Классификация электродвигателей


СОДЕРЖАНИЕ:

Электрический двигатель: виды и характеристики

Одним из наиболее эффективных способов преобразования природных энергий является вращение. Используя его с незапамятных времен, Человечество сумело поставить себе на службу, например, ветер и текущую воду. В середине XIX века, когда был изобретен первый электродвигатель постоянного тока, пришел черед и электричества. О том, что такое электродвигатель и как он работает, пойдет речь в этой статье.

Физическая сущность электродвигателя

Это машина, вал которой вращается в результате взаимодействия постоянных или переменных магнитных полей. Классификация электродвигателей напрямую зависит от типа тока, который течет по его обмоткам. Они бывают:

Это одно из наиболее эффективных устройств среди всех, которые были созданы за тысячелетия развития цивилизации: КПД электродвигателя достигает 99 процентов. Обладает он и еще одним, чрезвычайно полезным свойством: из потребителя электроэнергии может стать ее производителем.

Двигатели постоянного тока

Майкл Фарадей, английский физик, официальный изобретатель электрической машины постоянного тока, нашел практическое применение эффекту отталкивания одноименных полюсов магнита, который известен даже младшим школьникам. Он выяснил, что если согнутый в виде рамки проводник, по которому течет постоянный ток, поместить магнитное поле, то он стремится повернуться так, чтобы одноименные полюса совпали.

Вообще-то, гениальный англичанин создавал негальванический источник постоянного тока. Он состоял из неподвижного магнита U-образной формы, между полюсами которого находился край бронзового диска, вращаемого вручную. К поверхности диска прислонен проводник – так, чтобы он мог скользить по ней. Его подключили к плюсовой клемме. Во время вращения диска между плюсовой клеммой и землей измерялась ЭДС величиной в десяток вольт. Одновременно было замечено, что если подать на плюсовую клемму напряжение извне, то диск делал половину оборота самостоятельно. Последовательная же смена полюсов приводила его в движение.

Позже было установлено, что диск можно заменить на несколько витков токопроводящего материала. А чтобы получить непрерывное вращение, в устройство электродвигателя такого типа надо ввести особый элемент – коллектор. Это медное кольцо, разделенное на две половинки диэлектриком. По нему скользят концы питающих проводников, которые назвали щетками. Каждая из половинок этого кольца соединена с обмоткой, являющейся самостоятельным электромагнитом со своим полюсом. В момент поворота коллектора происходит смена полюсов, что и провоцирует непрерывное вращение.

Подвижный элемент двигателя постоянного тока получил название ротора или якоря. А неподвижный – статора. В последующем эту терминологию распространили и на машины переменного тока.

При малых мощностях было достаточно устанавливать постоянный магнит. Однако для ее увеличения необходима его замена на несколько независимых электромагнитов – катушек, подключенных к источнику постоянного тока. Поскольку именно она является причиной вращения ротора и вала двигателя, ее назвали обмоткой возбуждения. Это потребовало увеличить и количество обмоток (полюсов) на якоре и, как следствие, разбить кольцо коллектора не на два, а на гораздо большее количество токопроводящих участков.

Обмотку возбуждения можно подключить и параллельно обмотке якоря, и последовательно с ней. Поэтому электродвигатели постоянного тока бывают двух типов:

  1. С параллельным возбуждением. Можно регулировать частоту вращения. Используется для привода станков, требующих постоянства скорости вращения.
  2. С последовательным возбуждением. Регулируется момент вращения (мощность). Используется в тяговых приводах.

Достоинством электрических машин этого типа является то, что ими очень просто управлять: для изменения скорости вращения достаточно изменить силу тока в цепи якоря или статора. Реверс электродвигателя осуществляется переключением полюсов питающего напряжения. Кроме того, из них наиболее просто можно сделать генератор, для этого не потребуется никаких конструктивных переделок, все выводы обмоток уже имеются.

К недостаткам стоит отнести большой вес и сложность машины, поскольку требуется устройство обмоток и на статоре, и на роторе. Однако с этим мирятся, поскольку вращающий момент двигателя постоянного тока наиболее высок, как и его КПД. Это объясняется тем, что магнитные потоки вращаются практически синхронно, с очень малым отставанием друг от друга.

Синхронные электрические машины чаще всего используются в качестве тяговых: на транспорте, крановые электродвигатели. Они безразличны к переменным нагрузкам и даже приветствуют реверсирование. Самый мощный электродвигатель постоянного тока приводит в движение атомный ледокол «Арктика».

Двигатели переменного тока

Изменение направления движения заряженных частиц позволяет получить, при соблюдении условия сдвига фаз, вращающееся магнитное поле. На нем основан принцип действия электродвигателя переменного тока. Его конструкция как бы вывернута наизнанку по отношению к машинам постоянного тока: питающее напряжение подается не на коллектор якоря, а на статорную обмотку.

Из-за механической и электрической инерционности якорь трогается с места не сразу, а спустя некоторое время (субъективно оно незаметно) и как бы пытается догнать магнитное поле в статорной обмотке. Рассогласование фаз достигает 18 градусов, поэтому такие электрические машины называются асинхронными, а их КПД ниже (оно не бывает более 85 процентов), чем синхронных.

По типу конструкции якоря асинхронные двигатели бывают двух типов:

  1. С короткозамкнутой обмоткой. Она состоит из двух колец и соединяющих их медных проводников. По форме напоминает «беличье колесо». Благодаря простоте применяется наиболее широко, однако в момент начала движения вала провоцирует короткое замыкание, из-за чего пусковые токи выше номинальных в два-три раза.
  2. С фазной обмоткой. Три независимых катушки, соединенных звездой, их концы припаяны к сплошным кольцам на конце вала. Используется в электродвигателях большой мощности, когда требуется плавный пуск с минимальным падением напряжения. По мере разгона вала напряжение на якоре снижают.

Машины переменного тока проще и легче, они хорошо выдерживают критические нагрузки на валу, но не лишены недостатков:

    • сложно регулировать частоту вращения, для этого надо в цепь питания включать преобразователи частоты;
    • лучше всего работают в режиме максимальных нагрузок, в режиме холостого хода снижают КПД;
    • зависят от качества питающего напряжения.

Питание асинхронных двигателей

Первые практические опыты применения многофазных токов осуществлялись изобретателем Николой Тесла, он создал генератор с двумя обмотками на статоре, расположенными под углом в 90 0 друг к другу. Более стабильные результаты по току и напряжению дал генератор трехфазный, который был изобретен русским инженером М.О. Доливо-Добровольским. В нем статорные обмотки сдвинуты на 120 0 .

Сдвиг фаз на 90 или 120 градусов порождает вращающееся магнитное поле без дополнительных конструкторских ухищрений. Если же машину переменного тока надо питать от однофазной сети, то его создают принудительно. Для этого в клеммной коробке трехфазного двигателя шесть выводов обмоток соединяют по схеме «треугольник», а между двумя любыми входными зажимами устанавливают электролитический конденсатор большой мощности, обеспечивающий нужный угол смещения фаз. Изменение скорости вращения невозможно. Для реверсирования необходимо переподключить реактивную нагрузку.

Однофазные двигатели, имеющие две последовательно включенные статорные обмотки, без включения между ними реактивной нагрузки так же не работают. Если при включении двигатель только «мычит», немедленно обесточьте его и проверьте исправность цепи конденсатора, иначе вы рискуете сжечь обмотки большими пусковыми токами. Управление ими невозможно.

Гибридные конструкции

Сложность управления двигателями переменного тока подвигла инженеров-электриков на создание гибридных конструкций. Это так называемые синхронные машины, в которых ротор движется, не отставая от вращающегося магнитного поля.

Трехфазные синхронные машины

Статор состоит из трех обмоток со сдвигом в 120 0 . На них подается трехфазное переменное напряжение. Ротор имеет несколько обмоток, но их концы выведены на токосъемный коллектор, поделенный диэлектрическими прокладками на сектора. Посредством графитовых щеток на него подается постоянное напряжение. Для постоянного магнита суммарный сдвиг фаз в 360 0 – это тот же ноль. Чтобы вал электродвигателя начал вращаться, его надо подтолкнуть – вручную, механическим (ДВС) или электрическим устройством. После набора номинальных оборотов инициирующее устройство останавливают. В итоге машина питается широко распространенным переменным, но имеет положительные свойства двигателя постоянного тока: стабильность оборотов, высокий КПД и, главное, возможность регулирования частоты вращения в широких пределах.

Однофазные синхронные машины

Это так называемый универсальный коллекторный двигатель. По факту – та же машина постоянного тока, но питающаяся от бытовой сети переменного. Две статорных обмотки включены последовательно с якорем посредством графитовых щеток, поэтому полюса меняются одновременно и вращающий момент не меняет направления. Двигатель подключается к бытовой сети напрямую, не вызывает падения напряжения при запуске и не требует времени на разгон для достижения номинальной мощности. Он обладает мягкой нагрузочной характеристикой, поддается регулировке и по частоте, и направлению вращения. Используется в ручном электрифицированном рабочем инструменте, стиральных машинах.

Нагрузочное поведение электродвигателей

Номинальная мощность электродвигателя обычно указывается на шильдике, прикрепленном к его корпусу. Однако нагрузочное поведение машин постоянного и переменного тока существенно разнится. Так же, как и способ достижения паспортных значений этого параметра.

Двигатели постоянного тока номинальные обороты набирают плавно. Величина вращающего момента на их валу зависит, прежде всего, от напряженности магнитного поля. Поэтому для повышения отдачи увеличивают количество витков в катушках статора и ротора. Кроме того, регулировать частоту вращения можно, изменяя величину напряжения или тока в обмотке возбуждения.

Асинхронные машины переменного тока выходят на номинальные обороты резко, нередко за доли секунды, и стараются держаться на них независимо от уровня нагрузки, увеличивая силу тока в обмотках. Быстроходные, развивающие большое количество оборотов, используются в малонагруженных, но производительных приводах. Количество витков в обмотках у них большое, а сечение провода невелико, поэтому из-за большого удельного сопротивления по нему течет ток малой силы. Катушки же тихоходных, тяговых, наматываются проводом большого сечения, по которым течет ток большой силы.

