Элегазовый выключатель принцип работы, преимущества и недостатки, эксплуатация


СОДЕРЖАНИЕ:

Принцип работы элегазовых выключателей

Воздушные выключатели

Воздушный выключатель – высоковольтный выключатель, у которого гашение электрической дуги и перемещение контактов производится потоком сжатого воздуха, который создаётся отдельным устройством (в отличие от автогазового выключателя – здесь газы для дугогашения создаются внутри самого аппарата).

Поскольку воздушный выключатель не способен самостоятельно создавать поток сжатого воздуха, то для его работы необходимы следующие дополнительные элементы:

· Устройство создания сжатого воздуха – компрессор;

· Устройство хранения сжатого воздуха – ресивер

Воздушный выключатель ВВ–35:1 – тележка; 2 – опорный изолятор; 3, 4 – привод ножей; 5 – шунтирующее сопротивление; 6 – вывод; 7 – камера основания; 8 – ножи разъединителя; 9 – охладители; 10 – шунтирующее сопротивление; 11 – камера вспомогательная; 12 – штанга; 13 – нож отделителя

Достоинства

  • Воздушные выключатели давно эксплуатируются в энергосистемах России и СНГ и имеется большой опыт их эксплуатации и ремонта;
  • Ремонтопригодность (особенно по сравнению с элегазовыми выключателями).

Недостатки

  • Необходимость наличия развитой пневмосистемы и компрессорного оборудования;
  • Сильный шумовой эффект при отключении токов К.З.
  • Большие габариты (особенно по сравнению с элегазовыми), что вызывает большие размеры ОРУ.

Масляный выключатель

Масляный выключатель – коммутационный аппарат, предназначенный для оперативных включений и отключений отдельных цепей или электрооборудования в энергосистеме, в нормальных или аварийных режимах, при ручном или автоматическом управлении. Дугогашение в таком выключателе происходит в масле.

Литература

2. Нижнетуринский электроаппаратный завод (ООО «НТЭАЗ Электрик»).

3. Компания ООО «Элар» г. Новосибирск

Выключатели 110 кВ

Масляные выключатели.

Существует две разновидности масляных выключателей – маломасляные и баковые. В настоящее время баковые выключатели не производятся, в связи с тем, что обладают рядом недостатков, таких как:

–взрыво– и пожароопасность,

–необходимость больших запасов масла,

–непригодность для установки внутри помещений,

–необходимость периодического контроля за состоянием и уровнем масла в баке.

В нашем случае, с напряжением 110 кВ расскажу о масляном баковом выключателе У–110–2000–40.

Б) – разрез дугогасительной камеры выключателя У–110; 13 – держатель; 14 – корпус камеры; 15 – неподвижный контакт; 16 и 23 – дугогасительные решетки; 17, 21 и 22 – подвижные контакты; 18 – изолирующая втулка; 19 – экран; 20 – поджимающая пружина; 24 – промежуточный контакт; 25 и 26 – дутьевые щели; 27 – внешний подвижный контакт
У данной установки номинальное напряжение 110 кВ, номинальный ток 2000 А, номинальный ток отключения 40 кА, при частоте переменного тока 50 Гц.
А) – разрез фазы выключателя У–110; 1 – бак; 2 – траверса; 3 – дугогасительная камера; 4 – шунтирующий резистор; 5 – направляющее устройство; 6 – изоляция бака выключателя; 7 – трансформатор тока; 8 – маслоуказатель; 9 – приводной механизм; 10 – ввод маслонаполненный; 11 – выхлопное отверстие (сопло); 12 – устройство подогрева масла

Достоинства масляных баковых выключателей:

1. Высокая надежность.
2. Простота конструкции камер и механизма.
3. Высокая механическая прочность элементов (камер, бака, механизма, вводов).

4.Использование трансформаторов тока.

Не требовался высококвалифицированный персонал для обслуживания.

Среда для гашения дуги масло – оно не являлось дефицитным.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Diplom Consult.ru

возможность установки в электроустановках как закрытого, так и открытого исполнения практически всех классов напряжения;

простота и надежность конструкции;

большой коммутационный ресурс контактной системы;

неплохая отключающая способность;

высокая скорость срабатывания;

взрыво- и пожаробезопасность;

небольшие габаритные размеры и масса (в несколько раз меньше масляного выключателя).

Как и любое устройство, выключатель имеет и недостатки:

высокие требования к качеству элегаза;

применение специальной аппаратуры для периодического обслуживания коммутационного аппарата;

образование в процессе эксплуатации вредных для организма человека веществ – фторидов.

Несмотря на некоторые недостатки, элегазовый выключатель является достойной заменой масляных и воздушных коммутационных аппаратов.

Элегазовые выключатели, эксплуатируемые на открытых распределительных устройствах электроустановок, подвержены образованию конденсационной влаги, которая скапливается непосредственно в шкафу привода самого выключателя. Влага в приводе выключателя может привести к повреждению механизма привода выключателя и вторичных цепей управления и сигнализации. Поэтому в приводе выключателя предусмотрены специальные нагревательные резисторы, которые должны быть всегда включены в работу.

Конструкция и принцип действия высоковольтных аппаратов применяемых для защиты электрооборудования от атмосферных и коммутационных перенапряжений.

Разря́дник — электрический аппарат, предназначенный для ограничения перенапряжений в электротехнических установках и электрических сетях. В электрических сетях часто возникают импульсные всплески напряжения, вызванные коммутациями электроаппаратов, атмосферными разрядами или иными причинами. Несмотря на кратковременность такого перенапряжения, его может быть достаточно для пробоя изоляции и, как следствие, короткого замыкания, приводящего к разрушительным последствиям. Для того, чтобы устранить вероятность короткого замыкания, можно применять более надежную изоляцию, но это приводит к значительному увеличению стоимости оборудования. В связи с этим в электрических сетях целесообразно применять разрядники. Разрядник состоит из двух электродов и дугогасительного устройства.

Электроды. Один из электродов крепится на защищаемой цепи, второй электрод заземляется. Пространство между электродами называется искровым промежутком. При определенном значении напряжения между двумя электродами искровой промежуток пробивается, снимая тем самым перенапряжение с защищаемого участка цепи. Одно из основных требований, предъявляемых к разряднику — гарантированная электрическая прочность при промышленной частоте (разрядник не должен пробиваться в нормальном режиме работы сети).

Дугогасительное устройство. После пробоя импульсом искровой промежуток достаточно ионизирован, чтобы пробиться фазным напряжением нормального режима, в связи с чем возникает короткое замыкание и, как следствие, срабатывание устройств РЗиА, защищающих данный участок. Задача дугогасительного устройства — устранить это замыкание в наиболее короткие сроки до срабатывания устройств защиты. Виды разрядников

Трубчатый разрядник. Трубчатый разрядник представляет собой дугогасительную трубку из полихлорвинила, с разных концов которой закреплены электроды. Один электрод заземляется, а второй располагается на небольшом расстоянии от защищаемого участка (расстояние регулируется в зависимости от напряжения защищаемого участка). При возникновении перенапряжения пробиваются оба промежутка: между разрядником и защищаемым участком и между двумя электродами. В результате пробоя в трубке возникает интенсивная газогенерация, и через выхлопное отверстие образуется продольное дутье, достаточное для погашения дуги . Вентильный разрядник Вентильный разрядник состоит из двух основных компонентов: многократного искрового промежутка (состоящего из нескольких однократных) и рабочего резистора (состоящего из последовательного набора вилитовых дисков). Многократный искровой промежуток последовательно соединен с рабочим резистором. В связи с тем, что вилит меняет характеристики при увлажнении, рабочий резистор герметично закрывается от внешней среды. Во время перенапряжения многократный искровой промежуток пробивается, задача рабочего резистора — снизить значение сопровождающего тока до величины, которая сможет быть успешно погашена искровыми промежутками.

Магнитовентильный разрядник (РВМГ) РВМГ состоит из нескольких последовательных блоков с магнитным искровым промежутком и соответствующего числа вилитовых дисков. Каждый блок магнитных искровых промежутков представляет собой поочередное соединение единичных искровых промежутков и постоянных магнитов, заключенное в фарфоровый цилиндр. При пробое в единичных искровых промежутках возникает дуга, которая за счет действия магнитного поля, создаваемого кольцевым магнитом, начинает вращаться с большой скоростью, что обеспечивает более быстрое, по сравнению с вентильными разрядниками, дугогашение.

ОПН. Ограничитель перенапряжения нелинейный (ОПН) — это разрядник без искровых промежутков. Активная часть ОПН состоит из последовательного набора варисторов. Принцип действия ОПН основан на том, что проводимость варисторов нелинейно зависит от приложенного напряжения. В нормальном режиме ОПН не пропускает ток, но как только на участке сети возникает перенапряжение, сопротивление ОПН резко снижается, чем и обуславливается эффект защиты от перенапряжения. После прохождения разряда через ОПН, его сопротивление опять возрастает. Переход из «закрытого» в «открытое» состояния занимает меньше 1 наносекунды (в отличие от разрядников с искровыми промежутками, у которых это время равняется нескольким микросекундам). Кроме быстроты срабатывания ОПН обладает еще рядом преимуществ. Одним из них является стабильность характеристики варисторов после неоднократного срабатывания вплоть до окончания указанного времени эксплуатации, что, кроме прочего, устраняет необходимость в эксплуатационном обслуживании.

Назначение, конструкция и принцип действия разъединителей, отделителей, короткозамыкателей.

Одним из важнейших мероприятий, обеспечивающих безопасность проведения работ в электроустановках, является использование для отключения электрических цепей аппарата, обеспечивающего видимый разрыв электрической цепи. Разъединители относятся к таким аппаратам. Они не имеют дугогасительных устройств, поэтому ими нельзя отключать токи, при которых на контактах образуется электрическая дуга. Такая дуга разрушает разъединитель и ближайшее к нему оборудование, может перекрыть фазы и привести к короткому замыканию. Электрическая дуга опасна для обслуживающего персонала.

Разъединители изготавливаются для внутренних и наружных электроустановок. Разъединители в установках напряжением свыше 1000 В предназначены для отключения электрических цепей при отсутствии нагрузки, для отключения и включения холостого хода трансформаторов, а также для переключения с одной системы шин на другую без разрыва электрической цепи.

Разъединитель — высоковольтный коммутационный аппарат, предназначенный для разъединения и переключения отдельных участков электрических цепей при отсутствии в них тока; создаёт видимый разрыв электрической цепи. Разъединители применяются в высоковольтных распределительных устройствах, главным образом для обеспечения безопасности профилактических и ремонтных работ на отключенных участках. В отдельных случаях с помощью разъединителей отключают небольшие токи (например, токи намагничивания трансформаторов небольшой мощности или токи ненагруженных линий небольшой длины).

Разъединители применяют также для секционирования шин и переключения электрических линий с одной системы шин распределительного устройства на другую. Разъединитель состоит из подвижных и неподвижных контактов, укрепленных на изоляторах. Для приведения в действие подвижного контакта используется изолятор, с помощью которого он сочленяется с приводом.

Разъединители различают: — по роду установки (внутренние, наружные); — по числу полюсов (однополюсные, трёхполюсные и др.); — по способу управления (ручные, дистанционные).

В электрических сетях напряжением 110 кВ применяют разъединители с подвижным контактом типа пантографа и с неподвижным контактом, укрепленным на проводе (шине).

Для предотвращения ошибочных операций применяют механические, электрические или комбинированные блокировочные устройства, предотвращающие отключение или включение разъединителя, когда соответствующий высоковольтный выключатель находится в положении ‘включено’. Разъединители должны обладать способностью длительно пропускать номинальный ток нагрузки, а также высокой термической и динамической устойчивостью (стойкостью) при сквозных токах короткого замыкания.

Рисунок 3 – Двухколонковые разъединители типа РЛНДЗ (один полюс): а — на 35 кВ, 1000 А; б — на 110 кВ, 2000 А; 1, 2 — полуножки с ламелями; 3 — поворотные изоляторы; 4 — привод; 5 — заземляющие ножи; 6 — рама основания; 7 — контакты заземлителей

Элегазовые выключатели не выдержали низких температур

До появления элегазовых выключателей в Тюменьэнерго использовались масляные отечественного производства типов МКП-35, ВМ-35, С-35 на напряжение 35 кВ, а также выключатели типов МКП, У, ВМТ в классе напряжения 110 и 220 кВ. Причем к концу 90-х годов подавляющее большинство составляли выключатели типа ВМТ на 110 кВ производства УЭТМ, г. Свердловск.

Проблемы, с которыми связана эксплуатация масляных выключателей, известны давно и остаются актуальными по сей день. Вот некоторые из них:
• малый коммутационный ресурс;
• большие затраты по материалам, ремонту и эксплуатации, что является следствием конструктивных недоработок, низкого качества изготовления комплектующих и других недостатков, как самих выключателей, так и их приводов.

Появление элегазовых коммутационных аппаратов позволило уйти от многих проблем, присущих масляным выключателям.

Первые элегазовые коммутационные аппараты 110 кВ на объектах ОАО «Тюменьэнерго» появились в 1987 году на подстанции «Элегаз» Сургутских электрических сетей в составе КРУЭ типа ЯЭ-110 производства завода «Электроаппарат», г. Ленинград. Своей надёжной работой они доказали преимущество элегазовых коммутационных аппаратов перед масляными. Однако эти КРУЭ имели пневматические приводы, что требовало полноценного компрессорного хозяйства со всеми вытекающими из этого минусами по его содержанию и обслуживанию.

Началом массового применения элегазовых выключателей можно считать 1997 год, когда были введены в работу элегазовые баковые выключатели типа 242 РМR и 145 РМ производства АББ на ПС 220 кВ «Ишим» и «Заря» Ишимских электрических сетей. Затем в 1999 году Нефтеюганские электрические сети начали обслуживать КРУЭ-110 кВ типа ELK-04 производства АББ на подстанции «Авангард». В 2000 году на ПС 110 кВ «Граничная» Тюменских электрических сетей появились первые элегазовые выключатели типа ВГТ-110 производства УЭТМ г. Екатеринбург.

За прошедшие годы была проведена большая работа по внедрению современных элегазовых выключателей 110 кВ, в первую очередь на узловых и ответственных подстанциях. Замена выключателей 35 кВ производилась на наиболее ответственных присоединениях. Кроме того, современные выключатели применялись при строительстве новых объектов.

Сегодня из общего числа выключателей 35—220 кВ, установленных в сетях ОАО «Тюменьэнерго», доля выключателей 35 кВ составляет 56%, выключателей 110 кВ — 43% и почти 1% составляют выключатели 220 кВ.

По классам напряжения современные выключатели распределяются следующим образом — от общего числа выключателей 35 кВ (всего 1884 шт.) современные вакуумные и элегазовые составляют 12% (226 шт.); в выключателях 110 кВ число элегазовых — 33,5% (475 шт.) при их общем количестве 1420 шт.; на напряжении 220 кВ все выключатели (25 шт.) современные элегазовые.

Накопленный в период 2005— 2006 гг. опыт эксплуатации показал следующие основные достоинства элегазовых выключателей:
• высокие надёжность и коммутационный ресурс;
• малые эксплуатационные затраты.

Однако в условиях аномально холодной зимы 2005/06 г., когда низкие температуры до -45°С на юге Тюменской области и -62°С в ХМАО и ЯНАО держались продолжительное время — более двух недель без значительных изменений в сторону повышения, — проявились серьезные недостатки элегазовых выключателей. В период с 8 по 13 января 2006 г. в Тюменской энергосистеме наблюдались блокировки цепей управления на 70-ти баковых элегазовых выключателях: производства АББ — 63 шт. и AREVA (АLSTOM) — 7 шт.

Из-за массового блокирования цепей управления выключателями в энергосистеме создалась критическая ситуация. Тюменским РДУ был объявлен режим высоких рисков. Любое технологическое нарушение в электрических сетях Тюменской энергосистемы в этот период, при критически низких температурах и неработоспособном состоянии элегазовых выключателей, которые в большинстве своем находились на особо ответственных узловых, системообразующих подстанциях, могло привести к тяжелейшим последствиям в первую очередь для потребителей нефтяной и газовой отраслей, ЖКХ региона и экономики страны в целом из-за возможных нарушений при добыче и транспортировке нефти и газа из северных регионов Тюменской области.

Для предотвращения критической ситуации в Тюменьэнерго были предприняты все возможные меры по обеспечению работоспособности элегазовых выключателей путём восстановления давления элегаза за счёт установки дополнительного подогрева и термоизоляции баков — утепление баков дарнитом, стеклотканью, монтаж дополнительного обогрева в зависимости от возможности установки под бак ТЭН, воздуходувок, светильников типа ПКН.

В срочном порядке были организованы бригады, в том числе с привлечением подрядных организаций, для проведения работ в круглосуточном режиме с постоянным мониторингом состояния оборудования.

Благодаря быстрой и слаженной работе ремонтных бригад «дедовскими» методами, подручными средствами, удалось восстановить работоспособность выключателей и не допустить развития критической ситуации.

При анализе причин снижения давления элегаза в баках выключателей АББ было установлено, что основными из них являлись:
• недостаточная термоизоляция баков выключателей производства АББ;
• недостаточная мощность штатных нагревателей баков выключателей.

Для объективности картины следует отметить, что вышеуказанные недостатки проявились отчасти вследствие того, что установленное оборудование не было рассчитано на эксплуатацию в условиях столь низких температур в длительном режиме.

На техническом совещании по вопросу блокирования баковых элегазовых выключателей в условиях низких температур с участием представителей Тюменьэнерго, ФСК ЕЭС, филиала ФСК ЕЭС — МЭС Западной Сибири, центра испытаний и сервисного обслуживания ООО «АББ Электроинжиниринг», состоявшемся в январе 2006 г. в г. Сургут, о работе выключателей производства АББ было отмечено следующее:
• отсутствие штатного устройства контроля исправности элементов обогрева баков;
• расхождение между показаниями манометров и действиями монитора плотности на блокирование выключателя на аппаратах с термокомпенсированными манометрами;
• невозможность контроля соответствия давления элегаза установленным значениям при включённом обогреве баков;
• отсутствие рекомендаций от завода-изготовителя о возможности коммутации выключателями токов, меньших номинального тока отключения, ёмкостных и индуктивных токов при снижении плотности элегаза ниже уровня блокировки;
• отсутствие региональных сервисных центров по выключателям производства АББ, что лишает возможности оперативного реагирования на возникающие неисправности.

По итогам данного совещания ООО «АББ Электроинжиниринг» в согласованные сроки произвело поставку и монтаж дополнительной теплоизоляционной оболочки баков выключателей, а также замену всех повредившихся нагревательных элементов.

В связи с отсутствием рекомендаций от завода-изготовителя о возможности коммутации выключателями токов, меньших номинального тока отключения, емкостных и индуктивных токов при снижении плотности элегаза ниже уровня блокировки, в Тюменьэнерго был разработан и утверждён 18.10.2006 г. Регламент действий оперативного персонала при блокировании цепей управления выключателей типа 145 РМ в условиях низких температур, согласованный ООО «АББ Электроинжиниринг» и Тюменским РДУ.

По событиям января 2006 г. вышло распоряжение ОАО «ФСК ЕЭС» №56 от 21.03.2006 г. «О приостановке поставок элегазовых баковых выключателей производства компании АББ типов: 145 РМ, 242 PMR, 550 РМ и компании АREVA типов: DT1-145, HGF-1012, HGF-1014 для объектов, расположенных в районах с холодным климатом».

В июле 2006 г. заводом-изготовителем ABB Int. в США были проведены климатические испытания выключателей 145 PM (испытания проходили в Канаде) и разработан план-график мероприятий по обеспечению работоспособности выключателей в условиях низких температур.

По результатам испытаний элегазовых выключателей в климатических камерах были приняты следующие решения:
• для выключателей, предназначенных для применения в ХМАО и ЯНАО, принять нижнее рабочее значение температуры окружающего воздуха -58°С в сочетании со скоростью ветра 5 м/с;
• увеличить мощность нагревателей баков, установив дополнительные ленточные нагреватели, которые должны вводиться в работу ступенчато и управляться автоматически. На первом этапе в течение осенне-зимнего периода (ОЗП) 2006—2007 г. возможно ограничиться ручным ступенчатым управлением. Разработку и поставку автоматической системы управления осуществляет компания ООО «АББ Электроинжиниринг»;
• увеличить мощность нагревателей, установленных в шкафах приводов выключателей;
• ООО «АББ Электроинжиниринг» выполнить временное утепление, частично закрывающее баки выключателей, в дальнейшем заменив его на специальные термоизоляционные покрывала, полностью закрывающие баки выключателей;
• замена дефектных и монтаж дополнительных обогревателей баков, монтаж термоизоляционных покрывал и системы ручного ступенчатого управления обогревателями.

При проведении модернизации системы подогрева выключателей 145 РМ под руководством шеф-персонала АББ до наступления ОЗП 2006—2007 г. выполнены:
• замена повреждённых штатных нагревателей (с ноября 2006 г. по август 2007 г. были повреждены 55 штатных нагревателей. Учитывая, что до ноября 2006 г. уже было заменено 122 шт., в целом число заменённых составило 177 шт., или 95% от установленных);
• установка дополнительных нагревателей ленточного типа;
• монтаж временного утепления баков.

В полном объёме работы по модернизации систем подогрева баковых элегазовых выключателей 145 РМ, включая автоматический ввод двухступенчатого подогрева баков от термостатов и контроль исправности подогревателей баков на объектах ОАО «Тюменьэнерго» были завершены к началу осенне-зимнего периода 2010—2011 г.

Специалисты Тюменьэнерго заинтересованы в повышении качества и надёжности применяемых в электрических сетях коммутационных аппаратов и продолжают работать в этом направлении.

Свидетельством тому служат взаимоотношения с компаниями АББ, АREVA, совместная работа с отечественными производителями по устранению имеющихся замечаний в работе выключателей, выразившаяся в конструктивных изменениях выключателей для соответствия требуемому климатическому исполнению.

При этом особо необходимо отметить сложившиеся конструктивные партнёрские отношения со специалистами УЭТМ, которые незамедлительно и неформально реагируют на предложения и замечания, поступающие со стороны Тюменьэнерго. Специалисты УЭТМ регулярно участвуют в технических советах Тюменьэнерго, посвящённых вопросам эксплуатации выключателей. Даже при отсутствии замечаний к работе своих выключателей в зиму 2005—2006 г. УЭТМ незамедлительно по обращению Тюменьэнерго выдал рекомендации по возможности коммутации выключателем при снижении или полной потере давления элегаза; доработал и испытаниями подтвердил соответствие баковых выключателей климатическому исполнению ХЛ1 (-60°С).

Тем не менее, даже учитывая проведённую большую работу по устранению замечаний к элегазовым выключателям, специалисты Тюменьэнерго заинтересованы в дальнейшем развитии и появлении принципиально новых коммутационных аппаратов.

В настоящее время Тюменьэнерго ведёт работу с ЗАО «Высоковольтный Союз» по внедрению вакуумных выключателей напряжением 110 кВ. Технические условия на данные выключатели разработаны при непосредственном участии специалистов Тюменьэнерго и учитывают все требования, предъявляемые к современным выключателям данного класса, в том числе и по климатическому исполнению для районов с холодным климатом.

В 2011 году компания планирует применить в опытную эксплуатацию вакуумные выключатели типа ВРС-110 производства ЗАО «Высоковольтный Союз». Также существует договоренность по опытной эксплуатации на объектах Тюменьэнерго вакуумных выключателей типа ВБП-110 производства ОАО «НПП Контакт».

