Лазерная техника


СОДЕРЖАНИЕ:

Обучение

В разделе «ОБУЧЕНИЕ» — расписание занятий и мастер-классов, которые проводятся на безвозмездной основе для владельцев лазеров PICASSO и на платной для владельцев лазеров других марок. При этом данные занятия носят практический характер. В данном разделе имеется возможность записаться на то или иное занятие с помощью веб-формы. Группы ограниены по численности (не более 15 человек) с целью достижения максимального качества занятий. Мы предлагаем записаться заранее.

Каталог продукции

В компании ООО «Лазеры и Технологии» вы можете заказать стоматологические лазеры Picasso с постоянным и сменным оптоволокном, расходные материалы для лазеров и наборы для отбеливания зубов.

Применение современных технологий в области лазерной стоматологии позволяет сделать любую процедуру простой в исполнении, безопасной и комфортной для пациента. Лазеры Picasso имеют большое количество программ и настроек, позволяющих проводить любые виды операций над твердыми и мягкими тканями.

Лазер Picasso Lite с постоянным оптоволокном

САМЫЙ ДОСТУПНЫЙ МНОГОФУНКЦИОНАЛЬНЫЙ ЛАЗЕР В РОССИИ!

  • встроенный таймер
  • регулируемый импульсный режим
  • постоянное оптоволокно для биостимуляции и использования индивидуальных насадок
  • сенсорный экран с русскоязычным меню
  • беспроводная педаль управления


ГАРАНТИЯ — 2 года

Стоматологический диодный лазер Picasso Lite с постоянным оптоволокном подходит как для начинающих специалистов, так и для экспертов в области лазерной стоматологии. Простота в использовании и низкая стоимость делают его лидером продаж среди аналогичных товаров.

Диодный лазер Picasso Lite оснащен множеством функций, способствующих быстрому и качественному проведению стоматологических процедур. Он применяется в лазерной хирургии, терапии и отбеливании зубов.

Благодарим Вас за то, что Вы проявили интерес к лазерным технологиям и посетили официальный сайт ООО «ЛАЗЕРЫ И ТЕХНОЛОГИИ», эксклюзивного дистрибьютора компании AMD Lasers (США) на территории Российской Федерации.
Наша компания импортирует диодные стоматологические лазеры серии Picasso по прямому контракту с производителем, продаёт их на всей территории России, проводит обучение врачей, консультирует их по клиническому применению, осуществляет сервисное и гарантийное обслуживание лазеров.
В рамках продвижения продукции компании AMD Lasers в России, нами 01 февраля 2015 года открыт сервисный центр с полным циклом ремонта и обслуживания лезеров серии Picasso.

Стоматологические лазеры и их практическое применение

  • Лазерная ретракция десны и ее коррекция перед реставрацией и протезированием
  • Гингивопластика. Гингивектомия, коррекция линии улыбки
  • Устранение гипертрофии десен
  • Гемостазис и коагуляция
  • Дезинфекция пародонтальных карманов, закрытых полостей и открытых участков слизистой полости рта
  • Разрезы для биопсии ткани
  • Быстрое и эффективное лечение герпеса, афт, ящурных и других язв на поверхности кожи слизистой полости рта, устранение очагов воспаления и инфекции
  • Вскрытие и дренирование абсцессов
  • Вестибулопластика, френэктомия
  • Удаление фибром, капюшона при периктоните, удаление кисты
  • Лейкоплакия, оперкулектомия, папилектомия, пульпотомия, френулотомия
  • Лазерное отбеливание зубов

Общие сведения о диодных лазерах

Стоматологический лазер (диодный) — прибор, который излучает когерентный, монохромный и коллимированный поток частиц, который поглощается, отражается или пропускается через соответствующие вещества и ткани нашего организма. Большинство лазеров, применяемых в стоматологии, работают в невидимом спектре, а для точности наведения используется видимый свет (обычно красный), яркость которого регулируется пользователем стоматологического лазера. Для защиты глаз используют специальные очки, поставляемые в комплекте с прибором.

Самыми важними показателями эффективности лазера являются:

  • количество поглощаемой энергии лазерного луча определенного спектра веществом «поглотителем» (меланин, гемоглобин, вода. );
  • количество «поглотителя» содержащегося в ткани, которая подвергается обработке.

