Как обозначаются выводы обмоток электрических машин

СОДЕРЖАНИЕ:

Как обозначаются выводы обмоток электрических машин

Несомненно, домашний электрик должен уметь правильно подключить электродвигатель к сети, и основная загвоздка здесь – количество выводов различного рода обмоток: их достаточно много, в них трудно разобраться. Большую помощь окажет знание условных унифицированных обозначений, применимых к отечественным электродвигателям.

Наибольшую сложность представляет подключение двигателя постоянного тока; здесь количество выводов может быть больше десяти. Обозначаются они начальными буквами слов, отражающих их функциональное назначение:

Я1 и Я2 – начало и конец обмотки якоря;

К1 и К2 – начало и конец компенсационной обмотки;

Д1 и Д2 – начало и конец обмотки добавочных полюсов;

С1 и С2 – начало и конец последовательной (сериесной) обмотки возбуждения;

Ш1 и Ш2 – начало и конец параллельной (шунтовой) обмотки возбуждения;

У1 и У2 – начало и конец уравнительного провода соответственно.

Разобраться с двигателями переменного тока, имеющими значительно меньшее количество выводов, намного проще:

– если обмотки статора трехфазных двигателей переменного тока соединены звездой, то начало статорных обмоток обозначается как С1, С2 и С3 (соответственно первой, второй и третьей фазы); нулевая точка – 0. Если статорная обмотка имеет шесть выводов, то обозначения С4, С5 и С6 указывают на концы обмоток (соответственно первой – 4, второй – 5 и третьей фазы – 6);

– если соединение обмоток статора осуществляется треугольником, то обозначения С1, С2 и С3 определяют зажимы соответственно первой, второй и третьей фаз.

Трехфазные асинхронные двигатели имеют выводы роторных обмоток, обозначаемые как Р1, Р2 и Р3 (соответственно первой, второй и третьей фаз), 0 обозначает нулевую точку. Выводы обмоток асинхронных многоскоростных двигателей обозначаются: для 4 полюсов – 4С1, 4С2 и 4С3; для 8 полюсов – 8С1, 8С2 и 8С3. В асинхронных однофазных двигателях выводы главной обмотки обозначаются: С1 – начало, С2 – конец. Для выводов пусковой обмотки этих же двигателей приняты обозначения: П1– начало, П2 – конец.

Выводы обмотки возбудителя синхронных двигателей, которые носят название индукторов, обозначаются как И1 и И2 (соответственно начало и конец обмотки).

Для того чтобы при подсоединении выводов обмоток коллекторных машин было как можно меньше путаницы, на заводах-изготовителях и в ремонтных мастерских их помечают разными цветами: выводы обмотки якоря – белым цветом; последовательной обмотки возбуждения – красным (если она имеет дополнительный вывод, то его помечают красным и желтым цветами); параллельной обмотки возбуждения – зеленым. Для определения начал и концов обмоток последние всегда помечаются добавленным к основному черным цветом; таким образом получается, что начала обмоток имеют одноцветные пометки, а концы – двухцветные.

Цветовая пометка выводов обмоток электродвигателей является дополнением к буквенной. Однако в электромоторах малой мощности обмотки выполняются проводами, толщина которых не позволяет применить буквенное обозначение, поэтому цветовая маркировка является здесь основной и единственной.

В трехфазных двигателях начало первой фазы обозначается желтым цветом, начало второй – зеленым, начало третьей – красным, черный цвет указывает на нулевую точку. При шести выводах маркировка начала обмоток сохраняется, а маркировка концов производится основным цветом с добавлением черного.

Выводы обмоток асинхронных однофазных двигателей в маркировке имеют следующие цвета: начало главной обмотки обозначается красным проводом, начало пусковой обмотки – синим, в маркировке концов обмоток, как обычно, помимо основного цвета, присутствует черный.

Как обозначаются выводы обмоток электрических машин

ГОСУДАРСТВЕННЫЕ СТАНДАРТЫ СОЮЗА ССР

ЕДИНАЯ СИСТЕМА КОНСТРУКТОРСКОЙ ДОКУМЕНТАЦИИ

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ
ГРАФИЧЕСКИЕ В СХЕМАХ

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Единая система конструкторской документации

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ
В СХЕМАХ.
МАШИНЫ
ЭЛЕКТРИЧЕСКИЕ

Unified system for design documentation.
Graphic identifications in schemes.
Electric machinery

Утвержден Комитетом стандартов, мер и измерительных приборов при Совете Министров СССР в декабре 1967 г. Срок введения установлен

1а. Настоящий стандарт устанавливает условные графические обозначения вращающихся электрических машин на схемах, выполняемых вручную или автоматизированным способом, изделий всех отраслей промышленности и строительства.

(Измененная редакция, изм. № 3).

1. Устанавливаются три способа построения условных графических обозначений электрических машин:

упрощенный многолинейный (форма I );

2. В упрощенных однолинейных обозначениях электрических машин обмотки статора и ротора изображают в виде окружностей. Выводы обмоток статора и ротора показывают одной линией с указанием на ней количества выводов в соответствии с требованиями ГОСТ 2.721-74.

В настоящем стандарте примеры упрощенных однолинейных обозначений машин не приведены.

3. В упрощенных многолинейных обозначениях обмотки статора и ротора изображают аналогично упрощенным однолинейным обозначениям, показывая выводы обмоток статора и ротора (черт. 1).

4. В развернутых обозначениях обмотки статора изображают в виде цепочек полуокружностей, а обмотки ротора — в виде окружности (и наоборот).

Взаимное расположение обмоток изображают:

а) в машинах переменного тока и универсальных — с учетом (черт. 2) или без учета (черт. 3) сдвига фаз.

б) в машинах постоянного тока — с учетом (черт. 4) или без учета (черт. 5) направления магнитного поля, создаваемого обмоткой.

5. В примерах условных графических обозначений машин переменного тока и универсальных машин приведены обозначения, отражающие сдвиг фаз в обмотке; в примерах машин постоянного тока — без учета направления магнитного поля.

6. Выводы обмоток статора и ротора в обозначениях машин всех типов допускается изображать с любой стороны.

В примерах построения условных графических обозначений машин выводы обмоток показаны:

а) в машинах переменного тока: выводы обмоток статора — вверх, обмоток ротора — вниз;

б) в машинах постоянного тока выводы всех обмоток показаны вверх.

Допускается указывать дополнительные сведения (обозначения соединений обмоток, числовые данные и т.д.).

7. Обозначения элементов электрических машин приведены в табл. 1.