Знание того, как работает электродвигатель, поможет вам сделать правильный выбор при создании приводов различного назначения. Однако и простое знакомство с устройством, коэффициент полезного действия которого близок к ста процентам, будет весьма полезным для общего развития.

Электродвигатель. Виды и применение. Работа и устройство

Электродвигатель представляет электромашину, перестраивающую электрическую энергию в механическую. Обычно электрическая машина реализует механическую работу благодаря потреблению приложенной к ней электроэнергии, преобразовывающейся во вращательное движение. Ещё в технике есть линейные двигатели, способные создавать сразу поступательное движение рабочего органа.

Особенности конструкции и принцип действия

Не важно какое конструктивное исполнение, но устройство любых электродвигателей однотипное. Ротор и статор находятся внутри цилиндрической проточки. Вращение ротора возбуждают магнитное поле, отталкивающее его полюса от статора (неподвижной обмотки). Сохранять постоянное отталкивание можно путём перекоммутации обмоток ротора, или образовав вращающееся магнитное поле непосредственно в статоре. Первый способ присущий коллекторным электродвигателям, а второй — асинхронным трехфазным.

Корпус любых электродвигателей обычно чугунный или выполнен из сплава алюминия. Однотипные двигатели, не смотря на конструкцию корпуса производятся с одинаковыми установочными размерами и электрическими параметрами.

Работа электродвигателя базируется на принципах электромагнитной индукции. Магнитная и электрическая энергия создают электродвижущуюся силу в замкнутом контуре, проводящем ток. Это свойство заложено в работу любой электромашины.

На движущийся электроток в середине магнитного поля постоянно воздействует механическая сила, стремительно пытающаяся отклонить направление зарядов в перпендикулярной силовым магнитным линиям плоскости. Во время прохождения электротока по металлическому проводнику либо катушке, механическая сила норовит подвинуть или развернуть всю обмотку и каждый проводник тока.

Назначение и применение электродвигателей

Электрические машины имеют много функций, они способны усиливать мощность электрических сигналов, преобразовывать величины напряжения либо переменный ток в постоянный и др. Для выполнения таких разных действий существуют многообразные типы электромашин. Двигатель представлят тип электрических машин, рассчитанных для преобразования энергии. А именно, этот вид устройств превращает электроэнергию в двигательную силу или механическую работу.

Он пользуется большим спросом во многих отраслях. Их широко используется в промышленности, на станках различного предназначения и в других установках. В машиностроении, к примеру, землеройных, грузоподъёмных машинах. Также они распространены в сферах народного хозяйства и бытовых приборах.

Классификация электродвигателей

Электродвигатель, является разновидностью электромашин по:
  • Специфике, создающегося вращательного момента:
    — гистерезисные;
    — магнитоэлектрические.
  • Строению крепления:
    — с горизонтальным расположением вала;
    — с вертикальным размещением вала.
  • Защите от действий внешней среды:
    — защищённые;
    — закрытые;
    — взрывонепроницаемые.

В гистерезисных устройствах вращающий момент образуется путём перемагничивания ротора или гистерезиса (насыщения). Эти двигатели мало эксплуатируются в промышленности и не считаются традиционными. Востребованными являются магнитоэлектрические двигатели. Существует много модификаций этих двигателей.

Их разделяют на большие группы по типу протекающего тока:
  • Постоянного тока.
  • Переменного тока.
  • Универсальные двигатели (работают на постоянном переменном токе).
Особенности магнитоэлектрических двигателей постоянного тока

С помощью двигателей постоянного тока создают регулируемые электрические приводы с высокими эксплуатационными и динамическими показателями.

Типы электродвигателей:
  • С электромагнитами.
  • С постоянными магнитами.
Группа электродвигателей, питание которых выполняется постоянным током, подразделяется на подвиды:
  • Коллекторные . В этих электроприборах присутствует щёточно-коллекторный узел, обеспечивающий электрическое соединение неподвижной и вращающейся части двигателя. Устройства бывают с самовозбуждением и независимым возбуждением от постоянных магнитов и электромагнитов.
  • Выделяют следующие виды самовозбуждения двигателей:
    — параллельное;
    — последовательное;
    — смешанное.
  • Коллекторные устройства имеют несколько минусов:
    — низкая надёжность приборов;
    — щёточно-коллекторный узел довольно сложная в обслуживании составляющая часть магнитоэлектрического двигателя.
  • Безколлекторные (вентильные) . Это двигатели с замкнутой системой, работающие по аналогичному принципу работы синхронных устройств. Оснащены датчиком положения ротора, преобразователем координат, а также инвертором силовым полупроводниковым преобразователем.

Эти машины выпускаются различных размеров от самых маленьких низковольтных до громадных размеров (в основном до мегаватта). Миниатюрными электродвигателями оснащены компьютеры, телефоны, игрушки, аккумуляторные электроинструменты и т.п.

Применение, плюсы и минусы электродвигателей постоянного тока

Электромашины постоянного тока применяют в разных областях. Ими комплектуют подъёмно-транспортные, красочно-отделочные производственные машины, а также полимерное, бумажное производственное оборудование и т.д. Часто электрический двигатель этого типа встраивают в буровые установки, вспомогательные агрегаты экскаваторов и другие виды электротранспорта.

Преимущества электрических двигателей:
  • Лёгкость в управлении и регулировании частоты вращения.
  • Простота конструкции.
  • Отменные пусковые свойства.
  • Компактность.
  • Возможность эксплуатации в разных режимах (двигательном и генераторном).
Минусы двигателей:
  • Коллекторные двигатели требуют трудное профилактическое обслуживание щёточно-коллекторных узлов.
  • Дороговизна производства.
  • Коллекторные устройства имеют не большой срок службы из-за изнашивания самого коллектора.
Электродвигатель переменного тока

В электродвигателях переменного тока электроток описывается по синусоидальному гармоническому закону, периодично меняющему свой знак (направление).

Статор этих устройств изготавливают из ферромагнитных пластинок, имеющих пазы для помещения в них витков обмотки с конфигурацией катушки.

Электродвигатели по принципу работы бывают синхронными и асинхронными . Главным их отличием является то, что скорость магнитодвижущей силы статора в синхронных приборах равна скорости вращения ротора, а в асинхронных двигателях эти скорости не совпадают, обычно ротор вращается медленнее поля.

Синхронный электродвигатель
Из-за одинакового (синхронного) вращения ротора с магнитным полем, аппараты именуют синхронными электродвигателями. Их подразделяют на подвиды:
  • Реактивный.
  • Шаговый.
  • Реактивно-гистерезисный.
  • С постоянными магнитами.
  • С обмотками возбуждения.
  • Вентильный реактивный.
  • Гибридно-реактивный синхронный двигатель.

Большая часть компьютерной техники оснащена шаговыми электродвигателями. Преобразование энергии в этих устройствах основано на дискретно угловом передвижении ротора. Шаговый электродвигатель имеет высокую продуктивность, независящую от их мизерных размеров.

Достоинства синхронных двигателей:
  • Стабильность частоты вращения, что не зависит от механических нагрузок на валу.
  • Низкая чувствительность к скачкам напряжения.
  • Могут выступать в роли генератора мощности.
  • Снижают потребление мощности, предоставляемой электростанциями.
Недостатки в синхронных устройствах:
  • Сложности с запуском.
  • Сложность конструкции.
  • Затруднения в регулировки частоты вращения.

Недостатки синхронного двигателя, делают более выгодным для использования электродвигатель асинхронного типа. Тем не менее, большинство синхронных двигателей из-за их работы с постоянной скоростью востребованы для установок в компрессоры, генераторы, насосы, а также крупные вентиляторы и пр. оборудование.

Асинхронный электродвигатель

Статор асинхронных двигателей представляет распределённую двухфазную, трехфазную, реже многофазную обмотку. Ротор выполняют в виде цилиндра, используя медь, алюминий либо металл. В его пазы залиты либо запрессованные токопроводящие жилы к оси вращения под определённым углом. Они соединяются в одно целое на торцах ротора. Противоток возбуждается в роторе от переменного магнитного поля статора.

По конструктивным особенностям выделяют два вида асинхронных двигателей:
  • С фазным ротором.
  • С короткозамкнутым ротором.
В остальном конструкция приборов не имеет отличий, статор у них абсолютно одинаковый. По числу обмоток выделяют такие электродвигатели:
  • Однофазные . Этот тип двигателей самостоятельно не запускается, ему требуется стартовый толчок. Для этого применяется пусковая обмотка либо фазосдвигающая цепь. Также приборы запускаются вручную.
  • Двухфазные . В этих устройствах присутствуют две обмотки со смещёнными на угол фазами. В приборе возникает вращающееся магнитное поле, напряженность которого в полюсах одной обмотки нарастает и синхронно спадает в другой.
    Двухфазный электродвигатель может самостоятельно запускаться, но с реверсом присутствуют сложности. Часто этот тип устройств подключают к однофазным сетям, включая вторую фазу через конденсатор.
  • Трехфазные . Достоинством этих типов электродвигателей является легкий реверс. Основные части двигателя – это статор с тремя обмотками и ротор. Позволяет плавно регулировать скорость ротора. Эти приборы довольно востребованы в промышленности и технике.
  • Многофазные . Состоят эти устройства из встроенной многофазной обмотки в пазах статора на его внутренней поверхности. Эти двигатели гарантируют высокую надёжность при эксплуатации и считаются усовершенствованными моделями двигателей.

Асинхронные электрические двигатели значительно облегчают работу людей, поэтому они незаменимы во многих сферах.

Достоинствами этих приборов, которые сыграли роль в их популярности, являются следующие моменты:
  • Простота производства.
  • Высокая надёжность.
  • Не нуждаются в преобразователях для включения в сеть.
  • Небольшие расходы при эксплуатации.
Каждый электрик должен знать:  Приборы для экономии электроэнергии миф или реальность
Ко всему этому, можно добавить относительную стоимость асинхронных приборов. Но они также имеют и недостатки:
  • Невысокий коэффициент мощности.
  • Трудность в точной регулировке скорости.
  • Маленький пусковой момент.
  • Зависимость от напряжения сети.

