Электрическая схема блока питания для гаража


СОДЕРЖАНИЕ:

Разводка электропроводки в гараже своими руками

Помещения в гаражном кооперативе, как правило, используются еще и в качестве мастерской. Слесарные работы, ремонт и обслуживания автомобиля, сложно выполнять в условиях квартиры. Поэтому автовладельцы организуют рабочее место в собственном гараже.

Если вы планируете выполнять более сложные работы, чем замена масла и фильтров, помещение необходимо электрифицировать. Большинство гаражных кооперативов предоставляют подобный сервис, но услуга, как правило, заканчивается подключением ввода к счетчику. Дальнейшая разводка электропроводки в гараже выполняется владельцем. Вызов электрика обойдется в немалую сумму. Однако при наличии элементарных навыков электрика, работу можно выполнить своими руками.

Требуется лишь соблюдение некоторых мер безопасности

Основное правило (неформальное), прокладка должна быть выполнена аккуратно, с использованием качественных материалов. Распространенное заблуждение: «в гараж сойдет любой хлам» может привести к пожару или поражению электротоком.

Основные моменты, которые следует знать:

  • Электропроводка укладывается либо в штробы, либо в пожаробезопасную гофру. Для гаража это особенно актуально, поскольку вероятность повреждения магистрали в подобных помещениях выше.
  • При монтаже проводки в металлическом гараже, изолирующие гофры обязательны. Коммутационное оборудование монтируется на панели, изготовленные из диэлектрических материалов.
  • Необходимо учитывать воздействие сырости и агрессивных жидкостей.
  • Обязательно разведение линии освещения и силовых розеток на отдельные автоматы защиты.
  • После прибора учета устанавливается общий вводной автомат: покидая гараж, вы сможете обесточить его одним движением. Допускается отдельная линия освещения, которая постоянно будет под нагрузкой.
  • Линия энергообеспечения смотровой ямы (подвала) выполняется с отдельной защитой, желательно применение источника пониженного напряжения (12 вольт) с гальванической развязкой от сети 220 вольт.

Часто возникает ситуация, когда вы приобретаете гараж с уже выполненной электрификацией. Если схема электропроводки в гараже выполнена предыдущим хозяином с нарушениями, ее необходимо переделать.

Как правильно спланировать электроснабжение гаража

Перед укладкой проводки в гараже своими руками, необходимо нарисовать схему. Вне зависимости от состояния помещения (новый гараж, или в нем уже размещено оборудование: верстаки, светоточки, стеллажи), выполните планировку.

Освещение разбивается на несколько групп

  1. Дежурный свет. Обеспечивает равномерное освещение всего пространства, особенно в районе входа. Высокая мощность не требуется, желательно подключение к отдельному автомату защиты: после принудительного отключения всего энергоснабжения, дежурный свет будет работать. Нельзя совмещать эту линию с энергообеспечением смотровой ямы (подвала).
  2. Зоны проведения работ. Целесообразно организовать отдельные световые точки с выключателями. Выполняя работу в разных местах помещения, вы обеспечите яркий свет там, где необходимо. Остальные лампы будут погашены, экономя электроэнергию.
  3. Выбирая места для светоточек, учитывайте теневые зоны от установленных полок, стеллажей, и стоящего в гараже автомобиля. Комбинируйте направленные и рассеивающие источники света для разных задач. Например, над верстаком устанавливается яркая направленная лампа с абажуром, а для общего освещения лучше подойдет плоский рассеивающий плафон.
  4. Освещение смотровой ямы не обязательно должно быть мощным. Достаточно, чтобы вам было видно, куда поставить ногу, или где лежит упавший ключ. Слишком яркий свет в яме будет утомлять глаза. Применяются плоские длинные светильники, за которые вы не будете цепляться в тесноте. Если в стенах смотровой ямы организованы ниши для инструмента, свет можно организовать в них. Идеальный вариант — 12 вольтовые водозащищенные светодиодные ленты, или LED светильники в алюминиевых профилях. Во-первых, они достаточно ударопрочные и занимают мало места. Во-вторых — экономичность быстро окупит высокую стоимость.
  5. Другой вопрос — освещение подвала. В нем могут быть установлены полки и стеллажи. Учитывая малую высоту перекрытия, светильники должны быть плоскими. Оптимальный вариант — размещение плафонов по периметру потолка. Опять же, обратите внимание на светодиодные решения. В подвале может быть сыро, и замена линий 220 вольт на 12, повысит безопасность. Основной элемент освещения — переноска. Лампа по возможности должна быть низковольтной. В идеале точка подключения находится под рукой (розетка в яме), линия на отдельном автомате защиты. Разумеется, переноска должна быть ударопрочной, особенно при напряжении питания 220 вольт. Удобно пользоваться удлиненной лампой, которую можно подвесить под днище, либо положить на пол, направив свет вверх.

Важно! Установка светильников и выключателей на металлические стены недопустима. Используйте диэлектрические подложки.

Розеточная сеть

Общее правило размещения точек электропитания в гараже: дежурная розетка возле вводного щитка, и группы розеток в зонах проведения работ. Каждая группа заводится на отдельный автомат защиты. При срабатывании автомата, у вас не должен обесточиться весь гараж.

В тесных помещениях не рекомендуется применение многоточечных переносных удлинителей, есть риск запутаться в проводах. Оптимальный вариант — закрепить модуль стационарно.

  • Для экономии, разбейте сеть по группам, руководствуясь потребляемой мощностью. Например, розетка для зарядного устройства аккумуляторной батареи не требует провода с большим сечением, и размещается со стороны расположения АКБ. Тоже самое относится к подключению паяльника или пылесоса.
  • Точка питания мойки высокого давления, сварочного аппарата, или болгарки, размещается вблизи ворот, поскольку эти приборы в основном эксплуатируются на улице. Стационарное электрооборудование (сверлильный, точильный станки и пр.) могут быть подключены без розеток, на отдельные пусковые автоматы. Поскольку эстетика в гараже стоит на последнем месте, подойдут недорогие промышленные «пускачи».
  • В подвале не рекомендуется устанавливать розетки 220 вольт. Если такая необходимость возникла, исполнение должно быть уличным, то есть защищенным от влаги.
  • Монтаж электропроводки в гараже для розеток и освещения, должен быть раздельным (по разным линиям и в разных гофрах).
  • Розетки для электроинструмента устанавливаются ниже, чем в жилых помещениях. Большинство работ выполняется на уровне пола.
  • При выборе места крепления розеток, учитывайте возможность повреждения бампером (если промахнетесь при въезде), или дверьми (если открытая дверца достает до стены).
  • В металлическом гараже, розетки монтируются на площадки из диэлектрика, устойчивого к высоким температурам. Применение фанеры нежелательно: во-первых, она горит; во-вторых, впитывает влагу.

Установка электрощита

Электропроводка в гараже своими руками начинается от распределительного устройства. Если прибор учета электроэнергии расположен снаружи, «точкой отсчета» является входной автомат. Если счетчик внутри — этот же автомат устанавливается сразу после него. Входной автомат может быть подключен перед счетчиком (с доступом потребителя), тогда он опечатывается вместе с прибором учета.

После опечатывания оборудования работником энергосбыта, вы не будете иметь возможность изменить конфигурацию ввода. Поэтому схема проводки в гараже планируется изначально с учетом расположения этих элементов.

  • Щитовая располагается как можно ближе к точке ввода. Чем меньше длина кабеля до первого автомата защиты (в зоне вашей ответственности), тем выше уровень безопасности.
  • Желательно всю коммутацию выполнить в одной коробке. Исключение можно сделать в случае, когда прибор учета не подходит к вашему распределительному щитку.
  • Все автоматы защиты должны иметь маркировку. Мнение, что: «я и так все помню», опасно. Бывают случаи, когда вы физически не сможете сказать спасателям, как обесточить ту или иную линию.
  • Электрощиток с металлическим корпусом должен быть заземлен. Как сделать заземление в гараже своими руками, зависит от материала стен.

Правильная организация заземления

Для чего вообще нужна «земля» в гараже?

  1. Для защиты от пожара. В случае прикосновения фазы (неисправный электроинструмент, поврежденный провод) к заземленным частям конструкции, нагрев не происходит, срабатывает автомат защиты.
  2. Для защиты от поражения электротоком. Только для этого необходимо еще одно условие: установка УЗО.

Заземление выполняется по стандартным правилам: в грунт вертикально устанавливаются 3 жестких проводника, соединенные между собой.

От контура заземления в гараж проводится стальная шина (медный кабель). От точки подключения заземления выполняется разводка в щиток, и в розеточную сеть. Корпус металлического гаража заземляется на общих основаниях, и не может являться точкой подключения или шиной заземления.

  • Использование незаземленной розеточной сети, и незаземленного электроинструмента в металлическом корпусе недопустимо! Особенно в металлическом, заземленном гараже.
  • Необходимо помнить, что обычные автоматы защиты, заземление не являются гарантией от поражения электротоком. Для этого предназначены УЗО.

Организация проводки

С точки зрения безопасности, вопрос: «как сделать проводку в гараже своими руками?» стоит на первом месте. У вас может быть отличное заземление, дорогой несгораемый электрощит, а слабым звеном окажется поврежденный провод с неправильно рассчитанным сечением.

Подобрать нужный кабель можно по таблице.

При этом необходимо помнить, что диаметр медной жилы и сечение проводника, это разные величины. Если вы располагаете качественным проводом без маркировки, замерьте микрометром или штангенциркулем диаметр зачищенной жилы, и рассчитайте сечение по формуле:

сечение = 0.785 × диаметр²

Классическая разводка линий для гаража не подходит, распределительные коробки лишь повышают уязвимость проводки. Оптимальный вариант — звезда: один защитный автомат — один потребитель (группа).

На рисунке изображена схема проводки в гараже.

В зависимости от материала, из которого построен гараж, организуем укладку кабеля. Для каменных и металлических конструкций используется обычная гофра (стальная либо пластиковая). Необходимо помнить, что укладка провода в гофру, лишь повышает устойчивость к механическим повреждениям, и не является защитой от пожара. Даже маркировка «НГ» не является 100% гарантией от возгорания при перегреве. Поэтому защитные автоматы не должны быть излишне мощными. Оптимальное срабатывание по перегреву — превышение допустимого тока в 2 раза.

Гофра с кабелем укладывается параллельно и перпендикулярно. Не допускаются диагонали, округление углов. Перед уложенными линиями не должно быть полок, стеллажей. Особенно опасно передавливание изоляции металлическим ящиком или канистрой.

