Как выбрать магнитный пускатель и автоматический выключатель для асинхронного двигателя

СОДЕРЖАНИЕ:

Как правильно выбрать электромагнитный пускатель?

Электромагнитный пускатель (контактор) – один из самых распространенных аппаратов для коммутации и управления электрической нагрузкой. При наличии двигателей и насосов без электромагнитных пускателей обойтись практически невозможно.

Я уже писал про выбор электромагнитных пускателей. Там в основном рассматривал различные схемы построения пускателей и сколько это стоит. Этой заметкой хотелось бы дополнить и завершить тему выбора электромагнитных пускателей.

Сейчас я расскажу более подробно, на какие факторы следует обращать внимание при выборе электромагнитного пускателя или контактора.

1 Определяемся с производителем.

Для наших целей обычно достаточно пускателей ПМЛ, КМИ, КТИ (никогда не применял). По своему опыту могу сказать, что около 90% применяемых пускателей -на ток до 25А, поэтому с КТИ как-то не пришлось еще поработать. Если по каким-либо причинам вы не можете указать производителя, можно перечислить все параметры. Все электромагнитные пускатели взаимозаменяемые.

2 Определяем номинальный ток пускателя.

Номинальный ток пускателя — максимальный ток, который может пропустить через контактную группу электромагнитный пускатель. Здесь существует классификация пускателей до 16А (первая величина), 25А (вторая величина), 40А (третья величина), 63А (четвертая величина). Есть пускатели и на большие токи, но они применяются в наших проектах очень редко. Следует иметь ввиду, что чем больше пускатель, тем у него больше габаритные размеры.

3 Выбираем степень защиты.

В случае установки электромагнитного пускателя в щите, то электромагнитный пускатель будет без защитной оболочки IP00. Очень хорошо подходят для этих целей малогабаритные пускатели серии КМИ. При установке пускателя в производственном помещении – IP54, в бытовых помещениях с нормальной категорий можно взять и IP40.

4 Выбираем напряжение катушки.

Как правило, выбираем пускатель с катушкой на 230В. Пускатель с катушкой на 400В позволяет экономить одну жилу кабеля. Выбор за вами… на форуме этот вопрос как-то поднимался.

5 В основном применяются нереверсивные пускатели.

В некоторых случаях, например для управления задвижкой нужно использовать реверсивный пускатель. Он представляет из себя два нереверсивных пускателя, соединенных особым образом.

6 Выбираем наличие кнопок управление и сигнальной лампы.

При установке пускателя в щите пускатель выбирается без кнопок и сигнальной лампы. Кнопки управления могут быть дополнительно установлены на передней дверке щита (обычные утопленные без фиксации кнопки ПУСК с одним замыкающим контактом и СТОП с одним размыкающим контактом). Возможен еще вариант установки поста кнопочного управления типа ПКУ (ПУСК, СТОП) у места управления.

В случае установки электромагнитного пускателя вне щита, то кнопки могут быть встроены в корпус пускателя (при необходимости).

Сигнальная лампа служит для сигнализации включенного состояния. Я почти никогда ее не ставлю.

7 Выбираем тепловое реле.

Для защиты двигателя можно использовать тепловое реле. Расчетный ток нашей нагрузки должен быть в диапазоне выбранного нами теплового реле.

При выборе силового щита необходимо помнить, что с тепловым реле электромагнитный пускатель имеет больший габарит, в прочем как и с другими дополнительными устройствами.

8 Выбираем дополнительные контакты.

В основном применяются пускатели с одним дополнительным замыкающим контактом, который используется в схеме управления пускателя. При организации более сложных процессов иногда недостаточно одного контакта. В этом случае можно поставить дополнительную приставку контактную с нужным количеством замыкающих и размыкающих контактов (до 4 шт.).

У вас может возникнуть вопрос: а можно ли в пускатель ПМЛ с IP54 установить приставку контактную ПКЛ? Вот ответ на этот вопрос…

Возможность установки приставки ПКЛ на пускатели ПМЛ

Еще хотелось бы отметить контакторы модульные (ИЕК). Особенность их в том, что они изготавливаются в двухполюсном и четырехполюсном исполнении и по габариту наверное почти как модульные автоматы.

Надеюсь данную тему можно закрыть, если что не понятно…пЕшЫте;)

Магнитный пускатель, для чего он нужен? И по каким параметрам его выбирать

Магнитный пускатель обеспечивает пуск, остановку, принудительное торможение противотоком, реверс (запуск в обратную сторону) и защиту от перегрузок трёхфазных электродвигателей, имеющих пусковой ток в несколько раз больший, чем номинальный рабочий ток.

Магнитный пускатель серии ПМ 12

Конструктивно он состроит из комбинации всех элементов и коммутационных аппаратов, необходимых для нормальной эксплуатации электродвигательных установок. Коммутационными аппаратами называют устройства для коммутации (включения – отключения) тока в электрических цепях.

К ним относятся реле, контакторы, предохранители, автоматические выключатели, разъединители, рубильники, кнопочные посты. Соединённые по определённой схеме контактор, тепловое реле и кнопки управления составляют единое устройство – электромагнитный пускатель. Он обеспечивает функционирование и защиту электродвигателей в различных режимах работы.

Обозначение магнитного пускателя , теплового реле, контакторов на схеме

Принцип коммутации

Замыкание контактов силовой цепи осуществляется контактором – аппаратом, в котором сцеплённая с якорем электромагнитного реле группа контактных пластин замыкается на неподвижные контакты, соединённые с входными и выходными клеммами подключения питающего напряжения сети и линий нагрузки.

Таким образом, с помощью малых токов в катушке электромагнитного реле и слаботочных сигналов управления удаётся коммутировать сильноточные цепи больших нагрузок. Небольшой ток и малое напряжение сигнальной цепи делает работу оператора намного безопаснее, а для автоматических систем контроля и управления даёт широкий простор их применения, благодаря внедрению в процесс компьютеризированных алгоритмов.

Параметры пусковых устройств

Для разнообразного предназначения выпускаются такие серии магнитных пускателей: ПА, ПМ, ПМА, ПМЕ, ПМЛ. Исходя из параметров нагрузки, выбор и применение данных устройств происходит по соответствию.

Магнитный пускатель серии ПМЛ

1.Величине электромагнитного пускателя – условный термин, характеризирующий допустимые продолжительные токи контактов главной силовой цепи. На данный момент имеются такие числовые обозначения величин и соответствующие им номинальные токи при напряжении 380В в рабочем режиме АС-3:

2.Режиму работы пускового устройства, определяющему характер коммутируемой нагрузки:

  1. АС-1, нагрузка только активная, или мало индуктивная;
  2. АС-3, запуск электродвигателя и его отключение при вращении;
  3. АС-4, тяжёлый запуск двигателя, отключение его на низких оборотах и при неподвижном роторе, торможение противотоком.

Величины магнитного пускателя и категории их применения

3.Рабочему (коммутационному) напряжению катушки реле, которое бывает таких значений:

  • Переменное: 24; 36; 42; 110; 220; 380 В.
  • Постоянное: 24В.

4.Количеству дополнительных контактов, имеющих такое обозначение латинскими буквами и кириллицей:

  1. Нормально разомкнутые (NO), (НО);
  2. Нормально замкнутые (NC), (НЗ).

Также существуют специальные, защёлкивающиеся на корпус пускателя приставки, дополнительно добавляющие несколько сигнальных контактов.

Магнитный пускатель серии ПМЛ с защелкивающейся приставкой

5.Степени защиты прибора:

  • IP00 — открытые, устанавливаются в обогреваемых помещениях в закрытых электрощитах защищённых от попадания посторонних предметов, воды и пыли;
  • IP40 – изготовляются в корпусе, применяются внутри не обогреваемых помещений, где имеется малое количество пыли в воздухе и исключено попадание воды на прибор;
  • IP54 – выпускаются в корпусе, применение внутреннее и наружное в местах, защищённых от воздействия атмосферных осадков и прямой солнечной радиации.

6.Наличию теплового реле, обеспечивающего защиту подключённых цепей от продолжительных перегрузок.

7. Наличию реверса, конструктивно исполненного путём объединения в одном корпусе двух электромагнитных реле, имеющих по три контактных группы, с механической или электрической блокировкой одновременного их включения.

8.Классу износостойкости, означающему возможное количество надёжных коммутаций.

9.Дополнительным элементам управления.

Необходимое соответствие параметров

Поскольку правильный выбор электромагнитного пускателя является залогом успешной и бесперебойной работы подключаемых электроустановок, необходимо соответствие вышеописанным параметрам характеристик коммутируемой цепи, напряжения управления, схемы включения, типа окружающей среды. Важнейшим правилом является требование, чтобы ток нагрузки не превышал допустимого тока контактов.

Для подключения активной нагрузки (без двигателей) определённой мощности Р, силу протекающего тока I определяют из упрощённой формулы:

где U – напряжение сети, 380 (В), .

Соответственно полученному значению выбирают пусковое устройство с номинальным током не меньше расчётного ниже по таблице.

Таблица выбора магнитного пускателя

Народный способ выбора

Для подключения асинхронных электродвигателей с короткозамкнутым ротором также существует «народная» формула, согласно которой номинальный ток Iном двигателя принимается равным удвоенному значению мощности в киловаттах, то есть, если

Р=3,7кВт, то Iном= 3,7*2 =7,4А.

Исходя из этого значения делают выбор контактора магнитного пускателя, чтобы его номинальный рабочий ток был не меньше данного значения. В таких расчётах подразумевается, что контакторы с подходящим номинальным значением нагрузки способны выдерживать запуск электродвигателей, имеющих многократное превышение пусковых токов Iп над рабочим номинальным Iном, поэтому расчёт пусковых токов не производится. Для данного подключения подходит пускатель с номинальным током 10 А.

Расчёт по параметрам двигателя

Для более точного выбора пускового устройства, расчёт начинают с изучения паспорта подключаемого электроприбора и применяют такие формулы, исходя из потребляемой мощности:

где P- мощность нагрузки (Вт), cosφ – коэффициент мощности, а η – коэффициент полезного действия электродвигателя (%), U-напряжение сети 380 (В), √3-3-х фазное напряжение.

где k – кратность пускового тока.

Ударный пусковой ток — это полный ток короткого замыкания , который состоит из трех составляющих и определяется по формуле :

Допустим, двигатель имеет: мощность 3,7 кВт = 3700 Вт; η = 87% =0,87; cosφ = 0,88; k = 7,5.

Iном=3700/(380*0,87*0,88*√3) = 7,34 А.

Определяем стартовые нагрузки:

Iпуск = 7,5*7,34 = 55,05 А.

Нужно учитывать, что в паспорте указывается номинальный ток In магнитного пускателя. В режиме работы АС-3 данный прибор обеспечивает запуск при шестикратном превышении его номинального тока. Imax=6* In.

Проверяем, подходит ли пусковое устройство с In = 10А, выбранное по народному методу, где максимальный ток контактора должен быть больше пускового тока электродвигателя Imax> Iпуск.

Imax = 6*10 = 60А > 55,05 А = Iпуск.

Также определяем ударный пусковой ток (амплитудное значение):

i= 1,3*55,05*√2=101,2 А.

Как видим, условие выбора соблюдается, народный метод себя оправдал.

Также подбор по мощности можно осуществлять по таблицам(см. выше) из справочников, где указано значение её значение в киловаттах и соответствующий ему номинал контактора.

В следующих статьях рассмотрим как правильно необходимо подключать магнитный пускатель к двигателю с реверсом и без него.

2.2. Выбор магнитного пускателя с тепловым реле для каждого ад.

Электромагнитные пускатели предназначены для управления АД и трехфазными премниками электрического тока, в том числе :

дистанционного пуска, непосредственным подключением к сети,

реверсирования трехфазных асинхронных двигателей

при наличии тепловых реле осуществляют защиту управляемых электродвигателей от:

перегрузок недопустимой продолжительности

и от токов, возникающих при обрыве одной из фаз.

Магнитный пускатель — это модифицированный контактор.

