Калибровка плавких вставок предохранителей

СОДЕРЖАНИЕ:

Материал плавких вставок

Плавкие вставки изготовляются из меди, цинка, свинца или серебра. Основные технические данные этих материалов под углом зрения их применимости для плавких вставок приведены в табл. 1.

В современных наиболее совершенных предохранителях отдают предпочтение медным вставкам с оловянным растворителем. Широко распространены также цинковые вставки. Медные вставки для предохранителей наиболее удобны, просты и дешевы. Улучшение их характеристик достигается наплавлением оловянного шарика в определенном месте, примерно в середине вставки. Такие вставки применяются, например, в упомянутой серии насыпных предохранителей ПН2. Олово плавится при температуре 232° С, значительно меньшей, чем температура плавления меди, и растворяет медь вставки в месте соприкосновения с нею. Появляющаяся при этом дуга уже расплавляет всю вставку и гасится. Цепь тока оказывается отключенной.
Таким образом, наплавление оловянного шарика приводит к следующему.
Во-первых, медные вставки начинают реагировать с выдержкой времени на столь малые перегрузки, на которые они при отсутствии растворителя вовсе не реагировали бы. Например, медная проволока диаметром 0,25 мм с растворителем расплавилась при температуре 280° С за 120 мин.
Во-вторых, при одной и той же достаточно большой температуре (т. е. при одинаковой нагрузке) вставки с растворителем реагируют много быстрее, чем вставки без растворителя. Например, медная проволока диаметром 0,25 мм без растворителя при средней температуре 1000° С расплавилась за 120 мин, а такая же проволока, но с растворителем при средней температуре только 650° С расплавилась всего за 4 мин.
Применение оловянного растворителя позволяет иметь надежные и дешевые медные вставки, работающие при сравнительно низкой эксплуатационной температуре, имеющие относительно малый объем и вес металла (что благоприятствует коммутационной способности предохранителя) и в то же время обладающие большим быстродействием при больших перегрузках и реагирующие с выдержкой времени на относительно малые перегрузки. Отношение I п ог:I в у таких вставок относительно невелико (не более 1,45), что облегчает условия выбора проводников, защищаемых такими плавкими вставками от перегрузок.
Цинк часто используется для изготовления плавких вставок. В частности, такие вставки применяются в упомянутой серии предохранителей ПР2. Вставки из цинка более устойчивы против коррозии. Поэтому, несмотря на относительно малую температуру плавления, для них, вообще говоря, можно было бы допустить такую же предельную эксплуатационную температуру, как для (меди 250°С), и конструировать вставки с меньшим сечением. Однако электрическое сопротивление цинка примерно в 3,4 раза больше, чем у меди. Чтобы сохранить ту же температуру, надо уменьшить потери энергии в ней, соответственно увеличив ее сечение. Вставка получается значительно более массивной. Это при прочих равных условиях приводит к понижению коммутационной способности предохранителя. Кроме того, при массивной вставке с температурой 250°С не удалось бы в тех же размерах удержать на допустимом уровне температуру патрона и контактов. Все это заставляет снизить предельную температуру цинковых вставок до 200°С, а следовательно, еще больше увеличивать сечение вставки. В итоге предохранители с цинковыми вставками при тех же размерах обладают значительно меньшей устойчивостью к токам короткого замыкания, чем предохранители с медными вставками и оловянными растворителями.
При большой потребности плавкие вставки на ряде предприятий изготовляют в собственных электроремонтных мастерских. При этом материалы, из которых выполняют элементы плавких вставок, должны быть тщательно калиброваны и не менее 10 % готовых плавких вставок выборочно испытаны на минимальный и максимальный токи.
За минимальный принимают ток, при котором плавкая вставка не должна перегореть за время менее 1 ч. Обычно этот ток равен 1,3—1,5 ее номинального тока, т. е.Imin=(l,3-1.5)Iном.
За максимальный принимают ток, при котором плавкая вставка должна перегореть за время менее 1 ч, обычно он составляет (l,6-2,l)Iном.
Изготовляемые вставки предохранителей по своим качествам, характеристикам и номинальным токам должны отвечать требованиям соответствующих ГОСТов.
Вставки кустарного изготовления применять недопустимо, так как в лучшем случае они защищают установку только от токов к. з. Для крепления цинковой плавкой вставки должны быть обязательно использованы стальная шайба увеличенного диаметра и пружинящая шайба. При отсутствии этих шайб цинк постепенно выдавливается из-под контактного болта и ослабляет контакт. В патроне предохранителя ПР нельзя устанавливать медную вставку без оловянного растворителя, поскольку при высокой температуре плавления медной вставки фибровый патрон быстро разрушается.

Перегоревшие плавкие вставки следует заменять запасными заводской калибровки. Если таких нет , их можно временно заменить заранее подготовленными проволочками , расчитанными на определенный ток. Диаметры и материалы проволочек приведены в табл 2.

Калибровка плавких вставок предохранителей

Плавкие предохранители выбирают по следующим условиям:

3.1. По номинальному напряжению . Номинальное напряжение предохранителей U п p .ном. должно быть, как правило, равно номинальному напряжению электроустановки

U п p .ном. ≥ U уст.ном.

3.2. По номинальному току плавкой вставки . Номинальный ток плавкой вставки I пв.ном. должен быть выбран по следующим условиям:

Разница, необходимая для достижения 100%, очевидно, теряется при нагревании. Как только мы узнаем текущее значение, поглощенное нашим пользователем, мы приступим к размеру источника питания. Другими словами, необходимо выбрать секционный кабель, достаточный для обеспечения требуемой энергии с надежностью, внося минимальное значение утечки.

Падение напряжения рассчитывается с использованием обычного закона Ома. Чтобы применить известный отчет, мы должны знать значение сопротивления проводника. Вы спросите меня: какое значение должно иметь дельта? Давайте рассмотрим практический пример, чтобы мы могли обобщить то, что мы только что разоблачили.

I пв. ном. ≥ К н ·I р.max.

I пв. ном. ≥ I max. /α

где: I р. max . – максимальный рабочий ток сети, защищаемый предохранителем;

I max . – максимальный ток сети при включении электроприемников, у которых пусковые токи значительно превышают номинальные;

К н ·– коэффициент надежности, принимаемый для линий, питающих лампы накаливания и нагревательные приборы 1,0; люминесцентные лампы – 1,25; лампы ДРЛ – 1,1.

Шестьдесят милливольт заработали лучше, чем ничего! Маленькая скобка: отношение для расчета падения напряжения является основополагающим для правильного измерения линии электропередачи брашпиля. Вы можете использовать предохранитель или магнитотермический автоматический выключатель для защиты кабеля от сверхтоковых эффектов. Это превосходное защитное устройство имеет большое преимущество почти всегда восстанавливаться после его вмешательства без необходимости замены какой-либо детали. Вместо этого плавкий предохранитель «жертвуется» для защиты нашего завода и после его благородной работы его нужно будет заменить.

α – коэффициент, зависящий от пускового режима защищаемых электродвигателей и типа плавкого предохранителя.

При защите линии, к которой подключен один двигатель

I max . =К i I эд.ном.. = I пуск.

где К i – кратность пускового тока двигателя.

При защите предохранителем линии, к которой присоединено несколько приемников:

Поскольку мы говорим в основном о автомобильных системах, будет рассмотрен только случай предохранителя. Их стоимость, включая необходимый держатель предохранителей, не сопоставима с стоимостью автоматического выключателя. Чтобы правильно измерить предохранитель, чтобы получить защиту кабеля от недостатков по току, необходимо знать как минимум две переменные.

Соответствует максимальному значению тока, которое может протекать внутри кабеля при определенной комнатной температуре и при определенных условиях установки. Любой проводник будет сопротивляться определенному сопротивлению току, рассеивая часть протекающей в нем энергии. Важно, чтобы температура проводника не превышала максимального значения, допускаемого изоляционным покрытием проводника. Даже условия укладки влияют на рабочую температуру: воздухонепроницаемый проводник будет охлаждаться более эффективно, чем проводник, расположенный внутри трубки.

где K o – коэффициент одновременности;

– сумма рабочих токов всех приемников за исключением одного, у которого разность между пусковым и номинальным токами наибольшая

I пуск. – пусковой ток исключенного из суммы двигателя.

При выборе плавких вставок безынерционных предохранителей (ПН, НПН, НПР) для защиты короткозамкнутых электродвигателей с мягкими условиями пуска (длительность пуска 2. 5 с) α = 2,5; с тяжелым режимом пуска α = 1,6; для малоинерционных предохранителей (ПР-2) при легком режиме пуска α = 3,0; при тяжелом α = 2,0; при частых пусках (15 и более в час) двигателей с легким режимом пуска плавкие вставки нужно выбирать как для тяжелого режима.

В жгуте проводов центральный проводник перегреется больше, чем периферийные проводники. Вне этого предела изолятор смягчает деформацию. Ухудшение часто необратимо и делает кабель опасным. На этом этапе требуется обычный практический пример, который стоит тысячи слов. Мы стараемся измерить линию электропитания и предохранитель защиты воздушного компрессора, который имеет следующие характеристики.

Напряжение 12 В; — выходная мощность 650 Вт; — выход 0, 82. Условия установки следующие. Затем мы измеряем линию электропередач с использованием метода проверки падения напряжения. Полученное значение округляется до 25 мм2, имеется первый коммерческий разрез.

Предохранители, выбранные по этим условиям, защищают короткозамкнутые двигатели только от коротких замыканий.

Ток плавкой вставки предохранителя ПКТ-10 кВ для защиты трансформаторов выбирается по 3 условиям:

1) при отстройке от рабочего максимального тока

I пв.ном. ≥ К н ·I р. max .ВН.

где К н ·= 1,25 – коэффициент надежности;

Это первое коммерчески доступное значение, которое имеет ток выше, чем у нашего компрессора. Посмотрим, защищает ли предохранитель кабель. И просто чтобы вы знали, что если бы температура в помещении была немного выше, вам пришлось бы взять 35-миллиметровый кабель.

Вышеуказанный метод расчета является «школьным», упрощенным и избыточным. Это расчеты, которые производятся при измерении кабеля, предназначенного для завода, который должен работать на полную нагрузку 24 часа в сутки, 365 дней в году, по крайней мере, 25 лет.

Короче говоря, если вы используете этот метод, вы обязательно будете часть разума. Технически правильный подход к проблеме уменьшения сечения кабеля — с преимуществами по весу, занимаемой площади и лучшей работе с кабелем — это выбор проводников с высококачественными материалами. Изолированный кабель из силиконовой резины идет еще дальше. Остерегайтесь: уверены ли мы, что то, что лежит вокруг кабелей, может выдерживать такие температуры?! Как сам термин предполагает, коммутатор — это устройство, способное прерывать электрическую цепь.

2) при отстройке от броска тока намагничивания трансформатора при его включении под напряжение

I пв.ном. ≥ 1,5. 2,0·I т.ном.

3) при отстройке от кратковременного тока при пуске крупных электродвигателей.

Если эти расчеты не производятся, значения токов плавких вставок выбирается по мощности трансформаторов по табл. 18.8 (при U с.ном. = 10 кВ).

С помощью переключателя можно активировать и деактивировать любого электрического пользователя по своему усмотрению. Переключатели обычно управляются с помощью небольшого рычага, скольжения или наклона. Элемент управления может быть выполнен из пластика или металлического материала. В любом случае элемент управления электрически изолирован от внутренних компонентов переключателя, а контакт пальцев с ним не является источником опасности.

Функция прерывания обычно получается с помощью двух контактов: одного фиксированного и одного мобильного. Когда мобильный контакт отделен от неподвижного контакта, электрическая проводимость отсутствует, и наш пользователь не активен, и в этом случае, в отличие от гидравлической терминологии, принятой для крана, говорят, что переключатель открыт или выключен. Когда подвижный контакт соединен с неподвижным контактом, электрическая проводимость и пользователь, подключенный к выключателю, активируется исполнительным элементом.

S т.ном. кВА
I пв.ном., А

3.3. По селективности защиты.

Для проверки селективности действия плавких предохранителей, а также для согласования их с работой релейной защиты составляют карты селективности. При установке однотипных предохранителей напряжением до 1000 В селективность будет соблюдена, если плавкие вставки каждых двух последовательно включенных предохранителей отличаются не меньше, чем на две ступени по шкале номинальных токов плавких вставок, а предохранителей высокого напряжения с кварцевым заполнителем – на одну ступень. Технические данные предохранителей до 1000 В приводятся в табл. 5.2. и на рис. 5.1, 5.2., с. 28-30 , а выше 1000 В с, 206-210 .

Когда переключатель находится в этом состоянии, он определяется как закрытый или включен. Реле представляет собой особый тип переключателя, в котором элемент управления состоит из электромагнита, способного притягивать или отпускать небольшой металлический рычаг. Металлический рычаг механически соединен с подвижным контактом переключателя с помощью изоляционного соединения, Когда электромагнит питается от электрической энергии, он привлекает якорь, который в свою очередь заставляет выключатель закрываться.

Когда электромагнит отключается, крутящий момент возвращается в исходное положение благодаря наличию пружины. Схема, подключенная к контакту реле, называется главной или силовой цепью. Единица, подключенная к электромагниту реле, обозначается вспомогательной или командной схемой. Очень часто электромагнит называют катушкой, такой же, как металлический сердечник, на который намотано несколько слоев провода проводов медь в качестве катушки.

