Эффект Ганна


Эффект Ганна

Эффе́кт Га́нна — явление возникновения осцилляций тока (

10 9 —10 10 Гц) в однородном многодолинном полупроводнике при приложении к нему сильного электрического поля. Впервые этот эффект наблюдался Джоном Ганном в 1963 г. на арсениде галлия, затем явление осцилляций тока было обнаружено в фосфиде индия, фосфиде галлия и ряде других полупроводниковых соединений.

Содержание

Физика явления [ править ]

Эффект Ганна может возникнуть в полупроводнике, в котором в зоне Бриллюэна имеется более одного минимума энергии. На рисунке показаны основной минимум, которым определяется ширина запрещённой зоны, и побочный минимум, смещённый на конечный волновой вектор от нуля зоны, имеющий большее расстояние до потолка валентной зоны, чем основной минимум, как например в GaAs, InAs. В полупроводниках, зона проводимости которых имеет более одного минимума энергии, электрон с волновым вектором соответствующим одному из минимумов, при рассеянии может оказаться в состоянии с волновым вектором принадлежащим другому минимуму. В результате такого рассеяния будет иметь место переброс электронов из одного минимума зоны проводимости в другой. Такой вид рассеяния получил название междолинного.

Рассмотрим энергетическую структуру GaAs n-типа в направлении [100]. Возможны переходы из минимума А с состоянием в минимум Б с состоянием . Минимумы А и Б разделены энергетическим интервалом <<<1>>> . Вблизи минимумов закон дисперсии можно представить в виде параболического с разной кривизной для долин А и Б. Отсюда, эффективные массы электронов в них также различны и равны и соответственно. Подвижность лёгких электронов выше, чем подвижность тяжелых электронов Плотность состояний в верхней долине примерно в 70 раз выше, чем в нижней.

При малых внешних полях электроны находятся в термодинамическом равновесии с решеткой и, поскольку при обычных температурах электроны в основном занимают энергетические состояния вблизи минимума А. Плотность тока

определяется концентрацией лёгких электронов и их подвижностью. В этом случае концентрация электронов Плотность тока будет линейно возрастать с ростом напряжённости поля до некоторого критического значения

По мере возрастания средняя энергия и скорость электронов повышается, и при \Delta E» src=»http://www.wikiznanie.ru/wp/images/math/7/3/8/73871c62b9d8351b30f7f90889426513.png» /> становится возможным переход электронов в долину Б. Тогда суммарная концентрация электронов будет Таким образом, с ростом напряженности от до некоторого значения будет иметь место уменьшение подвижности электронов, а следовательно, уменьшение и на вольт-амперной характеристике появится падающий участок. При дальнейшем росте ( \vec_b» src=»http://www.wikiznanie.ru/wp/images/math/c/2/4/c2453a212cbc5d4f21ca05291770baa4.png» />) все электроны перейдут в минимум Б, и снова установится линейная ВАХ.

Опыт Ганна [ править ]

Рассмотрим образец длиной L , к которому приложено внешнее напряжение. В однородном полупроводнике электрическое поле примерно одинаково по всей длине образца. Но если в образце имеется локальная неоднородность с повышенным сопротивлением, то напряжённость поля в этом месте образца будет выше, следовательно при увеличении напряжённости внешнего поля критическое значение возникнет в первую очередь в этом сечении. Это означает накопление в этой области (а не во всем кристалле) тяжёлых электронов и снижение их подвижности, а значит и повышение сопротивления в этой области. Образовавшаяся зона с высоким содержанием тяжёлых электронов называется электрическим доменом.

Под действием приложенного поля домен начинает перемещаться вдоль образца со скоростью V

10 6 м/с . Слева и справа от электронного домена будут двигаться лёгкие электроны с более высокой скоростью, чем тяжёлые. Слева они будут нагонять домен и образовывать область повышенной концентрации электронов (область отрицательного заряда), а справа лёгкие электроны будут уходить вперёд, образуя область, обеднённую электронами (область положительного заряда). При неизменном напряжении установится динамическое равновесие между скоростями электронов внутри и вне домена. При достижении доменом конца образца (анода), домен разрушается, ток возрастает, происходит образование нового домена, и процесс повторяется заново.

Несмотря на то, что в кристалле может быть несколько неоднородностей, всегда существует только один домен. Так как после исчезновения электрического домена новый домен может возникнуть на другой неоднородности, для наблюдения и использования эффекта Ганна нужны очень чистые и однородные образцы.

Очевидной областью применения эффекта Ганна является изготовление микроволновых генераторов, называемых диодами Ганна. Если длина образца составляет 100 мкм , а скорость домена см/с, то частота осцилляций имеет величину порядка:

Диод Ганна [ править ]

Диод Ганна — тип полупроводниковых диодов, использующийся для генерации и преобразования колебаний в диапазоне СВЧ. В отличие от других типов диодов, принцип действия диода Ганна основан не на свойствах p-n-переходов, а на собственных объёмных свойствах полупроводника.

Эффект Зинера и эффект Ганна.

Виды полупроводников.

Полупроводники́ — материалы, которые по своей удельной проводимости занимают промежуточное место между проводниками и диэлектриками и отличаются от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и различных видов излучения. Основным свойством этих материалов является увеличение электрической проводимости с ростом температуры.

· Собственные(чистые без примесей).

· Донорные (н-типа) В таком полупроводнике электроны являются основными носителями тока.

· Акцепторные(п-типа) Основные носители дырки.

Ды́рка — квазичастица(квант(неделимое) коллективного колебания или возмущения многочастичной системы), носитель положительного заряда, равного элементарному заряду в полупроводниках.

Зонные диаграммы.


Уровень Ферми — уровень энергии, вероятность заполнения которого электронами равна 0,5. Где же расположен уровень Ферми беспримесного полупроводника (например, чистого германия)? Вспомним, что в таком полупроводнике число электронов в зоне проводимости точно равно числу дырок в валентной зоне. Зная это, нетрудно сообразить, что вероятность заполнения симметрично расположенных относительно запрещенной зоны уровней энергии в зоне проводимости и валентной зоне в сумме равна единице. А это значит, что уровень Ферми, вероятность заполнения которого равна 0,5, должен располагаться в середине запрещенной зоны. У читателя возникает законный вопрос. Вероятность заполнения уровня Ферми равна 0,5, но он лежит внутри запрещенной зоны. Значит, на этом уровне электроны находиться не могут. Это совершенно верно. Объяснить, почему это так, может лишь квантовая физика. Мы же должны здесь толковать смысл уровня Ферми следующим образом: «Если бы внутри запрещенной зоны в месте расположения уровня Ферми имелись разрешенные энергетические уровни, то они заполнялись бы с вероятностью, равной 0,5».