Рекомендуется применение кабеля питания с двойной изоляцией. Одно- или многожильные провода — вопрос удобства монтажа. На эффективность электропитания это не влияет.

Разумеется, электропроводку можно уложить в кабельные короба. Это несколько дороже, чем гофра, зато на порядок эстетичней.

Резервное питание 12 вольт

В некоторых случаях, оно может быть и основным. Не все гаражи имеют энергоснабжение.

  • Аккумулятор устанавливается на полу, либо на небольшой подставке. Необходимо учитывать температурный режим: зимой АКБ утепляется, летом напротив, желательна вентиляция. Подключение потребителей организуется с помощью вводного щитка, он не должен быть в одном корпусе с распределителем 220 вольт.
  • Входной кабель обязательно оснащается предохранителем, на клеммы надеваются изоляторы. Иначе упавший рожковый ключ может закоротить батарею и вызвать пожар.
  • Если вы используете 12 вольтовые LED светильники, есть смысл установить переключатели (между драйвером и лампой). При перебоях с подачей энергии, в всегда сможете подключить аккумулятор
  • Регулярно контролируйте уровень заряда АКБ, чтобы не пришлось выводить ее из состояния сульфатации.
  • Для работы с оборудованием, требующим 220 вольт питания, можно использовать инвертор 12–220 В. Для удобства, его высоковольтный выход подключается к розеточной сети гаража. Обычный автомат в таком случае заменяется на переключатель резервного питания. То есть, розетки одновременно не должны быть подключены к инвертору и входу 220 вольт.

Если вы не будете пользоваться гаражом длительный срок, аккумулятор следует полностью отключить от резервной линии питания.

Подключение гаража к электросети и проектирование электроснабжения

В любом гараже необходима электроэнергия. Она нужна для подключения электроинструмента, освещения рабочего места в смотровой яме и наверху, зарядки аккумулятора и других целей. Но гараж — это место с повышенной пожароопасностью из-за присутствия бензина и масла. Поэтому к электропроводке в нём предъявляются особые требования. О том, какой должна быть схема электропроводки в гараже, расскажем в этой статье.

Подключение гаража к электросети

Многих автовладельцев волнует вопрос, нужен ли проект электроснабжения гаража. Если к гаражу необходимо подключить 220 В, то сделать это можно самостоятельно. В гаражном кооперативе для подключения к гаражу нужно обратиться к председателю для получения техусловий. Индивидуальный гараж, находящийся во дворе у хозяина обычно подключают от квартиры с помощью СИП (самонесущего изолированного провода). Подробнее о проводке в ГСК рассказывается в статье «Проектирование электроснабжения гаражного кооператива – правила и возможные ошибки». Отдельно стоящий гараж можно подключить по заявлению, но сделать это можно только в том случае, если он существует официально, а не является «самостроем». В такой ситуации в составлении однолинейной схемы электроснабжения гаража нет необходимости. Разрешённая мощность в этом случае будет 15 кВт.

Для подключения трёхфазного питания 380 В необходимо получить разрешение и технические условия на электроснабжение гаража в электрокомпании и следует составить проект подключения электричества. Это лучше поручить профессионалам. При самостоятельном проектировании электропитания возможны ошибки в расчёте кабелей, трассе прокладки или в оформлении проекта. Это приведёт к тому, что стоимость проектирования электроснабжения значительно возрастёт.

Подключение кабеля

Если гараж находится в гаражном кооперативе, то подключение обычно происходит централизованно всем членам кооператива по одним техническим условиям.

Подключиться во дворе своего дома или квартиры лучше всего самонесущим изолированным кабелем (СИП). Можно спроектировать и выполнить подключение электроснабжения гаража обычным кабелем, но сам по себе он недостаточно прочен, а способ, предусматривающий натяжение стальной проволоки и подвязывание кабеля к ней, морально устарел.

В земле кабель прокладывается в траншее, обычно при постройке дома.

Составление схем

Для разводки электропроводки в гараже нужны принципиальная схема и подробный план расположения розеток, выключателей, светильников и другого электрооборудования. Даже если проектирование в полном объёме не производится, то эти электросхемы должны быть обязательно. Без них невозможно произвести расчёт количества материалов, а после завершения работ выключатели могут оказаться в самом неожиданном месте.

Принципиальная схема

Перед началом проектирования определяется количество и мощность светильников и другого электрооборудования. На основании этих данных составляется принципиальная схема. На ней отмечаются все электроприборы с указанием мощности.

Необходимые элементы электропроводки

Есть ряд аппаратов и устройств, которые обязательно должны быть в гараже:

  1. Счётчик электроэнергии. Если подключение гаража производится от квартиры, то электросчётчик не нужен.
  2. Вводной автомат. Отключает электроэнергию в гараже при коротком замыкании или токах перегрузки. Ток автомата определяется по разрешённой мощности в кооперативе. Если подключение произведено от частного дома или квартиры, то ток автомата выбирается не больше вводного автомата в квартире или частном доме.
  3. УЗО (устройство защитного отключения). Оно отключает электропитание от сети при появлении тока утечки на «землю» или человека.
  4. Понижающий трансформатор. Если в гараже есть смотровая яма, то стационарные и переносные светильники в ней должны быть на пониженное напряжение. По ГОСТу вторичная обмотка трансформатора должна быть заземлена. Иногда к светильникам 12В подключают зарядное устройство для аккумулятора, если в нём есть соответствующий выход.
  5. Заземление. Все розетки, светильники и другие электрические приборы необходимо заземлять. К примеру, в металлическом гараже заземлять необходимо весь гараж, а также все металлические части.

Можно с помощью автоматов разделить разные электроприборы — отдельно светильники, отдельно розетки. Целесообразно отдельными автоматами включать зарядное устройство и сварочный аппарат.

Схема при подключении 380В отличается большим количеством проводов.

Выбор кабелей и автоматов

Ток автоматов выбирают по мощности нагрузок, которые они должны отключать. При проектирование электрики сечение кабеля выбирается по току нагрузок, которые подключены к нему. К розеткам с заземлением проводят трёхжильный кабель с заземлением, а к выключателям — двухжильный.

План расположения электрооборудования

На плане гаража выполняется план расположения электрооборудования. На плане указывают всю аппаратуру с кабелями, идущими к ним. Если используются распаячные коробки, то тип, длина и сечение кабеля указываются отдельно для каждого участка. Возможен вариант монтажа, при котором все кабеля приходят на клеммник в электрощит. Это повышает надёжность, но увеличивает расход кабелей.

Возле опусков указывают длину кабеля, а возле розеток, выключателей и светильников настенного исполнения отмечают высоту установки.

Спецификация электрооборудования и материалов

Спецификация — это список необходимых материалов. Неправильно составленная спецификация приведёт к ошибкам комплектации.

Спецификация учитывает количество кабелей по каждому типу в отдельности и способ прокладки с крепежами, коробами или гофрированными шлангами.

Специалисты из компании «Мега.ру» выполнят проектирование энергоснабжения гаража как по типовому электропроекту, так и индивидуальное, по любым техническим условиям на электроснабжение. Компания работает в Москве и Московской области, а также в прилегающих областях. Возможно дистанционное сотрудничество. Связаться с представителями или оставить сообщение можно по телефонам и форме обратной связи на странице «Контакты».

Регулируемый блок питания 2,5-24в из БП компьютера

Как самому изготовить полноценный блок питания с диапазоном регулируемого напряжения 2,5-24 вольта, да очень просто, повторить может каждый не имея за плечами радиолюбительского опыта.

Делать будем из старого компьютерного блока питания, ТХ или АТХ без разницы, благо, за годы PC Эры у каждого дома уже накопилось достаточно количество старого компьютерного железа и БП наверняка тоже там есть, поэтому себестоимость самоделки будет незначительной, а для некоторых мастеров равно нулю рублей.

Мне достался для переделки вот какой АТ блок.

Чем мощнее будете использовать БП тем лучше результат, мой донор всего 250W с 10 амперами на шине +12v, а на деле при нагрузке всего 4 А он уже не справляется, происходит полная просадка выходного напряжения.

Смотрите что написано на корпусе.

Поэтому смотрите сами, какой ток вы планируете получать с вашего регулируемого БП, такой потенциал донора и закладывайте сразу.

Вариантов доработки стандартного компьютерного БП множество, но все они основаны на изменении в обвязке микросхемы IC — TL494CN (её аналоги DBL494, КА7500, IR3М02, А494, МВ3759, М1114ЕУ, МPC494C и т.д.).

Рис №0 Распиновка микросхемы TL494CN и аналогов.

Посмотрим несколько вариантов исполнения схем компьютерных БП, возможно одна из них окажется ваша и разбираться с обвязкой станет намного проще.

Приступим к работе.
Для начала необходимо разобрать корпус БП, выкручиваем четыре болта, снимаем крышку и смотрим внутрь.

Ищем на плате микросхему из списка выше, если таковой не окажется, тогда можно поискать вариант доработки в интернете под вашу IС.

В моем случае на плате была обнаружена микросхема KA7500, значит можно приступать к изучению обвязки и расположению ненужных нам деталей, которые необходимо удалить.

На фото разъём питания 220v.

Отсоединим питание и вентилятор, выпаиваем или выкусываем выходные провода, чтобы не мешали нам разбираться в схеме, оставим только необходимые, один желтый (+12v), черный (общий) и зеленый* (пуск ON) если есть такой.

На фото — черные конденсаторы как вариант замены для синего.

Делается это потому, что наш доработанный блок будет выдавать не +12 вольт, а до +24 вольт, и без замены конденсаторы просто взорвутся при первом испытании на 24v, через несколько минут работы. При подборе нового электролита емкость уменьшать не желательно, увеличивать всегда рекомендуется.

Каждый электрик должен знать:  Термины МПОТЭЭ распределительное устройство комплектное

Самая ответственная часть работы.
Будем удалять все лишнее в обвязке IC494, и припаивать другие номиналы деталей, чтобы в результате получилась вот такая обвязка (Рис. №1).

Рис. №1 Изменение в обвязке микросхемы IC 494 (схема доработки).

Нам будут нужны только эти ножки микросхемы №1, 2, 3, 4, 15 и 16, на остальные внимание не обращать.

Рис. №2 Вариант доработки на примере схемы №1

На фото — приподнятием ножек ненужных деталей, разрываем цепи.

Некоторые резисторы, которые уже впаяны в схему обвязки могут подойти без их замены, например, нам необходимо поставить резистор на R=2.7k с подключением к «общему», но там уже стоит R=3k подключенный к «общему», это нас вполне устраивает и мы его оставляем там без изменений (пример на Рис. №2, зеленые резисторы не меняются).

