Электрическая проницаемость и угол диэлектрических потерь

СОДЕРЖАНИЕ:

7.2.1. Характеристики диэлектрических потерь

Чаше всего для характеристики способности диэлектрика рассеивать энергию в электрическом поле используют угол диэлектрических потерь 8, тангенс угла диэлектрических потерь tg 8 и мощность потерь, или активную мощность Ра.

Диэлектрические потери наблюдаются как в постоянном, так и в переменном поле.

В постоянном поле, когда не происходит периодической поляризации, диэлектрические потери невелики. Они оцениваются сопротивлением изоляции Rni и током сквозной проводимости /скв — активным током, возникающим вследствие миграции свободных носителей заряда, и определяются выражением

где U — постоянное напряжение.

Диэлектрические потери в переменном поле значительно выше, чем в постоянном, и могут нанести больший вред материалам и изделиям из них. Рассмотрим потери в переменном поле с частотой/= 2ясо, напряжение которого изменяется синусоидально U(t) = Umax sin со/.

Общий ток /, протекающий через диэлектрик, является суммой токов различной природы

где /см, /аб — соответственно токи смещения и абсорбции.

Ток смещения появляется в результате смещения электронных оболочек атомов или ионов, т. е. в результате упругой поляризации. Он представляет собой реактивный ток и потерь не вызывает. Ток абсорбции является результатом релаксационных видов поляризации; он может быть разложен на две составляющие — активную /аба, вызывающую потери энергии, и реактивную /аб р, не вызывающую потерь.

Таким образом, полный ток /, протекающий через диэлектрик, можно представить в виде суммы активной и реактивной составляющих:

где активную и реактивную составляющие можно представить в виде

Для определения тангенса угла диэлектрических потерь tg8 и активной мощности Ра можно воспользоваться так называемой эквивалентной схемой, в которой реальный диэлектрик с потерями заменен конденсатором с идеальным диэлектриком и параллельно включенным активным сопротивлением. При этом активная мощность, расходуемая в схеме, равна мощности, рассеиваемой в реальном диэлектрике, а ток сдвинут относительно напряжения на тот же угол, что и в этом диэлектрике.

Рассмотрим параллельную эквивалентную схему (рис. 7.6, а). Активная составляющея тока /а совпадает по фазе с напряженней U. Реактивная составляющая тока (ток, текущий через конденсатор) /р опережает напряжение на п/2 (рис. 7.6, б).

Рис. 7.6. Параллельная эквивалентная схема замещения диэлектрика с потерями (а) и векторная диаграмма токов в ней (б)

При этом реактивный ток равен

где хс — реактивное (емкостное) сопротивление конденсатора с диэлектриком, хс = 1 /(соС), со — угловая частота; С — емкость конденсатора. Активный ток, текущий через сопротивление R:

Взаимоотношение этих токов можно выразить векторной диаграммой (рис. 7.6, б), учитывая, что /а и /р сдвинуты друг относительно друга на п/2.

Из диаграммы видно, что по фазе /а совпадает с напряжением. Суммарный ток (определяется из векторной диаграммы токов) / = /а + /р опережает напряжение U на угол (р. Угол, дополнительный к нему, 8 = п/2 — , ‘ = etg8 и называется коэффициентом или фактором диэлектрических потерь.

Диэлектрические потери, отнесенные к единице объема диэлектрика, называются удельными диэлектрическими потерями:

где V — объем диэлектрика; S — площадь электродов; И — расстояние между электродами плоского конденсатора.

Подставив в эту формулу выражение для емкости плоского конденсатора С = E?/(Sh), получим

Величина ya=co??tg5 называется удельном активной проводимостью и характеризует электропроводность диэлектриков в переменном поле. Удельная активная проводимость учитывает как омические (г. е. связанные со сквозной проводимостью), так и релаксационные потери.

Очевидно, что особенно важно учитывать влияние диэлектрических потерь при использовании материалов в высокочастотных электрических полях. Поэтому материалы для высоковольтной и высокочастотной аппаратуры и приборов должны иметь как можно меньшие значения tgS и г.

Иногда для характеристики устройства с диэлектриком применяют добротность Q — параметр, обратный тангенсу угла диэлектрических потерь:

Что показывает диэлектрическая проницаемость диэлектрика. Электрическая проницаемость и угол диэлектрических потерь

ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ, величина ε, характеризующая поляризацию диэлектриков под действием электрического поля напряжённостью Е. Диэлектрическая проницаемость входит в Кулона закон как величина, показывающая, во сколько раз сила взаимодействия двух свободных зарядов в диэлектрике меньше, чем в вакууме. Ослабление взаимодействия происходит вследствие экранирования свободных зарядов связанными, образующимися в результате поляризации среды. Связанные заряды возникают вследствие микроскопического пространственного перераспределения зарядов (электронов, ионов) в электрически нейтральной в целом среде.

Связь между векторами поляризации Р, напряжённости электрического поля Е и электрической индукции D в изотропной среде в системе единиц СИ имеет вид:

где ε 0 — электрическая постоянная. Величина диэлектрической проницаемости ε зависит от структуры и химического состава вещества, а также от давления, температуры и других внешних условий (табл.).

Для газов её величина близка к 1, для жидкостей и твёрдых тел изменяется от нескольких единиц до нескольких десятков, у сегнетоэлектриков может достигать 10 4 . Такой разброс значений ε обусловлен различными механизмами поляризации, имеющими место в разных диэлектриках.

Классическая микроскопическая теория приводит к приближённому выражению для диэлектрической проницаемости неполярных диэлектриков:

где n i — концентрация i-го сорта атомов, ионов или молекул, α i — их поляризуемость, β i — так называемый фактор внутреннего поля, обусловленный особенностями структуры кристалла или вещества. Для большинства диэлектриков с диэлектрической проницаемостью, лежащей в пределах 2-8, β = 1/3. Обычно диэлектрическая проницаемость практически не зависит от величины приложенного электрического поля вплоть до электрического пробоя диэлектрика. Высокие значения ε некоторых оксидов металлов и других соединений обусловлены особенностями их структуры, допускающей под действием поля Е коллективное смещение подрешёток положительных и отрицательных ионов в противоположных направлениях и образование значительных связанных зарядов на границе кристалла.

Процесс поляризации диэлектрика при наложении электрического поля развивается не мгновенно, а в течение некоторого времени τ (времени релаксации). Если поле Е изменяется во времени t по гармоническому закону с частотой ω, то поляризация диэлектрика не успевает следовать за ним и между колебаниями Р и Е появляется разность фаз δ. При описании колебаний Р и Е методом комплексных амплитуд диэлектрическую проницаемость представляют комплексной величиной:

причём ε’ и ε» зависят от ω и τ, а отношение ε»/ε’ = tg δ определяет диэлектрические потери в среде. Сдвиг фаз δ зависит от соотношения τ и периода поля Т = 2π/ω. При τ > Т (высокие частоты) поляризация не успевает за изменением Ε, δ → π и ε’ в этом случае обозначают ε (∞) (механизм поляризации «отключён»). Очевидно, что ε (0) > ε (∞) , и в переменных полях диэлектрическая проницаемость оказывается функцией ω. Вблизи ω = l/τ происходит изменение ε’ от ε (0) до ε (∞) (область дисперсии), а зависимость tgδ(ω) проходит через максимум.

Характер зависимостей ε’(ω) и tgδ(ω) в области дисперсии определяется механизмом поляризации. В случае ионной и электронной поляризаций при упругом смещении связанных зарядов изменение Р(t) при ступенчатом включении поля Е имеет характер затухающих колебаний и зависимости ε’(ω) и tgδ(ω) называются резонансными. В случае ориентационной поляризации установление Р(t) носит экспоненциальный характер, а зависимости ε’(ω) и tgδ(ω) называются релаксационными.

Методы измерения диэлектрической поляризации основаны на явлениях взаимодействия электромагнитного поля с электрическими дипольными моментами частиц вещества и различны для разных частот. В основе большинства методов при ω ≤ 10 8 Гц лежит процесс зарядки и разрядки измерительного конденсатора, заполненного исследуемым диэлектриком. При более высоких частотах используются волноводные, резонансные, мультичастотные и другие методы.

В некоторых диэлектриках, например сегнетоэлектриках, пропорциональная зависимость между Р и Ε [Ρ = ε 0 (ε ‒ 1)Е] и, следовательно, между D и Е нарушается уже в обычных, достигаемых на практике электрических полях. Формально это описывается как зависимость ε(Ε) ≠ const. В этом случае важной электрической характеристикой диэлектрика является дифференциальная диэлектрическая проницаемость:

В нелинейных диэлектриках величину ε диф измеряют обычно в слабых переменных полях при одновременном наложении сильного постоянного поля, а переменную составляющую ε диф, называют реверсивной диэлектрической проницаемостью.

Лит. смотри при ст. Диэлектрики.

  1. Природа электропроводности газообразных, жидких и твердых диэлектриков

Относительная диэлектрическая проницаемость, или диэлектрическая проницаемость ε — один из важнейших макроскопических электрических параметров диэлектрика. Диэлектрическая проницаемость ε количественно характеризует способность диэлектрика поляризоваться в электрическом поле, а также оценивает степень его полярности; ε является константой диэлектрического материала при данной температуре и частоте электрического напряжения и показывает, во сколько раз заряд конденсатора с диэлектриком больше заряда конденсатора тех же размеров с вакуумом.

Диэлектрическая проницаемость определяет величину электрической емкости изделия (конденсатора, изоляции кабеля и т.п.). Для плоского конденсатора электрическая емкость С, Ф, выражается формулой (1)

где S- площадь измерительного электрода, м 2 ; h — толщина диэлектрика, м. Из формулы (1) видно, что чем больше величина ε используемого диэлектрика, тем больше электрическая емкость конденсатора при тех же габаритах. В свою очередь, электрическая емкость С является коэффициентом пропорциональности между поверхностным зарядом QК, накопленным конденсатором, и приложенным к нему электрическим на-

Из формулы (2) следует, что электрический заряд QК, накопленный конденсатором, пропорционален величине ε диэлектрика. Зная игеометрические размеры конденсатора, можно определить ε диэлектрического материала для данного напряжения.

Рассмотрим механизм образования заряда на электродах конденсатора с диэлектриком и из каких составляющих складывается этот заряд. Для этого возьмем два плоских конденсатора одинаковых геометрических размеров: один — с вакуумом, другой — с межэлектродным пространством, заполненным диэлектриком, и подадим на них одинаковое электрическое напряжение U (рис. 1). На электродах первого конденсатора образуется заряд Q0 , на электродах второго — . В свою очередь, заряд является суммой зарядов Q0 и Q (3):

Заряд Q 0 образован внешним полем Е0 путем накопления на электродах конденсатора сторонних зарядов с поверхностной плотностью σ 0 . Q — это дополнительный заряд на электродах конденсатора, создаваемый источником электрического напряжения для компенсации связанных зарядов, образовавшихся на поверхности диэлектрика.

В равномерно поляризованном диэлектрике заряд Q соответствует величине поверхностной плотности связанных зарядов σ. Заряд σ образует поле Е сз, направленное противоположно полю Е О.

Диэлектрическую проницаемость рассматриваемого диэлектрика можно представить как отношение заряда конденсатора, заполненного диэлектриком, к заряду Q0 такого же конденсатора с вакуумом (3):

Из формулы (3) следует, что диэлектрическая проницаемость ε — величина безразмерная, и у любого диэлектрика она больше единицы; в случае вакуума ε = 1. Из рассмотренного примера также

видно, что плотность заряда на электродах конденсатора с диэлектриком в ε раз больше плотности заряда на электродах конденсатора с вакуумом, а напряженности при одинаковых напряжениях для обо

их конденсаторов одинаковы и зависят только от величины напряжения U и расстояния между электродами (Е = U /h).

Кроме относительной диэлектрической проницаемости ε различают абсолютную диэлектрическую проницаемость ε а , Ф/м, (4)

которая не имеет физического смысла и используется в электротехнике.

Относительное изменение диэлектрической проницаемости εr при повышении температуры на 1 К называется температурным коэффициентом диэлектрической проницаемости.

ТКε = 1/ εr d εr/dT К-1 Для воздуха при 20°С ТК εr = -2.10-6К-

Электрическое старение в сегнетоэлектриках выражается в уменьшении εr со временем. Причиной является перегруппировка доменов.

Особенно резкое изменение диэлектрической проницаемости со временем наблюдается при температурах, близких к точке Кюри. Нагревание сегнетоэлектриков до температуры более точки Кюри и последующее охлаждение возвращает εr к прежнему значению. Такое же восстановление диэлектрической проницаемости можно осуществить, воздействуя на сегнетоэлектрик электрическим полем повышенной напряженности.

Для сложных диэлектриков – механической смеси двух компонентов с разным εr в первом приближении: εrх = θ1 · εr1х ·θ· εr2х,где θ – обьемная концентрация компонентов смеси, εr — относительная диэлектрическая проницаемость компонента смеси.

Поляризация диэлектрика может быть вызвана: механическими нагрузками (пьезополяризация в пьезоэлектриках); нагревом (пирополяризация в пироэлектриках); светом (фотополяризация).

Поляризованное состояние диэлектрика в электрическом поле Е характеризуется электрическим моментом единицы объема, поляризованностью Р, Кл/м2, которая связана с его относительной диэлектрической проницаемостью eг: Р = e0 (eг — 1)Е, где e0 = 8,85∙10-12 Ф/м. Произведение e0∙eг =e, Ф/м, называют абсолютной диэлектрической проницаемостью. В газообразных диэлектриках eг мало отличается от 1,0, в неполярных жидких и твердых достигает 1,5 — 3,0, в полярных имеет большие значения; в ионных кристаллах eг — 5-МО, а в имеющих перовскитовую кристаллическую решетку достигает 200; в сегнетоэлектриках eг — 103 и больше.

В неполярных диэлектриках с ростом температуры eг незначительно уменьшается, в полярных изменения связаны с преобладанием того или иного вида поляризации, в ионных кристаллах увеличивается, в некоторых сегнетоэлектриках при температуре Кюри достигает 104 и больше. Температурные изменения eг характеризуют температурным коэффициентом. Для полярных диэлектриков характерным является уменьшение eг в области частот, где время т на поляризацию соизмеримо с Т/2.

Относи́тельная диэлектри́ческая проница́емость среды ε — безразмерная физическая величина, характеризующая свойства изолирующей (диэлектрической) среды. Связана с эффектом поляризации диэлектриков под действием электрического поля (и с характеризующей этот эффект величиной диэлектрической восприимчивости среды). Величина ε показывает, во сколько раз сила взаимодействия двух электрических зарядов в среде меньше, чем в вакууме. Относительная диэлектрическая проницаемость воздуха и большинства других газов в нормальных условиях близка к единице (в силу их низкой плотности). Для большинства твёрдых или жидких диэлектриков относительная диэлектрическая проницаемость лежит в диапазоне от 2 до 8 (для статического поля). Диэлектрическая постоянная воды в статическом поле достаточно высока — около 80. Велики её значения для веществ с молекулами, обладающими большим электрическим диполем. Относительная диэлектрическая проницаемость сегнетоэлектриков составляет десятки и сотни тысяч.

Практическое применение

Диэлектрическая проницаемость диэлектриков является одним из основных параметров при разработке электрических конденсаторов . Использование материалов с высокой диэлектрической проницаемостью позволяют существенно снизить физические размеры конденсаторов.

Параметр диэлектрической проницаемости учитывается при разработке печатных плат . Значение диэлектрической проницаемости вещества между слоями в сочетании с его толщиной влияет на величину естественной статической ёмкости слоев питания, а также существенно влияет на волновое сопротивление проводников на плате.

Зависимость от частоты

Следует отметить, что диэлектрическая проницаемость в значительной степени зависит от частоты электромагнитного поля. Это следует всегда учитывать, поскольку таблицы справочников обычно содержат данные для статического поля или малых частот вплоть до нескольких единиц кГц без указания данного факта. В то же время существуют и оптические методы получения относительной диэлектрической проницаемости по коэффициенту преломления при помощи эллипсометров и рефрактометров. Полученное оптическим методом (частота 10 14 Гц) значение будет значительно отличаться от данных в таблицах.

Рассмотрим, например, случай воды. В случае статического поля (частота равна нулю), относительная диэлектрическая проницаемость при нормальных условиях приблизительно равна 80. Это имеет место вплоть до инфракрасных частот. Начиная примерно с 2 ГГц ε r начинает падать. В оптическом диапазоне ε r составляет приблизительно 1,8. Это вполне соответствует факту, что в оптическом диапазоне показатель преломления воды равен 1,33. В узком диапазоне частот, называемом оптическим, диэлектрическое поглощение падает до нуля, что собственно и обеспечивает человеку механизм зрения в земной атмосфере, насыщенной водяным паром. С дальнейшим ростом частоты свойства среды вновь меняются.

Значения диэлектрической проницаемости для некоторых веществ

Вещество Химическая формула Условия измерения Характерное значение ε r
Алюминий Al 1 кГц -1300 + 1,3Шаблон:Ei
Серебро Ag 1 кГц -85 + 8Шаблон:Ei
Вакуум 1
Воздух Нормальные условия , 0,9 МГц 1,00058986 ± 0,00000050
Углекислый газ CO 2 Нормальные условия 1,0009
Тефлон 2,1
Нейлон 3,2
Полиэтилен [-СН 2 -СН 2 -] n 2,25
Полистирол [-СН 2 -С(С 6 Н 5)Н-] n 2,4-2,7
Каучук 2,4
Битум 2,5-3,0
Сероуглерод CS 2 2,6
Парафин С 18 Н 38 − С 35 Н 72 2,0-3,0
Бумага 2,0-3,5
Электроактивные полимеры 2-12
Эбонит (C 6 H 9 S) 2 2,5-3,0
Плексиглас (оргстекло) 3,5
Кварц SiO 2 3,5-4,5
Диоксид кремния SiO 2 3,9
Бакелит 4,5
Бетон 4,5
Фарфор 4,5-4,7
Стекло 4,7 (3,7-10)
Стеклотекстолит FR-4 4,5-5,2
Гетинакс 5-6
Слюда 7,5
Резина 7
Поликор 98 % Al 2 O 3 9,7
Алмаз 5,5-10
Поваренная соль NaCl 3-15
Графит C 10-15
Керамика 10-20
Кремний Si 11.68
Бор B 2.01
Аммиак NH 3 20 °C 17
0 °C 20
−40 °C 22
−80 °C 26
Спирт этиловый C 2 H 5 OH или CH 3 -CH 2 -OH 27
Метанол CH 3 OH 30
Этиленгликоль HO-CH 2 -CH 2 -OH 37
Фурфурол C 5 H 4 O 2 42

Электрическая проницаемость

Электрическая проницаемость является величиной, характеризующей емкость диэлектрика, помещенного между обкладками конденсатора. Как известно, емкость плоского конденсатора зависит от величины площади обкладок (чем больше площадь обкладок, тем больше емкость), расстояния между обкладками или толщины диэлектрика (чем толще диэлектрик, тем меньше емкость), а также от материала диэлектрика, характеристикой которого служит электрическая проницаемость.

Численно электрическая проницаемость равна отношению емкости конденсатора с каким-либо диэлектриком такого же воздушного конденсатора. Для создания компактных конденсаторов необходимо применять диэлектрики с высокой электрической проницаемостью. Электрическая проницаемость большинства диэлектриков составляет несколько единиц.

В технике получены диэлектрики с высокой и со сверхвысокой электрической проницаемостью. Основная их часть — рутил (двуокись титана).

Рисунок 1. Электрическая проницаемость среды

Угол диэлектрических потерь

В статье «Диэлектрики » мы разбирали примеры включения диэлектрика в цепи постоянного и переменного тока. Оказалось, что реальном диэлектрике при работе его в электрическом поле, образованным переменным напряжением, происходит выделение тепловой энергии. Мощность, поглощаемая при этом, называется диэлектрическими потерями. В статье «Цепь переменного тока, содержащая емкость» будет доказано, что в идеальном диэлектрике емкостной ток опережает напряжение на угол, меньший 90°. В реальном диэлектрике емкостной ток опережает напряжение на угол, меньший 90°. На уменьшение угла оказывает влияние ток утечки, называемый иначе током проводимости.

Разность между 90° и углом сдвига между напряжением и током, проходящим в цепи с реальным диэлектриком, называется углом диэлектрических потерь или углом потерь и обозначается δ (дельта). Чаще определяют не сам угол, а тангенс этого угла — tg δ.

Установлено, что диэлектрические потери пропорциональны квадрату напряжения, частоте переменного тока, емкости конденсатора и тангенсу угла диэлектрических потерь.

Следовательно, чем больше тангенс угла диэлектрических потерь, tg δ, тем больше потери энергии в диэлектрике, тем хуже материал диэлектрика. Материалы с относительно большим tg δ (порядка 0,08 — 0,1 и более) являются плохими изоляторами. Материалы с относительно малым tg δ (порядка 0,0001) являются хорошими изоляторами.

ВИРТУАЛЬНАЯ ЛАБОРАТОРНАЯ РАБОТА №3 ПО

ФИЗИКЕ ТВЕРДОГО ТЕЛА

Методические указания к выполнению лабораторной работы №3 по разделу физики «Твердого тела» для студентов технических специальностей всех форм обучения

Кандидат физико-математических наук, доцент О.Н. Бандурина

(Сибирский государственный аэрокосмический университет

имени академика М.Ф. Решетнева)

Печатается по решению методической комиссии ИКТ

Определение диэлектрической проницаемости полупроводников. Виртуальная лабораторная работа №3 по физике твердого тела: Методические указания к выполнению лабораторной работы №3 по разделу физики «Твердого тела» для студентов техн. спец. всех форм обучения / сост.: А.М. Харьков; Сиб. гос. аэрокосмич. ун-т. – Красноярск, 2012. – 21 с.

Сибирский государственный аэрокосмический

университет имени академика М.Ф. Решетнева, 2012

Допуск к лабораторной работе……………………………………………………. 4

Оформление лабораторной работы к защите……………………………………. 4

Определение диэлектрической проницаемости полупроводников…………. 5

Методика измерения диэлектрической проницаемости…………………..……..11

Обработка результатов измерений………………………..………………………16

Данные методические указания содержат описания к лабораторным работам, в которых используются виртуальные модели из курса «Физика твердого тела».

Допуск к лабораторной работе:

Проводится преподавателем по группам с персональным опросом каждого студента. Для допуска:

1) Каждый студент предварительно оформляет свой персональный конспект данной лабораторной работы;

2) Преподаватель индивидуально проверяет оформление конспекта и задает вопросы по теории, методике измерений, установке и обработке результатов;

3) Студент отвечает на заданные вопросы;

4) Преподаватель допускает студента к работе и ставит свою подпись в конспекте студента.

Оформление лабораторной работы к защите:

Полностью оформленная и подготовленная к защите работа должна соответствовать следующим требованиям:

Выполнение всех пунктов: все расчеты требуемых величин, заполнены чернилами все таблицы, построены все графики и т.д.

Графики должны удовлетворять всем требованиям преподавателя.

Для всех величин в таблицах должна быть записана соответствующая единица измерения.

Записаны выводы по каждому графику.

Выписан ответ по установленной форме.

Записаны выводы по ответу.

ОПРЕДЕЛЕНИЕ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ ПОЛУПРОВОДНИКОВ

Поляризация – это способность диэлектрика под действием электрического поля поляризоваться, т.е. изменять в пространстве расположение связанных заряженных частиц диэлектрика.

Важнейшим свойством диэлектриков является их способность к электрической поляризации, т.е. под влиянием электрического поля происходит направленное смещение заряженных частиц или молекул на ограниченное расстояние. Под действие электрического поля смещаются заряды, как в полярных, так и неполярных молекулах.

Существует более десятка различных видов поляризации. Рассмотрим некоторые из них:

1. Электронная поляризация – это смещение электронных орбит относительно положительно заряженного ядра. Оно происходит во всех атомах любого вещества, т.е. во всех диэлектриках. Электронная поляризация устанавливается за время 10 -15 –10 -14 с.

2. Ионная поляризация – смещение относительно друг друга разноименно заряженных ионов в веществах с ионными связями. Время ее установления 10 -13 –10 -12 с. Электронная и ионная поляризация относятся к числу мгновенных или деформационных видов поляризации.