Наряду с вопросами применения новых коммутационных аппаратов в Тюменьэнерго есть понимание невозможности скорой замены всех выключателей старых типов на современные. Например, сегодня в эксплуатации находятся 766 шт. выключателей 110 кВ типа ВМТ. При этом одним из наиболее проблемных элементов выключателей этого типа являются фарфоровые покрышки ПВМо-110. В течение трёх лет в опытной эксплуатации на объектах Тюменьэнерго находятся три выключателя, на которых вместо фарфоровых применены полимерные покрышки типа ППВМ-110 производства ЗАО «Феникс-88», г. Новосибирск. Учитывая положительные результаты опытной эксплуатации, компания намерена расширить применение полимерных покрышек при ремонтах выключателей соответствующего типа.

Сегодня Тюменьэнерго открыто к сотрудничеству в вопросах применения нового оборудования, а также усовершенствования и модернизации эксплуатируемого оборудования и готово рассмотреть любые, в том числе инновационные, предложения по опытной эксплуатации нового оборудования на своих объектах.

Проблема эксплуатации элегазовых выключателей Текст научной статьи по специальности « Электротехника, электронная техника, информационные технологии»

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Петрова Вероника Валерьевна

В представленной статье рассматривается устройство элегазовых выключателей , как они устроены, принцип их работы. Также представлены условия их работы и описаны требования по эксплуатации. Указаны рекомендации по монтажу и диагностике выключателей с элегазом . Элегазовые высоковольтные выключатели это устройства оперативного управления для контроля высоковольтной линии энергоснабжения. Данные устройства имеют очень похожую конструкцию с масляными, но при этом используют для гашения дуги не масляную смесь, а соединение газов. Зачастую это сера. Главное достоинство элегаза в его долговечности: он не стареет и минимально загрязняет механические части устройства.

Похожие темы научных работ по электротехнике, электронной технике, информационным технологиям , автор научной работы — Петрова Вероника Валерьевна

Текст научной работы на тему «Проблема эксплуатации элегазовых выключателей»

ПРОБЛЕМА ЭКСПЛУАТАЦИИ ЭЛЕГАЗОВЫХ

ВЫКЛЮЧАТЕЛЕЙ Петрова В.В. Email: Petrova644@scientifictext.ru

Петрова Вероника Валерьевна — магистрант, кафедра энергообеспечения предприятий и энергосберегающих технологий, Казанский государственный энергетический университет, г. Казань

Аннотация: в представленной статье рассматривается устройство элегазовых выключателей, как они устроены, принцип их работы. Также представлены условия их работы и описаны требования по эксплуатации. Указаны рекомендации по монтажу и диагностике выключателей с элегазом. Элегазовые высоковольтные выключатели — это устройства оперативного управления для контроля высоковольтной линии энергоснабжения. Данные устройства имеют очень похожую конструкцию с масляными, но при этом используют для гашения дуги не масляную смесь, а соединение газов. Зачастую это сера. Главное достоинство элегаза в его долговечности: он не стареет и минимально загрязняет механические части устройства. Ключевые слова: элегазовые выключатели, автоматические выключатели, выключатели электрооборудования, элегаз.

THE PROBLEM OF USING OF GAS-INSULATED CIRCUIT

BREAKERS Petrova V.V.

Petrova Veronika Valeryevna — Master Student, DEPARTMENT OF ENERGY SUPPLY OF ENTERPRISES AND ENERGY-SAVING

TECHNOLOGIES, KAZAN STATE POWER ENGINEERING UNIVERSITY, KAZAN Abstract: in the presented article the device of gas-insulated circuit breakers is considered. How they are arranged, the principle of their work. The conditions of their operation are also presented, and the operating requirements are described. The recommendations on installation and diagnostics of switches with SF6 gas are specified. Gas-insulated highvoltage switches are devices for operational control for monitoring high-voltage power lines. These devices have a very similar design with oil, but at the same time, not an oil mixture but a gas mixture is used to extinguish the arc. Often this is sulfur. The main advantage of SF6 in its durability: it does not age and minimally pollutes the mechanical parts of the device.

Keywords: gas-insulated circuit breakers, circuit breakers, switches of electrical equipment, SF6 gas.

Высоковольтные выключатели используются для включения и выключения высоковольтной линии, с целью регулирования работы системы электроснабжения, а также для отключения оборудования при авариях.

Для выполнения данных задач применяются высоковольтные выключатели:масляные;воздушные;вакуумные;элегазовые.

Элегазовые выключатели — это устройства оперативного управления для наблюдения за высоковольтной линией энергоснабжения. По конструкции данные механизмы похожи на масляные выключатели, но отличием является то, что для гашения дуги применяются газы, а не масло. Распространенным случаем является то, что применяется сера. Масляные выключатели сложны в эксплуатации по той причине, что необходима частая замена этого масла и частая очистка рабочих контактов. К элегазовым такие требования не предъявляются. Важным

преимуществом элегаза является его долговечность: он не теряет своих свойств со временем и минимально загрязняет механические части устройства.

Рис. 1. Элегазовые выключатели

Элегазовые выключатели классифицируются на:

— Колонковый. Использование такого типа допустимо только для сети 220 кВ. Такой механизм работает на одну фазу. Конструкция состоит из двух систем. Они устанавливаются в емкости с элегазом. Это контактная и дугогасительная система. Эти системы могут работать как в ручном режиме, так и в дистанционном. Данное условие является причиной того, что они обладают такими большими габаритами.

— Баковый. Размеры таких устройств меньше, нежели у колонковых. В строении находится еще один привод, обладающий несколькими фазами. Из-за этого появляется возможность плавно управлять включением и выключением напряжения. Также система обладает трансформатором тока, благодаря которому устройство может переносить большие нагрузки [1].

Кроме конструктивных отличий, выключатели элегазового типа делятся по способу гашения дуги:

Автокомпрессионные или воздушные;

Продольного дутья с дополнительным разогревом элегаза.

Принцип работы и назначение

Элегазовые выключатели высокого напряжения работают за счет изоляции фаз друг от друга при помощи элегаза. При появлении сигнала о том, что необходимо отключить оборудование, контакты каждой камеры (если устройство колонковое) разъединяются. Так с помощью встроенных контактов появляется дуга, которая находится в газу. Она разделяет газ на отдельные элементы, параллельно снижаясь сама по причине большого давления в емкости. Если установка работает на низком давлении, то применяются вспомогательные компрессоры для увеличения давления и создания газового дутья. Для выравнивания тока дополнительно применяется шунтирование [2]. Внешне схема работы выглядит так:

Рис. 2. Внутреннее устройство элегазовых выключателей

Достоинства элегазовых выключателей:

Универсальность. Такие выключатели применяются для управления сетями различных напряжений;

Быстрота действия. Реакции элегаза на наличие электрической дуги происходят за доли секунды, это гарантирует мгновенное отключение всей системы или оборудования в аварийной ситуации;

Допустима эксплуатация в условиях пожароопасности и вибрации;

Долговечность. Контакты, соприкасающиеся с элегазом, практически не изнашивают, газовые смеси не нуждаются в замене, а у наружной оболочки высокие показатели защиты;

Подходят для отключения переменного и постоянного тока высокого напряжения, в то время, как их аналоги — вакуумные модели не могут использоваться на высоковольтных сетях [3].

Также имеются следующие недостатки:

Высокая цена, связана с трудностью производства и дороговизной элегазовой смеси;

Монтаж производится непосредственно на фундамент или специальный электрощит, с предоставлением инструкции;

Выключатели не функционируют при низких температурах;

Для обслуживания необходимо специальное оборудование.

Дугогасительное устройство выключателя элегазового типа характеризуется малыми размерами и легкостью конструкции. Гашение дуги осуществляется при малом числе разрывов и быстро. Далее представлены конструктивные особенности и способ гашения дуги в выключателе.

в процессе отключения

Рис. 3. Конструктивные особенности гашения дуги

Каждый из трех полюсов рассматриваемого коммутационного аппарата -герметичный резервуар из металла, который заполнен элегазомс давлением 0,6 МПа. В полюсе выключателя находится автопневматическиймеханизм для гашения дуги. При включенном положении неподвижный контакт 5 плотно соединен с ламелями подвижного контакта 3. При отключении выключателя цилиндр 4, подвижный контакт 3 и сопло из фторопласта 4 опускаются вниз, сжимая при этом элегаз в камере 6. Находящийся по давлением электрический газ движется в сопло, где гасит электрическую дугу, возникающую при расхождении подвижного и неподвижного контактов (см. изображение).

Эксплуатация элегазового выключателя на подстанциях с обслуживающим оперативным персоналом

Элегазовые выключатели, используемые на открытых распределительных устройствах электроустановок, подвержены появлению конденсата, которые образуется в шкафу привода самого выключателя. Он способен привести к повреждению механизма привода выключателя и вторичных цепей управления и сигнализации. Из-за этого необходимо обеспечить наличие нагревательных резисторов, которые всегда включены.

Операции включения и выключения необходимо проводить только при условии, что система обладает необходимым давлением элегаза. В негативном случае произойдет повреждение выключателя. Для ликвидации таких случаев предусмотрена система, сигнализирующая о пониженном давлении, а также блокировка цепей управления выключателем при понижении давления элегаза до критического значения, при котором не осуществляется изоляция и гашение дуги при коммутации токов[4].

Если давление в коммутационном аппарате падает, то необходимо отключить его и направить на ремонт, определить причину снижения давления, при обнаружении причины — ликвидировать ее и возместить разницу газа. Для добавки газасуществует специальное присоединение, которое находится внутри шкафа привода. Для наблюдения за давлением — установлен манометр.

Оперативный персонал обязан осуществлять осмотр элегазового выключателя ежедневно и дополнительно один раз в две недели в темное время суток, преимущественно в сырую погоду на предмет коронации. При неблагоприятных погодных условиях, сильном загрязнении, а также в случае аварийной ситуации, то есть после автоматического отключения коммутационного аппарата необходимо производить дополнительные осмотры.

Во время осмотра коммутационного аппарата следует:

Исследовать целостность ошиновки и контактных соединений, а также отсутствие их нагрева;

проверить отсутствие внешних повреждений коммутационного аппарата, загрязнений;

убедиться в отсутствии посторонних шумов и потрескиваний внутри полюсов выключателя, разрядов;

осмотреть состояние металлических конструкций, площадки обслуживания выключателя, целостности заземляющего контура;

проверить соответствие давления элегаза в коммутационном аппарате номинальному значению, указанном в паспортных данных (в соответствии с температурой окружающей среды);

произвести осмотр привода выключателя, обратить особое внимание на уплотнения дверок, работоспособность обогрева, состояние проводов вторичной коммутации, отсутствие влаги и коррозии.

При наличии данных неисправностей элегазового выключателя, необходимо сразу жеуведомить вышестоящий персонал. В зависимости от уровня неисправностей принять меры, ликвидирующие аварийную ситуацию [5]. Техническое обслуживание элегазового выключателя

Детали выключателя подвергаются износу, что при негативном сценарии может привести к появлению аварий. Для невозможности появления аварийной ситуации по данной причине, рекомендуется производить своевременное техническое обслуживание.

Графики текущего и капительного ремонта рекомендуется составлять в зависимости от количества произведенных коммутационных операций. Также определены сроки, по достижению которых, необходим ремонт, в независимости от коммутационных операций. В соответствии с требованиями завода-изготовителя этот срок составляет 25 лет. Кроме этого, осуществляется осмотр выключателя по истечению двенадцати лет после ввода его в эксплуатацию или в случае производства 50% допустимых операций включения/отключения. Техническое обслуживание предусматривает ревизию деталей выключателя, при необходимости их замену, а также принятие мер по предупреждению дальнейшего окисления и повреждения деталей.

Список литературы /References

1. Аметистов Е.И. Основы современной энергетики под общей редакцией чл.-корр. РАН Е.В. Аметистова. Москва: Издательство МЭИ, 2004. 822 с.

2. Неклепаев Б.Н. Электрическая часть электростанций и подстанций / Б.Н. Неклепаев, И.П. Крючков. Москва: Энергоатомиздат,1989. 605 с. Усов С.В. Электрическая часть станций / С.В.Усов [и др.]; М.:Энергия,1977. 420 с.

3. Электрические аппараты высокого напряжения / Под редакцией Г.Н. Александрова. Ленинград: Энергоатомиздат, 1989. 344 с.

4. Справочник по электрическим аппаратам высокого напряжения / Под редакцией В.В. Афанасьева. Ленинград: Энергоатомиздат, 1987. 544 с.

5. Афонин В.В. Элегазовые выключатели распределительных устройств высокого напряжения: учебное пособие / В.В. Афонин, К.А. Набатов. Тамбов: Изд-во Тамб. гос. техн. ун-та, 2009. 96 с.

Будь умным!

Работа добавлена на сайт samzan.ru: 2015-07-05

Заказать написание уникльной работы

  1. ;font-family:’Arial’;color:#666666″>Элегазовые выключатели: преимущества, недостатки, применение;
  2. ;font-family:’Arial’;color:#666666″>Обеспечение заземления подстанции;
  3. ;font-family:’Arial’;color:#666666″>Испытания разъединителей, отделителей и короткозамыкателей;
  4. ;font-family:’Arial’;color:#666666″>Правила безопасной эксплуатации электроустановок потребителей.

;font-family:’Verdana’;color:#333333″>1) ;font-family:’Arial’;color:#666666″> Элегазовые выключатели: преимущества, недостатки, применение

;font-family:’Verdana’;color:#333333″> Применение элегазовых выключателей: Элегазовые выключатели, в основном, применяются для высокого напряжения. Благодаря вышеперечисленным характеристикам и свойствам элегаза, такие выключатели применяются для задач коммутации, связанных с высоким и сверхвысоким напряжением.

;font-family:’Verdana’;color:#333333″>Преимущества элегазовых выключателей:
Самое главное преимущество элегазовых выключателей заключается в прекрасной изоляции, гашении дуги, физических и химических свойствах газа SF6.
Элегаз не воспламеняется, и химически стабилен. Продукты распада газа не взрывоопасны, т.е., отсутствует риск воспламенения и взрыва.
Минимальное обслуживание. Выключатель может потребовать обслуживания один раз в 4-10лет.
Герметичная конструкция предотвращает загрязнение газа влагой, пылью, песком и т.п. Не требуется дорогостоящей системы сжатого воздуха, как в случае выключателей с воздушной изоляцией.
Отсутствуют проблемы перенапряжения. Дуга гасится при естественном нулевом токе, без амплитудного ограничения тока, и связанным с ним перенапряжением, возникающим между клеммами выключателя.

;font-family:’Verdana’;color:#333333″>Недостатки элегазовых выключателей:
Некачественные стыки в корпусах выключателей приводят к утечкам газа SF6. Требуется непрерывное наблюдение за устройствами.
Элегаз в какой-то степени является удушающим газом. В случае утечки из корпуса выключателя, элегаз, будучи тяжелее воздуха, заполняет окружающее помещение, и может привести к удушению обслуживающего персонала. При этом он не ядовит.
Элегаз, в котором произошло гашение дуги — ядовит, и следует стараться не вдыхать его.
Внутренние части элегазового выключателя требуют тщательной очистки во время профилактического обслуживания в чистом и сухом окружении. Необходимо

«>2) ;font-family:’Verdana’;color:#333333″> ;font-family:’Arial’;color:#666666″>Обеспечение заземления подстанции

;font-family:’Verdana’;color:#333333″>Электрическая подстанция является важным элементом системы электроснабжения. Безопасность работы подстанции требует правильного проектирования и монтажа системы заземления. Хорошо спроектированная система заземления обеспечит устойчивую работу подстанции в течение всего срока ее эксплуатации.

Каким образом хорошее заземление улучшает надежность подстанции?

Хорошая шина заземления с достаточно низким сопротивлением гарантирует быстрое восстановление в случае возникновения сбоев. Остающаяся в системе в течение долгого времени утечка заряда может вызвать различные проблемы, в том числе и нестабильность работы системы энергоснабжения. Быстрое устранение этой ситуации улучшает общую надежность.

;font-family:’Verdana’;color:#333333″> Заземление также гарантирует безопасность персонала.
Замыкание на землю в системе вызывает увеличение потенциала на металлическом корпусе. Его уровень становится выше «истинного» потенциала земли. Неправильное заземление приводит к увеличению потенциала, а также к задержке устранения утечек (из-за недостаточного тока).
Эта комбинация существенно не безопасна, поскольку любой человек, контактирующий с корпусом, подвергается воздействию более высокого потенциала в течение длительного промежутка времени.

Следовательно, надежность подстанции, равно как и ее безопасность, должны быть при хорошем проектировании настолько «встроенными» в конструкцию подстанции, насколько это возможно. В свою очередь, это гарантирует быстрое восстановление в случае сбоев, и снижает рост потенциала корпуса.

;font-family:’Arial’;color:#1e507d»> Обеспечение правильного заземления

;font-family:’Verdana’;color:#333333″>На практике применяются следующие меры, гарантирующие надежную, безопасную, и не создающую проблем систему заземления подстанции:

;font-family:’Verdana’;color:#333333″> 1. Размеры проводников для предполагаемых утечек
Проводник должен быть достаточного размера, чтобы выдержать без повреждений любую предполагаемую утечку (не расплавиться).
Ошибочное определение времени восстановления в процессе расчетов при проектировании подстанции создает высокий риск расплавления проводников. В выборе размеров проводников следует руководствоваться двумя аспектами: во-первых, это ток повреждения, который должен течь через проводник, и, во-вторых, это время, в течение которого этот ток может протекать через проводник.
Ток повреждения зависит от импеданса петли замыкания на землю. Время протекания тока определяется установленными защитными реле / устройствами отключения, которые будет срабатывать для устранения повреждения.
Стандарт IEEE 80 предполагает использование в конструкциях небольших подстанций периода времени, равного 3.0 секунды. Это время также совпадает со временем реакции на короткое замыкание у большинства распределительных устройств.

;font-family:’Verdana’;color:#333333″> 2. Использование правильных соединений

;font-family:’Verdana’;color:#333333″>Соединения заземления, проверка сопротивления и проверка соединения

;font-family:’Verdana’;color:#333333″> Очевидно, что соединения между проводниками и основной сетью, а также между сетью и заземляющими стержнями, являются, с точки зрения поддержания постоянного низкого сопротивления пути к земле, такими же важными, что и сами проводники.
Основными вопросами здесь являются следующие:
1. Тип связи, используемой для соединения проводника с сетью заземления и с заземляющими стержнями.
2. Температурные ограничения, которые способно выдержать соединение.

Наиболее часто используемые заземляющие соединения относятся либо к типу механического сжатия (это — соединения на болтах, запрессовка, и клиновые монтажные зажимы), либо к типу термитной сварки.

;font-family:’Verdana’;color:#333333″> Соединения типа сжатия обеспечивают механическую связь между проводником и соединителем посредством стягивания болтами или прессовкой с применением гидравлического или механического давления. Такие соединения либо удерживают проводники на месте, либо сжимают их вместе, обеспечивая контакт между их поверхностями, через оголенные жилы кабелей.
С другой стороны, использование термитной сварки сплавляет концы проводников вместе, образуя молекулярное соединение между всеми жилами кабеля.
Температурные ограничения оговорены для различных типов соединений в стандартах IEEE 80 и IEEE 837, основанных на сопротивлениях, получаемых для каждого типа. Превышение этих температур во время прохождения тока короткого замыкания может привести к повреждению соединения, и вызвать увеличение сопротивления соединения, что приведет к еще большему нагреву.
В конечном счете, соединение откажет, вызвав ухудшение системы заземления, или даже полный отказ заземления, приводящий к разрушительным последствиям.

;font-family:’Verdana’;color:#333333″> 3. Выбор заземляющих стержней

;font-family:’Verdana’;color:#333333″>Заземляющие стержни подстанции

;font-family:’Verdana’;color:#333333″> В подстанциях среднего и высокого напряжения, где источник и нагрузка соединяются длинными воздушными линиями, часто происходит так, что ток короткого замыкания на землю не имеет металлического пути для движения, и вынужден двигаться сквозь массу земли. Это означает, что стержни заземления на подстанциях, как со стороны нагрузки, так и со стороны источника, должны передавать этот ток в землю и из нее.

;font-family:’Verdana’;color:#333333″> Система стержней заземления должна быть адекватной, обеспечивая проход этого тока, и сопротивление самой земли в системе заземления играет не последнюю роль.

;font-family:’Verdana’;color:#333333″> На сопротивление пути к земле виляет количество стержней, их длина и размещение. При однородном состоянии почвы, удвоение длины заземляющих стержней уменьшает сопротивление на 45%. Обычно почва не является однородной, и важно получить точные данные, измеряя сопротивление стержней заземления при помощи соответствующих инструментов.
Для достижения максимальной эффективности, стержни заземления должны быть размещены по отношению друг к другу не ближе, чем на длину стержня. Обычно, это расстояние составляет 10 футов (3 метра). Каждый стержень образует вокруг себя электромагнитную оболочку, и когда они располагаются слишком близко друг к другу, то токи этих оболочек будут влиять друг на друга.
Следует заметить, что при увеличении количества стержней, сопротивление заземления снижается, но не обратно пропорционально числу стержней. Двадцать стержней не дадут 1/20 сопротивления одного стержня, а снизят общее сопротивление только в 10 раз.
Из экономических соображений существует ограничение и в отношении максимального расстояния между стержнями.
Обычно, эта величина равна 6 метрам. При расстоянии, большем 6 метров, затраты на дополнительные проводники, которые нужны для соединения стержней, делают конструкцию экономически не привлекательной.
В ряде случаев, планировка подстанции может не обеспечивать требуемого пространства, и выделение необходимого пространства может повлечь заметный рост затрат. Четыре взаимосвязанных стержня, расположенных на расстоянии 30 метров друг от друга, снизят сопротивление на 94% по сравнению с одним стержнем, но они потребуют, по крайней мере, 120 метра проводника.
С другой стороны, четыре стержня, размещенные на расстоянии 6 метров друг от друга, снизят сопротивление только на 81%, но при этом используют только 24 метра проводника.

Каждый электрик должен знать:  Как переделать реле ЕЛ-11Е чтобы контакты включались, а не отключались

;font-family:’Verdana’;color:#333333″> 4. Подготовка почвы

;font-family:’Verdana’;color:#333333″> При проектировании системы заземления подстанции важную роль играет сопротивление почвы. Чем ниже это сопротивление, тем легче получить хорошее сопротивление заземления.
Повышенное внимание должно уделяться областям с высоким сопротивлением почвы, а также областям, где имеют место заморозки на почве (которые, в свою очередь, вызывают увеличение сопротивления почвы на порядок величины). Основной проектирования должно стать самое высокое сопротивление почвы в течение годового климатического цикла. Это связано с тем, что одна и та же почва в течение сухой погоды имеет более высокое сопротивление, так как процент влажности почвы становится очень низким.

;font-family:’Verdana’;color:#333333″>Проверка почвы: ;font-family:’Verdana’;color:#333333″> ;font-family:’Verdana’;color:#333333″> Потенциал Земли и эффективность сети заземления

;font-family:’Verdana’;color:#333333″> Один из подходов к этой проблеме заключается в использовании глубоко погруженных в землю стержней заземления, так чтобы они оказались в контакте с зоной почвы, находящейся достаточно глубоко, и не подвергающейся воздействию климата на поверхности.
Другой подход связан с обработкой почвы вокруг стержней заземления химическим раствором, способным впитывать влагу из атмосферы и почвы.
Одним из возможных решений является использование химических стержней заземления.