3.4. По предельно отключаемому току предохранителя.

где I пр.откл.. – предельно отключаемый ток ;

I» – сверхпереходный ток короткого замыкания в месте установки предохранителя.

Плавкие вставки на стороне выше 1000 В проверяют на селективность с аппаратом защиты со стороны 0,4. кВ .

3.5. Проверка выбранного предохранителя на срабатывание при токах короткого замыкания.

Для управления электромагнитом реле обычно используется ручное управление, поэтому вы задаетесь вопросом, почему это осложнение. Проще использовать коммутатор напрямую, чтобы командовать нашим пользователем, а не тянуть реле, которое в конечном итоге будет однако управляется простым переключателем? Ответ — нет, вернее, не всегда.

Электрическая цепь всегда пересекается определенным количеством тока. Существуют переключатели, способные выдерживать токи в диапазоне от некоторой доли амперсов до нескольких тысяч. Чем больше ток, который может выдержать коммутатор, тем больше его размер и больший участок кабелей, которые будут подключены к нему.

Выбранный предохранитель проверяется на срабатывание при минимальном токе короткого замыкания и надежное отключение линии. В сетях 380/220 В такой ток вытекает при однофазном коротком замыкании в конце линии. Согласно требований ПУЭ:

или коэффициент чувствительности

Не всегда возможно устанавливать переключатели для работы с большими токами в удобных местах. удобно размещать соединительные кабели высокого сечения в месте установки коммутатора. Чтобы сделать подходящий пример для внедорожного мира, попробуйте подумать о том, что переключатель, который может разбить ток от 400 А до 12 В, помещается на приборную панель и пытается представить размер проводов, которые должны быть подключены к нему!

В этих случаях используется реле. Преимущество этого «полезного» устройства заключается в стратегическом размещении: вблизи источника питания или рядом с пользователем для подачи или в другом удобном месте. Высоковольтные проводники подключаются к контакту питания реле без необходимости намотки или блокировки драгоценных пространств. Схема управления реле или электромагнит может питаться двумя проводниками малого сечения, потому что электромагнит будет поглощать очень малое количество тока в несколько десятков миллисекунд.

3.6. Плавкая вставка должна перегорать за 10 с. при токе, превышающем номинальный ток плавкой вставки в 2,5 раза. Существует связь между номинальным током плавкой вставки и диаметром медной проволоки d, мм;

Два небольших провода могут быть легко перемещены в место, где будет расположен переключатель. На коммутатор будет влиять очень маленький ток, поэтому он будет небольшим по размеру и может быть размещен более легко. Как указано в предыдущем параграфе, это лишь одно из преимуществ, предоставляемых реле. Есть и другие, которые долго будут перечисляться здесь. На данный момент известно, что есть контрольные реле, силовые реле, защитные реле, измерительные реле, реле отпуска, аварийные реле, вакуумные реле, реле в атмосфере инертного газа и т.д. поверьте мне, есть достаточно материала, чтобы написать книгу.

Желательно проверить эту величину на стенде. Подавая ток в 2,5 раза больше I пв.ном. ,она должна расплавиться за 10 с. Диаметр медной проволоки определяется ориентировочно:

где I пв.ном. – номинальный ток плавкой вставки, А.

После чего желательна также проверка вобранного диаметра на время сгорания плавкой вставки. Подбор или калибровка предохранителя производится до тех пор, пока время перегорания будет не более 10 с, при I=2,5 I пв.ном Имеются таблицы диаметра медной проволоки для замены предохранителей с различным значением I пв.ном.

Это также может быть полезно, когда вы не хотите приводить в действие потенциально опасное напряжение. Когда катушка реле не находится под напряжением, контакты могут нормально открываться или нормально закрываться. Комбинация нормально разомкнутого контакта с нормально замкнутым имеет название переключателя или переключателя. Другими словами, есть два фиксированных контакта, между которыми подвижный контакт перемещается через электромагнит.

Это последнее, альтернативно и никогда не может одновременно, может соприкасаться с одним из двух фиксированных элементов. Из данных, приведенных в следующей таблице, можно выбрать сечение проводника в зависимости от мощности и тока потребителя, а также подходящий предохранитель для соответствующей схемы тока.

Для защиты электрической проводки и дорогостоящей радиоаппаратуры от короткого замыкания, бросков тока в питающей сети и обеспечения безопасной эксплуатации электроприборов широко используются плавкие вставки – предохранители. Они выпускаются разных конструкций, типоразмеров и на любые токи защиты. Квартирную электропроводку раньше тоже защищали исключительно с помощью плавких предохранителей, установленных в пробки. В настоящее время для защиты электропроводки применяются более надежные многоразовые приборы защиты от коротких замыканий – автоматические выключатели . В электроприборах же, более лучшей защиты от коротких замыканий, чем плавкий предохранитель пока ничего не придумали. Особенно актуально применение плавких предохранителей в автомобилях, так как они являются единственным надежным и дешевым средством защиты от короткого замыкания.

Пример выбора сечения проводника. Под условием задачи шнур питания будет помещен в пластиковый кабельный канал, что эквивалентно скрытой установке. Поэтому при выборе секции проводника мы указываем на столбец «скрытая установка», подкласс «медь». Требуемое поперечное сечение проводника составляет 4 квадратных мм. Предохранители в основном разделены на 2 типа: предохранители и предохранители.

Они предназначены для короткого замыкания для отключения от питания защищаемого контура. Самый мощный предохранитель защищает и отключает питание всей приборной панели, после чего электрическая установка делится на разные токовые цепи, питающие отдельных потребителей. Эти токовые цепи защищены отдельными предохранителями в соответствии с установленной мощностью. Поэтому позвольте мне сначала объяснить, что означает сила и как она связана с током, который проходит через кабели. Поскольку напряжение в нашей сети составляет 220 В, мы можем быстро рассчитать ток каждого электрического прибора.

Условное графическое обозначение плавкого предохранителя

Условное графическое обозначение плавкого предохранителя на схемах похоже на обозначения сопротивления, и отличается только тем, что через середину прямоугольника линия проходит не разрываясь. Рядом с условным обозначением обычно пишется и буквенное обозначение Пр. или F. Иногда на схемах просто пишут thermal fuse или fuse. После буквы часто указывают ток защиты предохранителя, например F 1 А, обозначает, что в схеме установлен предохранитель на ток защиты 1 ампер.

При эксплуатации предохранители выходят из строя, и их приходится заменять новыми. Считается, что предохранители ремонту не подлежат. Но если к делу ремонта подойти грамотно, то практически любой предохранитель можно с успехом отремонтировать и использовать повторно. Ведь корпус предохранителя остается целым, а перегорает только тонкая калиброванная проволока, размещенная внутри корпуса. Если перегоревшую проволоку заменить на такую же, то предохранитель сможет служить дальше. При этом технические характеристики отремонтированного предохранителя не будут уступать новому.

Принцип работы предохранителя на видеоролике

При прохождении электрического тока меньше предельно допустимого, калиброванная проволока, соединяющая контакты предохранителя, нагревается до температуры около 70˚С. В случае превышения тока номинала предохранителя, проволока начинает нагреваться сильнее и при достижении температуры плавления металла, из которого она сделана – расплавляется, электрическая цепь разрывается, и течение тока прекращается. Поэтому предохранитель и назвали плавким или плавкой вставкой. Видеоролик представлен в замедленном виде, для того, чтобы было хорошо видно, как происходит перегорание провода в предохранителе. В реальных условиях провод в предохранителе перегорает практически мгновенно.

Предохранитель защищает от превышения тока в цепи и не имеет значения напряжение питающей сети, в которой стоит предохранитель, это может быть и батарейка на 1,5 В, и автомобильный аккумулятор на 12 В или 24 В, сеть переменного напряжения 220 В, трехфазная сеть на 380 В. То есть Вы можете установить один и тот же предохранитель, например номиналом 1 А и в колодке предохранителей автомобиля, и в фонарике и в распределительном щите 380 В. Все типы плавких предохранителей отличаются только внешним видом и конструкцией, а работают по одному принципу, при превышении заданного тока в цепи, в предохранителе из-за нагрева расплавляется проволока.

Основных причин выхода из строя предохранителя две, из-за бросков питающего напряжения или поломки внутри самой радиоаппаратуры. Редко, но встречаются отказы предохранителя и по причине плохого его качества.

Считается, что предохранитель ремонту не подлежит. Но это не совсем так. В экстренной ситуации, когда под рукой нет запасного и, например, из-за отказавшегося работать авто в пути или усилителя, и срывается музыкальное сопровождение школьного бала или свадьбы, а все магазины уже закрыты, выбирать не приходится. При грамотном подходе можно с успехом восстановить для временного использования до замены новым перегоревший предохранитель, сохранив его защитные функции. Зачастую такие проблемы решают банальным замыканием контактов держателя предохранителя любой попавшейся проволокой, а еще хуже, просто вставляют вместо предохранителя гвоздь или кусок толстой проволоки. Такое решение может окончательно все испортить и способствует возникновению пожара.

Виды плавких предохранителей

Трубчатые плавкие предохранители

Предохранитель трубчатой конструкции представляет собой стеклянную или керамическую трубочку, закрытую с торцов металлическими колпачками, которые соединены между собой проволокой калиброванной по диаметру, проходящей внутри трубочки. Внешний вид трубчатых плавких предохранителей Вы видите на фотографии.

К колпачкам проволока приваривается точечной сваркой или припаивается припоем. В предохранителях, рассчитанных на очень большие токи, часто полость внутри трубочки заполняют кварцевым песком.

Автомобильные плавкие предохранители

Предохранители в автомобилях выходят из строя очень редко. Обычно только в случаях, когда отказывает оборудование. Чаще всего при перегорании лампочек у фар . Дело в том, что когда обрывается нить накаливания у лампочки, образуется Вольтова дуга, нить при этом сгорает и становится короче, сопротивление резко уменьшается и величина тока многократно увеличивается. Бывает, плавкий предохранитель в авто сгорает и при заклинивании стеклоочистителей. Реже при коротких замыканиях в электропроводке. На фотографии Вы видите широко применяемые автомобильные плавкие предохранители ножевого типа. Под каждым предохранителем приведен ток его защиты в амперах.

Перегоревший предохранитель в авто положено заменять предохранителем такого же номинала, но можно его и отремонтировать, заменив перегоревший в предохранителе провод медным соответствующего диаметра. Напряжение бортовой сети автомобиля значения не имеет. Главное – соответствие тока защиты. Если трудно определить номинал сгоревшего авто предохранителя, то можно воспользоваться цветовой маркировкой.

Цветовая маркировка автомобильных предохранителей

Формула для расчета диаметра проволоки предохранителя
по мощности электроприбора

Мощность часто указывают на этикетках, приклеенных на изделиях. Если на изделии указана потребляемая мощность, то можно рассчитать номинальный ток предохранителя по ниже приведенной формуле.

Каждый электрик должен знать:  Подгорает левая пробка на счётчике

где I nom – номинальный ток защиты предохранителя, А; P max – максимальная мощность нагрузки, Вт; U – напряжение питающей сети, В.

Но гораздо удобнее воспользоваться готовыми данными из таблиц. Обратите внимание, первая таблица служит для выбора номинала предохранителя изделий, питающихся от бытовой электросети 220 В, а вторая, для изделий, используемых в автомобилях с напряжением бортовой сети 12 В.

Таблица для выбора номинала предохранителя в зависимости от потребляемой мощности электроприбора при питающем напряжении 220 В

Рассмотрим на примере как выбирать предохранитель.
Телевизор перестал работать после грозы. Определено, что сгорел предохранитель. Номинал его не известен. На этикетке задней крышки написано, что потребляемая мощность составляет 120 Вт, бывает, что пишут и 120 ВА. Это обозначение одной и той же мощности, но по стандартам разных стран. По таблице получается, что для электроприборов с максимальной потребляемой мощностью 120 Вт (ближайшее значение 150 Вт) является предохранитель на 1 А.

Методика подбора предохранителя для защиты бортовой электропроводки автомобиля ничем не отличается от выбора для бытовой электропроводки 220 В.

Таблица для выбора номинала предохранителя в зависимости от потребляемой мощности электроприбора при питающем напряжении 12 В (бортовая сеть автомобиля)

Если после двух замен предохранители каждый раз перегорали, значит, поврежден электроприбор и требуется уже его ремонт. Попытка установить предохранитель на больший ток может только нанести еще дополнительный вред изделию вплоть до не ремонтопригодности.

Калькулятор для расчета тока предохранителя

Если в таблицах нет данных для Вашего случая, например, напряжение питания изделия составляет 24 В или 110 В, то можете самостоятельно с помощью приведенного ниже онлайн калькулятора выполнить расчет.

При расчете на калькуляторе Вы получите точное значение тока. Для надежной работы предохранителя необходимо, чтобы его номинал был не менее чем на 5% больше. Например, если получено расчетное значение тока 1 А, то нужно брать предохранитель большего ближайшего номинала из стандартного ряда, то есть 2 А.

Иногда попытки определить номинал предохранителя считыванием информации не получается. На электроприборе надписей нет, на предохранителе не читаемая маркировка. При наличии амперметра, и опыта работы с ним, то вынув предохранитель и подключив амперметр к контактам колодки, в котором был установлен предохранитель, можно измерять ток и тем самым определить его номинал. Но тут есть подводный камень. Если предохранитель вышел из строя из-за неисправности электроприбора, то ток может быть на много больше, чем должен быть, в дополнение можно еще и вывести из строя измерительный прибор.