Сегодня в стоматологии для воздействия на мягкие ткани широкое распространение получили диодные лазеры с длиной волны 810нм (поглотитель — меланин) и 980нм (поглотитель — гемоглобин) и универсальные эрбиевые лазеры для воздействия на твердые и мягкие ткани с длиной волны 2940нм (поглотитель — вода).

Лазеры с каждым днем получают все большее распространение в современной стоматологии, эндодонтии, пародонтологии, хирургии, ортодонтии, имплантологии, вытесняя традиционные методы работы скальпелем, электрохирургическими и другими инструментами, а также медикаментозные методы лечения инфекций, в следствие очень высокой клинической эффективности и простоте использования.

Представляем нашу компанию на страницах самой популярной социальной сети в мире — Facebook!

Наша страница на Facebook — это подборка интересных материалов и новостей из области Лазерной стоматологии, анонсы новых мероприятий, учебных семинаров и мастер-классов, проводимых компанией, а также уникальный опыт практикующих врачей-стоматологов, использующих в своей практике стоматологический лазер.

Сообщество профессионалов, позитивная атмосфера, мнения и комментарии ведущих специалистов в области стоматологии, новости и практический опыт коллег стали доступны и на странице компании в социальной сети.

Будем Вам благодарны за ЛАЙК.

Лазерный мир

Лазерные технологии в науке и технике

Сюй А.В. // Журнал: Бюллетень научных сообщений,
Издательство: Дальневосточный государственный университет путей сообщения (Хабаровск), номер: 20, год: 2015, с: 55-64, УДК : 621.373.826

АННОТАЦИЯ:
Статья представляет собой краткий литературный обзор о применении лазерного излучения в различных областях науки и техники. Рассмотрены лазерные технологии в вооружении и их перспективы развития в будущем.

Описание на английском языке:

Syuy a.V. // Laser technology in science and technology

The article presents a brief literature review on the use of laser radiation in various areas of science and technology. We consider laser technology in weaponry, and their development prospects in the future.

В 1960 году 16 мая Т. Мейман впервые продемонстрировал работу первого оптического квантового генератора – лазера (англ. laser, акроним от light amplification by stimulated emission of radiation «усиление света по средством вынужденного излучения») [1].

В качестве активной среды использовался кристалл искусственного рубина (оксид алюминия Al2O3 с небольшой примесью хрома Cr), а вместо объёмного резонатора служил резонатор Фабри-Перо, который представлял из себя кристалл, на торцах которого нанесены серебряные зеркальные покрытия. Такой лазер работал в импульсном режиме на длине волны 694,3 нм. В декабре того же года был создан гелий-неоновый лазер, излучающий в непрерывном режиме [2]. Изначально лазер работал в инфракрасном диапазоне, затем был модифицирован для излучения видимого красного света с длиной волны 632,8 нм.

С момента изобретения лазера научно-технический прогресс испытал мощный скачок. Лазерное излучение обладает рядом уникальных свойств, таких как высокая степень когерентности излучения, крайне низкий уровень расходимости излучения, высокая плотность мощности излучения и т.д. Лазеры можно классифицировать [3–6]:

  • на твердотельные на люминесцирующих твёрдых средах (диэлектрические кристаллы и стёкла);
  • полупроводниковые. Формально также являются твердотельными, но традиционно выделяются в отдельную группу, поскольку имеют иной механизм накачки (инжекция избыточных носителей заряда через p–n-переход или гетеропереход, электрический пробой в сильном поле, бомбардировка быстры-ми электронами), а квантовые переходы происходят между разрешёнными энергетическими зонами, а не между дискретными уровнями энергии;
  • Лазеры на красителях. Тип лазеров, использующий в качестве активной среды раствор флюоресцирующих с образованием широких спектров органических красителей;
  • Газовые лазеры – лазеры, активной средой которых является смесь газов и паров;
  • Газодинамические лазеры – газовые лазеры с тепловой накачкой, инверсия населённостей в которых создаётся между возбуждёнными колебательно-вращательными уровнями гетероядерных молекул путём адиабатического расширения движущейся с высокой скоростью газовой смеси (чаще N2+CO2+He или N2+CO2+Н2О, рабочее вещество CO2);
  • эксимерные лазеры – разновидность газовых лазеров, работающих на энергетических переходах эксимерных молекул (димерах благородных газов, а также их моногалогенидов), способных существовать лишь некоторое время в возбуждённом состоянии. Накачка осуществляется пропусканием через газовую смесь пучка электронов, под действием которых атомы переходят в возбуждённое состояние с образованием эксимеров. Эксимерные лазеры отличаются высокими энергетическими характеристикам, малым разбросом длины волны генерации и возможности её плавной перестройки в широком диапазоне;
  • химические лазеры – разновидность лазеров, источником энергии для которых служат химические реакции между компонентами рабочей среды (смеси газов). Лазерные переходы происходят между возбуждёнными колебательно-вращательными и основными уровнями составных молекул продуктов реакции. Отличаются широким спектром генерации в ближней ИК-области, большой мощностью непрерывного и импульсного излучения;
  • лазеры на свободных электронах – лазеры, активной средой которых является поток свободных электронов, колеблющихся во внешнем электромагнит-ном поле (за счёт чего осуществляется излучение) и распространяющихся с релятивистской скоростью в направлении излучения. Основной особенностью является возможность плавной широкодиапазонной перестройки частоты гене-рации;
  • квантовые каскадные лазеры – полупроводниковые лазеры, которые излучают в среднем и дальнем инфракрасном диапазоне. Излучение квантовых каскадных лазеров возникает при переходе электронов между слоями гетероструктуры полупроводника и состоит из двух типов лучей, причем вторичный луч обладает весьма необычными свойствами и не требует больших затрат энергии;
  • волоконный лазер – лазер, резонатор которого построен на базе оптического волокна, внутри которого полностью или частично генерируется излучение. При полностью волоконной реализации такой лазер называется цельноволоконным, при комбинированном использовании волоконных и других элементов в конструкции лазера он называется волоконно-дискретным или гибридным;
  • вертикально-излучающие лазеры (VCSEL) – «Поверхностно-излучающий лазер с вертикальным резонатором» – разновидность диодного полупроводникового лазера, излучающего свет в направлении, перпендикулярном поверхности кристалла, в отличие от обычных лазерных диодов, излучающих в плоскости, параллельной поверхности пластин;
  • другие виды лазеров, развитие принципов которых на данный момент является приоритетной задачей исследований (рентгеновские лазеры, гамма-лазеры и др.).

Благодаря своим свойствам лазеры стали использоваться в различных областях науки и техники в зависимости от длительности импульса, мощности излучения и диапазона частот.