;font-family:’Verdana’;color:#333333″> 5. Внимание к шаговому потенциалу и потенциалу прикосновения

;font-family:’Verdana’;color:#333333″> Обеспечение ограничения шагового потенциала и потенциала прикосновения до безопасных величин жизненно важно для персонала подстанций.
Шаговый потенциал — это разность напряжений между точками касания ног человека, и он вызывается изменением напряжения в почве рядом с точкой, где ток утечки входит в почву. Шаговый потенциал наиболее высок вблизи точки входа, и по мере удаления от нее, он ослабевает. На расстоянии 75 сантиметров от точки входа, напряжение обычно снижается уже на 50 %. Поэтому на расстоянии 75 сантиметров от точки входа (что меньше величины нормального шага) может существовать смертельный потенциал величиной в несколько киловольт.
Потенциал прикосновения несет ту же самую угрозу. Разница в том, что здесь имеется в виду потенциал, существующий между рукой и ногами человека. Это происходит, когда стоящий на земле человек касается конструкций подстанции, проводящих ток замыкания в землю. Например, когда изолятор, укрепленный на стойке, выходит из строя, то стойка начинает проводить ток в землю.
Так как наиболее вероятный путь прохождения тока через тело человека идет через его руки и область сердца, а не через нижние конечности, как в случае шагового потенциала, то в этом случае увеличивается опасность травм, или смертельного исхода. По этой причине, безопасный предел для потенциала прикосновения обычно намного ниже, чем для шагового потенциала.

В обеих ситуациях потенциал может, в сущности, быть значительно снижен за счет использования эквипотенциальных матов безопасности из проволочной сетки, размещаемых непосредственно под поверхностью грунта.

Эта сетка должна устанавливаться вблизи от любых выключателей или оборудования, которые может коснуться персонал, и она должна соединяться с основной заземляющей сетью. Такая эквипотенциальная сетка выровняет напряжения вдоль пути, по которому перемещается рабочий, а также между оборудованием и его ногами. Поскольку разность напряжений (потенциал) будет, таким образом, в сущности, устранена, безопасность персонала будет фактически гарантирована.
Эквипотенциальные маты безопасности обычно изготавливаются из провода №6 или №8 по стандарту AWG, изготовленного из меди или плакированного медью. Размеры ячеек сетки устанавливаются, как правило, либо 0.5 на 0.5 метра, либо 0.5 на 1.0 метра. Применяются также и другие размеры ячеек сетки.
Для обеспечения непрерывности сетки все пересечения проводов пропаиваются с использованием припоя, содержащего 35% серебра. Соединения секций сетки, и соединения сетки с основной заземляющей сетью должны быть таковы, чтобы обеспечить постоянное соединение с низким сопротивлением и большой целостностью.

«>3) ;font-family:’Arial’;color:#666666″> Испытания разъединителей, отделителей и короткозамыкателей

«> ;font-family:’Verdana’;color:#333333″>Разъединителя являются аппаратами высокого напряжения и предназначены для включения и отключения обесточенных участков электрических цепей, находящихся под напряжением. Разъединители изготавливаются для внутренней и наружной установок. Они могут поставляться с одним или двумя заземляющими ножами и без ножей заземления.

;font-family:’Verdana’;color:#333333″>Отделители предназначены для автоматического отключения поврежденного участка цепи в безтоковую паузу при отключении выключателя на питающем конце линии. Они выпускаются на напряжение 35, 110, 150 и 220 кВ. Отделители на напряжение 35 и 110 кВ выполняются в виде отдельных полюсов, соединяемых при монтаже тягами в один трехполюсный аппарат. Отделители на напряжение 150 и 220 кВ отличаются по конструкции от отделителей на напряжение 35-110 кВ тем, что выполняются в виде трех отдельных полюсов, механически не связанных между собой. Основные ножи отделите лей управляются приводами типа ШПОМ (шкафный привод отделителя, модернизированный), осуществляющими отключение отделителей автоматически, а включение — от руки. Заземляющие ножи отделителей на 35 и 110 кВ управляются ручным приводом.

;font-family:’Verdana’;color:#333333″>Короткозамыкатели устанавливаются на подстанциях, не имеющих в схеме выключателей на стороне высшего напряжения, для создания искусственного короткого замыкания, вызывающего отключение релейной защиты выключателя питающей линии. Короткозамыкатели изготавливаются на напряжение 35, 110 и 220 кВ. Короткозамыкатели на 35 кВ выполняются в виде двух отдельных полюсов, соединяемых при монтаже в один двухполюсный аппарат. Короткозамыкатели на 110 и 220 кВ изготавливаются однополюсными. Управление короткозамыкателями осуществляется приводом типа ШПКМ (шкафный привод короткозамыкателя, модернизированный) который обеспечивает автоматическое включение короткозамыкателя под действием включающей пружины и ручное отключение посредством вращения рукоятки привода.

;font-family:’Verdana’;color:#333333″>Перед проведением измерений и испытаний на разъединителях, отделителях и короткозамыкателях должен быть выполнен целый ряд подготовительных работ:

;font-family:’Verdana’;color:#333333″>- определено соответствие оборудования проекту и техническим требованиям;

;font-family:’Verdana’;color:#333333″>- произведен тщательный осмотр аппаратов с целью выявления и устранения дефектов;

;font-family:’Verdana’;color:#333333″>- перед измерениями и испытаниями оборудование должно быть очищено от пыли и грязи;

;font-family:’Verdana’;color:#333333″>- осуществляется проверка качества выполнения электромонтажных работ и регулировки оборудования.

;font-family:’Arial’;color:#1e507d»>Объем приемо-сдаточных испытаний.

В соответствии с требованиями ПУЭ полностью собранные и отрегулированные разъединители, отделители и короткозамыкатели всех классов напряжений испытываются в следующем объеме

1. Измерение сопротивления изоляции:

а) поводков и тяг, выполненных из органических материалов; б) многоэлементных изоляторов; в) вторичных цепей и обмоток электромагнитов управления.

2. Испытание повышенным напряжением промышленной частоты:

а) изоляции разъединителей, отделителей и короткозамыкателей;

б) изоляции вторичных цепей и обмоток электромагнитов управления.

3. Измерение сопротивления постоянному току:

а) контактной системы разъединителей и отделителей напряжением 110 кВ и выше;

б) обмоток электромагнитов управления.

4. Измерение вытягивающих усилий подвижных контактов из подвижных.

5. Проверка работы.

6. Определение временных характеристик.

;font-family:’Arial’;color:#1e507d»>Измерение сопротивления изоляции:

а) поводков и тяг, выполненных из органических материалов.

Производится мегаомметром на напряжении 2,5 кВ. Сопротивление должно быть не менее следующих значений:

б) многоэлементных изоляторов.

Производится мегаомметром на напряжение 2,5 кВ только при положительной температуре окружающего воздуха. Сопротивление должно быть не менее 300 МОм для каждого элемента штыревого изолятора.

в) вторичных цепей и обмоток электромагнитов управления.

Измерения производятся мегаомметром на напряжение 500-1000 В. Испытания производятся со всеми присоединенными аппаратами (обмотки приводов, реле, приборы, вторичные об мотки трансформаторов тока и напряжения и т.п.). Сопротивление изоляции должно быть не менее 1 МОм.

Проверяется также сопротивление изоляции от земли ножа короткозамыкателя, работающего совместно с отделителем. Проверка целости изоляторов и изолирующего элемента производится мегаомметром на напряжение 2500 В при отсоединении заземляющей шины. Сопротивление изоляции не нормируется.

Испытание повышенным напряжением промышленной частоты:

а) изоляции разъединителей, отделителей и короткозамыкателей.

Изоляция, состоящая из одноэлементных опорных или опорно-стержневых изоляторов, испытывается согласно госту.

Изоляция, состоящая из многоэлементных штыревых изоляторов, подвергается испытанию напряжением 50 кВ, прикладываемым к каждому склеенному элементу изолятора.

Время испытания для керамических (фарфоровых) изоляторов — 1 мин, для твердой органической изоляции — 5 мин.

б) изоляции вторичных цепей и обмоток электромагнитов управления.

Испытание изоляции проводится напряжением 1 кВ промышленной частоты в течение 1 мин со всеми присоединенными аппаратами защиты, управления и сигнализации.

;font-family:’Arial’;color:#1e507d»>Измерение сопротивления постоянному току:

а) контактной системы разъединителей и отделителей напряжением 110 кВ и выше.

Измерение производится микроомметром, двойным мостом или методом ампервольтметра для всех главной цепи полюса.

Предельно допустимые сопротивления постоянному току должны соответствовать данным заводов-изготовителей .

б) обмоток электромагнитов управления.

Измерение значения сопротивления обмоток должен соответствовать данным заводов-изготовителей.

Методика измерения сопротивления постоянному току контактной системы и обмоток приведена.

;font-family:’Arial’;color:#1e507d»>Измерение вытягивающих усилий подвижных контактов из неподвижных.

Измерения производятся у разъединителей и отделителей напряжением 35 кВ и выше, а в электроустановках энергосистем — независимо от класса напряжения. Изме ренные значения вытягивающих усилий при обезжиренном состоянии контактных должны соответствовать заводским данным, а при их отсутствии – данным.

Кроме указанных в табл. 2. норм, для разъединителей наружной установки напряжением 35-220 кВ на номинальные токи 630-2000А заводом-изготовителем установлена общая норма вытягивающего усилия на пару ламелей 78,5-98 Н (8-10кгс).

;font-family:’Arial’;color:#1e507d»>Проверка работы.

Проверку аппаратов с ручным управлением следует производить путем выполнения 10-15 операций включения и отключения. Проверка аппаратов с дистанционным управлением производится путем выполнения 25 циклов включения и отключения при номинальном напряжении управления и 5-10 циклов включения и отключения при по ниженном до 80% номинального напряжения на зажимах электромагнитов (электродвигателей) включения и отключения.

;font-family:’Arial’;color:#1e507d»>Определение временных характеристик.

РТ — элктрический секундомер; QK — короткозамыкатель; QR — отделитель.

Измерение значения времени включения короткозамыкателей и времени отключения отделителей должна соответствовать данным завода-изготовителя, а при их отсутствии – данным.

«>4) ;font-family:’Arial’;color:#666666″> Правила безопасной эксплуатации электроустановок потребителей

«> ;font-family:’Verdana’;color:#333333;background:#ffffff»>1.1.1. Требования настоящих Правил распространяются на работников, обслуживающих действующие электроустановки потребителей напряжением до 220 кВ включительно и являются обязательными для всех потребителей и производителей электроэнергии независимо от их ведомственной принадлежности и форм собственности на средства производства. ;font-family:’Verdana’;color:#333333″>
;font-family:’Verdana’;color:#333333;background:#ffffff»>1.1.2. Требования настоящих Правил должны соблюдаться при эксплуатации действующих электроустановок, электрических станций, электрической части ТАИ, СДТУ, районных котельных потребителей при выполнении в них монтажных, наладочных, испытательных, ремонтных и строительных работ. ;font-family:’Verdana’;color:#333333″>
;font-family:’Verdana’;color:#333333;background:#ffffff»>1.1.3. В настоящих Правилах изложены основные требования безопасности при эксплуатации электроустановок. мероприятия, дополнительно повышающие безопасность, предусматриваемые непосредственно на месте производства работ, не должны противоречить настоящим Правилам или ослаблять их действие. ;font-family:’Verdana’;color:#333333″>
;font-family:’Verdana’;color:#333333;background:#ffffff»>1.1.4. Средства защиты, применяемые в соответствии с настоящими Правилами, должны быть исправны, испытаны и удовлетворять требованиям «Правил применения и испытания средств защиты, используемых в электроустановках / Москва, Энергоатомиздат, 1987», утвержденных Минэнерго СССР 12.02.81. ;font-family:’Verdana’;color:#333333″>
;font-family:’Verdana’;color:#333333;background:#ffffff»>1.1.5. Первичные средства пожаротушения, применяемые в электроустановках, должны соответствовать Правилам пожарной безопасности в Украине, утвержденным Управлением Государственной пожарной охраны МВД Украины 14.06.95 и зарегистрированным в Минюсте Украины 14.07.95 за № 219/755. ;font-family:’Verdana’;color:#333333″>
;font-family:’Verdana’;color:#333333;background:#ffffff»>1.1.6. Применяемые при работах в электроустановках машины и механизмы, приспособления и инструмент, должны быть исправны и испытаны в соответствии с действующими нормативами и сроками. ;font-family:’Verdana’;color:#333333″>
;font-family:’Verdana’;color:#333333;background:#ffffff»>1.1.7. Электрооборудование, конструкции, комплектующие детали, узлы отечественного и иностранного производства должны соответствовать требованиям действующих нормативных документов в Украине. электрооборудование, подлежащее в Украине обязательной сертификации, должно сопровождаться сертификатом соответствия или свидетельством о признании иностранного сертификата в соответствии с Государственной системой сертификации УкрСЕПРО. ;font-family:’Verdana’;color:#333333″>
;font-family:’Verdana’;color:#333333;background:#ffffff»>В случае поставки электрооборудования из-за рубежа организация-заказчик должна получить сертификат соответствия до заключения контракта на его поставку. паспорт, инструкция и другая эксплуатационная документация, поставляемая с оборудованием или изделиями, должна быть переведена на украинский (русский) язык. ;font-family:’Verdana’;color:#333333″>
;font-family:’Verdana’;color:#333333;background:#ffffff»>Возможные отклонения от нормативной документации должны быть согласованы с Госнадзорохрантруда, Госстандартом и организацией-заказчиком до заключения контракта на их поставку. Копии согласований и сертификаты прикладываются к паспорту оборудования или изделия. ;font-family:’Verdana’;color:#333333″>
;font-family:’Verdana’;color:#333333;background:#ffffff»>1.1.8. При выполнении строительно-монтажных работ в электроустановках обязательно соблюдение также требований СНиП III-4-80* «Техника безопасности в строительстве». ;font-family:’Verdana’;color:#333333″>
;font-family:’Verdana’;color:#333333;background:#ffffff»>1.1.9. При эксплуатации электроустановок необходимо соблюдать требования пожарной безопасности, изложенные в «Правилах пожарной безопасности в Украине». ;font-family:’Verdana’;color:#333333″>
;font-family:’Verdana’;color:#333333;background:#ffffff»>1.1.10. Требования действующих норм отраслевых правил безопасности при эксплуатации электроустановок потребителей министерств и ведомств не должны противоречить настоящим Правилам и ослаблять их действие.

Заказать написание уникльной работы

Материалы собраны группой SamZan и находятся в свободном доступе

Элегазовые выключатели: плюсы и минусы эксплуатации. Что такое элегазовый выключатель и для чего он нужен? Тк на монтаж элегазовых выключателей 110 кв

Статья о преимуществах и недостатках высоковольтных элегазовых выключателей.

Высоковольтные выключатели применяются для изменения состояния высоковольтной линии «включено-выключено» с целью оперативного управления имеющейся системой энергоснабжения и для отключения оборудования или участка сети в аварийных ситуациях.

Для этих целей используются высоковольтные выключатели:

Названия выключателей отражают состав сред гашения дуги между контактами выключателя, которая возникает при коммутации высоких напряжений. Здесь уместны некоторые оговорки в отношении масляного выключателя — правильнее будет говорить, что гашение дуги происходит в неком газовом пузыре, образующемся при возникновении дуги в толще масляного объема. Масляные выключатели просты и дешевы в эксплуатации, но пожаро- и взрывоопасны.

В воздушном выключателе дугу гасит мощный поток воздуха из резервуаров высокого давления. Как и масляные выключатели, воздушные высоковольтные выключатели могут быть изготовлены на весь диапазон применяемых напряжений и токов. Но их конструкции сложнее и дороже, чем масляные, а эксплуатация требует наличия компрессорной станции для получения чистого сухого воздуха.

Дуга вакуумного выключателя гаснет в разреженном пространстве дугогасительной камеры. Электрическая прочность вакуума чрезвычайно высока и очень быстро восстанавливается после электрического пробоя. Кроме того такие выключатели отличает высокая надежность и уменьшенные затраты на обслуживание, простота конструкции.

Из недостатков вакуумных выключателей отмечается:

  • высокая стоимость;
  • возможность возникновения перенапряжения в сети при определенных ее состояниях;
  • для созданий выключателей на высшие напряжения требуются определенные технические ухищрения.

Элегазовые высоковольтные выключатели , чьи дугогасительные устройства работают в среде , сочетают в себе преимущества различных типов выключателей:

  • возможно использование элегазовых выключателей на любое из напряжений, применяемых в отечественной энергетике;
  • небольшие масса и габаритные размеры конструкции элегазовых выключателей в сочетании с бесшумной работой привода;
  • дуга гасится в замкнутом газовом объеме без доступа в атмосферу;
  • безвредная для человека, экологически чистая, инертная газовая среда элегазового выключателя;
  • увеличенная коммутационная способность элегазового выключателя;
  • работа в режиме переключения больших и малых токов без возникновения перенапряжения, что автоматически исключает наличие устройств ОПН (ограничение перенапряжения);
  • высокая надежность элегазового выключателя, межремонтный период увеличен до 15 лет;
  • пожаробезопасность оборудования.

К недостаткам элегазовых выключателей следует отнести:

  • высокую стоимость оборудования и текущие затраты на эксплуатацию, так как требования к качеству элегаза очень высоки;
  • температура окружающей среды влияет на агрегатное состояние элегаза, что требует применения систем подогрева выключателя при пониженных температурах (при -40°С элегаз становится жидкостью);
  • коммутационный ресурс элегазового выключателя ниже, чем у аналогичного вакуумного выключателя;
  • необходимы высококачественные уплотнения резервуаров и магистралей, так как элегаз очень текуч.

В конце прошлого столетия в мировой энергетике произошел прорыв в технологиях . Масляные и воздушные выключатели стали постепенно уступать место вакуумным и элегазовым выключателям. Это объясняется отличными дугогасящими свойствами вакуума, а также газа с химической формулой SF6, именуемого элегазом, и повышенной безопасностью эксплуатации коммутационного оборудования с их применением. И хотя вакуумное и элегазовое оборудование недешево, пока что не найден достойный конкурент средам гашения дуги — вакууму и элегазу.

Для гашения электрической дуги часто используются различные газовые смеси. Элегазовые выключатели 110 кВ и 220 кВ работают именно по такому принципу и могут использоваться для работы в аварийных ситуациях.

Конструкция и виды

Элегазовые высоковольтные выключатели – это устройства оперативного управления для контроля высоковольтной линии энергоснабжения. Данные устройства имеют очень похожую конструкцию с масляными, но при этом, используют для гашения дуги не масляную смесь, а соединение газов. Зачастую это сера. Масляные выключатели требуют за собой особого ухода: по нормам необходимы периодическая замену масла и очистка рабочих контактов. Элегазовые в этом не нуждаются. Главное достоинство элегаза в его долговечности: он не стареет и минимально загрязняет механические части устройства.

Фото — высоковольтное оборудование

  1. Колонковые (HPL 245B1, MF 24 Schneider Electric);
  2. Баковые (ABB 242PMR, DT2-550 F3 – производитель Areva).

Колонковый элегазовый выключатель представляет стандартное отключающее устройство, работающее только на одну фазу (например, LF 10 от Шнайдер Электрик). Он используется для сети 220 кВ. Конструктивно состоят из двух систем: контактной и дугогасительной. Обе они располагаются в емкости, наполненной элегазом. Могут быть как ручными (контроль производится исключительно механически) или дистанционными. Из-за такого разделения они имеют довольно большие габаритные размеры.

Фото — чертеж конструкции

Баковые имеют меньшие габариты, их дополняет привод ППРМ 2 для элегазового выключателя. Привод распределяется на несколько фаз, что позволяет обеспечить мягкое регулирование напряжения (включение и выключение). Также их достоинство в том, что они могут переносить большие нагрузки благодаря встроенному в систему трансформатору тока.

Помимо конструктивных особенностей, выключатели элегазового типа классифицируются по принципу гашения дуги:

  1. Автокомпрессионные или воздушные;
  2. Вращающие;
  3. Продольного дутья;
  4. Продольного дутья с дополнительным разогревом элегаза.

Принцип работы и назначение

Элегазовые выключатели высокого напряжения работают за счет изоляции фаз друг от друга посредством элегаза. Когда срабатывает сигнал о том, что нужно отключить электрооборудование, контакты отдельных камер (если устройство колонковое) размыкаются. Таким образом, встроенные контакты образуют дугу, которая помещена в газовую среду. Она разлагает газ на отдельные компоненты, но при этом и сама снижается из-за высокого давления в емкости. Если система установлена на низком давлении, то используются дополнительные компрессоры для нагнетания давления и создания газового дутья. Для выравнивания тока дополнительно используется шунтирование. Визуально схема работы выглядит так:

Фото — схема работы

Отдельно нужно сказать про модели бакового типа. Их контроль выполняется приводами и трансформаторами. Приводной механизм для этой установки является регулятором: он необходим для включения, выключения электрической энергии и удержания дуги (при надобности) на определенном уровне. Приводы бывают:

Пружинный имеет очень простой принцип действия и высокий уровень надежности. В нем вся работа выполняется только за счет механических деталей. Пружина зажимается и фиксируется на определенном уровне, а при изменении положения контрольного рычага она разжимается. На основании его принципа работы часто готовится научная презентация действия шестифтористой серы в электрической среде.

Современные пружинно-гидравлические приводы помимо пружины дополнительно оснащены гидравлической системой управления. Они считаются более эффективными, т. к. пружинные механизмы могут сами поменять положение фиксатора.

Достоинства элегазовых выключателей :

  1. Универсальность. Данные выключатели используются для контроля сетей с любым напряжением;
  2. Быстрота действия. Реакции элегаза на наличие электрической дуги происходят за доли секунды, это позволяет обеспечить быстрое аварийное отключение подконтрольной системы;
  3. Подходят для эксплуатации в условиях пожароопасности и вибрации;
  4. Долговечность. Контакты, соприкасающиеся с элегазом, практически не изнашивают, газовые смеси не нуждаются в замене, а у наружной оболочки высокие показатели защиты;
  5. Подходят для отключения переменного и постоянного тока высокого напряжения, в то время, как их аналоги – вакуумные модели не могут использоваться на высоковольтных сетях.

Но, такие приборы имеют определенные недостатки :

  1. Высокая цена, обусловленная сложностью производства и дороговизной элегазовой смеси;
  2. Монтаж осуществляется только на фундамент или специальный электрощит, причем, для этого нужна специальная инструкция и опыт;
  3. Выключатели не работают при низких температурах;
  4. При необходимом обслуживании должно использоваться специальное оборудование.

Фото — промышленный элегазовый выключатель нагрузки

Видео: особенности элегазовых выключателей

Технические характеристики

Рассмотрим технические характеристики выключателей разных производителей и типов работы.

МЕК SF6 элегазовый пружинный выключатель HD4 (завод завод ABB – АВВ):

ВГБЭП-35 (ВГБ-35, ВГБЭ):

ВГУ-110 (газовый силовой):

Колонковый выключатель GL314 Alstom:

Генераторные силовые отключающие устройства с пружинным приводом – FKG 2:

Элегазовый компрессионный выключатель фирмы Siemens (Сименс)3AP1FG-245 (для установки нужны фундаменты):

Купить подходящие элегазовые выключатели можно в любом электротехническом магазине. Их стоимость зависит от типа устройства и его производителя. Прайс-лист в Самаре, Москве, Екатеринбурге и других городах варьируется от 100 долларов до нескольких тысяч.