3. Дипольная или ориентационная поляризация обусловлена ориентацией диполей в направлении электрического поля. Дипольной поляризацией обладают полярные диэлектрики. Время ее установления 10 -10 –10 -6 с. Дипольная поляризация относится к числу медленных или релаксационных видов поляризации.

4. Миграционная поляризация наблюдается в неоднородных диэлектриках, в которых электрические заряды накапливаются на границе радела неоднородностей. Процессы установления миграционной поляризации очень медленны и могут протекать на протяжении минут и даже часов.

5. Ионно-релаксационная поляризация обусловлена избыточным перебросом слабо связанных ионов под действием электрического поля на расстояния, превышающие постоянную решетки. Ионно-релаксационная поляризация проявляется в некоторых кристаллических веществах при наличии в них примесей в виде ионов или неплотной упаковке кристаллической решетки. Время ее установления 10 -8 –10 -4 с.

6. Электронно-релаксационная поляризация возникает за счет возбужденных тепловой энергией избыточных «дефектных» электронов или «дырок». Этот вид поляризации, как правило, обуславливает высокое значение диэлектрической проницаемости.

7. Спонтанная поляризация – самопроизвольная поляризация, возникающая в некоторых веществах (например, сегнетовой соли) в определенной области температур.

8. Упруго-дипольная поляризация связана с упругим поворотом диполей на небольшие углы.

9. Остаточная поляризация – поляризация, которая остается в некоторых веществах (электретах) в течение продолжительного времени после снятия электрического поля.

10. Резонансная поляризация . Если частота электрического поля близка к собственной частоте колебаний диполей, то колебания молекул могут возрасти, что приведет к появлению резонансной поляризации в дипольном диэлектрике. Резонансная поляризация наблюдается при частотах лежащих в области инфракрасного света. Реальный диэлектрик может одновременно обладать несколькими видами поляризации. Возникновение того или иного вида поляризации определяется физико-химическими свойствами вещества и диапазоном используемых частот .

ε – диэлектрическая проницаемость – мера способности материала к поляризации; это величина, показывающая во сколько раз сила взаимодействия электрических зарядов в данном материале меньше, чем в вакууме. Внутри диэлектрика возникает поле, направленное противоположно внешнему.

Напряженность внешнего поля ослабевает по сравнению с полем тех же зарядов в вакууме в ε раз, где ε – относительная диэлектрическая проницаемость.

Если вакуум между обкладками конденсатора заменяется на диэлектрик, то в результате поляризации емкость возрастает. На этом основано простое определение диэлектрической проницаемости:

где C 0 – емкость конденсатора, между обкладками которого – вакуум.

C d – емкость того же конденсатора с диэлектриком.

Диэлектрическая проницаемость ε изотропной среды определяется отношением:

где χ – диэлектрическая восприимчивость.

D = tg δ – тангенс угла диэлектрических потерь

Диэлектрические потери – потери электрической энергии, обусловленные протеканием токов в диэлектриках. Различают ток сквозной проводимости I ск.пр, вызванный наличием в диэлектриках небольшого количества легкоподвижных ионов, и поляризационные токи. При электронной и ионной поляризации поляризационный ток называется током смещения I см, он очень кратковременный и не регистрируется приборами. Токи, связанные с замедленными (релаксационными) видами поляризации, называются токами абсорбции I абс. В общем случае суммарный ток в диэлектрике определяется как: I=I абс +I ск.пр. После установления поляризации суммарный ток будет равен: I=I ск.пр. Если в постоянном поле поляризационные токи возникают в момент включения и выключения напряжения, и суммарный ток определяется в соответствии с уравнением: I=I ск.пр, то в переменном поле поляризационные токи возникают в момент смены полярности напряжения. Вследствие этого потери в диэлектрике в переменном поле могут быть значительными, особенно если полупериод приложенного напряжения приближается к времени установления поляризации.

На рис. 1(a) приведена схема, эквивалентная конденсатору с диэлектриком, находящемуся в цепи переменного напряжения. В этой схеме конденсатор с реальным диэлектриком, который обладает потерями, заменен идеальным конденсатором C с параллельно включенным активным сопротивлением R. На рис. 1(б) приведена векторная диаграмма токов и напряжений для рассматриваемой схемы, где U – напряжения в цепи; I ак – активный ток; I р – реактивный ток, который опережает по фазе на 90° активную составляющую; I ∑ — суммарный ток. При этом: I а =I R =U/R и I р =I C =ωCU, где ω – круговая частота переменного поля.

Рис. 1. (а) – схема; (б) – векторная диаграмма токов и напряжений

Углом диэлектрических потерь называется угол δ, дополняющий до 90° угол сдвига фаз φ между током I ∑ и напряжением U в емкостной цепи. Потери в диэлектриках в переменном поле характеризуются тангенсом угла диэлектрических потерь: tg δ=I а /I р.

Предельные значения тангенса угла диэлектрических потерь для высокочастотных диэлектриков не должны превышать (0,0001 – 0,0004), а для низкочастотный – (0,01 – 0,02).

Зависимости ε и tg δ от температуры T и частоты ω

Диэлектрические параметры материалов в различной степени зависят от температуры и частоты. Большое количество диэлектрических материалов не позволяет охватить особенности всех зависимостей от указанных факторов.

Поэтому на рис. 2 (a, б) изображены общие тенденции, характерные для некоторых основных групп т.е. приведены типичные зависимости диэлектрической проницаемости ε от температуры T (а) и от частоты ω (б).

Рис. 2. Частотная зависимость действительной (εʹ) и мнимой (εʺ) частей диэлектрической проницаемости при наличии ориентационного механизма релаксации

Комплексная диэлектрическая проницаемость. При наличии процессов релаксации диэлектрическую проницаемость удобно записывать в комплексном виде. Если для поляризуемости справедлива формула Дебая:

где, τ – время релаксации, α 0 – статистическая ориентационная поляризуемость. То, полагая локальное поле равным внешнему, получим (в СГС):

Графики зависимости εʹ и εʺ от произведения ωτ приведены на рис. 2. Заметим, что уменьшение εʹ (действительной части ε) имеет место вблизи максимума εʺ (мнимой части ε).

Такой ход изменения εʹ и εʺ с частотой служит частым примером более общего результата, согласно которому εʹ(ω) от частоты влечет за собой также и зависимость εʺ(ω) от частоты. В системе СИ следует заменить 4π на 1/ε 0 .

Под действием приложенного поля молекулы в неполярном диэлектрике поляризуются, становясь диполями с индуцированным дипольным моментом μ и , пропорциональным напряженности поля:

В полярном диэлектрике дипольный момент полярной молекулы μ в общем случае равен векторной сумме собственного μ 0 и индуцированного μ и моментов:

Напряженности поля, создаваемого этими диполями, пропорциональны дипольному моменту и обратно пропорциональны кубу расстояния.

Для неполярных материалов обычно ε = 2 – 2,5 и не зависит от частоты до ω ≈10 12 Hz. Зависимость ε от температуры обусловлена у них тем, что при ее изменении изменяются линейные размеры твердых и объемы жидких и газообразных диэлектриков, что изменяет число молекул n в единице объема

и расстояния между ними. Используя известные из теории диэлектриков соотношения F=n\ μ и и F= ε 0 (ε 1)Е, где F – поляризованность материала, для неполярных диэлектриков имеем:

При E=const также μ и = const и температурное изменение ε обусловлено только изменением n, которое является линейной функцией температуры Θ, зависимость ε = ε(Θ) также является линейной. Для полярных диэлектриков аналитических зависимостей нет, и обычно пользуются эмпирическими.

1)С возрастанием температуры объем диэлектрика увеличивается и диэлектрическая проницаемость немного уменьшается. Особенно заметно уменьшение ε в период размягчения и плавления неполярных диэлектриков, когда их объем существенно возрастает. Ввиду высокой частоты обращения электронов на орбитах (порядка 10 15 –10 16 Hz) время установления равновесного состояния электронной поляризации очень мало и проницаемость ε неполярных диэлектриков не зависит от частоты поля в обычно используемом диапазоне частот (до 10 12 Hz).

2) При повышении температуры ослабевают связи между отдельными ионами, что облегчает их взаимодействие под действием внешнего поля и это приводит к увеличению ионной поляризации и диэлектрической проницаемости ε. Ввиду малости времени установления состояния ионной поляризации (порядка 10 13 Hz, что соответствует собственной частоте колебания ионов в кристаллической решетке) изменение частоты внешнего поля в обычных рабочих диапазонах практически не отражается на величине ε в ионных материалов.

3) Диэлектрическая проницаемость полярных диэлектриков сильно зависит от температуры и частоты внешнего поля. С возрастанием температуры увеличивается подвижность частиц и уменьшается энергия взаимодействия между ними, т.е. облегчается их ориентация под действием внешнего поля – возрастает дипольная поляризация и диэлектрическая проницаемость. Однако этот процесс продолжается лишь до определенной температуры. При дальнейшем возрастании температуры проницаемость ε уменьшается. Так как ориентация диполей по направлению поля осуществляется в процессе теплового движения и посредством теплового движения, то установление поляризации требует значительного времени. Это время настолько велико, что в переменных полях высокой частоты диполи не успевают ориентироваться по полю, и проницаемость ε падает .

Методика измерения диэлектрической проницаемости

Емкость конденсатора. Конденсатор – это система из двух проводников (обкладок), разделенных диэлектриком, толщина которого мала по сравнению с линейными размерами проводников. Так, например, две плоские металлические пластины, расположенные параллельно и разделенные слоем диэлектрика, образуют конденсатор (рис. 3).

Если пластинам плоского конденсатора сообщить равные по модулю заряды противоположного знака, то напряженность электрического поля между пластинами будет в два раза больше, чем напряженность поля у одной пластины:

где ε – диэлектрическая проницаемость диэлектрика, заполняющего пространство между пластинами.

Физическая величина, определяемая отношением заряда q одной из пластин конденсатора к разности потенциалов Δφ между обкладками конденсатора, называется электроемкостью конденсатора :

Единица электроемкости СИ – Фарад (Ф). Емкостью в 1 Ф обладает такой конденсатор, разность потенциалов между обкладками которого равна 1 В при сообщении обкладкам разноименных зарядов по 1 Кл: 1 Ф = 1 Кл/1 В.

Емкость плоского конденсатора. Формулу для вычисления электроемкости плоского конденсатора можно получить, используя выражение (8). В самом деле, напряженность поля: Е = φ/εε 0 = q/εε 0 S , где S – площадь пластины. Поскольку поле однородное, то разность потенциалов между обкладками конденсатора равна: φ 1 – φ 2 = Еd = qd /εε 0 S , где d – расстояние между обкладками. Подставив в формулу (9), получим выражение для электроемкости плоского конденсатора:

где ε 0 – диэлектрическая проницаемость воздуха; S – площадь пластины конденсатора, S=hl , где h – ширина пластины, l – ее длина; d – расстояние между пластинами конденсатора.

Выражение (10) показывает, что электроемкость конденсатора можно увеличить путем увеличения площади S его обкладок, уменьшения расстояния d между ними и применения диэлектриков с большими значениями диэлектрической проницаемости ε .

Рис. 3. Конденсатор с помещенным в него диэлектриком

Если между пластинами конденсатора поместить пластину из диэлектрика, емкость конденсатора изменится. Следует рассмотреть вариант расположения диэлектрической пластины между пластинами конденсатора.

Обозначим: d в – толщину воздушного промежутка, d м – толщину диэлектрической пластины, l В – длину воздушной части конденсатора, l м – длину части конденсатора, заполненной диэлектриком, ε м – диэлектрическую проницаемость материала. Если учесть, что l = l в + l м, а d = d в + d м, то эти варианты можно рассмотреть для случаев:

В случае l в = 0, d в = 0 мы имеем конденсатор с твердым диэлектриком:

Из уравнений классической макроскопической электродинамики, основанной на уравнениях Максвелла следует, что при помещении диэлектрика в слабое переменное поле, изменяющееся по гармоническому закону с частотой ω, тензор комплексной диэлектрической проницаемости приобретает вид:

где σ – оптическая проводимость вещества, εʹ – диэлектрическая проницаемость вещества, связанная с поляризацией диэлектрика. Выражение (12) можно привести к следующему виду:

где мнимое слагаемое отвечает за диэлектрические потери .

На практике измеряют С – емкость образца, имеющего форму плоского конденсатора. Этот конденсатор характеризуется тангенсом угла диэлектрических потерь:

где R c – сопротивление, зависящее, главным образом, от диэлектрических потерь. Для измерения этих характеристик существует ряд методов: различные мостовые методы, измерения с преобразованием измеряемого параметра во временной интервал и т.д. .

При измерениях емкости С и тангенса угла диэлектрических потерь D = tgδ в данной работе была использована методика, разработанная кампанией GOOD WILL INSTRUMENT Со Ltd. Измерения проведены на прецизионном измерителе иммитанса – LCR-819-RLC. Прибор позволяет измерять емкость в пределах 20 pF–2,083 mF, тангенс угла потерь в пределах 0,0001-9999 и подавать поле смещения. Внутреннее смещение до 2 В, внешнее смещение до 30 В. Точность измерений составляет 0,05 %. Частота тест-сигнала 12 Hz -100 kHz.

В этой работе измерения проведены на частоте 1 kHz в интервале температур 77 К Статьи по теме

Диэлектрическая проницаемость материала и угол потерь

Эквивалентная схемазамещения диэлектрика, в котором существуют различные механизмы поляризации, представлена на рисунке 4.1, б в виде соединённых параллельно конденсатора С и резистора r.

Способность различных материалов поляризоваться в электрическом поле складывается из различных механизмов и характеризуется значением относительной диэлектрической проницаемости

где С – ёмкость конденсатора, заполненного диэлектриком;

С – ёмкость конденсатора того же размера в вакууме.

Диэлектрическая проницаемость материала ε формируется за счёт различных механизмов поляризации и зависит от температуры и частоты, её изменение при нагреве характеризуется температурным коэффициентом диэлектрической проницаемости ТКε, измеряемым в К –1 (в долях на градус Кельвина). Для газов, неполярных жидкостей и твёрдых диэлектриков характерен отрицательный ТКε, что объясняется их расширением при нагреве. Для полярных жидких и твёрдых изоляционных материалов характерен положительный ТКε, т. к. подвижность диполей при нагреве увеличивается, однако возможны и участки с отрицательным ТКε. Численные значения ТКε для большинства изоляционных материалов находятся в пределах от миллионных до тысячных долей на кельвин.

Диэлектрическими потерями называют энергию электрического поля, затрачиваемую на нагрев диэлектрика. При переменном напряжении потери энергии в диэлектрике намного больше, чем при постоянном, здесь основной причиной нагрева является периодическое изменение поляризации диэлектрика. Если напряжения и токи синусоидальны, то их можно представить в виде проекций на вертикальную ось векторов, вращающихся против часовой стрелки с угловой частотой ω (радиан в секунду, с –1 )

где f – частота колебания, Гц.

Рисунок 4.1, в является векторной диаграммой, а точки проекции концов векторов на вертикальную ось координат описывают осциллограммы на ленте, протягиваемой в горизонтальном направлении.

Протекание синусоидального тока через конденсатор сопровождается его периодической перезарядкой. В идеальном конденсаторе C напряжение отстаёт от тока на четверть периода, т. е. на 90° (электрических). На векторной диаграмме рисунка вектор емкостного тока, равного UωC, повёрнут относительно напряжения U на 90° против часовой стрелки, т. е. в сторону опережения. В реальном диэлектрике угол φ сдвига фаз между током и напряжением немного меньше, т. к. присутствует ток утечки через сопротивление r изоляции, равный U/R и совпадающий по фазе с напряжением U.Углом потерь энергии в материале диэлектриканазывают угол δ, дополняющий угол сдвига фаз φ между напряжением и током до 90°. Для оценки качества изоляционного материала используют тангенс угла диэлектрических потерь tgδ.Значение тангенсаугла диэлектрических потерьtgδ показывает, какая часть от энергии, запасаемой в изоляционном материале в процессе поляризации, теряется, т. е. расходуется на его нагрев. Чем меньше угол δ и его тангенс, тем меньше энергии теряется за 1 цикл переполяризации, следовательно, такой материал можно применять при более высокой частоте.

Потери энергии конденсатора вызывают его нагрев и могут привести к тепловому разрушению. Если конденсатор используется в колебательном контуре, то потери препятствуют острой настройке на резонанс. Они проявляются через снижение добротности контура и ускоренное затухание колебаний. Потери в изоляции проводов линий связи уменьшают дальность передачи сигналов. Оценка диэлектрических потерь имеет важное значение не только для высокочастотных устройств, но и для материалов, используемых в установках высокого напряжения. Особенно она важна в высоковольтных высокочастотных устройствах, поскольку мощность диэлектрических потерь пропорциональна квадрату действующего значения приложенного к диэлектрику напряжения. Мощность потерь в изоляции P, Вт,

где ω – угловая частота, с –1 ;

C – эквивалентная ёмкость изоляции, Ф;

U – действующее значение напряжения, В;

δ – угол диэлектрических потерь, tgδ = 1/(rωC);

r – эквивалентное сопротивление изоляции, Ом.

Следует помнить, что параметры С и r схемы замещения определяются при определённых значениях частоты тока и температуры изоляции, и при других режимах будут иными.

Мощность потерь, отнесенную к единице объёма диэлектрика, называют удельными потерями и измеряют в ваттах на кубометр.

Характер проявления диэлектрических потерь различен в зависимости от агрегатного состояния электроизоляционных материалов: газообразного, жидкого, твёрдого.

В газах наблюдаются ионизационные потери при высоких напряжениях и, чаще всего, в неоднородном поле, когда напряжённость в отдельных местах превосходит некоторое критическое значение в газе. Ионизация воздуха в порах твёрдой органической изоляции сопровождается образованием озона и окислов азота, что вызывает её химическое разрушение.

В чистых неполярных жидкостях диэлектрические потери обусловлены только электропроводностью и пренебрежимо малы. У хорошо очищенного нефтяного трансформаторного масла tgδ = 0,001 при ε = 2,3.

В полярных жидкостях потери в основном поляризационные. Удельная электропроводность полярных жидкостей при комнатной температуре составляет 10 –10 –10 –11 См/м, а дипольно-релаксацион-ные потери, наблюдаемые при переменном напряжении, значительно превосходят потери от электропроводности, ввиду чего полярные жидкости используют только на промышленной частоте.

В твёрдых веществах, в зависимости от их состава и строения, возможны все виды диэлектрических потерь.

Диэлектрические потери в особо чистых неполярных веществах с молекулярной структурой ничтожно малы. Полиэтилен, фторопласт, полистирол и другие полимеры широко применяют в качестве высокочастотной изоляции, в том числе и высоковольтной.

Полярные полимеры – поливинилхлорид, эпоксидные компаунды, кремнийорга­нические и фенолформальдегидные смолы, целлюлоза и другие из-за дипольно-релаксационной поляризации отличаются повышенными потерями и применяются в основном на промышленной частоте 50 Гц.

Диэлектрические потери в веществах с ионной структурой зависят от особенностей упаковки ионов в кристаллической решётке.

В веществах с плотной упаковкой ионов в отсутствие примесей, искажающих решётку, диэлектрические потери весьма малы. При повышенных температурах в этих веществах обнаруживаются потери на электропроводность. К веществам данного типа относятся слюда и другие кристаллические неорганические соединения, имеющие большое значение в производстве электротехнической керамики, например, корунд, входящий в состав ультрафарфора.

К диэлектрикам, имеющим кристаллическую структуру с неплотной упаковкой ионов, относится ряд кристаллических веществ, характеризующихся релаксационной поляризацией, вызывающей повышенные диэлектрические потери. Многие из них входят в состав изоляторного фарфора и огнеупорной керамики.

Диэлектрические потери в квазиаморфных веществах с ионной структурой (неорганических стёклах) в большой степени зависят от их состава (tgδ от 0,0002 до 0,01). При совпадении частоты напряжения с частотой колебаний ионов происходят резонансные потери.

Сегнетоэлектрики переполяризуются по петле гистерезиса, поэтому для них характерны весьма большие значения тангенса угла диэлектрических потерь, достигающие 0,1.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

bogemasamara.ru

ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ, величина ε, характеризующая поляризацию диэлектриков под действием электрического поля напряжённостью Е. Диэлектрическая проницаемость входит в Кулона закон как величина, показывающая, во сколько раз сила взаимодействия двух свободных зарядов в диэлектрике меньше, чем в вакууме. Ослабление взаимодействия происходит вследствие экранирования свободных зарядов связанными, образующимися в результате поляризации среды. Связанные заряды возникают вследствие микроскопического пространственного перераспределения зарядов (электронов, ионов) в электрически нейтральной в целом среде.

Связь между векторами поляризации Р, напряжённости электрического поля Е и электрической индукции D в изотропной среде в системе единиц СИ имеет вид:

где ε 0 — электрическая постоянная. Величина диэлектрической проницаемости ε зависит от структуры и химического состава вещества, а также от давления, температуры и других внешних условий (табл.).

Для газов её величина близка к 1, для жидкостей и твёрдых тел изменяется от нескольких единиц до нескольких десятков, у сегнетоэлектриков может достигать 10 4 . Такой разброс значений ε обусловлен различными механизмами поляризации, имеющими место в разных диэлектриках.

Классическая микроскопическая теория приводит к приближённому выражению для диэлектрической проницаемости неполярных диэлектриков:

где n i — концентрация i-го сорта атомов, ионов или молекул, α i — их поляризуемость, β i — так называемый фактор внутреннего поля, обусловленный особенностями структуры кристалла или вещества. Для большинства диэлектриков с диэлектрической проницаемостью, лежащей в пределах 2-8, β = 1/3. Обычно диэлектрическая проницаемость практически не зависит от величины приложенного электрического поля вплоть до электрического пробоя диэлектрика. Высокие значения ε некоторых оксидов металлов и других соединений обусловлены особенностями их структуры, допускающей под действием поля Е коллективное смещение подрешёток положительных и отрицательных ионов в противоположных направлениях и образование значительных связанных зарядов на границе кристалла.

Процесс поляризации диэлектрика при наложении электрического поля развивается не мгновенно, а в течение некоторого времени τ (времени релаксации). Если поле Е изменяется во времени t по гармоническому закону с частотой ω, то поляризация диэлектрика не успевает следовать за ним и между колебаниями Р и Е появляется разность фаз δ. При описании колебаний Р и Е методом комплексных амплитуд диэлектрическую проницаемость представляют комплексной величиной:

причём ε’ и ε» зависят от ω и τ, а отношение ε»/ε’ = tg δ определяет диэлектрические потери в среде. Сдвиг фаз δ зависит от соотношения τ и периода поля Т = 2π/ω. При τ > Т (высокие частоты) поляризация не успевает за изменением Ε, δ → π и ε’ в этом случае обозначают ε (∞) (механизм поляризации «отключён»). Очевидно, что ε (0) > ε (∞) , и в переменных полях диэлектрическая проницаемость оказывается функцией ω. Вблизи ω = l/τ происходит изменение ε’ от ε (0) до ε (∞) (область дисперсии), а зависимость tgδ(ω) проходит через максимум.

Каждый электрик должен знать:  Нет фазы в розетке в чем причина и что делать

Характер зависимостей ε’(ω) и tgδ(ω) в области дисперсии определяется механизмом поляризации. В случае ионной и электронной поляризаций при упругом смещении связанных зарядов изменение Р(t) при ступенчатом включении поля Е имеет характер затухающих колебаний и зависимости ε’(ω) и tgδ(ω) называются резонансными. В случае ориентационной поляризации установление Р(t) носит экспоненциальный характер, а зависимости ε’(ω) и tgδ(ω) называются релаксационными.

Методы измерения диэлектрической поляризации основаны на явлениях взаимодействия электромагнитного поля с электрическими дипольными моментами частиц вещества и различны для разных частот. В основе большинства методов при ω ≤ 10 8 Гц лежит процесс зарядки и разрядки измерительного конденсатора, заполненного исследуемым диэлектриком. При более высоких частотах используются волноводные, резонансные, мультичастотные и другие методы.

В некоторых диэлектриках, например сегнетоэлектриках, пропорциональная зависимость между Р и Ε [Ρ = ε 0 (ε ‒ 1)Е] и, следовательно, между D и Е нарушается уже в обычных, достигаемых на практике электрических полях. Формально это описывается как зависимость ε(Ε) ≠ const. В этом случае важной электрической характеристикой диэлектрика является дифференциальная диэлектрическая проницаемость:

В нелинейных диэлектриках величину ε диф измеряют обычно в слабых переменных полях при одновременном наложении сильного постоянного поля, а переменную составляющую ε диф, называют реверсивной диэлектрической проницаемостью.