Но благодаря питанию электродвигателя с помощью частотного преобразователя, некоторые недостатки устройств устраняются. Поэтому потребность асинхронных моторов не падает. Их применяют в приводах разных станков в областях металлообработки, деревообработки и пр. В них нуждаются ткацкие, швейные, землеройные, грузоподъёмные и другие виды машин, а также вентиляторы, насосы, центрифуги, разные электроинструменты и бытовые приборы.

Обмотки статора электродвигателя, классификация, характеристики, применение

Обмотки статоров различных типов и видов электрических машин переменного тока разнообразны по конструкции, технологии их изготовления и укладки в пазы.

Для того чтобы яснее представить себе существующие конст

рукции катушек обмоток статоров машин переменного тока, а так

же в связи с тем, что от вида и типа катушек зависят технологиче

ские операции, выполняемые при ремонте обмоток, следует при

вести условную классификацию катушек обмоток статоров электри

ческих машин переменного тока по ряду конструктивных и техноло

Номинальное напряжение до 660 В, 3 кВ и вышы имеет широкое распространение в классе напряжении до 660

также и по периметру каждого витка (витковая изоляция). Соотношение площади проводниковых и изоляционных материалов сечении площади паза для обмоток низкого и высокого напряжен можно оценить по рис. 3. Кроме того, при изготовлении катушек напряжение машины 10 кВ и выше применяются так называем противокоронные меры, которые заключаются либо в устанавливаются в

16 специальных конструктивных элементов внутри катушек, либо в нанесении дополнительного покрытия наружной поверхности изоляций катушек полупроводящими лаками.

Вид обмоточного провода, из которого изготовляются катушки. Катушки из круглого обмоточного провода — мягкие катушки, окончательная формовка лобовых частей которых производится в процессе их укладки в пазы статора, применяются для асинхронных двигателей низкого напряжения мощностью до 100 кВт. Катушки из обмоточного провода прямоугольного сечения — жесткие катушки, которые укладываются в пазы статора в окончательно отформованном при их изготовлении виде, применяются в электрических машинах высокого напряжения. Следует отметить, что имеется целый ряд типоразмеров электрических машин низкого напряжения, где также применяются жесткие катушки, — это» асинхронные и синхронные двигатели в диапазоне мощностей 100—400 кВт.

Класс нагревостойкости. В зависимости от расчетных электромагнитных нагрузок в пусковом и номинальном режимах и связанных с этим температурных факторов, а также от эксплуатационных условий обмотки электрических машин по ГОСТ 183—74 могут быть изготовлены по классам нагревостойкости А, Е, В, F и Н. Технологически это означает применение для обмотки каждого класса нагревостойкости соответствующих марок обмоточных проводов и изоляционных материалов, способных нормально работать при температурах, характеризующих данный класс.

Характеристики основных групп изоляционных материалов и обмоточных проводов, относящихся к тем или иным классам нагревостойкости, будут даны ниже при непосредственном рассмотрении технологических процессов изготовления катушек.

Число сторон катушек в пазу.

Различие обмоток по этому признаку заключается в том, что в однослойной обмотке сторона катушки занимает повысоте весь паз статора, а в двухслойной — только половину паза. По конструкции и технологии изготовления катушки однослойных и двухслойных обмоток, изготовляемых из круглого провода (для двигателей до 100 кВт), не имеют между собой принципиальных отличий. Катушки однослойных и двухслойных обморок, изготовляемые из обмоточных проводов прямоугольного сечения, принципиально отличаются между собой и по конструкции, по технологии изготовления, а также по технологии их укладки и монтажа в статоре.

Вид элементов обмотки.

Различие элементов обмотки по данному признаку заключается в том, что катушка может быть технологически изгоготовлена замкнутой с последовательным соединением в oт этом случае обмотку называют катушечной) или элемен, обмотки изготовляются в виде стержней, а соединение витков стержней в катушку производится в процессе монтажа обмотки

тор; такие обмотки называют стержневыми.

Каждый из видов катушек обмоток электрических машин переменного тока приведениои условной классификации в силу различныз технологических и эксплуатационных факторов имеют и

внутри данного вида различия по конструкции и применяемы материалам.

К обмоткам высокого напряжения статоров, которые наиболее широко применяются в настоящее время, по приведенной выц классификации, относят: двухслойные катушечные обмотки из обм. точных проводов прямоугольного сечения, на номинальное напря. жение 3, 6 и 10 кВ с изоляцией классов нагревостойкости В, F и Н Такие обмотки применяются в подавляющем большинстве синхронных и асинхронных электрических машинах мощностью 100— 6000 кВт, составляющих основной парк электрических машин высокого напряжения в стране. В связи с выбранным видом обмоток следует ознакомиться с построением схем обмоток статоров электрических машин, в которых применяются эти виды обмоток.

Классификация электродвигателей

По принципу возникновения вращающего момента электродвигатели можно разделить на гистерезисные и магнитоэлектрические. У двигателей первой группы вращающей момент создается вследствие гистерезиса при перемагничивании ротора. Данные двигатели не являются традиционными и не широко распространены в промышленности.Наиболее распространены магнитоэлектрические двигатели, которые по типу потребляемой энергии подразделяется на две большие группы — на двигатели постоянного тока и двигатели переменного тока (также существуют универсальные двигатели, которые могут питаться обоими видами тока).

Двигатели постоянного тока:двигатель постоянного тока — электрический двигатель, питание которого осуществляется постоянным током. Данная группа двигателей в свою очередь по наличию щёточно-коллекторного узла подразделяется на:

  1. коллекторные двигатели;
  2. бесколлекторные двигатели.

Щёточно-коллекторный узел обеспечивает электрическое соединение цепей вращающейся и неподвижной части машины и является наиболее ненадежным и сложным в обслуживании конструктивным элементом

По типу возбуждения коллекторные двигатели можно разделить на:

  1. двигатели с независимым возбуждением от электромагнитов и постоянных магнитов;
  2. двигатели с самовозбуждением .

Двигатели с самовозбуждением делятся на:

  1. Двигатели с параллельным возбуждением;(обмотка якоря включается параллельно обмотке возбуждения)
  2. Двигатели последовательного возбуждения;(обмотка якоря включается последовательно обмотке возбуждения)
  3. Двигатели смешанного возбуждения.(обмотка возбуждения включается частично последовательно частично параллельно обмотке якоря)

Бесколлекторные двигатели (вентильные двигатели) — электродвигатели, выполненные в виде замкнутой системы с использованием датчика положения ротора, системы управления (преобразователя координат) и силового полупроводникового преобразователя (инвертора). Принцип работы данных двигателей аналогичен принципу работы синхронных двигателей.


Двигатели переменного тока

Трехфазные асинхронные двигатели

Двигатель переменного тока — электрический двигатель, питание которого осуществляется переменным током. По принципу работы эти двигатели разделяются на синхронные и асинхронные двигатели. Принципиальное различие состоит в том, что в синхронных машинах первая гармоника магнитодвижущей силы статора движется со скоростью вращения ротора, а у асинхронных — всегда должна быть разница скоростей.

Синхронный электродвигатель — электродвигатель переменного тока, ротор которого вращается синхронно с магнитным полем питающего напряжения. Данные двигатели обычно используются при больших мощностях (от сотен киловатт и выше) [1]:28 .

Существуют синхронные двигатели с дискретным угловым перемещением ротора — шаговые двигатели. У них заданное положение ротора фиксируется подачей питания на соответствующие обмотки. Переход в другое положение осуществляется путём снятия напряжения питания с одних обмоток и передачи его на другие. Ещё один вид синхронных двигателей — вентильный реактивный электродвигатель, питание обмоток которого формируется при помощи полупроводниковых элементов.

Асинхронный электродвигатель — электродвигатель переменного тока, в котором частота вращения ротора отличается от частоты вращающего магнитного поля, создаваемого питающим напряжением. Эти двигатели наиболее распространены в настоящее время.

По количеству фаз двигатели переменного тока подразделяются на:

  • однофазные — запускаются вручную, или имеют пусковую обмотку, или имеют фазосдвигающую цепь;
  • двухфазные — в том числе конденсаторные;
  • трёхфазные;
  • многофазные;

Типы асинхронных двигателей, разновидности, какие бывают двигатели

Электродвигатели переменного тока, использующие для своей работы вращающееся магнитное поле статора, являются в настоящее время весьма распространенными электрическими машинами. Те из них, у которых частота вращения ротора отличается от частоты вращения магнитного поля статора, называются асинхронными двигателями .

В связи с большими мощностями энергетических систем и большой протяженностью электрических сетей энергоснабжение потребителей всегда осуществляется на переменном токе. Поэтому естественно стремление к максимальному использованию электрических двигателей переменного тока. Это, казалось бы, освобождает от необходимости многократного преобразования энергии.

К сожалению, двигатели переменного тока по своим свойствам, и прежде всего по управляемости, существенно уступают двигателям постоянного тока, поэтому они используются преимущественно в установках, где не требуется регулирование скорости.

Относительно недавно начали активно использоваться регулируемые системы переменного тока с подключением электродвигателей переменного тока через частотные преобразователи.

Асинхронный электродвигатель с короткозамкнутым ротором представляет собой вращающийся трансформатор, первичная обмотка которого — это статор, а вторичная — ротор. Между статором и ротором находится воздушный зазор. Как и в любом реальном трансформаторе, каждая обмотка имеет также и собственное активное сопротивление.

При подключении двигателя в электрическую сеть в статоре возникает магнитное поле, которое вращается синхронно с частотой питающей сети. За счет явления электромагнитной индукции под действием магнитного поля статора в электрически замкнутых обмотках ротора возникает электрический ток.

Наведенный электрический ток ротора создаст собственное магнитное поле, которое вступает во взаимодействие с вращающимся магнитным полем статора. В результате ротор начинает вращаться, и на валу двигателя возникает механический момент, пропорциональный току статора.

Характерной особенностью асинхронного двигателя является то, что за счет взаимодействия полей статора и ротора скорость вращения вала двигателя несколько меньше, чем частота питающей сети. Разность между частотой питающей сети и скоростью вращения называют скольжением.