1. Обмотка компенсационная

1а. Обмотка вспомогательного полюса

2. Обмотка статора (каждой фазы) машины переменного тока, обмотка последовательного возбуждения машины постоянного тока

3. Обмотка параллельно возбуждения машины постоянного тока, обмотка независимого возбуждения

4. Статор, обмотка статора. Общее обозначение

Примечание . Если необходимо указать, что на статоре имеются две самостоятельные трехфазные обмотки, используют следующее обозначение

5. Статор с трехфазной обмоткой:

а) соединенной в треугольник

б) соединенной в звезду

6. Ротор. Общее обозначение

7. Ротор без обмотки:

а) полым немагнитный или ферромагнитный

б) с явно выраженными полюсами (явнополюсный) с прорезями по окружности

п) явнополюсный с постоянными магнитами

8. Ротор с распределенной обмоткой:

а) трехфазной, соединенной в звезду

б) трехфазной, соединенной в треугольник

в) однофазной или постоянного тока

д) с двумя распределенными самостоятельными обмотками

9. Ротор внешний с короткозамкнутой распределенной обмоткой (например, двигателя-гироскопа)

10. Ротор явнополюсный с сосредоточенной обмоткой возбуждения

11. Ротор явнополюсный с сосредоточенной обмоткой возбуждения и с распределенной короткозамкнутой успокоительной или пусковой обмоткой

Примечание к пп. 12 и 12а . Щетки изображают только при необходимости

13 Машина электрическая. Общее обозначение.

Примечание . Внутри окружности допускается указывать следующие данные:

а ) род машин (генератор — G , двигатель — М , генератор синхронный — GS , двигатель синхронный — MS , сельсин — ZZ , преобразователь — С);

б) род тока, число фаз или вид соединения обмоток в соответствии с требованиями ГОСТ 2721-74

двигатель трехфазный с соединением обмоток статора в звезду

машина, которая может работать как генератор и как двигатель

двигатель линейный, общее обозначение

(Введен дополнительно, изм. № 3).

двигатель шаговый, общее обозначение

(Введен дополнительно, изм. № 3).

генератор с ручным управлением

(Введен дополнительно, изм. № 3).

14. Машины, связанные механически

8. Примеры построения обозначений электрических машин приведены в табл. 2.

1 Машина асинхронная трехфазная с фазным ротором, обмотка которого соединена в звезду, обмотка статора соединена:

а) в треугольник

б) в звезду с выведенной нейтральной (средней) точкой

2 Машина асинхронная трехфазная с шестью выведенными концами фаз обмотки статора и с короткозамкнутым ротором

3 Машина асинхронная с переключением обмотки статора на два числа полюсов с короткозамкнутым ротором. Переключение обмотки статора:

а) со звезды на звезду с двумя параллельными ветвями

б) с треугольника на звезду с двумя параллельными ветвями

4. Машина асинхронная трехфазная с внешним ротором; обмотка статора соединена в звезду

5 Машина асинхронная двухфазная:

а) с короткозамкнутым ротором

б) с полым немагнитным ротором и неподвижным ферромагнитным сердечником

6. Машина асинхронная двухфазная с тремя обмотками и полым немагнитным ротором; одна из обмоток расположена на неподвижном сердечнике.

Примечание . Назначение обмоток (пусковая, управления или тахометрическая) допускается обозначать соответствующими буквами

7. Машина синхронная трехфазная явнополюсная с обмоткой возбуждения на роторе; обмотка статора соединена в звезду с выведенной нейтральной (средней) точкой

8. Машина синхронная трехфазная неявнополюсная с обмоткой возбуждения на роторе; обмотка статора соединена в треугольник

9. Машина синхронная трехфазная явнополюсная с обмоткой возбуждения и с пусковой короткозамкнутой обмоткой на роторе; обмотка статора соединена в звезду

10. Машина синхронная трехфазная с возбуждением от постоянных магнитов; обмотка статора соединена в звезду

11. Машина синхронная однофазная явнополюсная с обмоткой возбуждения и успокоительной или пусковой обмоткой на роторе

12. Машина синхронная трехфазная явнополюсная без обмотки возбуждения с пусковой короткозамкнутой обмоткой на роторе (реактивный синхронный двигатель); обмотка статора соединена в треугольник

13. Машина индукторная (генератор повышенной частоты) с двумя обмотками переменного тока и одной обмоткой постоянного тока на статоре

14. Машина постоянного тока с независимым возбуждением

15. Машина постоянного тока с последовательным возбуждением

16. Машина постоянного тока с параллельным возбуждением

17. Машина постоянного тока со смешанным возбуждением

18. Машина постоянного тока с возбуждением от постоянных магнитов

19. Двигатель асинхронный с фазным ротором. Общее обозначение

20. Двигатель асинхронный с короткозамкнутым ротором. Общее обозначение

21. Двигатель асинхронный трехфазный, соединенный в треугольник, с короткозамкнутым ротором

21а. Двигатель асинхронный трехфазный со статором, соединенным звездой, с автоматическими пускателями в роторе

(Введен дополнительно, изм. № 3).

22. Двигатель асинхронный однофазный с короткозамкнутым ротором

23. Двигатель асинхронный однофазный с расщепленными полюсами с короткозамкнутым ротором

24. Двигатель асинхронный однофазный с короткозамкнутым ротором, с выводами для вспомогательной фазы

24а. Двигатель асинхронный трехфазный линейный с односторонним направлением вращения

(Введен дополнительно, изм. № 3).

25. Двигатель гистерезисный; обмотка статора соединена в звезду

26. Двигатель постоянного тока реверсивный с двумя последовательными обмотками возбуждения

27. Двигатель постоянного тока с параллельным возбуждением и центробежным вибрационным стабилизатором скорости вращения.

1. В зависимости от типа стабилизатора контакт может быть замыкающим или размыкающим.

2 . Если необходимо показать способ включения стабилизатора скорости вращения, его контакты включают в соответствующую цепь двигателя, например, включение вибрационного стабилизатора скорости вращения в цепь возбуждения параллельно добавочному сопротивлению

28. Двигатель постоянного тока с возбуждением от постоянных магнитов и центробежным вибрационным стабилизатором скорости вращения

29. Двигатель коллекторный трехфазный последовательного возбуждения

30. Двигатель коллекторный трехфазный последовательного возбуждения с регулированием скорости вращения передвижением щеток

31. Двигатель коллекторный трехфазный параллельного возбуждения с питанием через ротор с двойным рядом щеток.

Две окружности, соединенные короткими параллельными линиями, изображают две обмотки одного и того же ротора

32. Двигатель коллекторный трехфазный параллельного возбуждения с питанием в ротор с регулированием скорости вращения передвижением щеток

33. Двигатель коллекторный однофазный репульсионный

34. Двигатель коллекторный однофазный последовательного возбуждения

35 Генератор ( GS ) и ли двигатель ( MS ) синхронный трехфазный, оба конца каждой фазы выведены

(Измененная редакция, изм. № 3)

36. Генератор ( GS ) или двигатель ( MS ) синхронный трехфазный с обмотками, соединенными в звезду, с выведенной нейтралью

36а. Генератор переменного тока синхронный трехфазный с постоянным магнитом

(Введен дополнительно, изм. № 3).

37. Генератор ( GS ) или двигатель ( MS ) синхронный однофазный

38. Генератор постоянного тока с двумя выводами, со смешанным возбуждением, с указанием зажимов, щеток и числовых данных, например, 220 В, 20 кВ

39. Сельсин. Общее обозначение.