Лит. смотри при ст. Диэлектрики.

  1. Природа электропроводности газообразных, жидких и твердых диэлектриков

Относительная диэлектрическая проницаемость, или диэлектрическая проницаемость ε — один из важнейших макроскопических электрических параметров диэлектрика. Диэлектрическая проницаемость ε количественно характеризует способность диэлектрика поляризоваться в электрическом поле, а также оценивает степень его полярности; ε является константой диэлектрического материала при данной температуре и частоте электрического напряжения и показывает, во сколько раз заряд конденсатора с диэлектриком больше заряда конденсатора тех же размеров с вакуумом.

Диэлектрическая проницаемость определяет величину электрической емкости изделия (конденсатора, изоляции кабеля и т.п.). Для плоского конденсатора электрическая емкость С, Ф, выражается формулой (1)

где S- площадь измерительного электрода, м 2 ; h — толщина диэлектрика, м. Из формулы (1) видно, что чем больше величина ε используемого диэлектрика, тем больше электрическая емкость конденсатора при тех же габаритах. В свою очередь, электрическая емкость С является коэффициентом пропорциональности между поверхностным зарядом QК, накопленным конденсатором, и приложенным к нему электрическим на-

Из формулы (2) следует, что электрический заряд QК, накопленный конденсатором, пропорционален величине ε диэлектрика. Зная игеометрические размеры конденсатора, можно определить ε диэлектрического материала для данного напряжения.

Рассмотрим механизм образования заряда на электродах конденсатора с диэлектриком и из каких составляющих складывается этот заряд. Для этого возьмем два плоских конденсатора одинаковых геометрических размеров: один — с вакуумом, другой — с межэлектродным пространством, заполненным диэлектриком, и подадим на них одинаковое электрическое напряжение U (рис. 1). На электродах первого конденсатора образуется заряд Q0 , на электродах второго — . В свою очередь, заряд является суммой зарядов Q0 и Q (3):

Заряд Q 0 образован внешним полем Е0 путем накопления на электродах конденсатора сторонних зарядов с поверхностной плотностью σ 0 . Q — это дополнительный заряд на электродах конденсатора, создаваемый источником электрического напряжения для компенсации связанных зарядов, образовавшихся на поверхности диэлектрика.

В равномерно поляризованном диэлектрике заряд Q соответствует величине поверхностной плотности связанных зарядов σ. Заряд σ образует поле Е сз, направленное противоположно полю Е О.

Диэлектрическую проницаемость рассматриваемого диэлектрика можно представить как отношение заряда конденсатора, заполненного диэлектриком, к заряду Q0 такого же конденсатора с вакуумом (3):

Из формулы (3) следует, что диэлектрическая проницаемость ε — величина безразмерная, и у любого диэлектрика она больше единицы; в случае вакуума ε = 1. Из рассмотренного примера также

видно, что плотность заряда на электродах конденсатора с диэлектриком в ε раз больше плотности заряда на электродах конденсатора с вакуумом, а напряженности при одинаковых напряжениях для обо

их конденсаторов одинаковы и зависят только от величины напряжения U и расстояния между электродами (Е = U /h).

Кроме относительной диэлектрической проницаемости ε различают абсолютную диэлектрическую проницаемость ε а , Ф/м, (4)

которая не имеет физического смысла и используется в электротехнике.

Относительное изменение диэлектрической проницаемости εr при повышении температуры на 1 К называется температурным коэффициентом диэлектрической проницаемости.

ТКε = 1/ εr d εr/dT К-1 Для воздуха при 20°С ТК εr = -2.10-6К-

Электрическое старение в сегнетоэлектриках выражается в уменьшении εr со временем. Причиной является перегруппировка доменов.

Особенно резкое изменение диэлектрической проницаемости со временем наблюдается при температурах, близких к точке Кюри. Нагревание сегнетоэлектриков до температуры более точки Кюри и последующее охлаждение возвращает εr к прежнему значению. Такое же восстановление диэлектрической проницаемости можно осуществить, воздействуя на сегнетоэлектрик электрическим полем повышенной напряженности.

Для сложных диэлектриков – механической смеси двух компонентов с разным εr в первом приближении: εrх = θ1 · εr1х ·θ· εr2х,где θ – обьемная концентрация компонентов смеси, εr — относительная диэлектрическая проницаемость компонента смеси.

Поляризация диэлектрика может быть вызвана: механическими нагрузками (пьезополяризация в пьезоэлектриках); нагревом (пирополяризация в пироэлектриках); светом (фотополяризация).

Поляризованное состояние диэлектрика в электрическом поле Е характеризуется электрическим моментом единицы объема, поляризованностью Р, Кл/м2, которая связана с его относительной диэлектрической проницаемостью eг: Р = e0 (eг — 1)Е, где e0 = 8,85∙10-12 Ф/м. Произведение e0∙eг =e, Ф/м, называют абсолютной диэлектрической проницаемостью. В газообразных диэлектриках eг мало отличается от 1,0, в неполярных жидких и твердых достигает 1,5 — 3,0, в полярных имеет большие значения; в ионных кристаллах eг — 5-МО, а в имеющих перовскитовую кристаллическую решетку достигает 200; в сегнетоэлектриках eг — 103 и больше.

В неполярных диэлектриках с ростом температуры eг незначительно уменьшается, в полярных изменения связаны с преобладанием того или иного вида поляризации, в ионных кристаллах увеличивается, в некоторых сегнетоэлектриках при температуре Кюри достигает 104 и больше. Температурные изменения eг характеризуют температурным коэффициентом. Для полярных диэлектриков характерным является уменьшение eг в области частот, где время т на поляризацию соизмеримо с Т/2.

Уровень поляризуемости вещества характеризуется особенной величиной, которую называют диэлектрическая проницаемость. Рассмотрим, что это за величина.

Допустим, что напряженность однородного поля между двух заряженных пластин в пустоте равна Е₀. Теперь заполним промежуток между ними любым диэлектриком. которые появятся на границе между диэлектриком и проводником благодаря его поляризации, частично нейтрализуют воздействие зарядов на пластинах. Напряженность Е данного поля станет меньше напряженности Е₀.

Опыт обнаруживает, что при последовательном заполнении промежутка между пластинами равными диэлектриками, величины напряженности поля окажутся разными. Поэтому зная величину отношения напряженности электрополя между пластинами в отсутствие диэлектрика Е₀ и при наличии диэлектрика Е, можно определять его поляризуемость, т.е. его диэлектрическую проницаемость. Эту величину принято обозначать греческой буквой ԑ (эпсилон). Следовательно, можно написать:

Диэлектрическая проницаемость демонстрирует, во сколько раз данных зарядов в диэлектрике (однородном) будет меньше, чем в вакууме.

Уменьшение силы взаимодействия между зарядами вызвано процессами поляризации среды. В электрическом поле электроны в атомах и молекулах уменьшаются по отношению к ионам, и возникает Т.е. те молекулы, у которых есть свой дипольный момент (в частности молекулы воды), ориентируются в электрическом поле. Эти моменты создают собственное электрическое поле, противодействующее тому полю, которое вызвало их появление. В результате суммарное электрическое поле уменьшается. В небольших полях это явление описывают с помощью понятия диэлектрической проницаемости.

Ниже приведена диэлектрическая проницаемость в вакууме различных веществ:

Шелк натуральный. 4-5

Данные значения диэлектрической проницаемости веществ относятся к окружающим температурам в пределах 18—20 °С. Так, диэлектрическая проницаемость твердых тел незначительно изменяется с температурой, исключением являются сегнетоэлектрики.

Напротив, у газов она уменьшается из-за повышения температуры и возрастает в связи с увеличением давления. В практике принимается за единицу.

Примеси в небольших количествах мало влияют на уровень диэлектрической проницаемости жидкостей.

Если два произвольных точечных заряда поместить в диэлектрик, то напряженность поля, создаваемого каждым из этих зарядов в точке нахождения другого заряда, уменьшается в ԑ раз. Из этого следует, что сила, с которой эти заряды взаимодействуют один с другим, также в ԑ раз меньше. Поэтому для зарядов, помещенных в диэлектрик, выражается формулой:

где F — является силой взаимодействия, q₁ и q₂, — величины зарядов, ԑ — является абсолютной диэлектрической проницаемостью среды, г — дистанция между точечными зарядами.

Значение ԑ численно можно показать в относительных единицах (по отношению к значению абсолютной диэлектрической проницаемости вакуума ԑ₀). Величина ԑ = ԑₐ/ԑ₀ называют относительной диэлектрической проницаемостью. Она раскрывает, во сколько раз взаимодействие между зарядами в бесконечной однородной среде слабее, чем в вакууме; ԑ = ԑₐ/ԑ₀ часто называют комплексная диэлектрическая проницаемость. Численное значение величины ԑ₀, а также ее размерность зависимы от того, какая система единиц выбрана; а значение ԑ — не зависит. Так, в системе СГСЭ ԑ₀ = 1 (эта четвертая основная единица); в системе СИ диэлектрическая проницаемость вакуума выражается:

ԑ₀ = 1/(4π˖9˖10⁹) фарада/метр = 8,85˖10⁻¹² ф/м (в этой системе ԑ₀ является производной величиной).

Относи́тельная диэлектри́ческая проница́емость среды ε — безразмерная физическая величина, характеризующая свойства изолирующей (диэлектрической) среды. Связана с эффектом поляризации диэлектриков под действием электрического поля (и с характеризующей этот эффект величиной диэлектрической восприимчивости среды). Величина ε показывает, во сколько раз сила взаимодействия двух электрических зарядов в среде меньше, чем в вакууме. Относительная диэлектрическая проницаемость воздуха и большинства других газов в нормальных условиях близка к единице (в силу их низкой плотности). Для большинства твёрдых или жидких диэлектриков относительная диэлектрическая проницаемость лежит в диапазоне от 2 до 8 (для статического поля). Диэлектрическая постоянная воды в статическом поле достаточно высока — около 80. Велики её значения для веществ с молекулами, обладающими большим электрическим диполем. Относительная диэлектрическая проницаемость сегнетоэлектриков составляет десятки и сотни тысяч.

Практическое применение

Диэлектрическая проницаемость диэлектриков является одним из основных параметров при разработке электрических конденсаторов . Использование материалов с высокой диэлектрической проницаемостью позволяют существенно снизить физические размеры конденсаторов.

Параметр диэлектрической проницаемости учитывается при разработке печатных плат . Значение диэлектрической проницаемости вещества между слоями в сочетании с его толщиной влияет на величину естественной статической ёмкости слоев питания, а также существенно влияет на волновое сопротивление проводников на плате.

Зависимость от частоты

Следует отметить, что диэлектрическая проницаемость в значительной степени зависит от частоты электромагнитного поля. Это следует всегда учитывать, поскольку таблицы справочников обычно содержат данные для статического поля или малых частот вплоть до нескольких единиц кГц без указания данного факта. В то же время существуют и оптические методы получения относительной диэлектрической проницаемости по коэффициенту преломления при помощи эллипсометров и рефрактометров. Полученное оптическим методом (частота 10 14 Гц) значение будет значительно отличаться от данных в таблицах.

Рассмотрим, например, случай воды. В случае статического поля (частота равна нулю), относительная диэлектрическая проницаемость при нормальных условиях приблизительно равна 80. Это имеет место вплоть до инфракрасных частот. Начиная примерно с 2 ГГц ε r начинает падать. В оптическом диапазоне ε r составляет приблизительно 1,8. Это вполне соответствует факту, что в оптическом диапазоне показатель преломления воды равен 1,33. В узком диапазоне частот, называемом оптическим, диэлектрическое поглощение падает до нуля, что собственно и обеспечивает человеку механизм зрения в земной атмосфере, насыщенной водяным паром. С дальнейшим ростом частоты свойства среды вновь меняются.

Значения диэлектрической проницаемости для некоторых веществ

Вещество Химическая формула Условия измерения Характерное значение ε r
Алюминий Al 1 кГц -1300 + 1,3Шаблон:Ei
Серебро Ag 1 кГц -85 + 8Шаблон:Ei
Вакуум 1
Воздух Нормальные условия , 0,9 МГц 1,00058986 ± 0,00000050
Углекислый газ CO 2 Нормальные условия 1,0009
Тефлон 2,1
Нейлон 3,2
Полиэтилен [-СН 2 -СН 2 -] n 2,25
Полистирол [-СН 2 -С(С 6 Н 5)Н-] n 2,4-2,7
Каучук 2,4
Битум 2,5-3,0
Сероуглерод CS 2 2,6
Парафин С 18 Н 38 − С 35 Н 72 2,0-3,0
Бумага 2,0-3,5
Электроактивные полимеры 2-12
Эбонит (C 6 H 9 S) 2 2,5-3,0
Плексиглас (оргстекло) 3,5
Кварц SiO 2 3,5-4,5
Диоксид кремния SiO 2 3,9
Бакелит 4,5
Бетон 4,5
Фарфор 4,5-4,7
Стекло 4,7 (3,7-10)
Стеклотекстолит FR-4 4,5-5,2
Гетинакс 5-6
Слюда 7,5
Резина 7
Поликор 98 % Al 2 O 3 9,7
Алмаз 5,5-10
Поваренная соль NaCl 3-15
Графит C 10-15
Керамика 10-20
Кремний Si 11.68
Бор B 2.01
Аммиак NH 3 20 °C 17
0 °C 20
−40 °C 22
−80 °C 26
Спирт этиловый C 2 H 5 OH или CH 3 -CH 2 -OH 27
Метанол CH 3 OH 30
Этиленгликоль HO-CH 2 -CH 2 -OH 37
Фурфурол C 5 H 4 O 2 42

Диэлектрическая проницаемость – это один из основных параметров, характеризующих электрические свойства диэлектриков . Другими словами он определяет насколько хорошим изолятором является тот или иной материал.

Значение диэлектрической проницаемости показывает зависимость электрической индукции в диэлектрике от напряженности электрического поля , воздействующего на него. При этом на ее величину оказывают влияние не только физические свойства самого материала или среды, но еще и частота поля. Как правило в справочниках указывается величина, измеренная для статического или низкочастотного поля.

Различают два вида диэлектрической проницаемости: абсолютную и относительную.

Относительная диэлектрическая проницаемость показывает отношение изолирующих (диэлектрических) свойств исследуемого материала к аналогичным свойствам вакуума. Она характеризует изолирующие свойства вещества в газообразном, жидком или твердом состояниях. То есть применима практически ко всем диэлектрикам. Величина относительной диэлектрической проницаемости для веществ в газообразном состоянии, как правило, находится в переделах 1. Для жидкостей и твердых тел она может находиться в очень широких пределах – от 2 и практически до бесконечности.

К примеру, относительная диэлектрическая проницаемость пресной воды равна 80, а сегнетоэлектриков – десятки, а то и сотни единиц в зависимости от свойств материала.

Абсолютная диэлектрическая проницаемость – это постоянная величина. Она характеризует изолирующие свойства конкретного вещества или материала, не зависимо от его местоположения и воздействующих на него внешних факторов.

Использование

Диэлектрическую проницаемость, а точнее ее значения используют при разработке и проектировании новых электронных компонентов , в частности конденсаторов . От ее значения зависят будущие размеры и электрические характеристики компонента. Эту величину также учитывают и при разработке целых электрических схем (особенно в высокочастотной электронике) и даже

Диэлектрическая проницаемость материала и угол потерь

Эквивалентная схема замещения диэлектрика, в котором существуют различные механизмы поляризации, представлена на рисунке 4.1, б в виде соединённых параллельно конденсатора С и резистора r.

Способность различных материалов поляризоваться в электрическом поле складывается из различных механизмов и характеризуется значением относительной диэлектрической проницаемости:

где С — ёмкость конденсатора, заполненного диэлектриком;

С — ёмкость конденсатора того же размера в вакууме.

Диэлектрическая проницаемость материала е формируется за счёт различных механизмов поляризации и зависит от температуры и частоты, её изменение при нагреве характеризуется температурным коэффициентом диэлектрической проницаемости ТКе, измеряемым в К -1 (в долях на градус Кельвина). Для газов, неполярных жидкостей и твёрдых диэлектриков характерен отрицательный ТКе, что объясняется их расширением при нагреве. Для полярных жидких и твёрдых изоляционных материалов характерен положительный ТКе, т. к. подвижность диполей при нагреве увеличивается, однако возможны и участки с отрицательным ТКе. Численные значения ТКе для большинства изоляционных материалов находятся в пределах от миллионных до тысячных долей на кельвин.

Диэлектрическими потерями называют энергию электрического поля, затрачиваемую на нагрев диэлектрика. При переменном напряжении потери энергии в диэлектрике намного больше, чем при постоянном, здесь основной причиной нагрева является периодическое изменение поляризации диэлектрика. Если напряжения и токи синусоидальны, то их можно представить в виде проекций на вертикальную ось векторов, вращающихся против часовой стрелки с угловой частотой щ (радиан в секунду, с -1 ):

где f — частота колебания, Гц.

Рисунок 4.1, в является векторной диаграммой, а точки проекции концов векторов на вертикальную ось координат описывают осциллограммы на ленте, протягиваемой в горизонтальном направлении.

Протекание синусоидального тока через конденсатор сопровождается его периодической перезарядкой. В идеальном конденсаторе C напряжение отстаёт от тока на четверть периода, т. е. на 90° (электрических). На векторной диаграмме рисунка вектор емкостного тока, равного UщC, повёрнут относительно напряжения U на 90° против часовой стрелки, т. е. в сторону опережения. В реальном диэлектрике угол ц сдвига фаз между током и напряжением немного меньше, т. к. присутствует ток утечки через сопротивление r изоляции, равный U/R и совпадающий по фазе с напряжением U. Углом потерь энергии в материале диэлектрика называют угол д, дополняющий угол сдвига фаз ц между напряжением и током до 90°. Для оценки качества изоляционного материала используют тангенс угла диэлектрических потерь tgд. Значение тангенса угла диэлектрических потерь tgд показывает, какая часть от энергии, запасаемой в изоляционном материале в процессе поляризации, теряется, т. е. расходуется на его нагрев. Чем меньше угол д и его тангенс, тем меньше энергии теряется за 1 цикл переполяризации, следовательно, такой материал можно применять при более высокой частоте.

Потери энергии конденсатора вызывают его нагрев и могут привести к тепловому разрушению. Если конденсатор используется в колебательном контуре, то потери препятствуют острой настройке на резонанс. Они проявляются через снижение добротности контура и ускоренное затухание колебаний. Потери в изоляции проводов линий связи уменьшают дальность передачи сигналов. Оценка диэлектрических потерь имеет важное значение не только для высокочастотных устройств, но и для материалов, используемых в установках высокого напряжения. Особенно она важна в высоковольтных высокочастотных устройствах, поскольку мощность диэлектрических потерь пропорциональна квадрату действующего значения приложенного к диэлектрику напряжения. Мощность потерь в изоляции P, Вт,

где щ — угловая частота, с -1 ;

C — эквивалентная ёмкость изоляции, Ф;

U — действующее значение напряжения, В;

д — угол диэлектрических потерь,

r — эквивалентное сопротивление изоляции, Ом.

Следует помнить, что параметры С и r схемы замещения определяются при определённых значениях частоты тока и температуры изоляции, и при других режимах будут иными.

Мощность потерь, отнесенную к единице объёма диэлектрика, называют удельными потерями и измеряют в ваттах на кубометр.

Характер проявления диэлектрических потерь различен в зависимости от агрегатного состояния электроизоляционных материалов: газообразного, жидкого, твёрдого.

В газах наблюдаются ионизационные потери при высоких напряжениях и, чаще всего, в неоднородном поле, когда напряжённость в отдельных местах превосходит некоторое критическое значение в газе. Ионизация воздуха в порах твёрдой органической изоляции сопровождается образованием озона и окислов азота, что вызывает её химическое разрушение.

В чистых неполярных жидкостях диэлектрические потери обусловлены только электропроводностью и пренебрежимо малы. У хорошо очищенного нефтяного трансформаторного масла tgд = 0,001 при е = 2,3.

В полярных жидкостях потери в основном поляризационные. Удельная электропроводность полярных жидкостей при комнатной температуре составляет 10 -10 -10 -11 См/м, а дипольно-релаксационные потери, наблюдаемые при переменном напряжении, значительно превосходят потери от электропроводности, ввиду чего полярные жидкости используют только на промышленной частоте.

В твёрдых веществах, в зависимости от их состава и строения, возможны все виды диэлектрических потерь.

Диэлектрические потери в особо чистых неполярных веществах с молекулярной структурой ничтожно малы. Полиэтилен, фторопласт, полистирол и другие полимеры широко применяют в качестве высокочастотной изоляции, в том числе и высоковольтной.

Полярные полимеры — поливинилхлорид, эпоксидные компаунды, кремнийорганические и фенолформальдегидные смолы, целлюлоза и другие из-за дипольно-релаксационной поляризации отличаются повышенными потерями и применяются в основном на промышленной частоте 50 Гц.

Диэлектрические потери в веществах с ионной структурой зависят от особенностей упаковки ионов в кристаллической решётке.

В веществах с плотной упаковкой ионов в отсутствие примесей, искажающих решётку, диэлектрические потери весьма малы. При повышенных температурах в этих веществах обнаруживаются потери на электропроводность. К веществам данного типа относятся слюда и другие кристаллические неорганические соединения, имеющие большое значение в производстве электротехнической керамики, например, корунд, входящий в состав ультрафарфора.

К диэлектрикам, имеющим кристаллическую структуру с неплотной упаковкой ионов, относится ряд кристаллических веществ, характеризующихся релаксационной поляризацией, вызывающей повышенные диэлектрические потери. Многие из них входят в состав изоляторного фарфора и огнеупорной керамики.

Диэлектрические потери в квазиаморфных веществах с ионной структурой (неорганических стёклах) в большой степени зависят от их состава (tgд от 0,0002 до 0,01). При совпадении частоты напряжения с частотой колебаний ионов происходят резонансные потери.

Сегнетоэлектрики переполяризуются по петле гистерезиса, поэтому для них характерны весьма большие значения тангенса угла диэлектрических потерь, достигающие 0,1.

Абсолютная диэлектрическая. Электрическая проницаемость и угол диэлектрических потерь

Диэлектри ́ ческая проница ́ емость среды — физическая величина, характеризующая свойства изолирующей (диэлектрической) среды и показывающая зависимостьэлектрической индукции от напряжённости электрического поля.

Определяется эффектом поляризации диэлектриков под действием электрического поля (и с характеризующей этот эффект величиной диэлектрической восприимчивости среды).

Различают относительную и абсолютную диэлектрические проницаемости.

Относительная диэлектрическая проницаемость ε является безразмерной и показывает, во сколько раз сила взаимодействия двух электрических зарядов в среде меньше, чем в вакууме. Эта величина для воздуха и большинства других газов в нормальных условиях близка к единице (в силу их низкой плотности). Для большинства твёрдых или жидких диэлектриков относительная диэлектрическая проницаемость лежит в диапазоне от 2 до 8 (для статического поля). Диэлектрическая постояннаяводы в статическом поле достаточно высока — около 80. Велики её значения для веществ с молекулами, обладающими большим электрическим дипольным моментом. Относительная диэлектрическая проницаемость сегнетоэлектриков составляет десятки и сотни тысяч.

Абсолютная диэлектрическая проницаемость в зарубежной литературе обозначается буквой ε, в отечественной преимущественно используется сочетание , где — электрическая постоянная. Абсолютная диэлектрическая проницаемость используется только в Международной системе единиц (СИ), в которой индукция и напряжённость электрического поля измеряются в различных единицах. В системе СГС необходимость в введении абсолютной диэлектрической проницаемости отсутствует. Абсолютная диэлектрическая постоянная (как и электрическая постоянная) имеет размерность L −3 M −1 T 4 I². В единицах Международной системы единиц (СИ): =Ф/м.

