток в магнитопроводе. В результате электромагнитной индукции, переменный магнитный поток в магнитопроводе создаёт во всех обмотках, в том числе и в первичной, ЭДС индукции, пропорциональную первой производной магнитного потока , при синусоидальном токе сдвинутой на 90° в обратную сторону по отношению к магнитному потоку
».

Хочу обратить ваше внимание на выделенный текст: ток индукции появляется во всех обмотках трансформатора, ЭДС во всех обмотках равны и зависят только от скорости изменения магнитного потока. Получается, что если намотать две или три вторичных обмотки, то можно получить в два-три раза больше энергии, чем было затрачено (за минусом разных потерь)? В принципе, даже ещё больше. Ведь на самом деле, закон сохранения энергии работает только с телами, обладающими массой покоя. Но тут вовремя появилась и проблема, называемая самоиндукцией, которая помогла скрыть дармовую энергию.

«Самоиндукция — это явление возникновения ЭДС индукции в проводящем контуре при изменении протекающего через контур тока.
При изменении тока в контуре пропорционально меняется и магнитный поток через поверхность, ограниченную этим контуром. Изменение этого магнитного потока, в силу закона электромагнитной индукции, приводит к возбуждению в этом контуре индуктивной ЭДС. Это явление и называется самоиндукцией. (Понятие родственно понятию взаимоиндукции, являясь как бы его частным случаем).
Направление ЭДС самоиндукции всегда оказывается таким, что при возрастании тока в цепи ЭДС самоиндукции препятствует этому возрастанию (направлена против тока), а при убывании тока — убыванию (сонаправлена с током). Этим свойством ЭДС самоиндукции сходна с силой инерции
».

Оказалось, что ток, проходя по проводнику, создаёт вокруг него магнитное поле, изменение которого создаёт ток в этом же проводнике и он не всегда совпадает с направлением первичного тока (потому что если бы он всегда совпадал, то получился бы вечный источник энергии, а если бы всегда не совпадал, то никакого тока вообще не было бы). Другими словами, ЭДС самоиндукции оказывает сопротивление току в катушке почти так же, как обычный генератор сопротивляется вращению. Чем больше ток и его частота в катушке, тем больше это сопротивление, а значит и потери. При подключении катушки к источнику переменного напряжения получается вот такая картина:

А при добавлении дополнительных катушек в общее магнитное поле их взаимное влияние увеличивается, индуктивность и поля складываются и накладываются друг а друга, а сопротивление (а значит и потери) всей системы только возрастают. В результате получилась красивая зависимость, которая, якобы, подтверждает закон сохранения энергии и не даёт получить больше энергии, чем затрачено. Это сопротивление назвали реактивным, без ваттным, из-за него не выделяется тепло в катушке и списали на него все потери энергии.

Однако Никола Тесла в своё время нашёл выход из этого положения и главным вопросом его жизни стал вопрос беспроводной передачи энергии, а не её получение. Это сейчас катушки Тесла называют трансформаторами, а сам он называл их генераторами энергии и так оно и было. Получать энергию он мог в неограниченных количествах и не считал это чем-то сложным и тем более невозможным, т.к. он понял саму суть происходящего процесса. Я попробую объяснить его как можно доступнее, но опять придётся начинать из далека.

Исходя из теории Всемирного Эфира, которая существовала до Теории Относительности, Тесла полагал, что электромагнитная волна это волна эфира, окружающего нас везде. Эфир не имеет массы и инерции, а значит на то, чтобы его сдвинуть не тратится энергия. Получается, что для создания электромагнитной волны нужно раскачать эфир переменным магнитным полем, но так, чтобы почти не тратить на это энергию. И такой способ был найден. Был придуман последовательный колебательный контур:

«Колебательный контур – это замкнутая электрическая цепь, содержащая катушку индуктивности и конденсатор, в которой могут возбуждаться электрические колебания.
Колебания тока и напряжения в колебательном контуре связаны с переходом энергии электрического поля конденсатора в энергию магнитного поля катушки индуктивности и обратно
».