Очень широко применяются в различных отраслях хозяйства и производства асинхронные двигатели в силу простоты их изготовления и высокой надежности. Между тем, можно выделить четыре основных типа асинхронных двигателей:

однофазный асинхронный двигатель с короткозамкнутым ротором;

двухфазный асинхронный двигатель с короткозамкнутым ротором;

трехфазный асинхронный двигатель с короткозамкнутым ротором;

трехфазный асинхронный двигатель с фазным ротором.

Однофазный асинхронный двигатель содержит на статоре лишь одну рабочую обмотку, на которую в процессе работы двигателя подается переменный ток. Но для пуска двигателя на его статоре есть и дополнительная обмотка, которая кратковременно подключается к сети через конденсатор или индуктивность, либо замыкается накоротко. Это необходимо для создания начального сдвига фаз, чтобы ротор начал вращаться, иначе пульсирующее магнитное поле статора не столкнуло бы ротор с места.

Ротор такого двигателя, как и любого другого асинхронного двигателя с короткозамкнутым ротором, представляет собой цилиндрический сердечник с залитыми алюминием пазами, с одновременно отлитыми вентиляционными лопастями. Такой ротор, типа «беличья клетка» и называется короткозамкнутым ротором. Однофазные двигатели применяются в маломощных приборах, таких как комнатные вентиляторы или небольшие насосы.

Двухфазные асинхронные двигатели наиболее эффективны при работе от однофазной сети переменного тока. Они содержат на статоре две рабочие обмотки, расположенные перпендикулярно, причем одна из обмоток подключается к сети переменного тока напрямую, а вторая – через фазосдвигающий конденсатор, так получается вращающееся магнитное поле, а без конденсатора ротор бы сам не сдвинулся с места.

Эти двигатели также имеют короткозамкнутый ротор, а их применение гораздо шире, чем у однофазных. Здесь уже и стиральные машины, и различные станки. Двухфазные двигатели для питания от однофазных сетей называют конденсаторными двигателями, так как фазосдвигающий конденсатор является зачастую неотъемлемой их частью.

Трехфазный асинхронный двигатель содержит на статоре три рабочие обмотки, сдвинутые относительно друг друга так, что при включении в трехфазную сеть, их магнитные поля получаются смещенными в пространстве относительно друг друга на 120 градусов. При подключении трехфазного двигателя к трехфазной сети переменного тока, возникает вращающееся магнитное поле, приводящее в движение короткозамкнутый ротор.

Обмотки статора трехфазного двигателя можно соединить по схеме «звезда» или «треугольник», причем для питания двигателя по схеме «звезда» требуется напряжение выше, чем для схемы «треугольник», и на двигателе, поэтому, указываются два напряжения, например: 127/220 или 220/380. Трехфазные двигатели незаменимы для приведения в действие различных станков, лебедок, циркулярных пил, подъемных кранов, и т.д.

Трехфазный асинхронный двигатель с фазным ротором имеет статор аналогичный описанным выше типам двигателей, — шихтованный магнитопровод с тремя уложенными в его пазы обмотками, однако в фазный ротор не залиты алюминиевые стержни, а уложена уже полноценная трехфазная обмотка, в соединении «звезда». Концы звезды обмотки фазного ротора выведены на три контактных кольца, насаженных на вал ротора, и электрически изолированных от него.

1 — кожух с жалюзями, 2 — щетки, 3 — щеточная траверса со щеткодержателями, 4 — палец крепления щеточных траверс, 5 — выводы от щеток, 6 — колодка, 7 — изоляционная втулка, 8 — контактные кольца, 9 — наружная крышка подшипника, 10 — шпилька крепления коробки и крышек подшипника, 11 — задний подшипниковый щит, 12 — обмотка ротора, 13 — обмоткодержатель, 14 — сердечник ротора, 15 — обмотка ротора, 16 — передний подшипниковый щит, 7 — наружная крышка подшипника, 18 — вентиляционные отверстия, 19 — станина, 20 — сердечник статора, 21 — шпильки внутренней крышки подшипника, 22 — бандаж, 23 — внутренняя крышка подшипника, 21 — подшипник, 25 — вал, 26 — контактные кольца, 27 — выводы обмотки ротора

Посредством щеток, на кольца также подается трехфазное переменное напряжение, и подключение может быть осуществлено как напрямую, так и через реостаты. Безусловно, двигатели с фазным ротором стоят дороже, но их пусковой момент под нагрузкой значительно выше, чем у типов двигателей с короткозамкнутым ротором. Именно в силу повышенной мощности и большого пускового момента, этот тип двигателей нашел применение в приводах лифтов и подъемных кранов, то есть там, где устройство запускается под нагрузкой, а не вхолостую.

Подробнее про этот тип двигателей читайте здесь: Асинхронные электродвигатели с фазным ротором

Классификация электродвигателей

Электрический двигатель – так называют электрическую машину (электромеханический преобразователь энергии), в которой энергия электричества преобразуется в механическую. При этом выделяется тепло.

Рабочая схема электродвигателя очень проста. В основе функционирования электрической машины существует принцип электромагнитной индукции. Электрический механизм состоит из статора (неподвижного), который устанавливается в синхронных или асинхронных машинах переменного тока или индуктора (электродвигатели постоянного тока) и ротора (подвижной части, устанавливаемого в синхронных или асинхронных машинах переменного тока) или якоря (в машине тока постоянного). В качестве индуктора на маломощном двигателе постоянного тока используются магниты.

— Фазные (имеющие обмотку). Применяются в случае уменьшения пускового тока и для регуляции частоты вращения асинхронного электродвигателя.

В основном, представлены крановым электродвигателем серии МТКН (который по большей части применяется в крановых установках).

Якорем называют подвижную часть машины постоянного тока (генератора или двигателя) или же функционирующего по данному принципу универсального двигателя (который часто встречается в электрических инструментах). Универсальным двигателем называют ДПТ (двигатель постоянного тока), который имеет последовательное возбуждение (когда обмотки индуктора и якоря

включены последовательно). Различие только в расчете обмоток. На постоянном токе нет реактивного (емкостного или индуктивного) сопротивления. Именно поэтому любая болгарка, если вынуть электронный блок, будет в рабочем состоянии, особенно на постоянном токе и при меньшем сетевом напряжении.

Принцип функционирования асинхронного трехфазного электродвигателя

При включении питания в статоре возникает вращающееся круговое магнитное поле. Оно пронизывает короткозамкнутую обмотку ротора и появляется ток индукции. Согласно закону Ампера (на проводник, находящийся под током, помещенный при этом в магнитное поле, действует ЭДС сила), ротор начинает вращаться.

Частота его вращения зависит от частоты напряжения, а также от числа пар полюсов магнитов. Разность между частотой вращения ротора и частотой вращения поля магнитного статора характеризуется скольжением. Электродвигатель асинхронный называется асинхронным, потому что частота вращения поля магнитного статора не совпадает с частотой ротора.

Синхронный двигатель отличается от него конструкцией ротора. Ротор в подобном двигателе выполнен либо электромагнитом, либо постоянным магнитом. Также может иметь в себе частичку беличьей клетки (для запуска). В роторе непременно содержатся электромагниты или постоянные магниты. Частота вращения поля магнитного статора в синхронном двигателе совпадает с частотой ротора. Для запуска в данной конструкции применяют ротор с обмоткой короткозамкнутой или асинхронные вспомогательные электродвигатели.

Асинхронные двигатели широко применяются во многих отраслях техники. Это особенно характерно для обычных по конструкции и трехфазных прочных асинхронных двигателей, которые имеют коротко-замкнутые роторы. Такие двигатели дешевле и надежнее обычных электрических двигателей и не нуждаются в особом уходе. Название «асинхронный» указывает на то, что в подобном двигателе ротор вращается с вращающимся полем статора не синхронно. В отсутствие трехфазной сети асинхронный двигатель включают в сеть однофазного тока.

Устройство статора асинхронного электродвигателя очень простое. Он состоит из пакета лакированных листов стали электротехнической толщиной 0,5 мм. В пазах пакета, такого же, как в синхронной машине, уложена обмотка. Статор трехфазного асинхронного двигателя имеет три фазы обмотки. Обмотка смещена на 120°. Между собой фазы соединены треугольником или звездой.

Схема двухполюсной машины

Схема двухполюсной машины выглядит очень просто. В машине содержатся четыре паза из расчета на каждую фазу. При поступлении питания на обмотки статора от трехфазной сети получается особое вращающееся поле. Это получается потому, что токи в фазах обмотки смещены в пространстве на 120° относительно друг друга и сдвинуты по фазе на 120°. При синхронной частоте вращения nc поля электродвигателя с р парами полюсов верно при частоте токов в f: nc=f/p. Так, при частоте 50 Гц получается для р = 1, 2, 3 (двух-, четырех или шести машин полюсных) получаются синхронные частоты вращения в nc = 3000, 1500 и 1000 об/мин.

Ротор асинхронного электродвигателя состоит из листов электротехнической стали. Он может выполняться в виде ротора с контактными кольцами (фазный ротор) или короткозамкнутого ротора (с беличьей клеткой). В короткозамкнутом роторе обмотка выглядит в виде стержней из металла (бронзы, меди или алюминия). Стержни располагаются в пазах и соединяются между собой на концах особыми закорачивающими кольцами. Соединение стержней осуществляет при помощи пайки сваркой или твердым припоем. При использовании сплавов из алюминия или алюминия стержни ротора, а также закорачивающие кольца и лопасти вентилятора, располагающиеся на них, производят при помощи литья под давлением.

Каждый электрик должен знать:  Как подключить двухжильный провод к трехжильному (вытяжка)

Прямо у ротора электрического двигателя с контактными кольцами в пазах располагается трехфазная обмотка. По внешнему виду она походит на обмотку статора, включенную звездой. Начала фаз данной обмотки соединены с тремя контактными кольцами, которые закреплены на валу. В процессе запуска двигателя можно выполнить регулировку частоты вращения. Для этого подсоединяют к фазам обмотки ротора реостаты (делается это через щетки и контактные кольца). После успешного разбега кольца контактов замыкаются накоротко. Это значит, что обмотка двигателя ротора выполняет те же самые функции, что и обмотка короткозамкнутого ротора.