Расчет диаметра проволоки плавкого предохранителя

Для ремонта предохранителя необходимо заменить перегоревшую проволоку. При производстве предохранителей на заводах используют, в зависимости от величины тока и быстродействия, калиброванные серебряные, медные, алюминиевые, никелиновые, оловянные, свинцовые и проволоки из других металлов. Для изготовления предохранителя в домашних условиях доступна только красная медь калиброванного диаметра. Все электропровода сделаны из меди, и чем эластичней провод, тем тоньше в нем проводники и большее их количество. Поэтому вся ниже предложенная технология ориентирована на применение медной проволоки.

При выборе предохранителя для аппаратуры разработчики пользуются простым законом. Ток предохранителя должен быть больше максимально потребляемым изделием. Например, если максимальный ток потребления усилителя составляет 5 ампер, то предохранитель выбирается на 10 ампер. Первое, что необходимо найти на корпусе предохранителя его маркировку, из которой можно узнать, на какой ток он рассчитан. Часто величину тока пишут на корпусе изделия, рядом с местом установки предохранителя. Затем из ниже приведенной таблицы определить какого диаметра нужен провод.

Таблицы для выбора диаметра проволоки
в зависимости от тока защиты предохранителя

Для ремонта предохранителей на ток защиты от 0.25 до 50 ампер

0,25 0.5 1.0 2.0 3.0 5.0 7.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0
Диаметр проволоки, мм Медной 0.02 0.03 0.05 0.09 0.11 0.16 0.20 0.25 0.33 0.40 0.46 0.52 0.58 0.63 0.68 0.73
Алюминиевой 0.07 0.10 0.14 0.19 0.25 0.30 0.40 0.48 0.56 0.64 0.70 0.77 0.83 0.89
Стальной 0.32 0.20 0.25 0.35 0.45 0.55 0.72 0.87 1.00 1.15 1.26 1.38 1.50 1.60
Оловянной 0.18 0.28 0.38 0.53 0.66 0.85 1.02 1.33 1.56 1.77 1.95 2.14 2.30 2.45

Для ремонта предохранителей на ток защиты от 60 до 300 Ампер

Ток защиты предохранителя, Ампер 60 70 80 90 100 120 160 180 200 225 250 275 300
Диаметр проволоки, мм Медной 0.83 0.91 1.00 1.08 1.16 1.31 1.59 1.72 1.84 1.99 2.14 2.28 2.41
Алюминиевой 1.00 1.10 1.22 1.32 1.42 1.60 1.94 2.10 2.25 2.45 2.60 2.80 2.95
Стальной 1.80 2.00 2.20 2.38 2.55 2.85 3.20 3.70 4.05 4.40 4.70 5.0 5.30
Оловянной 2.80 3.10 3.40 3.65 3.90 4.45 4.90 5.80 6.20 6.75 7.25 7.70 8.20

Формула для расчета диаметра медной проволоки для предохранителя

Для определения более точных значений диаметра медной проволоки для ремонта предохранителя, или если требуется предохранитель на ток защиты, значения которого нет в таблице, можно воспользоваться ниже приведенной формулой.

где I пр – ток защиты предохранителя, А; d – диаметр медной проволоки, мм.

Как измерять диаметра проволоки

Диаметр тонкого провода лучше всего измерять микрометром . Если под рукой нет микрометра для измерения диаметра проволоки, то можно воспользоваться обыкновенной линейкой.

Нужно намотать 10-20 витков к витку проволоки на линейку, поделить количество закрытых миллиметров на количество намотанных витков. Получите диаметр. Например, у меня намотано 10 витков провода, и они закрыли 6,5 мм. Делим 6,5 на 10. Диаметр провода получается равным 0,65 мм. 0,05 мм занимает изоляция. Следовательно, реальный диаметр составляет 0,6 мм. Такой провод подойдет для изготовления предохранителя на 30 А. Провод мотал толстый для большей наглядности. Чем больше намотаете витков на линейку, тем точнее будет результат измерений. Нужно наматывать не менее одного сантиметра. Если в наличии проволока малой длины, то намотайте ее на любой стержень, например, отвертку, зубочистку или карандаш, а линейкой измерьте ширину намотки.

Ремонт плавкого предохранителя своими руками

Ремонт можно выполнить тремя способами. Рассмотрим, как это делается на примере трубочного плавкого предохранителя. Автомобильные предохранители восстанавливаются аналогичным способом.

Первый самый простой. Проволока зачищается до блеска и наматывается на каждую чашку по несколько витков, затем предохранитель вставляется в держатель. Этот способ не надежен, и воспользоваться им можно, как временной мерой. Благодаря своей простоте он позволяет оперативно проверить исправность электроприбора. Если при включении проволока расплавилась, значить дело не в предохранителе, и требуется более квалифицированный ремонт.

Второй способ несколько сложней. Но тоже не требует применения пайки. Нужно прогреть по очереди чашки зажигалкой или на газовой плите и удерживая через ткань руками снять их со стеклянной трубки. Нагревать можно и паяльником. Внутри чашки для хорошего контакта нужно тщательно очистить от остатков клея.

Продеть зачищенную от изоляции проволоку через трубку по диагонали, загнуть ее концы вдоль трбуки и надеть на место чашки. Плавкий предохранитель отремонтирован.

Третий способ по сути такой же, как и первых два. Но отремонтированный предохранитель практически не отличается от нового. Ремонт выполняется следующим образом.

Заводская калиброванная проволока при изготовлении предохранителя продевается в отверстия в торцах чашек и фиксируется припоем. Для того, чтобы вставить новую проволоку необходимо паяльником разогреть торцы чашек и зубочисткой или заточенной деревянной палочкой освободить отверстия в торцах чашек от припоя. Далее выполнить описанную выше заводскую операцию.

Бывает отверстия в чашках очень маленького диаметра и сложно их очистить от припоя. Тогда при наличии технической возможности проще просверлить отверстия сверлом диаметром 1-2 мм или расширить граненым шилом

Предложенная технология ремонта предохранителей и плавких вставок с успехом может быть применена для восстановления практически любых типов плавких предохранителей.

Как сделать индикатор перегорания предохранителя своими руками

В продаже есть автомобильные предохранители с индикатором их неисправности. В корпусе предохранителя вмонтирована миниатюрная лампочка накаливания или светодиод, начинающие светиться при перегорании предохранителя. Такой индикатор перегорания авто предохранителя можно собрать своими руками по ниже предложенной на фотографии электрической схеме.

Для этого достаточно подсоединить параллельно контактам предохранителя, любой светодиод VD1 через токоограничивающий резистор R1 или миниатюрную лампочку, рассчитанную на напряжение 12 В. Индикатор перегорания предохранителя можно смонтировать как в корпусе предохранителя, так и установить на колодке его держателя. Второй вариант предпочтительнее, так как при замене предохранителя индикатор останется на месте. Индикатор не будет светить при перегоревшем предохранителе, если не подключена нагрузка.

Приведенная на фотографии схема индикатора перегорания предохранителя или срабатывании автоматического выключателя с успехом может работать и в бытовой электросети при питающем напряжении 220 В.

Достаточно увеличить номинал резистора R1 до 300-500 кОм и для защиты светодиода VD1 от пробоя обратным напряжение дополнить схему диодом VD2 любого типа, рассчитанного на обратное напряжение не менее 300 В. Подойдет, например, широко применяемый отечественный диод КД109Б или импортный 1N4004.

Для сети переменного тока 220 В можно индикатор перегорания предохранителя или автоматического выключателя сделать на неоновой лампочке.

Выбор и проверка плавких предохранителей по условиям длительной эксплуатации и пуска

Плавкие предохранители предназначены для защиты электрических установок от токов короткого замыкания и токов перегрузки. Простая конструкция, небольшие размеры и сравнительно-малая стоимость обусловили широкое применение плавких предохранителей в электроустановках, особенно при напряжении до 1000 В. В отличие от других видов защитных устройств предохранители с плавкой вставкой совмещают в себе функцию выявления повреждений и функцию отключения поврежденного участка.

Однако плавким предохранителям присущи и серьезные недостатки, ограничивающие область их применения, к числу которых относятся: большой разброс срабатывания плавкой вставки—до 50 % по току, необходимость замены плавкой вставки или всего предохранителя после однократного срабатывания, возможность работы двигателя на двух фазах при перегорании предохранителя на одной фазе и др.

Плавкие предохранители выбирают по следующим параметрам:

по номинальному напряжению; номинальное напряжение предохранителей

Uн.пр. должно быть, как правило, равно номинальному напряжению электроустановки Uн.уст., гдеих устанавливают:

по предельно отключаемому току предохранителя

Iпр. откл. I ”

где Iпр.огкл—предельно отключаемый ток (табл. 5.2);

I»—сверхпереходный ток к. з. в месте установки предохранителя;

по номинальному току плавкой вставки; номинальный ток плавкой вставки Iв должен быть по возможности наименьшим при соблюдении следующих условий:

где Iр.max — максимальный рабочий ток цепи, защищаемой предохранителем; Imax —максимальный ток цепи при включении электроприемников, у которых пусковые токи значительно превышают номинальные;

kн— коэффициент надежности, принимаемый для линий, питающих лампы накаливания и нагревательные приборы — 1, люминесцентные лампы — 1,25, лампы типа ДРЛ — 1,1; — коэффициент, зависящий от пускового режима защищаемых электродвигателей и типа плавкого предохранителя.

При защите предохранителем линии, к которой подключен один двигатель,

где ki— кратность пускового тока двигателя;

Iн — номинальный ток двигателя, А.

При защите плавкими предохранителями линии, к которой присоединены более пяти двигателей, ток плавной вставки определяют но условию

При защите предохранителем линии, к которой присоединены до пяти двигателей,

где ко — коэффициент одновременности; Ip(n-1) сумма рабочих токов всех двигателей, за исключением одного, у которого разность между пусковым и номинальным токами наибольшая; Iп — пусковой ток исключенного из суммы двигателя.

При выборе плавких вставок безинерцнонных предохранителей (ПН, НПН, ППР) для защиты коротко-замкнутых электродвигателей с легким режимом пуска (длительность пуска 2. 5 с) = 2,5 и с тяжелым режимом пуска = 1,6; для малоинерциониых предохранителей (ПР2) при легком режиме пуска = 3 и при тяжелом режиме = 2. При частых пусках (15 и более в час) двигателей с легким режимом пуска плавкие вставки нужно выбирать, как для тяжелого режима. Следует отметить, что предохранители, выбранные по условиям (4.4) и (4.5), защищают короткозамкнутые двигатели только от коротких замыканий;

по селективности защиты; для проверки селективности действия плавких предохранителей, а также для согласования их работы с работой релейной защиты составляют карты селективности.

Для выбора плавких предохранителей по условию селективности можно использовать метод согласования характеристик предохранителей. В основу этого метода положен принцип сопоставления площадей сечений плавких вставок с учетом того, из какого материала они изготовлены (9).

При установке однотипных предохранителей напряжением до 1000 В селективность будет соблюдена, если плавкие вставки каждых двух последовательно включенных предохранителей отличаются одна от другой не менее чем на две ступени по шкале номинальных токов плавких вставок, а при установке высоковольтных предохранителей с кварцевым заполнителем — на одну ступень.

Технические данные предохранителей приведены в таблице 8.2.

На рисунке 8.1 показаны ампер-секундные характеристики плавких предохранителей типа ПН2, а на рисунке 7.2 – предохранителей типа НПР и НПН.

Рис. 8.1. Ампер-секундные характеристики плавких предохранителей типа ПН2

Рис. 8.2. Ампер-секундные характеристики плавких предохранителей типа НПР и НПН

Таблица 8.1 — Технические данные плавких предохранителей напряжением до 1000 В

Тип и конструкция предохранителя Номинальный ток патрона, А Номинальный ток плавкой вставки, А Предельно отключаемый ток-действующее значение тока КЗ I” (кА) при напряжении, В
Площадь сечения плавкой вставки, мм 2 I габарит, 220/380 II габарит, 380/550
ПР2 Закрытый патрон разборный, без заполнителя, вставка фигурная из цинка 1,2/0,8 5,5/1,8 11/6,0 11/6 11/6 15/13 0,8/0,7 4,5/3,5 13/11 13/11 13/11 23/30
ПН2 Закрытый, патрон разборный с заполнителем, вставка из листовой меди с оловянным шариком __ __ __ __ -/50 -/40 -/25 -/25
НПН Закрытый, патрон неразборный, с заполнителем, вставка из меди с оловянным шариком __ __ -/10 -/10
НПР Закрытый, патрон разборный с заполнителем, вставка из меди с оловянным шариком __ __ __ __

Таблица 8.1. Продолжение

Тип и конструкция предохранителя Номинальный ток патрона, А Номинальный ток плавкой вставки, А Предельно отключаемый ток-действующее значение тока КЗ I” (кА) при напряжении, В
Площадь сечения плавкой вставки, мм 2 I габарит, 220/380 II габарит, 380/550
ПРС Однополюсный, резьбовой, разборный, с заполнителем __ __ __ __ __ __
ПП31 С токоведущими частями из алюминия ПП31-29 ПП31-33 ПП31-35 ПП31-39 4;6;8;10;12;16;20;25;32; 40;50;63 50;63;80;100;125;160 125;160;200;250 200;250;320;400;500;630 __ __ __ __ __ __ __ __

Пример 8.1

Выбрать предохранители и плавкие вставки к ним для защиты электрической сети 380/220 В. (рис. 8.1) прокладываемой в механической мастерской. Все двигатели с легким режимом пуска и включаются поочередно. ОТ РЩ3 питаются линии освещения с люминисценными лампами Л4 с суммарной мощностью ламп Р=4кВт и Л5 с суммарной мощностью ламп Р=6.6 кВт. Коэффициент мощности осветительной нагрузки 0,9, для остальных линий kод=1. Действующее значение тока короткого замыкания на вводе мастерской Остальные данные приведены в расчетной таблице.