На фото— перерезанные дорожки и добавленные новые перемычки, старые номиналы записываем маркером, может понадобится восстановить все обратно.

Таким образом просматриваем и переделываем все цепи на шести ножках микросхемы.

Это был самой сложный пункт в переделке.

Делаем регуляторы напряжения и тока.

Берем переменные резисторы на 22к (регулятор напряжения) и 330Ом (регулятор тока), припаиваем к ним по два 15см провода, другие концы впаиваем на плату согласно схеме (Рис. №1). Устанавливаем на лицевую панель.

Контроль напряжения и тока.
Для контроля нам понадобятся вольтметр (0-30v) и амперметр (0-6А).

Амперметр я использовал свой, из старых запасов СССР.

ВАЖНО — внутри прибора есть резистор Тока (датчик Тока), необходимый нам по схеме (Рис. №1), поэтому, если будете использовать амперметр, то резистор Тока ставить дополнительно не надо, без амперметра ставить надо. Обычно RТока делается самодельный, на 2-х ватное сопротивление МЛТ наматывается провод D=0,5-0,6 мм, виток к витку на всю длину, концы припаяем к выводам сопротивления, вот и все.

Корпус прибора каждый сделает под себя.
Можно оставить полностью металлический, прорезав отверстия под регуляторы и приборы контроля. Я использовал обрезки ламината, их легче сверлить и выпиливать.

Как сделать электрощиток в гараже

Электричество, как и многие другие составляющие современной жизни, давно стали частью гаража. Электрощиток в гараже дает возможность создать безопасную систему электрораспределения по всему помещению.

Он позволяет установить розетки и систему вентиляции, а также обеспечивает максимальный комфорт при пользовании электроприборами во время ремонтных работ в гараже. Далее рассмотрим нюансы выбора системы распределения электричества и процесса ее установки.

Что представляет собой электрощиток в гараже и что в нем необходимо предусмотреть

Электрощиток для гаража — это панель, на которую монтируются приборы для обеспечения приема и распределения тока в сети. Имея щиток в гараже можно на время долгого отсутствия отключить электроэнергию, минимизируя шанс возникновения короткого замыкания и самовозгорания.

Функциональные возможности устройства включают в себя:

  • обеспечение всей электросети;
  • подсчет количества потребляемой энергии;
  • возможность контроля подачи энергии;
  • защита от перегрузок и сбоев системы энергоснабжения.

Для обеспечения нормального функционирования системы необходимо заранее определить объемы затрачиваемой электроэнергии в гараже.

Правильный выбор оборудования и инструмента

При выборе электрощитка в гараж, следует обратить внимание на несколько факторов:

  1. Место расположения устройства.
    Если оно будет на улице следует выбирать влагоустойчивые модели.
  2. Материал блока – пластик или металл.
    Щиток, расположенный на улице, лучше выбирать железный, так как он более устойчив к повреждениям.
  3. Дизайн дверцы —прозрачная или металлическая.
    Зависит от условий содержания электрощитка.
  4. Способ установки — конструкция будет встраиваемая или навесная.
    В зависимости от состояния стены гаража и веса щитка.
  5. Сколько модулей необходимо.
    Их рекомендуется устанавливать в запасе, чтобы всегда можно было подключить дополнительные элементы. Например, в случае с трехфазным УЗО понадобится 4 модуля.
  6. Нужно ли оснащать гаражный щиток зарядным устройством.

Проектирование рабочей схемы электрощитка

Монтаж электрического щита в гараже основывается на изучении схемы помещения.

Получают ее двумя способами:

  1. Начерчивают ее самостоятельно в программах (AutoCAD, ArchiCAD, Photoshop, Exel). Самостоятельное составленные схемы, при отсутствии должных навыков работы в программах, обычно не соответствуют действительности или не точны.
  2. Пользуются схемой электросетей, которая находится в проекте энергоснабжения помещения, если таковой имеется в доступе.

Каждая из схем индивидуальна, но вне зависимости от уровня подготовки она должна содержать элементы:

  • обозначения всей модульной автоматики;
  • все сечения и нагрузки кабелей.

Особенности сборки электрического щитка

Во избежание несчастных случаев или недочетов в процессе установки электрощитка, нужно знать несколько нюансов.

Первая особенность — нулевой проводник. Некоторые мастера соединяют заземление с нулевым проводником, но в такой конструкции при сгорании провода заряд электроэнергии проходит по корпусу щитка, что создает опасную для жизни человека ситуацию. При правильном подключении провод фазы подсоединяется снизу к колодке заземления.

Вторая особенность – трехфазное питание. Сборка панели электрооборудования с трехфазным питанием происходит с равномерным распределением напряжения. Это обеспечит защиту от перекоса фаз, так как потребителем может быть мощное бытовое устройство, к примеру, сварочный аппарат.

Все 3 фазы подключаются отдельно, в зависимости от потребляемого объема электроэнергии.

Оборудование для сборки щитка

Перед началом работы стоит подготовиться и приобрести все необходимые элементы.

Для сборки электрощитка понадобится следующий комплект инструментов и оборудования:

  • сертифицированный электрический счетчик, на котором обязательно должна быть отметка о прохождении проверки в компании Энергосбыта;
  • провода;
  • автоматика;
  • стиппер — инструмент для зачистки изоляции, при неимении можно заменить ножом;
  • наконечники штыревые втулочные изолированные (НШВИ), используются для фиксации проводов;
  • устройство защитного отключения (УЗО);
  • пресс-клещи для опрессовки изолированных наконечников;
  • клеммы — электроустановочное устройство для надежного соединения проводов;
  • гребенка для проведения электричества по всем устройствам щитка;
  • металлический профиль для крепления модульного оборудования;
  • прочие необязательные инструменты.

Порядок сборки и монтаж

Гаражные щитки представляют собой своеобразную конструкцию из защитного блока и самой системы, поэтому их вполне удобно собирать без специального пространства.

Происходит это в несколько этапов:

  1. Маркировка и расположение автоматики.
    В большинстве моделей электрощитков приборы располагаются на DIN-рейках — металлических профилях. Чтобы они не “ездили” можно использовать ограничители. Лучше подписать проводники, это поможет быстро определять их назначение.
  2. Подготовка соединений.
    Провода следует зачистить от изоляции и продеть в наконечники НВШИ, которые потом нужно будет спрессовать. Важно сделать это правильно: длина наконечника должна быть равной длине зачищенного от изоляции провода. Гребенка для подключения автомата и УЗО должна быть одной марки с приборами, так как шаг штырей может отличаться. Клеммы приборов должны крепиться надежно, в противном случае они перегреются, и нарушится изоляция, что приведет к короткому замыканию.
  3. Скрепление деталей.
    На этом этапе автоматика соединяется с УЗО, рубильниками, УЗМ и остальными комплектующими. Необходимо следить за качеством скрепления, ведь это единственный способ избежать плохого контакта.
  4. Проверка.
    Щиток в гараже нужно обязательно протестировать, подав напряжение на вводной автомат или рубильник. В конце сборки следует обозначить все рубильники, что к чему подключено.

Сделать электрический щиток в гараже своими руками непросто, но следуя всем рекомендациям, это может сделать даже новичок. Важно выбрать подходящее оборудование и правильно подключить приборы и провода между собой.

Также необходимо сначала ознакомиться с правилами расположения электрических щитков и схемой электрических сетей на участке. Только после этого можно определить место монтажа, подготовить соединения, скрепить провода с системой и проверить работоспособность устройства. Считаете статью полезной? Поделитесь ею в соцсетях!

Схема электропроводки в гараже — особенности проектирования и монтажа своими руками. 120 фото примеров разводки и видео инструкция по замене проводки в гараже

Разводка электропроводки в гараже, как правило, выполняется открытым способом – в кабель-каналах, монтирующихся непосредственно на стены и потолок. Эстетике в гаражах обычно не уделяют внимание, поэтому проще и практичнее сделать открытую электропроводку. А при необходимости такую проводку можно легко обслужить и доработать.

Краткое содержимое статьи:

Виды напряжения

В большинстве гаражей напряжение в электросети составляет 220 В. Этого достаточно для освещения и силовой розеточной группы. Такая электросеть позволяет использовать большинство электроинструментов и приборов.

Иногда в гаражи заводят сеть с напряжением 380 В. Это может быть необходимо для эксплуатации электрических отопительных устройств, станочного и сварочного оборудования, требующего именно трехфазное питание с напряжением 380 В.

Что входит в гаражную схему электропроводки?

Схема электропроводки в гараже должна включать следующие основные элементы:

  • распределительный щит на вводе;
  • учетные, защитные и автоматические приборы;
  • кабели и провода;
  • выключатели и светильники;
  • розеточная группа.

При необходимости в схему можно добавить другие элементы, такие как отопительные, охлаждающие и прочие системы. Примеры схем можно изучить по фото электропроводки в гараже. Они помогут понять основные требования, способы разводки, варианты монтажа и другие нюансы.

Ввод питания

На вводе устанавливается распределительный щиток. В некоторых случаях он монтируется с внешней стороны здания, что может быть обусловлено особенностями подвода электросети к гаражу.

Обычно щиток монтируют рядом со входом для удобства отключения при уходе из объекта. Щиток должен позволять разместить все требующиеся защитные и распределительные приборы. В щитке также размещается прибор учета электроэнергии (счетчик), если гараж находится на территории гаражного кооператива. На загородных участках обычно используется один счетчик на все постройки.

Щиток можно сделать своими руками из профиля и листового металла или приобрести готовое изделие.

Защитные устройства

Требования к электропроводке предусматривают необходимость установки ряда устройств защиты для предотвращения аварийных ситуаций. К таким устройствам относятся:

  • дифференциальные автоматы;
  • УЗО;
  • реле контроля напряжения;
  • ограничители перенапряжения.

Дифференциальные автоматы

Предназначены для автоматического отключения электроснабжения в случае перегрузки для защиты от возгорания. Также позволяют быстро отключить электропитание при необходимости доработки электропроводки. Принято разделять помещение на группы потребителей, для каждой из которых устанавливается свой автомат. Как минимум устанавливают по одному автомату на освещение и розеточную группу.

Если потребителей много, и соответственно имеется несколько розеточных групп, для каждой из них устанавливают отдельный автомат. Номинал автомата определяют исходя из максимальной нагрузки и сечения провода.

Предназначено для защиты от поражения током утечки. Последний возникает при повреждении изоляции схемы. Особенно актуально применение УЗО в гаражах со смотровыми ямами, где проводятся работы с электроинструментами. В яме обычно присутствует повышенная влажность, увеличивающая вероятность образования тока утечки.