Для конкретных типов сельсинов в обозначение на месте знаков ZZ вписывают соответствующий квалифицирующий символ.

Первая буква символа означает:

Т — угол поворота;

R — решающее устройство.

Вторая буква означает:

В — с поворотной статорной обмоткой.

Например, сельсин-датчик угла поворота

40. Сельсин-датчик, сельсин-приемник контактные (с контактными кольцами) однофазные:

Каждый электрик должен знать:  Как переместить плафон в салоне автомобиля самому

а) с обмоткой возбуждения на статоре и обмоткой синхронизации на роторе, соединенной в звезду

б) с обмоткой возбуждения на явнополюсном роторе и обмоткой синхронизации на статоре, соединенной в звезду

в) с распределенной обмоткой возбуждения на роторе и обмоткой синхронизации на статоре, соединенной в звезду

41. Сельсин дифференциальный контактный (с контактными кольцами) с обмотками статора и ротора, соединенными в звезду

42. Сельсин-датчик, сельсин-приемник бесконтактные (без контактных колец) с обмоткой статора, соединенной в звезду

43. Преобразователь электромашинный постоянного тока с двумя независимыми обмотками на роторе

44. Преобразователь вращающийся постоянного тока в постоянный с общим постоянным магнитным полем (вращающийся трансформатор постоянного тока)

45. Преобразователь вращающийся постоянного тока в постоянный, с общей обмоткой магнитного поля

46. Преобразователь одноякорный постоянно-переменного тока трехфазный

47. Преобразователь синхронный трехфазный с параллельным возбуждением, с указанием зажимов, щеток и числовых данных, например, 600 В, 1000 кВ, 50 Гц

48. Трансформатор вращающийся, фазовращатель (обозначение соединения обмоток статора и ротора между собой производится в зависимости от назначения машины)

(Измененная редакция, изм. № 2).

49. Автотрансформатор трехфазный поворотный (потенциал-регулятор)

(Измененная редакция, изм. № 2).

50. Трансформатор трехфазный поворотный (фазорегулятор)

(Измененная редакция, изм. № 2).

51. Усилитель электромашинный с поперечным потоком и несколькими обмотками управления (например, простейший с тремя обмотками)

52. Усилитель электромашинный с продольным потоком и несколькими обмотками управления (например, простейший с тремя обмотками)

53. Агрегат, состоящий из асинхронного трехфазного двигателя с короткозамкнутым ротором и преобразователя частоты (например, 50/200 Гц); обмотки статора двигателя и ротора преобразователя соединены в звезду, обмотка статора преобразователя — в треугольник

54. Агрегат, состоящий из асинхронного трехфазного двигателя с короткозамкнутым ротором и генератора постоянного тока с параллельным возбуждением; обмотка статора двигателя соединена в треугольник

9. Размеры основных элементов условных графических обозначений приведены в табл. 3.

Потомственный мастер

Электричество, сантехника, установка бытовой техники. Просто о сложном

Как определить начало и конец обмотки в двигателе.

В этой статье я расскажу способ, как определить начало и конец обмотки в асинхронном трёхфазном двигателе.

Когда вам может потребоваться данный материал? Только в том случае, если у вас имеется в коробке брно шесть проводов одинакового цвета и на них нет никаких обозначений. Или ваш двигатель был соединен треугольником, а вы хотите получить возможность соединить его звездой. Как это сделать я писал здесь . Чтобы проще было объяснять материал, сначала пройдемся по принятым маркировкам выводов обмоток двигателей.

Выводы асинхронного двигателя. Маркировка выводов асинхронного двигателя

Встречаются различные маркировки выводов обмоток двигателя. Отечественная маркировка от С1 до С6 и международная, которую вы видите на рисунке.

В наше время встречаются обе маркировки, но для «обучения» мы будем применять новые обозначения, как более наглядные. Ранее, я уже говорил, что начало и конец обмоток понятия абсолютно условные, главное условие, которое играет важную роль это такое соединение обмоток, когда магнитные потоки не направлены встречно. Если два одинаковых потока направить встречно, они как бы уничтожают друг друга. Нам же надо получить согласованное направление магнитных потоков. В двигателе находятся три обмотки. Грубо говоря, двигатель, это трансформатор с тремя обмотками и сердечником в виде статора. Таким образом, обмотки в двигателе связывает магнитный поток, который протекает по статору, а его создает ток, который протекает по обмоткам. Ротор – это лишь приятная «вкусняшка», наличие которой позволяет получить из электрической энергии механическую.

Начало и конец обмоток электродвигателя

Ну что ж, приступим. Прежде, чем начинать процедуру, вам нужно подготовиться. Для этого вам потребуются:

  • мультиметр или лампа накаливания (предпочтительнее, конечно же, мультиметр)
  • маркеры для проводов
  • знание техники безопасности , поскольку вы будете работать с опасным напряжением
  • обычная сетевая вилка с проводом
  • что-то, чем вы будете соединять провода, когда приступите к поиску выводов обмотки
  • ну и материал данной статьи.

В качестве маркеров можно использовать кембрики, бумагу с резинками, цветную изоленту и обычные перманентные маркеры, в общем, что угодно, что позволит вам промаркировать выводы. Вам потребуется шесть маркеров, на которых вы напишете обозначения начала и концов обмоток.

Первым делом нужно определить обмотки двигателя

Названия обмоток тоже абсолютно условны. Хотя, если принимать в расчёт такое понятие, как фазировка, то правильное включение дает точное представление о том, в какую сторону будет вращаться вал двигателя и не более того. Выставляете мультиметр в режим прозвонки , один щуп прикладываете к любому из шести проводов, вторым щупом находите конец, который будет прозваниваться. И эту пару звонящихся концов маркируете. Пусть это будут U1 и U2. Остается четыре конца. Повторяете операцию и еще одну пару снова маркируете. Пусть это будут V1 и V2. Осталась еще пара концов, их проверяете на всякий случай, чтобы быть уверенными, что обмотка в исправном состоянии и тоже маркируете оставшимися маркерами W1 и W2. Теперь у вас есть три обмотки и вы знаете их выводы. Но не знаете, где начало, а где конец каждой обмотки. Другими словами, вы не знаете, как направлены магнитные потоки этих обмоток согласно имеющейся маркировке, поскольку она сейчас носит случайный характер.

Как определить начало и конец обмоток

Приступаем к поиску концов. Снова предупрежу о технике безопасности, поскольку сейчас вы будете работать с опасным напряжением 220 вольт. Сама процедура очень простая. Вам надо на одну обмотку присоединить лампу или вольтметр (мультиметр, в режиме измерения напряжения ), а две других обмотки соединить последовательно и подать на них напряжение. Теперь рассмотрим эту процедуру подробнее.