  • Спектроскопия. С помощью перестройки по частоте осуществляются спектроскопические исследования различных нелинейно-оптических эффектов, а управление поляризацией лазерного излучения позволяет проводить когерентный контроль исследуемых процессов [7].
  • Измерение расстояния до Луны. Во время полётов на Луну пилотируемыми и беспилотными аппаратами, на её поверхность были доставлены несколько специальных отражателей. С Земли посылали специально сфокусированный лазерный луч и измеряли время, которое он затрачивает на путь до лунной поверхности и обратно. Основываясь на значении скорости света рассчитали рас-стояние до Луны.
  • Создание искусственных опорных «звёзд». Применение методов адаптивной оптики в наземных телескопах позволяет существенно повысить качество изображения астрономических объектов путем измерения и компенсации оптических искажений атмосферы. Для этого, в сторону наблюдения направляется мощный луч лазера. Излучение лазера рассеивается в верхних слоях атмосферы, создавая видимый с поверхности земли опорный источник света – искусственную «звезду». Свет от неё, прошедший на обратном пути к земле через слои атмосферы, содержит информацию об оптических искажениях, имеющих место в данный момент времени. Измеренные таким образом атмосферные искажения компенсируются специальным корректором;
  • Фотохимия [8]. Некоторые типы лазеров могут производить сверхкороткие световые импульсы, измеряемые пико и фемтосекундами (10−12 – 10−15 с). Такие импульсы можно применять для запуска и анализа химических реакций. Сверхкороткие импульсы могут использоваться для исследования химических реакций с высокой разрешающей способностью по времени, позволяя достоверно выделять короткоживущие соединения. Манипуляция поляризацией им-пульса позволяет селективно выбирать направление химической реакции из нескольких возможных (когерентный контроль). Такие методы находят своё применение в биохимии, где с их помощью исследуют образование и работу белков [9].
  • Лазерное намагничивание [10]. Сверхкороткие лазерные импульсы используются для сверхбыстрого управления магнитным состоянием среды, что является в настоящее время предметом интенсивных исследований. Уже открыто множество оптико-магнитных явлений, таких, как сверхбыстрое размагничивание за 200 фемтосекунд (2·10−13 с), тепловое перемагничивание светом и нетепловое оптическое управление намагниченностью с помощью поляризации света.
  • Лазерное охлаждение [11]. Первые опыты по лазерному охлаждению были проведены с ионами в ионных ловушках, ионы удерживались в пространстве ловушки с помощью электрического поля и/или магнитного поля. Эти ионы освещались лазерным пучком, и благодаря неупругому взаимодействию с фотонами теряли энергию после каждого соударения. Этот эффект используется для достижения сверхнизких температур. В дальнейшем, в процессе совершенствования лазеров, нашли и другие методы, такие как антистоксово охлаждение твёрдых тел – наиболее практичный метод лазерного охлаждения на сегодня. Этот метод основан на том, что возбуждается атом не с основного электронного состояния, а с колебательных уровней этого состояния (с чуть большей энергией, чем энергия основного состояния) на колебательные уровни возбуждённого состояния (с энергией чуть меньше чем энергия этого возбуждённого состояния). Далее атом безызлучательным образом переходит на возбуждённый уровень (поглощая фононы) и испускает фотон при переходе с возбуждённого электронного уровня на основной (этот фотон обладает большей энергией чем фотон накачки). Атом поглощает фонон и цикл повторяется. Уже существуют системы, способные охлаждать кристалл от азотных до гелиевых температур. Этот метод охлаждения идеален для космических аппаратов, где нет возможности ставить традиционную систему охлаждения.
  • Термоядерный синтез. Один из способов решить проблему удержания нагретой плазмы в ядерном реакторе может заключаться в использовании лазе-ров [12]. При этом небольшой объём топлива облучается мощным лазерным излучением (иногда лазерное излучение предварительно трансформируется в рентгеновское) со всех сторон в течение небольшого (порядка нескольких наносекунд) промежутка времени. В результате облучения поверхность мишени испаряется, оказывая огромное давление на внутренние слои. Это давление сжимает мишень до сверхвысоких плотностей. В сжатой мишени могут протекать термоядерные реакции при достижении определённой температуры. Нагрев возможен как непосредственно силами давления, так и с использование дополнительного сверхмощного и сверхкороткого (порядка нескольких фемто-секунд) лазерного импульса.
  • Оптический (лазерный) пинцет- прибор, который позволяет манипулировать микроскопическими объектами с помощью лазерного света [13]. Он позволяет прикладывать к диэлектрическим объектам силы от фемтоньютонов до наноньютонов и измерять расстояния от нескольких нанометров. В последние годы оптические пинцеты начали использоваться для изучения структуры и принципа работы белков. Лазерные технологии получили широкое применение в науке и в будущем будет только развиваться. Будут создаваться новые приборы с использованием лазерного излучения, например уже существуют лазерные микроскопы, которые дают более высокое разрешение в сравнении с оптическими микроскопами, которые используют белый свет.