Уровень Ферми в полупроводниках различных типов проводимости. Следует заметить, что в любом полупроводнике при стремлении температуры к абсолютному нулю уровень Ферми находится посередине запрещенной зоны. Но при повышении температуры в примесных полупроводниках он смещается либо вверх, либо вниз. Причина этого — в переходе электронов с валентной зоны в зону проводимости или наоборот, что обусловливает изменение энергии зоны проводимости и последующее смещение уровня Ферми. В случае с беспримесными полупроводниками, уровень Ферми при любой температуре проходит по середине запрещенной зоны. В случае с n-полупроводниками уровень Ферми находится выше средины запрещенной зоны. Формально, уровень Ферми в n-полупроводниках лежит посередине между дном зоны проводимости и донорным уровнем. В случае с p-полупроводниками, наблюдается обратная ситуация, уровень Ферми находится ниже средины запрещенной зоны. В металлах уровень ферми находится вверху валентной зоны, т.к. запрещенной зоны в металлах нет.

Донор в физике твёрдого тела — примесь в кристаллической решётке, которая отдаёт кристаллу электрон. Дополнительный электрон, связанный с атомом донора, образует так называемый донорный уровень в запрещенной зоне.

Акце́птор — в физике твёрдого тела примесь в кристаллической решётке, которая отдаёт кристаллу дырку.

Ионизация.

Иониза́ция — эндотермический процесс образования ионов из нейтральных атомов или молекул.

Положительно заряженный ион(одноатомная или многоатомная электрически заряженная частица, образующаяся в результате потери или присоединения атомом или молекулой одного или нескольких электронов.) образуется, если электрон в атоме или молекуле получает достаточную энергию для преодоления потенциального барьера.

Ударная ионизация — физическая модель, описывающая ионизацию атома при ударе о него электрона (или другой заряженной частицы — например, позитрона, иона или «дырки»). Явление может наблюдаться как в газах, так и в твёрдых телах (в частности, в полупроводниках). В полупроводниках электрон или дырка, набравшие достаточно высокую кинетическую энергию в сильном электрическом поле, могут ионизовать кристалл и создать в нём электронно-дырочную пару. Для ионизации полупроводника энергия носителя должна превышать ширину запрещённой зоны.

В электрическом поле электрон набирает дополнительную энергию. За счет механизмов рассеивания электрон отдает часть энергии. Но в конце концов набирает энергию превышающую Ед. И при столкновении с атомом он передает ему эту энергию. Образуется электронно-дырочная пара. Эти два электрона, так же набирают энергию в электрическом поле и процесс повторяется. Увеличивается концентрация электронов и дырок. Это лавинообразный процесс. Встречный процесс – рекомбинация.

Рекомбинация это захват электрона дыркой.

Инжекция – впрыскивание зарядов в другую область.

Экстракция – втягивание носителей заряда.

Излучательная, а также безызлучательная (фотонная и ударная).

Межзонная рекомбинация – межзонная рекомбинация осуществляется при переходе свобод­ного электрона из зоны проводимости в валентную зону, что сопро­вождается уничтожением свободного электрона и свободной дырки.

Ре­комбинация через локальные центры. В полупроводниковом кристалле всегда имеются дефекты, энер­гетические уровни которых находятся в запрещенной зоне. Поэтому наряду с межзонной рекомбинацией может идти процесс ре­комбинации через локальные центры. Дефект решетки, способный захватить электрон из зоны, проводимости и дырку из валентной зоны, осуществляя их рекомбинацию, называется рекомбинационной ловушкой. В этом случае исчезновение пары – электрона про­водимости и дырки проводимости – осуществляется следующим образом. Нейтральная рекомбинационная ловушка захватывает электрон из зоны проводимости, который затем через некоторое время перейдет в валентную зону.

Эффект Зинера и эффект Ганна.

Эффект Зинера (электростатическая ионизация). Имеет место в полупроводниках с малой Ед. Эффект не зависит от температуры.

Как видно из рисунка, в сильном электрическом поле при наклоне зон возможен переход электрона из валентной зоны и с локальных уровней в зону проводимости без изменения энергии — путем туннельного просачивания электронов через запрещенную зону. Этот механизм увеличения концентрации свободных носителей под действием сильного электрического поля называют электростатической ионизацией.

Эффект Ганна— явление возникновения осцилляций (генерация высокочастотных колебаний электрич. тока) тока в однородном полупроводнике при приложении к нему сильного электрического поля. Впервые этот эффект наблюдался Джоном Ганном в 1963 г. на арсениде галлия. Эффект Ганна заключается в возникновении СВЧ колебаний тока при наложении сильного электрического поля.

Дата добавления: 2020-05-12 ; просмотров: 118 ; ЗАКАЗАТЬ РАБОТУ

Ганна эффект

Значение слова «Ганна эффект» в Большой Советской Энциклопедии

Ганна эффект, явление генерации высокочастотных колебаний электрического тока j в полупроводнике, у которого объемная вольтамперная

Рис. 3. Развитие электрического домена. Электроны движутся слева направо, против поля Е.

характеристика имеет N — образный вид (рис. 1). Эффект был обнаружен впервые американским физиком Дж. Ганном (J. Gunn) в 1963 в двух полупроводниках с электронной проводимостью: арсениде галлия (GaAs) и фосфиде индия (InP). Генерация происходит, когда постоянное напряжение V, приложенное к полупроводниковому образцу длиной l, таково, что электрическое поле Е в образце, равное Е = V/l, заключено в некоторых пределах Е1 £ E (E 2. E1 и E2 ограничивают падающий участок вольтамперной характеристики j (E), на котором дифференциальное сопротивление отрицательно. Колебания тока имеют вид серии импульсов (рис. 2). Частота их повторения обратно пропорциональна длине образца l.