Блок питания 4000 ватт – пусковое зарядное устройство

Изначально хочу предупредить всех читателей – если решите реализовать данный проект, советуетесь со мной (адрес для справок artur.kasyan@mail.ru ) Поскольку проект особо сложного уровня и крайне мало архивов а отзывов собравших почти вообще нет. Этот проект был реализован в течении довольно долгого времени, поскольку были большие проблемы с комплектующими.

Проект из себя представляет мощный мостовой импульсный блок питания. Изначально, блок предназначен для запитки мощных эстрадных усилителей, поскольку мощность блока колоссальная – до 4000 ватт. Основными достоинствами такого блока питания заключается в наличии стабилизации выходного напряжения.

Блок имеет также регулируемую защиту от коротких замыканий и перегруза. В моем случае мощность ограничена 2000 ватт, простой расчет покажет, что при напряжении 12 Вольт ток может доходить 160 ампер – а это очень много. Без проблем можно поднять мощность, просто заменяя мост на более мощный (50-60 Ампер) ключи на более мощные, ну и разумеется поставить электролитов после моста микрофарад на 3800-4500 с расчетным напряжением 450 Вольт.

Разумеется все это не так уж и просто, поскольку нужно будет еще и заменить трансформатор. В таком случае при выходном напряжении 12 Вольт ток с блока питания будет в районе 330 Ампер – а это уже не шуточный ток.

Схема выполнена по топологии полного моста, 4 ключа серии IRFP460 раскачивают мощный трансформатор, который в моем случае намотан на 4-х кольцах 45х28х8 марки 2000НМ. Очень и очень советую использовать импортные сердечники типа EPCOS N87. Выбор кольцевых магнитопроводов не критичен, можно использовать Ш-образные сердечники, хотя тор удобен тем, что габаритные размеры транса будут поменьше (при соответствующей мощности), чем с Ш-образным сердечником.

Генератор собран на популярнейшем ШИМ контроллере TL494 настроенный на частоту 80кГц. Дальше два специализированных драйвера для управления ключами. Драйверы были задействованы типа IR2110.

Ключи (все без исключения) были укреплены на один цельный теплоотвод, притом все нужно изолировать друг от друга слюдяными прокладками и пластиковыми шайбами.

Входная цепь.

Все стандартно – сетевое питание через предохранитель, затем дроссель поступает на диодный мост. Мост взят готовый – 30 Ампер 1000 Вольт (стоят всего 1-2$) После моста начинается самое интересное – емкости. Емкости имеют расчетное напряжение 450 Вольт, но их рабочее напряжение в данной схеме будет не выше 28 Вольт. На входе питания также есть дополнительная защита – варисторы. Варисторы желательно взять с напряжением срабатывания в районе 300 Вольт.

Предохранитель 25-30 Ампер, найти такой пред довольно просто в магазинах автозапчастей. Узел управления и генератора – питается от отдельного блока питания 15 Вольт 2 Ампер. Блок питания изначально был 12- Вольтовым, но после небольшой переделки стал выдавать нужное напряжение.

После включения блока питания в сеть 220 Вольт через ограничительные резисторы заряжаются конденсаторы, и как только напряжение на них доходит в районе 180 – 200 вольт, то срабатывает маломощный блок питания и подается питание на узел управления, в следствии чего срабатывает режим плавного пуска, подается питание на обмотку реле, последнее замыкается и на блок подается силовое питание, начинается рабочий цикл.

Реле 30 Ампер, рабочее напряжение катушки 12 Вольт.

На счет трансформатора – особо углубляться не буду, поскольку все расчеты были сделаны по специализированной программе. Скажу только, что в случае выходного напряжения 12 Вольт, обмотка содержит всего 2 витка . Диаметр обмоток и все остальное не приведу, поскольку у каждого сердечника свой индивидуальный расчет.

В выходной цепи установлен мощный мост, в моем случае кд2997 с током 30 Ампер, если блок нужен именно на 12 Вольт с большим током, то можно использовать более мощные диоды, либо запараллелить несколько указанных диодов.

Силовые части (ключи, диоды входного и выходного выпрямителя) могут нагреваться если блок нагружен, возможно прдется использовать дополнительный кулер.

При сборке – обязательно 15-ый вывод микросхемы генератора ТЛ494 подключить к выводам 13/14.
Использовать ключи с наименьшей емкостью затворов (хотя и они дорогие, но зато управлять ими проще). Желательно усадить микросхему и драйвера на специализированные петли (панельки) для быстрой замены последних в случае неполадок.

Довольно большие затруднения связанные с размерами платы, сосудов для травления с такими размерами попросту не было, пришлось искать альтернативные варианты.

Первый запуск блока питания ОБЯЗАТЕЛЬНО нужно делать через последовательно соединенную лампу накаливания 100-200 ватт 220 Вольт, чтобы при неполадках не взорвать блок.

ОСТОРОЖНО ! после выключения не дотрагиваться высоковольтной цепи блока, емкость основных электролитов в районе 2000мкФ – этого хватит, чтобы парализовать и даже убить…

Блок питания своими руками

Простой и надежный блок питания своими руками при нынешнем уровне развития элементной базы радиоэлектронных компонентов можно сделать очень быстро и легко. При этом не потребуются знания электроники и электротехники на высоком уровне. Вскоре вы в этом убедитесь.

Изготовление своего первого источника питания довольно интересное и запоминающееся событие. Поэтому важным критерием здесь является простота схемы, чтобы после сборки она сразу заработала без каких-либо дополнительных настроек и подстроек.

Следует заметить, что практически каждое электронное, электрическое устройство или прибор нуждаются в питании. Отличие состоит лишь в основных параметрах – величина напряжения и тока, произведение которых дают мощность.

Изготовить блок питания своими руками – это очень хороший первый опыт для начинающих электронщиков, поскольку позволяет прочувствовать (не на себе) различные величины токов, протекающих в устройствах.

Современный рынок источников питания разделен на две категории: трансформаторные и безтрансформаторные. Первые достаточно просты в изготовлении для начинающих радиолюбителей. Второе неоспоримое преимущество – это сравнительно низкий уровень электромагнитных излучений, а соответственно и помех. Существенным недостатком по современным меркам является значительная масса и габариты, вызванные наличием трансформатором – самого тяжелого и громоздкого элемента в схеме.

Безтрансформаторные блоки питания лишены последнего недостатка ввиду отсутствия трансформатора. Вернее он там есть, но не в классическом представлении, а работает с напряжением высокой частоты, что позволяет снизить число витков и размеры магнитопровода. В результате снижаются вцелом габариты трансформатора. Высокая частота формируется полупроводниковыми ключами, в процессе из включения и выключения по заданному алгоритму. Вследствие этого возникают сильные электромагнитные помехи, поэтому такие источник подлежат обязательному экранированию.

Мы будем собирать трансформаторный блок питания, который никогда не утратит своей актуальности, поскольку и поныне используется в аудиотехнике высокого класса, благодаря минимальному уровню создаваемых помех, что очень важно для получения качественного звука.

Устройство и принцип работы блока питания

Стремление получить как можно компактнее готовое устройство примело к появлению различных микросхем, внутри которых находятся сотни, тысячи и миллионы отдельных электронных элементов. Поэтому практически любой электронный прибор содержит микросхему, стандартная величина питания которой 3,3 В или 5 В. Вспомогательные элементы могут питаться от 9 В до 12 В постоянного тока. Однако мы хорошо знаем, что розетке переменное напряжение 220 В частотою 50 Гц. Если его подать непосредственно на микросхему или какой-либо другой низковольтный элемент, то они мгновенно выйдут из строя.

Отсюда становится понятным, что главная задача сетевого блока питания (БП) состоит в снижении величины напряжения до приемлемого уровня, а также преобразование (выпрямление) его из переменного в постоянное. Кроме того, его уровень должен оставаться постоянным независимо от колебаний входного (в розетке). Иначе устройство будет работать нестабильно. Следовательно, еще одна важнейшая функция БП – это стабилизация уровня напряжения.

В целом структура блока питания состоит из трансформатора, выпрямителя, фильтра и стабилизатора.

Помимо основных узлов еще используется ряд вспомогательных, например, индикаторные светодиоды, которые сигнализируют о наличие подведенного напряжения. А если в БП предусмотрена его регулировка, то естественно там будет вольтметр, а возможно еще и амперметр.

Трансформатор

В данной схеме трансформатор применяется для снижения напряжения в розетке 220 В до необходимого уровня, чаще всего 5 В, 9 В, 12 В или 15 В. При этом еще осуществляется гальваническая развязка высоковольтных с низковольтными цепями. Поэтому при любых внештатных ситуациях напряжение на электронном устройстве не превысит значение величины вторичной обмотки. Также гальваническая развязка повышает безопасность обслуживающего персонала. В случае прикосновения к прибору, человек не попадет под высокий потенциал 220 В.

Конструкция трансформатора довольно проста. Он состоит из сердечника, выполняющего функцию магнитопровода, который изготовляется из тонких, хорошо проводящих магнитный поток, пластин, разделенных диэлектриком, в качестве которого служит нетокопроводящий лак.

На стержень сердечника намотаны минимум две обмотки. Одна первичная (еще ее называют сетевая) – на нее подается 220 В, а вторая – вторичная – с нее снимается пониженное напряжение.

Принцип работы трансформатора заключается в следующем. Если к сетевой обмотке приложить напряжение, то, поскольку она замкнута, в ней начнет протекать переменный ток. Вокруг этого тока возникает переменное магнитное поле, которое собирается в сердечнике и протекает по нему в виде магнитного потока. Поскольку на сердечнике расположена еще одна обмотка – вторичная, то поде действием переменного магнитного потока в ней навидится электродвижущая сила (ЭДС). При замыкании этой обмотки на нагрузку, через нее будет протекать переменный ток.

Радиолюбители в своей практике чаще всего применяют два вида трансформаторов, которые главным образом отличатся типом сердечника – броневой и тороидальный. Последний удобнее в применении тем, что на него достаточно просто можно домотать нужное количество витков, тем самым получить необходимое вторичное напряжение, которое прямопропорционально зависит от количества витков.

Каждый электрик должен знать:  Датчики изображения на основе приборов с зарядовой связью

Основными для нас являются два параметра трансформатора – напряжение и ток вторичной обмотки. Величину тока примем равной 1 А, поскольку на такое же значение мы возьмем стабилитроны. О чем немного далее.

