Электрическая цепь и ее элементы


Электрическая цепь и ее элементы

Электромагнитные процессы, протекающие в электротехнических устройствах, как правило, достаточно сложны. Однако во многих случаях, их основные характеристики можно описать с помощью таких интегральных понятий, как: напряжение, ток, электродвижущая сила (ЭДС). При таком подходе совокупность электротехнических устройств, состоящую из соответствующим образом соединенных источников и приемников электрической энергии, предназначенных для генерации, передачи, распределения и преобразования электрической энергии и (или) информации, рассматривают как электрическую цепь. Электрическая цепь состоит из отдельных частей (объектов), выполняющих определенные функции и называемых элементами цепи. Основными элементами цепи являются источники и приемники электрической энергии (сигналов). Электротехнические устройства, производящие электрическую энергию, называются генераторами или источниками электрической энергии, а устройства, потребляющие ее – приемниками (потребителями) электрической энергии.

У каждого элемента цепи можно выделить определенное число зажимов (полюсов), с помощью которых он соединяется с другими элементами. Различают двух –и многополюсные элементы. Двухполюсники имеют два зажима. К ним относятся источники энергии (за исключением управляемых и многофазных), резисторы, катушки индуктивности, конденсаторы. Многополюсные элементы – это, например, триоды, трансформаторы, усилители и т.д.

Все элементы электрической цепи условно можно разделить на активные и пассивные. Активным называется элемент, содержащий в своей структуре источник электрической энергии. К пассивным относятся элементы, в которых рассеивается (резисторы) или накапливается (катушка индуктивности и конденсаторы) энергия. К основным характеристикам элементов цепи относятся их вольт-амперные, вебер-амперные и кулон-вольтные характеристики, описываемые дифференциальными или (и) алгебраическими уравнениями. Если элементы описываются линейными дифференциальными или алгебраическими уравнениями, то они называются линейными, в противном случае они относятся к классу нелинейных. Строго говоря, все элементы являются нелинейными. Возможность рассмотрения их как линейных, что существенно упрощает математическое описание и анализ процессов, определяется границами изменения характеризующих их переменных и их частот. Коэффициенты, связывающие переменные, их производные и интегралы в этих уравнениях, называются параметрами элемента.

Если параметры элемента не являются функциями пространственных координат, определяющих его геометрические размеры, то он называется элементом с сосредоточенными параметрами. Если элемент описывается уравнениями, в которые входят пространственные переменные, то он относится к классу элементов с распределенными параметрами. Классическим примером последних является линия передачи электроэнергии (длинная линия).

Цепи, содержащие только линейные элементы, называются линейными. Наличие в схеме хотя бы одного нелинейного элемента относит ее к классу нелинейных.

Рассмотрим пассивные элементы цепи, их основные характеристики и параметры.

1. Резистивный элемент (резистор)

Условное графическое изображение резистора приведено на рис. 1,а. Резистор – это пассивный элемент, характеризующийся резистивным сопротивлением. Последнее определяется геометрическими размерами тела и свойствами материала: удельным сопротивлением r (Ом ´ м) или обратной величиной – удельной проводимостью (См/м).

В простейшем случае проводника длиной и сечением S его сопротивление определяется выражением

В общем случае определение сопротивления связано с расчетом поля в проводящей среде, разделяющей два электрода.

Основной характеристикой резистивного элемента является зависимость (или ), называемая вольт-амперной характеристикой (ВАХ). Если зависимость представляет собой прямую линию, проходящую через начало координат (см.рис. 1,б), то резистор называется линейным и описывается соотношением

где — проводимость. При этом R=const.

Нелинейный резистивный элемент, ВАХ которого нелинейна (рис. 1,б), как будет показано в блоке лекций, посвященных нелинейным цепям, характеризуется несколькими параметрами. В частности безынерционному резистору ставятся в соответствие статическое и дифференциальное сопротивления.

2. Индуктивный элемент (катушка индуктивности)

Условное графическое изображение катушки индуктивности приведено на рис. 2,а. Катушка – это пассивный элемент, характеризующийся индуктивностью. Для расчета индуктивности катушки необходимо рассчитать созданное ею магнитное поле.

Индуктивность определяется отношением потокосцепления к току, протекающему по виткам катушки,

В свою очередь потокосцепление равно сумме произведений потока, пронизывающего витки, на число этих витков , где .

Основной характеристикой катушки индуктивности является зависимость , называемая вебер-амперной характеристикой. Для линейных катушек индуктивности зависимость представляет собой прямую линию, проходящую через начало координат (см. рис. 2,б); при этом

Нелинейные свойства катушки индуктивности (см. кривую на рис. 2,б) определяет наличие у нее сердечника из ферромагнитного материала, для которого зависимость магнитной индукции от напряженности поля нелинейна. Без учета явления магнитного гистерезиса нелинейная катушка характеризуется статической и дифференциальной индуктивностями.

3. Емкостный элемент (конденсатор)

Условное графическое изображение конденсатора приведено на рис. 3,а.

Конденсатор – это пассивный элемент, характеризующийся емкостью. Для расчета последней необходимо рассчитать электрическое поле в конденсаторе. Емкость определяется отношением заряда q на обкладках конденсатора к напряжению u между ними

и зависит от геометрии обкладок и свойств диэлектрика, находящегося между ними. Большинство диэлектриков, используемых на практике, линейны, т.е. у них относительная диэлектрическая проницаемость =const. В этом случае зависимость представляет собой прямую линию, проходящую через начало координат, (см. рис. 3,б) и

У нелинейных диэлектриков (сегнетоэлектриков) диэлектрическая проницаемость является функцией напряженности поля, что обусловливает нелинейность зависимости (рис. 3,б). В этом случае без учета явления электрического гистерезиса нелинейный конденсатор характеризуется статической и дифференциальной емкостями.

Схемы замещения источников электрической энергии

Свойства источника электрической энергии описываются ВАХ , называемой внешней характеристикой источника. Далее в этом разделе для упрощения анализа и математического описания будут рассматриваться источники постоянного напряжения (тока). Однако все полученные при этом закономерности, понятия и эквивалентные схемы в полной мере распространяются на источники переменного тока. ВАХ источника может быть определена экспериментально на основе схемы, представленной на рис. 4,а. Здесь вольтметр V измеряет напряжение на зажимах 1-2 источника И, а амперметр А – потребляемый от него ток I, величина которого может изменяться с помощью переменного нагрузочного резистора (реостата) RН.

В общем случае ВАХ источника является нелинейной (кривая 1 на рис. 4,б). Она имеет две характерные точки, которые соответствуют:

а – режиму холостого хода ;

б – режиму короткого замыкания .

Для большинства источников режим короткого замыкания (иногда холостого хода) является недопустимым. Токи и напряжения источника обычно могут изменяться в определенных пределах, ограниченных сверху значениями, соответствующими номинальному режиму (режиму, при котором изготовитель гарантирует наилучшие условия его эксплуатации в отношении экономичности и долговечности срока службы). Это позволяет в ряде случаев для упрощения расчетов аппроксимировать нелинейную ВАХ на рабочем участке m-n (см. рис. 4,б) прямой, положение которой определяется рабочими интервалами изменения напряжения и тока. Следует отметить, что многие источники (гальванические элементы, аккумуляторы) имеют линейные ВАХ.

Прямая 2 на рис. 4,б описывается линейным уравнением

где — напряжение на зажимах источника при отключенной нагрузке (разомкнутом ключе К в схеме на рис. 4,а); — внутреннее сопротивление источника.

Уравнение (1) позволяет составить последовательную схему замещения источника (см. рис. 5,а). На этой схеме символом Е обозначен элемент, называемый идеальным источником ЭДС. Напряжение на зажимах этого элемента не зависит от тока источника, следовательно, ему соответствует ВАХ на рис. 5,б. На основании (1) у такого источника . Отметим, что направления ЭДС и напряжения на зажимах источника противоположны.

Если ВАХ источника линейна, то для определения параметров его схемы замещения необходимо провести замеры напряжения и тока для двух любых режимов его работы.

Существует также параллельная схема замещения источника. Для ее описания разделим левую и правую части соотношения (1) на . В результате получим

где ; — внутренняя проводимость источника.

Уравнению (2) соответствует схема замещения источника на рис. 6,а.

На этой схеме символом J обозначен элемент, называемый идеальным источником тока. Ток в ветви с этим элементом равен и не зависит от напряжения на зажимах источника, следовательно, ему соответствует ВАХ на рис. 6,б. На этом основании с учетом (2) у такого источника , т.е. его внутреннее сопротивление .

Отметим, что в расчетном плане при выполнении условия последовательная и параллельная схемы замещения источника являются эквивалентными. Однако в энергетическом отношении они различны, поскольку в режиме холостого хода для последовательной схемы замещения мощность равна нулю, а для параллельной – нет.

Кроме отмеченных режимов функционирования источника, на практике важное значение имеет согласованный режим работы, при котором нагрузкой RН от источника потребляется максимальная мощность

Условие такого режима

В заключение отметим, что в соответствии с ВАХ на рис. 5,б и 6,б идеальные источники ЭДС и тока являются источниками бесконечно большой мощности.

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
  3. Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.1. К.М.Поливанов. Линейные электрические цепи с сосредоточенными постоянными. –М.: Энергия, 1972. –240 с.
  4. Каплянский А.Е. и др. Теоретические основы электротехники. Изд. 2-е. Учеб. пособие для электротехнических и энергетических специальностей вузов. –М.: Высш. шк., 1972. –448 с.

Контрольные вопросы и задачи

  1. Может ли внешняя характеристик источника проходить через начало координат?
  2. Какой режим (холостой ход или короткое замыкание) является аварийным для источника тока?
  3. В чем заключаются эквивалентность и различие последовательной и параллельной схем замещения источника?
  4. Определить индуктивность L и энергию магнитного поля WМкатушки, если при токе в ней I=20А потокосцепление y =2 Вб.

Ответ: L=0,1 Гн; WМ=40 Дж.

Определить емкость С и энергию электрического поля WЭконденсатора, если при напряжении на его обкладках U=400 В заряд конденсатора q=0,2 ´ 10-3 Кл.