Ганна эффект связан с тем, что в образце периодически возникает, перемещается по нему и исчезает область сильного электрического поля, которую называют электрическим доменом. Домен возникает потому, что однородное распределение электрического поля при отрицательном дифференциальном сопротивлении неустойчиво. Действительно, пусть в полупроводнике случайно возникло неоднородное распределение концентрации электронов в виде дипольного слоя — в одной области концентрация электронов увеличилась, а в другой — уменьшилась (рис. 3). Между этими заряженными областями возникает дополнительное поле DE (как между обкладками заряженного конденсатора). Если оно добавляется к внешнему полю Е и дифференциальное сопротивление образца положительно, т. е. ток растет с ростом поля E, то и ток внутри слоя больше, чем вне его (Dj > 0). Поэтому электроны из области с повышенной плотностью вытекают в большем количестве, чем втекают в неё, в результате чего возникшая неоднородность рассасывается. Если же дифференциальное сопротивление отрицательно (ток уменьшается с ростом поля), то плотность тока меньше там, где поле больше, т. е. внутри слоя. Первоначально возникшая неоднородность не рассасывается, а, напротив, нарастает. Растет и падение напряжения на дипольном слое, а вне его падает (т. к. полное напряжение на образце задано). В конце концов образуется электрический домен, распределение поля и плотности заряда в котором изображены на рис. 4. Поле вне установившегося домена меньше порогового E1, благодаря чему новые домены не возникают.

Каждый электрик должен знать:  Подключение четырехполюсного УЗО в однофазной сети

Так как домен образован носителями тока — «свободными» электронами проводимости, то он движется в направлении их дрейфа со скоростью v, близкой к дрейфовой скорости носителей вне домена. Обычно домен возникает не внутри образца, а у катода. Дойдя до анода, домен исчезает. По мере его исчезновения падение напряжения на домене уменьшается, а на всей остальной части образца соответственно растет. Одновременно возрастает ток в образце, т. к. увеличивается поле вне домена; по мере приближения этого поля к пороговому полю E1 плотность тока приближается к максимальной jmaкc (рис. 1). Когда поле вне домена превышает E1, у катода начинает формироваться новый домен, ток падает и процесс повторяется. Частота n колебаний тока равна обратной величине времени прохождения домена через образец: n = v/l. В этом проявляется существенное отличие Ганна эффект от генерации колебаний в др. приборах с N — образной вольтамперной характеристикой, например в цепи с туннельным диодом, где генерация не связана с образованием и движением доменов и частота колебаний определяется ёмкостью и индуктивностью цепи.

В GaAs с электронной проводимостью при комнатной температуре E1


3·10 3 в/см, скорость доменов v » 10 7 см/сек. Обычно используют образцы длиной l = 50—300 мкм, так что частота генерируемых колебаний n = 0,3—2 Ггц. Размер домена

10—20 мкм. Ганна эффект наблюдался, помимо GaAs и InP, и в др. электронных полупроводниках: Ge, CdTe, ZnSe, InSb, а также в Ge с дырочной проводимостью. Ганна эффект пользуются для создания генераторов и усилителей диапазона сверхвысоких частот (см. Генерирование электрических колебаний).

Лит.: «Solid State Communications», 1963, v. 1, №4, p. 88-91: Гани Дж., Эффект Ганна, «Успехи физических наук», 1966, т. 89. в. 1, с. 147; Волков А. ф., Коган Ш. М., Физические явления в полупроводниках с отрицательной дифференциальной проводимостью, там же, 1968, т. 96, в, 4, с. 633; Левинштейн М. Е., Эффект Ганна, «Зарубежная радиоэлектроника», 1968, № 10, с. 64; Левинштейн М. Е., Шур М. С., Приборы на основе эффекта Ганна, там же, 1970, в. 9, с. 58.

Эффект Ганна

Эффе́кт Га́нна — явление возникновения осцилляций тока (

10 9 —10 10 Гц) в однородном многодолинном полупроводнике при приложении к нему сильного электрического поля. Впервые этот эффект наблюдался Джоном Ганном в 1963 г. на арсениде галлия, затем явление осцилляций тока было обнаружено в фосфиде индия, фосфиде галлия и ряде других полупроводниковых соединений.

Содержание

Физика явления

Эффект Ганна может возникнуть в полупроводнике, в котором в зоне Бриллюэна имеется более одного минимума энергии. На рисунке показаны основной минимум, которым определяется ширина запрещённой зоны, и побочный минимум, смещённый на конечный волновой вектор от нуля зоны, имеющий большее расстояние до потолка валентной зоны, чем основной минимум, как например в GaAs, InAs. В полупроводниках, зона проводимости которых имеет более одного минимума энергии, электрон с волновым вектором \vec, соответствующим одному из минимумов, при рассеянии может оказаться в состоянии с волновым вектором \vec, принадлежащим другому минимуму. В результате такого рассеяния будет иметь место переброс электронов из одного минимума зоны проводимости в другой. Такой вид рассеяния получил название междолинного.

Рассмотрим энергетическую структуру GaAs n-типа в направлении [100]. Возможны переходы из минимума А с состоянием \vec в минимум Б с состоянием \vec . Минимумы А и Б разделены энергетическим интервалом <<<1>>> . Вблизи минимумов закон дисперсии можно представить в виде параболического с разной кривизной для долин А и Б. Отсюда, эффективные массы электронов в них также различны и равны m_<1>^ <*>= 0,068 m_0 и m_<2>^ <*>= 1,2 m_0 соответственно. Подвижность лёгких электронов \mu_ \approx 4000 \div 8000 \,<\mathrm^2 \over \mathrm \cdot \mathrm> выше, чем подвижность тяжелых электронов \mu_ \approx 100 \div 200\, <\mathrm^2 \over \mathrm \cdot \mathrm>. Плотность состояний в верхней долине примерно в 70 раз выше, чем в нижней.

При малых внешних полях электроны находятся в термодинамическом равновесии с решеткой и, поскольку при обычных температурах k_B T электроны в основном занимают энергетические состояния вблизи минимума А. Плотность тока

определяется концентрацией лёгких электронов и их подвижностью. В этом случае концентрация электронов n_0 = n_A, n_B = 0. Плотность тока будет линейно возрастать с ростом напряжённости поля до некоторого критического значения \vec_a.