В отличие от контактора, магнитный пускатель комплектуется дополнительным оборудованием:

дополнительной контактной группой или

автоматом для пуска электродвигателя

Помимо простого включения, в случае управления электродвигателем пускатель может выполнять функцию:

переключения направления вращения его ротора (т. н. реверсивная схема), путем изменения порядка следования фаз для чего в пускатель встраивается второй контактор.

переключения обмоток трехфазного двигателя со «звезды» на «треугольник» производится для уменьшения пускового тока двигателя.

Реверсивный магнитный пускатель представляет собой два трёхполюсных контактора, укреплённых на общем основании и сблокированных механической или электрической блокировкой, исключающей возможность одновременного включения контакторов.

Исполнение магнитных пускателей может быть открытым и защищенным (в корпусе); реверсивным и нереверсивным; с встроенной тепловой защитой электродвигателя от перегрузки и без нее.

Магнитные пускатели выбирают по следующим характеристикам:

номинальное напряжение силовых контактов Uн. ≥ U;

номинальное напряжение и ток катушки Uн.к = U ц.упр ; Iн.авт ≥ IР ;

габарит Рп ≥ Р н.дв или Iн.м.п ≥ I н.дв ;

наличие тепловых реле;

условия окружающей среды;

по количество блок-контактов.

Пример выбора магнитные пускатели и тепловые реле для управления и защиты электродвигателей «Потребителя 1».

Принимая во внимание, что U = 380 В, Рн = 7.5 кВт, Iн = 15,14 А, выбираем магнитный пускатель типа ПМЛ-222002 (второго габарита нереверсивный, с тепловым реле, степень защиты IP54 c кнопками «Пуск» и «Стоп»).

Номинальный ток магнитного пускателя, равный 25 А, больше номинального тока двигателя 15.14 А, что выполняет условия I н.м.п = >I н.

Выбор электротеплового реле и плавкой вставки на линию от РП1 до СУ1:

IР – рабочий ток в линии = 15,14 А.

КС.О, — коэффициент кратности срабатывания отсечки = 7.

Пусковой ток I пуск = 15,14*7 =105,98 А

Длительно допустимый ток Iдд = 28 А .

Исходя из номинального тока, выбираем тепловое реле РТЛ-1021 с возможностью регулирования диапазона тока несрабатывания в интервале от 13А до 19А.

2.3. Выбор плавкого предохранителя

Плавкие предохранители предназначены для защиты электрических сетей и приемников электроэнергии от токов короткого замыкания. Описание типов и примеры конструкции предохранителей с плавкими вставками приводятся в специальной литературе [13, табл. 8.2].

Выбрать предохранитель − это значит выбрать патрон предохранителя и плавкую вставку в этот патрон.

Тип патрона предохранителя определен конструкцией выбранного шкафа, номинальным напряжением Uн.п и номинальным током патрона Iн.п. Калибровочная (чувствительная) часть предохранителя называется плавкой вставкой. В патрон предохранителя одного типа можно установить плавкие вставки разного номинального тока плавкой вставки Iн.пл.вст, перечень допустимых номинальных токов плавкой вставки для каждого типа патрона разный.

Для правильно выбранного предохранителя должны соблюдаться условия

I н.пл − номинальный ток плавкой вставки;

I р − рабочий ток защищаемой линии;

I р.пл. расчетное значение тока плавкой вставки.

Для линии с одним АД с короткозамкнутым ротором

где  − коэффициент, зависящий от условий работы электродвигателя.

Коэффициент  = 2,5 при нечастых и легких пусках и

 = 1,6 − 2 − при особо тяжелых условиях пуска.

Для сетей, питающих несколько электродвигателей, ток плавкой вставки выбирают исходя из условие.

КО − коэффициент одновременности работы группы двигателей;

n − общее число электродвигателей;

I pi − рабочий ток i-го двигателя.

Если в цепи отсутствует пусковой ток, то

Где К З = 1,1 – 1,2 − коэффициент запаса.

Условие селективности требует, чтобы номинальный ток плавкой вставки каждого последующего предохранителя (от потребителя к источнику питания) был на одну-две ступени больше Iпл.вст. предыдущего предохранителя.

Пример выбора плавкой вставки для СУ1.

Расчетный ток плавкой вставки I р.пл. = I пуск / = 105,98 /2,5 = 42,4 А .

Коэффициент  = 2,5 при нечастых и легких пусках и  = 1,6 − 2 − при особо тяжелых условиях пуска.

Определяющим для выбора типа патрона и номинала калибровочной части плавкого предохранителя, исходя из условия I н.пл.  I р.пл., будет расчетный ток плавкой вставки I р.пл. = 42,4 А

Выбираем плавкую вставку предохранителя на ближайшее большое стандартное значение Iн.пл. = 45 А. Тип патрона предохранителя допускающего применение такой плавкой вставки НПН-60м. Для него Uн.п= 600 В, Iн.пp.= 60 А.

Плавкая вставка защищает от токов короткого замыкания выполняя условие: Iпв/Iдд

Выбор контакторов и магнитного пускателя для управления и защиты асинхронного двигателя. В-23 — файл 1.doc

Доступные файлы (1):

1.doc 314kb. 20.11.2011 16:39 скачать

содержание

    Смотрите также:
  • Выбор электрических аппаратов[ документ ]
  • Выбор ЭА[ документ ]
  • Выбор ЭА[ документ ]
  • Анализ характеристик асинхронного двигателя 4А180М2У3 (30 кВт)[ документ ]
  • Асинхронный двигатель 22 кВт[ документ ]
  • Расчёт и построение регулировочных характеристик асинхронного двигателя с контактными кольцами и двигателя[ документ ]
  • Испытание асинхронного двигателя с фазным ротором[ документ ]
  • Исследование частотного регулирования скорости асинхронного двигателя[ документ ]
  • Диплом — Расчеты по разделах диплома. Электропривод[ дипломная работа ]
  • АД с КЗ ротором[ документ ]
  • Анализ характеристик асинхронного двигателя 4А200L8У3[ документ ]
  • Автоматизированный электропривод бурового станка УБШ 501 АК[ документ ]

Задача 1.1: Выбор контакторов и магнитного пускателя для управления и защиты асинхронного двигателя.

Необходимо выбрать контактор, магнитный пускатель и тепловое реле для управления и защиты асинхронного двигателя серии 4А работающего в продолжительном режиме. Тип двигателя в соответствии с индивидуальным вариантом контрольного задания выбрать из табл. 1. Схема прямого пуска и защиты асинхронного двигателя с короткозамкнутым ротором представлена рис. 1

Рис. 1. Схема пуска и защиты двигателя

Требуется выбрать магнитный пускатель (контактор) для управления и защиты асинхронного двигателя типа 4А 132М6У3, работающего в продолжительном режиме. Схема прямого пуска и защиты приведена на рис. 1.

По типу двигателя из справочной литературы определим его технические параметры:

— номинальная мощность, P ном – 7,5 кВт;

— коэффициент полезного действия, η ном – 85,5 %;

— коэффициент мощности, cosφ – 0,81;

— номинальное линейное напряжение на обмотке статора, ^ U ном – 380 В;

— коэффициент кратности пускового тока, К I – 6;

— время пуска двигателя, t n – 5 с.

Определим параметры, по которым производится выбор магнитного пускателя:

а) род тока – переменный, частота – 50 Гц;

б) номинальное напряжение – 380В, номинальный ток не должен быть меньше номинального тока двигателя;

в) согласно схеме включения двигателя (рис. 1) аппарат должен иметь не менее трех замыкающихся силовых контактов и одного замыкающегося вспомогательного контакта;

г) категория применения, аппарат должен работать в одной из категорий применения: АС – 3 или АС – 4;

д) режим работы аппарата – продолжительный с частыми прямыми пусками двигателя.

Для выбора аппарата по основным техническим параметрам необходимо произвести предварительные расчеты номинального и пускового токов двигателя. Определим номинальный ток (действующее значение):

Пусковой ток (действующее значение):

Ударный пусковой ток (амплитудное значение):

Произведем выбор аппарата по основным техническим параметрам.

Выбираем магнитный пускатель со встроенным тепловым реле по основным техническим параметрам, приведенным в приложении 2 табл.1,для заданного схемного решения (рис.1) – типа ПМЛ 221002

Проверим возможность работы выбранного аппарата в категориях применения АС – 3 и АС – 4.

Согласно данным из табл.1 приложения 1 в категории применения АС – 3 магнитный пускатель должен включать в нормальном режиме коммутации ток:
,

а в режиме редких коммутаций:
.
Оба условия пускателя ПМЛ 221002 выполняются, так как:

В категории применения АС – 4 магнитный пускатель ПМЛ 221002 с номинальным рабочем током 22 А должен отключать в номинальном режиме коммутации ток:
,

который меньше пускового тока двигателя. В режиме редких коммутаций ток:

который также выше ударного пускового тока двигателя. Поэтому пускатель ПМЛ 221002 с номинальным током 22 А, предназначенный для работы в категории АС – 4, для данной схемы (рис. 1) пригоден.

Тепловые реле серии РТЛ, встроены в магнитные пускатели (табл. 1, приложение 2) имеют регулируемое время срабатывания t СР = (4,5 — 9) с, что приемлемо для заданных условий пуска двигателя: 1,5t П ^ Задача 1.2. Выбор автоматических выключателей и предохранителей для защиты двигателей.
От цехового трансформатора кабелем питается сборка механической мастерской, к которой подключены четыре двигателя. Напряжение сети 380 В. Все двигатели работают одновременно. Типы двигателей приведены в табл. 1. Схема цеховой электрической сети, питающей сборку механической мастерской, приведена на рис. 2. Требуется выбрать аппараты защиты двигателей и кабеля, питающего сборку:

а) автоматические выключатели QF1QF5 (рис. 2 (а));

а)

б)

Рис. 2. Участок радиальной схемы цеховой электрической сети:

ТП – трансформаторная подстанция; РУ – распределительное устройство; КЛ — кабель; QF1QF5 – автоматы; М1М4 – двигатели; F1F5 – плавкие предохранители.
Пример1.2. Выбор автоматических выключателей и предохранителей для защиты двигателей (схема представлена на рис. 2 а, б)
Определим по мощности двигателей их номинальные и пусковые токи так же, как в задаче 1. Рассчитаем по выражению (1) номинальные токи вставок предохранителей, защищающие двигатели (рис.2б). Подберем по справочным данным ближайшие к расчетным номинальные токи вставок для предохранителей разных типов: ПР. – 2, ПН. – 2, НПР, НПН и занесем все вышеуказанные расчетные и справочные величины в табл.1.1

Для предохранителя, защищающего кабель, питающий сборку, номинальный ток рассчитаем по выражению 2:

выбор автомата для электродвигателя

Выбор магнитного пускателя по мощности двигателя

Автор Mario задал вопрос в разделе Техника

Подскажите как подобрать магнитный пускатель и автоматический выключаетль к трехфазному асинхронному электродвигателю и получил лучший ответ

Ответ от NEL[мастер]
пускатель, и авт. выключатель, подберается по току двигателя, если двигатель асинхронный, то номинальный ток пускателя, и автомата должен быть в 3 раза больше номинального тока двигателя, т. к. при пуске двигателя он примерно 3 раза больше.
Алексей Удовенко
Просветленный
(29776)
Полностью поддерживаю! :Женя ЗАГНУЛ!

При выборе магнитного пускателя руководствуются следующими данными:
1.номинальная сила
подробнее.

Выбор автоматического выключателя 0,4кВ: расчет защиты, уставок для сетей и двигателей

Автоматический выключатель выбирается исходя из следующих условий:

1. Соответствие номинального напряжения выключателя Uн к номинальному напряжению сети Uс: Uн, Uс. (6.1)

2. Соответствие номинального тока расцепителя Iн.расц номинальному току нагрузки Iдн: Iн.расц , Iдн. (6.2)
3. Соответствие номинального тока расцепителя Iн.расц максимальному рабочему току Iраб.макс группы электроприемников (для вводных выключателей питания сборок и щитов) в длительном режиме: Iн.расц , Iраб.макс. (6.3).

Каждый электрик должен знать:  Светодиодная подсветка потолка своими руками

4. Условие предельной коммутационной стойкости (ПКС): каталожное значение ПКС должно быть не менее максимального значения тока короткого замыкания (Iкз.макс), протекающего в цепи в момент расхождения контактов выключателя: ПКС > Iкз.макс. Это необходимо, чтобы автоматический выключатель смог выдержать токовые перегрузки при коротком замыкании в цепи.