Ответ: С=0,5 мкФ; WЭ=0,04 Дж.

  • У генератора постоянного тока при токе в нагрузке I1=50Анапряжение на зажимах U1=210 В,а притоке, равном I2=100А, оно снижается до U2=190 В.
  • Определить параметры последовательной схемы замещения источника и ток короткого замыкания.

    Вывести соотношения (3) и (4) и определить максимальную мощность, отдаваемую нагрузке, по условиям предыдущей задачи.

    Электрическая цепь и ее элементы

    Основные понятия и определения для электрической цепи

    Для расчета и анализа реальная электрическая цепь представляется графически в виде расчетной электрической схемы (схемы замещения). В этой схеме реальные элементы цепи изображаются условными обозначениями, причем вспомогательные элементы цепи обычно не изображаются, а если сопротивление соединительных проводов намного меньше сопротивления других элементов цепи, его не учитывают. Источник питания показывается как источник ЭДС E с внутренним сопротивлением r0, реальные потребители электрической энергии постоянного тока заменяются их электрическими параметрами: активными сопротивлениями R1, R2,…,Rn. С помощью сопротивления R учитывают способность реального элемента цепи необратимо преобразовывать электроэнергию в другие виды, например, тепловую или лучистую.

    При этих условиях схема на рис. 1.1 может быть представлена в виде расчетной электрической схемы (рис. 1.2), в которой есть источник питания с ЭДС E и внутренним сопротивлением r0, а потребители электрической энергии: регулировочный реостат R, электрические лампочки EL1 и EL2 заменены активными сопротивлениями R,R1 и R2.

    Источник ЭДС на электрической схеме (рис. 1.2) может быть заменен источником напряжения U, причем условное положительное направление напряжения U источника задается противоположным направлению ЭДС.

    При расчете в схеме электрической цепи выделяют несколько основных элементов.

    Ветвь электрической цепи (схемы) – участок цепи с одним и тем же током. Ветвь может состоять из одного или нескольких последовательно соединенных элементов. Схема на рис. 1.2 имеет три ветви: ветвь bma, в которую включены элементы r0,E,R и в которой возникает ток I; ветвь ab с элементом R1 и током I1; ветвь anb с элементом R2 и током I2.

    Узел электрической цепи (схемы) – место соединения трех и более ветвей. В схеме на рис. 1.2 – два узла a и b. Ветви, присоединенные к одной паре узлов, называют параллельными. Сопротивления R1 и R2 (рис. 1.2) находятся в параллельных ветвях.

    Контур – любой замкнутый путь, проходящий по нескольким ветвям. В схеме на рис. 1.2 можно выделить три контура: I – bmab; II – anba; III – manbm, на схеме стрелкой показывают направление обхода контура.

    Условные положительные направления ЭДС источников питания, токов во всех ветвях, напряжений между узлами и на зажимах элементов цепи необходимо задать для правильной записи уравнений, описывающих процессы в электрической цепи или ее элементах. На схеме (рис. 1.2) стрелками укажем положительные направления ЭДС, напряжений и токов:

    а) для ЭДС источников – произвольно, но при этом следует учитывать, что полюс (зажим источника), к которому направлена стрелка, имеет более высокий потенциал по отношению к другому полюсу;

    б) для токов в ветвях, содержащих источники ЭДС – совпадающими с направлением ЭДС; во всех других ветвях произвольно;

    в) для напряжений – совпадающими с направлением тока в ветви или элемента цепи.

    Все электрические цепи делятся на линейные и нелинейные.

    Элемент электрической цепи, параметры которого (сопротивление и др.) не зависят от тока в нем, называют линейным, например электропечь.

    Нелинейный элемент, например лампа накаливания, имеет сопротивление, величина которого увеличивается при повышении напряжения, а следовательно и тока, подводимого к лампочке.

    Следовательно, в линейной электрической цепи все элементы – линейные, а нелинейной называют электрическую цепь, содержащую хотя бы один нелинейный элемент.

    Электрическим током (I) называется направленное движение электрических зарядов (ионов — в электролитах, электронов проводимости в металлах).
    Необходимым условием для протекания электрического тока является замкнутость электрической цепи.
    Электрический ток измеряется в амперах (А).
    Производными единицами измерения тока являются:
    1 килоампер (кА) = 1000 А;
    1 миллиампер (мА) 0,001 А;
    1 микроампер (мкА) = 0,000001 А.
    Человек начинает ощущать проходящий через его тело ток в 0,005 А. Ток больше 0,05 А опасен для жизни человека.
    Электрическим напряжением (U) называется разность потенциалов между двумя точками электрического поля.
    Единицей разности электрических потенциалов является вольт (В).
    1 В = (1 Вт) : (1 А).
    Производными единицами измерения напряжения являются:
    1 киловольт (кВ) = 1000 В;
    1 милливольт (мВ) = 0,001 В;
    1 микровольт (мкВ) = 0,00000 1 В.
    Сопротивлением участка электрической цепи называется величина, зависящая от материала проводника, его длины и поперечного сечения.
    Электрическое сопротивление измеряется в омах (Ом).
    1 Ом = (1 В) : (1 А).
    Производными единицами измерения сопротивления являются:
    1 килоОм (кОм) = 1000 Ом;
    1 мегаОм (МОм) = 1 000 000 Ом;
    1 миллиОм (мОм) = 0,001 Ом;
    1 микроОм (мкОм) = 0,00000 1 Ом.
    Электрическое сопротивление тела человека в зависимости от ряда условий колеблется от 2000 до 10 000 Ом.

    Удельным электрическим сопротивлением (ρ) называется сопротивление проволоки длиной 1 м и сечением 1 мм2 при температуре 20 °С.
    Величина, обратная удельному сопротивлению, называется удельной электрической проводимостью (γ).
    Мощностью (Р) называется величина, характеризующая скорость, с которой происходит преобразование энергии, или скорость, с которой совершается работа.
    Мощностью генератора называется величина, характеризующая скорость, с которой механическая или другая энергия преобразуется в генераторе в электрическую.
    Мощностью потребителя называется величина, характеризующая скорость, с которой происходит преобразование электрической энергии в отдельных участках цепи в другие полезные виды энергии.
    Системной единицей мощности в СИ является ватт (Вт). Он равен мощности, при которой за 1 секунду выполняется работа в 1 джоуль:
    1Вт = 1Дж/1сек
    Производными единицами измерения электрической мощности являются:
    1 киловатт (кВт) = 1000 Вт;
    1 мегаватт (МВт) = 1000 кВт = 1 000 000 Вт;
    1 милливатт (мВт) = 0,001 Вт; о1i
    1 лошадиная сила (л. с.) = 736 Вт = 0,736 кВт.
    Единицами измерения электрической энергии являются:
    1 ватт-секунда (Вт сек) = 1 Дж = (1 Н) (1 м);
    1 киловатт-час (кВт ч) = 3,б 106 Вт сек.

    Таблица 1. Электрические величины и единицы

    Наименование Обозначение латинским шрифтом Единицы измерения
    Наименование Обозначение русским шрифтом
    Напряжение Электродвижущая сила Ток Сопротивление активное Сопротивление реактивное Сопротивление полное Мощность активная Мощность реактивная Мощность полная Энергия U, u E, e I, i R, r X, x Z, z P Q S W Вольт Вольт Ампер Ом Ом Ом Ватт Вольт-ампер реактивный Вольт-ампер Ватт-секунда или джоуль В В А Ом Ом Ом Вт вар ВА Вт*сек, дж

    2. Элементы электрических цепей постоянного и переменного тока.

    Отдельные устройства, составляющие электрическую цепь, называются элементами цепи. Основными элементами электрической цепи являются источники и приемники электрической энергии, соединенные между собой проводами или линиями передачи. Источники энергии служат для преобразования различных видов энергии в электрическую энергию. В приемниках энергии происходит преобразование электрической энергии в другие виды энергии.

    Резистор – это пассивный элемент, характеризующийся резистивным сопротивлением.

    Катушка – это пассивный элемент, характеризующийся индуктивностью.

    Конденсатор – это пассивный элемент, характеризующийся емкостью

    3. Топология электрических схем. Основные понятия. Закон Кирхгофа.

    · Ветвь электрической цепи (схемы) – участок цепи с одним и тем же током. Ветвь может состоять из одного или нескольких последовательно соединенных элементов. Схема на рис. 1.2 имеет три ветви: ветвь bma, в которую включены элементы r0,E,R и в которой возникает ток I; ветвь ab с элементом R1 и током I1; ветвь anb с элементом R2 и током I2.

    · Узел электрической цепи (схемы) – место соединения трех и более ветвей. В схеме на рис. 1.2 – два узла a и b. Ветви, присоединенные к одной паре узлов, называют параллельными. Сопротивления R1 и R2 (рис. 1.2) находятся в параллельных ветвях.

    · Контур – любой замкнутый путь, проходящий по нескольким ветвям. В схеме на рис. 1.2 можно выделить три контура: I – bmab; II – anba; III – manbm, на схеме стрелкой показывают направление обхода контура.

    1 закон Кирхгофа

    Cумма токов, подходящих к узловой точке электрической цепи,
    равна сумме токов, уходящих от этого узла.

    Обозначим токи в неразветвленной части цепи —I, а в ветвях соответственно

    I1,I2,I3,I4.

    У этих токов в такой цепи будет соотношение:

    I = I1+I2+I3+I4;

    Второй закон Кирхгофа

    В замкнутом контуре электрической цепи сумма всех эдс равна
    сумме падения напряжения в сопротивлениях того же контура.

    E1 + E2 + E3 +. + En = I1R1 + I2R2 + I3R3 +. + InRn.

    Если в электрической цепи включены два источника энергии, эдс которых совпадают по направлению, т. е. согласно изо1, то эдс всей цепи равна сумме эдс этих источников,т. е.
    E = E1+E2
    .
    Если же в цепь включено два источника, эдс которых имеют противоположные направления, т. е. включены встречно изо2, то общая эдс цепи равна разности эдс этих источников
    Е = Е1—Е2
    .

    4. Методы анализа эл. цепей. Принцип суперпозиции.