Функционирование высоковольтных электрических сетей по токовым характеристикам не сопоставимо с работой бытовых аналогов. Соответственно, при возникновении аварийной ситуации для отключения оборудования и гашения электродуги необходимы более мощные устройства, чем стандартные автоматические приборы.

В качестве защитных конструкций применяют элегазовые выключатели (ЭВ), которыми можно управлять как в ручном режиме, так и с помощью автоматики. Мы детально описали конструктивные особенности и принцип действия устройств. Привели рекомендации по установке, подключению и обслуживанию.

Элегаз – это шестифтористая сера, которую относят к электротехническим газам. Благодаря изоляционным свойствам ее активно применяют при производстве электротехнических устройств.

В нейтральном состоянии элегаз представляет собой негорючий газ без цвета и запаха. Если его сравнивать с воздухом, то можно отметить высокую плотность (6,7) и молекулярную массу, превышающую воздушную в 5 раз.

Одно из преимуществ элегаза – устойчивость к внешним проявлениям. Он не меняет характеристик при любых условиях. Если происходит распад во время электроразряда, то вскоре наступает полноценное, необходимое для работы восстановление.

Секрет в том, что молекулы элегаза связывают электроны и образуют отрицательные ионы. Качество «электроотрицания» наделило 6-фтористую серу такой характеристикой, как электрическая прочность.

На практике электропрочность воздуха в 2-3 раза слабее, чем то же свойство элегаза. Кроме прочего, он пожаробезопасен, так как относится к негорючим веществам, и обладает охлаждающей способностью.

Когда возникла необходимость отыскать газ для гашения электродуги, стали изучать свойства SF6 (шестифтористой серы), 4-хлористого углерода и фреона. В испытаниях победила SF6

Перечисленные характеристики сделали элегаз максимально подходящим для применения в электротехнической сфере, в частности, в следующих устройствах:

  • силовые трансформаторы, работающие по принципу магнитной индукции;
  • распределительные устройства комплектного типа;
  • линии высокого напряжения, связывающие удаленные установки;
  • высоковольтные выключатели.

Но некоторые свойства элегаза привели к тому, что пришлось усовершенствовать конструкцию выключателя. Основной недостаток касается перехода газообразной фазы в жидкую, а это возможно при определенных соотношениях параметров давления и температуры.

Чтобы оборудование работало без перебоев, необходимо обеспечить комфортные условия. Предположим, для функционирования элегазовых устройств при -40º необходимо давление не более 0,4 МПа и плотность менее 0,03 г/см³. На практике при необходимости газ подогревают, что препятствует переходу в жидкую фазу.

Конструкция элегазового выключателя

Если сравнивать элегазовые устройства с аналогами других видов, то по конструкции они ближе всего к масляным приборам. Разница заключается в наполнении камер для гашения дуги.

Высоковольтные выключатели, в которых используется элегаз SF6 как изоляционная и дугогасительная среда, получают все более широкое распространение, так как имеют высокие показатели коммутационного и механического ресурсов, отключающей способности, компактности и надежности по сравнению с воздушными, масляными и маломасляными высоковольтными выключателями.

Успехи в разработках элегазовых выключтаелей непосредственно оказали значительное влияние на внедрение в эксплуатацию компактных ОРУ, ЗРУ и элегазовых КРУЭ. В элегазовых выключателях применяются различные способы гашения дуги в зависимости от номинального напряжения, номинального тока отключения и характеристик энергосистемы (или отдельной электроустановки).

В элегазовых дугогасительных устройствах, в отличие от воздушных дугогасительных устройств, при гашении дуги истечение газа через сопло происходит не в атмосферу, а в замкнутый объем камеры, заполненный элегазом при относительно небольшом избыточном давлении.

По способу гашения электрической дуги при отключении различают следующие элегазовые выключатели:

1. Автокомпрессионный элегазовый выключатель, где необходимый массовый расход элегаза через сопла компрессионного дугогасительного устройства создается по ходу подвижной системы выключателя (автокомпрессионный выключатель с одной ступенью давления).

2. Элегазовый выключатель с электромагнитным дутьем, в котором гашение дуги в дугогасительном устройстве обеспечивается вращением ее по кольцевым контактам под действием магнитного поля, создаваемого отключаемым током.

3. Элегазовый выключатель с камерами высокого и низкого давления, в котором принцип обеспечения газового дутья через сопла в дугогасительном устройстве аналогичен воздушным дугогасительным устройствам (Элегазовый выключатель с двумя ступенями давления).

4. Автогенерирующий элегазовый выключатель, где необходимый массовый расход элегаза через сопла дугогасительного устройства создается за счет разогрева и повышения давления элегаза дугой отключения в специальной камере (автогенерирующий элегазовый выключатель с одной ступенью давления).

Рассмотрим некоторые типичные конструкции элегазовых выключателей на 110 кВ и выше.

Элегазовые выключатели 110 кВ и выше на один разрыв различных фирм имеют следующие номинальные параметры: Uном=110-330 кВ, Iном=1-8 кА, Iо.ном=25-63 кА, давление элегаза рном=0,45-0,7 МПа(абс), время отключения 2-3 периода тока КЗ. Интенсивные исследования и испытания отечественных и зарубежных фирм позволили разработать и внедрить в эксплуатацию элегазовый выключатель с одним разрывом на Uном = 330-550 кВ при Iо.ном= 40 — 50 кА и времени отключения тока один период тока КЗ.

Типичная конструкция автокомпрессионного элегазового выключателя приведена на рис. 1.

Аппарат находится в отключенном положении и контакты 5 и 3 разомкнуты.

Токоподвод к неподвижному контакту 3 осуществляется через фланец 2, а к подвижному контакту 5 через фланец 9. В верхней крышке 1 монтируется камера с адсорбентом. Опорная изоляционная конструкция элегазового выключателя закреплена на подножнике 11. При включении выключателя срабатывает пневмопривод 13, шток 12 которого соединен через изоляционную тягу 10 и стальной стержень 8 с подвижным контакт 5. Последний жестко связан с фторопластовым соплом 4 и подвижным цилиндром 6. Вся подвижная система ЭВ (элементы 12-10-8-6-5) движется вверх относительно неподвижного поршня 7, и полость К дугогасительной системы выключателя увеличивается.

При отключении выключателя шток 12 приводного силового механизма тянет подвижную систему вниз и в полости К создается повышенное давление по сравнению с давлением в камере выключателя. Такая автокомпрессия элегаза обеспечивает истечение газовой среды через сопло, интенсивное охлаждение электрической дуги, возникающей между контактами 3 и 5 при отключении. Указатель положения 14 дает исходного положения контактной системы выключателя. В ряде конструкций автокомпрессионных элегазовых выключателей используются пружинные, гидравлические силовые приводные механизмы, а истечение элегаза через сопла в дугогасительной камере осуществляется по принципу двухстороннего дутья.

На рис. 2 приведен баковый элегазовый выключатель типа ВГБУ 220 кВ (Iном=2500 А, Iо.ном=40 кА ОАО «НИИВА» с автономным гидравлическим приводом 5 и встроенными трансформаторами тока 2. ЭВ имеет трехфазное управление (один привод на три фазы) и снабжен фарфоровыми (полимерными) покрышками 1 вводов «воздух-элегаз».

В газонаполненном баке 3 находится дугогасительное устройство, которое соединено с гидроприводом 5 через передаточный механизм размещенный в газонаполненной камере 4. Конструкция бакового элегазового выключателя закреплена на металлической раме 6. Для заполнения элегазом выключателя используется разъем 7. При установке выключателя в ОРУ обычно давление элегаза в камерах равно одной атм(абс.) и далее необходимо обеспечить р = рном.

Преимуществами баковых элегазовых выключателей со встроенными трансформаторами тока перед комплектами «колонковый элегазовый выключатель плюс отдельно стоящий трансформатор тока» являются: повышенная сейсмостойкость, меньшая площадь отчуждаемой территории подстанции, меньший объем требуемых фундаментных работ при строительстве подстанций, повышенная безопасность персонала подстанции (дугогасительные устройства расположены в заземленных металлических резервуарах), возможность применения подогрева элегаза при использовании в районах с холодным климатом.

В конструкциях баковых выключателей 220 кВ и выше для ОРУ необходимо повышение номинального давления элегаза (рном > 4,5атм(абс.)), поэтому вводят подогрев газовой среды с целью предотвращения сжижения элегаза при низких значениях температуры окружающей среды или используют смеси элегаза с азотом или тетрафторметаном.

Как показывает практика, для номинального напряжения 330–500 кВ баковые выключатели с одним разрывом на номинальные токи 40-63 кА — наиболее перспективный вид коммутационного оборудования для ОРУ и КРУЭ.

Выключатель ВГБ-750-50/4000 У1 разработки ОАО «НИИВА» (рис. 3) с двухразрывным автокомпрессионным дугогасительным устройством, встроенными трансформаторами тока, полимерными вводами «воздух-элегаз» снабжен двумя гидроприводами на полюс, что позволяет обеспечить полное время отключения не более длительности двух периодов тока промышленной частоты.

Во включенном положении элегазового выключателя резисторы зашунтированы главными контактами. При отключении первыми размыкаются контакты резисторов, далее – главные, затем — дугогасительные контакты. При включении первыми замыкаются контакты резисторов, а затем – дугогасительные и главные контакты. Для выравнивания распределения напряжения каждый разрыв шунтирован конденсаторами.

Распространение получили колонковые элегазовые выключатели с одним разрывом на номинальное напряжение 110-220 кВ с номинальным током отключения 40-50 кА.

Типичная конструкция колонкового элегазового выключателя типа ВГП 110 кВ (Iном=2500 А, Iо.ном=40 кА) с пружинным приводом ОАО «Электроаппарат» приведена на рис. 5.

Общие сведения

Выключатели элегазовые серии ВГТ предназначены для коммутации электрических цепей при нормальных и аварийных режимах, а также работы в циклах АПВ в сетях трехфазного переменного тока частоты 50 Гц с номинальным напряжением 110 и 220 кВ.

Структура условного обозначения

выключателя ВГТ-ХII * -40/2500У1:
ВГ — выключатель элегазовый;
Т — условное обозначение конструктивного исполнения;
Х — номинальное напряжение, кВ (110 или 220);
II * — категория по длине пути утечки по внешней изоляции
в соответствии с ГОСТ 9920-89;
40 — номинальный ток отключения, кА;
2500 — номинальный ток, А;
У1 — климатическое исполнение и категория размещения по ГОСТ
15150-69 и ГОСТ 15543.1-89. привода ППрК-1800С:
П — привод;
Пр — пружинный;
К — кулачковый;
1800 — работа статического включения, Дж;
С — специальный.

Условия эксплуатации

Высота установки над уровнем моря не более 1000 м. Температура окружающего воздуха от минус 45 до 40°С. Относительная влажность воздуха не более 80% при температуре 20°С. Верхнее значение 100% при температуре 25°С. Скорость ветра 15 м/с при гололеде с толщиной корки льда до 20 мм, а при отсутствии гололеда до 40 м/с. Окружающая среда невзрывоопасная, не содержащая агрессивных газов и паров в концентрациях, разрушающих металлы и изоляцию. Содержание коррозионно-активных агентов по ГОСТ 15150-69 (для атмосферы типа II). Тяжение проводов, приложенное в горизонтальном направлении, не более 1000 Н. Длина пути утечки внешней изоляции соответствует нормам ГОСТ 9920-89 для подстанционной изоляции (степень загрязнения II * , категория исполнения Б) — на 110 кВ — не менее 280 см, на 220 кВ — не менее 570 см. Выключатели соответствуют требованиям ГОСТ 687-78 «Выключатели переменного тока на напряжение свыше 1000 В. Общие технические условия» и ТУ 2БП.029.001 ТУ, согласованным с РАО «ЕЭС России». ТУ 2БП.029.001 ТУ

Технические характеристики

Основные технические данные выключателей приведены в таблице.

Номинальное напряжение, кВ

Наибольшее рабочее напряжение, кВ

Номинальный ток, А

Номинальный ток отключения, кА

Номинальное относительное содержание апериодической
составляющей, %, не более

Параметры сквозного тока КЗ, кА:
наибольший пик

составляющей
ток термической стойкости с временем протекания 3 с

Параметры тока включения, кА:
наибольший пик
начальное действующее значение периодической
составляющей

Емкостный ток ненагруженных линий, отключаемый
без повторных пробоев, А

Емкостный ток одиночной конденсаторной батареи с глухозаземленной нейтралью, отключаемый без повторных пробоев, А

Индуктивный ток шунтирующего реактора, А

Собственное время отключения, с

Полное время отключения, с

Минимальная бестоковая пауза при АПВ, с

Собственное время включения, с, не более

Разновременность работы разных полюсов (дугогасительных устройств) при отключении и включении, с, не более

Расход газа на утечки в год, % от массы элегаза, не более

Избыточное давление элегаза, приведенное к 20 ° С, МПа:
давление заполнения
давление предупредительной сигнализации
давление блокировки оперирования

Масса выключателя, кг

Масса элегаза, кг

Выдерживаемое одноминутное напряжение частоты 50 Гц, кВ

Выдерживаемое напряжение грозового импульса (1,2/50 мкс)

Длина пути утечки внешней изоляции, см, не менее

Номинальное напряжение постоянного тока электромагнитов управления привода, В

Количество электромагнитов управления в приводе:
включающих
отключающих

Количество вспомогательных контактов

Диапазон рабочих напряжений, %
номинального значения электромагнитов управления:
включающих
отключающих

Номинальное значение установившегося постоянного тока,
потребляемого электромагнитами управления, А, не более:
при напряжении 110 В
при напряжении 220 В

Номинальный ток вспомогательных цепей, А

Ток отключения коммутирующих контактов для внешних
вспомогательных цепей при напряжении 110/220 В, А:
переменного тока
постоянного тока

Мощность электродвигателя завода включающих пружин, кВт

Номинальное напряжение трехфазного переменного тока электродвигателя завода включающих пружин, В

Время завода включающих пружин, с, не более

Номинальная мощность подогревательных устройств одного привода, Вт:
постоянно работающий подогрев
подогрев, автоматически включающийся при низких
температурах

Напряжение подогревательных устройств, В

Максимальное вертикальное усилие на фундаментные опоры (переднюю и заднюю), возникающее при срабатывании выключателя (длительность импульса – не более 0,02 с), кН:
вверх
вниз

Значение параметров для типоисполнений
ВГТ-110II*-40/2500У1 ВГТ-220II*-40/2500У1
80–110
70–110
17,3
18,4

Выключатели выполняют следующие операции и циклы: 1) отключение (О);
2) включение (В);
3) включение — отключение (ВО), в том числе — без преднамеренной выдержки времени между операциями (В) и (О);
4) отключение — включение (ОВ) при любой бесконтактной паузе, начиная от t к, соответствующей t ;
5) отключение — включение — отключение (ОВО) с интервалами времени между операциями согласно п.п. 3 и 4;
6) коммутационные циклы: О-0,3 с — ВО-180 с — ВО;
О-0,3 с — ВО-20 с — ВО;
О-180 с — ВО-180 с — ВО. Допустимое для каждого полюса выключателя без осмотра и ремонта дугогасительных устройств число операций отключения (ресурс по коммутационной стойкости) составляет: при токах в диапазоне свыше 60 до 100% номинального тока отключения — 20 операций;
при токах в диапазоне свыше 30 до 60% номинального тока отключения — 34 операции;
при рабочих токах, равных номинальному току — 3000 операций В-t п -О. Допустимое число операций В для токов КЗ должно составлять не более 50% допустимого числа операций О; допустимое число операций В при нагрузочных токах равно допустимому числу операций О. Выключатели имеют следующие показатели надежности и долговечности: ресурс по механической стойкости до капитального ремонта — 5000 циклов В-t п -О;
срок службы до первого ремонта — 20 лет, если до этого срока не исчерпаны ресурсы по механической или коммутационной стойкости;
срок службы — 40 лет. Гарантийный срок эксплуатации — 5 лет при наработке, не превышающей значений ресурсов по механической или коммутационной стойкости, исчисляется со дня ввода выключателя в эксплуатацию, но не позднее 6 мес для действующих предприятий и 9 мес — для строящихся предприятий со дня поступления продукции на предприятие.

Выключатели серии ВГТ относятся к электрическим коммутационным аппаратам высокого напряжения, в которых гасящей и изолирующей средой является элегаз (SF 6). Выключатель ВГТ-110II * (рис. 1) состоит из трех полюсов (колонн), установленных на общей раме и механически связанных друг с другом. Все три полюса выключателя управляются одним пружинным приводом типа ППрК-1800С.

Общий вид, габаритные, установочные и присоеденительные размеры выключателя ВГТ-110II * -40/2500У1: 1 — пружинный привод;
2 — полюс (колонна);
3 — вывод;
4 — отключающее устройство;
5 — трубка;
6 — сигнализатор;
7 — рама;
8 — указатель положения;
9 — кабельная муфта;
10 — болт М16;
11 — знак заземления;
12 — опора рамы Выключатель ВГТ-220II * (рис. 2) состоит из трех полюсов, каждый из которых имеет собственную раму и управляется своим приводом.

Общий вид, габаритные, установочные и присоединительные размеры выключателя ВГТ-220II * -40/2500У1: 1 — пружинный привод;
2 — колонна (дугогасительное устройство);
3 — шина;
4 — вывод;
5 — рама;
6 — отключающее устройство;
7 — указатель положения;
8 — конденсатор;
9 — болт М16;
10 — знак заземления;
11 — опора рамы Принцип работы выключателей основан на гашении электрической дуги потоком элегаза, который создается за счет перепада давления, обеспечиваемого автогенерацией, т.е. за счет тепловой энергии самой дуги. Включение выключателей осуществляется за счет энергии включающих пружин привода, а отключение — за счет энергии пружины отключающего устройства выключателя. Рама выключателя ВГТ-110 представляет собой сварную конструкцию, на которой установлены привод, отключающее устройство, колонны и электроконтактные сигнализаторы давления. В полости одного из опорных швеллеров рамы, закрытой крышками, размещены последовательно соединенные тяги, связывающие рычаг привода с рычагами полюсов (колонн). В крышке выполнено смотровое окно указателя положения выключателя. Рама имеет четыре отверстия диаметром 36 мм для крепления к фундаментным стойкам и снабжена специальным болтом для присоединения заземляющей шины. Рама полюса выключателя ВГТ-220II * имеет аналогичную конструкцию. Отключающее устройство установлено на противоположном от привода торце рамы и состоит из отключающей пружины, сжимаемой при включении выключателя тягой, соединенной с наружным рычагом крайней колонны. Пружина расположена в цилиндрическом корпусе, на наружном фланце которого находится буферное устройство, предназначенное для гашения кинетической энергии подвижных частей и служащее упором (ограничителем хода) при динамическом включении выключателя. Полюс выключателя ВГТ-110 представляет собой колонну, заполненную элегазом и состоящую из опорного изолятора, дугогасительного устройства с токовыми выводами, механизма управления с изоляционной тягой. Полюс выключателя ВГТ-220II * состоит из двух колонн, дугогасительные устройства которых установлены на опорных изоляторах и соединены последовательно двумя шинами. Для равномерного распределения напряжения по дугогасительным устройствам параллельно к ним подключены шунтирующие конденсаторы. Дугогасительное устройство содержит размыкаемые главные и снабженные дугостойкими наконечниками дугогасительные контакты, поршневое устройство для создания давления в его внутренней полости и фторопластовые сопла, в которых потоки элегаза приобретают направление, необходимое для эффективного гашения дуги. Надпоршневая полость высокого давления и подпоршневая полость снабжены системой клапанов, позволяющих обеспечить эффективное дутье в зоне горения дуги во всех коммутационных режимах. В верхней части дугогасительного устройства расположен контейнер, наполненный активированным адсорбентом, поглощающим из газовой области влагу и продукты разложения элегаза. Во включенном положении главные и дугогасительные контакты замкнуты. При отключении сначала размыкаются практически без дугового эффекта главные контакты при замкнутых дугогасительных, а затем размыкаются дугогасительные. Скользящий контакт между неподвижной гильзой поршневого устройства и корпусом подвижного контакта осуществляется уложенными в его углубления контактными элементами, имеющими форму замкнутых проволочных спиралей. Механизм управления колонны размещен в корпусе и опорном изоляторе и состоит из шлицевого вала с наружным и внутренним рычагом. Шлицевой вал установлен в подшипниках и уплотняется манжетами. Внутренний рычаг через нерегулируемую изоляционную тягу соединен со штоком подвижного контакта. В корпус механизма встроен клапан автономной герметизации, через который с помощью медной трубки подсоединяется сигнализатор давления, установленный на раме выключателя. Клапан автономной герметизации состоит из корпуса и подпружиненного клапана, узла подсоединения трубки сигнализатора и заглушки, устанавливаемой на время транспортирования и после заполнения элегазом при вводе в работу для обеспечения надежной герметизации внутренней полости колонны. Электроконтактный сигнализатор давления показывающего типа снабжен устройством температурной компенсации, приводящим показания давления к температуре 20°С, и двумя парами замкнутых при рабочем давлении выключателя контактов. Первая пара контактов размыкается при снижении давления до 0,34 МПа, подавая сигнал о необходимости пополнения полюса, вторая пара размыкается при давлении 0,32 МПа, блокируя подачу команды на электромагниты управления. Для исключения ложных сигналов при возможном срабатывании контактов от вибрации при включении и отключении выключателя, а также ввиду их малой мощности, в цепи контактов должно быть включено промежуточное реле времени (например, РП-2556 или РП-18) с выдержкой времени от 0,8 до 1,2 с. Сигнализатор закрывается специальным кожухом, предохраняющим его от прямого попадания осадков и солнечных лучей. Привод выключателя — пружинный с моторным и ручным заводом рабочих (цилиндрических, винтовых) пружин, типа ППрК-1800С. Привод представляет собой отдельный, помещенный в герметизированный трехдверный шкаф, агрегат. Привод имеет два отключающих электромагнита; снабжен устройствами, блокирующими: прохождение команды на включающий электромагнит при включенном выключателе и при невзведенных пружинах;
прохождение команды на отключающий электромагнит при отключенном выключателе;
«холостую» (при включенном выключателе), динамическую разрядку рабочих пружин;
включение электродвигателя завода пружин при ручном их заводе. Привод позволяет: иметь сигнализацию о следующих отклонениях от нормального (рабочего) его состояния: не включен автомат SF;
неисправность в системе завода пружин;
не включена автоматика управления электродвигателем;
не взведены пружины;
медленно оперировать контактами выключателя при его настройке без каких-либо дополнительных (например, домкратных) устройств. Привод имеет антиконденсатный (неотключаемый) и основной (управляемый терморегулятором) электроподогрев шкафа. Принципиальное отличие привода ППрК-1800С от других приводов семейства ППрК — наличие буфера, затормаживающего подвижные части выключателя при отключении. Привод прост в регулировке, диагностике неисправностей, в обслуживании. При правильной эксплуатации надежен в работе. Схема управления приводом представлена на рис. 3.