Следует отметить, что диэлектрическая проницаемость в значительной степени зависит от частоты электромагнитного поля. Это следует всегда учитывать, поскольку таблицы справочников обычно содержат данные для статического поля или малых частот вплоть до нескольких единиц кГц без указания данного факта. В то же время существуют и оптические методы получения относительной диэлектрической проницаемости по коэффициенту преломления при помощи эллипсометров и рефрактометров. Полученное оптическим методом (частота 10 14 Гц) значение будет значительно отличаться от данных в таблицах.

Рассмотрим, например, случай воды. В случае статического поля (частота равна нулю), относительная диэлектрическая проницаемость при нормальных условияхприблизительно равна 80. Это имеет место вплоть до инфракрасных частот. Начиная примерно с 2 ГГц ε r начинает падать. В оптическом диапазоне ε r составляет приблизительно 1,8. Это вполне соответствует факту, что в оптическом диапазоне показатель преломления воды равен 1,33. В узком диапазоне частот, называемом оптическим, диэлектрическое поглощение падает до нуля, что собственно и обеспечивает человеку механизм зрения [ источник не указан 1252 дня ] в земной атмосфере, насыщенной водяным паром. С дальнейшим ростом частоты свойства среды вновь меняются. О поведении относительной диэлектрической проницаемости воды в диапазоне частот от 0 до 10 12 (инфракрасная область) можно прочитать на (англ.)

Диэлектрическая проницаемость диэлектриков является одним из основных параметров при разработке электрических конденсаторов. Использование материалов с высокой диэлектрической проницаемостью позволяют существенно снизить физические размеры конденсаторов.

Ёмкость конденсаторов определяется:

где ε r — диэлектрическая проницаемость вещества между обкладками, ε о — электрическая постоянная, S — площадь обкладок конденсатора, d — расстояние между обкладками.

Параметр диэлектрической проницаемости учитывается при разработке печатных плат. Значение диэлектрической проницаемости вещества между слоями в сочетании с его толщиной влияет на величину естественной статической ёмкости слоев питания, а также существенно влияет на волновое сопротивлениепроводников на плате.

УДЕЛЬНОЕ СОПРОТИВЛЕНИЕ электрическое, физическая величина, равная электрическому сопротивлению (см. СОПРОТИВЛЕНИЕ ЭЛЕКТРИЧЕСКОЕ ) R цилиндрического проводника единичной длины (l = 1м) и единичной площади поперечного сечения (S =1 м 2).. r = R S/l. В Си единицей удельного сопротивления является Ом. м. Удельное сопротивление могут выражать также в Ом. см. Удельное сопротивление является характеристикой материала, по которому протекает ток, и зависит от материала, из которого он изготовлен. Удельное сопротивление, равное r = 1 Ом. м означает, что цилиндрический проводник, изготовленный из данного материала, длиной l = 1м и с площадью поперечного сечения S = 1 м 2 имеет сопротивление R = 1 Ом. м. Величина удельного сопротивления металлов (см. МЕТАЛЛЫ ), являющихся хорошими проводниками (см. ПРОВОДНИКИ ), может иметь значения порядка 10 — 8 – 10 — 6 Ом. м (например, медь, серебро, железо и т. д.). Удельное сопротивление некоторых твердых диэлектриков (см. ДИЭЛЕКТРИКИ ) может достигать значения 10 16 -10 18 Ом.м (например, кварцевое стекло, полиэтилен, электрофарфор и др.). Величина удельного сопротивления многих материалов (особенного полупроводниковых материалов (см. ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ )) существенно зависит от степени их очистки, наличия легирующих добавок, термических и механических обработок и т. д. Величина s, обратная удельному сопротивлению, называется удельной проводимостью: s = 1/r Удельная проводимость измеряется в сименсах (см. СИМЕНС (единица проводимости) ) на метр См/м. Удельное электрическое сопротивление (проводимость) является скалярной величиной для изотропного вещества; и тензорной — для анизотропного вещества. В анизотропным монокристаллах анизотропия электропроводности является следствием анизотропии обратной эффективной массы (см. ЭФФЕКТИВНАЯ МАССА ) электронов и дырок.

1-6. ЭЛЕКТРОПРОВОДНОСТЬ ИЗОЛЯЦИИ

При включении изоляции кабеля или провода на постоянное напряжение U через нее проходит ток i, изменяющийся во времени (рис. 1-3). Этот ток имеет постоянные составляющие — ток проводимости (i ∞) и ток абсорбции, гдеγ — проводимость, соответствующая току абсорбции; Т — время, в течение которого ток i абс спадает до 1/e своего первоначального значения. При бесконечно большом времени i абс →0 и i = i ∞ . Электропроводность диэлектриков объясняется наличием в них некоторого количества свободных заряженных частиц: ионов и электронов.

Наиболее характерна для большей части электроизоляционных материалов ионная электропроводность, которая возможна за счет неизбежно присутствующих в изоляции загрязнений (примеси влаги, солей, щелочей и т. п.). У диэлектрика с ионным характером электропроводности строго соблюдается закон Фарадея — пропорциональность между количеством прошедшего через изоляцию электричества и количеством выделившегося при электролизе вещества.

При повышении температуры удельное сопротивление электроизоляционных материалов уменьшается и характеризуется формулой

где_ρ о, А и В — постоянные для данного материала; Т- температура, °К.

Большая зависимость сопротивления изоляции от влаги имеет место у гигроскопичных изоляционных материалов, главным образом волокнистых (бумага, хлопчатобумажная пряжа и др.). Поэтому волокнистые материалы подвергаются сушке и пропитке, а также защите влагостойкими оболочками.

Сопротивление изоляции может уменьшаться с повышением напряжения за счет образования в изоляционных материалах объемных зарядов. Создающаяся при этом добавочная электронная проводимость приводит к увеличению электропроводности. Существует зависимость проводимости от напряжения в очень сильных полях (закон Я. И. Френкеля):

где γ о — проводимость в слабых полях; а — постоянная. Все электроизоляционные материалы характеризуются определенными значениями проводимости изоляции G. В идеале проводимость изоляционных материалов равна нулю. У реальных изоляционных материалов проводимость на единицу длины кабеля определяют по формуле

В кабелях, имеющих сопротивление изоляции более, 3-10 11 ом-м и кабелях связи, где потери на диэлектрическую поляризацию значительно больше тепловых потерь, проводимость определяют по формуле

Проводимость изоляции в технике связи является электрическим параметром линии, характеризующим потери энергии в изоляции жил кабелей. Зависимость величины проводимости от частоты приведена на рис. 1-1. Величина, обратная проводимости — сопротивление изоляции, представляет собой отношение приложенного кизоляции напряжения постоянного тока (в вольтах) ктоку утечки (в амперах), т. е.

гдеR V — объемное сопротивление изоляции, численно определяющее препятствие, создаваемое прохождению токав толще изоляции; R S — поверхностное сопротивление, определяющее препятствие прохождению тока по поверхностиизоляции.

Практической оценкой качества применяемых изоляционных материалов является удельное объемное сопротивление ρ V выражаемое в омо-сантиметрах (ом*см). Численно ρ V равно сопротивлению (в омах) куба с ребром 1 см из данного материала, если ток проходит через две противоположные грани куба. Удельное поверхностное сопротивление ρ S численно равно сопротивлению поверхности квадрата (в омах), если ток подводится к электродам, ограничивающим две противоположные стороны этого квадрата.

Сопротивление изоляции одножильного кабеля или провода определяют по формуле

Влажностные свойства диэлектриков

Влагостойкость – это надежность эксплуатации изоляции при нахождении ее в атмосфере водяного пара близкого к насыщению. Влагостойкость оценивают по изменению электрических, механических и других физических свойств после нахождения материала в атмосфере с повышенной и высокой влажностью; по влаго- и водопроницаемости; по влаго- и водопоглощаемости.

Влагопроницаемость – способность материала пропускать пары влаги при наличии разности относительных влажностей воздуха с двух сторон материала.

Влагопоглощаемость – способность материала сорбировать воду при длительном нахождении во влажной атмосфере близкой к состоянию насыщения.

Водопоглощаемость – способность материала сорбировать воду при длительном погружении его в воду.

Тропикостойкость и тропикализация оборудования защита электрооборудования от влаги, плесени, грызунов.

Тепловые свойства диэлектриков

Для характеристики тепловых свойств диэлектриков используются следующие величины.

Нагревостойкость – способность электроизоляционных материалов и изделий без вреда для них выдерживать воздействие высокой температуры и резких смен температуры. Определяют по температуре, при которой наблюдается существенное изменение механических и электрических свойств, например, в органических диэлектриках начинается деформация растяжения или изгиба под нагрузкой.

Теплопроводность – процесс передачи тепла в материале. Характеризуется экспериментально определяемым коэффициентом теплопроводности λ т. λ т – количество теплоты, переданной за одну секунду через слой материала толщиной в 1 м и площадью поверхности – 1 м 2 при разности температур поверхностей слоя в 1 °К. Коэффициент теплопроводности диэлектриков изменяется в широких пределах. Самые низкие значения λ т имеют газы, пористые диэлектрики и жидкости (для воздуха λ т = 0,025 Вт/(м·К), для водыλ т = 0,58 Вт/(м·К)), высокие значения имеют кристаллические диэлектрики (для кристаллического кварца λ т = 12,5 Вт/(м·К)). Коэффициент теплопроводности диэлектриков зависит от их строения (для плавленого кварца λ т = 1,25 Вт/(м·К)) и температуры.

Тепловое расширение диэлектриков оценивают температурным коэффициентом линейного расширения: . Материалы с малым тепловым расширением, имеют, как правило, более высокую нагревостойкость и наоборот. Тепловое расширение органических диэлектриков значительно (в десятки и сотни раз) превышает расширение неорганических диэлектриков. Поэтому стабильность размеров деталей из неорганических диэлектриков при колебаниях температуры значительно выше по сравнению с органическими.

1. Абсорбционные токи

Абсорбционными токами называются токи смещения различных видов замедленной поляризации. Абсорбционные токи при постоянном напряжении протекают в диэлектрике до момента установления равновесного состояния, изменяя свое направление при включении и выключении напряжения. При переменном напряжении абсорбционные токи протекают в течение всего времени нахождения диэлектрика в электрическом поле.

В общем случае электрический ток j в диэлектрике представляет собой сумму сквозного тока j ск и тока абсорбции j аб

Ток абсорбции можно определить через ток смещения j см — скорость изменения вектора электрической индукции D

Сквозной ток определяется переносом (движением) в электрическом поле различных носителей заряда.

2. Электронная электропроводность характеризуется перемещением электронов под действием поля. Кроме металлов она присутствует у углерода, оксидов металлов, сульфидов и др. веществ, а также у многих полупроводников.

3. Ионная – обусловлена движением ионов. Наблюдается в растворах и расплавах электролитов – солей, кислот, щелочей, а также во многих диэлектриках. Она подразделяется на собственную и примесную проводимости. Собственная проводимость обусловлена движением ионов, получаемых при диссоциации молекул. Движение ионов в электрическом поле сопровождается электролизом – переносом вещества между электродами и выделением его на электродах. Полярные жидкости диссоциированы в большей степени и имеют большую электропроводность, чем неполярные.

В неполярных и слабополярных жидких диэлектриках (минеральные масла, кремнийорганические жидкости) электропроводность определяется примесями.

4. Молионная электропроводность – обусловлена движением заряженных частиц, называемых молионами . Наблюдают ее в коллоидных системах, эмульсиях , суспензиях . Движение молионов под действием электрического поля называют электрофорезом . При электрофорезе, в отличие от электролиза, новых веществ не образуется, меняется относительная концентрация дисперсной фазы в различных слоях жидкости. Электрофоретическая электропроводность наблюдается, например, в маслах, содержащихэмульгированную воду.

  • определяющая напряжённость электрического поля в вакууме;
  • входящая в выражения некоторых законов электромагнетизма , в том числе закона Кулона , при записи их в форме, соответствующей Международной системе единиц .

Через диэлектрическую постоянную осуществляется связь между относительной и абсолютной диэлектрической проницаемостью . Она также входит в запись закона Кулона :

См. также

Примечания

Литература

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое «Диэлектрическая постоянная» в других словарях:

диэлектрическая постоянная — диэлектрическая проницаемость — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы диэлектрическая проницаемость… …

— (обозначение e0), физическая величина, указывающая на соотношение силы, действующей между электрическими зарядами в вакууме с размером этих зарядов и расстоянием между ними. Первоначально этот показатель носил название ДИЭЛЕКТРИЧЕСКОЙ… … Научно-технический энциклопедический словарь

диэлектрическая постоянная — абсолютная диэлектрическая проницаемость (для изотропного вещества); отрасл. диэлектрическая постоянная Скалярная величина, характеризующая электрические свойства диэлектрика и равная отношению электрического смещения в нем к напряженности… …

диэлектрическая постоянная — dielektrinė skvarba statusas T sritis fizika atitikmenys: angl. dielectric constant; permittivity vok. dielektrische Leitfähigkeit, f; Dielektrizitätskonstante, f; Permittivität, f rus. диэлектрическая постоянная, f; диэлектрическая проницаемость … Fizikos terminų žodynas

Устаревшее название диэлектрической проницаемости (См. Диэлектрическая проницаемость) … Большая советская энциклопедия

Диэлектрическая постоянная ε для некоторых жидкостей (при 20°С) — Растворитель ε Ацетон 21,5 Бензол 2,23 Вода 81,0 … Химический справочник

начальная диэлектрическая постоянная — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] Тематики электротехника, основные понятия EN initial dielectric constant … Справочник технического переводчика

относительная диэлектрическая постоянная — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] Тематики электротехника, основные понятия EN relative permittivityrelative dielectric constant … Справочник технического переводчика

удельная диэлектрическая постоянная — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN simultaneous interchange capabilitySIC … Справочник технического переводчика

диэлектрическая проницаемость — абсолютная диэлектрическая проницаемость; отрасл. диэлектрическая проницаемость Скалярная величина, характеризующая электрические свойства диэлектрика равная отношению величины электрического смещения к величине напряженности электрического поля … Политехнический терминологический толковый словарь

Уровень поляризуемости вещества характеризуется особенной величиной, которую называют диэлектрическая проницаемость. Рассмотрим, что это за величина.

Допустим, что напряженность однородного поля между двух заряженных пластин в пустоте равна Е₀. Теперь заполним промежуток между ними любым диэлектриком. которые появятся на границе между диэлектриком и проводником благодаря его поляризации, частично нейтрализуют воздействие зарядов на пластинах. Напряженность Е данного поля станет меньше напряженности Е₀.

Опыт обнаруживает, что при последовательном заполнении промежутка между пластинами равными диэлектриками, величины напряженности поля окажутся разными. Поэтому зная величину отношения напряженности электрополя между пластинами в отсутствие диэлектрика Е₀ и при наличии диэлектрика Е, можно определять его поляризуемость, т.е. его диэлектрическую проницаемость. Эту величину принято обозначать греческой буквой ԑ (эпсилон). Следовательно, можно написать:

Диэлектрическая проницаемость демонстрирует, во сколько раз данных зарядов в диэлектрике (однородном) будет меньше, чем в вакууме.

Уменьшение силы взаимодействия между зарядами вызвано процессами поляризации среды. В электрическом поле электроны в атомах и молекулах уменьшаются по отношению к ионам, и возникает Т.е. те молекулы, у которых есть свой дипольный момент (в частности молекулы воды), ориентируются в электрическом поле. Эти моменты создают собственное электрическое поле, противодействующее тому полю, которое вызвало их появление. В результате суммарное электрическое поле уменьшается. В небольших полях это явление описывают с помощью понятия диэлектрической проницаемости.

Ниже приведена диэлектрическая проницаемость в вакууме различных веществ:

Шелк натуральный. 4-5

Данные значения диэлектрической проницаемости веществ относятся к окружающим температурам в пределах 18—20 °С. Так, диэлектрическая проницаемость твердых тел незначительно изменяется с температурой, исключением являются сегнетоэлектрики.

Напротив, у газов она уменьшается из-за повышения температуры и возрастает в связи с увеличением давления. В практике принимается за единицу.

Примеси в небольших количествах мало влияют на уровень диэлектрической проницаемости жидкостей.

Если два произвольных точечных заряда поместить в диэлектрик, то напряженность поля, создаваемого каждым из этих зарядов в точке нахождения другого заряда, уменьшается в ԑ раз. Из этого следует, что сила, с которой эти заряды взаимодействуют один с другим, также в ԑ раз меньше. Поэтому для зарядов, помещенных в диэлектрик, выражается формулой:

где F — является силой взаимодействия, q₁ и q₂, — величины зарядов, ԑ — является абсолютной диэлектрической проницаемостью среды, г — дистанция между точечными зарядами.

Значение ԑ численно можно показать в относительных единицах (по отношению к значению абсолютной диэлектрической проницаемости вакуума ԑ₀). Величина ԑ = ԑₐ/ԑ₀ называют относительной диэлектрической проницаемостью. Она раскрывает, во сколько раз взаимодействие между зарядами в бесконечной однородной среде слабее, чем в вакууме; ԑ = ԑₐ/ԑ₀ часто называют комплексная диэлектрическая проницаемость. Численное значение величины ԑ₀, а также ее размерность зависимы от того, какая система единиц выбрана; а значение ԑ — не зависит. Так, в системе СГСЭ ԑ₀ = 1 (эта четвертая основная единица); в системе СИ диэлектрическая проницаемость вакуума выражается:

ԑ₀ = 1/(4π˖9˖10⁹) фарада/метр = 8,85˖10⁻¹² ф/м (в этой системе ԑ₀ является производной величиной).

ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ, величина ε, характеризующая поляризацию диэлектриков под действием электрического поля напряжённостью Е. Диэлектрическая проницаемость входит в Кулона закон как величина, показывающая, во сколько раз сила взаимодействия двух свободных зарядов в диэлектрике меньше, чем в вакууме. Ослабление взаимодействия происходит вследствие экранирования свободных зарядов связанными, образующимися в результате поляризации среды. Связанные заряды возникают вследствие микроскопического пространственного перераспределения зарядов (электронов, ионов) в электрически нейтральной в целом среде.

Связь между векторами поляризации Р, напряжённости электрического поля Е и электрической индукции D в изотропной среде в системе единиц СИ имеет вид:

где ε 0 — электрическая постоянная. Величина диэлектрической проницаемости ε зависит от структуры и химического состава вещества, а также от давления, температуры и других внешних условий (табл.).

Для газов её величина близка к 1, для жидкостей и твёрдых тел изменяется от нескольких единиц до нескольких десятков, у сегнетоэлектриков может достигать 10 4 . Такой разброс значений ε обусловлен различными механизмами поляризации, имеющими место в разных диэлектриках.

Классическая микроскопическая теория приводит к приближённому выражению для диэлектрической проницаемости неполярных диэлектриков:

где n i — концентрация i-го сорта атомов, ионов или молекул, α i — их поляризуемость, β i — так называемый фактор внутреннего поля, обусловленный особенностями структуры кристалла или вещества. Для большинства диэлектриков с диэлектрической проницаемостью, лежащей в пределах 2-8, β = 1/3. Обычно диэлектрическая проницаемость практически не зависит от величины приложенного электрического поля вплоть до электрического пробоя диэлектрика. Высокие значения ε некоторых оксидов металлов и других соединений обусловлены особенностями их структуры, допускающей под действием поля Е коллективное смещение подрешёток положительных и отрицательных ионов в противоположных направлениях и образование значительных связанных зарядов на границе кристалла.

Процесс поляризации диэлектрика при наложении электрического поля развивается не мгновенно, а в течение некоторого времени τ (времени релаксации). Если поле Е изменяется во времени t по гармоническому закону с частотой ω, то поляризация диэлектрика не успевает следовать за ним и между колебаниями Р и Е появляется разность фаз δ. При описании колебаний Р и Е методом комплексных амплитуд диэлектрическую проницаемость представляют комплексной величиной:

причём ε’ и ε» зависят от ω и τ, а отношение ε»/ε’ = tg δ определяет диэлектрические потери в среде. Сдвиг фаз δ зависит от соотношения τ и периода поля Т = 2π/ω. При τ > Т (высокие частоты) поляризация не успевает за изменением Ε, δ → π и ε’ в этом случае обозначают ε (∞) (механизм поляризации «отключён»). Очевидно, что ε (0) > ε (∞) , и в переменных полях диэлектрическая проницаемость оказывается функцией ω. Вблизи ω = l/τ происходит изменение ε’ от ε (0) до ε (∞) (область дисперсии), а зависимость tgδ(ω) проходит через максимум.

Характер зависимостей ε’(ω) и tgδ(ω) в области дисперсии определяется механизмом поляризации. В случае ионной и электронной поляризаций при упругом смещении связанных зарядов изменение Р(t) при ступенчатом включении поля Е имеет характер затухающих колебаний и зависимости ε’(ω) и tgδ(ω) называются резонансными. В случае ориентационной поляризации установление Р(t) носит экспоненциальный характер, а зависимости ε’(ω) и tgδ(ω) называются релаксационными.

Методы измерения диэлектрической поляризации основаны на явлениях взаимодействия электромагнитного поля с электрическими дипольными моментами частиц вещества и различны для разных частот. В основе большинства методов при ω ≤ 10 8 Гц лежит процесс зарядки и разрядки измерительного конденсатора, заполненного исследуемым диэлектриком. При более высоких частотах используются волноводные, резонансные, мультичастотные и другие методы.

В некоторых диэлектриках, например сегнетоэлектриках, пропорциональная зависимость между Р и Ε [Ρ = ε 0 (ε ‒ 1)Е] и, следовательно, между D и Е нарушается уже в обычных, достигаемых на практике электрических полях. Формально это описывается как зависимость ε(Ε) ≠ const. В этом случае важной электрической характеристикой диэлектрика является дифференциальная диэлектрическая проницаемость:

В нелинейных диэлектриках величину ε диф измеряют обычно в слабых переменных полях при одновременном наложении сильного постоянного поля, а переменную составляющую ε диф, называют реверсивной диэлектрической проницаемостью.

Лит. смотри при ст. Диэлектрики.

ВИРТУАЛЬНАЯ ЛАБОРАТОРНАЯ РАБОТА №3 ПО

ФИЗИКЕ ТВЕРДОГО ТЕЛА

Методические указания к выполнению лабораторной работы №3 по разделу физики «Твердого тела» для студентов технических специальностей всех форм обучения

Кандидат физико-математических наук, доцент О.Н. Бандурина

(Сибирский государственный аэрокосмический университет

имени академика М.Ф. Решетнева)

Печатается по решению методической комиссии ИКТ

Определение диэлектрической проницаемости полупроводников. Виртуальная лабораторная работа №3 по физике твердого тела: Методические указания к выполнению лабораторной работы №3 по разделу физики «Твердого тела» для студентов техн. спец. всех форм обучения / сост.: А.М. Харьков; Сиб. гос. аэрокосмич. ун-т. – Красноярск, 2012. – 21 с.

Сибирский государственный аэрокосмический

университет имени академика М.Ф. Решетнева, 2012

Допуск к лабораторной работе……………………………………………………. 4

Оформление лабораторной работы к защите……………………………………. 4

Определение диэлектрической проницаемости полупроводников…………. 5

Методика измерения диэлектрической проницаемости…………………..……..11

Обработка результатов измерений………………………..………………………16

Данные методические указания содержат описания к лабораторным работам, в которых используются виртуальные модели из курса «Физика твердого тела».

Допуск к лабораторной работе:

Проводится преподавателем по группам с персональным опросом каждого студента. Для допуска:

1) Каждый студент предварительно оформляет свой персональный конспект данной лабораторной работы;

2) Преподаватель индивидуально проверяет оформление конспекта и задает вопросы по теории, методике измерений, установке и обработке результатов;

3) Студент отвечает на заданные вопросы;

4) Преподаватель допускает студента к работе и ставит свою подпись в конспекте студента.

Оформление лабораторной работы к защите:

Полностью оформленная и подготовленная к защите работа должна соответствовать следующим требованиям:

Выполнение всех пунктов: все расчеты требуемых величин, заполнены чернилами все таблицы, построены все графики и т.д.

Каждый электрик должен знать:  Разомкнутая САУ

Графики должны удовлетворять всем требованиям преподавателя.

Для всех величин в таблицах должна быть записана соответствующая единица измерения.

Записаны выводы по каждому графику.

Выписан ответ по установленной форме.

Записаны выводы по ответу.

ОПРЕДЕЛЕНИЕ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ ПОЛУПРОВОДНИКОВ

Поляризация – это способность диэлектрика под действием электрического поля поляризоваться, т.е. изменять в пространстве расположение связанных заряженных частиц диэлектрика.