    При анализе электрических цепей используются различные методы (метод контурных токов, метод узловых потенциалов, метод наложения, метод эквивалентного источника и др.), но все эти методы основаны на законах Ома и Кирхгофа. Эти законы являются основными

    принцип суперпозиции здесь заключается в том, что если в цепи несколько источников напряжения или тока, то они не зависят друг от друга. Поэтому полный ток в любом элементе будет равен сумме токов всех источников.
    например если убрать вторую батарею и измерить ток через R2, а потом убрать первую батарею и измерить ток через R2, то сумма этих токов будет равна току через R2 в этой схеме.
    Этот метод применим только для линейных цепей.

    Расчет электрических цепей методом наложения (суперпозиции)
    Ток в любой ветви сложной электрической цепи равняется алгебраической сумме отдельных токов от каждого источника электроэнергии. Этот принцип вытекает из свойства линейности уравнений электрической цепи относительно токов и ЭДС. Метод наложения состоит: в замене одной схемы с n источниками ЭДС и (или) тока n такими же схемами, с одним источником в каждой; расчет отдельных токов в ветвях цепи с одним источником и их алгебраическом сложении для определения токов заданной цепи с n источников.
    Например, вместо схемы (рис. 1, а) рассчитываются три схемы (рис. 1, б, в, г), а результаты алгебраически складываются:

    5. Цепи постоянного тока. Режимы работы.

    Основные понятия и определения для электрической цепи

    Для расчета и анализа реальная электрическая цепь представляется графически в виде расчетной электрической схемы (схемы замещения). В этой схеме реальные элементы цепи изображаются условными обозначениями, причем вспомогательные элементы цепи обычно не изображаются, а если сопротивление соединительных проводов намного меньше сопротивления других элементов цепи, его не учитывают. Источник питания показывается как источник ЭДС E с внутренним сопротивлением r, реальные потребители электрической энергии постоянного тока заменяются их электрическими параметрами: активными сопротивлениями R1, R2,…,Rn. С помощью сопротивления R учитывают способность реального элемента цепи необратимо преобразовывать электроэнергию в другие виды, например, тепловую или лучистую.

    При этих условиях схема на рис. 1.1 может быть представлена в виде расчетной электрической схемы (рис. 1.2), в которой есть источник питания с ЭДС E и внутренним сопротивлением r, а потребители электрической энергии: регулировочный реостат R, электрические лампочки EL1 и EL2 заменены активными сопротивлениями R,R1 и R2.

    Источник ЭДС на электрической схеме (рис. 1.2) может быть заменен источником напряжения U, причем условное положительное направление напряжения U источника задается противоположным направлению ЭДС.

    При расчете в схеме электрической цепи выделяют несколько основных элементов.

    Ветвь электрической цепи (схемы) – участок цепи с одним и тем же током. Ветвь может состоять из одного или нескольких последовательно соединенных элементов. Схема на рис. 1.2 имеет три ветви: ветвь bma, в которую включены элементы r,E,R и в которой возникает ток I; ветвь ab с элементом R1 и током I1; ветвь anb с элементом R2 и током I2.

    Узел электрической цепи (схемы) – место соединения трех и более ветвей. В схеме на рис. 1.2 – два узла a и b. Ветви, присоединенные к одной паре узлов, называют параллельными. Сопротивления R1 иR2 (рис. 1.2) находятся в параллельных ветвях.

    Контур – любой замкнутый путь, проходящий по нескольким ветвям. В схеме на рис. 1.2 можно выделить три контура: I – bmab; II – anba; III – manbm, на схеме стрелкой показывают направление обхода контура.

    Условные положительные направления ЭДС источников питания, токов во всех ветвях, напряжений между узлами и на зажимах элементов цепи необходимо задать для правильной записи уравнений, описывающих процессы в электрической цепи или ее элементах. На схеме (рис. 1.2) стрелками укажем положительные направления ЭДС, напряжений и токов:

    а) для ЭДС источников – произвольно, но при этом следует учитывать, что полюс (зажим источника), к которому направлена стрелка, имеет более высокий потенциал по отношению к другому полюсу;

    б) для токов в ветвях, содержащих источники ЭДС – совпадающими с направлением ЭДС; во всех других ветвях произвольно;

    в) для напряжений – совпадающими с направлением тока в ветви или элемента цепи.

    Все электрические цепи делятся на линейные и нелинейные.

    Элемент электрической цепи, параметры которого (сопротивление и др.) не зависят от тока в нем, называют линейным, например электропечь.

    Нелинейный элемент, например лампа накаливания, имеет сопротивление, величина которого увеличивается при повышении напряжения, а следовательно и тока, подводимого к лампочке.

    Следовательно, в линейной электрической цепи все элементы – линейные, а нелинейной называют электрическую цепь, содержащую хотя бы один нелинейный элемент.

    Режим холостого хода

    В этом режиме с помощью ключа SA нагрузка Rн отключается от источника питания (рис. 1.23). В этом случае ток в нагрузке становится равным нулю, и как следует из соотношения (1.12) напряжение на зажимах ab становится равным ЭДС Eэ и называется напряжением холостого хода Uхх

    Режим короткого замыкания

    В этом режиме ключ SA в схеме электрической цепи (рис. 1.23) замкнут, а сопротивление Rн=0. В этом случае напряжение U на зажимах аb становится равным нулю, т.к. U=IRн, а уравнение (1.12) вольт-амперной характеристики можно записать в виде

    Значение тока короткого замыкания Iк.з соответствует т.2 на вольт-амперной характеристике (рис. 1.24).

    Анализ этих двух режимов показывает, что при расчете электрических цепей параметры активного двухполюсника Eэ и r могут быть определены по результатам режимов холостого хода и короткого замыкания:

    При изменении тока в пределах активной двухполюсник (эквивалентный источник) отдает энергию во внешнюю цепь (участок I вольт-амперной характеристики на рис. 1.24). При токе I 2(k — 1), где l — количество ветвей сложной электрической цепи.

    Узловыми напряжениями называют напряжения между каждым из (k-1) узлов и одним произвольно выбранным опорным узлом. Потенциал опорного узла принимается равным нулю. На схеме такой узел обычно отображают как заземленный.

    Сущность метода заключается в том, что вначале решением системы уравнений определяют потенциалы всех узлов схемы по отношению к опорному узлу. Далее находят токи всех ветвей схемы с помощью закона Ома по формуле (1.16).

    Расчет сложных электрических цепей методом узловых напряжений производят в следующей последовательности:

    1. Вычерчиваем принципиальную схему и все ее элементы.
    2. На схеме произвольно выбирают и обозначают опорный узел. В качестве опорного желательно выбирать узел, в котором сходится максимальное количество ветвей.
    3. Произвольно задаемся направлением токов всех ветвей и обозначаем их на схеме.
    4. Для определения потенциалов остальных (k-1) узлов по отношению к опорному узлу составляем следующую систему уравнений:
    5. Решаем любым методом полученную систему относительно узловых напряжений и определяем их.
    6. Далее для каждой ветви в отдельности применяем закон Ома (1.16) и находим все токи в электрической цепи.

    Расчет сложной электрической цепи по данной методике приведен в примере №14.

    Рассмотрим применение метода узловых напряжений для расчета электрических цепей более подробно на примере схемы, взятой из предыдущего раздела.
    .

    Основные понятия

    Контурный ток — это величина, которая одинакова во всех ветвях данного контура. Обычно в расчетах они обозначаются двойными индексами, например I11, I22 и тд.

    Действительный ток в определенной ветви определяется алгебраической суммой контурных токов, в которую эта ветвь входит. Нахождение действительных токов и есть первоочередная задача метода контурных токов.

    Контурная ЭДС — это сумма всех ЭДС входящих в этот контур.

    Собственным сопротивлением контура называется сумма сопротивлений всех ветвей, которые в него входят.

    Общим сопротивлением контура называется сопротивление ветви, смежное двум контурам.

    Общий план составления уравнений

    1 – Выбор направления действительных токов.

    2 – Выбор независимых контуров и направления контурных токов в них.

    3 – Определение собственных и общих сопротивлений контуров

    4 – Составление уравнений и нахождение контурных токов

    5 – Нахождение действительных токов

    Итак, после ознакомления с теорией предлагаем приступить к практике! Рассмотрим пример.

    Выполняем все поэтапно.

    1. Произвольно выбираем направления действительных токов I1-I6.

    2.Выделяем три контура, а затем указываем направление контурных токов I11,I22,I33. Мы выберем направление по часовой стрелке.

    3. Определяем собственные сопротивления контуров. Для этого складываем сопротивления в каждом контуре.

    Затем определяем общие сопротивления, общие сопротивления легко обнаружить, они принадлежат сразу нескольким контурам, например сопротивление R4 принадлежит контуру 1 и контуру 2. Поэтому для удобства обозначим такие сопротивления номерами контуров к которым они принадлежат.

    4. Приступаем к основному этапу – составлению системы уравнений контурных токов. В левой части уравнений входят падения напряжений в контуре, а в правой ЭДС источников данного контура.

    Так как контура у нас три, следовательно, система будет состоять из трех уравнений. Для первого контура уравнение будет выглядеть следующим образом:

    Ток первого контура I11, умножаем на собственное сопротивление R11 этого же контура, а затем вычитаем ток I22, помноженный на общее сопротивление первого и второго контуров R21 и ток I33, помноженный на общее сопротивление первого и третьего контура R31. Данное выражение будет равняться ЭДС E1 этого контура. Значение ЭДС берем со знаком плюс, так как направление обхода (по часовой стрелке) совпадает с направление ЭДС, в противном случае нужно было бы брать со знаком минус.

    Те же действия проделываем с двумя другими контурами и в итоге получаем систему:

    В полученную систему подставляем уже известные значения сопротивлений и решаем её любым известным способом.

    5. Последним этапом находим действительные токи, для этого нужно записать для них выражения.

    Контурный ток равен действительному току, который принадлежит только этому контуру. То есть другими словами, если ток протекает только в одном контуре, то он равен контурному.

    Но, нужно учитывать направление обхода, например, в нашем случае ток I2 не совпадает с направлением, поэтому берем его со знаком минус.