С присоединением лампы или вольтмера проблем не возникнет. Допустим это будет обмотка W1-W2. Остается две обмотки. Согласно имеющимся маркерам вы соединяете их в таком порядке, как это показано на рисунке, а именно соединяете между собой U2 и V1. На выводы U1 и V2 подаете ПЕРЕМЕННОЕ напряжение 220 вольт. Обратите внимание, именно переменное, поскольку постоянное превратит наш двигатель в электромагнит, но при этом напряжение в третьей обмотке наводиться не будет. На реальном двигателе это будет выглядеть, как на фотографии ниже:

Обратите внимание, я специально выделил одним цветом (зеленым) соединенные обмотки на схеме и на фотографии. Теперь, если магнитные потоки обмоток совпадут, то в третьей обмотке будет наведено напряжение. Если посчитать грубо, то чуть меньше 100 вольт. Следовательно, лампочка на третьей обмотке начнет светиться, но не в полный накал. Если же магнитные потоки будут направлены встречно, то в третьей обмотке напряжение наводиться не будет и лампочка не загорится. Если лампочка загорелась, все отлично, придумайте, как навсегда промаркировать выводы обмоток и приступаем к третьей. Если лампочка не загорелась, значит меняем местами выводы любой обмотки. Пусть это будет обмотка V1V2 (то есть, если раньше была схема U1→U2→ V1 →V2, то теперь будет схема U1→U2→V2→ V1 ) и снова проверяем. Лампочка засветилась? Отлично! Но прежде чем переходить к третьей обмотке, поскольку мы определили условные начала и концы двух обмоток нужно придумать, как навсегда промаркировать эти выводы, чтобы в дальнейшем вам не пришлось возвращаться к данной процедуре. Теперь будем работать только с третьей обмоткой. Маркеры первых двух трогать уже не будем. К любой из найденных обмоток подключаем третью, а на освободившуюся подключаем лампочку. То есть на обмотку (пусть будет) U1U2 мы теперь подключаем вольтметр или лампочку, а соединяем обмотки V1→V2→W1→W2. И все повторяем по новой. С одним условием, что маркеры обмоток U и V мы не трогаем. Если лампочка при проверке не загорается, то меняем маркеры только на обмотке W.

Как видите, процедура не слишком сложная и при необходимой сноровке займет не больше 15 минут.

Есть и другие методы определения начал и концов обмоток, но они более сложные и требуют стрелочного вольтметра или сборки несложной схемы, хотя с другой стороны, они более безопасные. Но этот метод наиболее простой. А если не боитесь электричества и внимательно прочитали технику безопасности, то вместо мультиметра прозванивать обмотки можно той же лампочкой. Для этого можно использовать такую схему, которую вы видите ниже:

То есть, можно вообще обойтись без мультиметра. Достаточно одной лампочки на 220 вольт.

Маркировка выводов обмоток электрических машин постоянного тока общего применения

Если на выводах машины постоянного тока, например со смешанным возбуждением, нет маркировки, то их принадлежность к той или иной обмотке (последовательной, параллельной или якорной с дополнительными полюсами) можно определить по схеме, показанной на рисунке 30. В качестве индикатора используют контрольную лампу или вольтметр и источник постоянного тока.

Лампа, подключенная к выводам Ш1-Ш2 параллельной (шунтовой) обмотки ШО , горит очень тускло. Если прикоснуться одним концом провода контрольной лампы к коллектору машины, а дру-

Рис. 30. Схема для определения маркировки выводов электрической машины постоянного тока со смешанным возбуждением

гим — к выводам оставшихся обмоток, то можно установить следующее: лампа не светится при касании выводов С1-С2 последовательной (сериесной) обмотки СО и зажигается при контакте с выводами Д1-Д2 обмотки дополнительных полюсов ДП, соединенной с обмоткой якоря двигателя M

Неисправности и отказы электрических машин.

Большинство неисправностей и отказов электрических машин разного принципа действия приведены в табл. 2.44. Многие неисправности один электрик устранить не в состоянии, поэтому подробно устранение таких неисправностей не приводится. При выходе из строя обмотки машина отправляется в капитальный ремонт (имеется в виду, что размеры и вес машины позволяют ее перевозить обычным транспортом). Также приведены некоторые сведения по устранению часто встречающихся неисправностей — вибраций и снижения сопротивления изоляции.

Таблица 2.44 НЕИСПРАВНОСТИ И ОТКАЗЫ ЭЛЕКТРИЧЕСКИХ МАШИН

Продолжение табл. 2.44

Продолжение табл. 2.44

Продолжение табл. 2.44

Продолжение табл. 2.44

Продолжение табл. 2.44

Продолжение табл. 2.44

Окончание табл. 2.44

Устранение вибраций электрических машин

Электрические машины часто подвергаются вибрации со стороны механизмов, связанных с ними, например, колес турбомашин-вентиляторов, дымососов и т. д. При этом ослабляется крепление двигателей и рабочих машин, выходят из строя подшипники и другие детали двигателей и рабочих машин. Часто пытаются устранить это явление усилением крепления двигателя и рабочей машины, установкой машины на пружины, но это не помогает.

Дело в том, что в данных случаях причиной бывает неуравновешенность рабочего колеса машины относительно его оси из-за того, что в какой-то его части сосредоточена масса больше, чем в противоположной, и эта часть с большой массой всегда оказывается внизу, если колесо вращать от руки, а потом дать возможность остановиться.

Устранить явление можно привариванием к колесу в более легкой части, которая оказывается наверху, уравновешивающего груза. Если есть возможность, лучше всего приварить болт, а потом на него накручивать гайки, пока эта часть будет не на верху, а в разных местах при нескольких остановках при вращении от руки. После этого гайки нужно приваривать к болту — рис. 2.34.

Рис. 2.34. Уравновешивание рабочего колеса дымососа.

Вибрация возможна и при вертикальном положении оси колеса.

В таком случае колесо вместе с двигателем нужно снять и установить в горизонтальном положении на опорах для балансировки тем же способом.

Сушка электрических машин

Увлажнение изоляции электрических машин может произойти из-за условий внешней среды, в которых находится машина во время транспортировки, хранения, монтажа или эксплуатации. Поэтому необходимо проверять сопротивление изоляции электрических машин перед их монтажом, после работы на открытом воздухе или в помещении с повышенной влажностью перед новым сезоном работы в этих условиях (сельское хозяйство), после перерывов в работе и периодически в сроки, устанавливаемые ответственным за электрохозяйство. Величину допустимого сопротивления изоляции ГОСТ рекомендует принимать равной одному килоому на один вольт рабочего напряжения машины, и для машин, рассчитанных на напряжение до 1000 В , нормой считается 500 кОм.

Распространенными способами сушки электрических машин являются сушка нагревом от внешнего источника тепла и нагревом током, протекающим в обмотке машины.

Сушка внешним нагревом производится с разборкой машины. Разборка машины необходима не только для улучшения сушки и сокращения ее времени, но и для полного удаления влаги и ржавчины из зазора машины при сильном ее увлажнении.