Защита от перегрузки

Ток срабатывания защиты от перегрузки определяется из условий возврата защиты после окончания пуска или самозапуска электродвигателя:
где kн – коэффициент надежности, учитывающий некоторый запас по току, неточности настройки и разброс срабатывания защиты (1,0 – для современных АВ фирмы Schneider Electric, 1,15 – для АЕ20, А3700; 1,25 – для А3100, АП-50; 1,2 , 1,35 – для ВА51);

kв – коэффициент возврата защиты.

Защита считается эффективной, если:

Для выключателей с тепловым и электромагнитным (комбинированным) расцепителем условие (6.5) обеспечивается автоматически при выборе номинального тока расцепителя по условию (6.2). Наилучшая защита от перегрузки обеспечивается, если удается подобрать выключатель, имеющий Iн.расц = Iдн. В этом случае, имея в виду, что для термобиметаллических тепловых реле kв = 1, ток срабатывания защиты от перегрузки составит:

Токовая отсечка (для АВ с двухступенчатой ВТХ)

Токовую отсечку выключателя отстраивают от пускового тока электродвигателя, который состоит из периодической составляющей, почти неизменной в течение всего времени пуска, и апериодической составляющей, затухающей в течение нескольких периодов. Несрабатывание отсечки при пуске двигателя обеспечивается выбором токовой отсечки по выражению:

где kн.пуск = kз·kа·kр – коэффициент надежности отстройки отсечки от пускового тока электродвигателя;

1,05 – коэффициент, учитывающий, что в нормальном режиме может быть на 5% выше номинального напряжения электродвигателя;

kз – коэффициент запаса;

kа – коэффициент, учитывающий наличие апериодической составляющей в пусковом токе электродвигателя;

kр – коэффициент, учитывающий возможный разброс тока срабатывания отсечки относительно уставки.

Мгновенная токовая отсечка (для АВ с трехступенчатой ВТХ)

Для выключателей с трехступенчатой защитной характеристикой мгновенную отсечку выключателя отстраивают от пикового значения пускового тока электродвигателя:

Кроме того, токовая отсечка должна надежно защищать электродвигатель от минимального тока КЗ при повреждении в конце кабельной линии: где (1)

к.R I – минимальный ток однофазного КЗ в конце кабеля, вычисленный с учетом токоограничивающего действия дуги в месте повреждения.

Выбор уставок автоматических выключателей питания сборок и щитов

Выбор тока срабатывания отсечки выполняется по приводимым ниже условиям, из которых принимается наибольшее полученное значение. Соответствие данным условиям позволяет обеспечить селективную работу автоматических выключателей в разных частях электрический цепи.

1) Несрабатывание при максимальном рабочем токе Iраб.макс с учетом его увеличения в kсзп раз при самозапуске электродвигателей:

где kн = kз·kа·kр – коэффициент надежности отстройки отсечки от тока самозапуска.

Ток самозапуска Iсзп = kсзп· Iраб.макс определяется из расчетов самозапуска. При этом без ущерба для точности расчетов допускается считать, что электродвигатели запускаются из состояния покоя.

При отсутствии данных расчетов самозапуска, для отдельных сборок Iсзп принимается приближенно равным сумме пусковых токов электродвигателей и другой нагрузки сборки, участвующих в самозапуске:

где kil – кратность пускового тока l-ого двигателя с номинальным током Iднl.

С другой стороны, в соответствии с источником [11]:

где Iдн – суммарный номинальный ток электродвигателей;

ki – усредненное значение кратности пусковых токов электродвигателей.

Также существует третий способ расчета Iсзп:

где kii – кратность пускового тока i-ого двигателя номинальной мощностью Рднi.

Ввиду того, что среди прочих проверок отстройка от тока самозапуска имеет, как правило, определяющее значение, предпочтение следует отдать расчетам самозапуска с помощью ЭВМ.

2) Несрабатывание при полной нагрузке щита (сборки) и пуске наиболее мощного электродвигателя:

где kн – коэффициент надежности отстройки отсечки от тока самозапуска;

раб макс i I – сумма максимальных рабочих токов электроприемников, питающихся от щита или сборки, кроме двигателя с наибольшим пусковым током Iпуск.макс.

Выбор автоматических выключателей для защиты одиночных асинхронных электродвигателей

Применение изложенной методики продемонстрируем на примере защиты асинхронных электродвигателей 0,4 кВ энергоблока 63 МВт газомазутной ТЭЦ автоматическими выключателями Compact NS с электронными расцепителями. Электродвигатели и их параметры перечислены в табл.6.1.

На основании условий (6.1), (6.2) и (6.4) подберем автоматические выключатели и расцепители, результаты представим в табл.6.1.

Так как рассматриваются автоматические выключатели зарубежного производства, для описания их параметров перейдем к обозначениям МЭК:

• номинальный ток автоматического выключателя – Iн = In;

• номинальное напряжение автоматического выключателя Uн = Un;

• номинальный ток расцепителя – Iн.расц = Ir;

• предельная коммутационная способность ПКС = Icu;

• пусковой ток электродвигателя Iпуск = Ia;

• пиковое значение пускового тока электродвигателя Iпуск.max = Iр.

Переход к другим обозначениям обусловлен спецификой наименования параметров АВ и расцепителей, ориентированной на зарубежную нормативно-техническую документацию.

Более подробно о характеристиках автоматических выключателей можно почитать в нашей статье.

Тепловое реле для электродвигателя принцип работы устройство как выбрать

Причины срабатывания теплового реле электродвигателя

Прибором под названием тепловое реле (ТР) называют ряд устройств, разработанных для защиты электромеханических машин (двигателей) и аккумуляторных батарей от перегрева при токовых перегрузках. Также реле этого типа присутствуют в электрических цепях, осуществляющих контроль температурного режима на стадии выполнения разных технологических операций в производстве и схемах нагревательных элементов.

Базовым компонентом, встроенным в тепловое реле, является группа металлических пластин, части которых имеют разный коэффициент теплового расширения (биметалл). Механическая часть представлена подвижной системой, связанной с электрическими контактами защиты. Электротепловое реле обычно идет вместе с магнитным пускателем и автоматом защиты.

Общее устройство всех тепловых реле включает в себя одни и те же детали, отличающиеся лишь небольшими конструктивными особенностями. Основной элемент представляет собой чувствительную биметаллическую пластину, состоящую из двух металлических сплавов – железа с никелем и железа с латунью. Они соединяются друг с другом с помощью пайки и обладают различными коэффициентами теплового расширения.

Данный коэффициент указывает на степень удлинения металлической пластины при ее нагреве. Этот показатель составляет для латуни 18,7, а для сплава железа с никелем – 1,5. В результате, длина латуни во время нагревания увеличивается значительно быстрее, давая тем самым толчок для изгиба биметаллической пластины в свою сторону. Данное свойство лежит в основе работы всех тепловых реле.

Внутри корпуса прибора находятся биметаллическая пластина с нагревательным элементом, толкатель, исполнительная пластина и пружина замыкающего контакта. Температурный компенсатор состоит из пластины и регулировочного винта. Кроме того, тепловое реле оборудуется контактами, эксцентриком с движком уставки тока срабатывания и кнопкой возврата прибора в рабочее состояние.

Под действием электрического тока, протекающего по проводнику, происходит его нагревание. С возрастанием силы тока в проводнике с одним и тем же поперечным сечением, увеличивается и его нагрев, то есть происходит рост нагрузки. В связи с этим, причины срабатывания заключаются преимущественно в повышении температуры.

Эта же тепловая энергия нагревает и биметаллическую пластину, которая под влиянием температуры изгибается и соприкасается с исполнительной пластиной температурного компенсатора через толкатель. В свою очередь, эта пластина расцепляет замкнутые контакты в магнитном пускателе и приводит в рабочее состояние кнопку включения реле.

Эксцентрик или регулятор тока срабатывания оборудован шкалой на 5 делений влево и 5 делений вправо, для соответствующего уменьшения и увеличения тока относительно центральной риски. Чтобы отрегулировать ток срабатывания, необходимо изменить зазор между исполнительной пластиной и толкателем. Изменение зазора выполняется движком эксцентрика, воздействующим на пластину температурного компенсатора.

Непосредственное подключение тепловых реле к контакторы осуществляется напрямую с помощью штыревых контактов. После подключения, в зависимости от величины тока, протекающего в цепи, необходимо отрегулировать уставки срабатывания колесиком поворотного регулятора. Нужный ток уставки обозначен на шкале специальными рисками, нанесенными на корпус прибора.

Панель управления реле оборудована кнопкой TEST, с помощью которой проверяется работоспособность устройства путем имитации срабатывания защиты. Кнопка STOP красного цвета позволяет принудительно разомкнуть нормально замкнутый контакт. При этом отключается питание, поступающее на катушку контактора, что в свою очередь приводит к отключению нагрузки. Примерно по такой схеме подключаются и работают все тепловые реле для защиты электродвигателей и их модификации.

Для работы теплового реле предусмотрен ручной или автоматический режим, задаваемый при помощи поворотного переключателя RESET. Автоматический режим предполагает утопленный выключатель и автоматическое включение реле после срабатывания, когда остынет биметаллическая пластина. Перевод прибора в ручной режим осуществляется поворотом переключателя против часовой стрелки.

Схема подключения с нормально замкнутыми контактами используется для управления электродвигателем с помощью магнитного пускателя. К силовым контактам теплового реле выполняется подключение лишь двух фаз, а третья фаза подключается напрямую к двигателю. В работе современных устройств принимают участие все три фазы совместно с дополнительным нормально замкнутым контактом реле. При возникновении перегрузок он размыкается и разрывает цепь питания контактора.

В условиях разнообразия конструкций и моделей электрических двигателей и соответствующих тепловых реле, выбор наиболее подходящего сочетания может вызвать определенные затруднения, особенно у неспециалистов. Для того чтобы выбрать наиболее оптимальное устройство, отвечающее всем требованиям, необходимо придерживаться определенных рекомендаций.

Основным требованием ко всем тепловым реле является соответствие их номинала току оборудования, которое требуется защитить. Сами устройства тоже должны быть защищены от коротких замыканий, поэтому в схемах подключения используются предохранители.

Необходимо заранее установить условия эксплуатации тепловых реле, и в каких пределах они могут применяться. Если в системе защиты велика вероятность работы электродвигателя в аварийных режимах, не связанных с ростом потребления электроэнергии, в этих случаях тепловое реле будет бесполезным и не обеспечит надежную защиту. Для этого в обмотку статора электродвигателя включаются элементы специальной тепловой защиты.

Если же тепловая защита двигателя не связана с какими-либо специальными требованиями, решение вопроса как подобрать тепловое реле для электродвигателя, таблица поможет выбрать наиболее подходящее устройство с оптимальными техническими характеристиками.

Защитное устройство выбирается с учетом максимального рабочего тока реле, который не должен быть меньше, чем номинальный ток защищаемого электродвигателя. Тем не менее, рекомендуется, чтобы установочный ток реле незначительно превышал номинал агрегата.

Следует обращать внимание и на возможность регулировок тока с большим запасом в обе стороны – увеличения и уменьшения. В этом случае обеспечивается более надежная и управляемая защита.

Конструктивное исполнение тепловых реле

Тепловые реле всех видов имеют аналогичное устройство. Наиболее важный элемент любого из них — чувствительная биметаллическая пластина.

Значение тока срабатывания находится под влиянием температурных показателей среды, в которой работает реле. Рост температуры уменьшает время срабатывания.

Чтобы это влияние свести к минимуму, разработчики устройств выбирают как можно большую температуру биметалла. С этой же целью некоторые реле снабжают дополнительной компенсационной пластиной.

Состоит прибор из корпуса (1), пластины биметаллической (2), толкателя (3), пластины исполнительной (4), пружины (5), регулировочного винта (6), пластины компенсатора (7), контактов (8), эксцентрика (9), кнопки возврата (10)

Если в конструкцию реле включены нихромовые нагреватели, подключение их осуществляют по параллельной, последовательной или параллельно-последовательной схеме с пластиной.