    Токи, протекающие через общие сопротивления определяем как алгебраическую сумму контурных, учитывая направление обхода.

    Например, через резистор R4 протекает ток I4, его направление совпадает с направлением обхода первого контура и противоположно направлению второго контура. Значит, для него выражение будет выглядеть

    А для остальных

    8. Метод эквивалентного генератора.

    Суть метода эквивалентного генератора состоит в нахождении тока в одной выделенной ветви, при этом остальная часть сложной электрической цепи заменяется эквивалентным ЭДС Еэкв, с её внутренним сопротивлением rэкв. При этом часть цепи, в которую входит источник ЭДС называют эквивалентным генератором или активным двухполюсником, откуда и название метода.

    Для наглядности рассмотрим схему представленную ниже. Допустим, что R1=5 Ом, R2=7 Ом, R3=10 Ом, Rab=3 Ом, E=10 В.

    Согласно методу эквивалентного генератора получим схему

    Искомый ток Iab находится по закону Ома для полной цепи

    Для нахождения тока нужно узнать Еэкв и rэкв с помощью режимов эквивалентного генератора.

    Для того чтобы найти эквивалентную ЭДС, нужно рассмотреть режим холостого хода генератора, другими словами нужно отсоединить исследуемую ветвь ab, тем самым избавив генератор от нагрузки, после чего он будет работать на так называемом холостом ходу.

    Напряжение холостого хода Uх, будет равно эквивалентной ЭДС Eэкв. Таким образом мы можем найти Eэкв.

    Следующим этапом решения задачи будет нахождение эквивалентного сопротивления rэкв. Можно воспользоваться режимом короткого замыкания генератора, при котором сопротивление Rab отсутствует, но в более сложных схемах это может привести к более громоздким расчётам, поэтому найдем rэкв как входное сопротивление пассивного двухполюсника. Пассивным называется двухполюсник у которого отсутствуют источники ЭДС. Простыми словами нужно убрать во внешней цепи источник ЭДС и найти сопротивление цепи, так и поступим.

    Эквивалентное сопротивление rэкв равно ( тем, кто не умеет находить эквивалентное сопротивление, нужно прочитать статью виды соединения проводников )

    Итак, найдя эквивалентные ЭДС и сопротивление, мы можем найти силу тока в ветви ab

    На этом всё, ток в нужной ветви найден, а значит, задача решена методом эквивалентного генератора

    9. Потенциальная диаграмма цепи постоянного тока.

    Во многих моментах изучения или же при расчетах электрических цепей необходимо определить значение потенциалов каких-либо точек электрической цепи и по результатам построить потенциальную диаграмму. Значение потенциала любой точки электрической цепи определяется напряжением между данной точкой и точкой цепи с потенциалом равным нулю, которую заранее мы принимаем, например, это может быть соединение этой точки с землей.

    Определим потенциалы цепи в точках Б, В, и Р, Д, для схемы замещения которая дана на рис.1. Из заданного на схеме направления тока I и направления ЭДС Е1 и Е2 следует, что источник ЭДС Е1 имеет режим потребителя, а источник ЭДС Е2 работает в режиме генератора.

    Ток в цепи, на участке который имеет только сопротивление, всегда будет иметь направление от точки, которая имеет высокий потенциал к точке, которая обладает меньшим потенциалом. По этой причине точка Б имеет потенциал больший нежели, чем точка Д. Разность потенциалов фБА=UБА=r1I. Точка А заземлена, поэтому фA=0 и фБ =r1I.

    Потенциал фБ точки Б является выводом первого источника с отрицательным потенциалом, а потенциал фВ точки В является выводом этого же источника только с положительным потенциалом. Напряжение источника на его выводах можно выразить разностью потенциалов, при этом, учитывая то, что работа источника ЭДС Е1 — это режим потребителя, запишем следующее

    Необходимо обратить внимание на то, что в реальных цепях нет двух точек, между которыми напряжение, равное rВТ1I или ЭДС Е1. Потенциал ф больше фВна величину r2I, таким образом,

    Источник ЭДС Е2 работает в режиме генератора. Разность потенциалов между положительным выводом и отрицательным выводом

    Наконец, потенциал фА точки А выше потенциала фД точки Д на величину r3I, т. е. фА—фД=r3Iоткуда

    и должно получиться фА = 0, в случае правильно вычисленного тока (то есть если в конце расчета потенциалов замкнутой цепи, когда вы подойдете к изначальной точке, ее потенциал будет равен нулю, это буден означать правильность расчетов).

    Графическое изображение, которое показывает, как изменяется потенциал в электрической цепи в зависимости от того, какое сопротивлений участка (элемента) этой цепи называют потенциальной диаграммой. Построение потенциальной диаграммы заключается в том, что на графике потенциальной диаграммы по оси абсцисс откладывают сопротивления участков (элементов) электрической цепи в том порядке, в котором происходил расчет потенциалов — последовательно, друг за другом (каждое следующее сопротивление прибавляют к пред ведущему сопротивлению). По оси ординат в масштабе откладывают значения потенциалов.

    Пример.

    И так возьмем простейшую схему и произвольно заземлим любую точку схемы, тем самым присвоив этой точке потенциал ноль φА=0. Так же произвольно зададимся направлением обхода контура. Направление тока в цепи I задаем от большего потенциала к меньшему потенциалу, то есть от большей ЭДС Е1 к меньшей ЭДС Е2.

    Потенциальная диаграмма будет иметь следующий вид:

    10. Цепи синусоидального тока. Мгновенные, средние, действующие значения синусоидальных величин.

    Действующее значениесинусоидального тока численно равно постоян-ному току, который за время периода Т выделяет в резистивном элементе с сопротивлением R такое же количество тепла (Q_ ), как и ток синусоидальный (Q

    Иными словами, действующее значение синусоидального тока и эквива-лентный ему постоянный ток оказывают одинаковый тепловой эффект.

    Количество тепла, выделяемое за период Т синусоидальным током в эле-менте цепи с сопротивлением R:

    T T 2 sin 2 (ωt)dt = RI m 2 T .
    Q

    = ∫

    Ri 2 dt =RI m (34)

    Количество тепла, выделяемое за тот же период времени Т постоянным током:

    Q _= RI 2 T . (35)
    С учетом (34)
    RI 2 T = RIm 2 T . (36)
    Отсюда действующее значение синусоидального тока:
    I = I m . (37)

    Под средним значением синусоидального тока (Iср) понимают его сред-неарифметическое значение за положительный полупериод:

    T 2 T 2 2Im
    Iср = >

    Im sin(ωt)dt = . (39)
    T 2 T 2 π

    Аналогично для средних значений синусоидальных напряжения и ЭДС:

    U ср = 2U m ; E ср = 2Em . (40)
    π
    π

    11. Измерение Электрических величин.

    Согласно системе СИ единицами измерений электротехнических параметров являются для физических величин:

    Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

    Электрическая цепь

    Определение

    Электрической цепью называется совокупность электротехнических устройств, создающих замкнутый путь электрическому току. Она состоит из источников (генераторов) энергии, приемников энергии (нагрузки) и соединительных проводов. В цепи могут быть также различные преобразователи (играют роль как роль источников, так и приемников), защитная и коммутационная аппаратура.

    В источниках неэлектрические виды энергии преобразуются (в соответствии с законом сохранения энергии) в энергию электромагнитного поля. Так, например, на гидроэлектростанциях энергия падающей воды (энергия гравитационного поля) преобразуется в энергию электромагнитного поля. В приемниках энергия электромагнитного поля преобразуется в тепловую и другие виды энергии. Кроме того, некоторая часть энергии запасается в электрических и магнитных полях цепи.

    Электромагнитные процессы в электрической цепи описываются с помощью понятий о токе, напряжении, электродвижущей силе (ЭДС), сопротивлении, индуктивности и емкости. Буквенные обозначения этих, а также других величин, используемых в этом учебном пособии представлены в табл.1.1. Там же дана их русская транскрипция и единицы измерений. Заметим здесь, что ЭДС, токи и напряжения, изменяющиеся во времени, обозначаются строчными латинскими буквами е, i, u, а ЭДС, токи и напряжения, неизменные во времени, обозначаются заглавными латинскими буквами E, I, U.

    Графическое изображение электрической цепи и ее элементов

    Графическое изображение электрической цепи называется ее схемой. В схеме различают ветви, узлы и контуры. Ветвь – это часть схемы, состоящая только из последовательно соединенных источников и приемников. Узел – точка схемы, в которой сходятся не менее трех ветвей (ветви начинаются и заканчиваются на узлах цепи). Контур – часть схемы, образованная ветвями; число контуров определяется числом вариантов обходов по ветвям цепи. На рис.1.1 даны структурные схемы трех электрических цепей и указано количество ветвей узлов и контуров в каждой из них.

    Принятые в настоящем учебном пособии графические обозначения основных элементов цепи, показаны на рис.1.2.

    На этом рисунке : 1 — источник ЭДС; 2 — источник тока; 3 — соединительный провод; 4 — сопротивление R цепи; 5 — индуктивность L цепи; 6 — емкость С цепи; 7 — двухполюсник (цепь с неизвестной структурой, имеющая два входных зажима).

    В цепях постоянного тока (рис.1.3,а) направление действия ЭДС источника принято указывать в сторону того зажима, на котором образуются положительные заряды. Направление тока во внешней цепи принято указывать от положительно заряженного полюса (зажима) источника к отрицательно заряженному. Направление действия напряжения в приемнике всегда указывают в ту же сторону, что и направление действия тока.
    В цепях синусоидального тока (рис.1.3,б) принято обозначать направления ЭДС тока и напряжения, используя положительный полупериод тока, при котором ток не изменяет своего направления. При этом картина этих направлений получается аналогичной с цепью постоянного тока.

    § 6. Электрическая цепь и ее элементы

    Составные элементы электрической цепи. Электрическую цепь (рис. 12, а) образуют источники электрической энергии 1, ее прием­ники 3 (потребители) и соединительные провода. В электрическую цепь обычно включают также вспомогательное оборудование: аппараты 4, служащие для включения и выключения электри­ческих установок (рубильники, переключатели и др.), электроизме­рительные приборы 2 (амперметры, вольтметры, ваттметры), за­щитные устройства (предохранители, автоматические выключатели).