Важнейшим свойством диэлектриков является их способность к электрической поляризации, т.е. под влиянием электрического поля происходит направленное смещение заряженных частиц или молекул на ограниченное расстояние. Под действие электрического поля смещаются заряды, как в полярных, так и неполярных молекулах.

Существует более десятка различных видов поляризации. Рассмотрим некоторые из них:

1. Электронная поляризация – это смещение электронных орбит относительно положительно заряженного ядра. Оно происходит во всех атомах любого вещества, т.е. во всех диэлектриках. Электронная поляризация устанавливается за время 10 -15 –10 -14 с.

2. Ионная поляризация – смещение относительно друг друга разноименно заряженных ионов в веществах с ионными связями. Время ее установления 10 -13 –10 -12 с. Электронная и ионная поляризация относятся к числу мгновенных или деформационных видов поляризации.

3. Дипольная или ориентационная поляризация обусловлена ориентацией диполей в направлении электрического поля. Дипольной поляризацией обладают полярные диэлектрики. Время ее установления 10 -10 –10 -6 с. Дипольная поляризация относится к числу медленных или релаксационных видов поляризации.

4. Миграционная поляризация наблюдается в неоднородных диэлектриках, в которых электрические заряды накапливаются на границе радела неоднородностей. Процессы установления миграционной поляризации очень медленны и могут протекать на протяжении минут и даже часов.

5. Ионно-релаксационная поляризация обусловлена избыточным перебросом слабо связанных ионов под действием электрического поля на расстояния, превышающие постоянную решетки. Ионно-релаксационная поляризация проявляется в некоторых кристаллических веществах при наличии в них примесей в виде ионов или неплотной упаковке кристаллической решетки. Время ее установления 10 -8 –10 -4 с.

6. Электронно-релаксационная поляризация возникает за счет возбужденных тепловой энергией избыточных «дефектных» электронов или «дырок». Этот вид поляризации, как правило, обуславливает высокое значение диэлектрической проницаемости.

7. Спонтанная поляризация – самопроизвольная поляризация, возникающая в некоторых веществах (например, сегнетовой соли) в определенной области температур.

8. Упруго-дипольная поляризация связана с упругим поворотом диполей на небольшие углы.

9. Остаточная поляризация – поляризация, которая остается в некоторых веществах (электретах) в течение продолжительного времени после снятия электрического поля.

10. Резонансная поляризация . Если частота электрического поля близка к собственной частоте колебаний диполей, то колебания молекул могут возрасти, что приведет к появлению резонансной поляризации в дипольном диэлектрике. Резонансная поляризация наблюдается при частотах лежащих в области инфракрасного света. Реальный диэлектрик может одновременно обладать несколькими видами поляризации. Возникновение того или иного вида поляризации определяется физико-химическими свойствами вещества и диапазоном используемых частот .

ε – диэлектрическая проницаемость – мера способности материала к поляризации; это величина, показывающая во сколько раз сила взаимодействия электрических зарядов в данном материале меньше, чем в вакууме. Внутри диэлектрика возникает поле, направленное противоположно внешнему.

Напряженность внешнего поля ослабевает по сравнению с полем тех же зарядов в вакууме в ε раз, где ε – относительная диэлектрическая проницаемость.

Если вакуум между обкладками конденсатора заменяется на диэлектрик, то в результате поляризации емкость возрастает. На этом основано простое определение диэлектрической проницаемости:

где C 0 – емкость конденсатора, между обкладками которого – вакуум.

C d – емкость того же конденсатора с диэлектриком.

Диэлектрическая проницаемость ε изотропной среды определяется отношением:

где χ – диэлектрическая восприимчивость.

D = tg δ – тангенс угла диэлектрических потерь

Диэлектрические потери – потери электрической энергии, обусловленные протеканием токов в диэлектриках. Различают ток сквозной проводимости I ск.пр, вызванный наличием в диэлектриках небольшого количества легкоподвижных ионов, и поляризационные токи. При электронной и ионной поляризации поляризационный ток называется током смещения I см, он очень кратковременный и не регистрируется приборами. Токи, связанные с замедленными (релаксационными) видами поляризации, называются токами абсорбции I абс. В общем случае суммарный ток в диэлектрике определяется как: I=I абс +I ск.пр. После установления поляризации суммарный ток будет равен: I=I ск.пр. Если в постоянном поле поляризационные токи возникают в момент включения и выключения напряжения, и суммарный ток определяется в соответствии с уравнением: I=I ск.пр, то в переменном поле поляризационные токи возникают в момент смены полярности напряжения. Вследствие этого потери в диэлектрике в переменном поле могут быть значительными, особенно если полупериод приложенного напряжения приближается к времени установления поляризации.

На рис. 1(a) приведена схема, эквивалентная конденсатору с диэлектриком, находящемуся в цепи переменного напряжения. В этой схеме конденсатор с реальным диэлектриком, который обладает потерями, заменен идеальным конденсатором C с параллельно включенным активным сопротивлением R. На рис. 1(б) приведена векторная диаграмма токов и напряжений для рассматриваемой схемы, где U – напряжения в цепи; I ак – активный ток; I р – реактивный ток, который опережает по фазе на 90° активную составляющую; I ∑ — суммарный ток. При этом: I а =I R =U/R и I р =I C =ωCU, где ω – круговая частота переменного поля.

Рис. 1. (а) – схема; (б) – векторная диаграмма токов и напряжений

Углом диэлектрических потерь называется угол δ, дополняющий до 90° угол сдвига фаз φ между током I ∑ и напряжением U в емкостной цепи. Потери в диэлектриках в переменном поле характеризуются тангенсом угла диэлектрических потерь: tg δ=I а /I р.

Предельные значения тангенса угла диэлектрических потерь для высокочастотных диэлектриков не должны превышать (0,0001 – 0,0004), а для низкочастотный – (0,01 – 0,02).

Зависимости ε и tg δ от температуры T и частоты ω

Диэлектрические параметры материалов в различной степени зависят от температуры и частоты. Большое количество диэлектрических материалов не позволяет охватить особенности всех зависимостей от указанных факторов.

Поэтому на рис. 2 (a, б) изображены общие тенденции, характерные для некоторых основных групп т.е. приведены типичные зависимости диэлектрической проницаемости ε от температуры T (а) и от частоты ω (б).

Рис. 2. Частотная зависимость действительной (εʹ) и мнимой (εʺ) частей диэлектрической проницаемости при наличии ориентационного механизма релаксации

Комплексная диэлектрическая проницаемость. При наличии процессов релаксации диэлектрическую проницаемость удобно записывать в комплексном виде. Если для поляризуемости справедлива формула Дебая:

где, τ – время релаксации, α 0 – статистическая ориентационная поляризуемость. То, полагая локальное поле равным внешнему, получим (в СГС):

Графики зависимости εʹ и εʺ от произведения ωτ приведены на рис. 2. Заметим, что уменьшение εʹ (действительной части ε) имеет место вблизи максимума εʺ (мнимой части ε).

Такой ход изменения εʹ и εʺ с частотой служит частым примером более общего результата, согласно которому εʹ(ω) от частоты влечет за собой также и зависимость εʺ(ω) от частоты. В системе СИ следует заменить 4π на 1/ε 0 .

Под действием приложенного поля молекулы в неполярном диэлектрике поляризуются, становясь диполями с индуцированным дипольным моментом μ и , пропорциональным напряженности поля:

В полярном диэлектрике дипольный момент полярной молекулы μ в общем случае равен векторной сумме собственного μ 0 и индуцированного μ и моментов:

Напряженности поля, создаваемого этими диполями, пропорциональны дипольному моменту и обратно пропорциональны кубу расстояния.

Для неполярных материалов обычно ε = 2 – 2,5 и не зависит от частоты до ω ≈10 12 Hz. Зависимость ε от температуры обусловлена у них тем, что при ее изменении изменяются линейные размеры твердых и объемы жидких и газообразных диэлектриков, что изменяет число молекул n в единице объема

и расстояния между ними. Используя известные из теории диэлектриков соотношения F=n\ μ и и F= ε 0 (ε 1)Е, где F – поляризованность материала, для неполярных диэлектриков имеем:

При E=const также μ и = const и температурное изменение ε обусловлено только изменением n, которое является линейной функцией температуры Θ, зависимость ε = ε(Θ) также является линейной. Для полярных диэлектриков аналитических зависимостей нет, и обычно пользуются эмпирическими.

1)С возрастанием температуры объем диэлектрика увеличивается и диэлектрическая проницаемость немного уменьшается. Особенно заметно уменьшение ε в период размягчения и плавления неполярных диэлектриков, когда их объем существенно возрастает. Ввиду высокой частоты обращения электронов на орбитах (порядка 10 15 –10 16 Hz) время установления равновесного состояния электронной поляризации очень мало и проницаемость ε неполярных диэлектриков не зависит от частоты поля в обычно используемом диапазоне частот (до 10 12 Hz).

2) При повышении температуры ослабевают связи между отдельными ионами, что облегчает их взаимодействие под действием внешнего поля и это приводит к увеличению ионной поляризации и диэлектрической проницаемости ε. Ввиду малости времени установления состояния ионной поляризации (порядка 10 13 Hz, что соответствует собственной частоте колебания ионов в кристаллической решетке) изменение частоты внешнего поля в обычных рабочих диапазонах практически не отражается на величине ε в ионных материалов.

3) Диэлектрическая проницаемость полярных диэлектриков сильно зависит от температуры и частоты внешнего поля. С возрастанием температуры увеличивается подвижность частиц и уменьшается энергия взаимодействия между ними, т.е. облегчается их ориентация под действием внешнего поля – возрастает дипольная поляризация и диэлектрическая проницаемость. Однако этот процесс продолжается лишь до определенной температуры. При дальнейшем возрастании температуры проницаемость ε уменьшается. Так как ориентация диполей по направлению поля осуществляется в процессе теплового движения и посредством теплового движения, то установление поляризации требует значительного времени. Это время настолько велико, что в переменных полях высокой частоты диполи не успевают ориентироваться по полю, и проницаемость ε падает .

Методика измерения диэлектрической проницаемости

Емкость конденсатора. Конденсатор – это система из двух проводников (обкладок), разделенных диэлектриком, толщина которого мала по сравнению с линейными размерами проводников. Так, например, две плоские металлические пластины, расположенные параллельно и разделенные слоем диэлектрика, образуют конденсатор (рис. 3).

Если пластинам плоского конденсатора сообщить равные по модулю заряды противоположного знака, то напряженность электрического поля между пластинами будет в два раза больше, чем напряженность поля у одной пластины:

где ε – диэлектрическая проницаемость диэлектрика, заполняющего пространство между пластинами.

Физическая величина, определяемая отношением заряда q одной из пластин конденсатора к разности потенциалов Δφ между обкладками конденсатора, называется электроемкостью конденсатора :

Единица электроемкости СИ – Фарад (Ф). Емкостью в 1 Ф обладает такой конденсатор, разность потенциалов между обкладками которого равна 1 В при сообщении обкладкам разноименных зарядов по 1 Кл: 1 Ф = 1 Кл/1 В.

Емкость плоского конденсатора. Формулу для вычисления электроемкости плоского конденсатора можно получить, используя выражение (8). В самом деле, напряженность поля: Е = φ/εε 0 = q/εε 0 S , где S – площадь пластины. Поскольку поле однородное, то разность потенциалов между обкладками конденсатора равна: φ 1 – φ 2 = Еd = qd /εε 0 S , где d – расстояние между обкладками. Подставив в формулу (9), получим выражение для электроемкости плоского конденсатора:

где ε 0 – диэлектрическая проницаемость воздуха; S – площадь пластины конденсатора, S=hl , где h – ширина пластины, l – ее длина; d – расстояние между пластинами конденсатора.

Выражение (10) показывает, что электроемкость конденсатора можно увеличить путем увеличения площади S его обкладок, уменьшения расстояния d между ними и применения диэлектриков с большими значениями диэлектрической проницаемости ε .

Рис. 3. Конденсатор с помещенным в него диэлектриком

Если между пластинами конденсатора поместить пластину из диэлектрика, емкость конденсатора изменится. Следует рассмотреть вариант расположения диэлектрической пластины между пластинами конденсатора.

Обозначим: d в – толщину воздушного промежутка, d м – толщину диэлектрической пластины, l В – длину воздушной части конденсатора, l м – длину части конденсатора, заполненной диэлектриком, ε м – диэлектрическую проницаемость материала. Если учесть, что l = l в + l м, а d = d в + d м, то эти варианты можно рассмотреть для случаев:

В случае l в = 0, d в = 0 мы имеем конденсатор с твердым диэлектриком:

Из уравнений классической макроскопической электродинамики, основанной на уравнениях Максвелла следует, что при помещении диэлектрика в слабое переменное поле, изменяющееся по гармоническому закону с частотой ω, тензор комплексной диэлектрической проницаемости приобретает вид:

где σ – оптическая проводимость вещества, εʹ – диэлектрическая проницаемость вещества, связанная с поляризацией диэлектрика. Выражение (12) можно привести к следующему виду:

где мнимое слагаемое отвечает за диэлектрические потери .

На практике измеряют С – емкость образца, имеющего форму плоского конденсатора. Этот конденсатор характеризуется тангенсом угла диэлектрических потерь:

где R c – сопротивление, зависящее, главным образом, от диэлектрических потерь. Для измерения этих характеристик существует ряд методов: различные мостовые методы, измерения с преобразованием измеряемого параметра во временной интервал и т.д. .

При измерениях емкости С и тангенса угла диэлектрических потерь D = tgδ в данной работе была использована методика, разработанная кампанией GOOD WILL INSTRUMENT Со Ltd. Измерения проведены на прецизионном измерителе иммитанса – LCR-819-RLC. Прибор позволяет измерять емкость в пределах 20 pF–2,083 mF, тангенс угла потерь в пределах 0,0001-9999 и подавать поле смещения. Внутреннее смещение до 2 В, внешнее смещение до 30 В. Точность измерений составляет 0,05 %. Частота тест-сигнала 12 Hz -100 kHz.

В этой работе измерения проведены на частоте 1 kHz в интервале температур 77 К

Диэлектрическая проницаемость константа. Электрическая проницаемость и угол диэлектрических потерь

Через диэлектрическую постоянную осуществляется связь между относительной и абсолютной диэлектрической проницаемостью . Она также входит в запись закона Кулона :

См. также

Примечания

Литература

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое «Диэлектрическая постоянная» в других словарях:

диэлектрическая постоянная — диэлектрическая проницаемость — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы диэлектрическая проницаемость… …

— (обозначение e0), физическая величина, указывающая на соотношение силы, действующей между электрическими зарядами в вакууме с размером этих зарядов и расстоянием между ними. Первоначально этот показатель носил название ДИЭЛЕКТРИЧЕСКОЙ… … Научно-технический энциклопедический словарь

диэлектрическая постоянная — абсолютная диэлектрическая проницаемость (для изотропного вещества); отрасл. диэлектрическая постоянная Скалярная величина, характеризующая электрические свойства диэлектрика и равная отношению электрического смещения в нем к напряженности… …

диэлектрическая постоянная — dielektrinė skvarba statusas T sritis fizika atitikmenys: angl. dielectric constant; permittivity vok. dielektrische Leitfähigkeit, f; Dielektrizitätskonstante, f; Permittivität, f rus. диэлектрическая постоянная, f; диэлектрическая проницаемость … Fizikos terminų žodynas

Устаревшее название диэлектрической проницаемости (См. Диэлектрическая проницаемость) … Большая советская энциклопедия

Диэлектрическая постоянная ε для некоторых жидкостей (при 20°С) — Растворитель ε Ацетон 21,5 Бензол 2,23 Вода 81,0 … Химический справочник

начальная диэлектрическая постоянная — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] Тематики электротехника, основные понятия EN initial dielectric constant … Справочник технического переводчика

относительная диэлектрическая постоянная — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] Тематики электротехника, основные понятия EN relative permittivityrelative dielectric constant … Справочник технического переводчика

удельная диэлектрическая постоянная — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN simultaneous interchange capabilitySIC … Справочник технического переводчика

диэлектрическая проницаемость — абсолютная диэлектрическая проницаемость; отрасл. диэлектрическая проницаемость Скалярная величина, характеризующая электрические свойства диэлектрика равная отношению величины электрического смещения к величине напряженности электрического поля … Политехнический терминологический толковый словарь

Диэлектри ́ ческая проница ́ емость среды — физическая величина, характеризующая свойства изолирующей (диэлектрической) среды и показывающая зависимостьэлектрической индукции от напряжённости электрического поля.

Определяется эффектом поляризации диэлектриков под действием электрического поля (и с характеризующей этот эффект величиной диэлектрической восприимчивости среды).

Различают относительную и абсолютную диэлектрические проницаемости.

Относительная диэлектрическая проницаемость ε является безразмерной и показывает, во сколько раз сила взаимодействия двух электрических зарядов в среде меньше, чем в вакууме. Эта величина для воздуха и большинства других газов в нормальных условиях близка к единице (в силу их низкой плотности). Для большинства твёрдых или жидких диэлектриков относительная диэлектрическая проницаемость лежит в диапазоне от 2 до 8 (для статического поля). Диэлектрическая постояннаяводы в статическом поле достаточно высока — около 80. Велики её значения для веществ с молекулами, обладающими большим электрическим дипольным моментом. Относительная диэлектрическая проницаемость сегнетоэлектриков составляет десятки и сотни тысяч.

Абсолютная диэлектрическая проницаемость в зарубежной литературе обозначается буквой ε, в отечественной преимущественно используется сочетание , где — электрическая постоянная. Абсолютная диэлектрическая проницаемость используется только в Международной системе единиц (СИ), в которой индукция и напряжённость электрического поля измеряются в различных единицах. В системе СГС необходимость в введении абсолютной диэлектрической проницаемости отсутствует. Абсолютная диэлектрическая постоянная (как и электрическая постоянная) имеет размерность L −3 M −1 T 4 I². В единицах Международной системы единиц (СИ): =Ф/м.

Следует отметить, что диэлектрическая проницаемость в значительной степени зависит от частоты электромагнитного поля. Это следует всегда учитывать, поскольку таблицы справочников обычно содержат данные для статического поля или малых частот вплоть до нескольких единиц кГц без указания данного факта. В то же время существуют и оптические методы получения относительной диэлектрической проницаемости по коэффициенту преломления при помощи эллипсометров и рефрактометров. Полученное оптическим методом (частота 10 14 Гц) значение будет значительно отличаться от данных в таблицах.

Рассмотрим, например, случай воды. В случае статического поля (частота равна нулю), относительная диэлектрическая проницаемость при нормальных условияхприблизительно равна 80. Это имеет место вплоть до инфракрасных частот. Начиная примерно с 2 ГГц ε r начинает падать. В оптическом диапазоне ε r составляет приблизительно 1,8. Это вполне соответствует факту, что в оптическом диапазоне показатель преломления воды равен 1,33. В узком диапазоне частот, называемом оптическим, диэлектрическое поглощение падает до нуля, что собственно и обеспечивает человеку механизм зрения [ источник не указан 1252 дня ] в земной атмосфере, насыщенной водяным паром. С дальнейшим ростом частоты свойства среды вновь меняются. О поведении относительной диэлектрической проницаемости воды в диапазоне частот от 0 до 10 12 (инфракрасная область) можно прочитать на (англ.)

Диэлектрическая проницаемость диэлектриков является одним из основных параметров при разработке электрических конденсаторов. Использование материалов с высокой диэлектрической проницаемостью позволяют существенно снизить физические размеры конденсаторов.

Ёмкость конденсаторов определяется:

где ε r — диэлектрическая проницаемость вещества между обкладками, ε о — электрическая постоянная, S — площадь обкладок конденсатора, d — расстояние между обкладками.

Параметр диэлектрической проницаемости учитывается при разработке печатных плат. Значение диэлектрической проницаемости вещества между слоями в сочетании с его толщиной влияет на величину естественной статической ёмкости слоев питания, а также существенно влияет на волновое сопротивлениепроводников на плате.

УДЕЛЬНОЕ СОПРОТИВЛЕНИЕ электрическое, физическая величина, равная электрическому сопротивлению (см. СОПРОТИВЛЕНИЕ ЭЛЕКТРИЧЕСКОЕ ) R цилиндрического проводника единичной длины (l = 1м) и единичной площади поперечного сечения (S =1 м 2).. r = R S/l. В Си единицей удельного сопротивления является Ом. м. Удельное сопротивление могут выражать также в Ом. см. Удельное сопротивление является характеристикой материала, по которому протекает ток, и зависит от материала, из которого он изготовлен. Удельное сопротивление, равное r = 1 Ом. м означает, что цилиндрический проводник, изготовленный из данного материала, длиной l = 1м и с площадью поперечного сечения S = 1 м 2 имеет сопротивление R = 1 Ом. м. Величина удельного сопротивления металлов (см. МЕТАЛЛЫ ), являющихся хорошими проводниками (см. ПРОВОДНИКИ ), может иметь значения порядка 10 — 8 – 10 — 6 Ом. м (например, медь, серебро, железо и т. д.). Удельное сопротивление некоторых твердых диэлектриков (см. ДИЭЛЕКТРИКИ ) может достигать значения 10 16 -10 18 Ом.м (например, кварцевое стекло, полиэтилен, электрофарфор и др.). Величина удельного сопротивления многих материалов (особенного полупроводниковых материалов (см. ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ )) существенно зависит от степени их очистки, наличия легирующих добавок, термических и механических обработок и т. д. Величина s, обратная удельному сопротивлению, называется удельной проводимостью: s = 1/r Удельная проводимость измеряется в сименсах (см. СИМЕНС (единица проводимости) ) на метр См/м. Удельное электрическое сопротивление (проводимость) является скалярной величиной для изотропного вещества; и тензорной — для анизотропного вещества. В анизотропным монокристаллах анизотропия электропроводности является следствием анизотропии обратной эффективной массы (см. ЭФФЕКТИВНАЯ МАССА ) электронов и дырок.

1-6. ЭЛЕКТРОПРОВОДНОСТЬ ИЗОЛЯЦИИ

При включении изоляции кабеля или провода на постоянное напряжение U через нее проходит ток i, изменяющийся во времени (рис. 1-3). Этот ток имеет постоянные составляющие — ток проводимости (i ∞) и ток абсорбции, гдеγ — проводимость, соответствующая току абсорбции; Т — время, в течение которого ток i абс спадает до 1/e своего первоначального значения. При бесконечно большом времени i абс →0 и i = i ∞ . Электропроводность диэлектриков объясняется наличием в них некоторого количества свободных заряженных частиц: ионов и электронов.

Наиболее характерна для большей части электроизоляционных материалов ионная электропроводность, которая возможна за счет неизбежно присутствующих в изоляции загрязнений (примеси влаги, солей, щелочей и т. п.). У диэлектрика с ионным характером электропроводности строго соблюдается закон Фарадея — пропорциональность между количеством прошедшего через изоляцию электричества и количеством выделившегося при электролизе вещества.

При повышении температуры удельное сопротивление электроизоляционных материалов уменьшается и характеризуется формулой

где_ρ о, А и В — постоянные для данного материала; Т- температура, °К.

Большая зависимость сопротивления изоляции от влаги имеет место у гигроскопичных изоляционных материалов, главным образом волокнистых (бумага, хлопчатобумажная пряжа и др.). Поэтому волокнистые материалы подвергаются сушке и пропитке, а также защите влагостойкими оболочками.

Сопротивление изоляции может уменьшаться с повышением напряжения за счет образования в изоляционных материалах объемных зарядов. Создающаяся при этом добавочная электронная проводимость приводит к увеличению электропроводности. Существует зависимость проводимости от напряжения в очень сильных полях (закон Я. И. Френкеля):

где γ о — проводимость в слабых полях; а — постоянная. Все электроизоляционные материалы характеризуются определенными значениями проводимости изоляции G. В идеале проводимость изоляционных материалов равна нулю. У реальных изоляционных материалов проводимость на единицу длины кабеля определяют по формуле

В кабелях, имеющих сопротивление изоляции более, 3-10 11 ом-м и кабелях связи, где потери на диэлектрическую поляризацию значительно больше тепловых потерь, проводимость определяют по формуле

Проводимость изоляции в технике связи является электрическим параметром линии, характеризующим потери энергии в изоляции жил кабелей. Зависимость величины проводимости от частоты приведена на рис. 1-1. Величина, обратная проводимости — сопротивление изоляции, представляет собой отношение приложенного кизоляции напряжения постоянного тока (в вольтах) ктоку утечки (в амперах), т. е.