Простейшим способом сушки внешним нагревом является нагрев лампами накаливания, помещаемыми внутрь статора машины на лист железа или асбеста. Лучше брать две лампы, мощность которых зависит от мощности двигателя, например, при мощности двигателя 30 кВт можно взять две лампы мощностью по 300 Вт, для двигателя 75 кВт — две лампы по 500 Вт, для двигателя 110 кВт — две лампы 1000 Вт.

Вместо ламп накаливания внешний нагрев может осуществляться также с помощью трубчатых электронагревателей — ТЭН соответствующих размеров и Мощности, устанавливаемых внутрь статора на теплостойкую подкладку.

Нагрев машины может быть также струей горячего воздуха от воздухонагревателя, например, электрокалорифера , в сушильном шкафу или около мощного источника тепла. Приносит пользу сушка на свежем воздухе под лучами солнца летом.

Каждый электрик должен знать:  От спонтанного испускания к лазерной генерации в инверти­рованной активной среде

Сушка нагревом обмотки машины током, протекающим в ней, производится при наличии подходящего источника тока, при этом машина не разбирается. Данный метод пригоден при несильной увлажненности изоляции, когда не видно на обмотке капель влаги. При этом при сушке трехфазного двигателя его ротор затормаживается, при фазном роторе кольца ротора соединяются вместе. К обмотке статора подводится трехфазный ток такого напряжения, чтобы в обмотке получить ток, равный примерно 0,5 I н (/ н — номинальный ток двигателя). Для поддержания такого тока напряжение сушки может быть равным 0,1 U н ( номинальное напряжение двигателя). Для сушки могут применяться трехфазные трансформаторы с вторичным напряжением 36 В , изготовляемые промышленностью, например, типа ТСЗ-2,5/1, с помощью которого может быть высушен двигатель мощностью от 30 кВт. Для сушки двигателей мощностью от 30 до 55 кВт нужно два таких трансформатора, соединенных параллельно.

При отсутствии трехфазного трансформатора сушка двигателя может производиться с помощью сварочного трансформатора. При этом , если двигатель имеет шесть выводных концов, то обмотки его фаз соединяются последовательно. Присоединение однофазного напряжения к трем выводным концам при соединении обмоток двигателя звездой или треугольником дает неравный ток в обмотках двигателя, при этом при соединении звездой нужно соединять вместе два выводных зажима. Поэтому при трех выводных концах обмоток двигателя нужно периодически пересоединять провода к разным зажимам двигателя (рис. 2.35).

Рис. 2.35. Схема сушки асинхронного электродвигателя от трансформатора 36 В :

о) двигатель имеет шесть выводов обмоток; 6) двигатель имеет три вывода и соединен звездой; в) двигатель имеет три вывода и соединен треугольником; б1)

б3), в1)-в3) — последовательность периодических пересоединений при подводе тока.

Обозначение выводов обмоток электрических машин

Для присоединения к сети новых электрических машин или доставленных из ремонта надо знать назначение выводных концов их обмоток. Выводные концы электрических машин маркируются путем выбивания знаков на наконечниках выводных концов обмоток, а если наконечники малы, то на металлических кольцах у наконечников, или надписями на пластмассовых кольцах у наконечников.

Маркировка выводов электрических машин приведена а табл. 2.45 и 2.46.

Таблица 2.45 ОБОЗНАЧЕНИЕ ВЫВОДОВ ОБМОТОК ЭЛЕКТРИЧЕСКИХ МАШИН

У многоскоростных машин много выводных концов в коробках зажимов в соответствии с количеством частот вращения, на которые они рассчитаны при соответствующем соединении выводных концов. Нужную частоту вращения можно получить, соединив выводные концы согласно рис. 2.16.

Таблица 2.46 ОБОЗНАЧЕНИЕ ВЫВОДОВ ОБМОТОК ЭЛЕКТРИЧЕСКИХ МАШИН

Электрика и электромонтаж

Всё об электричестве от А до Я

Обозначение выводов обмоток двигателей различного типа

Несомненно, домашний электрик должен уметь правильно подключить электродвигатель к сети, и основная загвоздка здесь – количество выводов различного рода обмоток: их достаточно много, в них трудно разобраться. Большую помощь окажет знание условных унифицированных обозначений, применимых к отечественным электродвигателям.

Наибольшую сложность представляет подключение двигателя постоянного тока; здесь количество выводов может быть больше десяти. Обозначаются они начальными буквами слов, отражающих их функциональное назначение:

Я1 и Я2 – начало и конец обмотки якоря;

К1 и К2 – начало и конец компенсационной обмотки;

Д1 и Д2 – начало и конец обмотки добавочных полюсов;

С1 и С2 – начало и конец последовательной (сериесной) обмотки возбуждения;

Ш1 и Ш2 – начало и конец параллельной (шунтовой) обмотки возбуждения;

У1 и У2 – начало и конец уравнительного провода соответственно.

Разобраться с двигателями переменного тока, имеющими значительно меньшее количество выводов, намного проще:

– если обмотки статора трехфазных двигателей переменного тока соединены звездой, то начало статорных обмоток обозначается как С1, С2 и С3 (соответственно первой, второй и третьей фазы); нулевая точка – 0. Если статорная обмотка имеет шесть выводов, то обозначения С4, С5 и С6 указывают на концы обмоток (соответственно первой – 4, второй – 5 и третьей фазы – 6);

– если соединение обмоток статора осуществляется треугольником, то обозначения С1, С2 и С3 определяют зажимы соответственно первой, второй и третьей фаз. Трехфазные асинхронные двигатели имеют выводы роторных обмоток, обозначаемые как Р1, Р2 и Р3 (соответственно первой, второй и третьей фаз), 0 обозначает нулевую точку. Выводы обмоток асинхронных многоскоростных двигателей обозначаются: для 4 полюсов – 4С1, 4С2 и 4С3; для 8 полюсов – 8С1, 8С2 и 8С3. В асинхронных однофазных двигателях выводы главной обмотки обозначаются: С1 – начало, С2 – конец. Для выводов пусковой обмотки этих же двигателей приняты обозначения: П1– начало, П2 – конец.

Выводы обмотки возбудителя синхронных двигателей, которые носят название индукторов, обозначаются как И1 и И2 (соответственно начало и конец обмотки).

Для того чтобы при подсоединении выводов обмоток коллекторных машин было как можно меньше путаницы, на заводах-изготовителях и в ремонтных мастерских их помечают разными цветами: выводы обмотки якоря – белым цветом; последовательной обмотки возбуждения – красным (если она имеет дополнительный вывод, то его помечают красным и желтым цветами); параллельной обмотки возбуждения – зеленым. Для определения начал и концов обмоток последние всегда помечаются добавленным к основному черным цветом; таким образом получается, что начала обмоток имеют одноцветные пометки, а концы – двухцветные.

Цветовая пометка выводов обмоток электродвигателей является дополнением к буквенной. Однако в электромоторах малой мощности обмотки выполняются проводами, толщина которых не позволяет применить буквенное обозначение, поэтому цветовая маркировка является здесь основной и единственной.