Электрическая схема управления приводом ППрК-1800С: а — исполнение с питанием двигателя от сети 380 В;
б — исполнение с питанием двигателя от сети 220 В

Наименование Примечание
1 Выключатель элегазовый 110. Элегазовые выключатели: плюсы и минусы эксплуатации

Функционирование высоковольтных электрических сетей по токовым характеристикам не сопоставимо с работой бытовых аналогов. Соответственно, при возникновении аварийной ситуации для отключения оборудования и гашения электродуги необходимы более мощные устройства, чем стандартные автоматические приборы.

В качестве защитных конструкций применяют элегазовые выключатели (ЭВ), которыми можно управлять как в ручном режиме, так и с помощью автоматики. Мы детально описали конструктивные особенности и принцип действия устройств. Привели рекомендации по установке, подключению и обслуживанию.

Элегаз – это шестифтористая сера, которую относят к электротехническим газам. Благодаря изоляционным свойствам ее активно применяют при производстве электротехнических устройств.

В нейтральном состоянии элегаз представляет собой негорючий газ без цвета и запаха. Если его сравнивать с воздухом, то можно отметить высокую плотность (6,7) и молекулярную массу, превышающую воздушную в 5 раз.

Одно из преимуществ элегаза – устойчивость к внешним проявлениям. Он не меняет характеристик при любых условиях. Если происходит распад во время электроразряда, то вскоре наступает полноценное, необходимое для работы восстановление.

Секрет в том, что молекулы элегаза связывают электроны и образуют отрицательные ионы. Качество «электроотрицания» наделило 6-фтористую серу такой характеристикой, как электрическая прочность.

На практике электропрочность воздуха в 2-3 раза слабее, чем то же свойство элегаза. Кроме прочего, он пожаробезопасен, так как относится к негорючим веществам, и обладает охлаждающей способностью.

Когда возникла необходимость отыскать газ для гашения электродуги, стали изучать свойства SF6 (шестифтористой серы), 4-хлористого углерода и фреона. В испытаниях победила SF6

Перечисленные характеристики сделали элегаз максимально подходящим для применения в электротехнической сфере, в частности, в следующих устройствах:

  • силовые трансформаторы, работающие по принципу магнитной индукции;
  • распределительные устройства комплектного типа;
  • линии высокого напряжения, связывающие удаленные установки;
  • высоковольтные выключатели.

Но некоторые свойства элегаза привели к тому, что пришлось усовершенствовать конструкцию выключателя. Основной недостаток касается перехода газообразной фазы в жидкую, а это возможно при определенных соотношениях параметров давления и температуры.

Чтобы оборудование работало без перебоев, необходимо обеспечить комфортные условия. Предположим, для функционирования элегазовых устройств при -40º необходимо давление не более 0,4 МПа и плотность менее 0,03 г/см³. На практике при необходимости газ подогревают, что препятствует переходу в жидкую фазу.

Конструкция элегазового выключателя

Если сравнивать элегазовые устройства с аналогами других видов, то по конструкции они ближе всего к масляным приборам. Разница заключается в наполнении камер для гашения дуги.

1.Краткая характеристика элегазовых колонковых выключателей 1

1.2.Назначение элегазовых колонковых выключателей 2

1.3.Требования соблюдения заводских инструкций по эксплуатации и ремонту элегазовых колонковых выключателей 3

1.4.Риски, появляющиеся при эксплуатации элегазовых колонковых выключателей 4

1.6.Перечень типов элегазовых колонковых выключателей, эксплуатируемых на сетевых предприятиях Р.Ф. 5

2.Устройство элегазовых колонковых выключателей 5

2.1.Технические характеристики элегазовых колонковых выключателей 5

2.2.Описание конструкции элегазовых колонковых выключателей: дугогасительное устройство, опорный изолятор, привод, шкаф управления, предохранительный клапан, приборы и устройства, контролирующие состояние элегаза, мониторинг параметров 10

2.2.1.Описание элегазовых колонковых выключателей типа HPL-245B1 10

2.2.2.Описание колонковых элегазовых выключателей типа LTB-145D1/B 13

2.2.3.Описание колонковых элегазовых выключателей типа 3AP1FG – 145/ЕК 17

2.2.4.Описание колонковых элегазовых выключателей типа ВГТ-110 18

3.Внешний вид установки комплекта элегазовых колонковых выключателей 22

4.Требования по безопасности труда, взрыво и пожаробезопасности элегазовых колонковых выключателей 23

Краткая характеристика элегазовых колонковых выключателей

Введение

Выключатели предназначены для оперативной и аварийной коммутации в энергосистемах, т.е. выполнения операций включения и отключения отдельных цепей при ручном или автоматическом управлении. Во включённом состоянии выключатели должны беспрепятственно пропускать токи нагрузки. Характер режима работы этих аппаратов несколько необычен: нормальным для них считается как включённое состояние, когда они обтекаются током нагрузки, так и отключённое, при котором они обеспечивают необходимую электрическую изоляцию между разомкнутыми участками цепи. Коммутация цепи, осуществляемая при переключении выключателя из одного положения в другое, производится нерегулярно, время от времени, а выполнение им специфических требований по отключению возникающего в цепи короткого замыкания чрезвычайно редко. Выключатели должны надёжно выполнять свои функции в течение срока службы (30-40 лет), находясь в любом из указанных состояний, и одновременно быть всегда готовыми к мгновенному эффективному выполнению любых коммутационных операций, часто после длительного пребывания в неподвижном состоянии. Отсюда следует, что они должны иметь очень высокий коэффициент готовности: при малой продолжительности процессов коммутации (несколько минут в год) должна быть обеспечена постоянная готовность к осуществлению коммутаций.

Для того чтобы погасить электрическую дугу очень часто используют множество различных газовых смесей. По такому принципу работает оборудование, заполненное элегазом, которое применяют для работ в аварийной ситуации. В этой статье мы рассмотрим устройство, принцип работы и назначение элегазовых выключателей.

Из чего состоит оборудование и какие бывают конструкции?

Элегазовый высоковольтный выключатель – это устройство, назначение которого управлять и осуществлять контроль над высоковольтной линией энергоснабжения. Конструкция такого оборудования напоминает механизм масляного устройства, только для гашения применяется соединение газов вместо масляной смеси. Как правило, используется сера. В отличие от масляного прибора, элегазовый не требует особого ухода. Его главным достоинством считается долговечность.

Элегазовые выключатели делятся на:

  1. Колонковый. Применение такого строения оптимальное только для сети 220 кВ. Это отключающее устройство работает на одну фазу. В конструкцию входит две системы, которые размещаются в емкости с элегазом. Это контактная и дугогасительная система. Также они могут быть как ручными, так и дистанционными. Это считается основной причиной их больших размеров.
  2. Баковый. По габаритам меньше, чем колонковые. В конструкции имеется дополнительный привод, который имеет несколько фаз. Благодаря этому можно плавно и мягко регулировать включение и выключение напряжения. А из-за того, что в систему встроен трансформатор тока, механизм способен переносить большие нагрузки.

По методу гашения электрической дуги элегазовые силовые выключатели делятся на:

  • воздушный, его еще называют автокомпрессионный;
  • вращающий;
  • продольного дутья.

Принцип действия и область применения

За счет чего работает элегазовый выключатель большого напряжения? За счет изолированности фаз между собой посредством элегаза. Принцип работы механизма следующий: при поступлении сигнала об отключении электрического оборудования, контакты каждой камеры размыкаются. Встроенные контакты создают электрическую дугу, которая размещается в газовой среде.

Эта среда разделяет газ на отдельные частицы и компоненты, а из-за высокого давления в резервуаре, сама среда снижается. Возможное применение дополнительных компрессоров, если система работает на низком давлении. Тогда компрессоры усиливают давление и образовывают газовое дутье. Также используется шунтирование, применение которого необходимо для выравнивания тока.

Обозначение на схеме ниже указывает расположения каждого элемента в механизме выключателя:

Что касается моделей бакового вида, так в них контроль осуществляется с помощью приводов и трансформаторов. Для чего нужен привод? Его механизм является регулятором и его назначение заключается в том, чтобы включать или выключать электроэнергию и, если необходимо, удерживать дугу на установленном уровне.

Приводы делятся на пружинные и пружинно-гидравлические. Пружинные обладают большой степенью надежности и имеют простой принцип работы: вся работа делается благодаря механическим деталям. Пружина способна под действием специального рычага сжимать и разжиматься, а также фиксироваться на установленном уровне.

Пружинно-гидравлические приводы выключателей дополнительно имеют в конструкции гидравлическую систему управления. Такой привод считается более эффективным и надежным, ведь пружинное устройство может само изменить уровень фиксатора.

Достоинства и недостатки оборудования

Как и в любых конструкциях и механизмах в элегазовых выключателях существуют свои преимущества и недостатки. К достоинствам устройства относят:

  1. Многофункциональность. Назначение и применение такого механизма возможно для любого напряжения в сети.
  2. Скорость действия. Элегаз реагирует на присутствие электрической дуги за считанные секунды. Благодаря этому в случае аварийной ситуации есть возможность быстро отключить подконтрольную систему.
  3. Возможное использование при вибрациях и в условиях пожарной опасности.
  4. Долголетие. Нет необходимости заменять газовые смеси. Контакты, что соприкасаются со смесями, почти не подлежат изнашиванию, а внешний корпус обладает большими показателями защиты.
  5. Могут применяться на сетях высокого напряжения. Их аналоги, такие как вакуумные приборы, этого делать не способны.

Но у этих выключателей есть и свои недостатки. Например:

  1. Так как производство приборов очень сложное и элегазовые смеси стоят дорого, то и цена самой конструкции высокая.
  2. Не работают прибор при низкой температуре.
  3. При требуемом обслуживании следует применять определенное оборудование.
  4. Прибор следует устанавливать на специальную платформу или фундамент, а для этого следует обладать опытом и специальными инструкциями.

Вот мы и рассмотрели устройство, назначение и принцип действия элегазовых выключателей. Надеемся, предоставленная информация была для вас полезной и интересной!

Наверняка вы не знаете:

Для гашения электрической дуги часто используются различные газовые смеси. Элегазовые выключатели 110 кВ и 220 кВ работают именно по такому принципу и могут использоваться для работы в аварийных ситуациях.

Конструкция и виды

Элегазовые высоковольтные выключатели – это устройства оперативного управления для контроля высоковольтной линии энергоснабжения. Данные устройства имеют очень похожую конструкцию с масляными, но при этом, используют для гашения дуги не масляную смесь, а соединение газов. Зачастую это сера. Масляные выключатели требуют за собой особого ухода: по нормам необходимы периодическая замену масла и очистка рабочих контактов. Элегазовые в этом не нуждаются. Главное достоинство элегаза в его долговечности: он не стареет и минимально загрязняет механические части устройства.

Фото — высоковольтное оборудование

  1. Колонковые (HPL 245B1, MF 24 Schneider Electric);
  2. Баковые (ABB 242PMR, DT2-550 F3 – производитель Areva).

Колонковый элегазовый выключатель представляет стандартное отключающее устройство, работающее только на одну фазу (например, LF 10 от Шнайдер Электрик). Он используется для сети 220 кВ. Конструктивно состоят из двух систем: контактной и дугогасительной. Обе они располагаются в емкости, наполненной элегазом. Могут быть как ручными (контроль производится исключительно механически) или дистанционными. Из-за такого разделения они имеют довольно большие габаритные размеры.

Фото — чертеж конструкции

Баковые имеют меньшие габариты, их дополняет привод ППРМ 2 для элегазового выключателя. Привод распределяется на несколько фаз, что позволяет обеспечить мягкое регулирование напряжения (включение и выключение). Также их достоинство в том, что они могут переносить большие нагрузки благодаря встроенному в систему трансформатору тока.

Помимо конструктивных особенностей, выключатели элегазового типа классифицируются по принципу гашения дуги:

  1. Автокомпрессионные или воздушные;
  2. Вращающие;
  3. Продольного дутья;
  4. Продольного дутья с дополнительным разогревом элегаза.

Принцип работы и назначение

Элегазовые выключатели высокого напряжения работают за счет изоляции фаз друг от друга посредством элегаза. Когда срабатывает сигнал о том, что нужно отключить электрооборудование, контакты отдельных камер (если устройство колонковое) размыкаются. Таким образом, встроенные контакты образуют дугу, которая помещена в газовую среду. Она разлагает газ на отдельные компоненты, но при этом и сама снижается из-за высокого давления в емкости. Если система установлена на низком давлении, то используются дополнительные компрессоры для нагнетания давления и создания газового дутья. Для выравнивания тока дополнительно используется шунтирование. Визуально схема работы выглядит так:

Фото — схема работы

Отдельно нужно сказать про модели бакового типа. Их контроль выполняется приводами и трансформаторами. Приводной механизм для этой установки является регулятором: он необходим для включения, выключения электрической энергии и удержания дуги (при надобности) на определенном уровне. Приводы бывают:

Пружинный имеет очень простой принцип действия и высокий уровень надежности. В нем вся работа выполняется только за счет механических деталей. Пружина зажимается и фиксируется на определенном уровне, а при изменении положения контрольного рычага она разжимается. На основании его принципа работы часто готовится научная презентация действия шестифтористой серы в электрической среде.

Современные пружинно-гидравлические приводы помимо пружины дополнительно оснащены гидравлической системой управления. Они считаются более эффективными, т. к. пружинные механизмы могут сами поменять положение фиксатора.

Достоинства элегазовых выключателей :

  1. Универсальность. Данные выключатели используются для контроля сетей с любым напряжением;
  2. Быстрота действия. Реакции элегаза на наличие электрической дуги происходят за доли секунды, это позволяет обеспечить быстрое аварийное отключение подконтрольной системы;
  3. Подходят для эксплуатации в условиях пожароопасности и вибрации;
  4. Долговечность. Контакты, соприкасающиеся с элегазом, практически не изнашивают, газовые смеси не нуждаются в замене, а у наружной оболочки высокие показатели защиты;
  5. Подходят для отключения переменного и постоянного тока высокого напряжения, в то время, как их аналоги – вакуумные модели не могут использоваться на высоковольтных сетях.

Но, такие приборы имеют определенные недостатки :

  1. Высокая цена, обусловленная сложностью производства и дороговизной элегазовой смеси;
  2. Монтаж осуществляется только на фундамент или специальный электрощит, причем, для этого нужна специальная инструкция и опыт;
  3. Выключатели не работают при низких температурах;
  4. При необходимом обслуживании должно использоваться специальное оборудование.

Фото — промышленный элегазовый выключатель нагрузки

Видео: особенности элегазовых выключателей

Технические характеристики

Рассмотрим технические характеристики выключателей разных производителей и типов работы.

МЕК SF6 элегазовый пружинный выключатель HD4 (завод завод ABB – АВВ):

ВГБЭП-35 (ВГБ-35, ВГБЭ):

ВГУ-110 (газовый силовой):

Колонковый выключатель GL314 Alstom:

Генераторные силовые отключающие устройства с пружинным приводом – FKG 2:

Элегазовый компрессионный выключатель фирмы Siemens (Сименс)3AP1FG-245 (для установки нужны фундаменты):

Купить подходящие элегазовые выключатели можно в любом электротехническом магазине. Их стоимость зависит от типа устройства и его производителя. Прайс-лист в Самаре, Москве, Екатеринбурге и других городах варьируется от 100 долларов до нескольких тысяч.

Общие сведения

Выключатели элегазовые серии ВГТ предназначены для коммутации электрических цепей при нормальных и аварийных режимах, а также работы в циклах АПВ в сетях трехфазного переменного тока частоты 50 Гц с номинальным напряжением 110 и 220 кВ.

Структура условного обозначения

выключателя ВГТ-ХII * -40/2500У1:
ВГ — выключатель элегазовый;
Т — условное обозначение конструктивного исполнения;
Х — номинальное напряжение, кВ (110 или 220);
II * — категория по длине пути утечки по внешней изоляции
в соответствии с ГОСТ 9920-89;
40 — номинальный ток отключения, кА;
2500 — номинальный ток, А;
У1 — климатическое исполнение и категория размещения по ГОСТ
15150-69 и ГОСТ 15543.1-89. привода ППрК-1800С:
П — привод;
Пр — пружинный;
К — кулачковый;
1800 — работа статического включения, Дж;
С — специальный.

Условия эксплуатации

Высота установки над уровнем моря не более 1000 м. Температура окружающего воздуха от минус 45 до 40°С. Относительная влажность воздуха не более 80% при температуре 20°С. Верхнее значение 100% при температуре 25°С. Скорость ветра 15 м/с при гололеде с толщиной корки льда до 20 мм, а при отсутствии гололеда до 40 м/с. Окружающая среда невзрывоопасная, не содержащая агрессивных газов и паров в концентрациях, разрушающих металлы и изоляцию. Содержание коррозионно-активных агентов по ГОСТ 15150-69 (для атмосферы типа II). Тяжение проводов, приложенное в горизонтальном направлении, не более 1000 Н. Длина пути утечки внешней изоляции соответствует нормам ГОСТ 9920-89 для подстанционной изоляции (степень загрязнения II * , категория исполнения Б) — на 110 кВ — не менее 280 см, на 220 кВ — не менее 570 см. Выключатели соответствуют требованиям ГОСТ 687-78 «Выключатели переменного тока на напряжение свыше 1000 В. Общие технические условия» и ТУ 2БП.029.001 ТУ, согласованным с РАО «ЕЭС России». ТУ 2БП.029.001 ТУ

Технические характеристики

Основные технические данные выключателей приведены в таблице.

Номинальное напряжение, кВ

Наибольшее рабочее напряжение, кВ

Номинальный ток, А

Номинальный ток отключения, кА

Номинальное относительное содержание апериодической
составляющей, %, не более

Параметры сквозного тока КЗ, кА:
наибольший пик

составляющей
ток термической стойкости с временем протекания 3 с

Параметры тока включения, кА:
наибольший пик
начальное действующее значение периодической
составляющей

Емкостный ток ненагруженных линий, отключаемый
без повторных пробоев, А

Емкостный ток одиночной конденсаторной батареи с глухозаземленной нейтралью, отключаемый без повторных пробоев, А

Индуктивный ток шунтирующего реактора, А

Собственное время отключения, с

Полное время отключения, с

Минимальная бестоковая пауза при АПВ, с

Собственное время включения, с, не более

Разновременность работы разных полюсов (дугогасительных устройств) при отключении и включении, с, не более

Расход газа на утечки в год, % от массы элегаза, не более

Избыточное давление элегаза, приведенное к 20 ° С, МПа:
давление заполнения
давление предупредительной сигнализации
давление блокировки оперирования

Масса выключателя, кг

Масса элегаза, кг

Выдерживаемое одноминутное напряжение частоты 50 Гц, кВ

Выдерживаемое напряжение грозового импульса (1,2/50 мкс)

Длина пути утечки внешней изоляции, см, не менее

Номинальное напряжение постоянного тока электромагнитов управления привода, В

Количество электромагнитов управления в приводе:
включающих
отключающих

Количество вспомогательных контактов

Диапазон рабочих напряжений, %
номинального значения электромагнитов управления:
включающих
отключающих

Номинальное значение установившегося постоянного тока,
потребляемого электромагнитами управления, А, не более:
при напряжении 110 В
при напряжении 220 В

Номинальный ток вспомогательных цепей, А

Ток отключения коммутирующих контактов для внешних
вспомогательных цепей при напряжении 110/220 В, А:
переменного тока
постоянного тока

Мощность электродвигателя завода включающих пружин, кВт

Номинальное напряжение трехфазного переменного тока электродвигателя завода включающих пружин, В

Время завода включающих пружин, с, не более

Номинальная мощность подогревательных устройств одного привода, Вт:
постоянно работающий подогрев
подогрев, автоматически включающийся при низких
температурах

Напряжение подогревательных устройств, В

Максимальное вертикальное усилие на фундаментные опоры (переднюю и заднюю), возникающее при срабатывании выключателя (длительность импульса – не более 0,02 с), кН:
вверх
вниз

Значение параметров для типоисполнений
ВГТ-110II*-40/2500У1 ВГТ-220II*-40/2500У1
80–110
70–110
17,3
18,4

Выключатели выполняют следующие операции и циклы: 1) отключение (О);
2) включение (В);
3) включение — отключение (ВО), в том числе — без преднамеренной выдержки времени между операциями (В) и (О);
4) отключение — включение (ОВ) при любой бесконтактной паузе, начиная от t к, соответствующей t ;
5) отключение — включение — отключение (ОВО) с интервалами времени между операциями согласно п.п. 3 и 4;
6) коммутационные циклы: О-0,3 с — ВО-180 с — ВО;
О-0,3 с — ВО-20 с — ВО;
О-180 с — ВО-180 с — ВО. Допустимое для каждого полюса выключателя без осмотра и ремонта дугогасительных устройств число операций отключения (ресурс по коммутационной стойкости) составляет: при токах в диапазоне свыше 60 до 100% номинального тока отключения — 20 операций;
при токах в диапазоне свыше 30 до 60% номинального тока отключения — 34 операции;
при рабочих токах, равных номинальному току — 3000 операций В-t п -О. Допустимое число операций В для токов КЗ должно составлять не более 50% допустимого числа операций О; допустимое число операций В при нагрузочных токах равно допустимому числу операций О. Выключатели имеют следующие показатели надежности и долговечности: ресурс по механической стойкости до капитального ремонта — 5000 циклов В-t п -О;
срок службы до первого ремонта — 20 лет, если до этого срока не исчерпаны ресурсы по механической или коммутационной стойкости;
срок службы — 40 лет. Гарантийный срок эксплуатации — 5 лет при наработке, не превышающей значений ресурсов по механической или коммутационной стойкости, исчисляется со дня ввода выключателя в эксплуатацию, но не позднее 6 мес для действующих предприятий и 9 мес — для строящихся предприятий со дня поступления продукции на предприятие.

Выключатели серии ВГТ относятся к электрическим коммутационным аппаратам высокого напряжения, в которых гасящей и изолирующей средой является элегаз (SF 6). Выключатель ВГТ-110II * (рис. 1) состоит из трех полюсов (колонн), установленных на общей раме и механически связанных друг с другом. Все три полюса выключателя управляются одним пружинным приводом типа ППрК-1800С.

Общий вид, габаритные, установочные и присоеденительные размеры выключателя ВГТ-110II * -40/2500У1: 1 — пружинный привод;
2 — полюс (колонна);
3 — вывод;
4 — отключающее устройство;
5 — трубка;
6 — сигнализатор;
7 — рама;
8 — указатель положения;
9 — кабельная муфта;
10 — болт М16;
11 — знак заземления;
12 — опора рамы Выключатель ВГТ-220II * (рис. 2) состоит из трех полюсов, каждый из которых имеет собственную раму и управляется своим приводом.