Значение тока в биметалле регулируют при помощи шунтов. Все детали вмонтированы в корпус. Биметаллический элемент U-образной формы зафиксирован на оси.

Цилиндрическая пружина упирается в один конец пластины. Другим концом она базируется на уравновешенной изоляционной колодке.Совершает повороты вокруг оси и является опорой для контактного мостика, оснащенного контактами из серебра.

Для координации тока уставки биметаллическая пластина своим левым концом соединена с ее механизмом. Регулировка происходит за счет влияния на первичную деформацию пластины.

Если величина токов перегрузки становится равной или большей чем уставки, изоляционная колодка поворачивается под воздействием пластины. Во время ее опрокидывания происходит отключение размыкающего контакта устройства.

Приспособление ТРТ в разрезе. Здесь основными элементами являются: корпус (1), механизм уставки (2), кнопка (3), ось (4), контакты серебряные (5), контактный мостик (6), изоляционная колодка (7), пружина (8), пластина биметаллическая (9), ось (10)

Автоматически реле делает возврат в первоначальное положение. Процесс самовозврата занимает не более 3 минут с момента включения защиты. Возможен и ручной возврат, для этого предусмотрена специальная клавиша Reset.

При ее использовании прибор занимает исходное положение за 1 минуту. Чтобы задействовать кнопку, ее проворачивают против часовой стрелки до момента, когда она поднимется над корпусом. Ток уставки обычно указан на щитке.

Принцип действия устройства

Тепловые перегрузки в двигателях и других электрических устройствах происходят тогда, когда величина проходящего через нагрузку тока превышает номинальный рабочий ток аппарата. На свойстве тока разогревать проводник при прохождении и построено ТР. Встроенные в него биметаллические пластины рассчитаны на определенную токовую нагрузку, превышение которой приводит к сильной их деформации (изгибу).

Пластины надавливают на подвижный рычаг, который, в свою очередь, воздействует на защитный контакт, размыкающий цепь. По сути, ток, при котором цепь разомкнулась, и есть током срабатывания. Его величина эквивалентна температуре, превышение которой может привести к физическому разрушению электрических приборов.

Современные ТР имеют стандартную группу контактов, одна пара которых является нормально замкнутой – 95, 96; другая – нормально разомкнутой – 97, 98. Первая предназначена для подключения пускателя, вторая – для схем сигнализации. Тепловое реле для электродвигателя способно работать в двух режимах. Автоматический предусматривает самостоятельное включение контактов пускателя при охлаждении пластин.

Еще одной функцией защитного устройства является отключение двигателя при обрыве фазы. В таком случае двигатель также перегревается, потребляя больший ток, и, соответственно, пластины реле разрывают цепь. Для предотвращения воздействия токов короткого замыкания, от которого ТР не в силах защитить двигатель, в цепь обязательно включают автомат защиты.

Познакомившись с конструкцией и типами устройств, необходимо разобраться с принципом работы теплового реле. На каждом электромоторе производитель устанавливает табличку с техническими характеристиками. Одной из наиболее важных среди них является показатель номинального рабочего электротока. Сегодня используется много агрегатов, во время пуска или работы которых это значение может существенно превышаться.

Если перегрузки наблюдаются в течение длительного временного отрезка, то возможен перегрев катушек, разрушение изоляционного слоя и последующий выход мотора из строя. Защитные ТР способны влиять на цепь управления, размыкая контакты либо подавая предупреждающий сигнал обслуживающему персоналу. Приборы монтируются в силовую электроцепь перед двигателем, чтобы иметь возможность контролировать показатель проходящего через агрегат тока.

Во время настройки защитного устройства параметры выставляются в бо́льшую сторону от номинального паспортного значения на величину от 10 до 20%. К вопросу настройки реле нужно подходить ответственно, так как разъединение цепи при перегрузке происходит не мгновенно. В зависимости от различных факторов для этого может потребоваться 5−20 минут.

Термореле (ТР) предназначено для обеспечения защиты электродвигателей от перегрева и преждевременного выхода из строя. При долговременном запуске электродвигатель подвержен токовым перегрузкам, т.к. во время пуска происходит потребление семикратного значения тока, приводящего к нагреву обмоток. Номинальный ток (Iн) – сила тока, потребляемая двигателем при работе. Кроме того, ТР увеличивают срок эксплуатации электрооборудования.

Тепловое реле, устройство которого составляют простейшие элементы:

  1. Термочувствительный элемент.
  2. Контакт с самовозвратом.
  3. Контакты.
  4. Пружина.
  5. Биметаллический проводник в виде пластины.
  6. Кнопка.
  7. Регулятор тока уставки.

Термочувствительный элемент является датчиком температуры, служащий для передачи тепла на биметаллическую пластину или другой элемент тепловой защиты. Контакт с самовозвратом позволяет при нагреве мгновенно разомкнуть цепь питания электрического потребителя для избежания его перегрева.

Пластина состоит из двух видов металла (биметалл), причем один из них обладает высоким температурным коэффициентом расширения (Kр). Они скреплены между собой при помощи сварки или проката при высоких значениях температуры. При нагреве изгибается пластина тепловой защиты в сторону материала с меньшим Kр, а после остывания пластина принимает исходное положение. В основном пластины изготавливаются из инвара (меньшее значение Kр) и немагнитной или хромоникелевой стали (больший Kр).

Кнопка включает ТР, регулятор тока уставки необходим для установки оптимального значения I для потребителя, причем его превышение приведет к срабатыванию ТР.

Принцип действия ТР основан на законе Джоуля-Ленца. Ток представляет собой направленное движение заряженных частиц, которые сталкиваются с атомами кристаллической решетки проводника (эта величина является сопротивление и обозначается R). Это взаимодействие вызывает появление тепловой энергии, получаемой из электрической. Зависимость длительности протекания от температуры проводника определяется по закону Джоуля-Ленца.

При коэффициенте a = 1 результат расчета измеряется в джоулях, а при условии, что a = 0.24, результат измеряется в калориях.

Нагрев биметаллического материала происходит двумя способами. При первом случае I проходит через биметалл, а во втором – через обмотку. Изоляция обмотки замедляет поток тепловой энергии. Термореле нагревается сильнее при высоких значениях I, чем при контакте с термочувствительным элементом. Происходит задержка сигнала срабатывания контактов. В современных моделях ТР используются оба принципа.

Нагрев биметаллической пластины теплового устройства защиты производится при подключенной нагрузке. Комбинированный нагрев позволяет получить устройство с оптимальными характеристиками. Пластина нагревается при помощи тепла, выделяемого I при прохождении через нее, и специальным нагревателем при I нагрузки. Во время нагрева биметаллическая пластина деформируется и воздействует на контакт с самовозвратом.

Как выглядит тепловое реле вы узнали, теперь идем дальше и расскажем, как работает данное устройство. Как мы уже сказали ранее, РТ защищает двигатель от продолжительной перегрузки.

На каждом электродвигателе есть табличка с паспортными данными, где указан номинальный рабочий ток. Существуют механизмы, в работе которых возможно превышение рабочего тока, как во время запуска, так и в рабочем процессе. При длительном воздействии таких перегрузок, происходит перегрев обмоток, разрушение изоляции, и выход из строя самого двигателя.

Данное реле тепловой защиты предназначено для воздействия на цепи управления, путем отключения схемы, размыканием контактов, или подачей сигнала предупреждения дежурному персоналу замыкая контакты. Устройство устанавливается после пускового контактора в силовую цепь перед электродвигателем для того, чтобы контролировать проходящий ток.

Установку параметров производят в большую сторону от номинального тока двигателя, на величину 10-20 %, согласно паспортным данным. Отключение машины происходит не сразу, а по прошествии определенного времени. Все зависит от температуры окружающей среды и тока перегрузки, и может колебаться от 5 до 20 минут. Неправильно выбранный параметр приведет к ложному срабатыванию или игнорированию перегруза и выходу из строя оборудования.

В некоторых случаях тепловое реле может быть встроено в обмотки двигателя. Но чаще всего оно применяется в паре с магнитным пускателем. Это дает возможность продлить срок службы теплового реле. Вся нагрузка по запуску ложится на контактор. В таком случае тепловой модуль имеет медные контакты, которые подключаются непосредственно к силовым входам пускателя.

В основе теплового модуля лежат биметаллические пластины. Это означает, что они изготавливаются из двух различных металлов. Каждый из них имеет свой коэффициент расширения при воздействии температуры. Пластины через переходник воздействуют на подвижный механизм, который подключен к контактам, уходящим к электродвигателю. При этом контакты могут находиться в двух положениях:

  • нормально замкнутом;
  • нормально разомкнутом.

Первый вид подходит для управления пускателем двигателя, а второй используется для систем сигнализации. Тепловое реле построено на принципе тепловой деформации биметаллических пластин. Как только через них начинает протекать ток, их температура начинает повышаться. Чем с большей силой протекает ток, тем выше поднимается температура пластин теплового модуля.

Важно понимать, что пластины теплового реле рассчитаны на определенный номинальный ток. Это означает, что нагрев до некоторой температуры, не будет вызывать деформации пластин. Если из-за увеличения нагрузки на двигатель произошло срабатывания теплового модуля и отключение, то по истечении определенного промежутка времени, пластины возвращаются в свое естественное положение и контакты снова замыкаются или размыкаются, подавая сигнал на пускатель или другой прибор.

Кроме регулятора силы тока, на поверхности может также находиться кнопка с надписью Test. Она позволяет проверить тепловое реле на работоспособность. Ее необходимо нажат при работающем двигателе. Если при этом произошел останов, тогда все подключено и функционирует правильно. Под небольшой пластинкой из оргстекла скрывается индикатор состояния теплового реле.

Если это механический вариант, то в нем можно увидеть полоску двух цветов в зависимости от происходящих процессов. На корпусе рядом с регулятором силы тока располагается кнопка Stop. Она в отличие от кнопки Test отключает магнитный пускатель, но контакты 97 и 98 остаются разомкнутыми, а значит сигнализация не срабатывает.

Что делать, если паспортные данные не известны?

Для этого случая рекомендуем использовать токовые клещи или мультиметр С266, конструкция которого также включает токоизмерительные клещи. С помощью данных приборов нужно определить ток мотора в работе, измерив его на фазах.

В том случае, когда на таблице частично читаются данные, размещаем таблицу с паспортными данными асинхронных двигателей широко распространенных в народном хозяйстве (тип АИР). С помощью нее возможно определить In.

Кстати, недавно мы рассмотрели принцип действия и устройство тепловых реле, с чем настоятельно рекомендуем вам ознакомиться!

В зависимости от токовой нагрузки будет различаться и время срабатывания защиты, при 125% должно быть порядка 20 минут. В диаграмме ниже указана векторная кривая зависимости кратности тока от In и времени срабатывания.

Надеемся, прочитав нашу статью, вам стало понятно, как выбрать тепловое реле для двигателя по номинальному току, а также мощности самого электродвигателя. Как вы видите, условия выбора аппарата не сложные, т.к. можно без формул и сложных вычислений подобрать подходящий номинал, используя таблицу!

Технические характеристики

Каждое ТР имеет индивидуальные технические характеристики (ТХ). Реле нужно выбирать согласно характеристикам по нагрузке и условиям применения при работе электродвигателя или другого потребителя электроэнергии:

  1. Значение Iн.
  2. Диапазон регулировки I срабатывания.
  3. Напряжение.
  4. Дополнительное управление работой ТР.
  5. Мощность.
  6. Граница срабатывания.
  7. Чувствительность к фазному перекосу.
  8. Класс отключения.

Номинальное значение тока – значение I, на которое рассчитано ТР. Выбирается по значению Iн потребителя, к которому непосредственно подключается. Кроме того, нужно выбирать с запасом по Iн и руководствоваться следующей формулой: Iнр = 1.5 * Iнд, где Iнр – Iн ТР, который должен быть больше номинального тока двигателя (Iнд) в 1.5 раза.

Граница регулировки I срабатывания является одним из важных параметров устройства термозащиты. Обозначение этого параметра является диапазоном регулировки значения Iн. Напряжение – значение силового напряжения, на которое рассчитаны контакты реле; при превышении допустимой величины произойдет выход из строя устройства.