Рис. 8.1. К примеру 8.1. Выбор предохранителей и плавких вставок к ним

Необходимые для расчета данные:

Двигатель: М1 – Рн = 22 кВт; Iн = 41,4 А; кi = 7,0; кз = 0,85; Iр.max = 35 А.

Двигатель: М2 – Рн = 3 кВт; Iн =6,7 А; кi = 6,5; кз =1; Iр.max =6,7 А.

Двигатель М3 – Рн = 5,5 кВт; Iн =11,5 А; кi = 7,0; кз = 0,9; Iр.max = 10,3 А.

Решение: По формуле I = Р/( ) определяем токи, протекающие по линиям Л4 и Л5, по формуле Iр.max = Iн кз — рабочие токи линий

и по формуле Iп. = Iн кi з — пусковые токи двигателей.

Определяем токи плавких вставок для линии и выбираем плавкие предохранители.

Принимаем Iв=120 А, предохранитель ПН2-250.

Линия 2. Iв 43,5/2,5= 17,4 А; Iв =20 А, предохранитель НПН-50.

Линия 3. Iв 80,5/2,5-=32,2 А; Iв=35 А, предохранитель НПН-60.

Линия 5. Iв 1,25×14= 17,5; Iв= 20 А, предохранитель ПРС-20.

Принимаем Iв =150 А, предохранитель ПН2-250.

Принимаем Iв=30 А, предохранитель ПН2-100.

По условию селективности с защитной линии 6 принимаем Iв=200 А, предохранитель ПН2-250.

По предельно допускаемым токам не проверяем, так как они во много раз больше тока короткого замыкания на вводе (см. табл.4.2).

Плавкие предохранители: описание, назначение, типы

Плавкие предохранители — два основных типа

В теории и практике плавкие предохранители разделяются на два основных типа. Такое деление происходит по величине напряжения рабочей сети, для которой предназначен предохранитель. Разделяют низковольтные и плавкие высоковольтные предохранители.

Низковольтные предохранители рассчитаны на напряжение до 1000 Вольт. Маркируются плавкие низковольтные предохранители, как ПН или ПР.

Предохранители ПН это низковольтные предохранители с мелкозернистым наполнителем вокруг плавкой медной вставки. Рассчитаны предохранители ПН до тока 630 Ампер.

Предохранители ПР рассчитаны на токи 15-60 ампер. Они проще предохранителей ПН, но все равно гасят электрическую дугу при коротком замыкании.

Применение предохранителей ПН и ПР

Предохранители ПН и ПР предназначены для защиты кабельных и воздушных линий электропередач и защиты электрических машин. Устанавливаются предохранители во вводных, вводно-распределительных щитах, в различных сборках. С помощью предохранителей защищаются силовые трансформаторы со стороны высокого напряжения.

В быту вы сталкивались с плавкими предохранителями этого типа, если делали электрику своими руками в доме или на даче. В зависимости от мощности потребления, на вводе электропитания в дом, ставится вводной щит с плавкими предохранителями. Уже после вводного щита, устанавливается распределительный щит для разделения электропроводки на группы и защитой групп розеток и групп освещения автоматами защиты.

Устройство предохранителей

Основой предохранителя является так называемая плавкая вставка. Именно она перегорает при перегрузке или коротком замыкании. Для погашения дуги, образующейся при перегорании вставки, вставку окружают дугогасящим приспособлением. В предохранители ПН это камера с мелкозернистым кварцевым песком. В предохранители ПР это фибровый трубчатый патрон.

Плавкие предохранители пробочного типа

Отдельно хочется остановиться на предохранителях пробочного типа.

Вы их могли встречать, в старых, да и не очень старых, квартирах и домах. По конструкции это стационарно установленный патрон, в который вворачивается плавкий предохранитель с цоколем. При аварийной ситуации пробка перегорает. В современном исполнении пробка может быть с кнопкой, которая является аналогом выключателя. После аварии, кнопка взводит предохранитель в рабочее положение.

Подключение плавкого пробочного предохранителя

В подключении пробочного предохранителя своими руками нет ничего сложного. У предохранителя две клеммы. На вводную клемму подключается фазный провод питания, на вторую фазный провод подающий питание в квартиру или дом.

Важно! Особенностью подключения плавкого пробочного предохранителя, является следующее. Если вы вывинтите пробку предохранителя, на рубашке патрона не должно быть напряжения.

Номиналы плавких предохранителей

Номиналы плавких предохранителей выбираются по наименьшим расчетным токам электросети или отдельных электрических цепей.

Если вы меняете плавкие предохранители на автоматические выключатели (АВ), то номинал АВ должен быть на шаг больше номинала предохранителя. Например, смотрите фото:

Примечания

Все плавкие предохранители, должны быть подписаны с указанием их номиналов и назначения.

Выбор плавких предохранителей

В наше время предохранители с плавкими вставками уходят уже в прошлое. В новых проектах предохранители практически не применяют, по крайней мере я не применяю))) Сегодня речь пойдет о том, на что следует обращать внимание при выборе плавкой вставки предохранителя.

Для защиты электрических сетей и электродвигателей могут быть использованы автоматические выключатели либо плавкие предохранители. О достоинствах и недостатках этих двух аппаратов я расскажу в другой раз.

Я не сторонник применения плавких предохранителей, но бывают ситуации, когда нужно выбрать плавкую вставку для предохранителя. В большинстве случаях трудностей возникнуть не должно. Основное условие это то, чтобы номинальный ток плавкой вставки был выше номинального тока защищаемой цепи и напряжение предохранителя совпадало с напряжением сети. Но что делать, если нам необходимо подобрать плавкую вставку предохранителя для защиты двигателя до 1кВ?

Как известно, у двигателей при пуске возникают большие пусковые токи. Если этим пренебречь, то наш предохранитель при пуске сразу перегорит. А этого не должно происходить!

В этом случае нужно руководствоваться п.5.3.56 ПУЭ.

Например, подберем предохранитель для двигателя (АИР100L2), который нарисован в шапке моего блога. Потребляемый ток 10,8А, Iп/Iн=7,5. Если бы не учитывали пусковой ток, то выбрали бы, например, ППН-33 с плавкой вставкой на 16А. Будем считать, что данный двигатель установлен на системе вентиляции и пуск у данного двигателя будет легким. Поэтому 10,8*7,5=81А – пусковой ток двигателя.

Отсюда следует, чтобы плавкая вставка не перегорела при пуске данного двигателя, номинальный ток предохранителя должен быть более 32,4А, т.е. ППН-33 с плавкой вставкой на 36А.

Ниже представлена таблица рекомендуемых значений номинальных токов плавких предохранителей для защиты силовых трансформаторов 6/0,4 и 10/0,4кВ.

Sт.ном. защищаемого тр-ра, кВА Iном, А
трансформатора на стороне предохранителя на стороне
0,4кВ 6кВ 10кВ 0,4кВ 6кВ 10кВ
25 36 2,4 1,44 40 8 5
40 58 3,83 2,3 60 10 8
63 91 6,05 3,64 100 16 10
100 145 9,6 5,8 150 20 16
160 231 15,4 9,25 250 31,5 20
250 360 24 14,4 400 50 40 (31,5)
400 580 38,3 23,1 600 80 50
630 910 60,5 36,4 1000 160 80

Для любителей жучков привожу таблицу соответствия диаметра медной проволоки и номинального тока плавкой вставки. Здесь вам понадобится штангельциркуль для измерения диаметра проволоки.

Номинальный ток вставки, А Число проволок Диаметр медной проволоки, мм
2 1 0,12
3 1 0,16
6 1 0,25
10 1 0,33
15 1 0,45
20 1 0,5
25 1 0,6
35 1 0,75
40 1 0,8
40 2 0,5
50 1 0,9
70 1 1,1
70 2 0,75
80 1 1,2
80 2 0,8
100 1 1,35
100 2 0,9

А вы часто применяете предохранители?

Плавкие предохранители

Плавкий предохранитель представляет собой однополюсный коммутационный аппарат, предназначенный для защиты электрических цепей от сверхтоков; действие его основано на плавлении током металлической вставки небольшого сечения и гашении образовавшейся дуги.

Ценными свойствами плавких предохранителей являются:

  • простота устройства и, следовательно, низкая стоимость;
  • исключительно быстрое отключение цепи при КЗ;
  • способность предохранителей некоторых типов ограничивать ток КЗ.

Следует, однако, указать, что:

  • характеристики предохранителей таковы, что они не могут быть использованы для защиты цепей при перегрузках;
  • избирательность отключения участков цепи при защите ее предохранителями может быть обеспечена только в радиальных сетях;
  • автоматическое повторное включение цепи после ее отключения предохранителем возможно только при применении предохранителей многократного действия более сложной конструкции;
  • отключение цепей плавкими предохранителями связано обычно с перенапряжениями;
  • возможны однополюсные отключения и последующая ненормальная работа участков системы.

Поэтому в электроустановках свыше 1 кВ предохранители имеют ограниченное применение; их используют в основном для защиты силовых трансформаторов, измерительных трансформаторов напряжения и статических конденсаторов.

Плавкий предохранитель состоит из следующих основных частей: изолирующего основания или металлического основания с изоляторами, контактной системы с зажимами для присоединения проводников, патрона с плавкой вставкой. Большинство предохранителей имеет указатели срабатывания той или иной конструкции.

Предохранители характеризуют номинальным напряжением, номинальным током и номинальным током отключения. Следует различать номинальный ток плавкой вставки и номинальный ток предохранителя (контактной системы и патрона). Последний равен номинальному току наибольшей из предназначенных к нему вставок. Для предохранителей переменного тока с номинальным напряжением от 3 до 220 кВ включительно установлены следующие значения номинальных токов:

Номинальные токи предохранителей, А. 8; 10; 20; 32; 40; 50; 80; 160; 200; 320; 400

Номинальные токи плавких вставок, А. 2; 3,2; 5; 8; 10; 16; 20; 32; 40; 50; 80; 160; 200; 320; 400

Номинальные токи отключения, кА. 2,5; 3,2; 4; 5; 6,3; 8; 10; 12,5; 16; 20; 25; 31,5; 40

Под номинальным током отключения следует понимать наибольшее допускаемое действующее значение периодической составляющей тока КЗ, отключаемого предохранителем при определенных условиях. Отечественные аппаратные заводы выпускают плавкие предохранители для напряжений до 110 кВ включительно.

Наибольшая температура частей предохранителя, заряженного любой из предназначенных для него плавких вставок, не должна превышать значений, указанных в табл.1 при температуре воздуха +40°С.

Таблица 1

Наибольшие допустимые температуры частей предохранителей

Защитные характеристики плавких предохранителей

Защитные характеристики представляют собой зависимости времени плавления tпл или времени отключения цени tот от соответствующих значений тока, неизменного во времени (рис.1).

Рис.1. Примерный вид защитных характеристик плавких предохранителей

Интервалы времени установлены в пределах от 0,01 с до 1 ч. Защитные характеристики предохранителей необходимы для координации их действия с действием других предохранителей и выключателей. Они могут быть получены только при испытании и сообщаются заводами-изготовителями по запросам. Как видно из рисунка, по мере увеличения номинального тока плавкой вставки характеристики смещаются вправо. Значение тока, при котором плавкая вставка предохранителя плавится в течение 1 ч, должно быть более 130% и менее 200% номинального тока вставки.

Каждый электрик должен знать:  Посвящение в радиоэлектронику (Поляков В. Т.)

Коммутационная способность предохранителей

Предохранитель должен отключать при наибольшем рабочем напряжении любой ток в пределах от тока, плавящею вставку в течение 1 ч, до номинального тока отключения независимо от момента начала КЗ, т.е. при любой асимметрии тока. При этом не должны иметь место разрушения патрона или повреждения частей предохранителя.

Газогенерирующие плавкие предохранители

Газогенерирующие плавкие предохранители (их называют также стреляющими предохранителями) предназначены для наружной установки в устройствах 35 и 110 кВ.

Рис.2. Патрон газогенерирующего плавкого предохранителя типа ПВТ-35

На рис.2 показан патрон предохранителя типа ПВТ-35 (предохранитель выхлопной для защиты силовых трансформаторов и линий напряжением 35 кВ). В корпус патрона 1 помещены трубки 2 и 3 из винипласта, соединенные между собой стальным патрубком 4, а также плавкая вставка 5, прикрепленная одним концом к токоведущему стержню 6, а вторым — к гибкому проводнику 7 с наконечником 8.