Диодный мост

Продолжаем собирать блок питания своими руками. И следующим порядковым элементом в схеме установлен диодный мост, он же полупроводниковый или диодный выпрямитель. Предназначен он для преобразования переменного напряжения вторичной обмотки трансформатора в постоянное, а точнее говоря, в выпрямленное пульсирующее. Отсюда и происходит название «выпрямитель».

Существуют различные схемы выпрямления, однако наибольшее применение получила мостовая схема. Принцип работы ее заключается в следующем. В первый полупериод переменного напряжения ток протекает по пути через диод VD1, резистор R1 и светодиод VD5. Далее ток возвращается к обмотке через открытый VD2.

К диодам VD3 и VD4 в этот момент приложено обратное напряжение, поэтому они заперты и ток через них не протекает (на самом деле протекает только в момент коммутации, но этим можно пренебречь).

В следующий полупериод, когда ток во вторичной обмотке изменит свое направление, произойдет все наоборот: VD1 и VD2 закроются, а VD3 и VD4 откроются. При этом направление протекания тока через резистор R1 и светодиод VD5 останется прежним.

Диодный мост можно спаять из четырех диодов, соединенных согласно схемы, приведенной выше. А можно купить готовый. Они бывают горизонтального и вертикального исполнения в разных корпусах. Но в любом случае имеют четыре вывода. На два вывода подается переменное напряжение, они обозначаются знаком «

», оба одинаковой длины и самые короткие.

С двух других выводов снимается выпрямленное напряжение. Обозначаются они «+» и «-». Вывод «+» имеет наибольшую длину среди остальных. А на некоторых корпусах возле него делается скос.

Конденсаторный фильтр

После диодного моста напряжение имеет пульсирующий характер и еще непригодно для питания микросхем и тем более микроконтроллеров, которые очень чувствительны к различного рода перепадам напряжения. Поэтому его необходимо сгладить. Для этого можно применяется дроссель либо конденсатор. В рассматриваемой схеме достаточно использовать конденсатор. Однако он должен иметь большую емкость, поэтому следует применять электролитический конденсатор. Такие конденсаторы зачастую имеют полярность, поэтому ее необходимо соблюдать при подключении в схему.

Отрицательный вывод короче положительного и на корпусе возле первого наносится знак «-».

Стабилизатор напряжения LM7805, LM7809, LM7812

Вы наверное замечали, что величина напряжения в розетке не равна 220 В, а изменяется в некоторых пределах. Особенно это ощутимо при подключении мощной нагрузки. Если не применять специальных мер, то оно и на выходе блока питания будет изменяться в пропорциональном диапазоне. Однако такие колебания крайне не желательны, а иногда и недопустимы для многих электронных элементов. Поэтому напряжение после конденсаторного фильтра подлежит обязательной стабилизации. В зависимости от параметров питаемого устройства применяются два варианта стабилизации. В первом случае используются стабилитрон, а во втором – интегральный стабилизатор напряжения. Рассмотрим применение последнего.

В радиолюбительской практике широкое применение получили стабилизаторы напряжения серии LM78xx и LM79xx. Две буквы указывают на производителя. Поэтому вместо LM могут быть и другие буквы, например CM. Маркировка состоит из четырех цифр. Первые две – 78 или 79 означают соответственно положительно или отрицательное напряжение. Две последние цифры, в данном случае вместо них два икса: хх, обозначают величину выходного U. Например, если на позиции двух иксов будет 12, то данный стабилизатор выдает 12 В; 08 – 8 В и т.д.

Для примера расшифруем следующие маркировки:

LM7805 → 5 В, положительное напряжение

LM7912 → 12 В, отрицательное U

Интегральные стабилизаторы имеют три вывода: вход, общий и выход; рассчитаны на ток 1А.

Если выходное U значительно превышает входное и при этом потребляется предельный ток 1 А, то стабилизатор сильно нагревается, поэтому его следует устанавливать на радиатор. Конструкция корпуса предусматривает такую возможность.

Если ток нагрузки гораздо ниже предельного, то можно и не устанавливать радиатор.

Схема блока питания

Схема блока питания в классическом исполнении включает: сетевой трансформатор, диодный мост, конденсаторный фильтр, стабилизатор и светодиод. Последний выполняет роль индикатора и подключается через токоограничивающий резистор.

Поскольку в данной схеме лимитирующим по тока элементов является стабилизатор LM7805 (допустимое значение 1 А), то все остальные компоненты должны быть рассчитаны на ток не менее 1 А. Поэтому и вторичная обмотка трансформатора выбирается на ток от одного ампера. Напряжение ее должно быть не ниже стабилизированного значения. А по хорошему его следует выбирать из таких соображений, что после выпрямления и сглаживания U должно быть на 2 – 3 В выше, чем стабилизированное, т.е. на вход стабилизатора следует подавать на пару вольт больше его выходного значения. Иначе он будет работать некорректно. Например, для LM7805 входное U = 7 – 8 В; для LM7805 → 15 В. Однако следует учитывать, что при слишком завышенном значении U, микросхема будет сильно нагреваться, поскольку «лишнее» напряжение гасится на ее внутреннем сопротивлении.

Диодный мост можно сделать из диодов типа 1N4007, или взять готовый на ток не менее 1 А.

Сглаживающий конденсатор C1 должен иметь большую емкость 100 – 1000 мкФ и U = 16 В.

Конденсаторы C2 и C3 предназначены для сглаживания высокочастотных пульсаций, которые возникают при работе LM7805. Они устанавливаются для большей надежности и носят рекомендательный характер от производителей стабилизаторов подобных типов. Без таких конденсаторов схема также нормально работает, но поскольку они практически ничего не стоят, то лучше их поставить.

Блок питания своими руками на 78L05, 78L12, 79L05, 79L08

Часто необходимо питать только одну или пару микросхем или маломощных транзисторов. В таком случае применять мощный блок питания не рационально. Поэтому лучшим вариантом будет применение стабилизаторов серии 78L05, 78L12, 79L05, 79L08 и т.п. Они рассчитаны на максимальный ток 100 мА = 0,1 А, но при этом очень компактные и по размерам не больше обычного транзистора, а также не требует установки на радиатор.

Маркировка и схема подключения аналогичны, рассмотренной выше серии LM, только отличается расположением выводов.

Для примера изображена схема подключения стабилизатора 78L05. Она же подходит и для LM7805.

Схема включения стабилизаторов отрицательно напряжения приведена ниже. На вход подается -8 В, а на выходе получается -5 В.

Как видно, сделать блок питания своими руками очень просто. Любое напряжение можно получить путем установки соответствующего стабилизатора. Следует также помнить о параметрах трансформатора. Далее мы рассмотри, как сделать блок питания с регулировкой напряжения.

Электрический щит гаража своими руками

Автомобильный гараж для личной машины обычно включает в себя помещение, где располагается само средство передвижения и подвал. Причем часть подвала, как правило, отводят под смотровую яму, а часть — под погреб. Последний располагают либо перед гаражом под проезжей частью (при двухстороннем расположении гаражных боксов), либо сзади — при строительстве гаражей в один ряд. Довольно часто часть первого этажа (собственно гаража) и подвал оборудуют под мастерскую, где устанавливают механизмы с электрическим приводом (токарные, фрезерные и тому подобные станки) и, как правило, электросварочный аппарат. Поэтому электрическая энергия в гараже необходима как для освещения помещения, так и для питания электропривода механизмов, а также всевозможных зарядных и пусковых устройств, обслуживающих автомобиль.

Освещение непосредственно гаража можно выполнить в четырех точках, например, две точки слева и две справа, либо две точки впереди и две позади, то есть схема освещения будет состоять из двух групп с выключателем на каждую группу. Освещение подвала по условиям электробезопасности осуществляют через трансформатор 220/36 В и подразделяют на три группы, одна из которых обеспечивает освещение смотровой ямы, другая — погреба, третья — входа в подвал.

Схема электрощита, к которому подключают все токоприемники в гараже, показана на рис. 1. Прежде всего для щита понадобится счетчик активной электроэнергии PI. Если есть сварочный трансформатор, то лучше счетчик подобрать с токовой обмоткой, выдерживающей ток не менее 50 А. Автомат SF в схеме также должен быть рассчитан на ток 50 А.

Освещение гаража осуществляют, как было сказано выше, по двум группам (Гр) с помощью двухполюсных тумблеров SA1 и SA2. Освещение подвала ведут через трансформатор Т1 (36 В) мощностью не менее 250 ВА, включаемого тумблером SA3 через предохранитель FU1, по трем группам через однополюсные тумблера SA5; SA6; SA7.

Разводку питания по гаражу и подвалу производят в соответствии с правилами ПУЭ и технике безопасности. Необходимость в определенном числе гнезд (розеток) определяет непосредственно потребитель.

Зарядное устройство должно присутствовать в каждом гараже, а если оно самодельное, то его желательно расположить прямо в щите. Самодельное зарядное устройство лучше выполнить на отдельном силовом трансформаторе. Если же такой возможности нет, то в качестве силового трансформатора зарядного устройства можно использовать трансформатор для освещения подвала. Схема зарядного устройства на основе осветительного трансформатора, который продолжает, кстати, выполнять и свои прямые обязанности, будет приведена ниже. Наиболее простая конструкция регулируемого зарядного устройства получается на основе лабораторного автотрансформатора (ЛАТР-2) с током нагрузки 2 А (возможны также варианты зарядных устройств на основе автотрансформаторов блоков питания от старых телевизоров). ЛАТР-2 имеет выходное напряжение 250 В и мощность Р=500 ВА. Автотрансформатор Т2 в схеме рис. 1 включается тумблером SA4. Через предохранитель FU2, установленный на входе автотрансформатора Т2 и через предохранитель FU3 на выходе напряжение с автотрансформатора подается на вход трансформатора Т3, который может выдавать два регулируемых напряжения 12 В и 27 В (максимальное значение 15 В и 30 В соответственно). Эти напряжения необходимы для токоприемников на 12 В и 27 В (авиационные двигатели и аппаратура). Вторичная обмотка трансформатора Т3 намотана в два провода (бифилярно) и коммутируется тумблером SA8, так что в положении I обмотки включаются параллельно, а в положении II — последовательно. Обратим ваше внимание, что максимальное выходное напряжение автотрансформатора составляет 250 В, поэтому первичная обмотка Т3 должна быть рассчитана не на 220 В, а на 250 В, то есть на 30 В больше. Если используется готовый трансформатор Т3 (его первичная обмотка), то необходимо либо домотать дополнительные витки на 30 В, либо ограничить угол поворота регулирующей ручки автотрансформатора.