По мере возрастания \vec средняя энергия и скорость электронов повышается, и при E > \Delta E становится возможным переход электронов в долину Б. Тогда суммарная концентрация электронов будет n_0 = n_A + n_B. Таким образом, с ростом напряженности от \vec_a до некоторого значения \vec_b будет иметь место уменьшение подвижности электронов, а следовательно, уменьшение \vec, и на вольт-амперной характеристике появится падающий участок. При дальнейшем росте \vec ( \vec > \vec_b ) все электроны перейдут в минимум Б, и снова установится линейная ВАХ. n_0 = n_B, \, n_A = 0.

Опыт Ганна

Рассмотрим образец длиной L , к которому приложено внешнее напряжение. В однородном полупроводнике электрическое поле примерно одинаково по всей длине образца. Но если в образце имеется локальная неоднородность с повышенным сопротивлением, то напряжённость поля в этом месте образца будет выше, следовательно при увеличении напряжённости внешнего поля критическое значение \vec_A возникнет в первую очередь в этом сечении. Это означает накопление в этой области (а не во всем кристалле) тяжёлых электронов и снижение их подвижности, а значит и повышение сопротивления в этой области. Образовавшаяся зона с высоким содержанием тяжёлых электронов называется электрическим доменом.

Под действием приложенного поля домен начинает перемещаться вдоль образца со скоростью V

10 6 м/с . Слева и справа от электронного домена будут двигаться лёгкие электроны с более высокой скоростью, чем тяжёлые. Слева они будут нагонять домен и образовывать область повышенной концентрации электронов (область отрицательного заряда), а справа лёгкие электроны будут уходить вперёд, образуя область, обеднённую электронами (область положительного заряда). При неизменном напряжении установится динамическое равновесие между скоростями электронов внутри и вне домена. При достижении доменом конца образца (анода), домен разрушается, ток возрастает, происходит образование нового домена, и процесс повторяется заново.

Несмотря на то, что в кристалле может быть несколько неоднородностей, всегда существует только один домен. Так как после исчезновения электрического домена новый домен может возникнуть на другой неоднородности, для наблюдения и использования эффекта Ганна нужны очень чистые и однородные образцы.

Очевидной областью применения эффекта Ганна является изготовление микроволновых генераторов, называемых диодами Ганна. Если длина образца составляет 100 мкм , а скорость домена \vec = 10^7 см/с, то частота осцилляций имеет величину порядка:

Диод Ганна

Диод Ганна — тип полупроводниковых диодов, использующийся для генерации и преобразования колебаний в диапазоне СВЧ. В отличие от других типов диодов, принцип действия диода Ганна основан не на свойствах p-n-переходов, а на собственных объёмных свойствах полупроводника.

См. также

Напишите отзыв о статье «Эффект Ганна»

Литература

  • Шалимова К.В. Физика полупроводников. — Москва: «Энергоатомиздат», 1985. — 392 с.

  • Горбачев В.В., Спицына Л.Г. Физика полупроводников и металлов. — «Металлургия», 1982. — 336 с.
  • Питер Ю., Кардона М. Основы физики полупроводников. — «Физматлит», 2002. — ISBN 5-9221-0268-0.

Отрывок, характеризующий Эффект Ганна

– Но я думаю, – сказала вдруг соскучившаяся Элен с своей обворожительной улыбкой, – что я, вступив в истинную религию, не могу быть связана тем, что наложила на меня ложная религия.
Directeur de conscience [Блюститель совести] был изумлен этим постановленным перед ним с такою простотою Колумбовым яйцом. Он восхищен был неожиданной быстротой успехов своей ученицы, но не мог отказаться от своего трудами умственными построенного здания аргументов.
– Entendons nous, comtesse, [Разберем дело, графиня,] – сказал он с улыбкой и стал опровергать рассуждения своей духовной дочери.