Рис.3. Газогенерирующий плавкий предохранитель типа ПВТ-35

Патрон устанавливается на основании предохранителя (рис.3), состоящем из цоколя 1, двух опорных изоляторов 2 с головками — верхней 3 и нижней 4 с зажимами для крепления проводников. На нижней головке укреплен контактный нож 5, снабженный пружиной и сцепленный с наконечником патрона. При перегорании плавкой вставки контактный нож освобождается и, откидываясь под действием пружины, тянет за собой гибкий проводник. Под действием дуги стенки винипластовых трубок выделяют газ, давление в патроне повышается и дуга гасится в потоке газа, вытекающего из патрона через нижнее отверстие, а также через клапан бокового отверстия патрубка. Срабатывание предохранителя сопровождается звуковым эффектом, похожим на ружейный выстрел. Гибкий проводник выбрасывается из патрона. Между контактным ножом и концом трубки образуется воздушный промежуток, обеспечивающий изоляцию в месте разрыва. Номинальный ток отключения предохранителя типа ПВТ-35 составляет 3,2 кА.

Кварцевые предохранители

Кварцевые предохранители изготовляют для напряжений 6, 10 и 35 кВ для внутренней и наружной установки. Они относятся к группе токоограничивающих предохранителей.

Рис.4. Патрон кварцевого предохранителя типа ПКТ-10

Патрон предохранителя типа ПКТ для напряжений 3-35 кВ (рис.4) представляет собой фарфоровую или стеклянную трубку 1, плотно закрытую металлическими колпачками 2. Внутри трубки помещена плавкая вставка 3 в виде одной или нескольких параллельно включенных тонких медных проволок. В нижнем колпачке предусмотрен указатель срабатывания предохранителя 4. Патрон заполнен мелким кварцевым песком.

Длина проволок и, следовательно, длина патрона определяются номинальным напряжением. Поскольку градиент восстанавливающейся электрической прочности промежутка в кварцевом песке относительно невелик, длина проволоки должна быть велика. Чтобы поместить ее в патроне, приходится навивать проволоку винтообразно.

Характеристики тугоплавких вставок из меди (температура плавления 1080°С) могут быть улучшены напайкой капель олова или свинца, температура плавления которых значительно ниже (соответственно 200 и 327°С). При расплавлении металла напайки он растворяет в себе медь, вследствие чего вставка быстро разрушается при температуре значительно более низкой, чем температура плавления основного материала вставки.

Свойства материала, наполняющего патрон токоограничивающего предохранителя, существенно влияет на работу последнего.

Наполнитель должен удовлетворять следующим требованиям:

  • отводить тепло от плавкой вставки в нормальном рабочем режиме;
  • не выделять газа под действием высокой температуры дуги;
  • обладать достаточной электрической прочностью после разрыва цепи.

Как показал опыт, этим требованиям в наибольшей мере отвечает кварцевый песок.

Процесс отключения цепи токоограничивающим предохранителем при КЗ протекает следующим образом. При большом токе тонкая проволока плавится и испаряется в течение долей полупериода почти одновременно по всей длине. Зажигается дуга. Вследствие высокой температуры газа в канале дуги образуется местное давление (давление в патроне практически не повышается).

Ионизованные частички металла выбрасываются в радиальном направлении в зазоры между песчинками кварца. Здесь они быстро охлаждаются и деионизуются. Сопротивление дуги увеличивается настолько быстро, что ток резко снижается, не достигнув своего максимального значения, а напряжение на дуговом промежутке повышается (рис.5).

Рис.5. Осциллограммы тока и напряжения
при отключении предохранителем типа ПКТ
тока 20 кА при напряжении 6 кВ

Как видно из осциллограммы, напряжение у зажимов предохранителя превышает напряжение сети вследствие появления ЭДС самоиндукции, направленной согласно с напряжением сети. Коммутационные перенапряжения, возникающие при отключении цепи плавкими предохранителями, не должны превышать следующих значений:

Номинальное напряжение, кВ. 3..6..10..20..35

Наибольшее допустимое перенапряжение по отношению к земле, кВ. 16..26..40..82..126

Для ограничения перенапряжений принимают различные меры: применяют вставки ступенчатого сечения по длине, что затягивает процесс их плавления и удлинения дуги; параллельно основным рабочим вставкам включают вспомогательные вставки с искровым промежутком. В последнем случае при расплавлении рабочих вставок и резком повышении напряжения пробивается искровой промежуток вспомогательной вставки, которая также сгорает. Максимальное напряжение при этом уменьшается.

Токоограничивающая способность кварцевых предохранителей

Токоограничивающая способность кварцевых предохранителей характеризуется зависимостью наибольшего мгновенного значения пропускаемого предохранителем тока от периодической составляющей тока КЗ. Характер этой зависимости показал на рис.6.

Рис.6. Характеристики токоограничения кварцевых предохранителей

Наклонная прямая iуд дает значение ударного тока, соответствующего току Iп0 при отношении X/R=15,7 (Тa=0,05с). Наклонные прямые, обозначенные imax, определяют наибольшие мгновенные значения тока, пропускаемого предохранителями с номинальными токами плавких вставок Iном1, Iном2, Iном3 и т.д. Как видно из рисунка, ограничение тока имеет место при отключаемом токе Iп0, превышающем некоторое минимальное значение, зависящее от номинального тока вставки. Чем меньше последний, тем заметнее токоограничивающее действие предохранителя.

Кварцевые предохранители для защиты измерительных трансформаторов напряжения типа ПКН имеют неограниченную отключающую способность и могут быть установлены в РУ 6, 10, 35 кВ станций, подстанций большой мощности. Они отличаются от обычных кварцевых предохранителей типа ПК материалом плавкой вставки, изготовляемой из константановой проволоки с четырехступенчатым сечением. При КЗ плавление проволоки происходит ступенями. При этом сопротивление четвертой ступени (относительно большого сечения) служит в основном для ограничения тока КЗ до значений, соответствующих номинальному току отключения предохранителей типа ПК.

Выбор плавких предохранителей

При выборе плавких предохранителей руководствуются следующими условиями.

1) Номинальное напряжение предохранителя должно соответствовать поминальному напряжению установки.

2) Номинальный ток вставки должен быть выбран так, чтобы она не расплавлялась в утяжеленном режиме, когда рабочий ток имеет наибольшее значение. Вставка не должна также плавиться в переходных режимах, например при включении силового трансформатора, когда броски намагничивающего тока достигают 8-10-кратного значения номинального тока трансформатора. У измерительных трансформаторов напряжения бросок намагничивающею тока достигает 150Iном. Наконец, номинальный ток вставки должен быть выбран так, чтобы обеспечить избирательности отключения при КЗ.

3) Номинальный ток отключена предохранителя не должен быть меньше периодической составляющей тока КЗ (действующего значения за первый период), т.е. Iоткл.ном≥Iп0

Значение наибольшего мгновенного тока, пропускаемого токоограничивающими предохранителями, не должно превышать допустимых токов аппаратов в защищаемой части сети.

Проверка соответствия номинала предохранителя утвержденной технической документации и фактической нагрузке

Номинал установленного предохранителя следует сравнить с но­миналом, указанным в утвержденной технической документации (принципиальной и монтажной схемах). Номиналы на корпусе и эти­кетке предохранителя, а также на схеме должны быть одинаковыми.

Проверка соответствия номинала предохранителя фактической на­грузке защищаемой им электрической цепи заключается в измерении фактической нагрузки и сравнении ее с номиналом установленного предохранителя.

Фактическая нагрузка (максимальный ток) предохранителя не должна превышать его номинального значения. В противном случае необходимо выяснить и устранить причину.

Фактическую нагрузку следует измерять, совмещая эту работу с заменой предохранителя по сроку, а также при перегорании предохра­нителя перед его установкой. Для измерения амперметр со шкалой значений не менее номинального тока предохранителя и с учетом рода тока подключить с лицевой стороны статива взамен изъято­го предохранителя. При измерении постоянного тока плюсовый вывод прибора подключают со стороны плюса батареи, а минусовый (вывод со звездочкой) — со стороны минуса батареи.

Фактическую нагрузку предохранителей, изъятие которых приво­дит к нарушению нормального состояния схем, когда для восстанов­ления приходится производить дополнительные действия, следует из­мерять без размыкания цепи. Для этого параллельно предохранителю с монтажной стороны подключить амперметр с помощью наконечни­ков типа «крокодил», а затем изъять предохранитель. Ток предохрани­телей, у которых нагрузка изменяется при работе определенных при­боров, измерить при работе этих схем.

Характеристика тока Число то­конесу­щих про­водов в жгуте Значение тока, А, при плошали сечения проводов, мм 2
0,78 1 ,0 1 ,5 2,5 4,0 6,0 10,0 16,0 25,0
Допустимая длительная на­грузка на провод 5- 6 10-12
Номинальный ток плавкой вставки в низковольтных цепях

Для измерения фактической нагрузки предохранителя или группы предохранителей, резервированных лампами ПЖ-23-50-500, эти лампы на момент измерения отключают. По окончании измерения тока нагрузки предохранителя (группы предохранителей) лампа ПЖ-23-50-500 должна быть подключена к схеме.

Перечень предохранителей, на которых измеряется и не измеряется фактическая нагрузка, старший электромеханик (начальник производ­ственного участка) определяет в соответствии с технической докумен­тацией.

В устройствах СЦБ допустимая нагрузка на провода и кабели с медными жилами в резиновой и винилитовой изоляции не должна превышать значений, указанных в таблице. В низковольтных цепях для защиты их от перегрева выше допустимой нормы ток плавления плавкой вставки предохранителя не должен превышать ток допустимой нагрузки на провод более чем на 10 %.

После замены предохранителя с контролем перегорания электро­механик должен проверить, чтобы между цоколем и корпусом предо­хранителя не было заметного зазора. Замену предохранителей с изме­рением фактической нагрузки рекомендуется совмещать с проверкой действия схемы контроля перегорания предохранителей, которую сле­дует проводить, устанавливая шаблон предохранителя с выходом стержня на 2мм. При этом должны сработать звуковая и световая сигнализации на пульте (аппарате) управления дежурного по железно­дорожной станции, а также на каждом стативе.

При необходимости электромеханик РТУ должен отрегулировать контактные лепестки цоколей, контролирующих перегорание предо­хранителей.

О результатах измерения тока нагрузки предохранителей записать в специальный журнал — Журнал измерения тока нагрузки и замены предохранителей по форме:

ЖУРНАЛ

Измерения тока нагрузки и замены предохранителей

п/п Периодичность измерения и замени 1 раз в 3 гада (5 лет) или 10 лет. 1 раз, а 10 лет (1 раз перед установкой)
Монтажный адрес (панель, статива и т. п.) Наиме­нование и номи­нальный ток, А Тип предохранителя Ток факти­ческой нагруз­ки, А Дата измерения нагрузки и замены предохранителя Подпись электромеха­ника
21-71-21 ПХЛ ТУ-32ЦШ-3814-94 2,6 10.06.87 Иванов
5,0
21-71-21 2,5 10.06.97 Петров
: : : : : :
11-94-21 СПБ 3,0 На цоколе с конт­ролем перегорания типа 2086-00-00 0,75 8.08.97 Петров
: : : : : :
11-31-11 М58 0,3 черт. № 20872-00-00 0,075 7.10.97 Сидоров

Проведение работы

2.1 Ознакомиться с технологической картой № 82. При отсутствии литературы воспользуйтесь приведенными в методичке теоретическими сведениями.

2.2 Составить алгоритм проверки предохранителей.

2.3 Составить алгоритм проверки схемы контроля перегорания предохранителей.

2.4 Выполнить проверку предохранителей и схемы контроля их перегорания на макете лаборатории ООМНСАТ.

Оформление отчета

Составьте отчет о проделанной работе, оформленного в соответствии с ГОСТом.

1) название работы,

3) запись в журнале ДУ-46 перед началом и после окончания работы,

4) алгоритм проведения работы,

5) запись в журнале ШУ-2,

6) вывод о проделанной работе, список обнаруженных отклонений от норм.

Литература и технические средства обучения

1. Устройства СЦБ. Технология обслуживания. –М.: Транспорт. 1999. -427 с., стр. 389-392.

2. Инструкция по техническому обслуживанию и ремонту устройств сигнализации, централизации и блокировки. ЦШ-720. М.: Трансиздат, 2000.

3. Типовая инструкция по охране труда для электромеханика и электромонтера сигнализации, централизации, блокировки и связи. ТОИ Р-32-ЦШ-796-00. М.: Трансиздат, 2001.

Ремонт трубчатого предохранителя, выбор диаметра проволоки

В современных электроприборах повсюду встречаются предохранители, или если говорить «по научному» — плавкие вставки. Они обеспечивают защиту сети и собственно самого прибора от коротких замыканий или перегрузки. Конструкция плавких вставок самая разнообразная, как и размеры. Номинальные токи и напряжения на которые выпускаются предохранители соответствуют стандартным значениям. От величины номинального напряжения предохранителя зависят его габаритные размеры, а именно длина, чем выше номинальное напряжение предохранителя тем больше расстояние между контактами. Номинальный ток определяется сечением проволоки внутри предохранителя.

Хотя в более дорогих устройствах уже можно встретить и самовосстанавливающиеся электрические предохранители, большинство приборов по-прежнему оснащены обычными предохранителями.