Заметим также, что наличие в схеме силового трансформатора Т3 обязательно, так как оно обеспечивает:

1) гальваническую развязку между первичным (опасным для жизни) напряжением 220. 250 В и вторичным (низковольтным);

2) увеличение силы выходного тока (ведь ток нашего автотрансформатора не должен превышать 2 А независимо от значения его выходного напряжения). Здесь же при U = 15 В и соответствующей мощности Т3 выходной ток будет равен:

I = P/U = 500/15 = 33 A.

С трехполюсного тумблера SA8 напряжение поступает на мостовой выпрямитель VD1-VD4 и далее через амперметр РА — на клеммы 12 В и 27 В, которые также коммутируются тумблером SA8. Напряжение 12 В необходимо для питания автомобильных токоприемников (аккумулятора, переноски, двигателей вспомогательных механизмов, кроме стартера, и т.д.), напряжение 27 В требуется для токоприемников, предназначенных для применения в авиации, а также для одновременной зарядки двух автомобильных аккумуляторов. Естественно, что ток источника напряжением 27 В в два раза меньше тока источника напряжением 12 В.

Схема, при которой возможно совместное использование силового трансформатора Т1 как для зарядного устройства, так и для освещения подвала, показана на рис. 2. Первичная обмотка трансформатора Т1 подключена к выводам 11 и 12, как и в схеме на рис. 1, вторичная обмотка — к выводам 19 и 23 соединена для освещения подвала. Однако вторичная обмотка трансформатора Т1 имеет вывод 24 в средней точке, что позволяет получать постоянное напряжение 0. 15 В по схеме со средней точкой, когда каждая полуобмотка (18 В) вторичной обмотки трансформатора Т1 работает в течение полупериода на половинном напряжении этой вторичной обмотки. Нагрузку подключают к клеммам 24 и 26 (см. рис. 2). В двухполупериодном выпрямителе работают тиристоры VS1 и VS2, каждый в свой полупериод. Схема управления тиристорами построена на основе двухбазового диода VT и включает в себя помимо двухбазового диода VT диоды VD3 и VD4, резисторы R1-R5, конденсатор С.

Выпрямленное диодами VD3 и VD4 (рис. 3, а) напряжение поступает через резисторы R2 и R3 на питание схемы управления и заряжает конденсатор С (рис. 3, б) на пути к клеммам нагрузки (клеммы 24 и 26) ток проходит измерительную цепь РА-rш. Как только конденсатор С зарядится до порога срабатывания двухбазового диода VT, последний отпирается и конденсатор С разряжается через низкоомную цепь на выходы VS1 и VS2, однако включается тот тиристор, на котором анодное напряжение положительное. На схеме, приведенной на рис. 2, это тиристор VC1 (случай 1). Таким образом, тиристор VS1 открывается и пропускает остатки полуволны синусоидального напряжения с трансформатора Т1 на нагрузку (рис. 3, в). При малом R2 (бегунок резистора внизу) полуволна пропускается почти полностью, что соответствует максимальному выходному напряжению. При большом R2 (то есть бегунок вверху) на выходе создается нулевое напряжение.

С открытием тиристора напряжение со схемы управления снимается, так как оно целиком передается в нагрузку (более низкоомную, чем цепь управления). По окончании полупериода и с началом следующего полупериода синусоидального напряжения (этот случай 2 на рис. 2) тиристор VS1 закрывается, а тиристор VS2 готовится к открытию от управляющего импульса при достижении порогового напряжения на конденсаторе С. Далее процесс повторяется.

При съеме напряжения с клемм 24 и 26, удается получить максимальный ток, так как силовые обмотки 19-24 и 24-23 трансформатора Т1 работают поочередно в течении одного полупериода.

Меньший в два раза ток можно получать на клеммах 25 и 26, однако максимальное напряжение на выходе будет вдвое больше. В этом случае источник работает по схеме мостового выпрямителя: диоды VD1 и VD2, а также тиристоры VS1 и VS2 образуют мостовую схему.

Таким образом, схема позволяет получить два регулируемых выходных напряжения U1 = 0. 15 В, U2 = 0. 30 В и переменное напряжение 36 В для освещения подвальных помещений. Обмотка ЛАТРа используется в качестве первичной обмотки.

Трансформатор Т1 изготовлен на основе вышеупомянутого ЛАТРа на ток до 2 А. Регулятор — бегунок у него ликвидируют. Обмотку ЛАТРа включают в сеть 220 В на клеммы 0 и 250 В (это позволяет значительно сократить ток холостого хода трансформатора в результате пониженного значения индукции). Далее на первичную обмотку, обеспечив ее изоляцию, наматывают вторичную обмотку алюминиевым или медным проводом сечением 9 мм (шина 4,5×2 мм) в бумажной или стеклянной изоляции. Вторичная обмотка состоит из 80 витков с выводом в средней точке. Схема стабильно работает (только при подключении нагрузки, понятно) во всех диапазонах и применима для любых мощностей.

На основе ЛАТРа «выпрямитель» на 0. 15 В позволяет получить ток до 35 А, а «выпрямитель» на 0. 30 В — ток до 15 А, что позволяет заряжать автомобильные аккумуляторы различных емкостей. Значение переменного тока на вторичной обмотке трансформатора Т1 (см. рис. 2) 12. 15 А, так что трансформатор позволит установить в гараже (клеммы 19 и 23) пять 36-вольтовых 100-ваттных ламп.

Возможно использование трансформатора и выпрямителя одновременно, однако при этом общая нагрузка не должна превышать 500 Вт. В общем этим источником можно пользоваться для самых различных целей. Конструктивно выпрямитель выполнен в общем силовом шкафу. Тиристоры и силовые диоды расположены на двух дюралюминиевых радиаторах размером 200x100x10 мм.

В схеме рис. 1 помимо указанных выше изделий применены счетчик однофазный бытовой СО (на ток 17. 34 А), трехфазный автомат типа АЕ на 25 А. На высоком напряжении установлены тумблера (SA1, SA2, SA3 и SA4) типа ТВ-1-2 (двухполюсные), в цепях низкого напряжения применены однополюсные тумблеры (SA5, SA6 и SA7) типа ТВ-1. Тумблер SA8, через который протекает ток до 30 А, типа ЗППГ-15К или ЗППН45 (из авиационного оборудования). Трансформатор Т1 типа ОСМ-3 (ТБС-2) мощностью 250 Вт, Т3 — мощностью 400. 630 Вт, диоды VD1-VD4 типа Д215, Д242 на ток до 10 А и на обратное напряжение не менее 50 В. В качестве измерительных приборов можно использовать любые миллиамперметры с соответствующим подбором шунтов и добавочных сопротивлений (самодельных).

В схеме рис. 2 при отсутствии ЛАТРа можно использовать трансформатор ОСМ-3 мощностью 400. 630 Вт, диоды те же, тиристоры КУ202. Диоды VD3 и VD4 — любые слаботочные диоды типа КД. Остальные номиналы указаны на схеме.

Схема электропроводки в гараже

Наличие электрической проводки в гараже значительно облегчает жизнь автовладельца. При острой необходимости можно быстро зарядить аккумулятор или накачать спущенное колесо. А при серьёзных поломках наличие освещения позволит внимательно осмотреть транспортное средство из смотровой ямы. Мы подготовили для вас инструкцию со схемами, которая позволит осуществить монтаж своими руками.

Принципы проектирования электрических схем для гаражей

Предварительная схема разводки

Простая схема электропроводки в гараже предусматривает наружное расположение всех элементов, таких как кабель, розетки, распределительные электрощитки и светильники (см. Светильники для гаража). Многие стараются скрыть кабели, укладывая их в стенах перед штукатуркой или закрывая отделочными материалами.

Но практика показала, что такая электросхема гаража не практична и лучшим вариантом будет поверхностная укладка проводки. Для защиты провода в наиболее вероятных местах повреждения используют пластиковые или металлические гофрированные трубки, а для декоративного сокрытия применяются специальные коробы из пластика.

К сведению. Электрическая схема гаража должна быть проложена таким образом, чтобы обеспечить быстрый доступ ко всем элементам для их удобной замены, поскольку очень часто, при активном и разностороннем использовании гаража возникает потребность переноса розеток или элементов освещения на другое место. Открытая проводка исключает возможность её повреждения при сверлении стен.

Схема электроснабжения

Перед тем, как провести проводку в гараже, особое внимание уделите схеме электроснабжения. Какое бы ни было строение – огромный дом или небольшой гараж – начинать всегда надо именно с неё. Прежде всего, нарисуйте схематический чертёж вашего помещения. Что должно быть на нём отражено?

  • Вводная линия, которая подходит к зданию гаража.
  • Места, где будут установлены светильники – само гаражное помещение, яма для осмотра машины, погреб. Возможно, над каким-то станком (токарным, сверлильным) понадобится дополнительное освещение.
  • Положение распределительного щитка, правильнее всего устанавливать его у входа. Когда будете покидать помещение, вы сможете спокойно его обесточить и сразу выйти на улицу, а не пробираться впотёмках через весь гараж.
  • Запланированные места для розеток (около верстака, рабочего стола или станка, в другом месте, где возможно понадобится подключать электроинструмент).
  • Приблизительный маршрут электропроводки гаража (то есть, по какому пути вы планируете подводить провода от распределительного щитка к светильникам и розеткам).
  • Если у вас в гараже будут находиться механические станки, компрессор для накачки шин, то отобразите на схеме их место расположения, потому что к этим токоприёмникам потребуется подвести отдельные линии от индивидуальных автоматов.

Схема электрической проводки в гараже делается для того, чтобы чётко определить количество нужных материалов – розеток, выключателей, автоматов, светильников, распределительных коробок.

Вы составите список, пройдёте по нескольким магазинам электротоваров, спокойно определитесь с ценами и подберёте качественные, доступные для вас коммутационные аппараты и провода.

Также схема электропроводки в гараже поможет вам определиться с максимальной нагрузкой. Вы посчитаете суммарную мощность всех потребителей электроэнергии и правильно подберёте по сечению и номинальному току вводные и отходящие кабели и автоматы.

Каждый электрик должен знать:  Двигатели последовательного возбуждения

Схема электропроводки в гараже

При составлении схемы электропроводки в гараже нужно учесть особенности постройки этого помещения, однако основные позиции обязательно должны оставаться неизменными. Всё электроснабжение должно поступать через один общий вводной автоматический выключатель, учитывающий нагрузки всех отходящих линий.