Общий вид, габаритные, установочные и присоединительные размеры выключателя ВГТ-220II * -40/2500У1: 1 — пружинный привод;
2 — колонна (дугогасительное устройство);
3 — шина;
4 — вывод;
5 — рама;
6 — отключающее устройство;
7 — указатель положения;
8 — конденсатор;
9 — болт М16;
10 — знак заземления;
11 — опора рамы Принцип работы выключателей основан на гашении электрической дуги потоком элегаза, который создается за счет перепада давления, обеспечиваемого автогенерацией, т.е. за счет тепловой энергии самой дуги. Включение выключателей осуществляется за счет энергии включающих пружин привода, а отключение — за счет энергии пружины отключающего устройства выключателя. Рама выключателя ВГТ-110 представляет собой сварную конструкцию, на которой установлены привод, отключающее устройство, колонны и электроконтактные сигнализаторы давления. В полости одного из опорных швеллеров рамы, закрытой крышками, размещены последовательно соединенные тяги, связывающие рычаг привода с рычагами полюсов (колонн). В крышке выполнено смотровое окно указателя положения выключателя. Рама имеет четыре отверстия диаметром 36 мм для крепления к фундаментным стойкам и снабжена специальным болтом для присоединения заземляющей шины. Рама полюса выключателя ВГТ-220II * имеет аналогичную конструкцию. Отключающее устройство установлено на противоположном от привода торце рамы и состоит из отключающей пружины, сжимаемой при включении выключателя тягой, соединенной с наружным рычагом крайней колонны. Пружина расположена в цилиндрическом корпусе, на наружном фланце которого находится буферное устройство, предназначенное для гашения кинетической энергии подвижных частей и служащее упором (ограничителем хода) при динамическом включении выключателя. Полюс выключателя ВГТ-110 представляет собой колонну, заполненную элегазом и состоящую из опорного изолятора, дугогасительного устройства с токовыми выводами, механизма управления с изоляционной тягой. Полюс выключателя ВГТ-220II * состоит из двух колонн, дугогасительные устройства которых установлены на опорных изоляторах и соединены последовательно двумя шинами. Для равномерного распределения напряжения по дугогасительным устройствам параллельно к ним подключены шунтирующие конденсаторы. Дугогасительное устройство содержит размыкаемые главные и снабженные дугостойкими наконечниками дугогасительные контакты, поршневое устройство для создания давления в его внутренней полости и фторопластовые сопла, в которых потоки элегаза приобретают направление, необходимое для эффективного гашения дуги. Надпоршневая полость высокого давления и подпоршневая полость снабжены системой клапанов, позволяющих обеспечить эффективное дутье в зоне горения дуги во всех коммутационных режимах. В верхней части дугогасительного устройства расположен контейнер, наполненный активированным адсорбентом, поглощающим из газовой области влагу и продукты разложения элегаза. Во включенном положении главные и дугогасительные контакты замкнуты. При отключении сначала размыкаются практически без дугового эффекта главные контакты при замкнутых дугогасительных, а затем размыкаются дугогасительные. Скользящий контакт между неподвижной гильзой поршневого устройства и корпусом подвижного контакта осуществляется уложенными в его углубления контактными элементами, имеющими форму замкнутых проволочных спиралей. Механизм управления колонны размещен в корпусе и опорном изоляторе и состоит из шлицевого вала с наружным и внутренним рычагом. Шлицевой вал установлен в подшипниках и уплотняется манжетами. Внутренний рычаг через нерегулируемую изоляционную тягу соединен со штоком подвижного контакта. В корпус механизма встроен клапан автономной герметизации, через который с помощью медной трубки подсоединяется сигнализатор давления, установленный на раме выключателя. Клапан автономной герметизации состоит из корпуса и подпружиненного клапана, узла подсоединения трубки сигнализатора и заглушки, устанавливаемой на время транспортирования и после заполнения элегазом при вводе в работу для обеспечения надежной герметизации внутренней полости колонны. Электроконтактный сигнализатор давления показывающего типа снабжен устройством температурной компенсации, приводящим показания давления к температуре 20°С, и двумя парами замкнутых при рабочем давлении выключателя контактов. Первая пара контактов размыкается при снижении давления до 0,34 МПа, подавая сигнал о необходимости пополнения полюса, вторая пара размыкается при давлении 0,32 МПа, блокируя подачу команды на электромагниты управления. Для исключения ложных сигналов при возможном срабатывании контактов от вибрации при включении и отключении выключателя, а также ввиду их малой мощности, в цепи контактов должно быть включено промежуточное реле времени (например, РП-2556 или РП-18) с выдержкой времени от 0,8 до 1,2 с. Сигнализатор закрывается специальным кожухом, предохраняющим его от прямого попадания осадков и солнечных лучей. Привод выключателя — пружинный с моторным и ручным заводом рабочих (цилиндрических, винтовых) пружин, типа ППрК-1800С. Привод представляет собой отдельный, помещенный в герметизированный трехдверный шкаф, агрегат. Привод имеет два отключающих электромагнита; снабжен устройствами, блокирующими: прохождение команды на включающий электромагнит при включенном выключателе и при невзведенных пружинах;
прохождение команды на отключающий электромагнит при отключенном выключателе;
«холостую» (при включенном выключателе), динамическую разрядку рабочих пружин;
включение электродвигателя завода пружин при ручном их заводе. Привод позволяет: иметь сигнализацию о следующих отклонениях от нормального (рабочего) его состояния: не включен автомат SF;
неисправность в системе завода пружин;
не включена автоматика управления электродвигателем;
не взведены пружины;
медленно оперировать контактами выключателя при его настройке без каких-либо дополнительных (например, домкратных) устройств. Привод имеет антиконденсатный (неотключаемый) и основной (управляемый терморегулятором) электроподогрев шкафа. Принципиальное отличие привода ППрК-1800С от других приводов семейства ППрК — наличие буфера, затормаживающего подвижные части выключателя при отключении. Привод прост в регулировке, диагностике неисправностей, в обслуживании. При правильной эксплуатации надежен в работе. Схема управления приводом представлена на рис. 3.

Электрическая схема управления приводом ППрК-1800С: а — исполнение с питанием двигателя от сети 380 В;
б — исполнение с питанием двигателя от сети 220 В

Наименование Примечание
1 Элегазовые выключатели от 6кВ

Ситуация следующая. Масло и воздух уступают элегазу и вакууму. Старые воздушные и масляные выключатели заменяют на новые элегазовые и вакуумные, старые РУ заменяют на новые. Идет процесс апгрейда энергосистем. Но не всех и не везде и не так быстро, как всем этого бы хотелось. Но лично видел это и всегда приятно, когда приезжаешь в новенькое РУ.

Преимущества и особенности элегаза были рассмотрены тут. В данной же статье речь пойдет про выключатели элегазовые.

Начнем с определения. Элегазовый выключатель — электрический аппарат, предназначенный для коммутаций (процессов включения и отключения) электрической цепи в нормальных и аварийных режимах.

Выпускаются элегазовые выключатели на напряжение среднее (6-35кВ) и высокое-сверхвысокое (110-750кВ). На среднее напряжение это могут быть выключатели для распредустройств 6-10 кВ, выключатели генераторного напряжения, выключатели КРУЭ (про КРУЭ будет отдельная статья). На напряжение выше 35 кВ выключатели бывают колонковые, баковые и смешанного типа.

Выпуском элегазовых выключателей занимаются: Mitsubishi Electric, ABB, Areva (ныне называется Orano вроде, хотя Арева реорганизуется постоянно и не знаю какое-именно подразделение занимается элегазовыми выключателями), Schneider Electric, Siemens, Электроаппарат, HEAG, ЗЭТО и прочие и прочие. Не злитесь сильно, если кого-то забыл упомянуть.

Принципы гашения дуги (дугогасительные устройства)

В различной каталожно-справочной литературе одни и те же способы гашения дуги в ДУ имеют различные названия, которые неподготовленному студенту, например, могут показаться различными способами. Поэтому классифицировать их становится сложно. Но, постараюсь справиться. Значит, в принципе есть три механизма гашения:

  • автокопрессия (гашение дутьем, когда дуга находится на месте, а у газа есть две ступени давления, газ поступает из области с высоким давлением в область с низким и гасит дугу)
  • электромагнитное дутье (гашение дуги в неподвижном элегазе, когда под действием магнитного поля дуга вращается и происходит ее гашение)
  • автопневматическое дутье (необходимый перепад давления создается за счет привода выключателя)
  • автогенерация

Также встречаются ДУ, где дуга вращается в магнитном поле и при этом еще происходит перетекание элегаза под давлением. То есть на таком обширном рынке все стремятся создать неоспоримое преимущество. Так, например, в выключателях 220кВ ВГТ имеется по два ДУ на фазу, что уменьшает в два раза отключаемую мощность и увеличивает эксплуатационный срок службы выключателя. На отдельных выключателях высокого напряжения уже стоит система мониторинга, которая, также будет следить за тем, чтобы выключатели не принесли неожиданных сюрпризов.

Выключатели 6-10кВ

В этом классе напряжений элегаз не так распространен, как вакуум. Однако, выбор есть. В таблице выше я привел данные по отдельным представителям из открытых источников по этому классу напряжения.

Элегазовые выключатели >35 кВ

Здесь выбор гораздо шире, чем у выключателей младшего класса напряжения. И производителей поболее. Конструктивно выключатели могут быть баковые, колонковые и смешанного типа (Жмите по картинке для увеличения таблицы).

В выключателях Аревы имеется один тип дугогасительной камеры, который устанавливается на выключатели всех классов напряжения. То есть 1 камера -245,300кВ; 2 камеры -362,550кВ; 4 камеры — 800 кВ.

У сименса определить колонковый или баковый можно по марке. Если в названии есть LT (Live Tank) — то это колонковый. А если DT (Dead Tank) — баковый.

У выключателей фирмы ABB кроме популярного автокомпрессионного (auto-puffer) способа гашения дуги можно встретить компрессионный (puffer). Автокомпрессионный показывает лучшие показатели при гашении токов кз больших величин. Так как для их погашения требуется меньшая мощность привода.

Также стоит отметить, что для элегазовых выключателей кроме самого SF6 могут применяться и различные смеси:

  • элегаз и азот (SF6+N2)
  • элегаз и хладон (SF6+CF4)

Из чего состоит элегазовый выключатель и как это всё приводит к отключению дуги

Так как выключатели могут иметь исполнение баковое, колонковое или же быть вообще для установки в КРУ. А кроме этого существуют различные виды ДУ, то и для каждого выключателя будет отдельный принцип работы и состав частей.

Рассмотрим, например, в этой статье для примера популярный выключатель шнайдер электрик с автокомпрессией на напряжение 12 кВ типа LFP.

Выключатель трехполюсный. Каждый полюс находится в изолированном корпусе, который заполнен элегазом под невысоким давлением. Внутри корпуса находится ДУ, на контакты которого посылаются команды включения, отключения или допустимых циклов. Эти команды подаются с пружинного привода, расположенного на лицевой панели или дистанционно.

Также в устройство входят датчики контроля давления элегаза в корпусе и датчики прироста величины давления. Для подключения к силовой цепи есть специальные зажимы сзади корпуса, также имеются клеммники для подключения вторичных цепей.

Принцип работы выключателя построен на автокомпрессионном способе гашения дуги.

Посмотрим на заводскую картинку, приведенную выше. У нас имеются основные контакты (под буквой а, рыжие) и дугогасительные контакты (буква б, темно-синие). Значит поступает команда на отключение выключателя. Основные контакты размыкаются, дугогасительные также размыкаются. В момент когда дугогасительные размыкаются между ними в расширительном объеме (буква с — область ограниченная розовой линией) образуется дуга. На верхнем из дугогасительном контактов расположены катушки. Так вот электрическая дуга под действием магнитного поля этой катушки начинает закручиваться. Объем газа под тепловым воздействием дуги начинает расширяться. Давление газа увеличивается и он ищет выход в область с меньшим давлением. Этот поток элегаза затягивает дугу в нижний дугогасительный контакт (область е на рисунке) и дуга растягивается. А затем в момент, когда ток проходит через ноль — дуга гаснет. В этот момент считается, что выключатель отключен. Это время составляет 70 мс.

В состав пружинного привода входят: двигатель взвода пружин, катушки отключения (YO1, YO2), катушка включения (YF), катушка отключения минимального напряжения (YM), реле прямого действия mitop, счетчик циклов В-О и прочие устройства необходимые для удобства при обслуживании выключателя. У катушек имеется различное число нормально закрытых, нормально открытых контактов и перекидывающий контакт.

Достоинства и недостатки элегазового выключателя

После описания выключателей логичным будет подвести итог. Итог подведу в форме плюсов и минусов использования данного вида оборудования в сравнении с аппаратами, использующими другие среды для гашения дуги.

  • высокая износостойкость и срок службы
  • снижение затрат на обслуживание по сравнению с масляными
  • высокая экологичность
  • быстрая скорость гашения дуги
  • высокая взрыво- и пожаробезопасность
  • меньший вес и размеры по сравнению с масляными
  • высокая химическая стабильность газа
  • широкий диапазон рабочих температур
  • персонал может почувствовать удушение из-за попадания большого количества элегаза в закрытое помещение
  • высокая стоимость выключателя
  • необходимость создания условий для наполнения выключателей элегазом, его транспортировки, хранения
  • требуются надежные стыки и прокладки, чтобы обеспечить надежную герметичность и невозможность утечки элегаза
  • сам газ не ядовит, но отдельные продукты распада при гашение дуги ядовиты. При ревизии выключателя необходимо тщательно очищать внутренние поверхности, так как с ухудшением свойств газа будут ухудшаться коммутационные способности элегазового выключателя. А ухудшение возможно из-за коррозионных и токсичных свойств продуктов разложения элегаза при гашении дуги

Сохраните в закладки или поделитесь с друзьями

Принцип действия элегазовые выключатели

Для того чтобы погасить электрическую дугу очень часто используют множество различных газовых смесей. По такому принципу работает оборудование, заполненное элегазом, которое применяют для работ в аварийной ситуации. В этой статье мы рассмотрим устройство, принцип работы и назначение элегазовых выключателей.

Из чего состоит оборудование и какие бывают конструкции?

Элегазовый высоковольтный выключатель – это устройство, назначение которого управлять и осуществлять контроль над высоковольтной линией энергоснабжения. Конструкция такого оборудования напоминает механизм масляного устройства, только для гашения применяется соединение газов вместо масляной смеси. Как правило, используется сера. В отличие от масляного прибора, элегазовый не требует особого ухода. Его главным достоинством считается долговечность.

Элегазовые выключатели делятся на:

  1. Колонковый. Применение такого строения оптимальное только для сети 220 кВ. Это отключающее устройство работает на одну фазу. В конструкцию входит две системы, которые размещаются в емкости с элегазом. Это контактная и дугогасительная система. Также они могут быть как ручными, так и дистанционными. Это считается основной причиной их больших размеров.
  2. Баковый. По габаритам меньше, чем колонковые. В конструкции имеется дополнительный привод, который имеет несколько фаз. Благодаря этому можно плавно и мягко регулировать включение и выключение напряжения. А из-за того, что в систему встроен трансформатор тока, механизм способен переносить большие нагрузки.

По методу гашения электрической дуги элегазовые силовые выключатели делятся на:

  • воздушный, его еще называют автокомпрессионный;
  • вращающий;
  • продольного дутья.

Принцип действия и область применения

За счет чего работает элегазовый выключатель большого напряжения? За счет изолированности фаз между собой посредством элегаза. Принцип работы механизма следующий: при поступлении сигнала об отключении электрического оборудования, контакты каждой камеры размыкаются. Встроенные контакты создают электрическую дугу, которая размещается в газовой среде.

Эта среда разделяет газ на отдельные частицы и компоненты, а из-за высокого давления в резервуаре, сама среда снижается. Возможное применение дополнительных компрессоров, если система работает на низком давлении. Тогда компрессоры усиливают давление и образовывают газовое дутье. Также используется шунтирование, применение которого необходимо для выравнивания тока.

Обозначение на схеме ниже указывает расположения каждого элемента в механизме выключателя:

Что касается моделей бакового вида, так в них контроль осуществляется с помощью приводов и трансформаторов. Для чего нужен привод? Его механизм является регулятором и его назначение заключается в том, чтобы включать или выключать электроэнергию и, если необходимо, удерживать дугу на установленном уровне.

Приводы делятся на пружинные и пружинно-гидравлические. Пружинные обладают большой степенью надежности и имеют простой принцип работы: вся работа делается благодаря механическим деталям. Пружина способна под действием специального рычага сжимать и разжиматься, а также фиксироваться на установленном уровне.

Пружинно-гидравлические приводы выключателей дополнительно имеют в конструкции гидравлическую систему управления. Такой привод считается более эффективным и надежным, ведь пружинное устройство может само изменить уровень фиксатора.

Достоинства и недостатки оборудования

Как и в любых конструкциях и механизмах в элегазовых выключателях существуют свои преимущества и недостатки. К достоинствам устройства относят:

  1. Многофункциональность. Назначение и применение такого механизма возможно для любого напряжения в сети.
  2. Скорость действия. Элегаз реагирует на присутствие электрической дуги за считанные секунды. Благодаря этому в случае аварийной ситуации есть возможность быстро отключить подконтрольную систему.
  3. Возможное использование при вибрациях и в условиях пожарной опасности.
  4. Долголетие. Нет необходимости заменять газовые смеси. Контакты, что соприкасаются со смесями, почти не подлежат изнашиванию, а внешний корпус обладает большими показателями защиты.
  5. Могут применяться на сетях высокого напряжения. Их аналоги, такие как вакуумные приборы, этого делать не способны.

Но у этих выключателей есть и свои недостатки. Например:

  1. Так как производство приборов очень сложное и элегазовые смеси стоят дорого, то и цена самой конструкции высокая.
  2. Не работают прибор при низкой температуре.
  3. При требуемом обслуживании следует применять определенное оборудование.
  4. Прибор следует устанавливать на специальную платформу или фундамент, а для этого следует обладать опытом и специальными инструкциями.

Напоследок рекомендуем просмотреть видео, в котором подробно рассказывается о том, как работает оборудование, заполненное элегазом, и для чего оно применяется:

Вот мы и рассмотрели устройство, назначение и принцип действия элегазовых выключателей. Надеемся, предоставленная информация была для вас полезной и интересной!

Наверняка вы не знаете:

  • Как передается электроэнергия на расстояния
  • Для чего нужна релейная защита
  • Чем опасно наведенное напряжение

Для гашения электрической дуги часто используются различные газовые смеси. Элегазовые выключатели 110 кВ и 220 кВ работают именно по такому принципу и могут использоваться для работы в аварийных ситуациях.

Конструкция и виды

Элегазовые высоковольтные выключатели – это устройства оперативного управления для контроля высоковольтной линии энергоснабжения. Данные устройства имеют очень похожую конструкцию с масляными, но при этом, используют для гашения дуги не масляную смесь, а соединение газов. Зачастую это сера. Масляные выключатели требуют за собой особого ухода: по нормам необходимы периодическая замену масла и очистка рабочих контактов. Элегазовые в этом не нуждаются. Главное достоинство элегаза в его долговечности: он не стареет и минимально загрязняет механические части устройства.

Фото – высоковольтное оборудование

  1. Колонковые (HPL 245B1, MF 24 Schneider Electric);
  2. Баковые (ABB 242PMR, DT2-550 F3 – производитель Areva).

Колонковый элегазовый выключатель представляет стандартное отключающее устройство, работающее только на одну фазу (например, LF 10 от Шнайдер Электрик). Он используется для сети 220 кВ. Конструктивно состоят из двух систем: контактной и дугогасительной. Обе они располагаются в емкости, наполненной элегазом. Могут быть как ручными (контроль производится исключительно механически) или дистанционными. Из-за такого разделения они имеют довольно большие габаритные размеры.

Фото – чертеж конструкции

Баковые имеют меньшие габариты, их дополняет привод ППРМ 2 для элегазового выключателя. Привод распределяется на несколько фаз, что позволяет обеспечить мягкое регулирование напряжения (включение и выключение). Также их достоинство в том, что они могут переносить большие нагрузки благодаря встроенному в систему трансформатору тока.

Помимо конструктивных особенностей, выключатели элегазового типа классифицируются по принципу гашения дуги:

  1. Автокомпрессионные или воздушные;
  2. Вращающие;
  3. Продольного дутья;
  4. Продольного дутья с дополнительным разогревом элегаза.

Принцип работы и назначение

Элегазовые выключатели высокого напряжения работают за счет изоляции фаз друг от друга посредством элегаза. Когда срабатывает сигнал о том, что нужно отключить электрооборудование, контакты отдельных камер (если устройство колонковое) размыкаются. Таким образом, встроенные контакты образуют дугу, которая помещена в газовую среду. Она разлагает газ на отдельные компоненты, но при этом и сама снижается из-за высокого давления в емкости. Если система установлена на низком давлении, то используются дополнительные компрессоры для нагнетания давления и создания газового дутья. Для выравнивания тока дополнительно используется шунтирование. Визуально схема работы выглядит так:

Фото – схема работы

Отдельно нужно сказать про модели бакового типа. Их контроль выполняется приводами и трансформаторами. Приводной механизм для этой установки является регулятором: он необходим для включения, выключения электрической энергии и удержания дуги (при надобности) на определенном уровне. Приводы бывают:

Пружинный имеет очень простой принцип действия и высокий уровень надежности. В нем вся работа выполняется только за счет механических деталей. Пружина зажимается и фиксируется на определенном уровне, а при изменении положения контрольного рычага она разжимается. На основании его принципа работы часто готовится научная презентация действия шестифтористой серы в электрической среде.

Современные пружинно-гидравлические приводы помимо пружины дополнительно оснащены гидравлической системой управления. Они считаются более эффективными, т. к. пружинные механизмы могут сами поменять положение фиксатора.

Достоинства элегазовых выключателей:

  1. Универсальность. Данные выключатели используются для контроля сетей с любым напряжением;
  2. Быстрота действия. Реакции элегаза на наличие электрической дуги происходят за доли секунды, это позволяет обеспечить быстрое аварийное отключение подконтрольной системы;
  3. Подходят для эксплуатации в условиях пожароопасности и вибрации;
  4. Долговечность. Контакты, соприкасающиеся с элегазом, практически не изнашивают, газовые смеси не нуждаются в замене, а у наружной оболочки высокие показатели защиты;
  5. Подходят для отключения переменного и постоянного тока высокого напряжения, в то время, как их аналоги – вакуумные модели не могут использоваться на высоковольтных сетях.

Но, такие приборы имеют определенные недостатки:

  1. Высокая цена, обусловленная сложностью производства и дороговизной элегазовой смеси;
  2. Монтаж осуществляется только на фундамент или специальный электрощит, причем, для этого нужна специальная инструкция и опыт;
  3. Выключатели не работают при низких температурах;
  4. При необходимом обслуживании должно использоваться специальное оборудование.

Фото – промышленный элегазовый выключатель нагрузки

Видео: особенности элегазовых выключателей

Рассмотрим технические характеристики выключателей разных производителей и типов работы.

МЕК SF6 элегазовый пружинный выключатель HD4 (завод завод ABB – АВВ):

Напряжение, кВ 12 … 40,5
Ток, А 630 … 3 600
Аварийный ток, кА 16 … 50

Элегазовый выключатель LTB 145D1/B производства АББ:

Напряжение, кВ 145
Ток (номинальный/отключения), А/кА 3150/40
Время выключения, мс 25
Бестоковая пауза, мс 300
Привод Пружинно-моторного типа
Номинально/наибольшее напряжение, кВ 220/252
Аварийный ток, кА 40/50
Рабочий ток, А 2000

ВГБЭП-35 (ВГБ-35, ВГБЭ):

Отключаемый ток, А 630
Содержание элегаза, % 32
Бестоковая пауза, с 0,3
Давление заполнения элегаза при 20° С, МПаабс (кгс/см2) 0.55 (5.5)
Напряжение постоянного тока и переменного, В 220/110-220
Ток, А 630
Климатическое исполнение УХЛ
Напряжение в трехфазной сети переменного тока, В От 35 до 1000
Частота, Гц 50
Номинальный ток, А 220
Ток отключения, кА 2500
Напряжение, кВ 250
Число приводов 1
Ток, А 3150
Отключение при, кА 40
Напряжение, кВ 110
Привод 1
Время отключения, мс 62

ВГУ-110 (газовый силовой):

Напряжение, В 110
Ток, А 3150
Отключение, кА 40
Климатическое исполнение У1
Условия хранения 25 лет при температуре не менее 20 градусов и влажности не более 60 %

Колонковый выключатель GL314 Alstom:

Напряжение, кВ 220
Максимальное напряжение, кВ 240
Рабочий ток, А 4000
Отключение, кА 50
Износостойкость М2

Генераторные силовые отключающие устройства с пружинным приводом – FKG 2:

Номинальный ток, А 9000
Номинальное напряжение, кВ 24
Отключение, кА 63
Время выключения, мс 60
Управление Пружинный привод, трехполюсное

Элегазовый компрессионный выключатель фирмы Siemens (Сименс)3AP1FG-245 (для установки нужны фундаменты):

Рабочее напряжение, кВ 220
Отключение В три периода
Привод Пружинного типа
Ток, А 4000
Выключение сети при, кА 40

Купить подходящие элегазовые выключатели можно в любом электротехническом магазине. Их стоимость зависит от типа устройства и его производителя. Прайс-лист в Самаре, Москве, Екатеринбурге и других городах варьируется от 100 долларов до нескольких тысяч.