Общие понятия, знакомство с предохранителями трубчатой конструкции

Наиболее распространенные предохранители это так называемые, трубчатые. Они представляют из себя керамическую или стеклянную трубку с металлическими контактами-чашками с торцов. Эти чашки соединены между собой проволокой, сечение которой, как уже говорилось, определяет номинальный ток предохранителя. Этот ток указывается на трубке или одной из контактных частей предохранителя. Например: F0,5A – это значит, что данный предохранитель рассчитан на ток 0,5 ампера.

На электрических принципиальных схемах предохранитель обозначается прямоугольником с проходящей через него прямой линией. Рядом с условным графическим обозначением указывается его позиционное обозначение, например F1 (F – fuse, предохранитель по-английски); и если это не загромождает схему — номинальный ток, например 100 mA.

Описание принципа работы плавкой вставки (предохранителя)

Принцип работы предохранителя предельно прост. При протекании по проволоке, соединяющей контакты предохранителя, номинального тока, эта проволока разогревается до температуры около 70 ˚С. А вот при превышении тока, проволока разогревается сильнее, и при превышении температуры плавления – расплавляется, т.е. перегорает. Именно по этой причине предохранители еще называют – плавкими или плавкой вставкой. Чем выше ток, тем быстрее нагрев, тем быстрее происходит расплавление, а соответственно и перегорание предохранителя.

Таким образом все плавкие вставки работают на одном и том же принципе – превышение тока в цепи вызывает перегрев и расплавление проволоки внутри предохранителя и как следствие отключение этой цепи от источника питающей сети.

Существует две основных причины перегорания плавких вставок: броски напряжения питающей сети и возникшая неисправность внутри самого электроприбора.

Проверка предохранителя, индикатор неисправности предохранителя

Проверить плавкую вставку можно любой «прозвонкой» или тестером. Задача состоит в том, чтобы убедиться, что цепь предохранителя цела и способна проводить электрический ток.

Проверять предохранитель, во избежание поражения электрическим током, допускается только при отключенном электроприборе!

Кроме этого можно купить или самостоятельно изготовить индикатор перегорания предохранителя, который уведомит вас о том, что предохранитель перегорел.

Схема такого устройства чрезвычайно проста и представлена на следующем рисунке.

В параллель к контактам предохранителя, через токоограничивающий резистор R1 и диод VD1, для защиты от обратного напряжения, подключается светодиод HL1. Диод VD1 должен быть подобран из расчета обратного напряжения, превышающего сетевое. Для сети 220 В обратное напряжение для диода VD1 должно быть не менее 300 В, таким требованиям отвечает например диод 1N4004 или отечественный КД109Б.

Индикатор не светится, если предохранитель исправен, и светится в случае его перегорания.

Индикатор не светится если нагрузка отключена.

Такой схемой очень удобно дополнять блоки питания собственного изготовления.

Немного изменив (упростив) схему можно получить индикатор перегорания предохранителя на неоновой лампе, хотя она и не так эффективно смотрится как светодиод.

Подбор предохранителя по номинальной мощности электроприбора

После проверки предохранителя и определения, что он вышел из строя, необходимо его заменить. А для этого надо узнать его номинал, чтобы выполнить правильную замену.

Если вам известна мощность потребляемая электроприбором, обычно она указывается на шильде прибора, вы можете самостоятельно рассчитать номинальный ток предохранителя по следующей формуле:

Iном = Рмакс / Uном

Номинальный ток (Ампер) равен частному от максимальной мощности (Ватт) электроприбора деленной на номинальное напряжение сети (Вольт).

Например, сгорел предохранитель в телевизоре, разобрать, что указано на корпусе предохранителя, его номинал, не представляется возможным, но на шильде телевизора указана мощность потребления 150 ВА.

150 / 220 = 0,68, округляем до ближайшего большего стандартного значения – 1 А.

Обратите внимание, что при расчете номинального тока предохранителя вы получаете точное значение тока, которое может не соответствовать ряду номинальных токов предохранителей. Поэтому расчетное значение с учетом запаса 5% округляется до ближайшего стандартного значения.

Для простоты можно воспользоваться готовой таблицей, в которой приведены номиналы стандартных предохранителей для различных потребителей из расчета их подключения к бытовой сети 220 В.

Мощность электроприбора, Вт (BA) 10 50 100 150 250 500 800 1000 1200
Номинал предохранителя, А 0,1 0,25 0,5 1,0 2,0 3,0 4,0 5,0 6,0
Мощность электроприбора, Вт (BA) 1600 2000 2500 3000 4000 6000 8000 10000
Номинал предохранителя, А 8,0 10,0 12,0 15,0 20,0 30,0 40,0 50,0

Замена предохранителя

При замене предохранителя, во избежание поражения электрическим током, обязательно отключите электроприбор от сети!

Есть такое негласное правило, если после второй замены предохранитель опять перегорел, ищи неисправность в самом электроприборе. Значит надо ремонтировать электроприбор.

Ни в коем случае не устанавливайте предохранитель на больший ток, такие попытки однозначно приведут к еще большему повреждению устройства вплоть до его не ремонтопригодности!

Будьте внимательны при покупке нового предохранителя. Правильно определите тип и номинальный ток кандидата на замену. Приобретать электронные компоненты лучше у проверенных поставщиков, гарантирующих качество продукции, как пример – компания Conrad Electronic. С полным ассортиментом плавких предохранителей можно ознакомиться по ссылке – https://conrad.ru/catalog/predohraniteli_s_plavkoy_vstavkoy.

Ремонт предохранителя

Типичные обыватели считают, что предохранители не подлежат ремонту, на самом деле это не так. Большинство типов предохранителей можно отремонтировать и дать им вторую, третью и т.д. жизни. Корпус предохранителя, как правило, разрушается крайне редко, перегорает проволока внутри, вот в ее замене и заключается ремонт. Основная задача при этом использовать проволоку аналогичную той, что была в предохранителе.

Если заменить предохранитель надо очень быстро, а запасного под рукой не оказалось, то можно воспользоваться следующим способом:

Снять с проволоки подходящего диаметра лакокрасочное покрытие (зачистить ее до блеска) и намотать на каждый контакт предохранителя по несколько витков, после чего вставить предохранитель в держатель. Этот способ в простонародии называется – «жучок». С его помощью можно очень быстро проверить исправность прибора, но он не надежен и может быть использован, как временное решение проблемы.

Следующий способ, так называемый «заводской». Для ремонта потребуется паяльник, и возможно дремель или шуруповерт, но предохранитель после ремонта будет выглядеть как будто он только что с завода.

Разогрейте паяльником торцы контактов-чашек и освободите отверстия в торцах от припоя воспользовавшись зубочисткой или чем-то подобным. Бывает, что отверстия слишком малы или совсем отсутствуют, тогда придется их просверлить. Используйте сверло не большого диаметра 1 – 2 мм.

Проденьте через отверстия проволоку подходящего диаметра и припаяйте ее к контактам-чашкам.

Подбор диаметра проволоки предохранителя

Как написано выше, для ремонта предохранителя необходимо заменить перегоревшую проволоку на аналогичную той, что была в предохранителе до его перегорания.

В заводских предохранителях используются проволоки из различных металлов: серебра, меди, алюминия, олова, свинца, никеля и т.д. В домашних условиях вряд ли мы сможем определить материал проволоки перегоревшего предохранителя, да и под рукой у нас обычная медная проволока. Но на всякий случай приведем таблицу диаметров проволоки в зависимости от номинального тока предохранителя содержащую кроме меди, алюминий, сталь и олово.

Ток предохранителя, А 0,25 0,5 1,0 2,0 3,0 5,0 7,0 10,0
Диаметр проволоки, мм Медь 0,02 0,03 0,05 0,09 0,11 0,16 0,20 0,25
Алюминий 0,07 0,10 0,14 0,19 0,25 0,30
Железо 0,13 0,20 0,25 0,35 0,45 0,55
Олово 0,18 0,28 0,38 0,53 0,66 0,85
Ток предохранителя, А 15,0 20,0 25,0 30,0 35,0 40,0 45,0 50,0
Диаметр проволоки, мм Медь 0,33 0,40 0,46 0,52 0,58 0,63 0,68 0,73
Алюминий 0,40 0,48 0,56 0,64 0,70 0,77 0,83 0,89
Железо 0,72 0,87 1,00 1,15 1,26 1,38 1,50 1,60
Олово 1,02 1,33 1,56 1,77 1,95 2,14 2,30 2,45

Расчет диаметра проволоки предохранителя

В случае если необходим предохранитель на ток, не указанный в таблице выше, можно воспользоваться формулой для расчета диаметра медной проволоки в зависимости от номинального тока предохранителя.

Для малых токов (при использовании тонкой проволоки диаметром от 0,02 до 0,2 мм) формула имеет следующий вид:

d = Iпл · k + 0,005

Для больших токов (при использовании проволоки диаметром более 0,2 мм) формула такая:

Где Iпл – ток плавкой вставки в амперах, к и m коэффициенты, зависящие от материала проводника, могут быть определены по следующей таблице.

Материал проволоки Коэффициенты
k m
Медь 0,034 80
Алюминий 59,2
Железо 0,127 24,6
Олово 12,8

Определение диаметра проволоки предохранителя

На заводских бухтах диаметр проволоки указывается на ряду с другими параметрами. А что делать если проволока взята из обрезка многопроволочного провода? Диаметр проволоки можно измерить микрометром. Но даже если нет микрометра можно воспользоваться старым дедовским способом – измерить диаметр проволоки при помощи линейки или штангенциркуля. Пусть не так точно, но для нашего случая вполне приемлемо.

Берем линейку и наматываем на нее от 10 до 20 витков. Рекомендуемая ширина намотки около сантиметра. При этом стараемся, чтобы витки ложились как можно плотнее. Считаем, сколько миллиметров заняли наши витки и делим это число на количество витков. Не обязательно наматывать на линейку, если кусок проволоки короткий, можно для намотки использовать карандаш, отвертку, зажигалку или любой другой предмет. Главное, чтобы витки были намотаны равномерно и плотно.

Например, ширина намотанных витков 9 мм, при количестве витков 20. Разделив 9 на 20 получаем, что диаметр проволоки, если отбросить еще 0,05 мм на зазоры между витками, примерно 0,40 мм. При помощи этой проволоки можно будет восстановить предохранитель на 20 А. Вот так просто и довольно точно!

И в завершение видео демонстрирующее перегорание плавкой вставки:

Классика навсегда: современные плавкие предохранители и держатели-разъединители

26 декабря 2014

Мы уже давно не меняем предохранители в бытовой аппаратуре, а отключение сети в результате перегрузки снимается щелчком переключателя. Тем не менее, в профессиональных применениях, когда речь идет о больших мощностях и необходимости обеспечить высокую надежность, по-прежнему используются плавкие предохранители. При этом данный вид электротехнических компонентов продолжает совершенствоваться, создаются новые модели, более удобные в использовании и имеющие лучшие технические характеристики.

Предохранители можно разделить на две большие группы. К одной из них относятся устройства, в которых применяется одноразовый рабочий элемент, требующий замены после каждого срабатывания. Наиболее распространенным типом предохранителей в данной категории являются плавкие предохранители. Обычно именно к плавким предохранителям для краткости применяют термин «предохранитель». К другой группе относятся устройства, в которых после срабатывания не надо ничего заменять – после некоторого промежутка времени они возвращаются в исходное состояние и могут снова использоваться. Это, в первую очередь, тепловые и электрические автоматы, которые обычно называют просто «автоматы». Наибольшее распространение получили тепловые автоматы, в которых при превышении заданного значения тока биметаллическая пластина нагревается выше определенного значения, контакты отходят друг от друга и происходит размыкание цепи. Также к данной группе относятся и так называемые самовосстанавливающиеся предохранители, основанные на свойстве некоторых полупроводников восстанавливать свои свойства после электрического пробоя.

Конструкция плавкого предохранителя

Принцип работы плавкого предохранителя основан на пропускании тока через проводник с заданным сечением (так называемый «плавкий элемент»). При превышении заданного значения тока проводник нагревается до температуры, при которой он плавится. При этом происходит разрыв цепи. В простейших моделях предохранителей расплавленные куски провода просто падают под действием собственной тяжести, но, если речь идет о больших мощностях, используются специальные элементы (обычно это пружина или грузик), быстро отводящие не расплавившиеся концы провода друг от друга, чтобы не возникла электрическая дуга.

Плавкие элементы бывают с постоянным и переменным сечением. В первом случае площадь и форма сечения не меняются по всей его длине. Как правило, это характерно для плавких вставок, изготовленных из проволоки. Во втором случае форма сечения неодинакова по всей длине. Это сделано для гашения электрической дуги, возникающей при расплавлении проводника. Обычно такие плавкие элементы изготавливают из металлической ленты.