Классификация электрических двигателей

По природе возникновения вращающего момента электрические двигатели делятся на магнитоэлектрические и гистерезисные. У гистерезисных двигателей вращающийся момент создается за счет гистерезиса при перемагничивании ротора. Подобные устройства считаются нетрадиционными и мало распространены в промышленности.

Самым распространенным товаром считаются магнитоэлектрические двигатели. По типу потребляемой энергии они подразделяются на две группы – двигатели тока постоянного и двигатели тока переменного. Также существуют так называемые двигатели универсальные, которые питаются обоими видами токов.

Двигатель постоянного тока

Двигателем постоянного тока называют электродвигатель, чье питание происходит за счет постоянного тока. Данный тип двигателей также принято подразделять по наличию щёточно-коллекторного узла на две группы:

Щёточно-коллекторный узел отвечает за качественное электрическое соединение цепей неподвижной и вращающейся части машины. Он является самым сложнейшим в обслуживании и ненадежным конструктивным элементом.

Коллекторные двигатели по типу возбуждения подразделяются на:

— двигатель с самовозбуждением

— двигатель с независимым возбуждением (от постоянных магнитов и электрических магнитов).

Двигатель с самовозбуждением подразделяется на:

— двигатель, имеющий параллельное возбуждение (обмотка якоря в этом случае включается строго параллельно обмотке возбуждения)

— двигатель, имеющий последовательное возбуждение (обмотка якоря в данном случае якоря включается строго последовательно обмотке возбуждения)

— двигатель, имеющий смешанное возбуждение (обмотка возбуждения в данном случае включается последовательно частично и параллельно частично обмотке якоря).

Вентильные двигатели (бесколлекторные) – это электрические двигатели, которые выполняются в виде замкнутой системы с применением датчика, определяющего положение ротора, преобразователя координат (системы управления), а также инвертора (силового полупроводникового преобразователя). Принцип функционирования подобных двигателей схож с принципом работы системы синхронных двигателей.

Двигатель переменного тока

Трехфазный асинхронный двигатель

Электродвигатели переменного тока — это электрические двигатели, питание которых осуществляется при помощи переменного тока. По принципу функционирования подобные двигатели подразделяются на асинхронные и синхронные двигатели. Принципиальное отличие заключается в том, что в синхронном двигателе первая гармоника силы магнитодвижущей статора перемещается со скоростью вращения ротора. Сам ротор перемещается со скоростью перемещения магнитного поля в статоре. У асихронного двигателя всегда присутствует разница между скоростью перемещения ротора и скоростью магнитных полей в статоре (ротор вращается медленнее поля).

Синхронный электродвигатель — это электрический двигатель тока переменного. Ротор синхронно вращается с полем магнитным питающего напряжения. Подобные устройства применяются для обеспечения больших мощностей (более сотни киловатт). Синхронные двигатели бывают с угловым дискретным перемещением ротора (так называемые шаговые двигатели). У подобных устройств положение ротора прочно фиксируется подачей питания на обмотки. Переход в иное положение осуществляется при помощи снятия напряжения питания с первых обмоток и передачи на вторые (и так далее). Помимо этого существует и еще один вид синхронного двигателя — реактивный вентильный двигатель электрический. Питание обмоток данного двигателя формируется за счет элементов полупроводниковых.

Асинхронный электродвигатель — это электрический двигатель переменного тока. Частота вращения ротора в данном двигателе существенно отличается от вращения полей магнита, которые создаются от питающего напряжения. Подобные устройства наиболее распространены.

По количеству фаз двигатель тока переменного принято подразделять на:

— Однофазные электродвигатели. Запуск подобных устройств производится вручную. Они могут иметь пусковую обмотку или фазосдвигающую цепь.

— Двухфазный (сюда входят и конденсаторные)

Коллекторный универсальный электродвигатель

Коллекторный универсальный электродвигатель – это электрический коллекторный двигатель, который может функционировать как на переменном, так и на постоянном токе. Производится с последовательной обмоткой возбуждения строго на мощности электродвигателя около 200 Вт. Статор двигателя выполнен шихтованным из особой электрической технической стали. Обмотка возбуждения полностью включается при постоянном токе и частично включается при переменном токе. Номинальные напряжения для переменного тока — 127,220, для тока постоянного номинальные напряжения- 110.220. Двигатели такого плана используются в электроинструментах и бытовых аппаратах.

Двигатель переменного тока, питающийся от промышленной сети 50 ГЦ, не может обеспечить частоту вращения более 3000 об/мин. Именно поэтому для получения высочайших частот следует использовать коллекторный электродвигатель. Такой двигатель получается меньше и легче, в сравнении с двигателем тока переменного такой же мощности. Также применяются особые передаточные механизмы, которые позволяют изменять кинематические параметры механизмов до нужных вам (так называемые мультипликаторы). При использовании преобразователей частоты или сети частоты повышенной (в 100, 200 или 400 Гц) двигатель переменного тока оказывается меньше и легче, в сравнении с коллекторным двигателем (поскольку иногда коллекторный узел занимает ½ объема). Ресурс асинхронного двигателя переменного тока выше в сравнении с коллекторным. Он определяется состоянием изоляции обмоток и подшипников.

Синхронный двигатель, имеющий датчик положения ротора и инвертор, считается электронным аналогом обычного коллекторного постоянного тока. Коллекторный универсальный двигатель считается электродвигателем коллекторным постоянного тока, имеющим последовательно включенные обмотки статора (возбуждения). Подключение электродвигателя такого типа не вызывает сложностей. Он также оптимизирован для функционирования на переменном токе электрической бытовой сети. Подобный тип двигателя вне зависимости от полярности поданного напряжения вращается строго в одну сторону. Это происходит потому, что обмотки ротора и статора соединены последовательно и смена полюсов полей магнитных данных устройств происходит одновременно, а значит, результирующий момент направлен в одну сторону. Если необходима работа на переменном токе, применяют статор из мягкого магнитного материала, имеющий малый гистерезис (малое сопротивление перемагничиванию).

Если необходимо уменьшение потерь на вихревые токи, берут наборный статор, изготовленный из изолированных пластин. Достоинством функционирования подобного двигателя считается то, что в режиме пуска и перегрузки индуктивное сопротивление обмоток ограничивает ток и максимальный момент двигателя до 5 – 3 от номинального.

Электрический синхронный двигатель возвратно-поступательного движения

Принцип его функционирования прост. Подвижная часть выполняется в виде магнитов, которые крепятся на штоке. Переменный ток электродвигателя проходит через неподвижные обмотки. Под действием этого процесса постоянные магниты перемещают шток.

Лось Анастасия
Специально для Двигатель.инфо

Классификация электрических машин

Электрические машины, как и другие устройства, также можно классифицировать. Классифицируют электрические машины по назначению, принципу действия и роду тока, мощности, по частоте вращения.

Классификация по назначению

Электрические машины по своему назначению подразделяют на:

  • Электромашинные генераторы. Они выполняют преобразовании энергии механической (вращение) в электрическую. Они устанавливаются на электрических станциях, автомобилях, самолетах, тепловозах, передвижных электростанциях, кораблях и в других установках. На электростанциях генератор приводят в движение мощные паровые турбины, на автомобилях, тепловозах и прочих транспортных средствах – газовые турбины или двигатели внутреннего сгорания. Генераторы очень часто используют в качестве источников питания в различных установках связи, автоматики и измерительной техники и в других системах.
  • Электрические двигатели – выполняют функции обратные генератору, а именно, преобразуют электрическую энергию в механическую. Они используются для приведения в движение множества установок в промышленности, сельском хозяйстве, транспорте, в быту, в системах связи. В системах автоматического регулирования их активно используют в качестве регулирующих, программирующих и исполнительных органов.
  • Электромашинные преобразователи – выполняют преобразования электрических величин. Например, могут преобразовывать постоянный ток в переменный и наоборот, изменять частоту, число фаз и другие функции. В связи с активным внедрением полупроводниковых преобразователей электромашинные преобразователи в новых проектах используют крайне редко (практически никогда), а уже установленные электромашинные преобразователи активно модернизируются полупроводниковыми (тиристорными и транзисторными).
  • Электромашинные компенсаторы – осуществляют регулирование коэффициента мощности cos φ, а именно баланса реактивной мощности в сети.
  • Электромашинные усилители – используют для объектов большой мощности. Это, своего рода усилители, они усиливают сигналы большой мощности, при этом управление ведется сигналами малой мощности. Роль этих усилителей, как и электромашинных компенсаторов, в современном мире практически сведена на нет из – за применения полупроводниковых усилителей (транзисторных и тиристорных).
  • Электромеханические преобразователи сигналов – это, как правило, электрические микромашины (например, сельсины), которые довольно широко используют в системах автоматического управления.

Классификация по роду тока и принципу действия

Как известно, существует два рода электрического тока – переменный и постоянный. Исходя из этого, электрические машины также подразделяют по роду тока на два вида –машины электрические переменного тока и машины электрические постоянного тока.

Электрические машины переменного тока

В свою очередь электрические машины переменного тока делят на:

  • Трансформаторы – наиболее широко применимы в сетях электроснабжения для преобразования напряжений (повышение и понижение). Также довольно широко их применяют в выпрямительных установках для согласования напряжений, в устройствах связи, вычислительной техники и автоматики. Часто применяются и для проведения измерений электрических (измерительные трансформаторы), а также для различных функциональных преобразований (трансформаторы вращающиеся).
  • Асинхронные электродвигатели – самые распространенные в мире благодаря своей относительной простоте и низкой стоимости. Простота конструкции и высокая надежность позволяет применять их не только в промышленных электроустановках (станки, краны, подъемные машины), но и в бытовых (компрессора холодильников, вентиляторы, пылесосы). Довольно широкое применение получили однофазные и двухфазные асинхронные управляемые электродвигатели, а также сельсины и тахогенераторы асинхронные.
  • Синхронные электродвигатели – наиболее часто применяемы в качестве генераторов электрического тока на электрических станциях. Также применимы в качестве генераторов повышенной частоты в различных источниках питания (например, на кораблях, тепловозах, самолетах). Также в электроприводах большой мощности применяют синхронные электродвигатели, которые могут также помимо выполнения полезной работы и также влиять на коэффициент мощности сети cos φ. Относительно электроприводов малой мощности, то там довольно широкое распространение получили реактивные синхронные электродвигатели, шаговые, индукторные, с постоянными магнитами и другие.
  • Коллекторные машины – используют их относительно редко и зачастую только в качестве электродвигателей. Это вызвано сложностью их конструкции, а также в необходимости довольно тщательного ухода за ними. В бытовых электроприборах и устройствах автоматики применяются универсальные коллекторные электродвигатели, способные работать на двух родах тока – постоянном и переменном.