  • Лазерное оружие. С середины 50-х гг. XX в. в СССР осуществлялись широкомасштабные работы по разработке и испытанию лазерного оружия высокой мощности, как средства непосредственного поражения целей в интересах стратегической противокосмической и противоракетной обороны. Среди прочих были реализованы программы «Терра» и «Омега». После распада Советского Союза работы были остановлены. В середине марта 2009 г. американская корпорация Northrop Grumman объявила о создании твердотельного электрического лазера мощностью около 100 кВт. Разработка данного устройства была произведена в рамках программы по созданию эффективного мобильного лазерного комплекса, предназначенного для борьбы с наземными и воздушными целями. В настоящее время лазерное оружие не получило широкого применения в армии в силу своей непрактичности и массивности. Существуют только единичные опытные образцы. Можно полагать, что в будущем лазерное оружие может получить развитие только как средство непосредственно-го поражения целей в интересах стратегической противокосмической и противоракетной обороны.
  • Лазерный прицел – это маленький лазер, обычно работающий в видимом диапазоне и прикреплённый к стволу пистолета или винтовки так, что его луч параллелен стволу, таким образом производится прицеливание на мишень.
  • Системы обнаружения снайперов. Принцип данных систем основывается на том, что луч, проходя через линзы, будет отражаться от какого-либо светочувствительного объекта (оптические преобразователи, сетчатка глаза и т. д.).  Постановка помех снайперам. Возможна постановка помех путем «сканирования» лазерным лучом местности, не позволяя вражеским снайперам вести прицельную стрельбу или даже наблюдение в оптические приборы.
  • Введение противника в заблуждение. Устройство создаёт лазерный луч небольшой мощности, направляемый в сторону противника (в основном, эта технология используется против авиации и танков). Противник полагает, что на него нацелено высокоточное оружие, он вынужден спрятаться или отступить вместо нанесения собственного удара.
  • Лазерный дальномер – устройство, работа которого основано на измерении времени, за которое луч преодолевает путь до отражателя и обратно и зная значение скорости света, можно рассчитать расстояние между лазером и отражающим объектом.
  • Лазерное наведение. Ракета автоматически меняет свой полёт, ориентируясь на отраженное пятно лазерного луча на цели, обеспечивая таким образом высокую точность попадания. В настоящее время лазерные технологии эффективно применяются только как средство наведения.
  • Поверхностная лазерная обработка.
  • Лазерная термообработка (лазерная закалка, лазерный отжиг, лазерный отпуск, лазерная очистка, в том числе лазерная дезактивация, лазерное оплавление, оплавление для улучшения качества поверхности, аморфизация) [14].
  • Получение поверхностных покрытий (лазерное легирование, лазерная наплавка, вакуумно-лазерное напыление) [15].
  • Ударное воздействие (ударное упрочнение, инициирование физико-химических процессов).
  • Инициирование поверхностных химических реакций.  Лазерная сварка [16].
  • Лазерное разделение материалов (лазерная резка, газолазерная резка, термораскалывание, скрайбирование).
  • Лазерная размерная обработка (лазерная маркировка и гравировка, лазерная обработка отверстий).
  • Фотолитография.
  • Экологический мониторинг [17]. В промышленности лазерные технологии также получили широкое приме-нение. Сейчас уже не представляется производство таких приборов как дальномер, лидар, нивелир без использования лазерного излучения. Все больше при-меняются инфракрасные лазеры в тяжелой промышленности.
  • Косметическая хирургия.
  • Коррекция зрения.
  • Стоматология.
  • Диагностика заболеваний.
  • Удаление опухолей, особенно мозга и спинного мозга.
  • Дробление «камней» при мочекаменной болезни.

В медицине лазерное излучение все больше и больше используется в таких областях как терапия и хирургия. Лазерное излучение имеет неоспоримое преимущество перед полосковыми операциями и с точки зрения экономии времени реабилитации и с точки зрения эстетики.

5. В связи и информационных технологиях.

Основной задачей является хранение, обработка и передача информации. Хранение информации на оптических носителях (компакт-диск, DVD и т. д.); Оптический диск (англ. optical disc) – собирательное название для носителей информации, выполненных в виде дисков, чтение с которых ведётся с помо-щью оптического излучения. Диск обычно плоский, его основа сделана из поликарбоната, на который нанесён специальный слой, который и служит для хранения информации. Для считывания информации используется обычно луч лазера, который направляется на специальный слой и отражается от него. При отражении луч модулируется мельчайшими выемками «питами» (от англ. pit – «ямка», «углубление») на специальном слое, на основании декодирования этих изменений устройством чтения восстанавливается записанная на диск информация.

В настоящее время мы наблюдаем рождение четвертого поколения оптических дисков. К первому поколению можно отнести: Лазерный диск; Компакт-диск; MiniDisc. Ко второму поколению: DVD; Digital Multilayer Disk; DataPlay; Fluorescent Multilayer Disc; GD-ROM; Universal Media Disc.