Получается, что если зарядить конденсатор от источника тока, а потом соединить его с катушкой, то в цепи возникнут автоколебания. Ток из конденсатора будет переходить в магнитное поле катушки и обратно многократно, пока не рассеется от различных небольших потерь на нагрев и т.д. При этом на раскачивание самого эфира энергия не тратится. В добротных контурах колебания могут продолжаться несколько минут, при этом совершенно не потребляя энергии из вне. Всё это время вокруг катушки будет переменное магнитное поле, раскачивающее эфир вокруг неё. Казалось бы, осталось только поставить рядом ещё пару катушек и проблема энергии решена, но тут надо вспомнить, что индукционный ток в соседней катушке создаёт своё магнитное поле, направленное против поля, его создавшего и очень быстро его подавит (вспомним и про безваттное сопротивление). Получается, что первую катушку всегда надо подпитывать током и он будет как бы переходить на вторую катушку. При этом, если вторую катушку не замыкать, то тока в разомкнутом контуре не будет и первая катушка практически не будет потреблять энергии. Так работают современные трансформаторы. Только я бы сказал, что он не переливает энергию с одной катушки на другую, а продавливает с огромным усилием и потерями, нагреваясь и гудя при этом.

Решением проблемы могло бы стать создание катушки, которая бы не оказывала сопротивления магнитному потоку, т.е. не имеющей самоиндукции. Однако тут появляется противоречие: в катушке, обладающей индукцией всегда будет и ток самоиндукции, а в катушке, не имеющей индуктивности, не может появиться индукционный ток и она бесполезна. Любой замкнутый проводник имеет свою индуктивность, хоть самую малую.

Никола Тесла очень хорошо представлял себе магнитные поля и их взаимодействия и поэтому смог найти очень простое и, я бы сказал, элегантное решение проблемы. Он придумал катушку, у которой пропадает реактивное сопротивление на определённой частоте. Эта катушка была названа бифилярной:

Тесла запатентовал эту катушку, как что-то совершенно новое, чем она и была, но не описал в патенте своего способа её использования, а скорее всего это описание было позже изъято. В описании осталось только упоминание, что эта катушка может использоваться для создания больших магнитных полей. С другой стороны, один из видов этой катушки как раз обладает нулевой самоиндукцией. Совпадение?

Сейчас различные виды этой катушки используются в радиотехнике, но оригинального назначения, похоже, так до сих пор никто и не понял. Более подробно об этой катушке я напишу в следующий раз.

Явление электромагнитной индукции

Читайте также:

  1. III. Выявление несостоятельности демонстрации
  2. V.1. Факторы, вызвавшие появление термина
  3. А. А. Иванов. Явление Христа народу
  4. В каких случаях может отмечаться появление ацетона в моче
  5. В основе работы ПЗС лежит явление внутреннего фотоэффекта
  6. В стране А. происходит рост на продукты питания. Данный процесс является проявлением
  7. В-третьих, появление в беседе большого числа подобного вида вопросов обостряет бдительность и подозрительность людей.
  8. Вещь в себе и явление как сфера отношений сущего и существующего.
  9. Виды индукции
  10. Владимир Ельчанинов. Проявление незримого.
  11. ВЛИЯНИЕ УЗКОСТИ И МЕЛКОВОДЬЯ НА СКОРОСТЬ И ОСАДКУ КОРАБЛЯ. ЯВЛЕНИЕ ПРИСАСЫВАНИЯ
  12. ВОЗМОЖНЫЕ ОШИБКИ В ПОПУЛЯРНОЙ ИНДУКЦИИ

Известно, что вокруг электрического тока всегда существует маг­нитное поле. Электрический ток и магнитное поле неотделимы друг от друга.