гдеR V — объемное сопротивление изоляции, численно определяющее препятствие, создаваемое прохождению токав толще изоляции; R S — поверхностное сопротивление, определяющее препятствие прохождению тока по поверхностиизоляции.

Практической оценкой качества применяемых изоляционных материалов является удельное объемное сопротивление ρ V выражаемое в омо-сантиметрах (ом*см). Численно ρ V равно сопротивлению (в омах) куба с ребром 1 см из данного материала, если ток проходит через две противоположные грани куба. Удельное поверхностное сопротивление ρ S численно равно сопротивлению поверхности квадрата (в омах), если ток подводится к электродам, ограничивающим две противоположные стороны этого квадрата.

Сопротивление изоляции одножильного кабеля или провода определяют по формуле

Влажностные свойства диэлектриков

Влагостойкость – это надежность эксплуатации изоляции при нахождении ее в атмосфере водяного пара близкого к насыщению. Влагостойкость оценивают по изменению электрических, механических и других физических свойств после нахождения материала в атмосфере с повышенной и высокой влажностью; по влаго- и водопроницаемости; по влаго- и водопоглощаемости.

Влагопроницаемость – способность материала пропускать пары влаги при наличии разности относительных влажностей воздуха с двух сторон материала.

Влагопоглощаемость – способность материала сорбировать воду при длительном нахождении во влажной атмосфере близкой к состоянию насыщения.

Водопоглощаемость – способность материала сорбировать воду при длительном погружении его в воду.

Тропикостойкость и тропикализация оборудования защита электрооборудования от влаги, плесени, грызунов.

Тепловые свойства диэлектриков

Для характеристики тепловых свойств диэлектриков используются следующие величины.

Нагревостойкость – способность электроизоляционных материалов и изделий без вреда для них выдерживать воздействие высокой температуры и резких смен температуры. Определяют по температуре, при которой наблюдается существенное изменение механических и электрических свойств, например, в органических диэлектриках начинается деформация растяжения или изгиба под нагрузкой.

Теплопроводность – процесс передачи тепла в материале. Характеризуется экспериментально определяемым коэффициентом теплопроводности λ т. λ т – количество теплоты, переданной за одну секунду через слой материала толщиной в 1 м и площадью поверхности – 1 м 2 при разности температур поверхностей слоя в 1 °К. Коэффициент теплопроводности диэлектриков изменяется в широких пределах. Самые низкие значения λ т имеют газы, пористые диэлектрики и жидкости (для воздуха λ т = 0,025 Вт/(м·К), для водыλ т = 0,58 Вт/(м·К)), высокие значения имеют кристаллические диэлектрики (для кристаллического кварца λ т = 12,5 Вт/(м·К)). Коэффициент теплопроводности диэлектриков зависит от их строения (для плавленого кварца λ т = 1,25 Вт/(м·К)) и температуры.

Тепловое расширение диэлектриков оценивают температурным коэффициентом линейного расширения: . Материалы с малым тепловым расширением, имеют, как правило, более высокую нагревостойкость и наоборот. Тепловое расширение органических диэлектриков значительно (в десятки и сотни раз) превышает расширение неорганических диэлектриков. Поэтому стабильность размеров деталей из неорганических диэлектриков при колебаниях температуры значительно выше по сравнению с органическими.

1. Абсорбционные токи

Абсорбционными токами называются токи смещения различных видов замедленной поляризации. Абсорбционные токи при постоянном напряжении протекают в диэлектрике до момента установления равновесного состояния, изменяя свое направление при включении и выключении напряжения. При переменном напряжении абсорбционные токи протекают в течение всего времени нахождения диэлектрика в электрическом поле.

В общем случае электрический ток j в диэлектрике представляет собой сумму сквозного тока j ск и тока абсорбции j аб

Ток абсорбции можно определить через ток смещения j см — скорость изменения вектора электрической индукции D

Сквозной ток определяется переносом (движением) в электрическом поле различных носителей заряда.

2. Электронная электропроводность характеризуется перемещением электронов под действием поля. Кроме металлов она присутствует у углерода, оксидов металлов, сульфидов и др. веществ, а также у многих полупроводников.

3. Ионная – обусловлена движением ионов. Наблюдается в растворах и расплавах электролитов – солей, кислот, щелочей, а также во многих диэлектриках. Она подразделяется на собственную и примесную проводимости. Собственная проводимость обусловлена движением ионов, получаемых при диссоциации молекул. Движение ионов в электрическом поле сопровождается электролизом – переносом вещества между электродами и выделением его на электродах. Полярные жидкости диссоциированы в большей степени и имеют большую электропроводность, чем неполярные.

В неполярных и слабополярных жидких диэлектриках (минеральные масла, кремнийорганические жидкости) электропроводность определяется примесями.

4. Молионная электропроводность – обусловлена движением заряженных частиц, называемых молионами . Наблюдают ее в коллоидных системах, эмульсиях , суспензиях . Движение молионов под действием электрического поля называют электрофорезом . При электрофорезе, в отличие от электролиза, новых веществ не образуется, меняется относительная концентрация дисперсной фазы в различных слоях жидкости. Электрофоретическая электропроводность наблюдается, например, в маслах, содержащихэмульгированную воду.

Диэлектрическая проницаемость

О явлении поляризации судят по значению диэлектрической проницаемости ε. Параметр ε, характеризующий способность материала образовывать емкость, называется относительной диэлектрической проницаемостью.

Слово “относительная” обычно опускается. Надо учесть, что электрическая емкость участка изоляции с электродами, т.е. конденсатора, зависит от геометрических размеров, конфигурации электродов и от структуры материала, образующего диэлектрик этого конденсатора.

В вакууме ε = 1, а любого диэлектрика всегда больше 1. Если С0 — ем-

кость, между обкладками которого находится вакуум, произвольной формы и размеров, а С — емкость конденсатора таких же размеров и формы, но заполненного диэлектриком с диэлектрической проницаемостью ε, то

Обозначив через С0 электрическую постоянную (Ф/м), равную

найдем абсолютную диэлектрическую проницаемость

Определим величины емкостей для некоторых форм диэлектриков.

Для плоского конденсатора

С = ε0 ε S/h = 8,854 1О-12 ε S/h.

где S — площадь поперечного сечения электрода, м2;

h — расстояние между электродами, м.

Практическое значение диэлектрической проницаемости очень велико. Она определяет не только способность материала образовывать емкость, но и входит в ряд основных уравнений, которые характеризуют физические процессы, протекающие в диэлектрике.

Диэлектрическая проницаемость газов, вследствие их малой плотности (из-за больших расстояний между молекулами) незначительна и близка к единице. Обычно поляризация газа электронная или дипольная, если молекулы полярные. ε газа тем выше, чем больше радиус молекулы. Изменение числа молекул газа в единице объема газа (n) при изменении температуры и давления вызывает изменение диэлектрической проницаемости газа. Число молекул N пропорционально давлению и обратно пропорционально абсолютной температуре.

При изменении влажности диэлектрическая проницаемость воздуха незначительно меняется прямо пропорционально изменению влажности (при комнатной температуре). При повышенной температуре влияние влажности значительно усиливается. Температурная зависимость диэлектрической проницаемости характеризуется выражением

T K ε = 1 / ε (dε / dT).

По этому выражению можно вычислить относительное изменение диэлектрической проницаемости при изменении температуры на 1 0 К — так называемый температурный коэффициент ТК диэлектрической проницаемости.

Значение ТК неполярного газа находится по формуле

где Т — температура. К.

Диэлектрическая проницаемость жидкостей сильно зависит от их структуры. Значения ε неполярных жидкостей невелики и близки к квадрату показателя преломления света n 2. Диэлектрическая проницаемость полярных жидкостей, которые используются в качестве технических диэлектриков, лежит в пределах от 3,5 до 5, что заметно выше, чем у неполярных жидкостей.

Так поляризация жидкостей, содержащих дипольные молекулы, определяется одновременно электронной и дипольно-релаксационной поляризациями.

Сильнополярные жидкости, характеризуются высоким значением ε из-за их большой проводимости. Температурная зависимость ε в дипольных жидкостях имеет более сложный характер, чем нейтральные жидкости.

Поэтому ε на частоте 50 Гц для хлорированного дифенила (савол) быстро возрастает из-за резкого падения вязкости жидкости, а дипольные

молекулы успевают ориентироваться вслед за изменением температуры.

Уменьшение ε происходит вследствие усиления теплового движения молекул, препятствующего их ориентации в направлении электрического поля.

Диэлектрики по виду поляризации делятся на четыре группы:

Первая группа – однокомпозиционные, однородные, чистые без добавок, диэлектрики, у которых в основном электронная поляризация или плотная упаковка ионов. К ним относятся неполярные и слабополярные твердые диэлектрики в кристаллическом или аморфном состоянии, а также неполярные и слабополярные жидкости и газы.

Вторая группа – технические диэлектрики с электронной, ионной и одновременно с дипольно-релаксационной поляризациями. К ним относятся полярные (дипольные) органические полужидкие и твердые вещества, например масляно-канифольные компаунды, целлюлоза, эпоксидные смолы и композиционные материалы, составленные из этих веществ.

Третья группа – технические диэлектрики с ионной и электронной поляризациями; диэлектрики с электронной, ионной релаксационными поляризациями делится на две подгруппы. К первой подгруппе относятся в основном кристаллические вещества с плотной упаковкой ионов ε Uи и линейной зависи­мости tg от Е. Ионизационное напряжение Uи зависит от давления, при котором находится газ, поскольку развитие ударной ионизации молекул связано с длиной свободного пробега носителей заряда.

Диэлектрические потери, обусловленные неоднородностью струк­туры, наблюдаются в слоистых диэлектриках, из пропитанной бумаги и ткани, в пластмассах с наполнителем, в пористой керамике в миканитах, микалексе и т. д.

Ввиду разнообразия структуры неоднородных диэлектриков и особенностей содержащихся в них компонентов не существует общей формулы расчета диэлектрических потерь этого вида.

Как известно, окружающий нас воздух представляет собой комбинацию нескольких газов, поэтому является хорошим диэлектриком. В частности, благодаря этому во многих случаях удается избежать необходимости организации дополнительных изолирующих слоев какого-либо материала вокруг проводника. Сегодня мы поговорим о том, проницаемость воздуха. Но сначала, пожалуй, начнем с определения того, что именно понимают под термином «диэлектрик».

Все вещества в зависимости от способности проводить электрический ток условно подразделяются на три больших группы: проводники, полупроводники и диэлектрики. Первые оказывают минимальное сопротивление направленному прохождению по ним заряженных частиц. Самая большая их группа — это металлы (алюминий, медь, железо). Вторые проводят ток при определенных условиях (кремний, германий). Ну а третьих настолько велико, что ток по ним не проходит. Яркий пример — воздух.

Что же происходит, когда вещество попадает в зону действия электрического поля? Для проводников ответ очевиден — возникает электрический ток (разумеется, при наличии замкнутого контура, обеспечивающего «путь» для частиц). Так происходит благодаря тому, что изменяется способ взаимодействия зарядов. Совершенно другие процессы происходят при воздействии поля на диэлектрический материал. При изучении взаимодействия частиц, обладающих было замечено, что сила взаимодействия зависит не только от численного значения заряда, но и от среды, разделяющей их. Это важная характеристика получила название «диэлектрическая проницаемость вещества». Фактически, она представляет собой поправочный коэффициент, так как не имеет размерности. Определяется как отношение значения силы взаимодействия в вакууме к значению в какой-либо среде. Физический смысл термина «диэлектрическая проницаемость» следующий: данная величина показывает степень ослабления электрического поля диэлектрическим материалом по сравнению с вакуумом. Причина данного явления кроется в том, что молекулы материала затрачивают энергию поля не на проводимость частиц, а на поляризацию.

Известно, что воздуха равна единице. Много это или мало? Давайте разберемся. Сейчас нет необходимости самостоятельно рассчитывать числовое значение проницаемости для большинства распространенных веществ, так как все эти данные приводятся в соответствующих таблицах. Кстати, именно из подобной таблицы взято равное единице. Диэлектрическая проницаемость воздуха почти в 8 раз меньше, чем у, например, гетинакса. Зная это число, а также значение зарядов и расстояние между ними, можно вычислить силу их взаимодействия, при условии разделения воздушной средой или пластиной гетинакса.

Формула для силы следующая:

F = (Q1*Q2) / (4* 3.1416* E0*Es*(r*r)),

где Q1 и Q2 — значения зарядов; E0 — проницаемость в вакууме (константа, равная 8.86 в степени -12); Es — диэлектрическая проницаемость воздуха («1» или значение для любого другого вещества, по таблице); r — расстояние между зарядами. Все размерности берутся в соответствии с системой СИ.

Не следует путать два разных понятия — «магнитная проницаемость воздуха» и его же диэлектрическая проницаемость. Магнитная является еще одной характеристикой любого вещества, также представляющей собой коэффициент, однако его смысл другой — взаимосвязь и значения в определенном веществе. В формулах используется эталонный показатель — магнитная проницаемость для чистого вакуума. Как первое, так и второе понятия используются для выполнения расчетов различных электротехнических устройств.

Диэлектрическая проницаемость – это один из основных параметров, характеризующих электрические свойства диэлектриков . Другими словами он определяет насколько хорошим изолятором является тот или иной материал.

Значение диэлектрической проницаемости показывает зависимость электрической индукции в диэлектрике от напряженности электрического поля , воздействующего на него. При этом на ее величину оказывают влияние не только физические свойства самого материала или среды, но еще и частота поля. Как правило в справочниках указывается величина, измеренная для статического или низкочастотного поля.

Различают два вида диэлектрической проницаемости: абсолютную и относительную.

Относительная диэлектрическая проницаемость показывает отношение изолирующих (диэлектрических) свойств исследуемого материала к аналогичным свойствам вакуума. Она характеризует изолирующие свойства вещества в газообразном, жидком или твердом состояниях. То есть применима практически ко всем диэлектрикам. Величина относительной диэлектрической проницаемости для веществ в газообразном состоянии, как правило, находится в переделах 1. Для жидкостей и твердых тел она может находиться в очень широких пределах – от 2 и практически до бесконечности.

К примеру, относительная диэлектрическая проницаемость пресной воды равна 80, а сегнетоэлектриков – десятки, а то и сотни единиц в зависимости от свойств материала.

Абсолютная диэлектрическая проницаемость – это постоянная величина. Она характеризует изолирующие свойства конкретного вещества или материала, не зависимо от его местоположения и воздействующих на него внешних факторов.

Использование

Диэлектрическую проницаемость, а точнее ее значения используют при разработке и проектировании новых электронных компонентов , в частности конденсаторов . От ее значения зависят будущие размеры и электрические характеристики компонента. Эту величину также учитывают и при разработке целых электрических схем (особенно в высокочастотной электронике) и даже

Определение диэлектрической проницаемости и тангенса угла диэлектрических потерь изоляционных материалов

Цель работы: Определение основных характеристик изоляционных материалов: относительной диэлектрической проницаемости ε и тангенса угла диэлектрических потерь tgδ. Приобретение навыков измерения параметров электрических цепей с помощью прибора Е7-22.

Общие сведения:

Потери энергии в диэлектрике называются диэлектрическими потерями.

Диэлектрические потери по их особенностям и физической природе можно подразделить на четыре основных вида:

1) диэлектрические потери, обусловленные поляризацией;

2) диэлектрические потери, обусловленные сквозной электропроводностью;

3) ионизационные диэлектрические потери;

4) диэлектрические потери, обусловленные неоднородностью структуры.

Диэлектрические потери, обусловленные поляризацией особенно отчетливо наблюдаются в веществах, обладающих релаксационной поляризацией: в диэлектриках дипольной структуры и в диэлектриках ионной структуры с неплотной упаковкой ионов.

Релаксационные диэлектрические потери обусловлены нарушением движения частиц под влиянием сил электрического поля.

В температурной зависимости тангенса угла релаксационных диэлектрических потерь наблюдается максимум при некоторой температуре, характерной для данного вещества. При этой температуре время релаксации диэлектрика примерно совпадает с периодом изменения приложенного электрического поля. Если температура такова, что время релаксации частиц значительно больше полупериода изменения приложенного переменного напряжения, то тепловое движение частиц будет менее интенсивным и потери уменьшатся; если температура такова, что время релаксации частиц значительно меньше полупериода изменения напряжения, то интенсивность теплового движения будет больше, связь между частицами уменьшится, в результате чего потери также снизятся.

К диэлектрическим потерям обусловленным поляризацией, следует отнести также так называемые резонансные потери, проявляющиеся в диэлектриках при высоких частотах. Этот вид потерь с особой четкостью наблюдается в некоторых газах при строго определенной частоте и выражается в интенсивном поглощении энергии электрического поля.

Резонансные потери возможны и в твердых веществах, если частота вынужденных колебаний, вызываемых электрическим полем, совпадает с частотой собственных колебаний частиц твердого вещества. Наличие максимума в частотной зависимости tgδ характерно также и для резонансного механизма потерь, однако в данном случае температура не влияет на положение максимума.

Диэлектрические потери, обусловленные сквозной электропроводностью, обнаруживаются в диэлектриках, имеющих заметную объемную или поверхностную проводимость. Диэлектрические потери этого вида не зависят от частоты поля; tgδ уменьшается с частотой по гиперболическому закону.

Диэлектрические потери, обусловленные электропроводностью, возрастают с температурой по экспоненциальному закону:

где А, b – постоянные материала.

Ионизационные диэлектрические потери свойственны диэлектрикам в газообразном состоянии. Ионизационные потери проявляются в неоднородных электрических полях при напряженностях, превышающих значение, соответствующее началу ионизации данного газа. Ионизационные потери можно вычислить по формуле:

где А1— постоянные коэффициент;

U- приложенное напряжение;

Uи – напряжение соответствующее началу ионизации.

Ионизационное напряжение Uи зависит от давления, при котором находится газ, поскольку развитие ударной ионизации молекул связано с длиной свободного пробега носителей заряда.

Диэлектрические потери, обусловленные неоднородностью структуры, наблюдаются в слоистых диэлектриках, из пропитанной бумаги и ткани, в пластмассах с наполнителем, в пористой керамике, в миканитах и т.д.

Тангенс угла диэлектрических потерь имеет очень важное значение как электрическая характеристика диэлектрика. Мощность диэлектрических потерь прямо пропорциональна частоте:

Р= tgδ∙ω·С∙U 2 , Вт (4.3)

Однако, следует иметь ввиду, что и tgδ и С зависят от частоты, причем большим изменениям может подвергаться величина tgδ. В диапазоне частот, в котором произведение tgδ∙С растет с ростом частоты, рост диэлектрических потерь будет происходить быстрее, чем рост частоты; в диапазоне частот, в котором произведение tgδ∙С уменьшается с ростом частоты, величина диэлектрических потерь может увеличиваться с ростом частоты более медленно.

Как правило, при высоких частотах диэлектрические потери больше, чем при низких, что создает определенные трудности при выборе электроизоляционных материалов для высокочастотной техники. В высокочастотной технике вместо tgδ часто пользуются понятием добротности изоляции, которую обозначают обычно величиной Q, обратной величине tgδ.

Тангенс угла диэлектрических потерь, или добротность, могут характеризовать не только конкретный материал, но и изоляционную конструкцию машины, аппарата или прибора в целом. Величина tgδ для большинства жидких и твердых диэлектриков колеблется в пределах от десятитысячных до десятых долей единицы.

Так же одной из важнейших характеристик диэлектрика является его относительная диэлектрическая проницаемость εr. Эта величина представляет собой отношение заряда Q, полученного при некотором напряжении на конденсаторе, содержащем данный диэлектрик, к заряду Q, который можно было бы получить в конденсаторе тех же размеров и при том же направлении, если бы между электродами находился вакуум.

Относительная диэлектрическая проницаемость вещества не зависит от выбора системы единиц. Для вакуума диэлектрическую проницаемость принимают за единицу, а для любого другого вещества она всегда больше единицы. Относительная диэлектрическая проницаемость показывает, во сколько раз емкость конденсатора с данным диэлектриком больше емкости аналогичного вакуумного конденсатора.

Для определения относительной диэлектрической проницаемости и тангенса угла диэлектрических потерь различных изоляционных материалов измеряются параметры последовательной схемы замещения конденсатора (С и R) с диэлектриком из испытываемого материала. Схема электрическая соединений для измерения параметров конденсатора приведена на рисунке 4.1. Плоский конденсатор (блок 2355), между пластинами которого помещен испытываемый диэлектрик, подключается к измерителю параметров RLC Е7-22 (блок 533). Блоки питания 218 и 224.1 обеспечивают напряжение питания +12В для Е7-22.

Рисунок 4.1 — Схема электрическая соединений для измерения параметров конденсатора с испытываемым диэлектриком

Емкость конденсатора с испытываемым диэлектриком определяется соотношением

где ε=8,845 10 -12 электрическая постоянная (диэлектрическая

ε -относительная диэлектрическая проницаемость испытываемого

S -площадь пластин конденсатора в м 2 . В эксперименте учитывается

площадь верхней пластины конденсатора. Влиянием краевого эффекта

d — расстояние между пластинами конденсатора в метрах, равное

толщине испытываемого диэлектрика.

Для вычисления относительной диэлектрической проницаемости испытываемого диэлектрика измеренная емкость Ссравнивается с расчетной емкостью конденсатора C с теми же геометрическими размерами, но без диэлектрика (среда между пластинами — вакуум с диэлектрической проницаемостью ε)

т. е. равно относительной диэлектрической проницаемости испытываемого диэлектрика.

Тангенс угла диэлектрических потерь определяется для последовательной схемы замещения конденсатора, состоящей из идеального конденсатора с емкостью C и, включенного последовательно с ним, сопротивления R. При измерении на частоте ω, тангенс диэлектрических потерь равен отношению активного (R) и емкостного (1/ωC)сопротивлений цепи

где ω=2πf – угловая частота, с -1

Отсюда можно определить сопротивление R последовательной схемы замещения конденсатора:

Чем меньше тангенс угла диэлектрических потерь, тем эта емкость лучше. Данный параметр характеризует внутренние утечки в емкости.

Что такое диэлектрическая проницаемость. Электрическая проницаемость и угол диэлектрических потерь

Диэлектри ́ ческая проница ́ емость среды — физическая величина, характеризующая свойства изолирующей (диэлектрической) среды и показывающая зависимостьэлектрической индукции от напряжённости электрического поля.

Определяется эффектом поляризации диэлектриков под действием электрического поля (и с характеризующей этот эффект величиной диэлектрической восприимчивости среды).

Различают относительную и абсолютную диэлектрические проницаемости.

Относительная диэлектрическая проницаемость ε является безразмерной и показывает, во сколько раз сила взаимодействия двух электрических зарядов в среде меньше, чем в вакууме. Эта величина для воздуха и большинства других газов в нормальных условиях близка к единице (в силу их низкой плотности). Для большинства твёрдых или жидких диэлектриков относительная диэлектрическая проницаемость лежит в диапазоне от 2 до 8 (для статического поля). Диэлектрическая постояннаяводы в статическом поле достаточно высока — около 80. Велики её значения для веществ с молекулами, обладающими большим электрическим дипольным моментом. Относительная диэлектрическая проницаемость сегнетоэлектриков составляет десятки и сотни тысяч.

Абсолютная диэлектрическая проницаемость в зарубежной литературе обозначается буквой ε, в отечественной преимущественно используется сочетание , где — электрическая постоянная. Абсолютная диэлектрическая проницаемость используется только в Международной системе единиц (СИ), в которой индукция и напряжённость электрического поля измеряются в различных единицах. В системе СГС необходимость в введении абсолютной диэлектрической проницаемости отсутствует. Абсолютная диэлектрическая постоянная (как и электрическая постоянная) имеет размерность L −3 M −1 T 4 I². В единицах Международной системы единиц (СИ): =Ф/м.

