Как делают интегральные микросхемы

Как делают интегральные микросхемы

Появление интегральных микросхем произвело настоящую технологическую революцию в электронике и IT-индустрии. Казалось бы, всего несколько десятилетий назад для простейших электронных вычислений применялись огромные ламповые компьютеры, занимавшие по несколько комнат и даже целые здания.

Эти компьютеры содержали в себе многие тысячи электронных ламп, которые требовали для своей работы колоссальных электрических мощностей и особых систем охлаждения. Сегодня им на смену пришли компьютеры на интегральных микросхемах.

По сути интегральная микросхема представляет собой сборку из многих полупроводниковых компонентов микроскопической величины, размещенных на подложке и упакованных в миниатюрный корпус.

Один современный чип размером с человеческий ноготь может содержать внутри несколько миллионов диодов, транзисторов, резисторов, соединительных проводников и других компонентов, которые в былые времена потребовали бы для своего размещения пространство довольно крупного ангара.

Каждый электрик должен знать:  Дистанционное управление кнопкой домофона на проходной

За примерами далеко ходить не нужно, процессор i7, например, содержит на площади менее 3 квадратных сантиметров более трех миллиардов транзисторов! И это не предел.

Далее теперь рассмотрим основу процесса создания микросхем. Микросхема формируется по планарной (поверхностной) технологии путем литографии. Это значит, что она как бы выращивается из полупроводника на кремниевой подложке.

Первым делом подготавливается тонкая кремниевая пластина, которую получают из монокристалла кремния путем отрезания от цилиндрической заготовки при помощи диска с алмазным напылением. Пластину полируют в особых условиях, чтобы избежать попадания на нее загрязнений и любой пыли.

После этого пластину оксидируют — воздействуют на нее кислородом при температуре порядка 1000°C с целью получить на ее поверхности слой прочной диэлектрической пленки диоксида кремния толщиной в необходимое количество микрон. Толщина получаемого таким образом слоя оксида зависит от времени воздействия кислородом, а также от температуры подложки во время оксидирования.

Каждый электрик должен знать:  Способы компенсации реактивной мощности в системах электроснабжения

Далее на слой диоксида кремния наносят фоторезист — светочувствительной состав, который после облучения растворяется в определенном химическом веществе. На фоторезист кладут трафарет — фотошаблон с прозрачными и непрозрачными участками. Затем пластину с нанесенным на нее фоторезистом экспонируют — засвечивают источником ультрафиолетового излучения.

В результате экспонирования та часть фоторезиста, которая находилась под прозрачными участками фотошаблона, изменяет свои химические свойства, и теперь может быть легко удалена вместе с находящимся под ним диоксидом кремния специальными химикатами, при помощи плазмы или другим способом — это называется травлением. По окончании травления незащищенные фоторезистом (засвеченные) места пластины оказываются очищены от засвеченного фоторезиста и затем — от диоксида кремния.

Каждый электрик должен знать:  Способы охлаждения специальных электронных элементов

После травления и очищения от незасвеченного фоторезиста тех мест подложки, на которых остался диоксид кремния, приступают к эпитаксии — наносят на кремниевую пластину слои нужного вещества толщиной в один атом. Таких слоев может быть нанесено столько, сколько необходимо. Далее пластину нагревают и осуществляют диффузию ионов определенных веществ, чтобы получить p и n-области. В качестве акцептора используют бор, а в качестве доноров — мышьяк и фосфор.

В завершении процесса производят металлизацию алюминием, никелем или золотом, чтобы получить тонкие проводящие пленки, которые будут выступать в роли соединительных проводников для выращенных на подложке на предыдущих этапах транзисторов, диодов, резисторов и т. д. Таким же образом выводят контактные площадки для монтажа микросхемы на печатную плату.

Добавить комментарий