    В качестве источников электрической энергии применяют глав­ным образом, электрические генераторы и гальванические элементы или аккумуляторы. Источники электрической энергии часто назы­вают источниками питания.

    В приемниках электрическая энергия преобразуется в другие виды энергии. К приемникам относятся электродвигатели, различ­ные электронагревательные приборы, лампы накаливания, электро­литические ванны и др.

    Электрическая цепь может быть разделена на два участка: внешний и внутренний. Внешний участок, или, как говорят, внеш­няя цепь, состоит из одного или нескольких приемников электри-

    Рис. 12. Простейшая электрическая цепь постоянного тока (а) и ее принципиальная схема (б)

    ческой энергии, соединительных проводов и различных вспомога­тельных устройств, включенных в эту цепь. Внутренний участок, или внутренняя цепь,— это сам источник.

    Изображение электрических цепей и их элементов. В схемах реальных электрических устройств (электровозов, тепловозов и др.) отдельные элементы имеют свои условные обозначения в соответ­ствии с государственными стандартами.

    При составлении расчетных схем элементы электрической цепи, имеющие некоторое сопротивление, например электрические лампы, электронагревательные приборы (в том числе и соединительные провода, если их необходимо учитывать при расчете), изобра­жают в виде сосредоточенных в соответствующем месте схемы ре­зисторов с сопротивлением R (рис. 12, б). То же относится к эле­ментам, имеющим индуктивность (обмотки генераторов, электро­двигателей и трансформаторов) и емкость (конденсаторы). На расчетных схемах их изображают в виде сосредоточенных в соот­ветствующем месте катушек индуктивности и конденсаторов. Источ­ники электрической энергии в схеме электрической цепи часто могут быть представлены в виде идеализированных источников, у которых внутреннее сопротивление Ro = 0.

    Для того чтобы учесть внутреннее сопротивление реального источника, в схему вводят изображение резистора с сопротивлением Ro или ставят букву Ro возле условного обозначения источника.

    Вспомогательные элементы электрических цепей (аппараты для включения и выключения, защитные устройства, некоторые электро­измерительные приборы) в большинстве случаев имеют малые сопротивления и практически не оказывают влияние на значения токов и напряжений, поэтому при расчете электрических цепей их не принимают во внимание и не указывают на схемах.

    Направления тока, напряжения и э. д. с. в электрической цепи. В схемах электрических цепей направления тока, напряжения и э. д. с. изображают стрелками. За положительное направление тока принято направление движения положительных зарядов, т. е. ток во внешней цепи изображают стрелкой I, направленной от положительного зажима источника электрической энергии к отрица­тельному его зажиму (см. рис. 12, б), во внутренней цепи ток направлен от отрицательного зажима к положительному. Поло­жительное направление напряжения совпадает с положительным направлением тока. Стрелка U направлена от положительного зажима источника или приемника к отрицательному зажиму. Поло­жительное направление э. д. с. совпадает с положительным на­правлением тока внутри источника (стрелка Е направлена от отрицательного зажима источника к положительному).

    В сложных электрических цепях бывает затруднительно пока­зать действительные направления тока и напряжения на отдельных участках цепи. В таких случаях принимают произвольно какие-либо их направления, которые считают условно положительными, и для этих направлений выполняют расчет электрической цепи. Если в ре­зультате расчета выясняется, что какие-то токи и напряжения имеют положительный знак, то это означает, что выбранные для них направления соответствуют действительности. Если же какие-то токи и напряжения получаются отрицательными, то в действи­тельности они имеют направление, противоположное выбранному.

    Электрическая цепь и ее составные части

    Составные части

    Любая электрическая цепь имеет следующие базовые элементы: источник тока, потребители тока, соединительные провода. Потребители тока могут состоять из более мелких элементов второго уровня, каждый из которых имеет свое наименование, функцию и параметры.

    Для удобства электрические цепи изображают в виде графических схем, в которых используются общепринятые условные символы различных элементов. Обозначения элементов электрических цепей имеют интернациональный характер, классифицированы и систематизированы.

    Рис. 1. Обозначения базовых элементов электрических схем:.

    Разновидности цепей

    Различают цепи для постоянного и переменного токов. Постоянный ток не меняет своего направления. Пример сети постоянного тока — электрические цепи автомобилей. Переменный ток меняет свое направление с определенной частотой. График зависимости переменного тока от времени в нашей сети имеет синусоидальный вид. Полярность изменяется 50 раз в секунду, что соответствует частоте 50 Гц. Под внутренней частью цепи подразумевают источники электропитания. Под внешней — провода, переключатели, бытовые и измерительные приборы.

    Элементы цепи

    Все электрические цепи служат для производства, передачи и потребления электрической энергии. Элементы цепей подразделяются на пассивные и активные. К пассивным относятся потребляющие и передающие электроэнергию: лампочки, нагревательные элементы, электродвигатели и т.п. К активным —- источники, генерирующие электроэнергию: аккумуляторы, генераторы, солнечные батареи, термодатчики. Кроме этого элементы делятся на двухполюсные (два вывода) и многополюсные ( три и более выводов).

    Примеры составных частей электрической цепи:

    • Источник. Обычно это аккумулятор, гальванический элемент или генератор. Реже, но бывают солнечные батареи или ветрогенераторы;
    • Проводник. Необходимый элемент для транспортировки электроэнергии от источника к потребителю;
    • Потребитель. Осветительные и нагревательные приборы, двигатели, бытовая техника, компьютеры;
    • Переключающие (коммутирующие) устройства. В простейшем варианте — выключатель.

    Электрический ток течет только по замкнутой цепи. Если цепь разомкнуть, то движение электронов прекратится.

    Потребители электроэнергии

    Перечислим основных потребителей:

    • Резисторы — потребители, которые могут иметь как постоянное, так и переменное сопротивление;
    • Конденсаторы — потребители, имеющие емкостные свойства;
    • Индуктивности — потребители, создающие магнитное поле;
    • Электродвигатель — потребитель, преобразующий электрическую энергию в механическую.

    Рис. 2. Резисторы, конденсаторы, индуктивности, электродвигатель:.

    Контур, узел, ветвь

    Для описания и анализа схем используются следующие термины:

    • Ветвь — участок с одним или несколькими компонентами соединенными последовательно;
    • Узел — место соединения двух и более ветвей;
    • Контур — совокупность ветвей, образующих для тока замкнутый контур. Один из узлов в контуре должен быть и началом и концом пути. Остальные узлы должны встречаться не более одного раза.

    Очень полезным элементом электрической цепи является предохранитель. Он предотвращает перегорание элементов цепи в случае перегрева. Предохранитель содержит легкоплавкий проводник, который перегорает в случае превышения допустимых параметров. Поменять предохранитель легче, чем найти сгоревший элемент среди сотен подобных элементов.

    Рис. 3. Примеры участков схем: ветвь, узел, контур:.

    Что мы узнали?

    Итак, мы узнали что такое электрическая цепь и ее составные части. Все электрические цепи состоят из источников, проводников, потребителей и переключающих устройств.

    ВВЕДЕНИЕ

    Электротехника является областью науки, которая занимается изучением электротехнических и магнитных явлений и их техническим использованием в практических целях.

    Предметом курса «Теоретические основы электротехники» является изучение как с качественной, так и с количественной стороны электромагнитных процессов, происходящих в цепях и полях.

    Этот курс, базирующийся на курсах физики и высшей математики, содержит инженерные методы расчета и анализа, применимые к широкому классу современных электротехнических устройств.

    синусоидальный ток электрические цепи

    ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА

    Электрическая цепь и ее элементы. Основные понятия и определения для электрической цепи

    Совокупность соединенных друг с другом источников электрической энергии и нагрузок, по которым может протекать электрический ток, называют электрической цепью.

    Постоянным током называют ток, неизменный во времени.

    Постоянный ток представляет собой направленное упорядоченное движение частиц, несущих на себе электрические заряды. Упорядоченное движение носителей зарядов в проводниках вызывается электрическим полем, созданным в них источниками электрической энергии. Условные обозначения: постоянный ток — I, э.д.с. источника —Е и сопротивление — R. Размерности в системе СИ: [ I ] = A. [E]=B [R]=Ом.

    Изображение электрической цепи на рисунке с помощью условных знаков принято называть электрической схемой.

    Условным знаком сопротивления R на электрической схеме является вытянутый прямоугольник. Условным знаком источника, электрической энергии является кружок с изображенной внутри него стрелкой. Стрелка указывает положительное направление э. д. с.

    Пассивным называется участок электрической цепи, не содержащий источников электрической энергии.

    Активным — участок, содержащий источник электрической энергии.

    Электротехнические устройства, производящие электрическую энергию, называются источниками электрической энергии, а устройства, потребляющие ее, приемниками или потребителями электрической энергии. ЭДС (электродвижущая сила) — это напряжение, которое создается между двумя точками электрической цепи за счет действия сторонних сил.

    Потребитель энергии и провода, соединяющие приемник с источником энергии, называют внешней цепью. Во внешней цепи ток течет от плюса источника энергии к минусу, а внутри источника — от минуса к плюсу.

    Зависимость тока, протекающего по сопротивлению, от напряжения на этом сопротивлении принято называть вольтамперной характеристикой.

    Различают два принципиально отличных типа вольтамперных характеристик. В первой из них вольтамперная характеристика представляет собой прямую линию (рис. 1, б), во втором — некоторую кривую линию (рис. 1, в).

    Сопротивления, вольтамперные характеристики которых являются прямыми линиями, называют линейными сопротивлениями, а электрические цепи с входящими в них только линейными сопротивлениями принято называть линейными электрическими цепями. Сопротивления, вольтамперные характеристики которых не являются прямыми линиями, называют нелинейными сопротивлениями, а электрические цепи с нелинейными сопротивлениями называют нелинейными электрическими цепями.

    Электрические цепи подразделяются на неразветвленные и разветвленные.

    Простейшая разветвленная цепь изображена на рис. 4. а; в ней имеются три, ветви и два узла. В каждой ветви течет свой ток.