К третьему поколению:
Blu-ray Disc, BD (англ. blue ray – синий луч и disc – диск) – формат оптиче-ского носителя, используемый для записи с повышенной плотностью хранения цифровых данных, включая видео высокой чёткости. Коммерческий запуск формата Blu-ray прошёл весной 2006 г. Blu-ray (букв. «синий луч») получил своё название от использования для записи и чтения коротковолнового (405 нм) «синего» (технически сине-фиолетового) лазера.
HD DVD (англ. High-Definition/Density DVD – «DVD высокой чётко-сти/ёмкости») – технология записи оптических дисков, разработанная компа-ниями Toshiba, NEC и Sanyo. HD DVD (как и Blu-ray Disc) использует диски стандартного размера (120 миллиметров в диаметре) и сине-фиолетовый лазер с длиной волны 405 нм. 19 февраля 2008 г. компания Toshiba объявила о пре-кращении поддержки технологии HD DVD в связи с решением положить ко-нец войне форматов.
– Forward Versatile Disc;
– Ultra Density Optical;
– Professional Disc for DATA;
– Versatile Multilayer Disc.
А к четвертому поколению:
Голографический многоцелевой диск (Holographic Versatile Disc) – перспек-тивная технология производства оптических дисков, которая предполагает значительно увеличить объём хранимых на диске данных по сравнению с Blu-Ray и HD DVD. Она использует технологию, известную как голография, кото-рая использует два лазера: один – красный, а второй – зелёный, сведённые в один параллельный луч. Зелёный лазер читает данные, закодированные в виде сетки с голографического слоя близкого к поверхности диска, в то время как красный лазер используется для чтения вспомогательных сигналов с обыч-ного компакт-дискового слоя в глубине диска. Вспомогательная информация используется для отслеживания позиции чтения, наподобие системы CHS в обычном жёстком диске. На CD или DVD эта информация внедрена в данные.
Super Rens Disc;
Optical Disc Archive Advisory Group Волоконнооптическая связь – способ передачи информации, использующий в качестве носителя информационного сигнала электромагнитное излучение оптического (ближнего инфракрасного) диапазона, а в качестве направляющих систем – волоконнооптические кабели. Благодаря высокой несущей частоте и широким возможностям мультиплексирования пропускная способность волоконнооптических линий многократно превышает пропускную способность всех других систем связи и может измеряться терабитами в секунду. Малое затухание света в оптическом волокне позволяет применять волоконно-оптическую связь на значительных расстояниях без использования усилителей. Волоконнооптическая связь свободна от электромагнитных помех и трудно-доступна для несанкционированного использования: незаметно перехватить сигнал, передаваемый по оптическому кабелю, технически крайне сложно.
Оптические компьютеры. Оптические или фотонные вычисления – вычисления, которые производятся с помощью фотонов, сгенерированных лазерами или диодами. Используя фотоны, возможно достигнуть более высокой скорости передачи сигнала, чем у электронов, которые используются в современных компьютерах. Большинство исследований фокусируется на замене обычных (электронных) компонентов компьютера на их оптические эквиваленты. Результатом станет новая цифровая компьютерная система для обработки двоичных данных. Такой подход дает возможность в краткосрочной перспективе раз-работать технологии для коммерческого применения, поскольку оптические компоненты могут быть внедрены в стандартные компьютеры, сначала создавая гибридные системы, а впоследствии и полностью фотонные. Однако оптоэлектронные приборы теряют 30% энергии на конвертацию электронов в фотоны и обратно. Это также замедляет передачу информации. В полностью оптическом компьютере надобность преобразования сигнала из оптического в электронный и обратно в оптический полностью исчезает. Голография – набор технологий для точной записи, воспроизведения и пе-реформирования волновых полей оптического электромагнитного излучения, особый фотографический метод, при котором с помощью лазера регистрируются, а затем восстанавливаются изображения трехмерных объектов, в высшей степени похожие на реальные.
Лазерный принтер – один из видов принтеров, позволяющий быстро изготавливать высококачественные отпечатки текста и графики на обычной (не специальной) бумаге. Подобно фотокопировальным аппаратам лазерные принтеры используют в работе процесс ксерографической печати, однако отличие состоит в том, что формирование изображения происходит путём непосредственной экспозиции (освещения) лазерным лучом фоточувствительных элементов принтера. Отпечатки, сделанные таким способом, не боятся влаги, устойчивы к истиранию и выцветанию. Качество такого изображения очень высокое. Минифотолаборатория, Минилаб – комплекс из нескольких устройств, предназначенный для массового изготовления фотографий на светочувстви-тельной цветной фотобумаге, автоматизирующее все этапы обработки фотома-териалов, начиная от проявления фотоплёнки и заканчивая печатью готового фотоотпечатка.
Считыватели штрих-кодов.
В связи и информационных технологиях за счет лазерного излучения мы перешли на новый уровень обработки, хранения и передачи информации.