Элен понимала, что дело было очень просто и легко с духовной точки зрения, но что ее руководители делали затруднения только потому, что они опасались, каким образом светская власть посмотрит на это дело.
И вследствие этого Элен решила, что надо было в обществе подготовить это дело. Она вызвала ревность старика вельможи и сказала ему то же, что первому искателю, то есть поставила вопрос так, что единственное средство получить права на нее состояло в том, чтобы жениться на ней. Старое важное лицо первую минуту было так же поражено этим предложением выйти замуж от живого мужа, как и первое молодое лицо; но непоколебимая уверенность Элен в том, что это так же просто и естественно, как и выход девушки замуж, подействовала и на него. Ежели бы заметны были хоть малейшие признаки колебания, стыда или скрытности в самой Элен, то дело бы ее, несомненно, было проиграно; но не только не было этих признаков скрытности и стыда, но, напротив, она с простотой и добродушной наивностью рассказывала своим близким друзьям (а это был весь Петербург), что ей сделали предложение и принц и вельможа и что она любит обоих и боится огорчить того и другого.
По Петербургу мгновенно распространился слух не о том, что Элен хочет развестись с своим мужем (ежели бы распространился этот слух, очень многие восстали бы против такого незаконного намерения), но прямо распространился слух о том, что несчастная, интересная Элен находится в недоуменье о том, за кого из двух ей выйти замуж. Вопрос уже не состоял в том, в какой степени это возможно, а только в том, какая партия выгоднее и как двор посмотрит на это. Были действительно некоторые закоснелые люди, не умевшие подняться на высоту вопроса и видевшие в этом замысле поругание таинства брака; но таких было мало, и они молчали, большинство же интересовалось вопросами о счастии, которое постигло Элен, и какой выбор лучше. О том же, хорошо ли или дурно выходить от живого мужа замуж, не говорили, потому что вопрос этот, очевидно, был уже решенный для людей поумнее нас с вами (как говорили) и усомниться в правильности решения вопроса значило рисковать выказать свою глупость и неумение жить в свете.
Одна только Марья Дмитриевна Ахросимова, приезжавшая в это лето в Петербург для свидания с одним из своих сыновей, позволила себе прямо выразить свое, противное общественному, мнение. Встретив Элен на бале, Марья Дмитриевна остановила ее посередине залы и при общем молчании своим грубым голосом сказала ей:
– У вас тут от живого мужа замуж выходить стали. Ты, может, думаешь, что ты это новенькое выдумала? Упредили, матушка. Уж давно выдумано. Во всех…… так то делают. – И с этими словами Марья Дмитриевна с привычным грозным жестом, засучивая свои широкие рукава и строго оглядываясь, прошла через комнату.
На Марью Дмитриевну, хотя и боялись ее, смотрели в Петербурге как на шутиху и потому из слов, сказанных ею, заметили только грубое слово и шепотом повторяли его друг другу, предполагая, что в этом слове заключалась вся соль сказанного.
Князь Василий, последнее время особенно часто забывавший то, что он говорил, и повторявший по сотне раз одно и то же, говорил всякий раз, когда ему случалось видеть свою дочь.
– Helene, j’ai un mot a vous dire, – говорил он ей, отводя ее в сторону и дергая вниз за руку. – J’ai eu vent de certains projets relatifs a… Vous savez. Eh bien, ma chere enfant, vous savez que mon c?ur de pere se rejouit do vous savoir… Vous avez tant souffert… Mais, chere enfant… ne consultez que votre c?ur. C’est tout ce que je vous dis. [Элен, мне надо тебе кое что сказать. Я прослышал о некоторых видах касательно… ты знаешь. Ну так, милое дитя мое, ты знаешь, что сердце отца твоего радуется тому, что ты… Ты столько терпела… Но, милое дитя… Поступай, как велит тебе сердце. Вот весь мой совет.] – И, скрывая всегда одинаковое волнение, он прижимал свою щеку к щеке дочери и отходил.
Билибин, не утративший репутации умнейшего человека и бывший бескорыстным другом Элен, одним из тех друзей, которые бывают всегда у блестящих женщин, друзей мужчин, никогда не могущих перейти в роль влюбленных, Билибин однажды в petit comite [маленьком интимном кружке] высказал своему другу Элен взгляд свой на все это дело.
– Ecoutez, Bilibine (Элен таких друзей, как Билибин, всегда называла по фамилии), – и она дотронулась своей белой в кольцах рукой до рукава его фрака. – Dites moi comme vous diriez a une s?ur, que dois je faire? Lequel des deux? [Послушайте, Билибин: скажите мне, как бы сказали вы сестре, что мне делать? Которого из двух?]
Билибин собрал кожу над бровями и с улыбкой на губах задумался.
– Vous ne me prenez pas en расплох, vous savez, – сказал он. – Comme veritable ami j’ai pense et repense a votre affaire. Voyez vous. Si vous epousez le prince (это был молодой человек), – он загнул палец, – vous perdez pour toujours la chance d’epouser l’autre, et puis vous mecontentez la Cour. (Comme vous savez, il y a une espece de parente.) Mais si vous epousez le vieux comte, vous faites le bonheur de ses derniers jours, et puis comme veuve du grand… le prince ne fait plus de mesalliance en vous epousant, [Вы меня не захватите врасплох, вы знаете. Как истинный друг, я долго обдумывал ваше дело. Вот видите: если выйти за принца, то вы навсегда лишаетесь возможности быть женою другого, и вдобавок двор будет недоволен. (Вы знаете, ведь тут замешано родство.) А если выйти за старого графа, то вы составите счастие последних дней его, и потом… принцу уже не будет унизительно жениться на вдове вельможи.] – и Билибин распустил кожу.

Каждый электрик должен знать:  В посудомоечной машине горит индикатор сушки - причина

Главная

От создателя:

Очень часто мне приходилось проводить бесследно потеряные часы за поисками книг и научных работ всвязи с необходимостью написания рефератов, дипломных, диссертаций. Я искал книги в библиотеках и в интернете. Во время этих поисков, я понял насколько трудно в наше время найти нормальные источники информации, на которые можно было бы опереться в ходе написания научных работ. Проблема заключается в том, что в библиотеке усложнена система поиска — приходится механически перебирать очень много книг, а в интернете слишком много рекламы и когда натыкаешься на долгожданную нужную книгу, тебе её тут же предлагают купить! Но разве нужна Вам эта книга из 400 или более страниц, если нужно-то из неё всего одна глава или вообще обзац текста — для того, чтобы понять смысл, мнение того или иного автора относительно той или иной проблемы, и сослаться на его работу. Без злого умысла плагиата или воровства интеллектуального имущества. Наоборот, для освещения работы автора, использования по назначению его не напрасных трудов. Разве знания не должны быть более доступны для более прогрессивного развития общества?

Именно поэтому и был создан этот проект — чтобы помочь тем, кто нуждается в помощи, подобно тому, как я нуждался в ней. Здесь выложены книги в черновом текстовом варианте, чтобы, используя поиск, вы могли найти нужную информацию и сослаться на определённую книгу определённого автора. Теперь не придётся покупать книги, не зная, пригодятся они Вам или нет.

Следует отметить, что страницы на сайте могут не совпадать со страницами книги, так как книги на сайте искусственно поделены на примерно равные части для удобства поиска, чтения и меньшей загрузки браузера. Также не стоит браниться относительно ошибок в тексте или неверным отображением формул (разделы химии, математики, физики и др..). Напомню, что текст выложен для того, чтобы Вы могли найти и скачать нужную Вам книгу. Если же Вы желаете исправить данное упущение, то ваша помощь проекту приветствуется — Ваши старания не оставят равнодушными очень многих людей.

Также есть возможность скачать книги в электронном варианте для более подробного изучения.

На данный момент на сайте доступны работы следующих авторов:

Большая Советская энциклопедия — ганна эффект

Связанные словари

Ганна эффект

явление генерации высокочастотных колебаний электрического тока j в полупроводнике, у которого объемная Вольтамперная характеристика имеет N-образный вид (рис. 1). Эффект был обнаружен впервые американским физиком Дж. Ганном (J. Gunn) в 1963 в двух полупроводниках с электронной проводимостью: арсениде галлия (GaAs) и фосфиде индия (InP). Генерация происходит, когда постоянное напряжение V, приложенное к полупроводниковому образцу длиной l, таково, что электрическое поле Е в образце, равное Е = V/l, заключено в некоторых пределах Е1E (E 2. E1 и E2 ограничивают падающий участок вольтамперной характеристики j (E), на котором дифференциальное сопротивление отрицательно. Колебания тока имеют вид серии импульсов (рис. 2). Частота их повторения обратно пропорциональна длине образца l.