Материал, из которого сделан плавкий элемент, влияет на свойства предохранителя. Лучше всего, если он сделан из серебра, но это дорогой материал, поэтому часто используют медь. При всех преимуществах использования медных проводов для электротехники, предохранители с ними не отличаются высокой долговечностью, если сила тока через них часто меняется. Дело в том, что медь от разрушения защищает тонкая оксидная пленка. Изменение силы тока влечет за собой изменение температуры и, соответственно, сжатие-расширение провода, что приводит к микротрещинам и отслоениям защитного оксидного слоя. Для борьбы с этим явлением используется специальное защитное покрытие для плавкого элемента. Более долговечным материалом для изготовления плавких элементов считается алюминий, поскольку у него оксидная пленка более прочно держится на поверхности плавкого элемента. Но плавкие вставки на основе алюминия сложнее в производстве, так как алюминий не поддается пайке. Еще одним материалом, из которого изготавливают плавкие элементы, является цинк. Важным преимуществом цинка является низкая температура плавления, что понижает требования по устойчивости к нагреву для других элементов предохранителя. Недостатком же цинка является более высокое сопротивление (в 3,4 раза больше, чем у меди), что увеличивает энергопотери. Также известна конструкция плавкой вставки, в которой медная проволока прерывается вставкой из оловянного шарика. При повышении температуры оловянный шарик расплавляется и цепь размыкается. В таких предохранителях корпус внутри наполнен кварцевым песком.

Каждый электрик должен знать:  Инфракрасные обогреватели плюсы и минусы применения

Рис. 1. Цилиндрическая плавкая вставка — недорогой вариант для номинального тока до 100 А

Конструкция плавкого предохранителя [1] состоит из плавкой вставки и основания для ее установки. Плавкой вставкой (рисунок 1) называют элемент предохранителя, который непосредственно осуществляет размыкание цепи. Обычно представляет собой корпус, в котором установлен плавкий элемент. В мощных плавких вставках также используется наполнитель для гашения электрической дуги. Контакты плавкой вставки – токоведущая часть, обеспечивающая электрическую связь с подводящими проводниками. Съемная часть предохранителя, предназначенная для удержания его плавкой вставки, называется держателем плавкой вставки. Держатель предохранителя – это сочетание основания предохранителя с держателем плавкой вставки. Бойком предохранителя называется механическое устройство в конструкции плавкой вставки, которое при срабатывании предохранителя освобождает энергию, необходимую для срабатывания других аппаратов (или указателей) или для воздействия на свободные контакты предохранителя.

В конструкции некоторых предохранителей предусмотрены ограничения по форме и/или размерам с целью предотвращения случайной установки в их основания плавких вставок, отличающихся по электрическим характеристикам от тех, которые обеспечивают предусмотренный уровень защиты.

Сравнение плавких предохранителей с автоматическими выключателями

Плавкие предохранители имеют некоторые преимущества по сравнению с автоматами. Самое главное — простота устройства. Из этого вытекают и другие преимущества. Отметим наиболее важные достоинства плавких предохранителей.

Рис. 2. Пример конструкции держателя-разъединителя

  • Низкая стоимость. Конечно, на бытовом уровне, когда речь идет о токах, не превышающих 20 А, разница в стоимости тепловых автоматов и обычных «пробок» в абсолютном значении не очень велика. Но когда речь заходит о токах порядка 150 А и выше, то здесь уже стоимость автоматических предохранителей составляет значительную часть стоимости всей системы.
  • Высокая надежность. Когда сила тока превышает заданное значение, плавкий предохранитель гарантированно разрывает цепь, каким бы сильным ни было это превышение. При использовании автомата превышение тока срабатывания более чем в 10 раз может привести к возникновению электрической дуги. Это, в свою очередь, приводит к обгоранию контактов автомата. При возвращении автомата в исходное положение, у него будет недопустимо большое сопротивление из-за обгоревших контактов. Большинство современных моделей автоматов имеют, по соображениям безопасности, неразборную конструкцию, не пригодную к ремонту. Поэтому после значительного увеличения тока нагрузки или же короткого замыкания дорогостоящие автоматы приходится заменять. Самым же неприятным сценарием развития ситуации является сваривание контактов автомата в электрической дуге. Тогда автомат не просто становится непригодным к последующему использованию, но и не может осуществить размыкание цепи в данный момент, что может привести к очень серьезным последствиям.
  • Возможность быстрого восстановления подачи электроэнергии. Казалось бы, это не так, ведь на замену плавкой вставки требуется больше времени, чем на то, чтобы просто щелкнуть тумблером автомата. Но, с появлением таких устройств, как держатели-разъединители, о которых речь пойдет ниже (рисунок 2), восстановление энергоснабжения в системе, где установлены плавкие предохранители, действительно можно осуществить быстрее, чем в системе, оборудованной самым распространенным типом автоматических предохранителей — тепловыми автоматами. Для восстановления тепловому автомату требуется время, чтобы остыли контакты — до нескольких минут. Чем больше ток срабатывания автомата, тем больше это время. Держатель-разъединитель позволяет при необходимости заменить плавкую вставку за несколько секунд, конечно, если рядом находится оператор и под рукой есть исправная плавкая вставка.
  • Лучшая защищенность от неправильных действий персонала. Для замены плавкой вставки после перегорания должен прийти квалифицированный специалист, имеющий при себе новую плавкую вставку. При этом он, как и положено, должен разбираться в причинах, вызвавших срабатывание предохранителя. В случае использования автомата снова включить подачу электроэнергии может любой сотрудник, причем он может это сделать, не разбираясь в причинах возникновения нештатной ситуации. Например, такая ситуация может возникнуть на конвейере завода, когда рабочие не хотят его остановки, которая может повлечь, например, уменьшение премии, и сами включают автомат. В итоге это может привести к еще более серьезной аварии. Конечно, и плавкую вставку при желании можно несанкционированно заменить «жучком», но эта процедура более длительная и сложная, чем включение автомата, поэтому сотрудника, занимающегося подобными делами, гораздо легче обнаружить.

Тем не менее, плавкие предохранители имеют и некоторые особенности эксплуатации:

  • Одноразовость плавкой вставки. После срабатывания предохранителя плавкую вставку нужно заменить.
  • При перегрузке или коротком замыкании в одной из фаз трехфазной сети остальные две фазы остаются включенными. Это при определенных условиях может привести к перекосу фаз. Для сравнения, в тепловых и электрических автоматах возможно одновременное отключение всех трех фаз при перегрузке или коротком замыкании в одной из них.
  • В некоторых системах замена плавкой вставки происходит под напряжением, что требует использования специально обученного персонала. Решить эту проблему в ряде случаев можно использованием держателей-разъединителей.

Параметры плавких предохранителей

Номинальный ток плавкой вставки – значение тока, которое плавкая вставка может выдерживать в течение длительного промежутка времени, не разрушаясь.

Номинальное напряжение – значение максимально допустимого напряжения в электрической цепи, где установлен предохранитель, при котором обеспечивается его надежное срабатывание.

Коэффициент нагрузочных циклов показывает максимальное снижение номинального тока предохранителя после прохождения максимально допустимого количества циклов включения-выключения нагрузки.

Номинальная рассеиваемая мощность плавкой вставки (потери мощности в предохранителе). Из-за наличия у предохранителя электрического сопротивления на нем неизбежно происходит потеря мощности. Эта мощность рассеивается в виде тепла. Поэтому данный параметр не только характеризует эффективность предохранителя с точки зрения экономии электроэнергии, но и указывает, сколько тепла он будет выделять в процессе работы. Указывается значение потерь мощности, соответствующее номинальному току предохранителя.

Номинальная рассеиваемая мощность держателя – рабочее значение рассеиваемой мощности, которую может выдержать держатель предохранителя. Очевидно, что этот параметр не должен превышать номинальной рассеиваемой мощности плавкой вставки.

Ожидаемый ток цепи (относительно плавкого предохранителя) – ток в цепи в том случае, если включенный в нее плавкий предохранитель был бы заменен проводником, полным сопротивлением которого можно пренебречь.

Отключающая способность плавкого предохранителя – значение ожидаемого тока, способного отключить плавкий предохранитель при установленном напряжении в установленных условиях эксплуатации и обслуживания.

Категория применения. Каждому типу электрооборудования соответствует свой тип предохранителя, который должен использоваться совместно с ним. Этот параметр обозначается двумя буквами, первая из которых означает функциональный класс, а вторая — тип защищаемого оборудования.

Существует два функциональных класса предохранителей — “a” и “g”. Предохранители класса “a” размыкают цепь при токе от некоторого минимального значения до номинальной отключающей способности, поэтому они применяются, главным образом, там, где нужно обеспечить защиту от короткого замыкания. Предохранители класса “g” размыкают цепь в диапазоне токов от значения, при котором начинает плавиться вставка, и до номинального значения отключающего тока. Они используются как для защиты от короткого замыкания, так и для защиты от перегрузок.

Тип защищаемого оборудования:

  • G — кабели и провода (устаревший вариант этого обозначения — L);
  • M — двигатели и коммутационные аппараты;
  • R — полупроводниковые приборы;
  • B — оборудование для горных работ;
  • T — трансформаторы;
  • S — полупроводниковые приборы, кабели, линии.

Кроме этого, для некоторых специальных применений выпускаются предохранители с маркировкой «trag» (инерционные) или «flink» (быстродействующие).

Интеграл Джоуля – интеграл квадрата тока за определенный промежуток времени:

Обычно указывают интеграл Джоуля для отключения, который берется для времени от начала протекания тока, достаточного для плавления вставки, до момента срабатывания предохранителя. Данный параметр обозначается как I²t и выражается в A²c. Чем меньше этот параметр при равном номинальном значении тока, тем быстрее срабатывает предохранитель.

Для предохранителей, предназначенных для использования в цепях переменного тока, в технических характеристиках указываются действующие значения токов и напряжений. Применительно к некоторым моделям предохранителей параметры нормируются отдельно для постоянного и переменного тока.

Конструкция и использование держателей-разъединителей

Рис. 3. Держатель-разъединитель позволяет безопасно заменять плавкие вставки

Традиционно плавкие предохранители используются совместно с последовательно включенным размыкателем цепи с наглядной визуальной индикацией, т.е. рубильником. Отключение напряжения вручную позволяет осуществлять безопасную замену предохранителей. Но, при этом, в электрическую цепь добавляются дополнительные электрические провода, контакты и прочие соединительные элементы, на которых происходят потери энергии. Поэтому, когда речь идет о больших мощностях, нередко рубильник не ставится, а происходит замена плавких вставок в держателе, находящемся под напряжением, естественно, с соблюдением необходимых мер безопасности (рисунок 3).

Держатели-разъединители позволяют безопасно заменять плавкие вставки и при необходимости вручную отключать напряжение. При этом дополнительного рубильника не требуется.

Конструктивно держатели-разъединители представляют собой держатели для плавких вставок, которые позволяют безопасно вынимать и вставлять их в контакты. При этом такие устройства так же, как и рубильники, предусматривают наглядную демонстрацию режима «отключено». В положении «отключено» из держателя-разъединителя можно извлечь плавкую вставку, она не находится под напряжением.

Обзор продукции

В качестве примера рассмотрим плавкие предохранители и держатели-разъединители производства трех компаний, заслуженно пользующихся популярностью на российском рынке: Siemens, Eaton и ETI.

Как и полагается одной из ведущих электротехнических компаний мира, Siemens предлагает самый широкий ассортимент предохранителей. Открывают модельный ряд наиболее простые и дешевые плавкие вставки цилиндрической формы категорий gG и aM. Номинальное значение тока у них составляет, в зависимости от модели, 0,5…100 А, а напряжение — 400…500 В. Параметры данных плавких вставок нормируются только для переменного тока. Доступны типоразмеры 8×32, 10×38, 14×51 и 22×58 мм.

Рис. 4. Плавкие вставки цилиндрической формы

Для плавких вставок цилиндрической формы (рисунок 4) компания Siemens выпускает держатели на DIN-рейку. Предлагаются модели с полюсами 1P, 1P+N, 2P, 3P и 3P+N. Они могут быть как в варианте с индикатором срабатывания (кроме полюсов 3P+N), так и без него. Модульная ширина, в зависимости от модели, составляет 1…8 MW.

Основное преимущество данных плавких вставок цилиндрической формы, помимо дешевизны — полностью закрытая конструкция держателя. Благодаря такой конструкции практически исключена возможность непроизвольного прикосновения к токонесущим элементам. Недостатками являются относительно низкие номинальные значения тока и напряжения. Это связано со сложностями отвода тепла от корпуса и гашения дуги в простейших предохранителях.

Для напряжений до 690 В переменного тока и значения тока до 1250 A предназначены плавкие вставки серии LV HRC. Основания для них также крепятся на DIN-рейку, но плавкие вставки удерживаются в основании за счет пружинящих контактов. Сама конструкция предохранителя открытая, что обеспечивает эффективное охлаждение корпуса воздухом. Вставки серии LV HRC снабжены встроенным индикатором срабатывания.

Предлагаются вставки категорий gG и aM. Модульная ширина, в зависимости от модели, составляет 21…71.2 мм.

Параметры плавких вставок серии LV HRC категории gG нормируются как по переменному, так и по постоянному току. Для постоянного тока номинальное напряжение не превышает 440 В.

Специально для защиты полупроводниковых элементов предназначена серия плавких вставок и предохранителей SITOR. Главная ее особенность — нормирование значения I2t. В эту серию, в частности, входят цилиндрические вставки категории aR. Они предлагаются типоразмеров 10×38, 14×51, 22×58 мм без бойка и типоразмеров 14×51 и 22×58 мм с бойком. Номинальное значение тока, в зависимости от модели, составляет 1…100 А, а номинальное напряжение достигает 600…690 В переменного или 700 В постоянного тока. Как мы видим, номинальное напряжение для постоянного тока в серии SITOR выше номинального действующего напряжения переменного тока, в отличие от серии LV HRC. Это обусловлено оптимизацией плавких вставок под защиту полупроводниковых приборов.