Электрические машины постоянного тока

В недалеком прошлом были они самыми популярными в регулируемом электроприводе из-за простоты управления ими. Они работают практически во всех сферах промышленности и транспорта. Из-за повышенной стоимости и требовательности в обслуживании активно вытесняются частотно-регулируемыми электроприводами переменного тока.

В связи с большим распространением машин постоянного тока также были распространены и генераторы постоянного тока. Они использовались в качестве источников постоянного напряжения для зарядки аккумуляторных батарей, на транспорте (тепловозы, теплоходы и другие), а также в промышленности (система генератор — двигатель). Ввиду развития полупроводниковой техники генераторы постоянного тока постепенно вытесняются из работы и активно заменяются на генераторы переменного тока работающих в паре с полупроводниковым преобразователем.

Также применяются электродвигатели постоянного тока и в системах автоматического управления АСУ в качестве усилителей электромашинных, тахогенераторов и исполнительных электродвигателей.

Электрические микромашины

Микромашины активно применяются в устройствах автоматических. Соответственно их подразделяют на группы:

  • Силовые микродвигатели – приводят во вращения механизмы различных автоматических устройств. Например, самопишущие устройства и другие.
  • Исполнительные (управляемые) микромашины – выполняют преобразование энергии электрической в механическую, то есть ведут обработку определенных команд из вне.
  • Тахогенераторы – преобразуют механическую энергию вращения вала в электрический сигнал напряжения, который пропорционален скорости вращения вала.
  • Вращающиеся трансформаторы – на выходе этих трансформаторов устанавливается напряжение, пропорциональное функции углу поворота ротора, например синусу или косинусу данного угла или же самому углу.
  • Машины синхронной связи – (магнесины или сельсины) осуществляют синфазный и синхронный поворот или же вращения нескольких осей, не имеющих между собой механической связи.
  • Микромашины гироскопических приборов – вращают роторы гироскопов с довольно высокой частотой, а также производят коррекцию их положения.
  • Электромашинные усилители и преобразователи.

Машины первых двух групп довольно часто называют силовыми, а электродвигатели третьей – пятой групп информационными.

Классификация по мощности

Также электрические машины классифицируют еще и по мощности. И по мощности их делят на:

  • Микромашины – их мощность может варьироваться от нескольких долей ватта до 500 Вт. Они могут производится для двух родов тока — постоянного и переменного. Могут быть рассчитаны как на работу при нормальной (промышленной) частоте 50 Гц, так и при повышенной ( от 400 до 2000 Гц).
  • Электродвигатели малой мощности – от 0,5 до 10 кВт. Также могут изготавливаться для двух родов тока – постоянного и переменного нормальной и повышенной частоты.
  • Электродвигатели средней мощности – от 10 кВт до нескольких сотен ватт.
  • Электродвигатели большой мощности – мощность данных машин больше нескольких сотен киловатт. Такие электродвигатели предназначены для работы на постоянном и переменном напряжении нормальной частоты. Исключение могут составлять электродвигатели специального назначения (авиация, флот) и другие.

Классификация по частоте вращения

Условно их разделяют на:

  • До 300 об/мин — тихоходные.
  • От 300 до 1500 об/мин — средней быстроходности.
  • От 1500 до 6000 об/мин — быстроходные.
  • Более 6000 об/мин — сверхбыстроходные.

Микромашины же могут изготавливать с частотой вращения вала от нескольких оборотов в минуту до 60 000 оборотов в минуту. Скорость вращения машин средней и большой мощности, как правило, не превышает 3000 об/мин.

Виды и типы электродвигателей

Электрический двигатель

Электродвигатель представляет собой электрическую машину, которая преобразовывает электроэнергию в энергию вращения вала с незначительными тепловыми потерями. Главный принцип работы любого электродвигателя заключается в использовании электромагнитной индукции в качестве основной движущей силы. Для этого конструкция электродвигателя включает:

  • Неподвижную часть (статор или индуктор).
  • Подвижную часть (ротор или якорь).

В зависимости от предназначения, применяемого рода тока и конструктивных особенностей электрические двигатели имеют большое количество разновидностей.

Двигатели постоянного тока

Электродвигатели постоянного тока объединяют широкий ассортимент устройств, обеспечивающих высокий КПД при трансформации электрической энергии в механическую. Для надежного соединения электрической цепи подвижной и неподвижной части электропривода постоянного тока используют щеточно-коллекторный узел. В зависимости от конструктивных особенностей щеточно-коллекторного узла, все электрические машины постоянного тока подразделяют на следующие группы:

В свою очередь коллекторные электродвигатели условно разделяют на следующие виды:

  • Самовозбуждающиеся.
  • С возбуждением от электромагнитов постоянного действия.

Устройства с независимым возбуждением характеризуются низкой мощностью, поэтому данные электроприводы используют для не ответственных операций с низкой нагрузкой. Машины с самовозбуждением подразделяют на:

  • Устройства с последовательным возбуждением, где якорь подключается последовательно обмотке возбуждения.
  • Электродвигатели с параллельным возбуждением, где якорь включается параллельно обмотке возбуждения.
  • Электропривод смешанного возбуждения, который характеризуется наличием параллельных и последовательных соединений.

Двигатели переменного тока

Электродвигатели переменного тока представлены широкой номенклатурой устройств, которые различают по многочисленным конструктивным и эксплуатационным характеристикам. В зависимости от скорости вращения ротора выделяют электрические машины синхронного и асинхронного типа.

Синхронные двигатели характеризуются одинаковой скоростью вращения ротора и магнитного поля питающего напряжения. Подобный тип электрических двигателей используют для изготовления устройств с высокой мощностью. Кроме этого существует еще одна разновидность синхронного привода — шаговые двигатели. Они имеют строго заданное в пространстве положение ротора, которое фиксируется подачей питания на обмотку статора. При этом переход из одного положения в другое осуществляется посредством подачи напряжения на требуемую обмотку.

Асинхронный электрический двигатель имеет частоту вращения ротора отличную от частоты вращения магнитного поля питающего напряжения. В настоящее время этот тип электродвигателей получил самое широкое распространение как на производстве, так и в быту.

В зависимости от количества фаз питающего напряжения электропривод принадлежит к одной из групп:

Категория размещения и климатическое исполнение

Все электродвигатели производят с учетом воздействия во время эксплуатации определенных факторов окружающей среды. По этой причине все электрические машины подразделяют на следующие категории размещения:

  • Для помещений с высоким уровнем влажности.
  • Для помещений закрытого типа с вентиляцией естественного типа без искусственного регулирования климатических параметров. При этом ограничено воздействие пыли, влаги и УФ- излучения.
  • В условиях открытого пространства.
  • Для помещений закрытого типа с искусственным регулированием климатических параметров. При этом ограничено воздействие пыли, влаги и УФ-излучения.
  • Для помещений с изменением влажности и температуры, которые не отличаются от изменений на улице.

В зависимости от климатического исполнения в соответствии с требованиями ГОСТ 15150 — 69 все электрические двигатели подразделяют на следующие типы исполнения:

  • Все возможные макроклиматические районы (В).
  • Холодный (ХЛ).
  • Все морские районы (ОМ).
  • Сухой тропический (ТС).
  • Общий (О).
  • Умеренный (У).
  • Умеренный морской (М).
  • Влажный тропический (ТВ).

Категория размещения и климатическое исполнение указывают в условном обозначении электродвигателя на его бирке и в паспорте.

Степень защиты корпуса

Для условного обозначения степени защиты корпуса электрической машины от воздействия вредных факторов окружающей среды используют аббревиатуру IP. При этом на корпусе электропривода указывают следующую информацию:

  • Высокий уровень защиты от пыли — IP65, IP66.
  • Защищенные — не ниже IP21, IP22.
  • С защитой от влаги — IP55, IP5.
  • С защитой от брызг и капель — IP23, IP24.
  • Закрытое исполнение — IP44 — IP54.
  • Герметичные — IP67, IP68.

При подборе электрического двигателя для эксплуатации в условиях воздействия определенных вредных факторов, необходимо тщательно подходить к выбору степени защиты его корпуса.

Общие требования безопасности при монтаже и эксплуатации

При монтаже электрического двигателя необходимо придерживаться следующих требований:

  • Перед подключением проверить соответствие частоты и напряжения питающей сети с информацией на паспорте электрического двигателя.
  • Перед установкой электрической машины обязательно проводят измерение сопротивления электрической изоляции обмотки статора относительно корпуса. При неудовлетворительных значениях проводят просушивание изоляции до достижения требуемого значения.
  • При сопряжении валов необходимо точно соблюдать соосность с допустимым отклонением не более 0,2 мм.
  • Для заземления корпуса электродвигателя используют только специальные заземляющие устройства, предусмотренные инструкцией завода производителя.
  • Строго запрещен монтаж электропривода под напряжением.

В процессе эксплуатации электрических машин следует придерживаться следующих основных правил:

  • Регулярный осмотр состояния электродвигателя является залогом своевременного определения неисправностей.
  • Регулярно на протяжении всего срока эксплуатации проводят проверку исправности токовой и тепловой защиты, чистку и смазку, проверку контактных соединений и надежности заземления.
  • При наличии повышенного шума или стука, проводят вибродиагностику с целью определения состояния подшипников и других вращающихся деталей.
  • Следует исключить длительную работу однофазного электродвигателя в режиме холостого хода, что негативно влияет на срок его службы.
  • Запрещается эксплуатация электрического двигателя с неисправной защитой от перегрева, перегрузки или завышенным значением сопротивления контура заземления.
Каждый электрик должен знать:  Нужно ли менять электросчетчик на новый, если срок службы не вышел

Крановые электродвигатели

Крановые электродвигатели представляют собой асинхронные устройства переменного тока или двигатели постоянного тока с параллельным или последовательным возбуждением.