В трехфазных двигателях начало первой фазы обозначается желтым цветом, начало второй – зеленым, начало третьей – красным, черный цвет указывает на нулевую точку. При шести выводах маркировка начала обмоток сохраняется, а маркировка концов производится основным цветом с добавлением черного.

Выводы обмоток асинхронных однофазных двигателей в маркировке имеют следующие цвета: начало главной обмотки обозначается красным проводом, начало пусковой обмотки – синим, в маркировке концов обмоток, как обычно, помимо основного цвета, присутствует черный.

Как обозначаются выводы обмоток электрических машин

Наиболее распространенное расположение зажимов в коробке выводов электродвигателя показано на рис. 1. Зажимы С1 — С4, С2 — С5 и С3 — С6 обозначают соответственно начала и концы обмотки 1, 2 и 3-й фаз.

На рис. 1, а показаны установка перемычек и подключение к сети при соединении обмоток звездой, а на рис. 1, б — при соединении треугольником.

Бывают случаи, когда отдельные концы обмоток фаз статора неправильно подключены к зажимам или когда у электродвигателей, не имеющих коробки выводов, на выводных концах стирается краска. При неправильном соединении выводных концов электродвигатель ненормально гудит и не может работать при полной нагрузке. Выяснить правильность соединения обмоток электродвигателя пробными включениями в сеть не рекомендуется.

Рис. 1. Расположение зажимов и перемычек в коробке выводов асинхронного двигателя

Прежде всего необходимо определить, какие выводы принадлежат обмотке каждой фазы. Это можно легко сделать мегаомметром или контрольной лампой (рис. 2, а). Один щуп от контрольной лампы присоединяют к осветительной сети, а другой — к одному из выводов обмотки, подключенной другим концом к той же сети; подавая щупом поочередно питание от сети остальным выводам, находят тот вывод, который зажигает лампу Н.

После нахождения попарно выводов обмоток каждой из трех фаз приступают к определению одноименных зажимов условно — начала или конца). Для этого две любые обмотки фазы соединяют последовательно и включают их на напряжение сети, а к выводам фазы подключают вольтметр PV (рис. 2, б).

Рис. 2. Определение соответствия выводных концов обмоток трехфазных машин

Если вольтметр покажет напряжение на выводах обмоток двух фаз, значит они соединены последовательно разноименными концами (конец с началом). Если показание вольметра будет близким к нулю, это значит, что обмотки фаз соединены последовательно одноименными концами (начало с началом или конец с концом).

Вместо вольтметра можно пользоваться лампой, рассчитан ной на подводимое напряжение. Если накал полный, обмотки двух фаз соединены разноименными зажимами; если накала нет, обмотки фаз соединены одноименными зажимами.

После этого соответственно маркируют концы обмоток двух фаз, соединенных последовательно (например, I Н, I К, II Н, II К). Безразлично, какой вывод условно считается началом или концом, важно лишь соблюсти полярность выводов обмотки одной фазы по отношению к другой. Затем разъединяют последовательно соединенные обмотки фаз, одну из них соединяют последовательно с обмоткой третьей фазы и подключают вольтметр .

Расположение зажимов и перемычек в коробке выводов асинхронного двигателя к оставшейся обмотке фазы, одноименные концы которой определяют способом, приведенным выше. Выводы обмотки третьей фазы размечают в соответствии с уже выполненное разметкой выводов обмотки другой фазы, соединенной с ней последовательно.

Таким образом, указанных двух способов вполне достаточно для определения выводов,после чего нетрудно включить обмотку статора звездой или треугольником (см. рис. 1) . При этом необходимо иметь в виду, что С1 соответствует IH, С2 — II Н, С 3 — IIIH , С4 — IK, С5 — II К, С6 — III К.

Маркировка электродвигателей

Во время проектирования установки того или иного оборудования используются различные исходные данные, в том числе и технические характеристики. В этом случае большое значение приобретает маркировка электродвигателей, отображенная на табличке, закрепленной на корпусе. Здесь указаны значения номинальной мощности на валу, номинального напряжения, схемы соединения обмоток и сила тока для каждой из них. Среди других параметров следует отметить номинальную частоту вращения, коэффициенты мощности и полезного действия, частоту тока, класс изоляции, массу двигателя и другие.

Расшифровка маркировки электродвигателей

Все отечественные электродвигатели отмечены соответствующей маркировкой. Ее расшифровка позволяет точно установить технические характеристики и параметры электродвигателя, выбрать наиболее оптимальный вариант. Устройства, обозначенные буквенными и цифровыми символами А, АО, А2, АО2, А3 расшифровываются по-разному. Например, маркировка А соответствует брызгозащищенному исполнению, АО – закрытой обдуваемой конструкции. Первая цифра, стоящая после букв, означает номер серии. Далее в маркировке остальные цифры разделяются дефисами. Число после первого дефиса является условным номером наружного диаметра сердечника статора, следующая цифра соответствует условному номеру длины.

Если в качестве примера взять электродвигатель с маркировкой АО2-62-4, то его расшифровка будет указывать на закрытое обдуваемое исполнение трехфазного асинхронного двигателя, вторую единую серию, шестой габарит, вторую длину и четыре полюса. Электродвигатели с 1 по 5 габариты выпускаются во второй серии обязательно в закрытом обдуваемом варианте. Таким образом, существенно повышается их надежность, а срок эксплуатации возрастает, в среднем, в 1,5-2 раза.

Единые серии двигателей А, АО, А2 и АО2 в основном исполнении оборудуются коротко-замкнутым ротором, в котором присутствует литая алюминиевая обмотка. На этой базе были созданы и другие модификации, поэтому к основной маркировке добавился еще один буквенный символ.

  • Буква П соответствует повышенному пусковому моменту и выглядит в маркировке, как АОП2-62-4.
  • Буква С означает повышенное скольжение,
  • К – наличие фазного ротора, Т – возможность использо-вания в текстильной промышленности и т.д.

Повышенный пусковой момент существенно облегчает асинхронного двигателя при пуске привода механизмов с большими нагрузками. Агрегаты повышенного скольжения используются в механизмах, характеризующихся частыми пусками и реверсами, а также неравномерными ударными нагрузками. Электродвигатели с алюминиевой обмоткой статора в конце маркировки обозначаются дополнительной буквой А – АО2-42-4А. В обозначение агрегатов с несколькими частотами вращения вносится количество полюсов – АО-94-12/8/6/4, что соответствует 12-ти, 8-ми, 6-ти и 4-м полюсам. Дополнительная буква Л указывает на алюминиевый сплав, из которого отлиты корпус и щиты двигателя – АОЛ2-21-6.

В маркировку может быть добавлена вторая буква А – 4АА63, указывающая на изготовление станины и щитов из алюминиевого сплава. Символ Х соответствует станине из алюминия и щитам из чугуна. Если отсутствуют оба этих знака, следовательно для станины и щитов использовались только сталь или чугун. При наличии в электродвигателе фазного ротора в маркировку добавляется символ К.

Электродвигатели, предназначенные для эксплуатации в различных климатических условиях, также имеют свои обозначения.