Серия SITOR – плавкие вставки с ножевыми контактами (рисунок 5), предназначенные для установки в основания серии LV HRC или в разъединители. Данные модели относятся к категориям aR и gR, их номинальное напряжение, в зависимости от модели, может достигать 690 В, а ток — 1000 А (параметры нормируются только для переменного тока). Также выпускаются самостоятельные предохранители в виде единого блока, которым не нужно основание, и предохранители, которые могут использоваться как в качестве самостоятельных устройств (у них предусмотрена возможность привинтить провода непосредственно к контактам), так и устанавливаться на основание серии LV HRC.

Рис. 5. Плавкая вставка Siemens с ножевыми контактами

Рис. 6. Пример плавкой вставки типа D0

Помимо плавких вставок, в серию SITOR входят основания для цилиндрических вставок, а также два варианта держателей-разъединителей для DIN-рейки. Один из них выпускается в модификациях 1P, 2P и 3P для вставок без бойка. Другой выпускается только в модификации 1P и предназначен для вставок с бойком. Номинальное напряжение у обоих держателей-разъединителей составляет 690 В переменного тока.

Компания Eaton имеет более скромный ассортимент плавких вставок. Предлагаются цилиндрические вставки Z-C типоразмеров 10×38, 14×51, 22×58 мм и вставки Z-NH с ножевыми контактами. Для вставок Z-C номинальный ток, в зависимости от модели, составляет 1…100 А, номинальное напряжение — 690 В переменного тока. Для Z-NH номинальный ток составляет 10…630 А. Обе серии плавких вставок относятся к категории gG.

Но зато Eaton представляет на российском рынке несколько моделей держателей-разъединителей как для плавких вставок цилиндрической формы, так и для вставок с ножевыми контактами. Некоторые модели снабжены системой электронного мониторинга плавких вставок со светодиодной индикацией. Также в одной из моделей предусмотрена релейная сигнализация в случае срабатывания предохранителя.

Для повышения удобства и безопасности замены плавких вставок в держателях-разъединителях компания Eaton выпускает специальные картриджи с плавкими вставками Z-SLS типа D0 с номинальными напряжением до 400 В и током до 63 А. Следует отметить, что D0 (рисунок 6) — это наиболее распространенная серия плавкой вставки для предохранителей типа «пробка», то есть таких предохранителей, у которых используется держатель с резьбовым соединением. Картриджи позволяют реализовать такие преимущества типа D0 как малые размеры и малые потери мощности, но уже в новом формате, отличном от хорошо знакомых «пробок». Для них предназначена специальная модель держателя-разъединителя. Есть и низковольтный вариант Z-SLS для напряжений 24…60 В. Плавкие вставки Z-SLS и держатели-разъединители для них очень просты в обслуживании, что позволяет устанавливать их у конечных потребителей и даже в жилом секторе. Дополнительно облегчает обслуживание наличие модификации такого держателя-разъединителя с электронным мониторингом.

Большой ассортимент малогабаритных плавких вставок типа D0 категории gG (gL) поставляет на российский рынок компания ETI. Номинальное напряжение этих компонентов – 400 В переменного тока (250 В постоянного тока), номинальный ток, в зависимости от модели, — 2…100 А. При этом компания предлагает для них резьбовые держатели классической конструкции типоразмеров E14, E18 и M30x2. Преимуществами «пробок» по-прежнему остаются надежное крепление, безопасность использования (можно поменять плавкую вставку в цепи под напряжением, не прикасаясь к токонесущим узлам) и простота обслуживания. Современные полимерные материалы исключают «заедание» резьбового соединения и позволяют реализовать удобный, эргономичный дизайн.

Плавкие вставки D0 можно устанавливать и в держатели-разъединители VLD01, которые тоже выпускает ETI. Эти держатели-разъединители выпускаются в вариантах 1P, 1P+N, 2P, 3P и 3P+N. Особенностью VLD01 является возможность пломбирования разъединителя как во включенном, так и в выключенном положении. Предусмотрена индикация срабатывания предохранителя. Конструкция клемм VLD01 позволяет одновременно зажимать проводник и клемму, что позволяет уменьшить количество установочных изделий в системе.

ETI выпускает и цилиндрические плавкие вставки в стеклянных и керамических корпусах. Особый интерес представляет серия CH — вставки в керамических корпусах типоразмеров 14×51 и 22×58 мм. Номинальное напряжение — 400, 500 или 690 В. Номинальный ток — до 100 А. Предлагаются модели категорий gG и aM. Есть варианты вставок 14×51 мм с бойком (серия CH/P). Для цилиндрических предохранителей предусмотрена серия держателей-разъединителей VLC.

Также в ассортименте этой компании есть плавкие вставки с контактами ножевого типа — серия NV-NH. Их отличает очень высокий номинальный ток. В зависимости от модели он лежит в пределах 2…1600 А. Номинальное напряжение – 400, 500, 690 или 1000 В. Имеется встроенная индикация срабатывания. Предлагаются плавкие вставки категорий gG, aM и gT. Наличие в ассортименте ETI плавких вставок большой мощности, специально предназначенных для защиты трансформаторов, является большим преимуществом перед другими производителями. Высокое быстродействие предохранителей ETI позволяет отключать нагрузку менее чем за четверть периода тока.

Для плавких вставок с контактами ножевого типа компания ETI выпускает основания PK и PK1. Номинальное напряжение основания — 690 В переменного тока.

В ассортименте ETI есть и сверхбыстрые предохранители (рисунок 7), предназначенные для защиты полупроводниковой аппаратуры. Эти предохранители срабатывают за 10 мс при уровне тока в 5…6 раз больше номинального. При этом удается предотвратить такое неприятное явление, как взрыв IGBT-транзисторов. Для сравнения, обычные предохранители срабатывают за то же время лишь тогда, когда ток в 10…30 раз превысит номинальное значение, что увеличивает вероятность выхода из строя полупроводниковых элементов. К слову, столь высокое быстродействие, как у серии Ultra-Quick, реально получить только в плавком предохранителе – тепловые автоматы срабатывают медленнее. В сверхбыстрых предохранителях ETI используется плавкий элемент из серебра, что обеспечивает стабильность временных характеристик.

Рис. 7. Особенности сверхбыстрых предохранителей ETI

Сверхбыстрые предохранители ETI входят в серию Ultra-Quick. Они представлены категориями aR, gR, gS. Номинальный ток, в зависимости от модели предохранителя, может достигать 1400 А. По сравнению с другими производителями, у сверхбыстрых предохранителей ETI есть две важные особенности. Во-первых, ассортиментный ряд охватывает все основные типы плавких вставок: D0, D, C, BS, NV/NH. Предлагаются трубчатые плавкие вставки, предохранители с ножевыми выводами, предохранители для установки непосредственно на шину. Также предлагаются плавкие вставки NV/NH Gs, специально предназначенные для защиты частотных преобразователей и устройств плавного пуска. Во-вторых, более низкая цена. В среднем, сверхбыстрые предохранители ETI стоят на 10% дешевле аналогичных изделий производства таких компаний, как, например, Legrand или ABB.

Почему для сверхбыстрых предохранителей так важна цена? Их дороговизна связана как с использованием серебра, так и с более сложной технологией изготовления. Жесткая конкуренция на рынке электротехнического оборудования привела к тому, что ряд производителей такого оборудования отказываются от применения плавких предохранителей и оставляют только электронную защиту. Основная цель — снижение цены изделия. Тем не менее, параметры системы электронной защиты со временем меняются, да и надежность у нее не столь высокая, как у плавкой вставки. В итоге электрические машины быстрее изнашиваются. Поэтому наилучшим вариантом является сочетание плавкого предохранителя и электронной защиты. Более низкая цена на плавкий предохранитель позволяет установить конкурентоспособную цену на изделие.

Для плавких вставок серии Ultra Quick предлагаются держатели серии US и сигнальные контакты. Держатели данной серии выдерживают напряжение до 1000 В переменного тока.

Выводы

Сравнение ассортимента компаний Siemens, Eaton и ETI, представленных на российском рынке, показывает, что все три компании производят наиболее распространенные типы плавких вставок (цилиндрическая, с ножевыми контактами) и основы для них. У Siemens есть уникальная серия плавких вставок и держателей SITOR, оптимизированная для защиты полупроводниковых элементов. Аналогов этой серии у двух других компаний нет.

Представляют интерес держатели-разъединители Eaton на DIN-рейку, которые сделаны максимально удобными в использовании. Плавкие вставки D0 в картриджах и наглядная светодиодная система индикации срабатывания упрощают обслуживание предохранителей и позволяют рекомендовать их для установки у конечных потребителей.

ETI, в отличие от других компаний, указанных в обзоре, не отказывается о выпуска проверенной временем классики — держателей с резьбовым креплением («пробок»), сделав их более удобными благодаря применению современных материалов. Другой особенностью продукции ETI является наличие мощных плавких вставок с ножевыми контактами, предназначенных для защиты трансформаторов. Для цилиндрических плавких вставок ETI предлагает держатели-разъединители простой, но удобной конструкции. Большой интерес представляет линейка сверхбыстрых предохранителей Ultra Quick, которые имеют высокие технические характеристики при низкой цене. Благодаря плавкому элементу из серебра, обеспечивается высокая стабильность временных параметров.

Предохранители до 1000В

Предохранители до 1000 В

Предохранители предназначены для защиты отдельных аппаратов и участков сети от токов к.з. и токов перегрузки. Обычно предохранители состоят из патрона и плавкой вставки и различаются по номинальному напряжению и току. При токе выше номинального плавкая вставка перегорает и размыкает электрическую цепь.

Для защиты электроустановок на напряжение до 1000 В используют предохранители закрытые (резьбовые, трубчатые) и открытые (пластинчатые).

Резьбовой однополюсный предохранитель состоит из основания с крышкой, плавкой вставки и головки (пробки). Основание и головку изготовляют из фарфора, крышку — из фарфора или пластмассы. Основание и крышку выполняют прямоугольными или квадратными. Резьбовые предохранители с резьбой Е-27 изготовляют на токи 6,3; 10; 16; 20 и 25А и напряжение до 380 В.

Питающую линию присоединяют к контакту предохранителя, отходящую — к винтовой резьбе, что обеспечивает безопасность обслуживания. Предохранители Е-27 применяют для защиты от перегрузок и токов к. з. проводов и токоприемников в осветительных сетях.

Дополнительно по теме

Соединение шин. Классы контактных соединении

Изоляторы ИО-10, ИОР-10, ИП-10/630

РВ, РВО, РВФЗ, РЛНД

Приводы ПР-10, ПР(А)-17, ПП-67, ППМ, ППВ-10, ПЭ-11

Рис. 1. Патрон предохранителя ПР-2

Трубчатые предохранители выпускают следующих типов: ПР-2, НПН, ПН-2 и ПП-17. Разборные предохранители ПР-2 предназначены для установки в сетях на напряжение 500 В и токи 15, 60, 100, 200, 400, 600 и 1000 А. В патроне предохранителя ПР-2 (рис. 1) плавкая вставка 5, прикрепляемая винтами 6 к контактным ножам 7, помещена в фибровую трубку 4, на которую насажены втулки 3 с резьбой. На них навинчены латунные колпачки 2, закрепляющие контактные ножи, которые входят в неподвижные пружинящие контакты, устанавливаемые на изоляционной плите.

Под действием электрической дуги, возникающей при перегорании предохранителя, внутренняя поверхность фибровой трубки разрушается и образуются газы, способствующие быстрому гашению дуги.

Предохранители НПН (насыпные неразборные) изготовляют на напряжение до 500 В и токи от 15 до 60 А, а ПН-2 (насыпные разборные) — на напряжение до 500 В и токи от 10 до 600 А (рис. 2, а).

Плавкие предохранители ПП-17, изготовляемые на напряжение до 380 В и токи 500, 630, 800 и 1000 А, состоят из плавкой вставки, помещенной в керамическом корпусе, заполненном кварцевым песком, указателя срабатывания. При расплавлении плавкой вставки предохранителя перегорает вставка указателя срабатывания и освобождает взведенный при сборке указателя боек, который переключает свободный контакт, связанный кинематически с указателем срабатывания. Свободный контакт применяют при необходимости замыкания контактов реле и отключения выключателя питающей цепи. Предохранители ПП-17 смонтированы на контакторных станциях на 1000 А без свободного контакта.

Пластинчатые открытые предохранители типа П состоят из медных или латунных пластин — наконечников, в которые впаяны медные калиброванные проволоки. Наконечники с помощью болтов присоединяют к контактам на изоляторах. Пластинчатые предохранители с открытой плавкой вставкой применяют в ТП некоторых городских электросетей и заменяют на закрытые ПН-2.

Рис. 2. Предохранители ПН-2 (а) и ППНИ (б)

1 — стальные пружинящие кольца, 2 — металлические крышки, 3 — винт, 4 — фарфоровый патрон, 5, 7, 10 — контактные ножи, болты и стойка, 6 — плавкие вставки, 8 — кварцевый песок, 9 — оловянный шарик (растворитель), 11 — изоляционная плита, 12 — Т-образные выступы, 13 — указатель срабатывания

Потери мощности предохранителей типа ППНИ и ПН-2 при напряжении 380/400 В

Номинальный ток In, А

Потери мощности Р, Вт не более

Экономия мощности при использовании ППНИ DP

Добавить комментарий