В отличие от других категорий электродвигателей, крановые электроприводы имеют следующие особенности:

  • Большинство крановых электрических двигателей имеет закрытое исполнение корпуса.
  • Момент инерции на роторе составляет минимально возможное значение, что обеспечивает минимальные потери энергии во время переходных процессов.
  • Кратковременная перегрузка по моменту для крановых двигателей постоянного тока составляет 2,0 — 5,0, а для электромоторов переменного тока 2,3 — 3,5.
  • Класс нагревостойкости изоляционных материалов не менее F.
  • У кранового электропривода переменного тока в номинальном режиме ПВ составляет не менее 80 минут.
  • С целью получения большой перегрузочной способности по моменту добиваются высоких значений магнитного потока.
  • Отношение максимально допустимой частоты вращения к номинальному значению для электродвигателей постоянного тока составляет 3,5 — 4,9, а для машин переменного тока 2,5.

Эксплуатация кранового привода характеризуется следующими условиями эксплуатации:

  • Частые пуски, реверсы и торможения.
  • Регулирование частоты вращения в широком диапазоне значений.
  • Повышенная вибрация и тряски.
  • Повторно-кратковременный режим работы.
  • Воздействие высокой температуры, газа, пыли и пара.
  • Значительная перегрузка во время работы.

Общепромышленные электрические двигатели

Электродвигатели общепромышленного исполнения применяют для привода механизмов, которые не предъявляют особых требований к показателям КПД, энергосбережения, скольжению и пусковым характеристикам. Они характеризуются повторно-кратковременным режимом работы и изоляцией с классом нагревостойкости класса F. Наиболее популярными в этой категории являются асинхронные электрические двигатели марки АИР с короткозамкнутым ротором. Благодаря многочисленным достоинствам, этот тип электропривода с успехом применяется на всех производственных предприятиях. От продукции других торговых марок его отличает:

  • Простая конструкция с отсутствием подвижных контактов.
  • Низкая стоимость в сравнении с электрическими машинами других типов.
  • Высокая ремонтопригодность всех главных узлов и рабочих элементов.
  • Использование напряжения сети 380 В без дополнительных регуляторов или фильтров.
  • Монтаж двигателя осуществляется на лапах или фланцах, поэтому происходит в минимально короткий срок.

Электрические машины общепромышленного исполнения находят применение в сферах деятельности, где нет необходимости в высоких эксплуатационных параметрах: вентиляционные системы, насосные станции, станочное оборудование, компрессорные установки и др. Эксплуатация общепромышленных электродвигателей осуществляется в двух основных режимах: генераторный и двигательный. При этом в генераторном режиме электрические двигатели являются источником электроэнергии за счет преобразования механической энергии вращения вала. В двигательном режиме привод общепромышленного исполнения потребляет электроэнергию и превращает её в механическую энергию вращения вала.

Электрические двигатели с электромагнитным тормозом

Электрический привод с электромагнитным тормозом предназначен для эксплуатации в повторно-кратковременном или кратковременном режиме. Он разработан специально для механизмов, которые требуют форсированной остановки в строго регламентированное время. К таким механизмам относят: электрические тали, автоматизированные складские системы, обрабатывающие станки и др. Тормозной механизм, как правило, располагают со стороны противоположной валу двигателя. Он обеспечивает быстрое торможение электрического привода при отключении питания, а при повторной подаче напряжения растормаживает его.

Электрические машины со встроенным электромагнитным тормозом работают по следующему принципу:

  1. Электромагнитную катушку тормоза подключают последовательно к одной из фазных обмоток электродвигателя.
  2. Катушка получает постоянное напряжение посредством выпрямляющего устройства, которое располагают возле коробки с выводами или переменное напряжение непосредственно с обмотки электродвигателя.
  3. При отсутствии фазного напряжения катушка обесточивается, и якорь прочно зажимает блокировочный механизм.
  4. После восстановления электрического питания катушка подтягивает якорь, что позволяет валу двигателя свободно перемещаться.

В зависимости от способа монтажа электромоторы со встроенным электромагнитным тормозом изготавливают в следующих исполнениях:

  • С горизонтальным валом.
  • С вертикальным валом.

Благодаря своим преимуществам по времени остановки вала электродвигателя, этот тип электропривода обеспечивает надежную и безопасную эксплуатацию устройств с высокими требованиями к позиционированию или аварийной остановке.

Источник: Технический отдел ЗАО «КранЭлектроМаш»

Классификация электродвигателей

Электродвигатели переменного тока АИР

В основе работы электродвигателей лежит процесс электромагнитной индукции, которая возникает при движении проводящей среды в магнитном поле. В качестве проводящей среды обычно используется обмотка, состоящая из достаточно большого количества проводников, соединенных между собой надлежащим способом. Магнитное поле в электродвигателе создается либо с помощью постоянных магнитов, либо возбуждающими обмотками, которые обтекаются токами. Электродвигатели обратимы, то есть могут работать по преобразованию электрической энергии в механическую и, наоборот, в режиме генератора. В корпусе электродвигателя находится неподвижный полый цилиндрический статор, набранный из отдельных, изолированных друг от друга пластин электротехнической (магнитной) стали. На внутренней стороне статора в пазах расположены витки обмотки возбуждения из медной проволоки. Внутри статора располагается подвижный, вращающийся на валу ротор, состоящий тоже из стальных пластин, также изолированных друг от друга термостойким лаком. В пазах ротора располагаются витки медной обмотки. Обмотка статора подсоединяется к источнику переменного тока. Электродвигатели переменного тока делятся на синхронные и асинхронные, в зависимости от того, в каком отношении находится скорость вращения к частоте. При изготовлении и выборе электродвигателей большое значение имеют условия их эксплуатации и климатические условия, в зависимости от которых используются разные виды электродвигателей, имеющие конструкционные особенности, делающие их пригодными для эксплуатации в различных условиях.

При выборе электродвигателя необходимо учитывать коэффициент их полезного действия и потери электроэнергии в проводниках, питающих электродвигатель. Синхронные электродвигатели используются в качестве двигателей в крупных установках, таких, как привод поршневых компрессоров, воздуховодов, гидравлических насосов и т.д. Асинхронные двигатели также применяются в промышленности, например, для приводов крановых установок общепромышленного назначения, а также различных грузовых лебедок и других устройств, необходимых в производстве. Электродвигатели переменного тока имеют огромное значение для большинства видов промышленности.

Электродвигатели переменного тока подразделяются на синхронные и асинхронные.

Скорость вращения синхронных электрических двигателей находится в постоянном отношении к частоте электрической сети, для асинхронных — отношение непостоянно. Скорость вращения асинхронных двигателей изменяется с изменением нагрузки. Асинхронные электродвигатели могут иметь преобразовательное устройство в виде коллектора (коллекторные машины) или не иметь (бесколлекторные).

Наиболее важные номинальные величины указываются на специальном щитке электрического двигателя.

Наибольшее распространение среди электрических двигателей переменного тока получили асинхронные электродвигатели с трехфазной симметричной обмоткой на статоре, питаемые от сети переменного тока и с трехфазной или многофазной обмоткой на роторе. Асинхронные двигатели в основном используются как двигатели, в то время как синхронные двигатели в основном используются как генераторы, так как электрический двигатель может работать как в двигательном, так и в генераторном режиме.

Асинхронные электродвигатели малой мощности часто выполняют однофазными, что позволяет использовать их в устройствах, питаемых от двухпроводной сети. Эти двигатели широко применяются в бытовой технике. В промышленности широкое применение получили трехфазные электрические двигатели, питаемые от трехпроводной промышленной сети. В большинстве асинхронных электродвигателей применяется короткозамкнутый ротор. Обмотка короткозамкнутого ротора выполняется в виде цилиндрической клетки из медных или алюминиевых стержней, которые без изоляции вставляются в пазы сердечника ротора. Асинхронные электродвигатели выпускаются в виде единых серий, охватывающих все необходимые мощности и частоты вращения. В основном выпускаются двигатели для питания от сети с частотой 50 Гц. Двигатели общего применения имеют твердую шкалу мощностей при всех частотах вращения. Буквенное обозначение всех серий асинхронных двигателей включает букву А (асинхронный), следующие буквы, входящие в обозначение, отражают особенности конструкции двигателя. В основном выпускаются асинхронные электродвигатели с короткозамкнутым ротором, предназначенные для общего применения в промышленности в условиях умеренного климата.

Номинальные данные двигателя относятся к продолжительному режиму работы при питании от сети 50 Гц. По степени защищенности от воздействия окружающей среды двигатели изготавливают в двух вариантах: защищенные (1P23) и закрытые обдуваемые (1P44). При обозначении электродвигателей цифрой указывается порядковый номер серии, затем наименование двигателя — например А (асинхронный); далее обозначается исполнение двигателя (например: Н — защищенное исполнение); затем указывается материал, из которого сделана станина и щиты двигателя (А — станина и щиты из алюминия, X — станина из алюминия и чугунные щиты); далее 50-355 — высота оси вращения; S, L, M — установочные размеры по длине корпуса; A, B — обозначается длина магнитопровода (A — первая длина, вторая длина — B).

Также указывается число полюсов двигателей, климатическое исполнение, учитывающее возможность перегрева двигателя при работе и повреждении его изоляции (У — умеренный климат, С — северное, Т — тропическое), далее указывается категория размещения цифрой в соответствии со стандартом.

Помимо основного исполнения серия имеет ряд электрических модификаций и несколько специализированных исполнений: химическистойкие, влагоморозостойкие на частоту 60 Гц и другие.

Для каждого из габаритов бывают два-три варианта двигателей в зависимости от длины магнитопровода.

По способу защищенности от воздействия окружающей среды двигатели имеют два исполнения:

брызгозащитное (обеспечивает защиту от попадания внутрь капель, падающих под углом 60 градусов к вертикали (двигатели обозначаются А2);

закрытые двигатели — обеспечивают защиту от попадания твердых тел диаметром не менее 1 мм и брызг воды любого направления (двигатели обозначаются АО2).