  • Буква У соответствует умеренному климату,
  • ХЛ – холодному,
  • ТВ – влажному тропическому,
  • Т – любому тропическому,
  • ТМ – тропическому морскому климату,
  • О – общеклиматическому исполнению, предназначенному для всех регионов.

Агрегаты предназначены для размещения и работы в различных условиях. Их цифровые обозначения указывают: возможность работы на открытом воздухе – 1, помещения с ограниченно свободным доступом воздуха – 2, закрытые помещения с пониженными колебаниями температуры и влажности – 3, закрытые вентилируемые и отапливаемые производственные помещения – 4, невентилируемые и неотапливаемые помещения с повышенной влажностью – 5.

Маркировка асинхронных электродвигателей

Обозначения электродвигателей асинхронного типа имеют свою определенную специфику. Все основные параметры также наносятся на заводскую табличку, прикрепленную к корпусу агрегата.

Вся маркировка наносится в соответствии с конструктивными особенностями асинхронных двигателей. По степени защищенности агрегаты этого типа выпускаются в следующих вариантах:

  • Открытого исполнения. В данном случае отсутствуют какие-либо специальные приспособления, предохраняющие от случайных прикосновений к вращающимся и токоведущим частям. Кроме того, в них отсутствует защита от попадания внутрь посторонних предметов. Данные модели выпускаются в ограниченном количестве.
  • Защищенные, то есть оборудованные приспособлениями, исключающими случайное прикосновение к опасным участкам, надежно защищающими от проникновения внутрь постороних предметов.
  • Влагозащищенные. Имеют специальные приспособления, предохраняющие агрегат от попадания влаги на его внутренние части.
  • Закрытые или пылезащищенные. Внутреннее пространство отделяется от внешней среды специальной оболочкой.
  • Взрывозащищенные. С повышенной степенью защиты, что дает возможность использовать их во взрывоопасных помещениях.
Каждый электрик должен знать:  Как устроены и работают токоограничивающие и дугогасящие реакторы в энергетике

В соответствии с методами монтажа, двигатели могут быть вертикальными, фланцевыми, интегрированными и т.д. Различные модификации асинхронных электродвигателей, в зависимости от метода установки, маркируются следующим образом:

  • М101 – горизонтальная установка, фиксируется на лапах, отлитых вместе со станиной или приваренных к ней.
  • М201 – также горизонтальная установка с подвеской на лапах, размещенных вверху станины.
  • М301 – фланцевая конструкция, предназначенная для горизонтальной установки. На конце вала агрегат оборудован фланцем, с отверстиями под болты.
  • М302 – двигатель с вертикальной установкой, при которой рабочий конец вала направлен вниз. Фиксация выполняется с помощью фланцевого крепления.
  • М303 – аналогичен М302. Отличается направлением вала, который смотрит вверх.

Существует множество других маркировок, отображающих параметры и конструктивные особенности электродвигателей. Для того чтобы правильно разобраться с их расшифровкой, рекомендуется воспользоваться специальными таблицами.

Исследование электрических машин постоянного и переменного тока: Методические указания к лабораторным работам , страница 8

Для каждой схемы при проведении опыта изменяют нагрузку на вторичной (или на вторичных) обмотках от 0 до 1,5 . При этом необходимо записать значения для точек, соответствующих номинальному значению токов нагрузки. Для этих токов затем определяют значение КПД по формуле

Данные заносят в табл.12.

Здесь подведенная мощность трансформатора; отдаваемая мощность трансформатора.

Характеристики а) ¦ и в) ¦ строятся в одной системе координат. Аналогично, в одной системе координат, строятся характеристики б) ¦ и в) ¦

Изменение вторичного напряжения при переходе трансформатора от режима х.х. к режиму номинальной нагрузки выражают в процентах от номинального напряжения, за которое в трансформаторе принимают напряжение холостого хода:

где вторичные напряжения, соответствующие номинальным токам во вторичных обмотках трансформатора.

Для режима работы, при котором нагружены обе вторичные обмотки, значение КПД трансформатора рассчитывают косвенным методом по формуле

Полученные значения сравнивают с КПД трансформатора при непосредственной нагрузке.

В отчете привести:

1. Паспортные данные трансформатора и электроизмерительных приборов.

2. Схемы, по которым проводились опыты и таблицы измеренных и вычисленных величин.

3. Значения КПД трансформатора, определенные экспериментально и косвенными методами.

4. Рассчитанные значения процентного изменения напряжения.

5. Внешние характеристики трансформатора при различных соединениях вторичных обмоток, построенные на одном графике.

Вопросы для самоконтроля

1. Принцип действия трансформатора.

2. Почему при изменении нагрузки трансформатора изменяется ток в первичной обмотке?

3. Каковы достоинства и недостатки трехобмоточного трансформатора?

4. Почему в ТММ изменение напряжения под нагрузкой больше, чем у трансформатора большой мощности?

5. Преимущества и недостатки различных способов расположения обмоток на стержне магнитопровода.

Лабораторная работа №4

Исследование трехфазного асинхронного двигателя

с короткозамкнутым ротором

Цель работы – ознакомление с практическими способами маркировки выводов обмоток статора асинхронного двигателя, с одним из способов пуска такого двигателя: путем переключения обмоток статора со «звезды» на «треугольник», и исследование рабочих характеристик асинхронного двигателя при подключении его на номинальное и пониженное напряжение.

1. Определить начала и концов фаз обмоток статора двигателя.

2. Осуществить пуска двигателя (без подключения измерительных приборов).

3. Включив амперметр в линейный провод, зарегистрировать величины пусковых токов при пуске электродвигателя переключением фазных обмоток со «звезды» на «треугольник», и при прямом пуске, когда обмотки соединены по схеме «треугольник».

4. Снять рабочие характеристики двигателя при номинальном и пониженном в раз напряжении на фазах обмотки статора. Произвести сравнение этих характеристик и установить влияние на них понижения напряжения.

Маркировка выводов обмоток статора

Определение одноименных выводов фаз обмоток статора и изучение пуска производятся на асинхронном трехфазном микродвигателе с короткозамкнутым ротором.

Работа начинается с определения принадлежности выводных концов к одной фазе. Для этого необходимо найти цепь каждой фазы при помощи вольтметра, включенного последовательно с предполагаемыми выводами фазы (рис.10). Отклонение вольтметра до величины напряжения сети указывает на то, что выводы определены правильно. После этого приступают к определению одноименных выводов (начал и концов) фазовых обмоток статора. Правильная маркировка одноименных выводов является необходимым условием для получения кругового вращающегося магнитного поля, необходимого для нормальной работы двигателя. Начала фаз обозначаются: а соответствующие им концы: ; у современных асинхронных машин начала фаз маркируются по-другому: начала фаз , а соответствующие им концы .

Для определения одноименных выводов фазных обмоток статора необходимо одну из фаз (например, ) включить в сеть переменного тока, а к двум другим последовательно соединенным (рис.11) фазам включить вольтметр. При соединении этих фаз разноименными выводами (например, по схеме ), вольтметр подключенный к выводам и , покажет некоторое напряжение (ив условиях лаборатории оно незначительно – до 10 В). Если вместе соединены одинаковые выводы (например, по схеме ), то напряжение между точками и будет равно нулю.