    Ветвь — участок цепи, образованный последовательно соединенными элементами и заключенный между двумя узлами.

    Узел — точка цепи, в которой сходится не менее трех ветвей. Ветвь — это участок цепи между двумя узлами, по которому протекает общий для всех элементов ток. Для узла выполняется закон сохранения заряда — сколько заряда переносится к узлу втекающими токами, столько же заряда выходит из узла, т.е. в узле заряды не накапливаются и не исчезают.

    Если в месте пересечения двух линий на электрической схеме поставлена «жирная» точка (рис. 4, б), то в этой точке есть электрическое соединение двух линей, в противном случае рис. 4, в) линии пересекаются без электрического соединения.

    ЭЛЕКТРИЧЕСКАЯ ЦЕПЬ И ЕЁ ЭЛЕМЕНТЫ

    ЭЛЕКТРИЧЕСКАЯ ЦЕПЬ И ЕЁ ЭЛЕМЕНТЫ

    2.1. Классификация электрических цепей и их элементов

    Электрической цепью называют совокупность устройств и объектов, предназначенных для распределения, взаимного преобразования и передачи электрической энергии и (или) информации. Своё назначение цепь выполняет при наличии в ней электрического тока. Электромагнитные процессы в цепи и её параметры могут быть описаны с помощью известных из курса физики интегральных понятий: ток, напряжение (разность потенциалов), заряд, магнитный поток, электродвижущая сила, сопротивление, индуктивность, взаимная индуктивность и ёмкость.

    Электрическая цепь состоит из отдельных частей (объектов), выполняющих определенные функции и называемых элементами цепи.

    Основными элементами цепи являются источники и приёмники электрической энергии (сигналов).

    Источники энергии (сигналов), такие, как электромеханические или электронные генераторы, аккумуляторы, гальванические элементы, термодатчики и т.д., предназначены для преобразования различных видов энергии в электрическую энергию.

    Приёмники энергии (сигналов) служат для преобразования электрической энергии в другие виды энергии. К ним относятся электрические двигатели, нагревательные приборы, электрические лампы, электронно-лучевые трубки, динамические громкоговорители и др.

    Кроме основных элементов, цепь содержит различные вспомогательные элементы, которые связывают источники с приёмниками (соединительные провода, линии передачи), подавляют или усиливают определенные составляющие сигналов (фильтры, усилители), изменяют уровень напряжения и тока в других частях цепи (трансформаторы), улучшают или изменяют характеристики и параметры участков цепи и её элементов (корректирующие устройства, фазовые звенья) и т.п.

    По назначению различают цепи для передачи и преобразования электрической энергии (цепи, применяемые в электроэнергетике) и цепи для передачи и преобразования информации (цепи в технике связи, радиотехнические цепи, цепи устройств автоматики и телемеханики и т.д.).

    Реальные элементы цепи могут быть описаны алгебраическими или дифференциальными уравнениями, связывающими напряжения и токи на зажимах этих элементов. Такое описание может быть сделано с определенной степенью точности при идеализации физических процессов в элементах; второстепенные с определенной точки зрения процессы при этом не учитываются.

    Различают активные и пассивные элементы цепи.

    К активным элементам относятся источники энергии.

    К пассивным относят элементы, в которых рассеивается и (или) накапливается энергия (резисторы, индуктивные катушки, конденсаторы, трансформаторы).

    Если элемент цепи характеризуется линейными алгебраическими или дифференциальными уравнениями (при упомянутой ранее идеализации), то его называют линейным. Коэффициенты, связывающие напряжения и токи и их производные, представляют собой параметры элемента. Параметры линейного элемента могут быть постоянными (стационарный элемент) или могут изменяться в зависимости от времени по какому-либо закону (нестационарный, параметрический элемент).

    Если элемент цепи описывается нелинейными алгебраическими или дифференциальными уравнениями, то он называется нелинейным. Нелинейные элементы могут быть также параметрическими.

    Во многих случаях параметры элемента рассматриваются как сосредоточенные (элемент с сосредоточенными параметрами); при этом напряжения и токи на зажимах элемента не являются функциями пространственных координат, определяющих геометрические размеры элемента.

    Параметры элемента могут быть также распределёнными (элемент с распределёнными параметрами); такой элемент характеризуется уравнениями, в которых напряжения и токи зависят от пространственных координат. В качестве примеров элементов с распределёнными параметрами можно назвать линии передачи энергии и информации, многослойные пленочные резистивно-емкостные микроструктуры.

    Цепи, содержащие только линейные элементы, называют линейными цепями. Основное свойство таких цепей — применимость принципа наложения, заключающегося в том, что результирующая реакция линейной цепи на несколько приложенных одновременно возмущений равна сумме реакций, обусловленных каждым возмущением в отдельности.

    Если цепь содержит один или несколько параметрических элементов, то её называют параметрической (нестационарной). Аналогично, если цепь содержит один или более нелинейных элементов, то её называют нелинейной. Для нелинейной цепи в общем случае принцип наложения применить нельзя.

    Можно говорить также об активных и пассивных цепях. Цепь считают активной, если по отношению к некоторым зажимам она является источником энергии. Такая цепь содержит активные элементы. В противном случае цепь называют пассивной.

    Электрическая цепь характеризуется совокупностью элементов, из которых она состоит, и способом их соединения.

    Реальные элементы цепи идеализируются для упрощения математического описания элемента. Однако, идеализированные уравнения должны правильно отражать основные физические явления в том или ином реальном элементе.

    Идеализированному элементу цепи ставят в соответствие его математическую модель — схемный элемент. Совокупность схемных элементов (в частном случае – один схемный элемент), соединённых определённым образом, называют схемой замещения или эквивалентной схемой элемента электрической цепи при условии совпадении уравнений, описывающих эту схему и элемент цепи.

    Каждому схемному элементу соответствует условное геометрическое изображение. Тогда способ соединения элементов реальной цепи легко представить с помощью соответствующего соединения схемных элементов. Геометрическое изображение соединения схемных элементов, отображающее соединение реальных элементов электрической цепи и её свойства, называют схемой цепи.

    В схеме выделяют ветви — участки, которые характеризуются одним и тем же током в начале и конце в любой момент времени, и узлы — граничные (концевые) точки ветвей или точки соединения ветвей.

    Любой двухполюсный элемент схемы может быть условно представлен так, как показано на рис.2.1. Зажимы 1 и 2 присоединяют данный элемент к другим элементам. Напряжение между этими зажимами и ток элемента обозначены соответственно через и12 , i. Напряжение измеряется в вольтах (В), ток — в амперах (А). Стрелки определяют положительные направления напряжения (тока).

    Напряжение и и ток i в общем случае представляют собой функции времени t:

    Для любого фиксированного момента времени напряжение и ток могут быть положительными, отрицательными или равными нулю. Положи­тельное направление выбирают для того, чтобы придать знакам напряжения и тока определённый смысл.

    Напряжение и12 (рис.2.1) отождествляют с разностью потенциа­лов (потенциал любой точки схемы отсчитывается относительно некоторой точки, потенциал которой принимается равным нулю) на зажимах 1 и 2, т. е.

    Если для какого-либо момента времени напряжение и12>0 (и12 0, то соответствующий двухполюсный элемент является потребителем энергии (пассивный элемент).

    Если для любого интервала времени о . Тангенс этого угла равен бесконечности и равно бесконечности внутреннее сопротивление идеального источника тока .

    Ток i реального источника энергии зависит от напряжения и на его зажимах. Так, из уравнения (2.1)

    где ; – внутренняя проводимость.

    Уравнению (2.2) соответствует схема замещения на рис.2.6. В этой схеме элемент gB (внутренняя проводимость), параллельно соединённый с идеальным источником тока J, характеризуют соотношением iB = gB u. Идеальный источник тока имеет gB = .

    Схема замещения реаль­ных источников переменного тока в ряде случаев может быть представлена схемой, аналогичной схеме на рис.2.6.

    Можно говорить о двух схемах замещения реального источника электрической энергии (рис.2.3 и 2.6). Эти схемы эквивалентны, если ; , т.е. при одном и том же напряжении и (токе i) токи i (напря­жения и) этих схем одинаковы.

    2.4. Двухполюсные пассивные элементы

    Основными двухполюсными пассивными элементами схемы являются резистивный (сопротивление или проводимость), индук­тивный и ёмкостный элементы.

    Резистивный элемент. Двухполюсный элемент, характери­зуемый зависимостью u = u(i) или i(u) (см. рис.1.1,б), называют резистивным элементом — сопротивлением или проводимостью. Зависимость и(i) или i(и) называют вольт-амперной харак­теристикой такого элемента.

    В общем случае вольт-амперная характеристика нелинейна. Например, на рис.2.7,а,б показаны две нелинейные характеристики, которые могут иметь реальные элементы. Элементы с нелинейными зави­симостями и(i) или i(и) характеризуются нелинейными сопро­тивлениями или проводимостями.

    Если зависимость u = u(i) представляет собой прямую линию, то сопротивление (проводимость) называют линейным (рис. 2.7, в). Обозначение такого сопротивления дано на рис.2.8.

    Линейное сопротивление описывается соотношением, которое носит название закона Ома:

    где r – сопротивление [Ом]; g =1/r – проводимость [Сим].

    Энергия, поступающая в данный элемент, преобразуется в тепловую (необратимо рассеивается). При этом мощность определяется по закону Джоуля-Ленца:

    Индуктивный элемент. Двухполюсный элемент, характери­зуемый зависимостью Y(i) или i(Y) (Y – потокосцепление), называют индуктивным элементом — индуктивностью. Зависимость Y(i) или i(Y) называют вебер-амперной харак­теристикой такого элемента.. Эта характеристика может быть линейной или нелинейной. Обозначение такого элемента дано на рис.2.9.

    У линейной индуктивности потокосцепление линейно зависит от тока:

    где L=const – индуктивность [Гн].

    Напряжение на зажимах индуктивности возникает только при изменении потокосцепления:

    Ёмкостный элемент. Двухполюсный элемент, характери­зуемый зависимостью q(u) или u(q) (q – электрический заряд), называют емкостным элементом — ёмкостью. Зависимость q(u) или u(q) называют кулон-вольтной харак­теристикой такого элемента.. Эта характеристика так же может быть линейной или нелинейной. Обозначение такого элемента дано на рис.1.10.