Но если электрический ток, как гово­рят. «создает» магнитное поле, то не су­ществует ли обратного явления? Нельзя ли с помощью магнитного поля «создать» электрический ток? Такую задачу в нача­ле XIX в. пытались решить многие уче­ные. Поставил ее перед собой и англий­ский ученый Майкл Фарадей. «Превра­тить магнетизм в электричество» — так записал в своем дневнике эту задачу Фара­дей в 1822 г. Почти 10 лет упорной работы потребовалось Фарадею для ее решения.

Чтобы понять, как Фарадею удалось «превратить магнетизм в электричество», выполним некоторые опыты Фарадея, ис­пользуя современные приборы.

На рисунке 126, а показано, что если в катушку, замкнутую на гальванометр, вдвигается магнит, то стрелка гальванометра при этом отклоняется, указывая на появление индукционного(наведенного) тока в цепи катушки. Индукционный ток в проводнике представляет собой такое же упорядоченное движение электронов, как и ток, полу­ченный от гальванического элемента или аккумулятора. Название «индукционный» указывает только на причину его возникновения.

При извлечении магнита из катушки снова наблюдается отклоне­ние стрелки гальванометра, но в противоположную сторону, что указы­вает на возникновение в катушке тока противоположного направления,

Как только движение магнита относительно катушки прекращает­ся, прекращается и ток. Следовательно, ток в цепи катушки существу­ет только во время движения магнита относительно катушки.

Опыт можно видоизменить. На неподвижный магнит будем наде­вать катушку и снимать ее (рис. 126, б). И опять можно обнаружить, что во время движения катушки относительно магнита в цепи снова появляется ток.

На рисунке 127 изображена катушка-А, включенная в цепь ис­точника тока. Эта катушка вставлена в другую катушку С, подклю­ченную к гальванометру. При замыкании и размыкании цепи ка­тушки А в катушке С возникает индукционный ток.

Можно вызвать появление индукционного тока в катушке С и путем изменения силы тока в катушке А или движением этих кату­шек относительно друг друга.

Проделаем ещё один опыт. Поместим в магнитное поле плоский контур из проводника, концы которого соединим с гальванометром (рис. 128, а). При повороте контура гальванометр отмечает появле­ние в нем индукционного тока. Ток будет появляться и в том случае, если рядом с контуром или внутри него вращать магнит (рис. 128, б).

Во всех рассмотренных нами опытах индукционный ток воз­никал при изменении магнитного потока, пронизывающего охваченную проводником площадь.

В случаях, изображенных на рисунках 126, а, б и 127, поток менял­ся за счет изменения индукции магнитного поля. Действительно, при движении магнита и катушки относительно друг друга (см. рис. 126, а, б) катушка попадала в области поля с большей или меньшей маг­нитной индукцией (так как поле магнита неоднородно). При замыка­нии и размыкании цепи катушки А индукция создаваемого этой ка­тушкой магнитного поля менялась за счет изменения силы тока в ней.

При вращении проволочного контура в магнитном поле (см. рис. 128, а) или магнита относительно контура (см. рис. 128, б)магнитный поток менялся за счет изменения ориентации этого кон­тура по отношению к линиям магнитной индукции.

Итак, при всяком изменении магнитного потока, прони­зывающего контур замкнутого проводника, в этом провод­нике возникает электрический ток, существующий в тече­ние всего процесса изменения магнитного потока.

В этом и заключается явление электромагнитной индукции.

Открытие электромагнитной индукции принадлежит к числу са­мых замечательных научных достижений первой половины XIXв. Оно вызвало появление и бурное развитие электротехники и радиотехники.

На основании явления электромагнитной индукции были созданы мощные генераторы электрической энергии, в разработке которых принимали участие ученые и техники разных стран. Среди них были и наши соотечественники: Эмилий Христианович Ленц, Борис Се­менович Якоби, Михаил Иосифович Доливо-Добровольский и другие, внесшие большой вклад в развитие электротехники.

Дата добавления: 2014-12-24 ; Просмотров: 915 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Каждый электрик должен знать:  Подключение электродвигателя однофазного компрессора
Добавить комментарий