На каждую из линий или же после вводного автомата устанавливается электрический счетчик, который пломбируется службами контроля за незаконным использованием и воровством электроэнергии. Если это гаражный кооператив, то за учетом получаемого потребителем напряжения следит его администрация.

Для того, чтобы защитить человека от попадания под опасный для его жизни и здоровья электрический потенциал, используется чувствительный и быстросрабатывающий прибор УЗО (устройство защитного отключения).

Разрабатывая электрическую схему гаража, необходимо рассмотреть возможность подключения не однофазной, а трёхфазной цепи, так как именно она используется для нормальной работы асинхронных электродвигателей, которыми оснащены, применимые в быту станки (заточной, сверлильный и т. д.). При трехфазном варианте не будет снижена мощность данного электрооборудования, а это важно для организации рабочего места в гараже. Разработка разводки, электрической схемы в может проводиться как до, так и после подключения электричества.

Существует две основные схемы разводки электричества:

  1. Для гаража без смотровой ямы.
  2. Для помещения со смотровой ямой и погребом. При разработке схемы электроснабжения в данном случае требуется понижающий трансформатор, для питания светильников в смотровой яме и погребе, так как эти помещения имеют повышенную влажность. Корпус светильников должен иметь герметичную конструкцию с резиновыми уплотнениями на крышке и в месте входа провода.

Важно! Если в гараже планируется установка холодильника или другой аппаратуры без встроенного стабилизатора напряжения, а электрическая цепь является ненадежной, то есть существует вероятность повышения или снижения минимального напряжения, то рекомендуется установить устройство, нормализирующее его, – стабилизатор.

Подготовка к выполнению работ

К подготовительной процедуре относится подбор необходимых материалов и инструментов, которые понадобятся для проведения монтажных работ по прокладке, креплению и подключению электропроводки в гараже.

  • отвертки плоские и крестообразные разных размеров;
  • плоскогубцы;
  • круглогубцы для выполнения аккуратного подключения к автоматам;
  • перфоратор, болгарка для штроб, отверстий под розетки, а также установки монтажных скоб для крепления кабеля;
  • указатель напряжения для проверки отсутствия потенциала и безопасной работы, так как даже при отключенном вводном автоматическом выключателе нельзя быть абсолютно уверенном в отсутствии напряжения на отдельном участке цепи (токоведущие элементы автомата скрыты в корпусе, поэтому монтажник не может убедиться в надежности соединения его контактов, то есть нет видимого разрыва цепи);
  • молоток, зубило;
  • изолирующие материалы (изоляционная лента, полихлорвиниловая трубка и т. д.).

Список материалов, необходимых для организации электроснабжения гаража:

  • токоограничивающие и защитные устройства для подачи напряжения и его контроля (автоматические выключатели, УЗО, стабилизаторы);
  • электрический счетчик с электрощитом;
  • кабельная продукция (провода);
  • распределительные коробки;
  • выключатели освещения;
  • розетки.

После приобретения всех необходимых материалов, инструментов можно приступить к подготовительным работам и непосредственно прокладке проводки в гараже своими руками.

Пошаговая инструкция монтажа проводки в гараже:

  1. Подготовительный этап – все строительные работы по вырезанию штроб, разметке, пробиванию отверстий в стенах для кабеля, мест для установки розеток и выключателей. Глубина штробы выбирается индивидуально и будет зависеть: от толщины прокладываемого кабеля или провода в изоляции. Электропроводка должна проходить строго вертикально или горизонтально по стенам, а любой поворот осуществляется под прямым углом. Это правило касается как наружного, так и внутреннего типа монтажа кабельной продукции. При имеющемся в помещении любом виде отопления нельзя, чтобы провод находился ближе 10 см от нагревающихся труб. Рекомендуется силами специалистов увеличить это расстояние до 25 см. Отверстие под розетки выполняются на расстоянии 0,6 м от пола, а выключатели – на высоте 1,5 м при расстоянии от косяка дверей не меньше, чем на 10-15 см. В отличие от квартир и жилых помещений, в гаражах выключатели освещения устанавливаются чаще всего в районе входных ворот или дверей.
  2. Установка электрощита. Корпус электрощита должен быть выполнен из диэлектрического материала, размеры которого зависят от габаритов всех устанавливаемых в нём автоматов, электросчетчика, УЗО, понижающего трансформатора для освещения ямы. В некоторых случаях электрощитовая делится на две части: щит с вводным автоматом, электросчетчиком и узел с автоматами подачи питания на отдельные группы потребителей (освещение, розетки и т. д.) с возможностью установки понижающего трансформатора 220/ Вольт. После установки элемента учёта электроэнергии он пломбируется.
  1. Прокладка наружной части электропроводки. Если гараж построен отдельно, то внешнюю часть проводки выполняют воздушным путём, рассчитав сечение кабеля, его длину от ближайшего распределительного пункта энергоснабжения. В случае реализации энергоснабжения гаража в кооперативе эту часть работ берет на себя администрация, прокладывая вводной кабель по стенам гаражей, в дальнейшем отвечая за их сохранность и техническое состояние. Основные требования к воздушной кабельной линии: высота над проезжей частью – не менее 6 м, над пешеходной зоной – 3,74, а ввод в помещение на высоте – не ниже 2,75 м.
  2. Внутренняя проводка в гараже. Тип организации внутренней приводки зависит от типа электроснабжения: однофазное или трехфазное. Конечно, трехфазное напряжение более функциональное, так как даёт возможность подключения не только бытовых приборов, но профессиональной техники, рассчитанной на такое напряжение. Переход электрооборудования на однофазное снижает мощность данной техники. Вся внутренняя проводка выполняется скрытым (с помощью штроб) или наружным способом (в металлической гофре). Выбор сечения токопроводящей жилы выполняется из расчёта используемой нагрузки по нижеприлагаемой таблице.
Сечение токопроводящей жилы, мм2 Медные жилы проводов и кабелей
Напряжение 220 В Напряжение 380 В
Сила тока, А Мощность, кВт Сила тока, А Мощность, кВт
1,5 19 4,1 16 10,5
2,5 27 5,9 25 16,5
4,0 38 8,3 30 19,8
6,0 46 10,1 40 26,4
10 70 15,4 50 33,0
16 85 18,7 75 49,5
25 115 25,3 90 59,4
35 135 29,7 115 75,9
50 175 38,5 145 95,7
70 215 47,3 180 118,8
  1. Освещение смотровой ямы. Питание этих цепей выполняется от трансформатора, понижающего напряжение до безопасной для человека величины меньше 42 вольт. В качестве источников света рекомендуется применять светильники на основе светодиодов из-за их эффективности и экономичности, а также длительного ресурса использования.

Важно! Выключатель освещения прерывает обязательно фазный провод, а не рабочий нулевой.

  1. Разводка розеточной сети. Основными требованиями являются надежная изоляция мест соединения и правильный расчет сечения кабеля в соответствии с величиной тока нагрузки. При использовании напряжения 220 вольт она выполняется двухжильным кабелем при использовании УЗО и трехжильным при организации электроснабжения розеток с контуром заземления.
  2. Правильная организация заземления. Заземление имеет основную функцию – это защита человека от поражения электрическим током в случае пробоя изоляции оборудования и появления опасности на токопроводящем контуре. Реализация отдельного заземляющего контура в кооперативных гаражах проблематична, в отличие от помещений для автомобиля, расположенных возле частного дома. Заземляющий контур выполняется путем забивания металлических стержней в землю в форме треугольника, последующим их соединением друг с другом. В качестве заземляющей шины используется металлическая полоса 40*1,5 мм, которая прокладывается непосредственно в гараж, где подключается к заземляющему проводнику.

Важно! Никогда заземляющий контур не используется в качестве рабочего нуля в однофазных цепях.

Необходимые материалы

Правильно составленная схема электропроводки поможет быстро рассчитать количество кабеля, автоматики, розеток и т. д. В первую очередь рассчитывается сечение и длина вводного кабеля. Для этого можно использовать специальную таблицу, расположенную ниже.

Таблица расчет сечения кабеля в зависимости от мощности сети

К примеру, рассчитаем параметры кабеля и других компонентов для схемы № 1, которая была обозначена в прошлом разделе:

  • Сечение вводного кабеля — в данном случае в гараже не планируется устройство полноценной автомастерской, поэтому идеально подойдёт медный кабель на 4–4,5 кв. мм.
  • Электрический щиток — достаточно щитка на 9 модулей.
  • Сечение кабеля для розеточной группы — мощность инструмента, применяемого для обслуживания и ремонта автомобиля, редко превышает 3 кВт. С учётом этого подбирается сечение кабеля — 1,5–2 мм. кв., но в целях безопасности рекомендуется использовать медный кабель сечением 2,5 мм. кв.

Кабель для проводки различного сечения

  • Автоматы розеточной группы — для подбора автомата следует рассчитать силу тока: I = P/U, где I — сила тока (A),P — мощность нагрузки (кВт), U — напряжение сети (В). С учётом наших данных получается, что I = 3000 / 220 = 13,65 А. Получается, что на каждую группу розеток понадобиться по одному модульному автомату на 16 А.
  • УЗО — устройство на проходящий ток мощностью не менее 20 А. Ток срабатывания, при котором устройство отключиться — строго 10–30 мА.
  • Розетки — рассчитанные на номинальный ток в 16 А с заземлением.

    УЗО и автоматический выключатель для электросети

  • Сечение кабеля для осветительной сети — рассчитается с учётом общей мощности осветительных приборов. Например, на потолке располагается два светильника мощность 100 Вт, на стенах по два светильника мощностью 60 Вт каждый. В итоге получается, что общая мощность приборов составляет 220 Вт. Для данной мощности хватить алюминиевого кабеля сечением 1,5 мм. кв.
  • Автоматы для освещения — общая мощность тока составляет не более 400 Вт, даже если поставить обычные лампочки по 100 Вт в каждый осветительный прибор. При правильно выбранном сечении кабеля хватит однополюсного автомата на 10 А.
  • Длина кабеля определяется исходя из оптимального маршрута. Кабель приобретается с запасом 10%. Крайне не рекомендуется покупать очень дешёвые изделия. Оптимально, если это будет проводка с двойной изоляцией и изолирующими проводниками.

    Необходимые инструменты для монтажа

    Понижающий трансформатор для электросети с 220 до 36 вольт

    Для монтажа электропроводки потребуется следующий инструмент:

    • плоскогубцы и бокорезы;
    • крестовая и шлицевая отвёртка;
    • молоток и зубило;
    • электродрель и перфоратор;
    • болгарка с диском по бетону;
    • изолента и индикаторная отвёртка.