Некоторые виды реле снабжены отдельными контактами для управления работой устройства и потребителя. Мощность – это один из основных параметров ТР, которое определяет выходную мощность подключенного потребителя или группы потребителей.

Каждый электрик должен знать:  Программы для расчета заземления – обзор лучших

Граница срабатывания или порог срабатывания является коэффициентом, зависящим от номинального тока. В основном его значение находится в диапазоне от 1,1 до 1,5.

Чувствительность к фазному перекосу (асимметрии фаз) показывает процентное соотношение фазы с перекосом к фазе, по которой протекает номинальный ток необходимой величины.

Класс отключения – параметр, представляющий среднее время срабатывания ТР в зависимости от кратности тока уставки.

Основной характеристикой, по которой нужно выбирать ТР, является зависимость времени срабатывания от тока нагрузки.

При выборе ТР необходимо ориентироваться в его характеристиках. Среди заявленных могут быть:

  • номинальный ток;
  • разброс регулировки тока срабатывания;
  • напряжение сети;
  • вид и количество контактов;
  • расчетная мощность подключаемого прибора;
  • минимальный порог срабатывания;
  • класс прибора;
  • реакция на перекос фаз.

Номинальный ток ТР должен соответствовать тому, который указан на двигателе, к которому будет происходить подключение. Узнать значение для двигателя можно на шильдике, который находится на крышке или на корпусе. Напряжение сети должно строго соответствовать той, где будет применяться. Это может быть 220 или 380/400 вольт.

Самая важная характеристика теплового реле для электродвигателя – это зависимость скорости отключения контактов от величины тока. Она показывает быстродействие устройства при перегрузках и называется время-токовым показателем.

К основным характеристикам относят:

  • Номинальный ток. Это рабочий ток, на который рассчитано срабатывание устройства.
  • Номинальный ток рабочей пластины. Ток, при котором биметалл способен деформироваться в рабочем пределе без необратимых нарушений.
  • Пределы регулировки уставки по току. Диапазон тока, в котором реле будет срабатывать, выполняя защитную функцию.

Тепловое реле для электродвигателя схема подключения

Чаще всего ТР подключают к нагрузке (двигателю) не напрямую, а через пускатель. В классической схеме подключения в качестве управляющего контакта используют КК1.1, который в исходном состоянии замкнут. Силовая группа (через нее идет электричество на двигатель) представлена КК1-контактом.

В момент, когда автомат защиты подает фазу, питающую цепь через стоп-кнопку, она проходит на кнопку «пуск» (3 контакт). При нажатии последней питание получает обмотка пускателя, а он, в свою очередь, подключает нагрузку. Фазы, поступающие на двигатель, также проходят через биметаллические пластины реле. Как только величина проходящего тока начинает превышать номинальный, защита срабатывает и обесточивает пускатель.

Следующая схема очень похожа на выше описанную с тем лишь отличием, что КК1.1-контакт (95-96 на корпусе) включен в ноль обмотки пускателя. Это более упрощенный вариант, который широко применяют. При реверсивной схеме подключения двигателя в цепи присутствуют два пускателя. Управление ними при помощи теплового реле возможно только, когда последнее включено в разрыв нулевого провода, являющегося общим для обоих пускателей.

Схемы подключения теплового реле в цепь могут существенно отличаться в зависимости от устройства. Однако ТР подключаются последовательным соединением с обмоткой двигателя или катушкой магнитного пускателя к нормально разомкнутому контакту, т.к. подключение такого рода позволяет защитить устройство от перегрузок. При превышении показателей потребления тока ТР отключает устройство от питания электросети.

В большинстве схем при подключении применяется постоянно разомкнутый контакт, который работает при последовательном соединении со стоповой кнопкой на управляющем пульте. В основном этот контакт маркируется буквами NC или Н3.

Нормально замкнутый контакт может применяться при подключении сигнализации о срабатывании защиты. Кроме того, в более сложных схемах этот контакт применяется для осуществления программного управления аварийной остановкой устройства с использованием микропроцессоров и микроконтроллеров.

Термореле подключить достаточно просто. Для этого нужно руководствоваться следующим принципом: ТР размещается после контакторов пускателя, но перед электродвигателем, а постоянно замкнутый контакт включается последовательным соединением со стоповой кнопкой.

Выбор теплового реле по мощности двигателя

У теплового реле есть один основной параметр, показывающий ток, при котором реле отключит электродвигатель. Ниже приводится таблица по выбору теплового реле для электродвигателей.

Номинальный
ток пускателя, А

Диапазон регулирования максимального тока, А

Пускатель для электродвигателя

Принцип коммутации

Замыкание контактов силовой цепи осуществляется контактором – аппаратом, в котором сцеплённая с якорем электромагнитного реле группа контактных пластин замыкается на неподвижные контакты, соединённые с входными и выходными клеммами подключения питающего напряжения сети и линий нагрузки.

Таким образом, с помощью малых токов в катушке электромагнитного реле и слаботочных сигналов управления удаётся коммутировать сильноточные цепи больших нагрузок. Небольшой ток и малое напряжение сигнальной цепи делает работу оператора намного безопаснее, а для автоматических систем контроля и управления даёт широкий простор их применения, благодаря внедрению в процесс компьютеризированных алгоритмов.

Параметры пусковых устройств

Для разнообразного предназначения выпускаются такие серии магнитных пускателей: ПА, ПМ, ПМА, ПМЕ, ПМЛ. Исходя из параметров нагрузки, выбор и применение данных устройств происходит по соответствию.

Магнитный пускатель серии ПМЛ

1.Величине электромагнитного пускателя – условный термин, характеризирующий допустимые продолжительные токи контактов главной силовой цепи. На данный момент имеются такие числовые обозначения величин и соответствующие им номинальные токи при напряжении 380В в рабочем режиме АС-3:

2.Режиму работы пускового устройства, определяющему характер коммутируемой нагрузки:

  1. АС-1, нагрузка только активная, или мало индуктивная;
  2. АС-3, запуск электродвигателя и его отключение при вращении;
  3. АС-4, тяжёлый запуск двигателя, отключение его на низких оборотах и при неподвижном роторе, торможение противотоком.

Величины магнитного пускателя и категории их применения

3.Рабочему (коммутационному) напряжению катушки реле, которое бывает таких значений:

  • Переменное: 24; 36; 42; 110; 220; 380 В.
  • Постоянное: 24В.

4.Количеству дополнительных контактов, имеющих такое обозначение латинскими буквами и кириллицей:

  1. Нормально разомкнутые (NO), (НО);
  2. Нормально замкнутые (NC), (НЗ).

Также существуют специальные, защёлкивающиеся на корпус пускателя приставки, дополнительно добавляющие несколько сигнальных контактов.

Магнитный пускатель серии ПМЛ с защелкивающейся приставкой

5.Степени защиты прибора:

  • IP00 — открытые, устанавливаются в обогреваемых помещениях в закрытых электрощитах защищённых от попадания посторонних предметов, воды и пыли;
  • IP40 – изготовляются в корпусе, применяются внутри не обогреваемых помещений, где имеется малое количество пыли в воздухе и исключено попадание воды на прибор;
  • IP54 – выпускаются в корпусе, применение внутреннее и наружное в местах, защищённых от воздействия атмосферных осадков и прямой солнечной радиации.

6.Наличию теплового реле, обеспечивающего защиту подключённых цепей от продолжительных перегрузок.

7. Наличию реверса, конструктивно исполненного путём объединения в одном корпусе двух электромагнитных реле, имеющих по три контактных группы, с механической или электрической блокировкой одновременного их включения.

8.Классу износостойкости, означающему возможное количество надёжных коммутаций.

9.Дополнительным элементам управления.

Необходимое соответствие параметров

Поскольку правильный выбор электромагнитного пускателя является залогом успешной и бесперебойной работы подключаемых электроустановок, необходимо соответствие вышеописанным параметрам характеристик коммутируемой цепи, напряжения управления, схемы включения, типа окружающей среды. Важнейшим правилом является требование, чтобы ток нагрузки не превышал допустимого тока контактов.

Для подключения активной нагрузки (без двигателей) определённой мощности Р, силу протекающего тока I определяют из упрощённой формулы:

где U – напряжение сети, 380 (В), .

Соответственно полученному значению выбирают пусковое устройство с номинальным током не меньше расчётного ниже по таблице.

Таблица выбора магнитного пускателя

Народный способ выбора

Для подключения асинхронных электродвигателей с короткозамкнутым ротором также существует «народная» формула, согласно которой номинальный ток Iном двигателя принимается равным удвоенному значению мощности в киловаттах, то есть, если

Р=3,7кВт, то Iном= 3,7*2 =7,4А.

Исходя из этого значения делают выбор контактора магнитного пускателя, чтобы его номинальный рабочий ток был не меньше данного значения. В таких расчётах подразумевается, что контакторы с подходящим номинальным значением нагрузки способны выдерживать запуск электродвигателей, имеющих многократное превышение пусковых токов Iп над рабочим номинальным Iном, поэтому расчёт пусковых токов не производится. Для данного подключения подходит пускатель с номинальным током 10 А.

Расчёт по параметрам двигателя

Для более точного выбора пускового устройства, расчёт начинают с изучения паспорта подключаемого электроприбора и применяют такие формулы, исходя из потребляемой мощности:

где P- мощность нагрузки (Вт), cosφ – коэффициент мощности, а η – коэффициент полезного действия электродвигателя (%), U-напряжение сети 380 (В), √3-3-х фазное напряжение.

где k – кратность пускового тока.

Ударный пусковой ток — это полный ток короткого замыкания , который состоит из трех составляющих и определяется по формуле :

Допустим, двигатель имеет: мощность 3,7 кВт = 3700 Вт; η = 87% =0,87; cosφ = 0,88; k = 7,5.

Iном=3700/(380*0,87*0,88*√3) = 7,34 А.

Определяем стартовые нагрузки:

Iпуск = 7,5*7,34 = 55,05 А.

Нужно учитывать, что в паспорте указывается номинальный ток In магнитного пускателя. В режиме работы АС-3 данный прибор обеспечивает запуск при шестикратном превышении его номинального тока. Imax=6* In.

Проверяем, подходит ли пусковое устройство с In = 10А, выбранное по народному методу, где максимальный ток контактора должен быть больше пускового тока электродвигателя Imax> Iпуск.

Imax = 6*10 = 60А > 55,05 А = Iпуск.

Также определяем ударный пусковой ток (амплитудное значение):

i= 1,3*55,05*√2=101,2 А.

Как видим, условие выбора соблюдается, народный метод себя оправдал.

Также подбор по мощности можно осуществлять по таблицам(см. выше) из справочников, где указано значение её значение в киловаттах и соответствующий ему номинал контактора.

В следующих статьях рассмотрим как правильно необходимо подключать магнитный пускатель к двигателю с реверсом и без него.

Времена, когда коммутация трехфазных асинхронных электродвигателей осуществлялась посредством ручных рубильников, давно миновали. Им на смену пришли более совершенные устройства — магнитные пускатели.

Данное устройство позволяет дистанционно управлять рабочими процессами электрооборудования, обеспечивая высокий уровень электробезопасности.

В последнее время пускатели все чаще используют для удаленного управления мощными потребителями электроэнергии: компрессорными установками, насосами, системами кондиционирования, вентиляции и т.п. Одно из новых применений — внедрение в системы управления освещением, сигнализацией.

Конструктивно современные магнитные пускатели состоят из двух частей:

  1. Cтационарно закрепленной нижней части и блока контактов, который перемещается по полозьям.
  2. На верхней части устройства имеется 4 контакта — 2 нормально замкнутых и 2 нормально разомкнутых.

Основа любого магнитного пускателя — магнитопровод и катушка индуктивности.

При включении напряжения на катушку магнитного пускателя якорь моментально притягивается к сердечнику, замыкая тем самым силовые контакты и вспомогательные, которые подают в систему управления сигнал о запуске или отключении устройства.

Посредством возвратной пружины при снятии напряжения с катушки все контакты размыкаются (возвращаются в первоначальное положение). Пускатели можно использовать как на постоянном, так и на переменном напряжении. Самое главное, чтобы оно не превышало рекомендованных производителем параметров.