    У линейной ёмкости заряд q пропорционален напряжению:

    где С = const – ёмкость [Ф].

    Ток через ёмкость протекает только при изменении заряда:

    Элементы электрических цепей и схем

    Элементы электрических цепей и схем

    Электрической цепью называется совокупность устройств, предназначенных для передачи, распределения и взаимного преобразования электрической (электромагнитной) и других видов энергии и информации, если процессы, протекающие в устройствах, могут быть описаны при помощи понятий об электродвижущей силе (ЭДС), токе и напряжении.

    Основными элементами электрической цепи являются источники и приемники электрической энергии (и информации), которые соединяются между собой проводами.

    В источниках электрической энергии (гальванические элементы, аккумуляторы, электромашинные генераторы и т. п.) химическая, механическая, тепловая энергия или энергия других видов превращается в электрическую, а в приемниках электрической энергии (электротермические устройства, электрические лампы, резисторы, электрические двигатели и т. п.), наоборот, электрическая энергия преобразуется в тепловую, световую, механическую и др.

    Электрические цепи, в которых получение электрической энергии в источниках, ее передача и преобразование в приемниках происходят при неизменных во времени токах и напряжениях, называют цепями постоянного тока. При постоянных токах и напряжениях магнитные и электрические поля электрических установок также не изменяются во времени. Вследствие этого в цепях постоянного тока не возникают ЭДС индукции и отсутствуют токи смещения в диэлектриках, окружающих проводники.

    Вместо термина «приемник электрической энергии» в дальнейшем будем применять более краткие и равнозначные термины — «приемник» или «потребитель», а вместо термина «источник электрической энергии» — «источник энергии», «источник питания» или «источник».

    Дополнительно по теме

    На рис. 1.1 условно изображена простейшая электрическая установка с источником энергии — аккумуляторной батареей и с приемником — группой электрических ламп. Выводы (зажимы) источника и приемника энергии соединены между собой двумя проводами. Источник энергии, провода и приемник образуют замкнутый проводящий контур. В этом контуре под действием ЭДС источника энергии происходит непрерывное и односторонне направленное упорядоченное движение электрических зарядов. Совокупность этих трех элементов — источника энергии, двух проводов и приемника — представляет собой простейшую электрическую цепь постоянного тока. Практически чаще встречаются более сложные электрические цепи с несколькими источниками и большим числом приемников энергии, с измерительными приборами и вспомогательными элементами (переключателя-ми, предохранителями и т. п.).

    Чтобы облегчить изучение процессов в электрической цепи, ее заменяют расчетной схемой замещения, т. е. идеализированной цепью, которая служит расчетной моделью реальной цепи. При решении задач расчета режима работы цепи и других задач анализа и синтеза каждый реальный элемент цепи заменяется элементами схемы, математическое описание каждого из которых (математическая модель) должно отражать главные (доминирующие) процессы в элементе цепи, или, точнее, все, которые необходимо учесть при анализе или синтезе.

    Для цепи постоянного тока пользуются понятиями двух основных элементов схемы: источника энергии с ЭДС Е и внутренним сопротивлением rвт (рис. 1.2, а) и резистивного элемента — приемника (нагрузки) с сопротивлением r (рис. 1.2, б). Таким образом, применяя в дальнейшем термин «схема замещения», или, короче, «схема», будем подразумевать и соответствующую цепь. В дальнейшем, если нет специальных указаний, сопротивление соединяющих проводов не будет учитываться, так как оно должно быть много меньше сопротивления приемников.

    Электродвижущая сила Е (рис. 1.2, а) численно равна разности потенциалов j или напряжению U между положительным и отрицательным выводами 1 и 2 источника энергии при отсутствии в нем тока, т. е. как говорят, в режиме холостого хода, независимо от физической природы ее возникновения (контактная ЭДС, термо-ЭДС и т. д.):

    Электродвижущую силу Е можно определить как работу сторонних (не электрических) сил, присущих источнику, затрачиваемую на перемещение единицы положительного заряда внутри источника от вывода с меньшим потенциалом к выводу с большим потенциалом. Направление действия ЭДС (от отрицательного вывода к положительному) указывается на схеме стрелкой.

    Если к выводам источника энергии присоединить приемник (нагрузить), то в замкнутом контуре этой простейшей цепи возникает ток I (рис. 1.3), при этом напряжение или разность потенциалов на выводах 1 и 2 уже не будут равны ЭДС вследствие падения напряжения Uвт внутри источника энергии, т. е. на его внутреннем сопротивлении rвт:

    На рис. 1.4 представлена одна из наиболее типичных, так называемых

    U12(I) = U(I), т.е. зависимость напряжения на выводах нагруженного источника энергии от тока. Как показано на рисунке, при увеличении тока от нуля до напряжение на выводах источника энергии убывает практически по линейному закону:

    Иначе говоря, при Е = const падение напряжения внутри источника энергии Uвт в указанных пределах растет пропорционально току. При дальнейшем росте тока нарушается пропорциональность между его значением и падением напряжения внутри источника энергии — внешняя характеристика не остается линейной. Такое уменьшение напряжения вызвано у одних источников энергии уменьшением ЭДС, у других увеличением внутреннего сопротивления, а у третьих одновременным уменьшением ЭДС и увеличением внутреннего сопротивления.

    Развиваемая источником энергии мощность определяется равенством

    Здесь следует указать на установившееся в электротехнике неточное применение термина «мощность». Так, например, говорят о генерируемой, отдаваемой, передаваемой, потребляемой мощности. В действительности генерируется, отдается, получается не мощность, а энергия. Мощность характеризует интенсивность энергетического процесса и измеряется количеством генерируемой, отдаваемой, передаваемой и других видов энергии в единицу времени. Поэтому правильно было бы говорить о мощности генерирования энергии, о мощности передачи энергии и т. д. Следуя традициям электротехники, будем применять приведенные выше краткие выражения.

    Сопротивление приемника r (см. рис. 1.2,6) характеризует потребление электрической энергии, т. е. превращение электрической энергии в другие виды, при мощности

    В общем случае сопротивление приемника зависит от тока в этом приемнике r(I).

    По закону Ома напряжение на сопротивлении приемника, которое называется еще сопротивлением нагрузки?

    Отметим, что к открытию этого закона довольно близко подошел еще в 1801 -1802 гг. акад. В. В. Петров. Позднее, в 1826 г., этот закон был сформулирован Омом.

    Наряду с сопротивлением для расчета цепей вводят понятие проводимости

    Единица измерения тока (силы тока) называется ампер (1 А), ЭДС и напряжения — вольт (1 В), сопротивления — ом (1 Ом), причем 1 Ом = 1 В/1 А, проводимости — сименс (1 См = 1 / Ом), мощности — ватт (1 Вт = 1 В 1 А). При измерении всех величин можно применять кратные и дольные единицы, например килоампер (1 кА = 1000А), милливольт (1 мВ = 0,001 В), мегаом (1 МОм = 1000000 Ом), микроватт и т. д.

    На практике часто бывает задана не зависимость сопротивления от тока r(I) приемника или резистивного элемента, представляющего приемник на схеме, а зависимость напряжения на резистивном элементе от тока Uab (I) = U (I) или обратная зависимость тока от напряжения I (U). Характеристики U (I) и I (U) получили распространенное, хотя и не совсем точное название вольт-амперных (ВАХ).

    На рис. 1.5 представлены ВАХ лампы с металлической нитью U1(I) и лампы с угольной нитью U2(I). Как показано на рисунке, связь между напряжением и током каждой лампы — нелинейная. Сопротивление лампы с металлической нитью растет с увеличением тока, а сопротивление лампы с угольной нитью с увеличением тока падает.

    Электрические цепи, содержащие элементы с нелинейными характеристиками, называются нелинейными.

    Если принять ЭДС источников энергии, их внутренние сопротивления и сопротивления приемников не зависящими от токов и напряжений, то внешние характеристики источников энергии U12 (I) = U (I) и ВАХ приемников Uаb(I) = U(I) будут линейными (рис. 1.6).

    Электрические цепи, состоящие только из элементов с линейными характеристиками, называют линейными.

    Режим работы большого числа реальных электрических цепей дает возможность отнести их к линейным. Поэтому изучение свойств и методов расчета линейных электрических цепей представляет не только теоретический, но и значительный практический интерес.

    Смотри ещё по теме Электрические цепи постоянного тока

    Основные законы и методы расчета электрических цепей постоянного тока

    Основные свойства электрических цепей постоянного тока

    Электрические цепи и их элементы

    Любая электрическая цепь состоит из различных объектов и устройств, которые создают оптимальные условия для прохождения электрического тока. Для того чтобы описать электромагнитные процессы, которые происходят в каждом устройстве, применяются такие понятия, как ток, напряжение и электродвижущая сила.

    Электрические цепи: понятие, классификация элементов и источников

    Электрическая цепь – это совокупность электротехнических устройств, которые образуют путь для нормального прохождения электрического тока и которые предназначены для распределения, передачи и взаимного преобразования электрической и другой энергии.

    Электрические цепи, в которых образуется электрическая энергия, а ее преобразование и передача осуществляется при неизменных напряжениях, называются цепями постоянного тока.

    В таких цепях магнитные и электрические поля во времени не изменяются. Поскольку напряжения и токи постоянны, то изменения во времени этих величин приравниваются нулю:

    Попробуй обратиться за помощью к преподавателям

    Поэтому ток через емкость и напряжение на индуктивности, которые зависят от этих величин, также приравниваются нулю:

    Исходя из этого, можно сделать вывод, что сопротивление постоянному току в индуктивности равно нулю, а емкость, напротив, — это бесконечно большое сопротивление. Поэтому катушка индуктивности в цепи постоянного тока представляет собой обычный провод, сопротивлением которого можно пренебречь, а емкость – это разрыв электрической цепи.