Синхронные электродвигатели — двухобмоточные электрические машины, одна из обмоток которых присоединяется к электрической сети с постоянной частотой вращения, а вторая обмотка возбуждается постоянным током, частота вращения ротора не зависит от нагрузки. Применяются в качестве двигателей в крупных установках (привод поршневых компрессоров, воздухопроводов и т. д.), в основном используются в качестве генераторов.

Номинальные данные для синхронных двигателей:

механическая мощность на валу двигателя, кВт;

схема соединений фаз обмоток статора;

линейное напряжение обмотки статора, В;

частота вращения, об/мин;

частота тока статора, Гц;

линейный ток статора, А;

напряжение и ток обмотки возбуждения.

Общепромышленные электродвигатели используются во всех областях народного хозяйства, в том числе в станкостроении, деревообрабатывающей промышленности, системах промышленной вентиляции, транспортерах, подъемниках, насосном оборудовании и т. п.

Взрывозащищенные электродвигатели предназначены для привода механизмов в химической, газовой, нефтеперерабатывающей и смежных отраслей промышленности, где могут образовываться взрывоопасные смеси газов и паров с воздухом.

Крановые электродвигатели в основном предназначены для крановых механизмов всех типов (подъем, передвижение, поворот). Крановые двигатели могут быть использованы для привода других механизмов, работающих в кратковременных и повторно-кратковременных режимах, аналогичных режимам работы кранов. Электродвигатели допускают работу в кратковременных (S2), повторно-кратковременных с частыми пусками, реверсами и электрическим торможением (S1, S4, S5) и длительных режимах (S1). Основной номинальный режим кранового двигателя — повторно-кратковременный режим (S3) с относительной продолжительностью включения 40% (S3-40%). Двигатели серии МТ предназначены для питания от сети 380 В, 50 Гц с тремя выведенными концами обмотками статора.

Рольганговые электродвигатели серий АР и АРМ применяются для приводов, эксплуатирующихся в условиях высоких температур металлургического производства, в частности, для индивидуального привода роликов рольгангов.

Режим работы: продолжительный S1 или повторно-кратковременный с частыми пусками и торможениями. Рольганговые двигатели серий АР и АРМ по энергетическим показателям и уровню надежности превосходят зарубежные аналоги. Имеют большое количество конструктивных модификаций. Безотказно работают в условиях частых пусков , реверсов, торможений с большими моментами инерции на валу. Выдерживают от 7 до 30 минут остановки под током короткого замыкания.

Электродвигатели общепромышленные асинхронные трехфазные с фазным ротором серии 5АНК предназначены для привода механизмов, требующих изменения частоты вращения. Электродвигатели используются в качестве привода вентиляторов, дымососов, компрессоров, металлорежущего и другого оборудования.

Электродвигатели общепромышленные асинхронные трехфазные с короткозамкнутым ротором серий АИР, АИРМ, А, АД, 5АН, 6А предназначены для общепромышленного применения. Используются для привода насосов, вентиляторов, дымососов и других механизмов, не требующих регулирования частоты вращения.

Электродвигатели общепромышленные многоскоростные асинхронные трехфазные с повышенным скольжением серии АИРС обладают улучшенными пусковыми характеристиками. Выпускаются в основном со встроенной температурной защитой, с повышенной точностью по установочным размерам, с повышенной химической стойкостью, для эксплуатации в тропическом, холодном климате и в условиях сочетаний различных климатических сред.

Электродвигатели асинхронные однофазные серии АИРЕ с короткозамкнутым ротором конденсаторные предназначены для работы от сети переменного тока напряжением 220 В, частотой 50 Гц. Допускается работа от сети напряжением 230 В, частотой 50 Гц и 220, 230 В, частотой 60 Гц.

Взрывозащищенные асинхронные трехфазные электродвигатели с короткозамкнутым ротором серий АИМ, В, ВА, АВ предназначены для эксплуатации во взрывоопасной окружающей среде. Применяются для привода механизмов в химической, газовой, нефтедобывающей и смежных отраслях промышленности, где могут образовываться взрывоопасные смеси газов и паров с воздухом, отнесенные к категориям IIA, IIB, IIC и группам воспламеняемости Т1, Т2, Т3 и Т4 по ГОСТ 12.1.011. Область применения двигателей во взрывоопасных зонах — в соответствии с главой 7.3 ПУЭ-86. Напряжение и частота: электродвигатели серий АИМ, ВА, В, АВ предназначены для работы от сети переменного тока частотой 50 Гц. Двигатели изготавливаются на напряжение 380 В при соединении фаз в треугольник или на напряжение 660 В при соединении фаз в звезду.

Электродвигатели постоянного тока АИР

Двигатели постоянного тока используются в прецизионных приводах, требующих плавного регулирования частоты вращения в широком диапазоне.

Свойства двигателя постоянного тока, так же, как и генераторов, определяются способом возбуждения и схемой включения обмоток возбуждения.

По способу возбуждения можно разделить двигатели постоянного тока на двигатели с электромагнитным и магнитоэлектрическим возбуждением. Двигатели с электромагнитным возбуждением подразделяются на двигатели с параллельным, последовательным, смешанным и независимым возбуждением.

Электрические машины постоянного тока обратимы, то есть возможна их работа в качестве двигателей или генераторов.

Например, если в системе управления с использованием генератора в обратной связи отсоединить генератор от первичного двигателя и подвести напряжение к обмоткам якоря и возбуждения, то якорь начнет вращаться, и машина будет работать как двигатель постоянного тока, преобразуя электрическую энергию в механическую. Двигатели независимого возбуждения наиболее полно удовлетворяют основным требованиям к исполнительным двигателям:

самоторможение двигателя при снятии сигнала управления;

широкий диапазон регулирования частоты вращения;

линейность механических и регулировочных характеристик;

устойчивость работы во всем диапазоне вращения;

малая мощность управления;

малые габариты и масса.

Однако двигатели постоянного тока имеют существенные недостатки, накладывающие ограничение на область их применения: малый срок службы щеточного устройства из-за наличия скользящего контакта между щетками и коллектором, скользящий контакт является источником радиопомех.

Металлургические и крановые электродвигатели.

Экскаваторные электродвигатели.

Электродвигатели постоянного тока используются для привода подъемных средств в качестве крановых двигателей и привода транспортных средств в качестве тяговых двигателей, обладая по сравнению с электродвигателями переменного тока лучшими пусковыми и регулировочными свойствами.

Металлургические и крановые двигатели постоянного тока предназначены для работы в электроприводах подъемно-транспортных механизмов, металлургических агрегатов. Экскаваторные двигатели постоянного тока предназначены для работы на механизмах экскаваторов в продолжительном, кратковременном и повторно-кратковременном режимах.

Краново-металлургические электродвигатели постоянного тока серии Д предназначены для работы в электроприводах подъемно-транспортных механизмов, металлургических агрегатов. Для данных двигателей характерны высокая перегрузочная способность и широкий диапазон регулирования частоты вращения. Краново-металлургические двигатели постоянного тока серии Д позволяют осуществлять регулирование частоты вращения путем изменения подводимого напряжения и степени возбуждения.

Электродвигатели экскаваторные серий ДЭ и ДЭВ предназначены для работы на механизмах экскаваторов в продолжительном (S1) и повторно-кратковременном (S3) режимах. По способу возбуждения двигатели изготавливаются с независимым, параллельным и параллельным со стабилизирующей обмоткой.

Классификация электродвигателей

Возникновение вращающего момента

Магнитоэлектрические двигатели по праву составляют сегодня львиную долю всего обилия электродвигателей, применяемых в очень многих областях. Они подразделяются по роду питающего тока на: двигатели постоянного тока, двигатели переменного тока и универсальные двигатели.

В отличие от магнитоэлектрического двигателя, в гистерезисном двигателе допускается перемещение намагниченности ротора относительно его геометрических осей, и именно данная особенность не позволяет распространять на синхронный режим работы гистерезисного двигателя общие закономерности магнитоэлектрического преобразования.

Двигатели постоянного тока

У двигателя, который питается постоянным током, за переключение фаз отвечает сам двигатель. Это значит, что хотя на электрическую машину и подается постоянный ток, тем не менее, благодаря действию внутренних механизмов устройства, магнитное поле оказывается движущимся и становится в состоянии поддерживать вращающий момент ротора (как будто в обмотке статора действует переменный ток).

По способу создания движущегося магнитного поля, двигатели постоянного тока подразделяются на вентильные (бесколлекторные) и коллекторные. Бесколлекторные двигатели имеют в своей конструкции электронные инверторы, которые и осуществляют переключение фаз. Коллекторные же двигатели традиционно оснащены щеточно-коллекторными узлами, которые призваны чисто механически синхронизировать питание обмоток двигателя с вращением его движущихся частей.

Возбуждение коллекторных двигателей

Двигатель пульсирующего тока

На двигатель постоянного тока похож двигатель пульсирующего тока. Отличие заключается в наличии шихтованных вставок на остове, а также дополнительных шихтованных полюсов. Кроме того, у двигателя пульсирующего тока имеется компенсационная обмотка. Применение такие двигатели находит в электровозах, где они обычно питается выпрямленным переменным током.

Двигатель переменного тока

Двигатели переменного тока, как ясно из названия, питаются током переменным. Бывают они синхронными и асинхронными.

У синхронных двигателей переменного тока магнитное поле статора движется с той же угловой скоростью, что и ротор, а у асинхронных всегда есть некое отставание (характеризующееся величиной скольжения s) — магнитное поле статора в своем движении как бы опережает ротор, который в свою очередь все время стремится его догнать.

Синхронные двигатели больших мощностей (мощностью в сотни киловатт) имеют на роторе обмотки возбуждения. Роторы менее мощных синхронных двигателей оснащены постоянными магнитами, которые и образуют полюса. Гистерезисные двигатели тоже в принципе относятся к синхронным.

Шаговые двигатели — это особая категория синхронных двигателей с высокой точностью управления скоростью вращения, вплоть до дискретного счета шагов.

Вентильные синхронные реактивные двигатели получают питание через инвертор. Смотрите по этой теме: Современные синхронные реактивные двигатели

Добавить комментарий