Классический вариант подключения магнитного пускателя предполагает использование двух кнопок управления: кнопки «Пуск» и кнопки «Стоп», которые последовательно включают в цепь подачи фазы на разъем магнитной катушки. Они могут быть размещены как в отдельных корпусах, так и в общем корпусе (так называемый кнопочный пост или кнопочная станция).

Вот так выглядит схема самого простого подключения:

Как видно из схемы подключения кнопок магнитного пускателя, при замыкании (нажатии) кнопки «Пуск» цепь замыкается, в результате чего через катушку начинает протекать ток, втягивая сердечник и замыкая тем самым силовые и вспомогательные контакты.

Для остановки управляемого устройства или оборудования достаточно нажать кнопку «Стоп», которая разомкнет цепь. Обе кнопки имеют схожее устройство и отличаются лишь тем, что в исходном положении кнопка Пуск всегда находится в разомкнутом состоянии.

Подключить магнитный пускатель с кнопками управления Пуск и Стоп своими руками достаточно просто. Сейчас расскажем, как это сделать.

Инструкция — подключение магнитного пускателя через кнопку

Рассмотрим порядок подключения магнитного пускателя на примере управления освещением — включением/выключением обычной лампы.

Для этого понадобятся следующие инструменты, устройства и материалы:

  • магнитный пускатель;
  • кнопка включения магнитного пускателя Пуск (она может быть двух видов — зеленая или черная);
  • кнопка Стоп (красного цвета);
  • установочная коробка для кнопок;
  • двужильный медный провод;
  • патрон с лампой;
  • бокорезы, нож, крестовая отвертка.

Чтобы подключить схему кнопочного выключателя, нужно выполнить следующие действия:

  1. С «плюса» подается питание на кнопку Стоп и от нее же выводится провод на силовой контакт нашего магнитного пускателя;
  2. Выход с кнопки Стоп идет на кнопку Пуск и с нее же выводится «плюс» на вспомогательный контакт устройство, обозначенный как 1L1;
  3. Второй выход с кнопки Пуск идет на базовый контакт пускателя А1;
  4. С гнезда контакта 2Т1 выводится перемычка на А1. Это нужно для того, чтобы после отпускания кнопки «Пуск» цепь не размыкалась, а фаза продолжала поступать на катушку магнитного пускателя и срабатывало самоудержание при однократном нажатии пусковой кнопки. В противном случае для работы устройства придется постоянно держать пусковую кнопку нажатой;
  5. Минусовой провод идет прямиком на разъем А2, а также на 5L3;
  6. Само управляемое электроустройство (в нашем случае лампа) подключается к разъемам 4Т2 и 6L3.

Критерии выбора

При выборе необходимого электрического аппарата рассматриваются его технические характеристики и конструктивные особенности. Остановимся на главных из них.

Номинальное напряжение коммутируемой цепи. Наиболее часто магнитные пускатели применяются для запуска асинхронных двигателей с короткозамкнутым ротором на промышленное напряжение 220/380 Вольт. Именно на такой выбор рассчитано большинство выпускаемых моделей коммутационных аппаратов. При использовании аппаратов для электродвигателей на 380/660 Вольт, встречающихся значительно реже, необходимо выбрать пускатель соответствующего напряжения.

Номинальный ток основных контактов. Сопоставление тока подключаемой нагрузки с номинальным током коммутационного аппарата – одно из первых действий при выборе последнего. Магнитные пускатели, выпускаемые в РФ по советским ГОСТам, например ПМЛ, условно классифицируются по величинам, соответствующим номинальному току аппарата. Ниже представлена таблица соотношений величин и номинальных токов. По ней можно правильно выбрать магнитный пускатель по току, либо по мощности, произведя пересчет по формуле.

Величина O I II III IV V VI
Iном 6,3 А 10 А 25 А 40 А 63 А 100 А 160 А

Продукты зарубежных производителей представлены широким выбором контакторов разнообразных вариантов исполнения на различные номинальные токи.

Коммутационная износостойкость. Эта характеристика отображает количество срабатываний, которое гарантировано производителем. Существует 3 класса износостойкости: А, Б и В. Класс А самый высокий и гарантирует от 1,5 до 4 млн. циклов срабатывания магнитного пускателя. Модели класса Б гарантировано срабатывают от 0,63 до 1,5 млн. циклов. Класс В самый низкий и характеризуется от 0,1 до 0,5 млн. циклов срабатывания.

Механическая износостойкость. Не менее важная характеристика, которая отображает количество циклов включения/отключения аппарата без ремонта либо замены его деталей. При этом включения и отключения должны осуществляться без нагрузки (когда ток в цепи отсутствует). Механическая износостойкость может быть от 3 до 20 млн. циклов срабатывания.

Количество полюсов. Для питания трехфазных электродвигателей используются аппараты, имеющие три полюса. Именно такое исполнение наиболее распространено. Однако, возникает целых ряд ситуаций, когда требуется выбрать аппарат с другим количеством полюсов. Например, когда нагрузкой являются цепи освещения или электронагревательные приборы. В этом случае удобно выбрать коммутационный прибор из линейки контакторов зарубежных производителей, представленных большим разнообразием исполнения.

Номинальное напряжение катушки. Магнитные пускатели, применяемые в схемах управления электрооборудования, удобнее всего использовать с катушками на то же напряжение, что и коммутируемая нагрузка. По этой причине наиболее распространены варианты исполнения с катушками на 220 или 380 Вольт. При построении разного рода автоматических схем, по ряду причин может возникнуть необходимость применения управляющих катушек на другой уровень напряжения. Это обусловлено применением в этих схемах реле, датчиков или других компонентов, рассчитанных на определенное напряжение питания. На этот случай в линейках отечественных и зарубежных производителей имеется выбор вариантов питания катушек любым напряжением из номинального ряда от 9 Вольт и выше (9, 12, 24, 36, 110, 220 или же 380 В).

Количество и характеристики вспомогательных контактов. Кроме основных силовых контактов, коммутирующих главные электрические цепи нагрузки, магнитные пускатели оснащаются вспомогательными контактами, срабатывающими синхронно основным. Предназначены эти контакты для коммутации цепей управления, блокировки, питания сигнальных ламп, катушек реле и других вспомогательных аппаратов. Вспомогательные контакты могут быть двух типов – нормально разомкнутые и нормально замкнутые. Первые разомкнуты при обесточенной катушке управления и замыкаются при срабатывании электромагнитного пускателя, у вторых все происходит наоборот. Потребность в выборе определенного количества дополнительных контактов того или иного типа определяется той схемой, в которой используется аппарат.

Например, для организации простейшего управления механизмом с помощью двухкнопочного поста, достаточно выбрать вариант с одной парой нормально разомкнутых вспомогательных контактов, осуществляющих подхват катушки управления при нажатии кнопки «Пуск». Существуют варианты исполнения магнитных пускателей закрытого типа, оборудованные кнопками пуска и останова на корпусе. При необходимости выполнить сигнализацию состояния механизма, нужно выбрать пускатель, имеющий еще две пары контактов. Нормально замкнутые питают сигнальную лампу «Отключено», нормально разомкнутые – лампу «Включено».

Наличие реверса. Если вам нужно выбрать магнитный пускатель для управления реверсивным двигателем, отдавайте предпочтение реверсивной модели, в корпусе которого находятся два отдельных пускателя, соединенных между собой.

Наличие защиты. В базовом варианте исполнения, магнитный пускатель не оборудован защитой подключаемого электрооборудования. Модуль защиты с тепловым реле, поставляется опционально и его можно выбрать исходя из требуемых характеристик. Более подробно о том, что такое тепловое реле, вы можете узнать из нашей статьи.

Кроме перечисленных выше критериев, необходимо правильно выбрать климатическое исполнение и степень защиты IP изделия. Методика такого подбора такая же, как для любого электрооборудования. К примеру, если пускатель будет размещен в защищенном шкафу, можно выбрать степень защиты IP20. Если же условия размещения аппарата неблагоприятные (высокая запыленность, влажность и т.д.), рекомендуем выбрать магнитный пускатель в корпусе, степень защиты которого составляет IP54 или же IP65.

Напоследок рекомендуем просмотреть видео, на котором подробно рассказывается, как выбрать магнитный пускатель по мощности, току и другим параметрам:

Данный онлайн калькулятор позволяет произвести расчет номинального тока пускателя (контактора) для однофазного либо трехфазного электродвигателя по мощности.

Расчет пускателя (контактора)

Примечание: Расчет производится для пускателей с категорией применения АС-3.

Инструкция по использованию калькулятора расчета пускателя (контактора):

  1. Выбираем тип электродвигателя: однофазный — подключаемый в сеть 220 Вольт, либо трехфазный — подключаемый в сеть 380 Вольт.
  2. Вводим значение номинальной мощности электродвигателя в килоВаттах для которого производится выбор пускателя (контактора). Данное значение принимается из паспортных данных электродвигателя или определяется расчетным путем.
  3. Указываем способ запуска: «Легкий пуск» — в случае если запуск электродвигателя производится без нагрузки либо с незначительной нагрузкой (например: вентилятор, наждак и т.п.); «Тяжелый пуск» — в случае если в момент запуска на валу электродвигателя уже находится значительная нагрузка.
  4. Нажимаем кнопку «Рассчитать» после чего калькулятор определит номинальный ток электродвигателя и выберет ближайшее большее стандартное значение номинального тока пускателя.

Как выбрать магнитный пускатель и автоматический выключатель для асинхронного двигателя

Для пуска, реверсирования, принудительной остановки противотоком асинхронных электродвигателей электрики используются контакторы и магнитные пускатели. От правильности выбора коммутационной аппаратуры зависит, как и безотказность системы в целом, так и электробезопасность обслуживающего персонала.

Выбор пускателя и избыточным коммутируемым током ведет к большим финансовым затратам, при его коммутации слышны шлепки большей громкости, чем те что издают маленькие пускатели. Недостаточные по коммутируемой мощности пускатели долго не прослужат, будут греться, и подгорать клеммники и контакты. В результате переходное сопротивление контакта будет расти до тех пор, пока контакт не исчезнет полностью, что приведет к преждевременной замене аппарата.

Автоматические выключатели также должны быть правильно подобраны, особенно при тяжелом пуске двигателя. Слишком чувствительный автомат будет выбивать при пуске, а если он наоборот взят с излишним запасом по току, то в аварийной ситуации может и не отреагировать, что приведет к повреждению кабеля, обмотки двигателя вплоть до возгорания.

Пуск для электродвигателя сопровождается повышенным током в период разгона его до номинальных оборотов, в случае перегрузки и нехватки мощности двигателя для вращения исполнительных механизмов возможно пониженное число оборотов с повышенными токами, в плоть до того, что он вообще не начнет раскручиваться. И наоборот если мощность двигателя избыточна, то потребляемый им ток будет ниже номинального.

Из-за вышеперечисленных причин и появляется необходимость правильного подбора пусковой и защитной аппаратуры в виде магнитных пускателей, контакторов, тепловых реле и автоматических выключателей.

Автоматические выключатели устанавливаются до магнитного пускателя, чтобы в случае необходимости полностью обесточить систему, как силовую цепь, так и цепь управления (питания катушки).

Вместо автоматических выключателей могут использоваться плавкие вставки или предохранители, но в последнее время такие решения встречаются реже, чем раньше. Это усложняет обслуживание и вызывает необходимость иметь в запасе хотя бы комплект предохранителей.

Выбор магнитного пускателя

Магнитные пускатели выпускаются на определенный номинальный ток, из ряда: 6.3 – 10 – 25 – 40 – 63 – 100 – 160 – 250

Часто их разделяют не по токам, а по величинам от 0 до 7, чем больше ток (или величина пускателя) тем больше его габариты и площадь контактов. Опытный электромонтер может отличить по размеру корпуса, конструкции дугогасителя и габаритам контактных площадок примерный коммутируемые ток и напряжение.

Однако если номинальный ток пускателя соответствует току двигателя, это еще не значит, что их можно использовать в паре. Если такое понятие как категория применения, она характеризует режим работы коммутируемой аппаратуры, частоту и условия коммутации. Иначе говоря – это способность переносить пусковые токи. Пусковые токи асинхронного двигателя могут превышать номинальные и в 10 раз, это зависит от условий пуска, напряжения в сети и прочих факторов.