    Все элементы электрической цепи условно можно классифицировать на три составные части:

    1. Источники питания. Все элементы цепи, что относятся к данной группе, вырабатывают электрическую энергию.
    2. Преобразующие элементы. Элементы, которые относятся ко второй группе, преобразуют электричество в другие виды энергии. В физике они известны как приемники.
    3. Передающие устройства. К третьей группе относятся передающие устройства. Это провода и другие установки, которые обеспечивают качество и уровень напряжения.

    Задай вопрос специалистам и получи
    ответ уже через 15 минут!

    В источниках электрической энергии происходит преобразование химической, механической, тепловой и других видов энергии в электрическую. К источникам электроэнергии можно отнести:

    • гальванические элементы;
    • электромагнитные генераторы;
    • термопреобразователи.

    В приемниках электрической энергии (электротермические устройства, электродвигатели, лампы накаливания, электролизные ванны, резисторы) электроэнергия преобразуется в световую, тепловую, химическую, механическую.

    Схемы электрических цепей

    Элементы электрических цепей соединяются в схемы разными способами. Для каждой из схем существуют определенные закономерности, которые сформулированы и установлены учеными Омом и Кирхгофом.

    Соединение потребителей в электрических цепях может быть трех видов:

    1. Последовательное соединение. В таком случае с увеличением количества потребителей происходит увеличение общего сопротивления электрической цепи. Из этого следует, что значение общего сопротивления состоит из суммы сопротивлений подключенной нагрузки. Поскольку во всех участках электрической цепи протекает одинаковый ток, то на каждый отдельный элемент распределяется только часть общего напряжения. Если какое-то устройство или прибор останавливает свою работу, то происходит разрыв электрической цепи. Иными словами, если из строя выйдет хотя бы одна лампочка, остальные тоже не будут работать (например, елочная гирлянда). Но в последовательную цепь можно включить огромное количество элементов, каждый из которых рассчитан на меньшее напряжение.
    2. Параллельное соединение. При такой схеме к двум точкам электрической цепи подключается несколько потребителей. На каждом участке напряжение будет приравниваться тому напряжению, которое приложено к каждой узловой точке. Данная схема позволяет увидеть возможность протекания электрического тока различными путями. Ток, который протекает у места разветвления, дальше проходит по двум нагрузкам, что имеют определенное сопротивление. В результате этого он приравнивается сумме токов, которые расходятся от данной точки. Происходит снижение сопротивления с увеличением ее общей проходимости. Благодаря соединению обеспечивается независимая работа потребителей. Если из строя выйдет один из них, то остальные потребители будут работать слаженно, поскольку цепь не разрывается.
    3. Комбинированное соединение. Большинство приборов на практике включаются в электрическую цепь сразу двумя способами (параллельно и последовательно). Поэтому подобные соединения носят название комбинированные. Например, вся защитная аппаратура соединяется последовательно, тем самым, обеспечивая разрыв цепи. Лампочки и розетки, всегда включаются параллельно, исключая взаимодействие между собой. Частое использование комбинированного соединения вызвано различным энергопотреблением. Их сопротивления при постоянном напряжении будут отличаться между собой. Комбинированное соединение позволяет распределить нагрузку на линиях и предотвратить перегрузку.

    Электрическая цепь, которая изображена графически при помощи знаков и символов, носит название «электрическая схема».

    Она представлена в виде идеализированной цепи, которая является расчетной моделью реальной электрической цепи. Иногда она называется эквивалентной схемой замещения. По возможности данная схема должна отражать реальные процессы, что происходят в действительности. Каждый реальный элемент цепи при расчетах заменяется элементами схемы.

    В цепях постоянного электрического тока используются два элемента: резистивный элемент с сопротивлением $R$ и источник энергии с внутренним сопротивлением $r_0$. Под внутренним сопротивлением генератора понимается сопротивление всех его внутренних элементов электрическому току.

    Сопротивление приемника $R$ может охарактеризовать потребление электрической энергии, иными словами, превращение электроэнергии в другие виды энергии с выделением мощности:

    Для того чтобы провести анализ электрической цепи важно выделить несколько понятий: ветвь, узел, контур.

    Ветвь – это участок цепи, который образуется элементами, что соединены последовательно, и характеризуется собственными значениями электрического тока в определенный момент.

    Узлом является точка соединения нескольких ветвей. Если в месте пересечения на электрической схеме отображается точка, то на этом месте существует электрическое соединение двух линий. В противном случае узла нет.

    Контур – это замкнутая часть электрической цепи, которая состоит из нескольких узлов и ветвей.

    Заземление любой точки схемы говорит о том, что потенциал данной точки приравнивается нулю.

    Активные элементы электрической цепи

    В качестве источников энергии в линейных электрических цепях различают источники ЭДС и источники электрического тока. Идеальный источник ЭДС имеет неизменную электродвижущую силу и напряжение на выходных зажимах. У реального источника напряжение и ЭДС изменяются при изменении нагрузки. В электрической схеме это можно учесть последовательным включением резистора $r_0$.

    Напряжение $U_ab$ напрямую зависит от тока приемника и приравнивается разности между электродвижущей силой генератора и уменьшением напряжения на его внутреннем сопротивлении $r_0$.

    $U_ab = \varphi_a — \varphi_b$

    Ток, который протекает по электрической цепи, зависит от сопротивления нагрузки:

    Если принять ЭДС источника, где внутреннее сопротивление и сопротивление приемника не зависит от напряжения и тока, то внешняя характеристика источника энергии $U_12 = f(l)$ и вольтамперная характеристика приемника $U_ab = f(l)$ будут линейными.

    Для источника электрического тока характерно бесконечное внутреннее сопротивление и бесконечное значение электродвижущей силы. При этом выполняется следующее равенство:

    Если $r_0\geqslant R_H$ и $l_0\leqslant l$, то источник энергии находится в режиме, который близок к короткому замыканию. Тогда $l_0=0$/

    Источник с внутренним сопротивлением $g_0 = 0$ называется идеальным источником.

    Пассивные элементы электрической цепи

    Главными пассивными элементами электрических цепей являются индуктивные, резистивные и емкостные. Чтобы понять их силовые характеристики, необходимо рассмотреть их при постоянном токе.

    Электротехническое устройство, которое обладает сопротивлением и применяется для ограничения электрического тока, называется резистором.

    Резистивными элементами называются идеализированные модели резисторов. Основной величиной, которая характеризует резистор, является сопротивление $R$. Определить его можно из следующего соотношения:

    $U_ab = RI$ — закон Ома.

    Сопротивление можно измерить в Омах: $[R] = [\frac ] = \frac = Ом$

    К пассивным элементам также можно отнести катушку индуктивности L.

    Катушка – это обмотка изолированного провода, который намотан на каркас или без каркаса (имеются выводы для присоединения).

    $L$ – это параметр, определяющий способность катушки формировать магнитное поле. Он напрямую зависит от геометрических параметров катушки, количества витков, а также от магнитных свойств сердечника, на который наматывается катушка.

    Из-за возникновения магнитного поля электрическая цепь пронизывается магнитным потоком. Для того чтобы охарактеризовать катушку индуктивности, как основного элемента цепи, нужно найти потокосцепление $\psi$. Индуктивность $L$ – это коэффициент пропорциональности между $\psi$ и $l$:

    Между двумя проводниками, которые разделяются диэлектриком, есть электрическая емкость. Коэффициент пропорциональности С в таком случае называют емкостью:

    Так и не нашли ответ
    на свой вопрос?

    Просто напиши с чем тебе
    нужна помощь

    Электрическая цепь и ее элементы

    Совокупность устройств для получения в них электрического тока называется электрической цепью. В основном цепь состоит из источников питания, приемников энергии или потребителей и проводов для передачи электрической энергии.

    На рис. 2-2 дано графическое изображение простейшей цепи, т. е. ее электрическая схема. Источник питания И составляет внутренний участок цепи, а остальная часть ее АБВГ, состоящая из потребителя П и проводов АБ и ВГ — внешнюю часть ее.

    Рис. 2-2. Схема электрической цепи.

    В табл. 2-2 даны условные обозначения, применяемые в электрических схемах согласно ГОСТ 2.722-68 — 2.751-68.

    В качестве источников питания применяются электромашинные генераторы, преобразующие механическую энергию в электрическую, аккумуляторы и первичные элементы, преобразующие химическую энергию в электрическую И др.

    К потребителям электрической энергии (электроприемникам) относятся например: электродвигатели, преобразующие электрическую энергию в механическую; электролитические ванны для получения чистых металлов, преобразующие электрическую энергию в химическую; лампы накаливания и нагревательные устройства, преобразующие электроэнергию соответственно в световую и тепловую и т. д.

    В источнике питания происходит преобразование какого-либо вида энергии в электрическую. В результате работы сторонних (не электрических) сил каждый единичный заряд при движении внутри источника приобретает некоторое количество энергии. Электродвижущей силой (э. д. с.) называется величина, численно равная энергии, получаемой внутри источника единицей электрического заряда.

    Таблица 2-1. Условные графические обозначения, применяемые в электрических схемах (по ГОСТ 2.722-68-2.751-68) (см. скан)

    Продолжение табл. 2-1

    При отключенной внешней цепи э. д. с. Е равна напряжению между зажимами источника.

    В электроприемниках электрическая энергия преобразуется в тепловую, механическую или химическую. При этом напряжение U на зажимах электроприемника показывает, какая электрическая энергия преобразуется (расходуется) в нем каждым единичным зарядом.

    Разность между э. д. с. Е и напряжением U представляет собой энергию, которая преобразуется в тепло (теряется) при перемещении единичного заряда в источнике питания и называется внутренним падением напряжения следовательно:

    Напряжение от источника питания к потребителям передается по проводам. Потерей энергии в коротких проводах иногда пренебрегают, как это сделано и в нашем случае.

    Провода применяются алюминиевые и медные, изолированные и неизолированные.

    Кроме трех рассмотренных элементов электрических цепей в них применяются: коммутационная аппаратура — рубильники, выключатели, контакторы; приборы защиты — плавкие предохранители, реле; измерительные приборы — амперметры, вольтметры, ваттметры и т. д.

    Каждый электрик должен знать:  Перерасчет электроэнергии как делается и в каких случаях
  • Добавить комментарий