  • Лазерное шоу (представление) на концертах и дискотеках.
  • Мультимедийные демонстрации и презентации.
  • В световом дизайне.
  • Лазерные субтитры на киноэкранах.
  • Объемное гравирование прозрачных материалов.
  • Лазерные указки.
  • Лазерный дальномер.
  • Системы слежения.
  • Лидар (транслитерация LIDAR англ. Light Identification Detection and Ranging – световое обнаружение и определение дальности) – технология полу-чения и обработки информации об удалённых объектах с помощью активных оптических систем, использующих явления отражения света и его рассеяния в прозрачных и полупрозрачных средах.
  • Системы навигации (напр. Лазерный гироскоп).
  • Проецирование изображений на сетчатку. Таким образом, подводя итог вышесказанному можно заключить, что лазерные технологии нашли широкое практическое применение в жизни человека. И без лазерных технологий теперь трудно представить комфортную жизнь. С момента создания лазера прошло уже больше 50 лет, а развитие лазерных технологий как и создание новых лазеров продолжается бурными темпами.
Каждый электрик должен знать:  Системы оперативного тока на электрических подстанциях

Лазерное оружие: технологии, история, состояние, перспективы. Часть 1

Лазерное оружие всегда вызывает множество споров. Одни считают его оружием будущего, другие категорически отрицают вероятность появления эффективных образцов такого оружия в ближайшем будущем. Люди задумывались о лазерном оружии даже до его фактического появления, вспомним классическое произведение «Гиперболоид инженера Гарина» Алексея Толстого (безусловно, в произведении указан не совсем лазер, но близкое к нему по действию и последствиям применения оружие).

Создание реального лазера в 50-х – 60-х годах XX века вновь подняло тему лазерного оружия. На протяжении десятилетий оно стало непременным атрибутом фантастических фильмов. Реальные успехи были гораздо скромнее. Да, лазеры заняли важную нишу в системах разведки и целеуказания, широко применяются в промышленности, но для использования в качестве средства поражения их мощность по-прежнему была недостаточной, а массогабаритные характеристики неприемлемыми. Как эволюционировали лазерные технологии, насколько они готовы к применению в военных целях в настоящее время?

Первый действующий лазер был создан в 1960 году. Это был импульсный твердотельный лазер на искусственном рубине. На момент создания это были самые высокие технологии. В наше время такой лазер можно собрать в домашних условиях, при этом энергия его импульса может достигать 100 Дж.

Ещё более простым в реализации является азотный лазер, для его реализации не нужны сложные покупные изделия, он может работать даже на азоте, содержащемся в атмосфере. При наличии прямых рук он может быть легко собран в домашних условиях.

Процесс самостоятельной сборки и демонстрация работы азотного лазера

С момента создания первого лазера найдено огромное количество способов получения лазерного излучения. Существуют твердотельные лазеры, газовые лазеры, лазеры на красителях, лазеры на свободных электронах, волоконные лазеры, полупроводниковые и другие лазеры. Также лазеры различаются по способу возбуждения. Например, в газовых лазерах различных конструкций, возбуждение активной среды может осуществляться оптическим излучением, разрядом электрического тока, химической реакцией, ядерной накачкой, тепловой накачкой (газодинамические лазеры, ГДЛ). Появление полупроводниковых лазеров породило лазеры типа DPSS (Diode-pumped solid-state laser – твердотельный лазер с диодной накачкой).

Различные конструкции лазеров позволяют получить на выходе излучение разных длин волн, от мягкого рентгеновского излучения, до излучения инфракрасного спектра. В разработке находятся лазеры, излучающие жесткое рентгеновское излучение и гамма-лазеры. Это позволяет подбирать лазер исходя из решаемой задачи. Относительно военного применение, это означает, к примеру, возможность выбора лазера, с излучением такой длины волны, которая минимально поглощается атмосферой планеты.

С момента разработки первого прототипа, непрерывно росла мощность, улучшались массогабаритные характеристики и коэффициент полезного действия (КПД) лазеров. Очень наглядно это заметно на примере лазерных диодов. В 90-х годах прошлого века в широкой продаже появились лазерные указки мощностью 2-5 мВт, в 2005-2010 годах уже можно было приобрести лазерную указку 200-300 мВт, сейчас, в 2020 году, в продаже есть лазерные указки с оптической мощностью 7 Вт. В России в открытой продаже есть модули инфракрасных лазерных диодов с оптоволоконным выходом, оптической мощностью 350 Вт.