Для того чтобы безопасно отключать электропотребителя или нагрузку от сети переменного тока при высоких напряжениях нужны специальные надёжные устройства одни из них называется выключатель элегазовый. Он разработан специально для того, чтобы разрывать большие токи, и возникшую при этом дугу, для того чтобы она не смогла стать причиной пожара или же разрушения. Более техническими словами это коммутационный аппарат, для оперативного дистанционного управления, который может отключать линию от сети в аварийных случаях, чаще всего короткого замыкания или же перегрузки. Особое отличие, с часто применяемыми на подстанциях выключателями с маслинным наполнением, заключается в том что внутри элегазового выключателя нет масла, а значит, отсутствует вероятности возгорания и взрыва. Для коммутации в сетях низкого напряжения такие выключатели не используются, так как в них достаточно и обычных дугогасящих камер.

Принцип действия

Основная особенность этого выключателя это надёжная изоляция каждой из фаз с высоким напряжением, которое считается от 1000 Вольт, за счёт применения специального диэлектрического вещества элегаза. Что же это такое? Элегаз — это электротехнический газ, представляющий собой смесь химических элементов, а точнее, шестифтористую серу (шестифтор).

При обычной рабочей температуре он представляет собой газ:

  1. без цвета;
  2. без запаха;
  3. не поддающийся горению;
  4. не меняющий свои свойства и структуру со временем;
  5. химически не активен, а также не агрессивен к металлу;
  6. распадающийся при возникновении электрической дуги, и быстро восстанавливающийся при её исчезновении.

Высокая электрическая прочность обусловлена особенностью газа захватывать электроны, поэтому даже небольшие расстояния между силовыми контактами дают отличный разрыв электрической цепи, а значит и отключения данного участка от высокого напряжения.

Принцип работы самого механизма разрыва довольно прост. После поступления сигнала на привод, который работает за счёт пружинно-гидравлического механизма, контактная подвижная часть увеличивает расстояние между замкнутыми ранее элементами, возникает, естественно, электрическая дуга которая в среде такого газа быстро тухнет.

Конструктивные особенности и виды выключателей

По конструктивным особенностям элегазовые выключатели делятся на:

  • Колонковые. Они не отличаются от масляных не по размерам ни по внешним признакам, однако, имеют только один разрыв на фазу.
  • Баковые. Имеют значительно меньшие размеры, один общий привод на все три полюса, а также встроенные внутрь устройства трансформаторы тока.

Все данные элегазовые выключатели также можно разделить по способу гашения электрической дуги, возникающей при разрыве цепи. Этот способ зависит от следующих факторов:

  1. Номинального напряжения аппарата;
  2. Номинального тока отключения;
  3. Особенностей мест установки и эксплуатации.

Для гашения дуги используются следующие способы гашения дуги:

  1. Автокомпрессионные с дутьём в элегазе. Имеют одну степень давления, которое создаётся компрессорным механизмом;
  2. С электромагнитным дутьём. Гашение дуги выполняется вращением её по кольцевым контактам под воздействием поперечного магнитного поля, которое создано самим током отключения;
  3. Двухступенчатое давление. В них сжатый предварительно газ поступает из специальной ёмкости где он находится под относительно высоким давлением. Имеет две ступени давления;
  4. Автоматически генерирующимся дутьём. Как и предыдущий вариант имеет продольное дутьё, но теперь повышение давление газа происходит непосредственно за счёт разогрева самой электрической дугой.

Привод данного выключателя должен надёжно удерживать контакты во включенном положении, а также в случае получения сигнала на отключение выполнить его. Вал выключателя и вал самого привода соединяются между собой посредством целой системы рычагов и тяг. Оттого как эта связка работает, зависит надёжность, а также быстрота срабатывания.

Здесь могут применяться два типа приводов:

  • Пружинный. Управляется он за счёт кинематической системы кулачков, валов, а также рычагов;
  • Пружинно-гидравлический, управляется системой, основанной на работе гидравлического механизма.

Преимущества и недостатки

Среди основных преимуществ выключателей с элегазовым наполнением выделяются:

  1. Широкий спектр применения на всевозможные напряжения выше 1000 В;
  2. Сам процесс гашения дуги происходит в замкнутом изолированном пространстве поэтому нет выхлопа в атмосферу;
  3. Небольшие габариты, соответственно и вес;
  4. Быстродействие;
  5. Взрывобезопасен, а также не вызывает не контролируемого горения, то есть пожара;
  6. Высокая отключающая способность;
  7. Надёжность отключения небольших индуктивных, а также емкостных переменных токов в момент перехода тока через нулевую отметку без появления перенапряжений и среза;
  8. Низкий износ контактов, участвующих в дугогашении;
  9. При работе не производит большого шума;
  10. Пригоден как для наружной, так и для внутренней электроустановки;
  11. Можно эксплуатировать в различных климатических условиях даже очень суровых для человека;
  12. Возможно изготовление серийных устройств с идентичными унифицированными узлами.

Как и любое устройство элегазовые выключатели имеют свои недостатки:

  1. Требуется очень высокая точность при изготовлении, что влечёт за собой высокую стоимость продукции.
  2. Нельзя использовать некачественный или низкокачественный газ;
  3. Нужны дополнительные устройства для перекачки, наполнения, а также очистки элегаза;
  4. Относительная дороговизна самого элегаза, без которого устройство работает не эффективно.

Особенности обслуживания и эксплуатации

В процессе эксплуатации таких коммутационных устройств на ОРУ (открытых распределительных устройствах) нужно учитывать что в шкафах приводов выключателей может скапливаться конденсат, который приводит к коррозии систем механизма, а также вторичных цепей управления и сигнализации. Для этого внутри шкафов заводом изготовителем предусмотрены нагревательные резисторы, работающие постоянно.

Все действия по включению или же отключению аппаратов возможны только, если давление газа не меньше допустимого, если пренебречь этим то появляется высокая вероятность повреждения и выхода со строя относительно дорого выключателя. Для этих целей должна быть налажена сигнализация минимального давления, а также блокировка управляющих цепей. Если же персонал заметил что давление упало, аппарат нужно вывести в ремонт и приступить к поиску причин снижения этого жизненно важного для него показателя. Естественно, что вывод его из работы должен выполняться со всеми необходимыми требованиями безопасности, предъявляемыми к данной электроустановке и изложенных в местных инструкциях. Для контроля давления должен быть обязательно исправный манометр, а после устранения утечки газа стоит дополнить его через специальное присоединение, которое расположено внутри приводного механизма.

Осмотр элегазовых выключателей выполняется ежедневно, а также один раз за две недели в ночное время суток. В сырую влажную погоду нужно обращать внимание на возникновение электрической коронации. Если величина отключаемого тока была предельно допустимая (при коротких замыканиях), то следует обеспечить качественное техническое обслуживание. Количество отключений как плановых, так и аварийных фиксируется в специально выделенных для этих нужд журналах.

Несмотря на существующие недостатки, элегазовый выключатель имеет свои сильные стороны поэтому является достойной заменой не только масляных, но и воздушных выключателей высокого напряжения.

Видео о высоковольтном элегзовом выключателе

Функционирование высоковольтных электрических сетей по токовым характеристикам не сопоставимо с работой бытовых аналогов. Соответственно, при возникновении аварийной ситуации для отключения оборудования и гашения электродуги необходимы более мощные устройства, чем стандартные автоматические приборы.

В качестве защитных конструкций применяют элегазовые выключатели (ЭВ), которыми можно управлять как в ручном режиме, так и с помощью автоматики.

Определение и применение элегаза

Элегаз – это шестифтористая сера, которую относят к электротехническим газам. Благодаря изоляционным свойствам ее активно применяют при производстве электротехнических устройств. В нейтральном состоянии элегаз представляет собой негорючий газ без цвета и запаха. Если его сравнивать с воздухом, то можно отметить высокую плотность (6,7) и молекулярную массу, превышающую воздушную в 5 раз.

Одно из преимуществ элегаза – устойчивость к внешним проявлениям. Он не меняет характеристик при любых условиях. Если происходит распад во время электроразряда, то вскоре наступает полноценное, необходимое для работы восстановление.

Секрет в том, что молекулы элегаза связывают электроны и образуют отрицательные ионы. Качество «электроотрицания» наделило 6-фтористую серу такой характеристикой, как электрическая прочность. На практике электропрочность воздуха в 2-3 раза слабее, чем то же свойство элегаза. Кроме прочего, он пожаробезопасен, так как относится к негорючим веществам, и обладает охлаждающей способностью.

Когда возникла необходимость отыскать газ для гашения электродуги, стали изучать свойства SF6 (шестифтористой серы), 4-хлористого углерода и фреона. В испытаниях победила SF6

Перечисленные характеристики сделали элегаз максимально подходящим для применения в электротехнической сфере, в частности, в следующих устройствах:

  • силовые трансформаторы, работающие по принципу магнитной индукции;
  • распределительные устройства комплектного типа;
  • линии высокого напряжения, связывающие удаленные установки;
  • высоковольтные выключатели.

Но некоторые свойства элегаза привели к тому, что пришлось усовершенствовать конструкцию выключателя. Основной недостаток касается перехода газообразной фазы в жидкую, а это возможно при определенных соотношениях параметров давления и температуры.

Чтобы оборудование работало без перебоев, необходимо обеспечить комфортные условия. Предположим, для функционирования элегазовых устройств при -40º необходимо давление не более 0,4 МПа и плотность менее 0,03 г/см³. На практике при необходимости газ подогревают, что препятствует переходу в жидкую фазу.

Конструкция элегазового выключателя

Если сравнивать элегазовые устройства с аналогами других видов, то по конструкции они ближе всего к масляным приборам. Разница заключается в наполнении камер для гашения дуги. В качестве наполнителя у масляных выключателей используется масляная смесь, а у элегазовых – 6-фтористая сера. Преимущество второго варианта в долговечности и минимуме технического обслуживания.

Схема элегазового устройства колонкового типа. Дугогасительные модули, закрепленные на высокой стойке, находятся в верхней части, шкаф управления – в нижней

Способы гашения электродуги зависят от многих факторов, среди которых решающими являются номинальный ток и напряжение, а также условия использования устройства. Всего выделяют четыре вида ЭВ:

  • с электромагнитным дутьем;
  • с дутьем в элегазе – с 1 ступенью давления;
  • с продольным дутьем – с 2-мя ступенями давления;
  • с автогенерирующим дутьем.

Если в воздушных приборах в процессе гашения дуги газ поступает в атмосферу, то в элегазовых он остается в замкнутом пространстве, наполненном газовой смесью. При этом сохраняется небольшое избыточное давление.

Колонковые и баковые устройства

На практике применяются два вида элегазовых установок:

Отличия касаются как конструкционных особенностей, так и принципа гашения электродуги. По внешнему устройству колонковые напоминают маломасляные аналоги: состоят из двух функциональных частей – дугогасительной и контактной, имеют одинаково объемные размеры. Отключающие устройства рассчитаны на работу от сети 220 В и относятся к однофазному оборудованию.

Пример элегазового выключателя колонкового типа — LF 10 Schneider Electric.

Управление оборудованием может производиться двумя различными способами: вручную, когда регулировка и контроль осуществляются с помощью механических устройств, и дистанционно, автоматически

Баковые элегазовые приборы меньше по размерам и оснащены приводом с несколькими фазами. Такое распределение позволяет лучше контролировать и плавно регулировать параметры напряжения.

Одно из преимуществ баковых ЭВ – способность выдерживать увеличенные нагрузки. Такое качество обеспечивает внедренный в конструкцию трансформатор тока

Образцом бакового устройства является элегазовая установка DT2-550 F3 Alstom Grid. Подобные устройства положительно зарекомендовали себя в электросистемах с напряжением 500 кВ. Конструкция собрана и оснащена таким образом, что функционирует без сбоев при низких температурах (критических), повышенной влажности, а также в регионах с сейсмической активностью и превышенной загрязненностью атмосферы.

Принцип гашения дуги

Как срабатывает устройство, рассмотрим на примере выключателя LW36 китайского производителя CHINT.

При отключении пружина действует на динамические элементы цилиндра, и они опускаются вниз. Все контакты, кроме дугогасительных, размыкаются. Когда отсоединяются и дугогасительные контакты, по которым проходит ток, возникает электрическая дуга. Горячий газ перемещается в тепловую камеру, срабатывает обратный клапан. Когда газ из тепловой камеры выдувается в промежуток, происходит гашение дуги.

Если происходит отключение небольших по величине токов, то давления в тепловой камере недостаточно, поэтому привлекается давление из компрессионной камеры (оно всегда выше). Открывается обратный клапан, газ беспрепятственно поступает в промежуток и при переходе через ноль гасит дугу.

Схема внутреннего расположения и работы подвижных, неподвижных клапанов, декомпрессионных, обратных клапанов. Позиция 1 – включение; позиция 2 – отключение больших токов; позиция 3 – отключение малых токов; позиция 4 – отключение прибора

Современные колонковые установки обладают улучшенными характеристиками. Техническое обслуживание снижено до минимума, коммутационный ресурс увеличен. Элегазовые выключатели отличаются низким уровнем шума, надежной механикой, простотой монтажных и испытательных работ.

Регулировка баковых моделей производится с помощью привода и трансформаторов. Пружинный или пружинно-гидравлический привод контролирует процессы включения/отключения, уровень удержания электродуги.

Для чего нужен привод

Привод призван выполнять все операции, связанные с включением/выключением или удержанием установки в определенном положении. На схеме показано, где именно может располагаться привод. Обычно это поверхность земли или невысокая опора, обеспечивающая обслуживающему персоналу легкий доступ к регулирующим устройствам.

Схема конструкции бакового выключателя: 1 – фарфоровые или полимерные модули; 2 – трансформаторы; 3 – бак с газогасительным устройством; 4 – камера с газом; 5 – привод гидравлического типа; 6 – металлическая рама; 7 – разъем для введения элегаза

Привод состоит из механизма включения, фиксирующего устройства – защелки, расцепляющего механизма. Процесс включения должен происходить максимально быстро, что избежать приваривания контактов. Во время включения прилагают большие усилия для преодоления силы трения всех задействованных элементов. Отключение производится проще и заключается в обратном движении защелки, которая обеспечивает включение и его удержание.

Способов включения/отключения несколько:

  • механический;
  • пружинный;
  • грузовой;
  • пневматический;
  • электромагнитный.

Для маломощных систем используют ручное управление. В этом случае достаточно силы одного оператора. Выключение ручных механизмов обычно осуществляется в автоматическом режиме. Пружинный привод также приводится в действие вручную, но иногда привлекаются маломощные электродвигатели.

Традиционное расположение привода – около монтажной металлической рамы. Целостность и функционирование механизма обеспечивает прочный металлический кожух – ящик с удобной дверцей для операторской работы

Для применения электромагнитного привода требуется больше энергии, поэтому необходим постоянный источник тока примерно 58 А с напряжением 220 В. В качестве резервного механизма отключения имеется ручной рычаг. Электромагнитные устройства отличаются надежностью, поэтому их успешно эксплуатируют в зонах с суровыми зимами. Минус – потребность в мощном аккумуляторе.

Пневматический привод отличается тем, что вместо электромагнита главным рабочим элементом является пара цилиндр/поршень. Благодаря сжатому воздуху скорость включения намного выше, чем у предыдущих моделей.

Преимущества и недостатки использования ЭВ

Элегазовые выключатели, как и другие типы электрораспределительных устройств, имеют ряд преимуществ и недостатков. При выборе установки производят необходимые расчеты и, кроме технических характеристик и конструкционных особенностей, учитывают плюсы и минусы моделей.

Универсальное применение в высоковольтных системах

Оперативность выполнения рабочих функций

Надежность и долговечность конструкции

Работают с током высокого напряжения

Выключатели элегазового типа функционируют в сложных условиях с периодическими вибрациями, низкими температурами (с подогревом), в пожароопасных зонах.

К недостаткам относят высокую стоимость наполнителя – элегаза, специфику монтажа на щит или фундамент, необходимость определенной квалификации операторского состава.

Правила подключения и обслуживания ЭВ

Все действия, касающиеся монтажа, включения/выключения, ремонта и обслуживания элегазовых устройств, подчиняются строгим правилам, которые регламентированы ПУЭ 1.8.21.

Для подключения установки необходимо проверить наличие минимального давления в газонаполненной камере, иначе выключатель выйдет из строя. Чтобы предотвратить повреждения, установлена сигнализация, которая срабатывает при критическом понижении параметров давления. Уровень давления можно отследить с помощью манометра.

В шкафу привода установлены нагревательные элементы, эффективно препятствующие возникновению конденсата на элементах механизма. Оператору необходимо следить, чтобы нагреватели постоянно находились во включенном состоянии.

Осмотр установки производится каждый день в светлое время суток и примерно 2 раза в месяц в темное время суток. Если произошло аварийное отключение по одной из причин, требуется внеплановый осмотр

В процессе осмотра выключателя необходимо проверить наружную защиту, удалить загрязнения, исправить повреждения. Если нагреваются контакты, следует выяснить причину. При наличии треска, подозрительного шума нужно выявить источник. Металлическая монтажная конструкция одновременно является частью заземляющего контура, поэтому следует проверять ее целостность.

Обязательно снимаются показатели манометра. Давление должно соответственно норме, рассчитанной производителем. Необходимо проверить исправность регулирующих и контролирующих приборов, а при выходе из строя одного или нескольких элементов принять меры – совершить замену или отправить в ремонт.

Если давление газа уменьшилось, следует пополнить камеру элегазом. Изоляция в чистке не нуждается, так как конструкция полностью герметична.

Выводы и полезное видео по теме

Как устроены элегазовые выключатели, по какому принципу происходит гашение дуги и какие бывают виды устройств, вы можете узнать из полезного и информативного видео.

Обзор элегазовых выключателей с описанием устройства и принципа работы:

Особенности конструкции установок:

Как производится монтаж выключателя:

Для работы высоковольтных сетей в нормальных и аварийных режимах используют элегазовые выключатели. Они выходят с заводского конвейера в полной эксплуатационной готовности и предназначены для работы в разнообразных климатических зонах, от тропической до холодной, поэтому активно применяются промышленными компаниями различных стран.

ЭЛЕГАЗОВЫЕ ВЫКЛЮЧАТЕЛИ

Дальнейшее повышение номинального напряжения и номинального тока в воздушных выключателях наталкивается на большие трудности.

Были использованы фреон, четыреххлористый углерод и шести-фтористая сера (SF6), которая и была выбрана благодаря высокой элек­трической прочности и большой дугогасящей способности.

1. Элегаз является «электроотрицательным» газом. Его молекулы обладают способностью захватывать электроны. При этом образуются малоподвижные, тяжелые отрицательные ионы, которые медленно разгоняются электрическим полем. Благодаря этому элегаз обладает высокой электрической прочностью.

2. Высокая удельная объемная теплоемкость, почти в 4 раза больше, чем у
воздуха. Это позволяет увеличить токовую нагрузку на 15-25% и при этом
уменьшить сечение токоведущей цепи аппарата.

3. Номинальный ток отключения камеры продольного дутья с элегазом в 5 раз
выше, чем с воздухом.

4. Малая напряженность электрического поля в столбе дуги, а значит резкое
сокращение износа контактов.

5. Элегаз является инертным газом (до 800°С). Он не вступает в реакцию с
кислородом и водородом, слабо разлагается дугой. Элегаз нетоксичен.

6. Элегаз негорюч, пожаробезопасен.

Недостатком элегаза является переход из газообразного состояния в жидкое уже при температуре 0°С и давлении 1,25 МПа. Это создает предпосылку использовать его либо с подогревом, либо при низком давлении.

В элегазовых выключателях известны три принципа гашения дуги: 1) с автоматическим дутьем. Необходимый для дутья перепад давления создается за счет энергии привода;

2) с охлаждением дуги элегазом при ее движении, вызванном
взаимодействием тока с магнитным полем;

3) с гашением дуги за счет перетекания газа из резервуара с высоким
давлением в резервуар с низким давлением (выключатели с двойным
давлением).

В настоящее время широко применяется первый способ. Дугогаси-тельное устройствос автоматическим принудительным дутьем показано на рис.5.1. Оно располагается в герметичном баке с давлением элегаза 0,2-0,28 МПа. При отключении дуга возникает между неподвижным 1 и подвижным 2 контактами. Вместе с подвижным контактом 2 при отключении перемещаются сопло 3 из фторопласта, перегородка 5 и цилиндр 6. Поршень 4 при этом неподвижен, элегаз сжимается и его поток, проходя через сопло, продольно омывает дугу и обеспечивает ее эффективное гашение.

Широкому распространению элегазовых выключателей особенно в КРУ на напряжение 110 и 220 кВ способствовали неоспоримые их достоинства: Г- полная заводская готовность, обеспечивающая простой и быстрый монтаж. Выключатель поставляется полностью отрегулированным, заполненным элегазом до рабочего давления и не требует при монтаже и наладке дозаправки элегазом;

— взрыво- и пожаробезопасность;

— небольшие масса и размеры, что уменьшает требуемую площадь под
оборудование в 10 раз;

— низкие динамические нагрузки на фундамент при работе (установка выключателя на одной опоре с облегченным фундаментом);

— большие механический и коммутационный ресурсы, обеспечивающие при нормальных условиях эксплуатации работу без ремонта с вскрытием бака в течение всего срока службы выключателя;

— высокая надежность: даже при падении избыточного давления элегаза до ‘ нуля выключатель выдерживает 60 В и отключает нагрузки до 630 А; обеспечивается эксплуатация выключателя без включения подогрева до . температуры минус 45°С; у полная автоматизация обслуживания;

— возможность эксплуатации в неблагоприятных атмосферных условиях;

— полная биологическая безопасность для окружающей среды;

— улучшенные характеристики встроенных трансформаторов тока позволяют
в большинстве случаев отказаться от применения выносных
трансформаторов тока наружной установки.

Целесообразность строительства закрытых элегазовых распредустройств обуславливается тем, что их объем в 2-3 раза меньше, чем закрытого РУ традиционных конструкций.

Выключатели для КРУЭ типов ЯЭ-110 и ЯЭ-220 имеют пневматические приводы с питанием от централизованной сети сжатого воздуха (давление 2 МПа, влажность не более 60%).