Каждый электрик должен знать:  Номинал автомата для алюминиевого провода 310+16 кв.мм.

Категории применения обозначаются: «АС-номеркатегории». Сводная таблица величин и категорий применения для магнитных пускателей расположена ниже.

Из неё нас интересует строка «АС-3 – управления двигателями с короткозамкнутым ротором (пуск, отключение без предварительной остановки)». Из этого очевидно, что коммутационные аппараты с такой категорией созданы для того, что бы включать и отключать электродвигателя. Они выдерживают прямой пуск.

Далее нужно определиться с номинальным током пускателя. Для этого нам нужно знать технические характеристики коммутируемого двигателя, а именно:

cos Ф – коэффициент мощности,

P – мощность двигателя номинальная;

U – рабочее напряжение (коммутируемое);

Тогда номинальный ток пускателя равен:

Для быстрых расчетов иногда применяют другую методику, когда мощность двигателя умножают на 2 и получают номинальный ток (приблизительно).

Далее нужно определить пусковой ток, в справочниках это указывается либо как «k» либо как «Iп/Iн». Это кратность или соотношение пускового тока к номинальному. Показывает, насколько ток в момент пуска превышает номинальную величину.

Пускатель с категорией применения АС-3 может коммутировать ток в 5-7 раз больше чем номинальный, для чего это сказано я покажу при расчетах ниже.

Допустим, у нас есть асинхронный двигатель с мощностью 2.2 кВт типа 4АМ100L6У3. На его шильдике написано, что кпд 81.0%, коэффициент мощности – 0.73, в интернете я нашел его технические данные, чтобы узнать кратность пускового тока, она оказалась – 5.5

1. Быстрый способ: IН=2.2*2 = 4.4А

2. Сложный способ: IНОМ=2200/(380*0.81*0.73*1.73)=5.6А

Результаты такого расчета дали больший ток.

Теперь считаем пусковой ток: IП=5.6*5.5=30.8А

Подбираем пускатель, с номинальным током более чем 5.6 А, с категорией применения АС-3. В результате обзора рынка, нам подходит пускатель ПМЕ 111 на 10А с тепловым реле.

Выбор автоматического выключателя

Автомат может сработать при пуске или затяжном пуске электродвигателя, когда потребляемый ток значительно превышает максимальный. В автоматическом выключателе за защиту отвечают два узла:

1. Электромагнитный расцепитель. Срабатывает при пиковом токе перегрузке. Этот ток зависит от типа автомата.

2. Тепловой расцепитель. Срабатывает при незначительном но длительном превышении номинального тока.

Номинальный ток двигателя у нас 5.6 А, значит нам нужен автомат не меньше этого значения. Типы автоматов куказывают на доустипое превышение по току в пике:

тип D – 10-50 раз.

Так как у нас пусковой ток в 5.5 раз больше чем номинальный, это значит что нам подходит автомат типа С и D. Например, автоматический разъединитель EZ9F34306 Schneider Easy9, рассчитан на 6 А и его тип C, позволит выдержать пусковые токи до 60 А.

Но такой автомат будет работать на пределе да и реальная уставка по току может быть ниже 5.5, т.к. тип С находится в пределах 5-10, нужен запас по току хотя бы в 20%.

Поэтому лучше установить автоматический выключатель на тот же ток или немного больший, но типа D, например ИЭК 6-8А ВА47-29

Или на ток 10А с типом C, например PL4-C10/3 Moeller / Eaton

Требования к автомату заключаются в том, чтобы он стабильно выдерживал номинальный ток, и его не выбило при пуске. Если планируется режим работы двигателя с частыми включения и выключениями лучше использовать автомат типа D, он менее чувствителен к всплескам тока.

Автоматический выключатель нужен для защиты питающего кабеля и дополнительной защиты двигателя, в случае затяжного пуска или заклинивания вала, дополнительно лучше использовать тепловую защиту. Магнитный пускатель должен выдерживать как напряжение, так и ток, который он будет коммутировать.

Электродвигатель должен быть исправен, отсутствовать витковые замыкания, а его вал должен свободно вращаться. В случае пуска двигателя под нагрузкой лучше брать коммутационную аппаратуру с запасом до 2-х раз для уменьшения вероятности преждевременного подгорания контактов и ложных срабатываний автоматического выключателя.

Питающий кабель должен соответствовать номинальному току, с учетом пусковых токов, как и способ соединения кабеля (использование гильз, наконечников, клеммников и прочего). Состояние всех соединений должно быть в норме – отсутствовать окислы, нагар и прочие механические дефекты, которые могут уменьшить площадь прилягания контакта.

Как подобрать магнитный пускатель для электродвигателя

Вы здесь

Выбор контактора для электродвигателей с частыми пусками отличается от выбора для обычных силовых соединений. Прежде всего необходимо обратить внимание на категории применения, допустимую частоту включения, механическую и коммутационную износостойкость.

В связи с тем, что у каждого электродвигателя собственный характер работы, данные параметры подбираются индивидуально для каждой модели.

Категории применения

Первое, на что нужно обратить внимание при выборе, это категории применения — режимы срабатывания расцепителя. Электродвигатель — сложный механизм с пусковым током и повторно-кратковременными включениями, при которых он работает не в штатном режиме. При этом нагрузка на сеть также отличается от номинальной, и механизм расцепления должен нормально срабатывать в нестандартных условиях.

Для переменного тока категории применения обозначаются маркировкой AC. Отличаются характером срабатывания:

  • AC-1 — для электрических моторов с активной или малоиндуктивной нагрузкой;
  • AC-2 — старт с фазным ротором, реверсивное торможение;
  • AC-3 — прямой пуск короткозамкнутого ротора, отключение вращающихся двигателей;
  • AC-4 — пуск и остановка электромоторов с короткозамкнутым ротором посредством противовключения. Для такого режима применяются спаренные (реверсивные) контакторы с механической блокировкой, не допускающей одновременного запуска нескольких потребителей. При этом уменьшается In и базовое количество циклов.

Для постоянного существуют собственные категории — DC:

  • DC-1 (аналог AC-1) — активная или малоиндуктивная нагрузка;
  • DC-2 — пуск электродвигателей с параллельным возбуждением, отключение при номинальной частоте вращения;
  • DC-3 — запуск моторов с параллельным возбуждением, отключение при медленном вращении ротора или в неподвижном состоянии;
  • DC-4 — пуск электродвигателей с последовательным возбуждением и остановка при номинальных оборотах;
  • DC-5 — старт двигателей с последовательным возбуждением и остановка с неподвижным или медленно вращающимся ротором, торможение противотоком.

Промышленные электромоторы с частыми пусками должны поддерживать категорию AC-3, AC-4 — для переменного электротока, и DC-3, DC-4, DC-5 для постоянного.

Номинальный ток и напряжение питания катушки управления

Номинальный ток — наиболее значимый параметр, подбираемый по мощности потребителя. Главный вопрос: как правильно считать? Любой электродвигатель при запуске кратковременно выдает мощность, часто в 5-7 раз превышающую номинальную. Тем не менее такая нагрузка сохраняется долю секунды и на работу расцепителя не влияет. Исходя из этого, берем во внимание только номинальную мощность.

Для определения номинала необходимо рассчитать In . В этом нам поможет формула из учебника по физике: In = P/(U √3xcosφ), где P — мощность (Вт), U — напряжение (В), а cosφ- коэффициент мощности двигателя.

Для наглядности рассмотрим конкретный пример: предположим, что у Вас трехфазный станок на 5,5 кВт c cosφ= 0,8 (данное значение записано в паспорте электрооборудования). При включении, по сети будет протекать:

5500Вт / (380Вx√3×30,8)= 10,6А.

К полученному значению еще необходимо прибавить 30% запаса, в итоге оптимальным номиналом будет 13А.

Например, если In будет равен 11,8А, ни в коем случае нельзя брать модель на 12А, иначе при увеличении мощности она сгорит.

Электропитание катушки управления подбирается по двум критериям: тип электротока (переменный или постоянный) и напряжение (от 12В до 440В — постоянный, от 12В до 660В — переменный при частоте 50 Гц и от 24В до 660В — переменный при 60 Гц). Существуют также универсальные модели с катушкой работающей и от переменного, и от постоянного тока.

Механическая и коммутационная износостойкость

Данная характеристика показывает предельное количество циклов включения-выключения — срабатываний расцепителя. Чем их больше, тем дольше будет срок службы. Это значение особенно важно для двигателей с частыми пусками.

Механическая износостойкость показывает количество включений-выключений при отсутствии напряжения. Как правило, средний механизм выдерживает около 10-20 млн. операций.

Коммутационная износостойкость определяет допустимое количество циклов срабатывания и зависит от категории применения. Например, если контактор в режиме AC-3 может переносить 1,7 млн циклов, то в AC-4 — 200 тыс. Как правило, данную характеристику производитель всегда указывает в техническом паспорте.

Коммутационная износостойкость делится на три класса:

  • А — самый высокий, гарантирует от 1,5 млн. до 4 млн. операций срабатывания магнитного пускателя в рабочем режиме;
  • Б — средний, модели данного класса выдерживают от 630 тыс. до 1,5 млн. переключений;
  • В — самый низкий, количество циклов от 100 тыс. до 500 тыс.

Частота включений и время срабатывания

Для электродвигателей с частыми пусками важна частота включений, группируемая по собственным классам.

Функциональные возможности

Ниже приведены типичные функции, выполняемые магнитными пускателями, далеко не исчерпывающие сферы их применения:

  • Управление асинхронными электродвигателями в приводах механизмов промышленного назначения.
  • Включение наружного (уличного) городского освещения, наружной и внутрицеховой подсветки промышленных объектов.
  • Коммутация электронагревательных приборов (ТЭНов или инфракрасных обогревателей) систем электрического отопления.
  • Использование в качестве пусковых органов в цепях промышленной автоматики.

Выбор магнитных пускателей производится при проектировании схем управления и автоматики, либо в процессе их ремонта, когда для замены устаревшего или отсутствующего аппарата необходимо выбрать его аналог.

Критерии выбора

При выборе необходимого электрического аппарата рассматриваются его технические характеристики и конструктивные особенности. Остановимся на главных из них.

Номинальное напряжение коммутируемой цепи. Наиболее часто магнитные пускатели применяются для запуска асинхронных двигателей с короткозамкнутым ротором на промышленное напряжение 220/380 Вольт. Именно на такой выбор рассчитано большинство выпускаемых моделей коммутационных аппаратов. При использовании аппаратов для электродвигателей на 380/660 Вольт, встречающихся значительно реже, необходимо выбрать пускатель соответствующего напряжения.

Номинальный ток основных контактов. Сопоставление тока подключаемой нагрузки с номинальным током коммутационного аппарата – одно из первых действий при выборе последнего. Магнитные пускатели, выпускаемые в РФ по советским ГОСТам, например ПМЛ, условно классифицируются по величинам, соответствующим номинальному току аппарата. Ниже представлена таблица соотношений величин и номинальных токов. По ней можно правильно выбрать магнитный пускатель по току, либо по мощности, произведя пересчет по формуле.

Величина O I II III IV V VI
Iном 6,3 А 10 А 25 А 40 А 63 А 100 А 160 А

Продукты зарубежных производителей представлены широким выбором контакторов разнообразных вариантов исполнения на различные номинальные токи.

Коммутационная износостойкость. Эта характеристика отображает количество срабатываний, которое гарантировано производителем. Существует 3 класса износостойкости: А, Б и В. Класс А самый высокий и гарантирует от 1,5 до 4 млн. циклов срабатывания магнитного пускателя. Модели класса Б гарантировано срабатывают от 0,63 до 1,5 млн. циклов. Класс В самый низкий и характеризуется от 0,1 до 0,5 млн. циклов срабатывания.

Механическая износостойкость. Не менее важная характеристика, которая отображает количество циклов включения/отключения аппарата без ремонта либо замены его деталей. При этом включения и отключения должны осуществляться без нагрузки (когда ток в цепи отсутствует). Механическая износостойкость может быть от 3 до 20 млн. циклов срабатывания.