Каждый электрик должен знать:  Электротехнические термины и определения на букву К

Следует отметить, что диэлектрическая проницаемость в значительной степени зависит от частоты электромагнитного поля. Это следует всегда учитывать, поскольку таблицы справочников обычно содержат данные для статического поля или малых частот вплоть до нескольких единиц кГц без указания данного факта. В то же время существуют и оптические методы получения относительной диэлектрической проницаемости по коэффициенту преломления при помощи эллипсометров и рефрактометров. Полученное оптическим методом (частота 10 14 Гц) значение будет значительно отличаться от данных в таблицах.

Рассмотрим, например, случай воды. В случае статического поля (частота равна нулю), относительная диэлектрическая проницаемость при нормальных условияхприблизительно равна 80. Это имеет место вплоть до инфракрасных частот. Начиная примерно с 2 ГГц ε r начинает падать. В оптическом диапазоне ε r составляет приблизительно 1,8. Это вполне соответствует факту, что в оптическом диапазоне показатель преломления воды равен 1,33. В узком диапазоне частот, называемом оптическим, диэлектрическое поглощение падает до нуля, что собственно и обеспечивает человеку механизм зрения [ источник не указан 1252 дня ] в земной атмосфере, насыщенной водяным паром. С дальнейшим ростом частоты свойства среды вновь меняются. О поведении относительной диэлектрической проницаемости воды в диапазоне частот от 0 до 10 12 (инфракрасная область) можно прочитать на (англ.)

Диэлектрическая проницаемость диэлектриков является одним из основных параметров при разработке электрических конденсаторов. Использование материалов с высокой диэлектрической проницаемостью позволяют существенно снизить физические размеры конденсаторов.

Ёмкость конденсаторов определяется:

где ε r — диэлектрическая проницаемость вещества между обкладками, ε о — электрическая постоянная, S — площадь обкладок конденсатора, d — расстояние между обкладками.

Параметр диэлектрической проницаемости учитывается при разработке печатных плат. Значение диэлектрической проницаемости вещества между слоями в сочетании с его толщиной влияет на величину естественной статической ёмкости слоев питания, а также существенно влияет на волновое сопротивлениепроводников на плате.

УДЕЛЬНОЕ СОПРОТИВЛЕНИЕ электрическое, физическая величина, равная электрическому сопротивлению (см. СОПРОТИВЛЕНИЕ ЭЛЕКТРИЧЕСКОЕ ) R цилиндрического проводника единичной длины (l = 1м) и единичной площади поперечного сечения (S =1 м 2).. r = R S/l. В Си единицей удельного сопротивления является Ом. м. Удельное сопротивление могут выражать также в Ом. см. Удельное сопротивление является характеристикой материала, по которому протекает ток, и зависит от материала, из которого он изготовлен. Удельное сопротивление, равное r = 1 Ом. м означает, что цилиндрический проводник, изготовленный из данного материала, длиной l = 1м и с площадью поперечного сечения S = 1 м 2 имеет сопротивление R = 1 Ом. м. Величина удельного сопротивления металлов (см. МЕТАЛЛЫ ), являющихся хорошими проводниками (см. ПРОВОДНИКИ ), может иметь значения порядка 10 — 8 – 10 — 6 Ом. м (например, медь, серебро, железо и т. д.). Удельное сопротивление некоторых твердых диэлектриков (см. ДИЭЛЕКТРИКИ ) может достигать значения 10 16 -10 18 Ом.м (например, кварцевое стекло, полиэтилен, электрофарфор и др.). Величина удельного сопротивления многих материалов (особенного полупроводниковых материалов (см. ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ )) существенно зависит от степени их очистки, наличия легирующих добавок, термических и механических обработок и т. д. Величина s, обратная удельному сопротивлению, называется удельной проводимостью: s = 1/r Удельная проводимость измеряется в сименсах (см. СИМЕНС (единица проводимости) ) на метр См/м. Удельное электрическое сопротивление (проводимость) является скалярной величиной для изотропного вещества; и тензорной — для анизотропного вещества. В анизотропным монокристаллах анизотропия электропроводности является следствием анизотропии обратной эффективной массы (см. ЭФФЕКТИВНАЯ МАССА ) электронов и дырок.

1-6. ЭЛЕКТРОПРОВОДНОСТЬ ИЗОЛЯЦИИ

При включении изоляции кабеля или провода на постоянное напряжение U через нее проходит ток i, изменяющийся во времени (рис. 1-3). Этот ток имеет постоянные составляющие — ток проводимости (i ∞) и ток абсорбции, гдеγ — проводимость, соответствующая току абсорбции; Т — время, в течение которого ток i абс спадает до 1/e своего первоначального значения. При бесконечно большом времени i абс →0 и i = i ∞ . Электропроводность диэлектриков объясняется наличием в них некоторого количества свободных заряженных частиц: ионов и электронов.

Наиболее характерна для большей части электроизоляционных материалов ионная электропроводность, которая возможна за счет неизбежно присутствующих в изоляции загрязнений (примеси влаги, солей, щелочей и т. п.). У диэлектрика с ионным характером электропроводности строго соблюдается закон Фарадея — пропорциональность между количеством прошедшего через изоляцию электричества и количеством выделившегося при электролизе вещества.

При повышении температуры удельное сопротивление электроизоляционных материалов уменьшается и характеризуется формулой

где_ρ о, А и В — постоянные для данного материала; Т- температура, °К.

Большая зависимость сопротивления изоляции от влаги имеет место у гигроскопичных изоляционных материалов, главным образом волокнистых (бумага, хлопчатобумажная пряжа и др.). Поэтому волокнистые материалы подвергаются сушке и пропитке, а также защите влагостойкими оболочками.

Сопротивление изоляции может уменьшаться с повышением напряжения за счет образования в изоляционных материалах объемных зарядов. Создающаяся при этом добавочная электронная проводимость приводит к увеличению электропроводности. Существует зависимость проводимости от напряжения в очень сильных полях (закон Я. И. Френкеля):

где γ о — проводимость в слабых полях; а — постоянная. Все электроизоляционные материалы характеризуются определенными значениями проводимости изоляции G. В идеале проводимость изоляционных материалов равна нулю. У реальных изоляционных материалов проводимость на единицу длины кабеля определяют по формуле

В кабелях, имеющих сопротивление изоляции более, 3-10 11 ом-м и кабелях связи, где потери на диэлектрическую поляризацию значительно больше тепловых потерь, проводимость определяют по формуле

Проводимость изоляции в технике связи является электрическим параметром линии, характеризующим потери энергии в изоляции жил кабелей. Зависимость величины проводимости от частоты приведена на рис. 1-1. Величина, обратная проводимости — сопротивление изоляции, представляет собой отношение приложенного кизоляции напряжения постоянного тока (в вольтах) ктоку утечки (в амперах), т. е.

гдеR V — объемное сопротивление изоляции, численно определяющее препятствие, создаваемое прохождению токав толще изоляции; R S — поверхностное сопротивление, определяющее препятствие прохождению тока по поверхностиизоляции.

Практической оценкой качества применяемых изоляционных материалов является удельное объемное сопротивление ρ V выражаемое в омо-сантиметрах (ом*см). Численно ρ V равно сопротивлению (в омах) куба с ребром 1 см из данного материала, если ток проходит через две противоположные грани куба. Удельное поверхностное сопротивление ρ S численно равно сопротивлению поверхности квадрата (в омах), если ток подводится к электродам, ограничивающим две противоположные стороны этого квадрата.

Сопротивление изоляции одножильного кабеля или провода определяют по формуле

Влажностные свойства диэлектриков

Влагостойкость – это надежность эксплуатации изоляции при нахождении ее в атмосфере водяного пара близкого к насыщению. Влагостойкость оценивают по изменению электрических, механических и других физических свойств после нахождения материала в атмосфере с повышенной и высокой влажностью; по влаго- и водопроницаемости; по влаго- и водопоглощаемости.

Влагопроницаемость – способность материала пропускать пары влаги при наличии разности относительных влажностей воздуха с двух сторон материала.

Влагопоглощаемость – способность материала сорбировать воду при длительном нахождении во влажной атмосфере близкой к состоянию насыщения.

Водопоглощаемость – способность материала сорбировать воду при длительном погружении его в воду.

Тропикостойкость и тропикализация оборудования защита электрооборудования от влаги, плесени, грызунов.

Тепловые свойства диэлектриков

Для характеристики тепловых свойств диэлектриков используются следующие величины.

Нагревостойкость – способность электроизоляционных материалов и изделий без вреда для них выдерживать воздействие высокой температуры и резких смен температуры. Определяют по температуре, при которой наблюдается существенное изменение механических и электрических свойств, например, в органических диэлектриках начинается деформация растяжения или изгиба под нагрузкой.

Теплопроводность – процесс передачи тепла в материале. Характеризуется экспериментально определяемым коэффициентом теплопроводности λ т. λ т – количество теплоты, переданной за одну секунду через слой материала толщиной в 1 м и площадью поверхности – 1 м 2 при разности температур поверхностей слоя в 1 °К. Коэффициент теплопроводности диэлектриков изменяется в широких пределах. Самые низкие значения λ т имеют газы, пористые диэлектрики и жидкости (для воздуха λ т = 0,025 Вт/(м·К), для водыλ т = 0,58 Вт/(м·К)), высокие значения имеют кристаллические диэлектрики (для кристаллического кварца λ т = 12,5 Вт/(м·К)). Коэффициент теплопроводности диэлектриков зависит от их строения (для плавленого кварца λ т = 1,25 Вт/(м·К)) и температуры.

Тепловое расширение диэлектриков оценивают температурным коэффициентом линейного расширения: . Материалы с малым тепловым расширением, имеют, как правило, более высокую нагревостойкость и наоборот. Тепловое расширение органических диэлектриков значительно (в десятки и сотни раз) превышает расширение неорганических диэлектриков. Поэтому стабильность размеров деталей из неорганических диэлектриков при колебаниях температуры значительно выше по сравнению с органическими.

1. Абсорбционные токи

Абсорбционными токами называются токи смещения различных видов замедленной поляризации. Абсорбционные токи при постоянном напряжении протекают в диэлектрике до момента установления равновесного состояния, изменяя свое направление при включении и выключении напряжения. При переменном напряжении абсорбционные токи протекают в течение всего времени нахождения диэлектрика в электрическом поле.

В общем случае электрический ток j в диэлектрике представляет собой сумму сквозного тока j ск и тока абсорбции j аб

Ток абсорбции можно определить через ток смещения j см — скорость изменения вектора электрической индукции D

Сквозной ток определяется переносом (движением) в электрическом поле различных носителей заряда.

2. Электронная электропроводность характеризуется перемещением электронов под действием поля. Кроме металлов она присутствует у углерода, оксидов металлов, сульфидов и др. веществ, а также у многих полупроводников.

3. Ионная – обусловлена движением ионов. Наблюдается в растворах и расплавах электролитов – солей, кислот, щелочей, а также во многих диэлектриках. Она подразделяется на собственную и примесную проводимости. Собственная проводимость обусловлена движением ионов, получаемых при диссоциации молекул. Движение ионов в электрическом поле сопровождается электролизом – переносом вещества между электродами и выделением его на электродах. Полярные жидкости диссоциированы в большей степени и имеют большую электропроводность, чем неполярные.

В неполярных и слабополярных жидких диэлектриках (минеральные масла, кремнийорганические жидкости) электропроводность определяется примесями.

4. Молионная электропроводность – обусловлена движением заряженных частиц, называемых молионами . Наблюдают ее в коллоидных системах, эмульсиях , суспензиях . Движение молионов под действием электрического поля называют электрофорезом . При электрофорезе, в отличие от электролиза, новых веществ не образуется, меняется относительная концентрация дисперсной фазы в различных слоях жидкости. Электрофоретическая электропроводность наблюдается, например, в маслах, содержащихэмульгированную воду.

Электрическая проницаемость

Электрическая проницаемость является величиной, характеризующей емкость диэлектрика, помещенного между обкладками конденсатора. Как известно, емкость плоского конденсатора зависит от величины площади обкладок (чем больше площадь обкладок, тем больше емкость), расстояния между обкладками или толщины диэлектрика (чем толще диэлектрик, тем меньше емкость), а также от материала диэлектрика, характеристикой которого служит электрическая проницаемость.

Численно электрическая проницаемость равна отношению емкости конденсатора с каким-либо диэлектриком такого же воздушного конденсатора. Для создания компактных конденсаторов необходимо применять диэлектрики с высокой электрической проницаемостью. Электрическая проницаемость большинства диэлектриков составляет несколько единиц.

В технике получены диэлектрики с высокой и со сверхвысокой электрической проницаемостью. Основная их часть — рутил (двуокись титана).

Рисунок 1. Электрическая проницаемость среды

Угол диэлектрических потерь

В статье «Диэлектрики » мы разбирали примеры включения диэлектрика в цепи постоянного и переменного тока. Оказалось, что реальном диэлектрике при работе его в электрическом поле, образованным переменным напряжением, происходит выделение тепловой энергии. Мощность, поглощаемая при этом, называется диэлектрическими потерями. В статье «Цепь переменного тока, содержащая емкость» будет доказано, что в идеальном диэлектрике емкостной ток опережает напряжение на угол, меньший 90°. В реальном диэлектрике емкостной ток опережает напряжение на угол, меньший 90°. На уменьшение угла оказывает влияние ток утечки, называемый иначе током проводимости.

Разность между 90° и углом сдвига между напряжением и током, проходящим в цепи с реальным диэлектриком, называется углом диэлектрических потерь или углом потерь и обозначается δ (дельта). Чаще определяют не сам угол, а тангенс этого угла — tg δ.

Установлено, что диэлектрические потери пропорциональны квадрату напряжения, частоте переменного тока, емкости конденсатора и тангенсу угла диэлектрических потерь.

Следовательно, чем больше тангенс угла диэлектрических потерь, tg δ, тем больше потери энергии в диэлектрике, тем хуже материал диэлектрика. Материалы с относительно большим tg δ (порядка 0,08 — 0,1 и более) являются плохими изоляторами. Материалы с относительно малым tg δ (порядка 0,0001) являются хорошими изоляторами.

ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ (диэлектрическая постоянная ) — физическая величина, характеризующая способность вещества уменьшать силы электрического взаимодействия в этом веществе по сравнению с вакуумом. Т. о., Д. п. показывает, во сколько раз силы электрического взаимодействия в веществе меньше, чем в вакууме.

Д. п.- характеристика, зависящая от строения вещества-диэлектрика. Электроны, ионы, атомы, молекулы или их отдельные части и более крупные участки какого-либо вещества в электрическом поле поляризуются (см. Поляризация), что приводит к частичной нейтрализации внешнего электрического поля. Если частота электрического поля соизмерима с временем поляризации вещества, то в определенном диапазоне частот имеет место дисперсия Д. п., т. е. зависимость ее величины от частоты (см. Дисперсия). Д. п. вещества зависит как от электрических свойств атомов и молекул, так и от их взаимного расположения, т. е. строения вещества. Поэтому определение Д. п. или ее изменения в зависимости от окружающих условий используют при исследовании структуры вещества, и в частности различных тканей организма (см. Электропроводность биологических систем).

Различные вещества (диэлектрики) в зависимости от их строения и агрегатного состояния имеют различную величину Д. п. (табл.).

Таблица. Значение диэлектрической проницаемости некоторых веществ

Особое значение для мед.-биол, исследований имеет изучение Д. и. в полярных жидкостях. Типичным их представителем является вода, состоящая из диполей, которые в электрическом поле ориентируются благодаря взаимодействию между зарядами диполя и полем, что приводит к возникновению дипольной или ориентационной поляризации. Высокая величина Д. п. воды (80 при t° 20°) определяет высокую степень диссоциации в ней различных хим. веществ и хорошую растворимость солей, к-т, оснований и других соединений (см. Диссоциация , Электролиты). С увеличением концентрации электролита в воде величина ее Д. п. уменьшается (напр., для одновалентных электролитов Д. п. воды уменьшается на единицу при увеличении концентрации соли на 0,1 М).

Большинство биол, объектов относится к гетерогенным диэлектрикам. При взаимодействии ионов биол, объекта с электрическим полем существенное значение имеет поляризация границ раздела (см. Мембраны биологические). При этом величина поляризации тем больше, чем меньше частота электрического поля. Т. к. поляризация границ раздела биол, объекта зависит от их проницаемости (см.) для ионов, то очевидно, что эффективная Д. п. в большей степени определяется состоянием мембран.

Т. к. поляризация такого сложного гетерогенного объекта, как биологический, имеет различную природу (концентрационная, макроструктурная, ориентационная, ионная, электронная и др.), то становится понятным тот факт, что с возрастанием частоты изменение Д. п. (дисперсия) резко выражено. Условно выделяют три области дисперсии Д. п.: альфа-дисперсия (на частотах до 1 кгц), бета-дисперсия (частота от нескольких кгц до десятков мгц) и гамма-дисперсия (частоты выше 10 9 гц); в биол, объектах четкой границы между областями дисперсии обычно нет.

При ухудшении функц, состояния биол, объекта дисперсия Д. п. на низких частотах уменьшается вплоть до полного исчезновения (при отмирании тканей). На высоких частотах величина Д. п. существенно не изменяется.

Д. п. измеряют в широком диапазоне частот и в зависимости от диапазона частот существенно изменяются и методы измерения. При частотах электрического тока менее 1 гц измерение производят с помощью метода заряда или разряда конденсатора, заполненного исследуемым веществом. Зная зависимость зарядного или разрядного тока от времени, можно определить не только величину электрической емкости конденсатора, но и потери в нем. На частотах от 1 до 3 10 8 гц для измерения Д. и. применяют специальные резонансные и мостовые методы, которые позволяют комплексно исследовать изменения Д. п. различных веществ наиболее полно и разносторонне.

В мед.-биол, исследованиях чаще всего используют симметричные мосты переменного тока с непосредственным отсчетом измеряемых величин.

Библиография: Высокочастотный нагрев диэлектриков и полупроводников, под ред. А. В. Нетушила,М. -Л., 1959, библиогр.; С едунов Б. И. и Фран к-К а м е-н e ц к и й Д. А. Диэлектрическая проницаемость биологических объектов, Усп. физич. наук, т. 79, в. 4, с. 617, 1963, библиогр.; Электроника и кибернетика в биологии и медицине, пер. с англ., под ред. П. К. Анохина, с. 71, М., 1963, библиогр.; Э м e Ф. Диэлектрические измерения, пер. с нем., М., 1967, библиогр.

Диэлектрическая проницаемость характеризует количественно процесс поляризации.

Диэлектрической проницаемостью (или относительной диэлектрической проницаемостью) ε называется отношение абсолютной диэлектрической проницаемости вещества ε а к электрической постоянной ε о.

Значение относительной диэлектрической проницаемости электроизоляционных материалов можно вычислить, сравнив емкости двух конденсаторов, одинаковых по форме и геометрическим размерам:

где С х – емкость конденсатора с испытываемым диэлектриком;

С о – емкость конденсатора при тех же геометрических размерах, но в случае, когда испытываемый диэлектрик заменен вакуумом.

Значение ε исследуемого диэлектрика можно определить, измеряя дважды емкость разборного конденсатора: когда между обкладками данный диэлектрик (С х) и когда между ними воздух (С о). Замена вакуума воздухом дает малую погрешность (сотые доли процента).

Поляризация газообразных веществ вследствие больших рас­стояний между молекулами незначительна, и диэлектрическая про­ницаемость близка к единице. Диэлектрическая проницаемость газа пропорциональна давлению и обратно пропорциональна аб­солютной температуре, так как она определяется изменением чис­ла молекул в единице объема. Однако эта зависимость слабо вы­ражена.

Жидкие диэлектрики могут быть построены из нейтральных (неполярных) молекул, обладающих только электронной поляриза­цией, а также из дипольных (полярных) молекул, поляризация которых определяется одновременно электронной и дипольной сос­тавляющими.

Жидкости обладают тем большей диэлектрической проницаемостью, чем больше значение электрического момента диполей и чем больше число молекул в единице объема. Диэлек­трическая проницаемость нейтральных жидкостей обычно не пре­вышает 2.5. Сильнополярные жидкости, характеризующиеся очень высоким значением диэлектрической проницаемости, например во­да, этиловый спирт, не находят практического применения в качест­ве диэлектрика вследствие их высокой электропроводности. Ди­электрическая проницаемость нейтральной жидкости обратно про­порциональна температуре, так как с ростом последней уменьша­ется число молекул в единице объема.

Зависимость диэлектрической проницаемости дипольных жид­костей от температуры носит более сложный характер.

При низких температурах диэлектрическая проницаемость но­сит только электронный характер, диполи еще не могут поверты­ваться. С повышением температуры вязкость жидкости уменьша­ется и диполи начинают ориентироваться в электрическом поле, что ведет к резкому увеличению диэлектрической проницаемости. При дальнейшем увеличении температуры возросшая кинетическая энергия хаотического движения диполей мешает их ориентации, и поэтому диэлектрическая проницаемость начинает постепенно уменьшаться (рис. 12.2).

Рис. 12.2- Зависимость диэлектри­ческой проницаемости от тем­пературы

Диэлектрическая проницаемость дипольной жидкости зависит от частоты тока. При малых частотах диполи успевают следовать за изменением поля и значение диэлектрической проницаемости при этом близко к значению проницаемости, определяемому при постоянном токе. При увеличении частоты молекулы не успевают следовать за изменением поля, и диэлектрическая проницаемость начинает уменьшаться. При большой частоте ее значение прибли­жается к значению, обусловленному только электронной поляриза­цией (рис. 12.3).

Рис. 12.3- Зависимость диэлектри­ческой проницаемости от час­тоты

Диэлектрическая проницаемость полярных жидкостей повыше­на по сравнению с нейтральными жидкостями. Например, для совтола ее значение равно 3,2, для касторового масла – 4,5.

Диэлектрическая проницаемость твердых тел может принимать самые различные значения в соответствии с разнообразием струк­турных особенностей твердых диэлектриков. Наименьшее значе­ние диэлектрической проницаемости имеют твердые диэлектрики, построенные из нейтральных молекул и обладающие только элект­ронной поляризацией. К такому виду относится парафин, имеющий диэлектрическую проницаемость 1,9. 2,2. Температурная зависи­мость диэлектрической проницаемости нейтральных твердых ди­электриков подобна зависимости нейтральных жидкостей. В твер­дых диэлектриках, представляющих собой ионные кристаллы с плотной упаковкой частиц и обладающих электронной и ионной поляризациями, значение диэлектрической проницаемости меняется в очень широких пределах. С увеличением температуры таких диэлектриков их диэлектрическая проницаемость возрастает почти линейно за счет возрастания поляризуемости ионов, несмотря на уменьшение плотности вещества.

Твердые дипольные диэлектрики аморфной и кристаллической структуры и ионные аморфные диэлектрики, в том числе полярные полимеры (бакелит, шеллак, плексиглас, эбонит, поливинилхлорид и др.), целлюлоза и продукты ее переработки (галовакс, неоргани­ческие стекла), характеризуются наличием электронной, ионной и структурной поляризаций и делятся на две подгруппы:

Ионные аморфные диэлектрики (неорганические стекла), структурная по­ляризация которых состоит в перебросе тепловым движением внут­ри замкнутой ячейки ионов, направляемых электрическим полем; диэлектрическая проницаемость стекол находится в пределах от 4 до 20;

Дипольные аморфные и кристаллические твердые тела, в которых в твердом состоянии обнаруживается дипольная поляри­зация, аналогичная поляризации дипольных жидкостей, но с со­вершенно иными значениями времени релаксации. Диэлектричес­кая проницаемость материалов второй подгруппы в большой степе­ни зависит от температуры и от частоты приложенного напряжения, подчиняясь тем же закономерностям, какие наблюдаются у ди­польных диэлектриков.

От значения диэлектрической проницаемости зависит емкость материала. Поэтому, например, сверхвысокая диэлектрическая про­ницаемость керамического сегнето диэлектрика используется в ма­логабаритных конденсаторах. Интересно отметить, что диэлектри­ческая проницаемость сегнетодиэлектриков имеет резко выражен­ную зависимость не только от температуры, но и от напряженности поля, при этом отмечено явление диэлектрического гистерезиса сегнетодиэлектриков.

Любое вещество или тело, окружающее нас, обладает определенными электрическими свойствами. Это объясняется молекулярной и атомной структурой: наличием заряженных частиц, находящихся во взаимно связанном или свободном состоянии.