Элегазовые выключатели КРУЭ напряжением 110 кВ типа ЯЭ-110 и напряжением 220 кВ типа ЯЭ-220 (рис.5.2) размещаются в герметизированных алюминиевых кожухах с проходными дисковыми изоляторами для электрического соединения их между собой, заполненных элегазом при давлении 0,4-0,6 МПа. Каждый кожух выключателя снабжен вентилем и трубами, присоединенными к шкафу контроля давления (ШКД). Герметизированные кожухи каждой фазы выключателя, имеющие одинаковое давление, соединены между собой.

Элегазовые выключатели на напряжения ПО и 220 кВ отдельно не изготовляются, а входят в объем поставки КРУ на эти напряжения в виде отдельных элементов в полностью собранном виде.

Оперирование элегазовым выключателем осуществляется пневмати­ческим приводом двустороннего действия. Ручное отключение элегазового выключателя не предусмотрено.

Коммутационный ресурс элегазовых выключателей примерно в 2-3 раза выше, чем у маломасляных. Износ дугогасящей среды у элегазового выключателя весьма низок, продукты разложения элегаза поглощаются специальными фильтрами-поглотителями (сорбенты-активизированный алюмогель), а утечка газа из корпуса выключателя обычно не превышает 3% в год. Дозаполнение элегаза возможно без снятия напряжения. Практически межревизионные сроки для элегазовых выключателей определяются работой и уходом за его приводом.

За последнее десятилетие многие предприятия России наладили выпуск новых элегазовых выключателей.

ВГБ-35— выключатель элегазовый баковый на напряжение 35 кВ. наружной установки, предназначен для коммутации электрических цепей при нормальных и аварийных режимах, а также для работы в стандартных циклах при АПВ в сетях трехфазного переменного тока частотой 50 и 60 Гц. Выпускает ВГБ-35 АО «Уралэлектротяжмаш», г. Екатеринбург.

Выключатель представляет собой комплексный аппарат, состоящий из собственно выключателя, привода и шести встроенных трансформаторов тока, рис.5.3. Сам выключатель состоит из металлического заземленного бака, внутри которого расположены неподвижные и подвижные контакты, а также дугогасительные устройства, основанные на прогрессивном принципе гашения электрической дуги путем ее вращения в магнитном поле.

Каждый трансформатор тока рассчитан на весь диапазон первичных номинальных токов (от 50 до 600 А) и имеет два сердечника и две обмотки для целей защиты и измерений. Переключение отводов для измерения коэффициента трансформации производится

без разборки выключателя.

Выключатели выпускаются в двух исполнениях:

-выключатель с электромагнитным приводом постоянного тока (типовое обозначение ВГБЭ-35-12,5/630УХЛ1на номинальное напряжение 35 кВ. номинальный ток отключения 12,5 кА, номинальный ток 630 А, для умеренного и холодного климата). По заказу привод этого выключателя снабжается встроенным выпрямителем для питания включающего электромагнита от сети переменного тока, при этом обеспечивается включение на токи короткого замыкания вплоть до 12,5 к А;

-выключатель с электромагнитным приводом переменного тока (типовое обозначение ВГБЭП-35). В этом приводе сочетаются качества, присущие как электромагнитному приводу постоянного тока (простота и надежность), так и пружинному приводу (автономность). Привод снабжен встроенными выпрямителями для питания включающего, отключающего электромагнитов и катушки контактора.

Выключатель снабжен электроконтактным сигнализатором давления элегаза с температурной компенсацией, автоматически приводящей его показания к температуре + 20°С. Сигнализатор обеспечивает визуальный контроль за уровнем давления элегаза в выключателе и имеет две установки: на предупредительный сигнал при понижении давления до 0,33 МПа и на отключение выключателя при падении давления ниже 0,3 МПа.

Масса выключателя составляет 800 кг, элегаза — 4 кг. Срок службы до среднего ремонта 15 лет.

Выключатели могут работать в широком диапазоне климатических условий: от районов Крайнего Севера (нижнее рабочее значение температуры

окружающей среды — минус 60°С) до районов с тропическим климатом (верхнее рабочее значение температуры — плюс 55°С).

ВГБ-220-40/2000— выключатель элегазовый баковый на напряжение 220 кВ, номинальный ток отключения 40 кА, номинальный ток 2000 А, рис.5.4. Кроме этих выключателей АО «Электроаппарат», г. Санкт-Петербург, выпускает ВГБ-110, ВГБ-330.

Элегазовые выключатели серии ВГБ разработаны на базе хорошо известного принципа гашения дуги. При срабатывании выключателя элегаз сжимается и выбрасывается через контакты выключателя, осуществляя гашение дуги.

Выключатели имеют встроенные трансформаторы тока с количеством вторичных обмоток: для измерений — 2, для защиты — 4.

Выключатели поставляются практически в собранном виде. Они заполняются элегазом до транспортного давления, и комплектуются всем необходимым, в том числе специальным оборудованием для закачки и контроля элегаза. Экологически чистые выключатели не требуют замены элегаза в течение всего срока службы, не нуждаются в особых мерах по технике безопасности и допускают подпитку элегазом без снятия напряжения с выключателя. Выключатели допускают пофазное управление, просты в наладке и эксплуатации.

Срок до среднего ремонта — 8 лет, гарантийный срок службы — 30 лет.

Достоинства выключателей серии ВГБ:

— гидропривод (не нужна система сжатого воздуха);

— один разрыв на полюс ВГБ-220 и два разрыва на ВГБ-330;

— повышенная сейсмостойкость (низкий центр тяжести);

низкий уровень помех(электромагнитных излучений, шума и т.д.).

Выключатели серии ВГУ выпускает НПО «Уралэлектротяжмаш», Екатеринбург, на номинальные напряжения ПО, 220, 330 и 500 кВ. Выключатель предназначен для коммутации электрических цепей при нормальных и аварийных режимах в сетях трехфазного переменного тока частотой 50 и 60 Гц.

На рис.5.5 показан выключатель элегазовый типа ВГУ-220-45/3150 У1, (У — конструктивное исполнение) на номинальное напряжение 220 кВ, номинальный ток отключения 45 кА, номинальный ток 3150 А, для умеренного климата.

В связи с возрастанием номинального напряжения в два раза (против ВГУ-110) число разрывов на полюсе увеличено в два раза. Поэтому полюс имеет Уобразную компоновку. Управление контактами осуществляется приводом, расположенным в шкафу управления. Отключение производится пневматическим приводом. Включение осуществляется пружинами, которые заводятся при отключении. Управление тремя полюсами осуществляется с помощью шкафа управления.

Высота установки над уровнем моря 1000 м; рабочее значение температуры окружающей среды от минус 45 до плюс 40°С.

Масса выключателя 8000 кг, масса элегаза в выключателе 35 кг. /Номинальное рабочее давление элегаза 0,4 МПа, номинальное давление I сжатого воздуха привода 2,0 МПа.

Срок службы до среднего ремонта (полной переборкой узлов) — 12 лет, / срок службы до списания — 25 лет.

Элегазовые выключатели серии ВГТ на номинальные напряжения 110 и 220 кВ выпускает АО «Уралэлектротяжмаш», Екатеринбург. Выключатель типа ВГТ-110-40/2500У1 представлен на рис.5.6.

Выключатели наружной установки предназначены для коммутации электрических сетей при нормальных и аварийных режимах, а также для

Рис. 12.7. Элегазовый выключатель серии ВГТ:

а) на напряжение 110 кВ

б) на напряжение 220 кВ

работы в стандартных циклах при АПВ в сетях трехфазного переменного тока частоты 50 и 60 Гц в районах с умеренным климатом. Выключатель управляется пружинным приводом типа ППрК.

Основные преимущества элегазовых выключателей серии ВГТ:

— высокая надежность работы;

— применение надежного автономного и не требующего мощных источников
питания пружинного привода, имеющего более, чем 16-летний опыт
эксплуатации в составе маломасляных выключателей серии ВМТ;

— высокая заводская готовность, простой и быстрый монтаж;

— отсутствие необходимости в техническом обслуживании и ремонтах при
нормальных условиях эксплуатации;

— высокий механический и коммутационный ресурсы, качество уплотнения и
комплектующих, обеспечивающих 20-летний межремонтный период;

— низкий уровень шума при срабатывании, соответствие высоким
природоохранным требованиям;

— низкие динамические нагрузки на фундаментные опоры;

полная взаимозаменяемость (по габаритно-установочным размерам и
приводам) с маломасляными выключателями серии ВМТ.

Контрольные вопросы:

1. Достоинства элегаза как гасящей среды.

2. На какие номинальные напряжения выпускаются элегазовые
выключатели.

3. Способы гашения дуги.

4. Каких конструкций привод используется в элегазовых выключателях.

5. Что позволяет использовать элегазовые выключатели в закрытых
распредустройствах.

6. Почему у контактов в элегазовых включателях высокая
износостойкость.

6. ВАКУУМНЫЕ ВЫКЛЮЧАТЕЛИ

Теоретически и практически доказано, что самый простой способ гашения электрической дуги — в вакуумных выключателях,так как в вакуумных камерах практически отсутствует среда, проводящая электрический ток. В эксплуатации вакуумный выключатель также более прост, чем маломасляный и электромагнитный. Прекрасные дугогасящие свойства глубокого вакуума позволили создать выключатели на напряжение 10 кВ, которые благодаря своим преимуществам вытесняют маломасляные и электромагнитные выключатели.

В вакуумных дугогасительных камерах реализуется два очень важных свойства вакуумных промежутков: высокая электрическая прочность (выше, чем у трансформаторного масла, не говоря о воздухе,) и высокая дугогасительная способность.

В глубоком вакууме дугогасительной камеры выключателя длина свободного пробега молекул и электронов составляют десятки и сотни метров, т.е. во много раз больше, чем расстояния между контактами выключателя. Ударная ионизация в вакуумном промежутке практически отсутствует, поэтому вакуумный промежуток не может служить источником заряженных частиц. Заряженные частицы могут появиться при определенных условиях с поверхностей контактов и других частей вакуумной камеры (рис.12.8.).

При массовом производстве стоимость вакуумных выключателей всего на 5-15% больше стоимости маломасляных и меньше стоимости электромагнитных. Большая экономия при эксплуатации делает эти выключатели высокоэффективными, что обуславливает их все более широкое распространение (в Японии 50% всех выключателей вакуумные).

Рис. 12.8. Устройство вакуумной камеры.

При высокой электрической прочности вакуума расстояние между контактами очень мало (2-2,5 см), поэтому размеры камеры также относительно небольшие.

Конструкция вакуумной камеры. Устройство вакуумной камеры показано на рис.6.1. Она состоит из следующих частей: стеклокерамической оболочки 1; стальных торцевых фланцев 2; медных контактных стержней — неподвижного 3 и подвижного 4; электродов 5; стального ребристого сильфона 6, приваренного к подвижному контактному стержню 4; экранов 7, 8, 9. Давление в камере составляет около 1,3 * 10″ 5 Па.

Материал контактов оказывает большое влияние на характеристики выключателя.

Металлы, используемые для контактов, должны обладать механической прочностью, стойкостью относительно эрозии и сваривания. Перенапряжения при медных контактах в 2,5 раза ниже, но они более подвержены свариванию и износу. Эти противоречия устраняются, если часть контактной поверхности выполнена из дугостойкого металла (молибден), а другая часть — из материала с высоким давлением паров (сурьма). Хорошие результаты дает специальная металлокерамика. Применяют сплавы меди с небольшим количеством висмута, железа, бора. Эти сплавы отличаются более высокой электро- и теплопроводностью по сравнению с ранее применявшимися материалами, например, вольфрамом.

Контакты находятся в глубоком вакууме и поэтому не окисляются, благодаря чему достигается высокая износостойкость контактов. Они работают без обслуживания в течение всего срока службы камеры.

Наличие вакуума ухудшает охлаждение контактов. За счет увеличения размеров подводящих шин, совершенствования ДУ и контактных материалов удается довести длительные токи до необходимых значений.

Для получения быстродействия в вакуумных ДУ нашла широкое применение торцовая контактная система. Она дает возможность иметь малый ход контактов (20-25 мм) и небольшое время отключения. Ход контактов у маломасляных выключателей с теми же параметрами в 10 раз больше (около 200 мм у выключателя типа ВМП-10). Простая конструкция контакта позволяет создать технологию, при которой хорошо дегазируются токоведущие элементы выключателя, что очень важно для обеспечения высокого вакуума большой стабильности.

В положении «включено» (рис.6.1) электроды прижаты друг к другу пружиной привода с силой около 3000 Н. В процессе отключения контакты размыкаются. Скорость движения контактов составляет около 1,5 м/с. Зажигается дуга. Она горит в парах металла, образующихся на поверхности холодного катода в отдельных наиболее нагретых точках. Металлические пары непрерывно покидают дуговой промежуток и конденсируются на поверхности центрального экрана, изолированного от электродов. Он защищает изолирующую оболочку от радиации дуги и оседания на ней частиц металла.

Для того, чтобы погасить дугу, необходима высокая скорость движения подвижного контакта при отключении и включении. Эта необходимость вызвана тем, что при сближении контактов перед замыканием происходит пробой межконтактного промежутка с переходом в дугу так же, как и при отключении. При медленном сближении контактов тепловыделение увеличивается, может возникнуть оплавление контактов. По этой же причине нежелательна вибрация контактов после замыкания, так называемый дребезг контактов.

Достаточно большое сжатие контактов в замкнутом состоянии устраняет дребезг и способствует уменьшению межконтактного электрического сопротивления.

При переменном токе после прохождения тока через нуль происходит быстрое рассасывание зарядов вследствие диффузии, и через 10 мкс между контактами восстанавливается электрическая прочность вакуума, что является большим достоинством этих выключателей.

В настоящее время отечественная промышленность выпускает вакуумные выключатели на напряжение 10 кВ серий ВВТ и ВВЭ.

Выключатели серии ВВЭ, ВВТЭ предназначены для КРУ установок общего назначения и установок с частыми коммутациями электрических цепей трехфазного переменного тока с изолированной нейтралью частотой 50 Гц (60 Гц) напряжением до 12 кВ в промышленных и сетевых установках с частыми коммутациями. Они имеют исполнения для тропиков (на экспорт) и для умеренного климата.

Вакуумный выключатель типа ВВЭ-М-10-20— (выключатель вакуумный модернизированный) со встроенным электромагнитным приводом на номинальное напряжение 10 кВ и номинальный ток отключения 20 кА, рис. 6.2. Устанавливаются в КРУ типа К-104, КМ-1Ф, К-49, К-59. По своим габаритным размерам и схемам управления взаимозаменяемы с выключателями ВК-10, ВКЭ-10.

Схема управления выключателя обеспечивает:

-оперативное и неоперативное включение и отключение выключателя;

-сигнализацию положения выключателя с помощью коммутирующих контактов для внешних вспомогательных цепей контроля и управления в КРУ;

-ручное оперативное отключение.

-климатическое исполнение выключателей УЗ по ГОСТ 15150-89;

-высота над уровнем моря до 1000 м;

— температура окружающего воздуха от -45°С до +40°С;

— окружающая среда не взрывоопасная.

Рис. 12.9. Вакуумный выключатель серии ВВЭ-10

Срок службы выключателя до первого среднего ремонта не менее 10 лет. срок службы выключателя до капитального ремонта (списания) не менее 25 лет, если не исчерпан механический и коммутационный ресурсы выключателя. Масса выключателя не более 93 кГ. Операция включения выключателя осуществляется за счет тягового усилия электромагнита включения встроенным электромагнитным приводом зависимого (прямого) действия.

Собственное время включения должно быть 0,1 с, собственное время отключения — не более 0,02 с.

Вакуумный выключатель типа ВВЭ-М-10-40на номинальный ток отключения 40 кА. Устанавливается в КРУ типа К-105, К-59, а также могут использоваться для замены маломасляных и электромагнитных выключателей в любых типах распределительных устройств.

Схема управления и условия эксплуатации аналогичны выключателю ВВЭ-М-10-20.

Выключатель серии ВВТЭ-М-10-20 со встроенным электромагнитным приводом со схемами управления на постоянном или переменном токе.

Устанавливаются в ячейки типа КРУЭ-6П, 2КВЭ-6М, КРУП-6П, а также для замены маломасляных выключателей типа ВМПЭ-10, ВМП-10К, ВМГ-133 в любых типах распределительных устройств.

Рекомендуются для применения на нефтебуровых установках, мощных экскаваторах, передвижных электростанциях, в электрических подстанциях, шахтах, метрополитенах, подстанциях оросительных систем и других распределительных устройств наружной и внутренней установки общепромышленного применения.

Выключатели вакуумные серии ВВС-35-20/630 УХЛ1 (Т1)

(выключатель вакуумный северный) на номинальное напряжение 35 кВ, номинальный ток отключения 20 кА, номинальный ток 630 А, умеренного, холодного или тропического исполнения.

Принцип работы выключателя основан на гашении в вакууме электрической дуги, возникающей при размыкании контактов вакуумных дугогасительных камер. Горение дуги в вакууме поддерживается за счет паров металла, попадающих в межконтактный промежуток при их испарении с поверхности контактов. В момент перехода тока через нулевое значение происходит быстрое нарастание электрической прочности межконтактного промежутка, обеспечивающее надежное отключение цепей выключателя.

Трехполюсный выключатель содержит механизмы задержки на 1 и Ш полюсах относительно первой гасящей фазы на П полюсе, что обеспечивает снижение перенапряжений, возникающих при отключении вакуумными камерами токов КЗ, до приемлемого уровня.

Выключатель состоит из трех или одного полюса, см. рис. 12.10 и 12.11.

Каждый полюс собран на отдельной крышке. Полюса трехполюсного выключателя соединяют между собой в один общий комплект междуполюсные муфты.

Крышки установлены на сварной (из углового профиля) каркас. На плите, приваренной к каркасу, укреплен шкаф с приводом. На одной из вертикальных стоек каркаса укреплен барабан с тросом, на валу которого устанавливается лебедка для подъема и опускания баков.

Крышка является основной несущей частью, к которой крепятся все остальные элементы полюса выключателя. Через отверстия в крышке приходят вводы.

Вакуумная дугогасительная камера,

Рис. 12.10 размещена в стеклопластиковом цилиндре, установленном на крышке.

Рис.12.11. Общий вид и габаритные размеры дугогасительной камеры: 1 — шина; 2 — траверса: 3 — тяга: 4 — наконечник; 5. 10. 13 — шпильки; 6 — кольцо; 7 — цилиндр; 8 — втулка;9 — пружина: 11 — гибкая связь: 12 — вакуумная камера; 14 — изоляционная втулка;15 — изоляционная шайба; 16 — крышка

Электрическая прочность наружной изоляции вакуумных камер обеспечивается за счет заполнения баков и стеклопластиковых цилиндров трансформаторным маслом.

Выключатель комплектуется встроенными трансформаторами тока (по два на полюс). Которые предназначены для подключения защиты и измерительных приборов. Вторичные обмотки трансформаторов тока имеют отпайки и позволяют менять номинальный первичный ток в широких пределах.

Управление выключателем осуществляется электромагнитным приводом, рис.6.6, с помощью механизма. Механизм выключателя служит для передачи движения от привода к подвижным контактам камер.

Баки выключателя овальной формы, внутри их установлена внутрибаковая изоляция. Баки снабжены маслоуказателем.

Разработчик и изготовитель ОАО «Карпинский электромашино­строительный завод», Свердловская обл., г. Карпинск.

Для выключателей напряжением 110-220 кВ необходимо соединять последовательно несколько камер. Для выключателя напряжением 220 кВ потребуется четыре ДУ на напряжение 84 кВ, соединенных последовательно. Существуют определенные сложности, препятствующие созданию многоразрывного вакуумного выключателя.

По данным фирмы «Дженерал Электрик» проектируется выключатель напряжением 242 кВ с пятью ДУ на полюс и током отключения 40 кА. Компоновка выключателя такая же, как у баковых элегазовых выключателей. В Японии построен и введен в эксплуатацию вакуумный выключатель на напряжение 160 кВ, ток отключения 40 кА, имеющий всего два разрыва на полюс.

Вакуумные ДУ обладают исключительно высокой надежностью и износостойкостью. Выключатель может отключать номинальный ток 50 раз.

Рис. 12.12 Общий вид и габаритные размеры электромагнитного привода ПЭМУ: 1 — шкаф; 2 — болт заземления; 3 — счетчик импульсов: 4 — выпрямительное устройство: 5 — блоки зажимов; 6 — привод: 7 — контактор: 8 — вилка: 9 — устройство для подогрева: 10 — ходовой винт; 11 — коробка выводов: 12 — рукоятка ручного отключения

Малая масса подвижного контакта, малый ход контактов и небольшая скорость отключения значительно упрощают требования к механизму выключателя. Между тем отказы в работе вакуумных выключателей чаще всего возникают из-за неисправности механизма и других второстепенных причин.

Вакуумные ДУ могут успешно отключать постоянный ток. При токе 1000 А и напряжении 10 кВ отключение происходит путем расхождения контактов в вакууме. При больших значениях тока постоянный ток с помощью конденсатора превращается в переменный и ДУ отключает его при первом прохождении через нуль. При двух последовательно соединенных ДУ отключался ток 5 к А при напряжении 60 кВ. Вспомогательный конденсатор имел емкость 3 мкФ.

Достоинства вакуумных выключателей:

1. Отсутствие необходимости в замене и пополнении дугогасящей среды и масляного хозяйства.

2. Высокая износостойкость при коммутации номинальных токов и
токов КЗ.

3. Снижение эксплуатационных затрат, простота эксплуатации.

4. Быстрое восстановление электрической прочности.

5. Полная взрыво- и пожаробезопасность.

6. Повышенная устойчивость к ударным и вибрационным нагрузкам.

7. Произвольное рабочее положение вакуумной дугогасительной камеры
(ВДК) в конструкции выключателя.

8. Широкий диапазон температур окружающей среды, в котором может
работать ВДК (от -70° до + 200° С).

9. Безшумность, чистота, удобство обслуживания, обусловленные
малым выделением энергии в дуге и отсутствием внешних эффектов при

отключении токов КЗ.

10. Отсутствие загрязнения окружающей среды.

11. Высокое быстродействие, применение для работы в любых циклах
АПВ.

12. Сравнительно малые массы и габариты, небольшие динамические на­
грузки на конструкцию при работе из-за относительно малой мощности
привода.

13. Легкая замена ВДК.

К недостаткам можно отнести:

1. Возможные коммутационные перенапряжения при отключении малых индуктивных токов.

2. Трудности при создании и изготовлении, связанные с созданием
контактных материалов, сложностью вакуумного производства,
склонностью материалов контактов к сварке в условиях вакуума.

3. Большие вложения, необходимые для осуществления технологии
производства, и поэтому большая стоимость.

Контрольные вопросы

1. Каковы преимущества КРУ с вакуумными и электромагнитными
выключателями.

2. В чем состоят достоинства вакуумного объема при использовании его
в выключателях.

3. Чем объясняется необходимость высокой скорости движения
контактов вакуумного выключателя при включении и отключении.

4. Каково назначение сильфона.

5. Чем объясняется высокая износостойкость контактов вакуумного
выключателя.Каковы достоинства и недостатки вакуумных выключателей.

6. Какие номинальные параметры вакуумных выключателей являются
основными.

7. Каковы области применения вакуумных выключателей.

8. В чем состоят преимущества КРУ с вакуумными выключателями.

Дата добавления: 2014-10-15 ; Просмотров: 3570 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Добавить комментарий