Г. э. связан с тем, что в образце периодически возникает, перемещается по нему и исчезает область сильного электрического поля, которую называют электрическим доменом. Домен возникает потому, что однородное распределение электрического поля при отрицательном дифференциальном сопротивлении неустойчиво. Действительно, пусть в полупроводнике случайно возникло неоднородное распределение концентрации электронов в виде дипольного слоя — в одной области концентрация электронов увеличилась, а в другой — уменьшилась (рис. 3). Между этими заряженными областями возникает дополнительное поле ΔE (как между обкладками заряженного конденсатора). Если оно добавляется к внешнему полю Е и дифференциальное сопротивление образца положительно, т. е. ток растет с ростом поля E, то и ток внутри слоя больше, чем вне его (Δj > 0). Поэтому электроны из области с повышенной плотностью вытекают в большем количестве, чем втекают в неё, в результате чего возникшая неоднородность рассасывается. Если же дифференциальное сопротивление отрицательно (ток уменьшается с ростом поля), то плотность тока меньше там, где поле больше, т. е. внутри слоя. Первоначально возникшая неоднородность не рассасывается, а, напротив, нарастает. Растет и падение напряжения на дипольном слое, а вне его падает (т. к. полное напряжение на образце задано). В конце концов образуется электрический домен, распределение поля и плотности заряда в котором изображены на рис. 4. Поле вне установившегося домена меньше порогового E1, благодаря чему новые домены не возникают.

Так как домен образован носителями тока — «свободными» электронами проводимости, то он движется в направлении их дрейфа со скоростью v, близкой к дрейфовой скорости носителей вне домена. Обычно домен возникает не внутри образца, а у катода. Дойдя до анода, домен исчезает. По мере его исчезновения падение напряжения на домене уменьшается, а на всей остальной части образца соответственно растет. Одновременно возрастает ток в образце, т. к. увеличивается поле вне домена; по мере приближения этого поля к пороговому полю E1 плотность тока приближается к максимальной jmaкc (рис. 1). Когда поле вне домена превышает E1, у катода начинает формироваться новый домен, ток падает и процесс повторяется. Частота ν колебаний тока равна обратной величине времени прохождения домена через образец: ν = v/l. В этом проявляется существенное отличие Г. э. от генерации колебаний в др. приборах с N-образной вольтамперной характеристикой, например в цепи с туннельным диодом (См. Туннельный диод), где генерация не связана с образованием и движением доменов и частота колебаний определяется ёмкостью и индуктивностью цепи.

В GaAs с электронной проводимостью при комнатной температуре E1Ганна эффект3·10 3 в/см, скорость доменов v ≈ 10 7 см/сек. Обычно используют образцы длиной l = 50—300 мкм, так что частота генерируемых колебаний ν = 0,3—2 Ггц. Размер домена Ганна эффект 10—20 мкм. Г. э. наблюдался, помимо GaAs и InP, и в др. электронных полупроводниках: Ge, CdTe, ZnSe, InSb, а также в Ge с дырочной проводимостью. Г. э. пользуются для создания генераторов и усилителей диапазона сверхвысоких частот (см. Генерирование электрических колебаний).

Лит.: «Solid State Communications», 1963, v. 1, №4, p. 88-91: Гани Дж., Эффект Ганна, «Успехи физических наук», 1966, т. 89. в. 1, с. 147; Волков А. ф., Коган Ш. М., Физические явления в полупроводниках с отрицательной дифференциальной проводимостью, там же, 1968, т. 96, в, 4, с. 633; Левинштейн М. Е., Эффект Ганна, «Зарубежная радиоэлектроника», 1968, № 10, с. 64; Левинштейн М. Е., Шур М. С., Приборы на основе эффекта Ганна, там же, 1970, в. 9, с. 58.

А. Ф. Волков, Ш. М. Коган.

Рис. 1. N-oбразная вольтамперная характеристика, Е — электрическое поле, создаваемое приложенной разностью потенциалов V, j — плотность тока.

Рис. 2. Форма колебаний тока в случае эффекта Ганна.

Рис. 3. Развитие электрического домена. Электроны движутся слева направо, против поля Е.

Рис. 4. Распределение электрического поля Е (сплошная кривая) и объёмного заряда ρ (пунктир) в электрическом домене.


Большая советская энциклопедия. — М.: Советская энциклопедия

Значение ГАННА ЭФФЕКТ в Большой советской энциклопедии, БСЭ

эффект, явление генерации высокочастотных колебаний электрического тока j в полупроводнике, у которого объемная вольтамперная характеристика имеет N-образный вид ( рис. 1 ). Эффект был обнаружен впервые американским физиком Дж. Ганном (J. Gunn) в 1963 в двух полупроводниках с электронной проводимостью: арсениде галлия (GaAs) и фосфиде индия (InP). Генерация происходит, когда постоянное напряжение V , приложенное к полупроводниковому образцу длиной l , таково, что электрическое поле Е в образце, равное Е V/l, заключено в некоторых пределах Е1 £ E ( E 2 . E1 и E 2 ограничивают падающий участок вольтамперной характеристики j (E), на котором дифференциальное сопротивление отрицательно. Колебания тока имеют вид серии импульсов ( рис. 2 ). Частота их повторения обратно пропорциональна длине образца l .

Г. э. связан с тем, что в образце периодически возникает, перемещается по нему и исчезает область сильного электрического поля, которую называют электрическим доменом. Домен возникает потому, что однородное распределение электрического поля при отрицательном дифференциальном сопротивлении неустойчиво. Действительно, пусть в полупроводнике случайно возникло неоднородное распределение концентрации электронов в виде дипольного слоя — в одной области концентрация электронов увеличилась, а в другой — уменьшилась ( рис. 3 ). Между этими заряженными областями возникает дополнительное поле DE (как между обкладками заряженного конденсатора). Если оно добавляется к внешнему полю Е и дифференциальное сопротивление образца положительно, т. е. ток растет с ростом поля E , то и ток внутри слоя больше, чем вне его (Dj > 0). Поэтому электроны из области с повышенной плотностью вытекают в большем количестве, чем втекают в неё, в результате чего возникшая неоднородность рассасывается. Если же дифференциальное сопротивление отрицательно (ток уменьшается с ростом поля), то плотность тока меньше там, где поле больше, т. е. внутри слоя. Первоначально возникшая неоднородность не рассасывается, а, напротив, нарастает. Растет и падение напряжения на дипольном слое, а вне его падает (т. к. полное напряжение на образце задано). В конце концов образуется электрический домен, распределение поля и плотности заряда в котором изображены на рис. 4 . Поле вне установившегося домена меньше порогового E1, благодаря чему новые домены не возникают.