Количество полюсов. Для питания трехфазных электродвигателей используются аппараты, имеющие три полюса. Именно такое исполнение наиболее распространено. Однако, возникает целых ряд ситуаций, когда требуется выбрать аппарат с другим количеством полюсов. Например, когда нагрузкой являются цепи освещения или электронагревательные приборы. В этом случае удобно выбрать коммутационный прибор из линейки контакторов зарубежных производителей, представленных большим разнообразием исполнения.

Номинальное напряжение катушки. Магнитные пускатели, применяемые в схемах управления электрооборудования, удобнее всего использовать с катушками на то же напряжение, что и коммутируемая нагрузка. По этой причине наиболее распространены варианты исполнения с катушками на 220 или 380 Вольт. При построении разного рода автоматических схем, по ряду причин может возникнуть необходимость применения управляющих катушек на другой уровень напряжения. Это обусловлено применением в этих схемах реле, датчиков или других компонентов, рассчитанных на определенное напряжение питания. На этот случай в линейках отечественных и зарубежных производителей имеется выбор вариантов питания катушек любым напряжением из номинального ряда от 9 Вольт и выше (9, 12, 24, 36, 110, 220 или же 380 В).

Количество и характеристики вспомогательных контактов. Кроме основных силовых контактов, коммутирующих главные электрические цепи нагрузки, магнитные пускатели оснащаются вспомогательными контактами, срабатывающими синхронно основным. Предназначены эти контакты для коммутации цепей управления, блокировки, питания сигнальных ламп, катушек реле и других вспомогательных аппаратов. Вспомогательные контакты могут быть двух типов – нормально разомкнутые и нормально замкнутые. Первые разомкнуты при обесточенной катушке управления и замыкаются при срабатывании электромагнитного пускателя, у вторых все происходит наоборот. Потребность в выборе определенного количества дополнительных контактов того или иного типа определяется той схемой, в которой используется аппарат.

Например, для организации простейшего управления механизмом с помощью двухкнопочного поста, достаточно выбрать вариант с одной парой нормально разомкнутых вспомогательных контактов, осуществляющих подхват катушки управления при нажатии кнопки «Пуск». Существуют варианты исполнения магнитных пускателей закрытого типа, оборудованные кнопками пуска и останова на корпусе. При необходимости выполнить сигнализацию состояния механизма, нужно выбрать пускатель, имеющий еще две пары контактов. Нормально замкнутые питают сигнальную лампу «Отключено», нормально разомкнутые – лампу «Включено».

Наличие реверса. Если вам нужно выбрать магнитный пускатель для управления реверсивным двигателем, отдавайте предпочтение реверсивной модели, в корпусе которого находятся два отдельных пускателя, соединенных между собой.

Наличие защиты. В базовом варианте исполнения, магнитный пускатель не оборудован защитой подключаемого электрооборудования. Модуль защиты с тепловым реле, поставляется опционально и его можно выбрать исходя из требуемых характеристик. Более подробно о том, что такое тепловое реле, вы можете узнать из нашей статьи.

Кроме перечисленных выше критериев, необходимо правильно выбрать климатическое исполнение и степень защиты IP изделия. Методика такого подбора такая же, как для любого электрооборудования. К примеру, если пускатель будет размещен в защищенном шкафу, можно выбрать степень защиты IP20. Если же условия размещения аппарата неблагоприятные (высокая запыленность, влажность и т.д.), рекомендуем выбрать магнитный пускатель в корпусе, степень защиты которого составляет IP54 или же IP65.

Напоследок рекомендуем просмотреть видео, на котором подробно рассказывается, как выбрать магнитный пускатель по мощности, току и другим параметрам:

Это все наиболее важные критерии выбора магнитного пускателя. Если возникли вопросы либо вы не нашли нужной информации, пишите в комментариях под записью, мы в свою очередь постараемся помочь вам найти нужный ответ!

Будет интересно прочитать:

Данный онлайн калькулятор позволяет произвести расчет номинального тока пускателя (контактора) для однофазного либо трехфазного электродвигателя по мощности.

Примечание: Расчет производится для пускателей с категорией применения АС-3.

Инструкция по использованию калькулятора расчета пускателя (контактора):

  1. Выбираем тип электродвигателя: однофазный — подключаемый в сеть 220 Вольт, либо трехфазный — подключаемый в сеть 380 Вольт.
  2. Вводим значение номинальной мощности электродвигателя в килоВаттах для которого производится выбор пускателя (контактора). Данное значение принимается из паспортных данных электродвигателя или определяется расчетным путем.
  3. Указываем способ запуска: «Легкий пуск» — в случае если запуск электродвигателя производится без нагрузки либо с незначительной нагрузкой (например: вентилятор, наждак и т.п.); «Тяжелый пуск» — в случае если в момент запуска на валу электродвигателя уже находится значительная нагрузка.
  4. Нажимаем кнопку «Рассчитать» после чего калькулятор определит номинальный ток электродвигателя и выберет ближайшее большее стандартное значение номинального тока пускателя.

Оказался ли полезен для Вас данный онлайн калькулятор? Или может быть у Вас остались вопросы? Напишите нам в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Выбор автоматического выключателя

Выбрать автоматический выключатель для электродвигателя, характеристики которого приведены в таблице 1. Режим работы – непрерывный.

Таблица 1 – Характеристики электродвигателя

Вариант Рном, кВт КПД cos φ Uн, В
1,5 0,83 0,85

Основным элементом автомата, реализующего функции защиты электродвигателя (в дальнейшем рассматриваем асинхронные двигатели серии 4А или АИ) от токов КЗ являются электромагнитный расцепитель и токовая отсечка. Причем, они должны быть отстроены от пусковых токов Iп (и ударного пускового тока Iудп). Для асинхронных двигателей с фазным или короткозамкнутым ротором пусковой ток находим по формуле (1.1):

где KI – кратность пускового тока двигателя;

Iн – номинальный (линейный) ток в обмотке статора, находим по формуле (1.2).

где Pн – полная номинальная мощность электродвигателя, кВт;

Uнл – номинальное линейное напряжение на обмотке статора, В;

η – коэффициент полезного действия;

cosφ – коэффициент мощности.

Если двигатель работает в повторно-кратковременном режиме, номинальный ток двигателя берется при относительной продолжительности включения ПВ = 25 %.

Ударный пусковой ток двигателя по своей величине равен току трехфазного КЗ за сопротивлением, равным сопротивлению неподвижного электродвигателя. Величина ударного пускового тока (его амплитудное значение) определяется по формуле (1.3):

Для защиты электродвигателей с короткозамкнутым ротором ток срабатывания электромагнитного расцепителя (токовой отсечки) отстраивается от ударного пускового тока двигателя при полном напряжении питания сети и выведенном пусковом резисторе в цепи ротора (для двигателей с фазным ротором), ток срабатывания токовой отсечки находим по формуле (1.4):

Причиной перегрузки двигателей могут быть затянувшийся пуск, большая нагрузка на валу. А при обрыве одной из фаз, торможение двигателя. Часто перегрузки бывают кратковременными. Наиболее опасными являются устойчивые перегрузки. Основной опасностью сверхтоков для электродвигателя является сопровождающее их повышение температуры обмоток двигателя. Перегрузка по току оценивается с помощью коэффициента кратности пускового тока двигателя и задается в каталоге.

В качестве элементов защиты могут применяться тепловые расцепители автоматов, тепловые реле магнитных пускателей, максимальные токовые реле автоматов с выдержками времени на срабатывания.

Токовые (электромагнитные) защиты имеют преимущества по сравнению с тепловыми ввиду простоты эксплуатации и более легкого подбора и регулировки защитных характеристик.

Однако токовые защиты не позволяют использовать перегрузочные возможности электродвигателей из-за малого времени их действия при небольших кратностях тока. Ток срабатывания максимальной токовой защиты от перегрузки определяется по формуле (1.5):

На практике широко используются тепловые расцепители.

Номинальный ток теплового или комбинированного расцепителей для двигателей с длительным режимом работы и легкими условиями пуска равен:

Для двигателей с короткозамкнутым ротором, работающим в повторно-кратковременном режиме, но при тяжелых условиях пуска:

Номинальная уставка на ток срабатывания теплового расцепителя определяется согласно методике, приведенной выше. Время действия защиты от перегрузки, с одной стороны, должно быть больше времени пуска электродвигателя (либо больше времени его самозапуска), с другой стороны, это время не должно превышать допустимой для двигателя длительности прохождения сверх тока. Время пуска асинхронных двигателей составляет 10-15 секунд.

Выбор защитной аппаратуры для асинхронного двигателя серии АИР со следующими основными техническими данными:

Тип двигателя – АИР 100 L2;

Мощность – 5,5 кВт;

Коэффициент мощности – 0,89;

Коэффициент кратности пускового тока – 7,5;

Номинальное напряжение – 380 В.

Необходимо выбрать защитный аппарат, позволяющий осуществлять пуск и защиту двигателя в режимах перегрузки.

По формуле (1.2) определим номинальный ток двигателя:

Тогда по формуле (1.1) пусковой ток двигателя будет равен:

Согласно формуле (1.3) ударный пусковой ток будет равным:

В качестве защитного аппарата, выполняющего одновременно функции управления в режиме редких включений, можно применить автоматический выключатель серии ВА51. Автоматические выключатели серии ВА51 предназначены для эксплуатации в электроустановках с напряжением до 660 В переменного тока и до 440 В постоянного тока. Выключатели осуществляют защиту от токов КЗ, перегрузки и недопустимого снижения напряжения, а также от нечастых оперативных включений и отключений электрических цепей. Они имеют электротепловые и электромагнитные расцепители тока, но может быть исполнение только с электромагнитным расцепителем. Отношение тока срабатывания электромагнитных расцепителей к номинальному току тепловых расцепителей (кратность отсечки) находится в пределах 10 — 12. Указанная кратность (кратность отсечки) относится к автоматическим выключателям переменного тока. Автоматические выключатели с тепловыми максимальными расцепителями должны срабатывать при токе, значение которого равно 1,25 номинального тока расцепителя в течение времени менее 2 ч (в нагретом состоянии). Номинальный ток автомата должен быть не меньше номинального тока электродвигателя. Согласно расчетной величины номинального тока двигателя Iн = 11 А находим номинальный ток автомата Iна = 16 А.

Ток срабатывания токовой отсечки (электромагнитного расцепителя) отстраивается от ударного пускового тока. Принимаем согласно формуле (1.4):

Находим номинальную уставку на ток срабатывания электромагнитного расцепителя и выбираем тип автомата, имеющего данный расцепитель:

– тип автомата ВА51-30.

Номинальный ток электромагнитного расцепителя – 16 А.

Для защиты двигателя при длительном протекании пускового тока применяется тепловой расцепитель автомата ВА-51-30М1-34. Номинальный ток расцепителя должен быть не выше номинального тока автомата (Iт ≤ Iна).

Номинальная уставка на ток срабатывания теплового элемента есть среднее значение между током несрабатывания расцепителя – 1,1·Iна =1,1·16=17,6 А и нормированным значением тока срабатывания – 1,45·Iна = 1,45·16 = 23,2 А.

Ближайшее нормированное значение номинальной уставки для данной серии автомата равно Iнт = 20 А.

Определим для автомата ВА-51-35М1-34 с тепловым расцепителем на номинальный ток 20 А время срабатывания при токе перегрузки (пусковом токе двигателя), равном 23,25 А.

Определим кратность тока Iп по отношению к номинальному току расцепителя Iт

Находим пределы по времени срабатывания для заданного тока (1,8-5) с.

Время пуска двигателя не должно превышать пределов по времени срабатывания защиты.

Вывод. Для защиты асинхронного двигателя в случае возникновения аварийных режимов при пуске можно использовать автоматический выключатель серии ВА51 с электромагнитным расцепителем.

Основные параметры защитного аппарата:

— номинальный ток автомата, его электромагнитного и теплового расцепителей – Iна = 16 А;

— номинальная уставка на ток срабатывания электромагнитного расцепителя – Iно = 250 А;

— номинальная уставка на ток срабатывания теплового элемента – Iнт = 20 А;

— пределы по времени срабатывания тепловой защиты – tс = (1,8-5) с.

Добавить комментарий