    Желательно, чтобы рукоятки ручного инструмента были сделаны из прорезиненых материалов. Если рукоять из пластика, то перед выполнением работ её нужно обернуть изолентой в несколько слоёв.

    Основные моменты по технике безопасности

    1. Правилами техники безопасности пренебрегать не следует, так как от этого зависит жизнь и здоровье человека, выполняющего монтаж и реализацию энергообеспечения гаража своими руками.
    2. Все работы на токоведущих частях выполняются после отключения его от электрической сети, а также проверки наличия опасного потенциала. Использовать только исправный и проверенный указатели напряжения.
    3. Перед работой с перфоратором, болгаркой, другим электрическим инструментом следует проверить визуально шнур питания на наличие повреждения изоляции.
    4. Одевать защитные очки при работе с электроинструментом.

    Таким образом, подключение электричества, разводка кабельной продукции, а также организация рабочего места и освещения в гараже является несложной процедурой, если выполнять требования электробезопасности, а также прислушаться к советам профессионалов по выбору сечения проводов, коммутационной и защитной аппаратур.

    Пошаговый план построения электросети

    Схема устройства распределительного щитка

    Порядок составления электрической схемы для гаража выглядит следующим образом:

    • Первым делом, необходимо нарисовать план гаражного помещения и графически обозначить место расположения главного распределительного щита с указанием расстояния от стен. Далее распределяется электропроводка в гараже, схема которой должна содержать разводку кабелей, места установки осветительных приборов.
    • Затем на плане указываются точное местоположение рабочего стола и других электроприборов стационарного базирования, таких как токарный станок, сварочный аппарат, компрессор и так далее.
    • Затем делается схема каждой стены, на которой будет размещена розетка. На схеме указывается расположение электрических приборов, их высота и план подвода к ним розетки.

    К сведению. Правильной будет такая электрика в гараже, схема которой будет предусматривать как общее освещение всего помещения потолочными светильниками, так и освещение локального характера. Выключатель на общее освещение должен быть установлен при выходе на таком расстоянии, чтобы можно было достать до него вытянутой рукой, при этом сделав один шаг от входа. Выключатели на локальное освещение монтируются непосредственно на месте, на уровне глаз.

    • Электрический распределительный щит также устанавливается при входе, для того, чтобы можно было полностью обесточить помещение, покидая его.
    • Возле выключателя общего освещения нужно установить распределительную коробку, для того, чтобы каждый из светильников имел отдельный кабель питания. Если все светильники подключены параллельно от одного кабеля, то распределительная коробка не нужна.

    Виды часто используемых кабелей в проводке для гаража

    • Схемы электропроводки в гараже должны содержать указания по использованию нужного вида кабелей в зависимости от нагрузки. Медные кабели с сечением жилы в 1,5 мм рассчитаны на нагрузку в 3 Киловатта, кабели с сечением 2,5 мм выдерживают нагрузку до 5 Киловатт. При выборе кабеля всегда нужно делать запас нагрузки в 20-25%.
    • Настоятельно не рекомендуется подключать розетки последовательно, одну от другой. Лучшим вариантом будет провести общий кабель от щитка и подключить к нему каждую розетку по отдельности через распределительную коробку, как показано на фото ниже. Обычно кабель с разводкой и коробками укладывается под потолком.

    Схема подключения розеток в гараже

    • Рекомендуется, чтобы схема подключения электричества в гараже для розеток предусматривала наличие устройства УЗО с отдельным автоматом. Такое устройство защитит пользователя от случайного поражения электрическим током в результате повреждения проводки или электроприбора. К тому же цена такого устройства – это ваша жизнь. Сила тока перегрузки для отключения подачи энергии не должна превышать 16 Ампер для кабеля с сечением 1,5 мм, и 25 Ампер для кабеля с сечением 2,5 мм.

    Важно. Схема электропроводки гаража с деревянной или другой сгораемой основой должна предусматривать установку защитных металлических коробов для укладки кабелей. Эти коробы будут препятствовать воспламенению обшивки в случае перегрева и возгорания кабеля.

    Видео по теме

    Освещение в гараже с помощью светодиодной ленты

    Светодиодная лента SMD 5630 и пластиковый уголок

    Светодиодные ленты — это современный и энергоэффективный способ освещения помещений площадью до 30 м2. Особенно в гаражах, где не требуется обустройство общего освещения, а нужна лишь подсветка рабочих зон.

    Для контурного освещения гаража наиболее часто используют ленты типа SMD 3528 со световым потоком 5 люмен/диод. В качестве центрального освещения применяются ленты типы SMD 5630 со световым потоком 40 люмен/диод.

    Технология монтажа и подключения светодиодной ленты будет состоять из следующих этапов:

      Для гаража площадью до 25–30 м

    Светодиодная лента приклеенная на уголок и закрепленная на балке при помощи саморезов

    2 потребуется 10 метров ленты с диодами 5050. Количество диодов не менее 60 штук на ленту. Помимо этого, необходимо купить преобразователь с 220 В на 12 В мощностью 150 Вт и кабель для подключения устройства к сети.
    Лента имеет самоклеящееся основание, что особенно удобно при монтаже ленты на металлические или пластиковые поверхности. В гараже можно воспользоваться пластиковым уголком, который прикручивается к кровельным балкам или бетонному потолку.

    Светодиодное освещение в гараже после подключение на основе диодов 5630

  • Перед приклейкой ленты потребуется определить удобную длину ленты. Далее, уголок подгоняется под соответствующие размеры. После этого лента обрезается по длине и приклеивается на уголок. Перед приклейкой пластиковая поверхность обезжиривается.
  • Таким образом, подготавливается необходимое количество уголков с лентами. На конце ленты к контактам припаиваются провода и изолируются с помощью изоленты. Затем уголки можно крепить на балки или потолок.
  • Для подключения ленты к проводу используются Wago клеммники. Каждый провод вставляется в отдельное гнездо в изделии. От клеммников будет отходить провод сечение медный 2,5 мм.
  • Схема подключения лент к блоку питания показана на фото выше. Применять последовательное подключение лент нельзя. Если планируется монтаж RGB-лент, то необходимо использовать RGB-контроллер.

    Монтаж электропроводки в гараже очень трудоёмкий процесс, требующий соответствующих знаний и умений. Прежде чем приступать к работе внимательно изучите всю имеющуюся документацию и прочтите инструктаж по технике безопасности. Если вы неуверены, что работа вам по силам, то откажитесь от задуманного и вызовите профессионального электрика.

    Простой блок питания

    Схема и описание

    Как-то недавно мне в интернете попалась одна схема очень простого блока питания с возможностью регулировки напряжения. Регулировать напряжение можно было от 1 Вольта и до 36 Вольт, в зависимости от выходного напряжения на вторичной обмотке трансформатора.

    Внимательно посмотрите на LM317T в самой схеме! Третья нога (3) микросхемы цепляется с конденсатором С1, то есть третяя нога является ВХОДОМ, а вторая нога (2) цепляется с конденсатором С2 и резистором на 200 Ом и является ВЫХОДОМ.

    С помощью трансформатора из сетевого напряжения 220 Вольт мы получаем 25 Вольт, не более. Меньше можно, больше нет. Потом все это дело выпрямляем диодным мостом и сглаживаем пульсации с помощью конденсатора С1. Все это подробно описано в статье как получить из переменного напряжения постоянное. И вот наш самый главный козырь в блоке питания – это высокостабильный регулятор напряжения микросхема LM317T. На момент написания статьи цена этой микросхемы была в районе 14 руб. Даже дешевле, чем буханка белого хлеба.

    Описание микросхемы

    LM317T является регулятором напряжения. Если трансформатор будет выдавать до 27-28 Вольт на вторичной обмотке, то мы спокойно можем регулировать напряжение от 1,2 и до 37 Вольт, но я бы не стал подымать планку более 25 вольт на выходе трансформатора.

    Микросхема может быть исполнена в корпусе ТО-220:

    или в корпусе D2 Pack

    Она может пропускать через себя максимальную силу тока в 1,5 Ампер, что вполне достаточно для питания ваших электронных безделушек без просадки напряжения. То есть мы можем выдать напряжение в 36 Вольт при силе тока в нагрузку до 1,5 Ампера, и при этом наша микросхема все равно будет выдавать также 36 Вольт – это, конечно же, в идеале. В действительности просядут доли вольта, что не очень то и критично. При большом токе в нагрузке целесообразней поставить эту микросхему на радиатор.

    Для того, чтобы собрать схему, нам также понадобится переменный резистор на 6,8 Килоом, можно даже и на 10 Килоом, а также постоянный резистор на 200 Ом, желательно от 1 Ватта. Ну и на выходе ставим конденсатор в 100 мкФ. Абсолютно простая схемка!

    Сборка в железе

    Раньше у меня был очень плохой блок питания еще на транзисторах. Я подумал, почему бы его не переделать? Вот и результат 😉

    Здесь мы видим импортный диодный мост GBU606. Он рассчитан на ток до 6 Ампер, что с лихвой хватает нашему блоку питания, так как он будет выдавать максимум 1,5 Ампера в нагрузку. LM-ку я поставил на радиатор с помощью пасты КПТ-8 для улучшения теплообмена. Ну а все остальное, думаю, вам знакомо.

    А вот и допотопный трансформатор, который выдает мне напряжение 12 Вольт на вторичной обмотке.

    Все это аккуратно упаковываем в корпус и выводим провода.

    Минимальное напряжение у меня получилось 1,25 Вольт, а максимальное – 15 Вольт.

    Ставлю любое напряжение, в данном случае самые распространенные 12 Вольт и 5 Вольт

    Все работает на ура!

    Очень удобен этот блок питания для регулировки оборотов мини-дрели, которая используется для сверления плат.

    Аналоги на Алиэкспресс

    Кстати, на Али можно найти сразу готовый набор этого блока без трансформатора.

    Ссылка на этот кит-набор здесь .

    Лень собирать? Можно взять готовый 5 Амперный меньше чем за 2$:

    Посмотреть можно по этой ссылке.

    Если 5 Ампер мало, то можете посмотреть 8 Амперный. Его вполне хватит даже самому прожженному электронщику:

    Также неплохо было бы доработать этот блок питания ампервольтметром

    который также можно купить на Али здесь .

    С трансформатором и корпусом уже будет подороже:

    Вот так он будет выглядеть при сборке

    Глянуть его можно по этой ссылке. Может быть найдете подешевле.

    А лучше вообще не заморачиваться и взять готовый лабораторный мощный блок питания со всеми прибамбасами:

    Добавить комментарий