Каждый электрик должен знать:  Прогрев бетона в зимнее время видео, технологии, схемы

Так как домен образован носителями тока — ‘свободными’ электронами проводимости, то он движется в направлении их дрейфа со скоростью v, близкой к дрейфовой скорости носителей вне домена. Обычно домен возникает не внутри образца, а у катода. Дойдя до анода, домен исчезает. По мере его исчезновения падение напряжения на домене уменьшается, а на всей остальной части образца соответственно растет. Одновременно возрастает ток в образце, т. к. увеличивается поле вне домена; по мере приближения этого поля к пороговому полю E1 плотность тока приближается к максимальной jmaкc ( рис. 1 ). Когда поле вне домена превышает E1, у катода начинает формироваться новый домен, ток падает и процесс повторяется. Частота n колебаний тока равна обратной величине времени прохождения домена через образец: n v/l. В этом проявляется существенное отличие Г. э. от генерации колебаний в др. приборах с N-образной вольтамперной характеристикой, например в цепи с туннельным диодом , где генерация не связана с образованием и движением доменов и частота колебаний определяется ёмкостью и индуктивностью цепи.

В GaAs с электронной проводимостью при комнатной температуре E1

3T103 в/см, скорость доменов v ‘ 107 см/сек. Обычно используют образцы длиной l 50-300 мкм, так что частота генерируемых колебаний n 0,3-2 Ггц. Размер домена

10-20 мкм. Г. э. наблюдался, помимо GaAs и InP, и в др. электронных полупроводниках: Ge, CdTe, ZnSe, InSb, а также в Ge с дырочной проводимостью. Г. э. пользуются для создания генераторов и усилителей диапазона сверхвысоких частот (см. Генерирование электрических колебаний ) .

Лит.: ‘Solid State Communications’, 1963, v. 1, |4, p. 88-91: Гани Дж., Эффект Ганна, ‘Успехи физических наук’, 1966, т. 89 . в. 1, с. 147; Волков А. ф., Коган Ш. М., Физические явления в полупроводниках с отрицательной дифференциальной проводимостью, там же, 1968, т. 96, в, 4, с. 633; Левинштейн М. Е., Эффект Ганна, ‘Зарубежная радиоэлектроника’, 1968, | 10, с. 64; Левинштейн М. Е., Шур М. С., Приборы на основе эффекта Ганна, там же, 1970, в. 9, с. 58 .

Эффект Ганна

явление возникновения осцилляций тока в однородном многодолинном полупроводнике при приложении к нему сильного электрического поля. Впервые этот эффект наблюдался Джоном Ганном в 1963 г. на арсениде галлия, затем явление осцилляций тока было обнаружено в фосфиде индия, фосфиде галлия и ряде других полупроводниковых соединений.

Физика явления

Эффект Ганна может возникнуть в полупроводнике, в котором в зоне проводимости имеется более одного минимума энергии, например в GaAs, InAs. В полупроводниках, зона проводимости которых имеет более одного минимума энергии, электрон с волновым вектором соответствующим одному из минимумов, при рассеянии может оказаться в состоянии с волновым вектором принадлежащим другому минимуму. В результате такого рассеяния будет иметь место переброс электронов из одного минимума зоны проводимости в другой. Такой вид рассеяния получил название междолинного.

Рассмотрим энергетическую структуру GaAs n-типа в направлении. Возможны переходы из минимума А с состоянием в минимум Б с состоянием . Минимумы А и Б разделены энергетическим интервалом <<<1>>>. Поскольку кривизна долин А и Б разная, эффективные массы электронов в них также различны и равны и соответственно. Естественно, подвижность лёгких электронов выше, чем подвижность тяжелых электронов Плотность состояний в верхней долине примерно в 70 раз выше, чем в нижней.

При малых внешних полях электроны находятся в термодинамическом равновесии с решеткой и, поскольку при обычных температурах kT

определяется концентрацией лёгких электронов и их подвижностью. В этом случае концентрация электронов n = nA, nB = 0. Плотность тока будет линейно возрастать с ростом напряжённости поля до некоторого критического значения

По мере возрастания средняя энергия и скорость электронов повышается, и при E > ΔE становится возможным переход электронов в долину Б. Тогда суммарная концентрация электронов будет n = nA + nB. Таким образом, с ростом напряженности от до некоторого значения будет иметь место уменьшение подвижности электронов, а следовательно, уменьшение и на вольт-амперной характеристике появится падающий участок. При дальнейшем росте все электроны перейдут в минимум Б, и снова установится линейная ВАХ.

Ганна эффект

возникновение ВЧ колебаний электрич. тока в ПП образце с N-образной вольтамперной характеристикой (см. рис.) под действием сильного пост. электрич. поля (напряжённостью

10 5 В/м). Г. э. связан с периодич. появлением в однородном ПП кристалле и перемещением по нему области сильного электрич. поля — электрич. домена, наз. доменом Ганна. Образование электрич. доменов обусловлено нарастанием к.-л. неоднородности в распределении электрич. поля (напр., локальной флуктуации плотности заряда, возникшей в результате неоднородного легирования) в среде с отрицат. дифференц. проводимостью. Частота ВЧ колебаний обратно пропорциональна длине образца. Так, в кристалле арсенида галлия GaAs длиной 50 — 30 мкм частота колебаний

0,3 — 2 ГГц. Используется в генераторах и усилителях.

0,3-2 ГГц. Используется в генераторах и усилителях сверхвысокой частоты. Открыт Дж. Ганном в 1963.