Когда на вещество не действует никакое внешнее электрическое поле, то эти частицы распределяются так, что уравновешивают друг друга и во всем суммарном объеме не создают дополнительного электрического поля. В случае приложения извне электрической энергии внутри молекул и атомов возникает перераспределение зарядов, которое ведет к созданию собственного внутреннего электрического поля, направленного встречно внешнему.

Если вектор приложенного внешнего поля обозначить «Е0», а внутреннего — «Е»», то полное поле «Е» будет складываться из энергии этих двух величин.

В электричестве принято делить вещества на:

Такая классификация существует издавна, хотя она довольно условна потому, что многие тела обладают другими или комбинированными свойствами.

В роли проводников выступают среды, имеющие в наличии свободные заряды. Чаще всего проводниками выступают металлы, ведь в их структуре всегда присутствуют свободные электроны, которые способны перемещаться внутри всего объема вещества и, одновременно, являются участниками тепловых процессов.

Когда проводник изолирован от действия внешних электрических полей, то в нем создается баланс положительных и отрицательных зарядов из ионных решеток и свободных электронов. Это равновесие сразу разрушается при внесении — благодаря энергии которого начинается перераспределение заряженных частиц и возникают несбалансированные заряды положительных и отрицательных величин на внешней поверхности.

Это явление принято называть электростатической индукцией . Возникшие при ней заряды на поверхности металлов именуют индукционными зарядами .

Образованные в проводнике индукционные заряды формируют собственное поле Е», компенсирующее действие внешнего Е0 внутри проводника. Поэтому значение полного, суммарного электростатического поля скомпенсировано и равно 0. При этом потенциалы всех точек как внутри, так и снаружи одинаковы.

Полученный вывод свидетельствует, что внутри проводника, даже при подключенном внешнем поле, отсутствует разность потенциалов и нет электростатических полей. Этот факт используется при экранировании — применении способа электростатической защиты людей и чувствительного к наведенным полям электрооборудования, особенно высокоточных измерительных приборов и микропроцессорной техники.

Экранированная одежда и обувь из тканей с токопроводящими нитями, включая головной убор, используется в энергетике для защиты персонала, работающего в условиях повышенной напряженности, создаваемой высоковольтным оборудованием.

Так называют вещества, обладающие изоляционными свойствами. Они имеют в своем составе только связанные между собой, а не свободные заряды. У них все положительные и отрицательные частицы скреплены внутри нейтрального атома, лишены свободы передвижения. Они распределены внутри диэлектрика и не перемещаются под действием приложенного внешнего поля Е0.

Однако, его энергия все же вызывает определенные изменения в структуре вещества — внутри атомов и молекул изменяется соотношение положительных и отрицательных частиц, а на поверхности вещества возникают излишние, несбалансированные связанные заряды, образующие внутреннее электрическое поле Е». Оно направлено встречно приложенной извне напряженности.

Это явление получило название поляризации диэлектрика . Оно характеризуется тем, что внутри вещества проявляется электрическое поле Е, образованное действием внешней энергии Е0, но ослабленное противодействием внутренней Е».

Она внутри диэлектриков бывает двух видов:

Первый тип имеет дополнительное название дипольной поляризации. Он присущ диэлектрикам со смещенными центрами у отрицательных и положительных зарядов, которые образуют молекулы из микроскопических диполей — нейтральной совокупности из двух зарядов. Это характерно для воды, диоксида азота, сероводорода.

Без действия внешнего электрического поля у таких веществ молекулярные диполи ориентируются хаотичным образом под влиянием действующих температурных процессов. При этом в любой точке внутреннего объема и на внешней поверхности диэлектрика нет электрического заряда.

Эта картина изменяется под влиянием приложенной извне энергии, когда диполи немного изменяют свою ориентацию и на поверхности возникают области не скомпенсированных макроскопических связанных зарядов, образующих поле Е» со встречным направлением к приложенному Е0.

При такой поляризации большое влияние на процессы оказывает температура, вызывающая тепловое движение и создающая дезориентирующие факторы.

Электронная поляризация, упругий механизм

Она проявляется у неполярных диэлектриков — материалов другого вида с молекулами, лишенными дипольного момента, которые под влияние внешнего поля деформируются так, что положительные заряды ориентируются по направлению вектора Е0, а отрицательные — в противоположную сторону.

В итоге каждая из молекул работает как электрический диполь, сориентированный по оси приложенного поля. Они, таким способом, создают на внешней поверхности свое поле Е» со встречным направлением.

У подобных веществ деформация молекул, а, следовательно, и поляризация от воздействия поля извне не зависит от их движения под влиянием температуры. В качестве примера неполярного диэлектрика можно привести метан СH4.

Численное значение внутреннего поля обоих видов диэлектриков по величине вначале изменяется прямо пропорционально возрастанию внешнего поля, а затем, при достижении насыщения, проявляются эффекты нелинейного характера. Они наступают тогда, когда все молекулярные диполи выстроились вдоль силовых линий у полярных диэлектриков или произошли изменения структуры неполярного вещества, обусловленные сильной деформацией атомов и молекул от большой приложенной извне энергии.

На практике такие случаи возникают редко — обычно раньше наступает пробой или нарушение изоляции.

Среди изоляционных материалов важная роль отводится электрическим характеристикам и такому показателю, как диэлектрическая проницаемость . Она может оцениваться двумя различными характеристиками:

1. абсолютным значением;

2. относительной величиной.

Термином абсолютной диэлектрической проницаемости вещества εa пользуются при обращении к математической записи закона Кулона. Она, в форме коэффициента εа, связывает вектора индукции D и напряженности E.

Вспомним, что французский физик Шарль де Кулон с помощью собственных крутильных весов исследовал закономерности электрических и магнитных сил между небольшими заряженными телами.

Определение относительной диэлектрической проницаемости среды используется для характеристики изоляционных свойств вещества. Она оценивает соотношение силы взаимодействия между двумя точечными зарядами при двух различных условиях: в вакууме и рабочей среде. При этом показатели вакуума принимаются за 1 (εv=1), а у реальных веществ они всегда выше, εr>1.

Численное выражение εr отображается безразмерной величиной, объясняется эффектом поляризации у диэлектриков, используется для оценки их характеристик.

Значения диэлектрической проницаемости отдельных сред (при комнатной температуре)

Значение диэлектрической проницаемости. Электрическая проницаемость и угол диэлектрических потерь

Диэлектрическая проницаемость – это один из основных параметров, характеризующих электрические свойства диэлектриков . Другими словами он определяет насколько хорошим изолятором является тот или иной материал.

Значение диэлектрической проницаемости показывает зависимость электрической индукции в диэлектрике от напряженности электрического поля , воздействующего на него. При этом на ее величину оказывают влияние не только физические свойства самого материала или среды, но еще и частота поля. Как правило в справочниках указывается величина, измеренная для статического или низкочастотного поля.

Различают два вида диэлектрической проницаемости: абсолютную и относительную.

Относительная диэлектрическая проницаемость показывает отношение изолирующих (диэлектрических) свойств исследуемого материала к аналогичным свойствам вакуума. Она характеризует изолирующие свойства вещества в газообразном, жидком или твердом состояниях. То есть применима практически ко всем диэлектрикам. Величина относительной диэлектрической проницаемости для веществ в газообразном состоянии, как правило, находится в переделах 1. Для жидкостей и твердых тел она может находиться в очень широких пределах – от 2 и практически до бесконечности.

К примеру, относительная диэлектрическая проницаемость пресной воды равна 80, а сегнетоэлектриков – десятки, а то и сотни единиц в зависимости от свойств материала.

Абсолютная диэлектрическая проницаемость – это постоянная величина. Она характеризует изолирующие свойства конкретного вещества или материала, не зависимо от его местоположения и воздействующих на него внешних факторов.

Использование

Диэлектрическую проницаемость, а точнее ее значения используют при разработке и проектировании новых электронных компонентов , в частности конденсаторов . От ее значения зависят будущие размеры и электрические характеристики компонента. Эту величину также учитывают и при разработке целых электрических схем (особенно в высокочастотной электронике) и даже

ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ, величина ε, характеризующая поляризацию диэлектриков под действием электрического поля напряжённостью Е. Диэлектрическая проницаемость входит в Кулона закон как величина, показывающая, во сколько раз сила взаимодействия двух свободных зарядов в диэлектрике меньше, чем в вакууме. Ослабление взаимодействия происходит вследствие экранирования свободных зарядов связанными, образующимися в результате поляризации среды. Связанные заряды возникают вследствие микроскопического пространственного перераспределения зарядов (электронов, ионов) в электрически нейтральной в целом среде.

Связь между векторами поляризации Р, напряжённости электрического поля Е и электрической индукции D в изотропной среде в системе единиц СИ имеет вид:

где ε 0 — электрическая постоянная. Величина диэлектрической проницаемости ε зависит от структуры и химического состава вещества, а также от давления, температуры и других внешних условий (табл.).

Для газов её величина близка к 1, для жидкостей и твёрдых тел изменяется от нескольких единиц до нескольких десятков, у сегнетоэлектриков может достигать 10 4 . Такой разброс значений ε обусловлен различными механизмами поляризации, имеющими место в разных диэлектриках.

Классическая микроскопическая теория приводит к приближённому выражению для диэлектрической проницаемости неполярных диэлектриков:

где n i — концентрация i-го сорта атомов, ионов или молекул, α i — их поляризуемость, β i — так называемый фактор внутреннего поля, обусловленный особенностями структуры кристалла или вещества. Для большинства диэлектриков с диэлектрической проницаемостью, лежащей в пределах 2-8, β = 1/3. Обычно диэлектрическая проницаемость практически не зависит от величины приложенного электрического поля вплоть до электрического пробоя диэлектрика. Высокие значения ε некоторых оксидов металлов и других соединений обусловлены особенностями их структуры, допускающей под действием поля Е коллективное смещение подрешёток положительных и отрицательных ионов в противоположных направлениях и образование значительных связанных зарядов на границе кристалла.

Процесс поляризации диэлектрика при наложении электрического поля развивается не мгновенно, а в течение некоторого времени τ (времени релаксации). Если поле Е изменяется во времени t по гармоническому закону с частотой ω, то поляризация диэлектрика не успевает следовать за ним и между колебаниями Р и Е появляется разность фаз δ. При описании колебаний Р и Е методом комплексных амплитуд диэлектрическую проницаемость представляют комплексной величиной:

причём ε’ и ε» зависят от ω и τ, а отношение ε»/ε’ = tg δ определяет диэлектрические потери в среде. Сдвиг фаз δ зависит от соотношения τ и периода поля Т = 2π/ω. При τ > Т (высокие частоты) поляризация не успевает за изменением Ε, δ → π и ε’ в этом случае обозначают ε (∞) (механизм поляризации «отключён»). Очевидно, что ε (0) > ε (∞) , и в переменных полях диэлектрическая проницаемость оказывается функцией ω. Вблизи ω = l/τ происходит изменение ε’ от ε (0) до ε (∞) (область дисперсии), а зависимость tgδ(ω) проходит через максимум.

Характер зависимостей ε’(ω) и tgδ(ω) в области дисперсии определяется механизмом поляризации. В случае ионной и электронной поляризаций при упругом смещении связанных зарядов изменение Р(t) при ступенчатом включении поля Е имеет характер затухающих колебаний и зависимости ε’(ω) и tgδ(ω) называются резонансными. В случае ориентационной поляризации установление Р(t) носит экспоненциальный характер, а зависимости ε’(ω) и tgδ(ω) называются релаксационными.

Методы измерения диэлектрической поляризации основаны на явлениях взаимодействия электромагнитного поля с электрическими дипольными моментами частиц вещества и различны для разных частот. В основе большинства методов при ω ≤ 10 8 Гц лежит процесс зарядки и разрядки измерительного конденсатора, заполненного исследуемым диэлектриком. При более высоких частотах используются волноводные, резонансные, мультичастотные и другие методы.

В некоторых диэлектриках, например сегнетоэлектриках, пропорциональная зависимость между Р и Ε [Ρ = ε 0 (ε ‒ 1)Е] и, следовательно, между D и Е нарушается уже в обычных, достигаемых на практике электрических полях. Формально это описывается как зависимость ε(Ε) ≠ const. В этом случае важной электрической характеристикой диэлектрика является дифференциальная диэлектрическая проницаемость:

В нелинейных диэлектриках величину ε диф измеряют обычно в слабых переменных полях при одновременном наложении сильного постоянного поля, а переменную составляющую ε диф, называют реверсивной диэлектрической проницаемостью.

Лит. смотри при ст. Диэлектрики.

ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ

Диэлектрическая проницаемость среды ε c есть величина, характеризующая влияние среды на силы взаимодействия электрических полей. Различные среды имеют различные значения ε c .

Абсолютная диэлектрическая проницаемость вакуума называется электрической постоянной ε 0 =8,85 10 -12 ф/м.

Отношение абсолютной диэлектрической проницаемости среды к электрической постоянной называют относительной диэлектрической проницаемостью

т.е. относительная диэлектрическая проницаемость ε — это величина показывающая, во сколько раз абсолютная диэлектрическая проницаемость среды больше электрической постоянной. Величина ε размерности не имеет.

Относительная диэлектрическая проницаемость изоляционных материалов

Как видно из таблицы у большинства диэлектриков ε = 1-10и мало зависит от электрических условий и температуры среды.

Существует группа диэлектриков, называемых сегнетоэлектриками , в которых ε может достигать значений до 10 000, причем ε сильно зависит от внешнего поля и температуры. К сегнетоэлектрикам относятся титанат бария, титанат свинца, сегнетова соль и др.

1. Каково строение атома алюминия, меди?

2. В каких единицах измеряются размеры атомов и их частиц?

3. Какой электрический заряд имеют электроны?

4. Почему в обычном состоянии вещества электрически нейтральны?

5. Что называется электрическим полем и как оно условно изображается?

6. От чего зависит сила взаимодействия между электрическими зарядами?

7. Почему одни материалы являются проводниками, а другие изоляторами?

8. Какие материалы относятся к проводника, а какие к изоляторам?

9. Как можно зарядить тело положительным электричеством?

10. Что называется относительной диэлектрической проницаемостью?

Диэлектрическая проницаемость диэлектри́ческая проница́емость

величина ε, показывающая, во сколько раз сила взаимодействия двух электрических зарядов в среде меньше, чем в вакууме. В изотропной среде ε связана с диэлектрической восприимчивостью χ соотношением: ε = 1 + 4π χ. Диэлектрическая проницаемость анизотропной среды — тензор. Диэлектрическая проницаемость зависит от частоты поля; в сильных электрических полях Диэлектрическая проницаемость начинает зависеть от напряжённости поля.

ДИЭЛЕКТРИ́ЧЕСКАЯ ПРОНИЦА́ЕМОСТЬ, безразмерная величина e, показывающая, во сколько раз сила взаимодействия F между электрическими зарядами в данной среде меньше их силы взаимодействия F o в вакууме:
e =F о /F.
Диэлектрическая проницаемость показывает, во сколько раз поле ослабляется диэлектриком (см. ДИЭЛЕКТРИКИ) , количественно характеризуя свойство диэлектрика поляризоваться в электрическом поле.
Значение относительной диэлектрической проницаемости вещества, характеризующее степень его поляризуемости, определяется механизмами поляризации (см. ПОЛЯРИЗАЦИЯ) . Однако величина в большой мере зависит и от агрегатного состояния вещества, так как при переходах из одного состояния в другое существенно меняется плотность вещества, его вязкость и изотропность (см. ИЗОТРОПИЯ) .
Диэлектрическая проницаемость газов
Газообразные вещества характеризуются весьма малыми плотностями вследствие больших расстояний между молекулами. Благодаря этому поляризация всех газов незначительна и диэлектрическая проницаемость их близка к единице. Поляризация газа может быть чисто электронной или дипольной, если молекулы газа полярны, однако и в этом случае основное значение имеет электронная поляризация. Поляризация различных газов тем больше, чем больше радиус молекулы газа, и численно близка к квадрату коэффициента преломления для этого газа.
Зависимость газа от температуры и давления определяется числом молекул в единице объема газа, которое пропорционально давлению и обратно пропорционально абсолютной температуре.
У воздуха в нормальных условиях e =1,0006, а ее температурный коэффициент имеет значение около 2 . 10 -6 К -1 .
Диэлектрическая проницаемость жидких диэлектриков
Жидкие диэлектрики могут состоять из неполярных или полярных молекул. Значение e неполярных жидкостей определяется электронной поляризацией, поэтому оно невелико, близко к значению квадрата преломления света и обычно не превышает 2,5. Зависимость e неполярной жидкости от температуры связана с уменьшением числа молекул в единице объема, т. е. с уменьшением плотности, а ее температурный коэффициент близок к температурному коэффициенту объемного расширения жидкости, но отличается знаком.
Поляризация жидкостей, содержащих дипольные молекулы, определяется одновременно электронной и дипольно-релаксационной составляющими. Такие жидкости обладают тем большей диэлектрической проницаемостью, чем больше значение электрического момента диполей (см. ДИПОЛЬ) и чем больше число молекул в единице объема. Температурная зависимость в случае полярных жидкостей носит сложный характер.
Диэлектрическая проницаемость твердых диэлектриков
В твердых телах может принимать самые разные числовые значения в соответствии с разнообразием структурных особенностей твердого диэлектрика. В твердых диэлектриках возможны все виды поляризации.
Наименьшее значение e имеют твердые диэлектрики, состоящие из неполярных молекул и обладающие только электронной поляризацией .
Твердые диэлектрики, представляющие собой ионные кристаллы с плотной упаковкой частиц, обладают электронной и ионной поляризациями и имеют значения e, лежащие в широких пределах (e каменной соли — 6; e корунда — 10; e рутила — 110; e титаната кальция — 150).
e различных неорганических стекол, приближающихся по строению к аморфным диэлектрикам, лежит в сравнительно узких пределах от 4 до 20.
Полярные органические диэлектрики обладают в твердом состоянии дипольно-релаксационной поляризацией. e этих материалов в большой степени зависит от температуры и частоты приложенного напряжения, подчиняясь тем же закономерностям, что и у дипольных жидкостей.

Энциклопедический словарь . 2009 .

Смотреть что такое «диэлектрическая проницаемость» в других словарях:

Величина e, показывающая, во сколько раз сила взаимодействия двух электрических зарядов в среде меньше, чем в вакууме. В изотропной среде e связана с диэлектрической восприимчивостью c соотношением: e = 1 + 4pc. Диэлектрическая проницаемость… … Большой Энциклопедический словарь

Величина e, характеризующая поляризацию диэлектриков под действием электрич. поля Е. Д. п. входит в Кулона закон как величина, показывающая, во сколько раз сила вз ствия двух свободных зарядов в диэлектрике меньше, чем в вакууме. Ослабление вз… … Физическая энциклопедия

ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ, Величина e, показывающая, во сколько раз сила взаимодействия двух электрических зарядов в среде меньше, чем в вакууме. Величина e колеблется в широких пределах: водород 1,00026, трансформаторное масло 2,24,… … Современная энциклопедия

— (обозначение e), в физике одно из свойств различных материалов (см. ДИЭЛЕКТРИК). Выражается отношением плотности ЭЛЕКТРИЧЕСКОГО ПОТОКА в среде к напряженности ЭЛЕКТРИЧЕСКОГО ПОЛЯ, которое его вызывает. Диэлектрическая проницаемость вакуума… … Научно-технический энциклопедический словарь

диэлектрическая проницаемость — Величина, характеризующая диэлектрические свойства вещества, скалярная для изотропного вещества и тензорная для анизотропного вещества, произведение которой на напряженность электрического поля равно электрическому смещению. [ГОСТ Р 52002 2003]… … Справочник технического переводчика

Диэлектрическая проницаемость — ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ, величина e, показывающая, во сколько раз сила взаимодействия двух электрических зарядов в среде меньше, чем в вакууме. Величина e колеблется в широких пределах: водород 1,00026, трансформаторное масло 2,24,… … Иллюстрированный энциклопедический словарь

Диэлектрическая проницаемость — величина, характеризующая диэлектрические свойства вещества, скалярная для изотропного вещества и тензорная для анизотропного вещества, произведение которой на напряженность электрического поля равно электрическому смещению. Источник:… … Официальная терминология

диэлектрическая проницаемость — абсолютная диэлектрическая проницаемость; отрасл. диэлектрическая проницаемость Скалярная величина, характеризующая электрические свойства диэлектрика равная отношению величины электрического смещения к величине напряженности электрического поля … Политехнический терминологический толковый словарь

Абсолютная диэлектрическая проницаемость Относительная диэлектрическая проницаемость Диэлектрическая проницаемость вакуума … Википедия

диэлектрическая проницаемость — dielektrinė skvarba statusas T sritis chemija apibrėžtis Elektrinio srauto tankio tiriamojoje medžiagoje ir elektrinio lauko stiprio santykis. atitikmenys: angl. dielectric constant; dielectric permittivity; permittivity rus. диэлектрическая… … Chemijos terminų aiškinamasis žodynas

Книги

  • Свойства материалов. Анизотропия, симметрия, структура. Пер. с англ. , Ньюнхем Р.Э.. Эта книга посвящена анизотропии и взаимосвязи структуры материалов с их свойствами. Она охватывает обширный диапазон тем и является своего рода вводным курсом пофизическим свойствам…

Как известно, окружающий нас воздух представляет собой комбинацию нескольких газов, поэтому является хорошим диэлектриком. В частности, благодаря этому во многих случаях удается избежать необходимости организации дополнительных изолирующих слоев какого-либо материала вокруг проводника. Сегодня мы поговорим о том, проницаемость воздуха. Но сначала, пожалуй, начнем с определения того, что именно понимают под термином «диэлектрик».

Все вещества в зависимости от способности проводить электрический ток условно подразделяются на три больших группы: проводники, полупроводники и диэлектрики. Первые оказывают минимальное сопротивление направленному прохождению по ним заряженных частиц. Самая большая их группа — это металлы (алюминий, медь, железо). Вторые проводят ток при определенных условиях (кремний, германий). Ну а третьих настолько велико, что ток по ним не проходит. Яркий пример — воздух.

Что же происходит, когда вещество попадает в зону действия электрического поля? Для проводников ответ очевиден — возникает электрический ток (разумеется, при наличии замкнутого контура, обеспечивающего «путь» для частиц). Так происходит благодаря тому, что изменяется способ взаимодействия зарядов. Совершенно другие процессы происходят при воздействии поля на диэлектрический материал. При изучении взаимодействия частиц, обладающих было замечено, что сила взаимодействия зависит не только от численного значения заряда, но и от среды, разделяющей их. Это важная характеристика получила название «диэлектрическая проницаемость вещества». Фактически, она представляет собой поправочный коэффициент, так как не имеет размерности. Определяется как отношение значения силы взаимодействия в вакууме к значению в какой-либо среде. Физический смысл термина «диэлектрическая проницаемость» следующий: данная величина показывает степень ослабления электрического поля диэлектрическим материалом по сравнению с вакуумом. Причина данного явления кроется в том, что молекулы материала затрачивают энергию поля не на проводимость частиц, а на поляризацию.

Известно, что воздуха равна единице. Много это или мало? Давайте разберемся. Сейчас нет необходимости самостоятельно рассчитывать числовое значение проницаемости для большинства распространенных веществ, так как все эти данные приводятся в соответствующих таблицах. Кстати, именно из подобной таблицы взято равное единице. Диэлектрическая проницаемость воздуха почти в 8 раз меньше, чем у, например, гетинакса. Зная это число, а также значение зарядов и расстояние между ними, можно вычислить силу их взаимодействия, при условии разделения воздушной средой или пластиной гетинакса.

Формула для силы следующая:

F = (Q1*Q2) / (4* 3.1416* E0*Es*(r*r)),

где Q1 и Q2 — значения зарядов; E0 — проницаемость в вакууме (константа, равная 8.86 в степени -12); Es — диэлектрическая проницаемость воздуха («1» или значение для любого другого вещества, по таблице); r — расстояние между зарядами. Все размерности берутся в соответствии с системой СИ.

Не следует путать два разных понятия — «магнитная проницаемость воздуха» и его же диэлектрическая проницаемость. Магнитная является еще одной характеристикой любого вещества, также представляющей собой коэффициент, однако его смысл другой — взаимосвязь и значения в определенном веществе. В формулах используется эталонный показатель — магнитная проницаемость для чистого вакуума. Как первое, так и второе понятия используются для выполнения расчетов различных электротехнических устройств.

Добавить комментарий