Промаркировав две соединенные последовательно фазы, разъединяют их. Затем включают на сеть одну из уже маркированных фаз (например, ), а другую маркированную фазу ( ) соединяют последовательно с первой фазой ( ). Внешние выводы этих соединенных последовательно обмоток подключают к вольтметру. По показаниям вольтметра, с учетом уже принятой маркировки, определяют начало и конец первой фазы ( ).

Пуск двигателя переключением обмоток статора

со звезды в треугольник

Для пуска двигателя переключением собирается схема по рис.12 без амперметра. Подключив двигатель к сети, необходимо убедиться, что он вращается нормально. Затем подключается амперметр для измерения линейного пускового тока (см. рис.12).

Как известно из теории, линейный пусковой ток при включении обмоток статора на «звезду» в три раза меньше, чем при прямом включении на «треугольник». Однако из-за инерционности подвижной системы прибора, при измерениях, соотношение между токами будет несколько отличаться от действительного.

Реверсирование асинхронного двигателя производится переключением линейных проводов любых двух фаз. Следует проверить это на опыте.

Снятие рабочих характеристик

  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 266
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 602
  • БГУ 153
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 962
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 119
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1967
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 300
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 409
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 497
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 130
  • ИжГТУ 143
  • КемГППК 171
  • КемГУ 507
  • КГМТУ 269
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2909
  • КрасГАУ 370
  • КрасГМУ 630
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 139
  • КубГУ 107
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 367
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 330
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 636
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 454
  • НИУ МЭИ 641
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 212
  • НУК им. Макарова 542
  • НВ 777
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1992
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 301
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 119
  • РАНХиГС 186
  • РОАТ МИИТ 608
  • РТА 243
  • РГГМУ 118
  • РГПУ им. Герцена 124
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 122
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 130
  • СПбГАСУ 318
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 147
  • СПбГПУ 1598
  • СПбГТИ (ТУ) 292
  • СПбГТУРП 235
  • СПбГУ 582
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 193
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 380
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1655
  • СибГТУ 946
  • СГУПС 1513
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2423
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 324
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 306

Полный список ВУЗов

Чтобы распечатать файл, скачайте его (в формате Word).

Асинхронные двигатели. Обозначение выводов обмоток статора

Дата 28.12.2020
Размер 35.89 Kb.
Название файла Схемы соединения обмоток электродвигателей.docx
    Навигация по данной странице:
  • Схема соединения обмоток электродвигателя по схеме «треугольник»
  • Схема соединения обмоток электродвигателя по схеме «звезда»
  • Определение выводов обмоток
Асинхронные двигатели.

Обозначение выводов обмоток статора.

Каждый статор трехфазного электродвигателя имеет три катушечные группы (обмотки) — по одной на каждую фазу, а у каждой катушечной группы имеется по 2 вывода — начало и конец обмотки, т.е. всего 6 выводов которые подписываются следующим образом:

  • С1 (U1) — начало первой обмотки, С4 (U2) — конец первой обмотки.
  • С2 (V1) — начало второй обмотки, С5 (V2) — конец второй обмотки.
  • С3 (W1) — начало третьей обмотки, С6 (W2) — конец третьей обмотки.

Основными схемами соединения обмоток являются треугольник (обозначается — Δ) и звезда (обозначается — Y)

Схема соединения обмоток электродвигателя по схеме «треугольник»

Условно на схеме это изображается следующим образом:

В клемной коробке электродвигателя соединение обмоток по схеме «треугольник» имеет следующий вид:

Схема соединения обмоток электродвигателя по схеме «звезда»

Определение выводов обмоток:

Иногда возникают ситуации когда сняв крышку с клемной коробки электродвигателя можно с ужасом обнаружить следующую картину:

В случае использования тестера устанавливаем его переключатель в положение измерения сопротивления (подчеркнуто красной линией), при использовании двухполюсного указателя напряжения им, перед применением, необходимо коснуться токоведущих частей находящихся под напряжением на 5-10 секунд, для его зарядки и проверки работоспособности.

Далее необходимо взять один любой вывод обмотки, условно примем его за начало первой обмотки и соответственно подписываем его «U1», после касаемся одним щупом тестера или указателя напряжения подписанного нами вывода «U1», а вторым щупом любого другого вывода из оставшихся пяти неподписанных концов. В случае, если коснувшись вторым щупом второго вывода показания тестера не изменились (тестер показывает единицу) или в случае с указателем напряжения — ни одна лампочка не зажглась — оставляем этот конец и касаемся вторым щупом другого вывода из оставшихся четырех концов, перебираем вторым щупом концы до тех пор пока показания тестера не изменятся, либо, в случае с указателем напряжения — до тех пор пока не загорится лампочка «Test». Найдя таким образом второй вывод нашей обмотки принимаем его условно как конец первой обмотки и подписываем его соответственно «U2».

Таким же образом поступаем с оставшимися четырьмя выводами, так же разделив их на пары подписав их соответственно как V1,V2 и W1,W2. Как это делается можно увидеть на видео ниже.

Теперь, когда все выводы разделены по парам, необходимо определить реальные начала и концы обмоток. Сделать это можно двумя методами:

Первый и самый простой метод — метод подбора, может применяться для электродвигателей мощностью до 5 кВт. Для этого берем наши условные концы обмоток (U2,V2 и W2) и соединяем их, а на условные начала (U1,V1 и W1), кратковременно, желательно не более 30 секунд, подаем трехфазное напряжение:

Если двигатель запустился и работает нормально, значит начала и концы обмоток определены верно, если двигатель сильно гудит и не развивает должные обороты, значит где то есть ошибка. В этом случае необходимо всего лишь поменять любые два вывода одной обмотки местами, например U1 c U2 и запустить заново:

Если проблема не устранилась, возвращаем U1 и U2 на свои места и меняем местами следующие два вывода — V1 с V2:

Если двигатель заработал нормально, выводы определены верно, работа закончена, если нет — возвращаем V1 и V2 по своим местам и меняем местами оставшиеся выводы W1 с W2.

Второй способ: Соединяем последовательно вторую и третью обмотки т.е. соединяем вместе конец второй обмотки с началом третьей (выводы V2 с W1),а на первую обмотку к выводам U1 и U2 подаем пониженное переменное напряжение (не более 42 Вольт). При этом на выводах V1 и W2 так же должно появиться напряжение:

Если напряжение не появилось, значит вторая и третья обмотки соединены неверно, фактически оказались соединены вместе два начала (V1 с W1) или два конца (V2 c W2), в данном случае нам просто нужно поменять надписи на второй или на третьей обмотке, например V1 с V2. Затем аналогичным способом проверить первую обмотку, соединив ее последовательно со второй, а на третью подав напряжение. Данный способ представлен на следующем видео:

Добавить комментарий