генерация высокочастотных колебаний электрич. тока в полупроводнике с N-образной вольт-амперной характеристикой (рис.). Г. э. связан с периодич. появлением в кристалле и перемещением по нему области сильного электрич. поля, к-рая наз. доменом Ганна. Частота колебаний обратно пропорциональна длине образца. В кристалле GaAs длиной 50-30 мкм частота колебаний 0,3-2 ГТц. Используется в генераторах и усилителях СВЧ. Открыт Дж. Ганном в 1963. Вольт-амперная характеристика: Е — электрическое поле, создаваемое приложенной разностью потенциалов; j — плотность тока.

0,3-2 ГГц. Используется в генераторах и усилителях сверхвысокой частоты. Открыт Дж. Ганном в 1963.

Что такое Ганна Эффект

Ганна Эффект в Энциклопедическом словаре:

Ганна Эффект — генерация высокочастотных колебаний электрического тока вполупроводнике с N-образной вольт-амперной характеристикой. Ганна эффектсвязан с периодическим появлением в кристалле и перемещением по немуобласти сильного электрического поля, которая называется доменом Ганна.Частота колебаний обратно пропорциональна длине образца. В кристалле GaAsдлиной 50-30 мкм частота колебаний

0,3-2 ГГц. Используется в генераторахи усилителях сверхвысокой частоты. Открыт Дж. Ганном в 1963.

Определение «Ганна Эффект» по БСЭ:

Ганна эффект — явление генерации высокочастотных колебаний электрического тока j в полупроводнике, у которого объемная Вольтамперная характеристика имеет N-образный вид (рис. 1). Эффект был обнаружен впервые американским физиком Дж. Ганном (J. Gunn) в 1963 в двух полупроводниках с электронной проводимостью: арсениде галлия (GaAs) и фосфиде индия (InP). Генерация происходит, когда постоянное напряжение V, приложенное к полупроводниковому образцу длиной l, таково, что электрическое поле Е в образце, равное Е = V/l, заключено в некоторых пределах Е1 &le. E (E 2. E1 и E2 ограничивают падающий участок вольтамперной характеристики j (E), на котором дифференциальное сопротивление отрицательно.
Колебания тока имеют вид серии импульсов (рис. 2). Частота их повторения обратно пропорциональна длине образца l.
Г. э. связан с тем, что в образце периодически возникает, перемещается по нему и исчезает область сильного электрического поля, которую называют электрическим доменом. Домен возникает потому, что однородное распределение электрического поля при отрицательном дифференциальном сопротивлении неустойчиво. Действительно, пусть в полупроводнике случайно возникло неоднородное распределение концентрации электронов в виде дипольного слоя — в одной области концентрация электронов увеличилась, а в другой — уменьшилась (рис. 3). Между этими заряженными областями возникает дополнительное поле
&Delta.E (как между обкладками заряженного конденсатора). Если оно добавляется к внешнему полю Е и дифференциальное сопротивление образца положительно, т. е. ток растет с ростом поля E, то и ток внутри слоя больше, чем вне его (&Delta.j > 0). Поэтому электроны из области с повышенной плотностью вытекают в большем количестве, чем втекают в неё, в результате чего возникшая неоднородность рассасывается. Если же дифференциальное сопротивление отрицательно (ток уменьшается с ростом поля), то плотность тока меньше там, где поле больше, т. е. внутри слоя. Первоначально возникшая неоднородность не рассасывается, а, напротив, нарастает. Растет и падение напряжения на дипольном слое, а вне его падает (т. к. полное напряжение на образце задано). В конце концов образуется электрический домен, распределение поля и плотности заряда в котором изображены на рис. 4. Поле вне установившегося домена меньше порогового E1, благодаря чему новые домены не возникают.
Так как домен образован носителями тока — «свободными» электронами проводимости, то он движется в направлении их дрейфа со скоростью v, близкой к дрейфовой скорости носителей вне домена. Обычно домен возникает не внутри образца, а у катода. Дойдя до анода, домен исчезает. По мере его исчезновения падение напряжения на домене уменьшается, а на всей остальной части образца соответственно растет. Одновременно возрастает ток в образце, т. к. увеличивается поле вне домена. по мере приближения этого поля к пороговому полю E1 плотность тока приближается к максимальной jmaкc (рис. 1). Когда поле вне домена превышает E1, у катода начинает формироваться новый домен, ток падает и процесс повторяется. Частота &nu. колебаний тока равна обратной величине времени прохождения домена через образец: &nu. = v/l.
В этом проявляется существенное отличие Г. э. от генерации колебаний в др. приборах с N-образной вольтамперной характеристикой, например в цепи с туннельным диодом, где генерация не связана с образованием и движением доменов и частота колебаний определяется ёмкостью и индуктивностью цепи.
В GaAs с электронной проводимостью при комнатной температуре E1&sim.3·10і в/см, скорость доменов v &asymp. 10 7 см/сек. Обычно используют образцы длиной l = 50-300 мкм, так что частота генерируемых колебаний &nu. = 0,3-2 Ггц.
Размер домена &sim. 10-20 мкм. Г. э. наблюдался, помимо GaAs и InP, и в др. электронных полупроводниках: Ge, CdTe, ZnSe, InSb, а также в Ge с дырочной проводимостью. Г. э. пользуются для создания генераторов и усилителей диапазона сверхвысоких частот (см. Генерирование электрических колебаний).
Лит.: «Solid State Communications», 1963, v. 1, №4, p. 88-91: Гани Дж., Эффект Ганна, «Успехи физических наук», 1966, т. 89. в. 1, с. 147. Волков А. ф., Коган Ш. М., Физические явления в полупроводниках с отрицательной дифференциальной проводимостью, там же, 1968, т. 96, в, 4, с. 633. Левинштейн М. Е., Эффект Ганна,
«Зарубежная радиоэлектроника», 1968, № 10, с. 64. Левинштейн М. Е., Шур М. С., Приборы на основе эффекта Ганна, там же, 1970, в. 9, с. 58.
А. Ф. Волков, Ш. М. Коган.
Рис. 1. N-oбразная вольтамперная характеристика, Е — электрическое поле, создаваемое приложенной разностью потенциалов V, j — плотность тока.
Рис. 2. Форма колебаний тока в случае эффекта Ганна.
Рис. 3. Развитие электрического домена. Электроны движутся слева направо, против поля Е.
Рис. 4. Распределение электрического поля Е (сплошная кривая) и объёмного заряда &rho. (пунктир) в электрическом домене.

Добавить комментарий