Темпы роста мощности лазерных диодов сравнимы со скоростью роста вычислительной мощностью процессоров, в соответствии с законом Мура. Безусловно лазерные диоды не пригодны для создания боевых лазеров, но они в свою очередь используются для накачки эффективных твердотельных и волоконных лазеров. Для лазерных диодов КПД преобразования электрической энергии в оптическую может составлять свыше 50%, теоретически можно получить КПД и свыше 80%. Высокий КПД не только снижает требования к источнику питания, но и упрощает охлаждение лазерного оборудования.
Важным элементом лазера является система фокусировки луча – чем меньше площадь пятна на цели, тем выше удельная мощность, позволяющая нанести повреждение. Прогресс в создании сложных оптических систем и появление новых высокотемпературных оптических материалов позволяет создавать высокоэффективные системы фокусировки. В систему фокусировки и наведения американского экспериментального боевого лазера HEL входит 127 зеркал, линз и светофильтров.

Ещё одним важным компонентом, обеспечивающим возможность создания лазерного оружия, является разработка систем наведения и удержания луча на цели. Чтобы поражать цели «мгновенным» выстрелом, за доли секунды, нужны, гигаваттные мощности, но создание таких лазеров и источников питания для них на мобильном шасси дело отдалённого будущего. Соответственно, для уничтожения целей лазерами мощностью сотни киловатт – десятки мегаватт, необходимо удержание пятна лазерного излучения на цели некоторое время (от нескольких секунд до нескольких десятков секунд). Для этого необходимы высокоточные и высокоскоростные приводы, способные осуществлять слежение лучом лазера за целью, по данным системы наведения.

При стрельбе на большие дальности система наведения должна компенсировать искажения, вносимые атмосферой, для чего в системе наведения могут применяться несколько лазеров различного назначения, обеспечивающих точное наведение основного «боевого» лазера на цель.

Какие лазеры получили приоритетное развитие в сфере вооружений? В связи с отсутствием мощных источников оптической накачки таковыми стали в первую очередь газодинамические и химические лазеры.

В конце XX века общественное мнение всколыхнула американская программа Стратегической оборонной инициативы (СОИ). В рамках этой программы предполагалось развёртывание лазерного оружия на земле и в космосе для поражения советских межконтинентальных баллистических ракет (МБР). Для размещения на орбите предполагалось использовать лазеры с ядерной накачкой, излучающие в рентгеновском диапазоне или химические лазеры мощностью до 20 мегаватт.

Программа СОИ столкнулась с многочисленными техническими трудностями и была закрыта. В тоже время некоторые проводимые в рамках программы исследования позволили получить достаточно мощные лазеры. В 1985 году лазер на фториде дейтерия с выходной мощностью 2,2 мегаватта разрушил закреплённую в 1 километре от лазера жидкостную баллистическую ракету. В результате 12-секундного облучения стенки корпуса ракеты потеряли прочность и были разрушены внутренним давлением.

В СССР также велись разработки боевых лазеров. В восьмидесятые годы XX века велись работы по созданию орбитальной платформы «Скиф» с газодинамическим лазером мощностью 100 кВт. Массогабаритный макет «Скиф-ДМ» (Космический аппарат «Полюс») был выведен на орбиту Земли в 1987 году, но из-за ряда ошибок не вышел на расчётную орбиту и по баллистической траектории был затоплен в Тихом океане. Развал СССР поставил крест на этом и аналогичных проектах.

Масштабные исследования лазерного оружия проводились в СССР в рамках программы «Терра». Программа зональной системы противоракетной и противокосмической обороны с лучевым поражающим элементом на основе лазерного оружия высокой мощности «Терра» реализовывалась с 1965 г. по 1992 г. По открытым данным, в рамках данной программы прорабатывались газодинамические лазеры, твердотельные лазеры, взрывные иодные фотодиссоционные и другие типы лазеров.

Также в СССР с середины 70-х годов XX века разрабатывался лазерный комплекс воздушного базирования А-60 на базе самолёта Ил-76МД. Изначально комплекс предназначался для борьбы с автоматическими дрейфующими аэростатами. В качестве вооружения должен был быть установлен непрерывный газодинамический СО-лазер мегаваттного класса разработки КБ «Химавтоматики» (КБХА).

В рамках испытаний было создано семейство стендовых образцов ГДЛ с мощностью излучения от 10 до 600 кВт. Можно предположить, что на момент испытаний комплекса А-60 на нём был установлен лазер мощностью 100 кВт.

Было выполнено несколько десятков полетов с испытанием лазерной установки по стратосферному аэростату, находящемуся на высоте 30-40 км и по мишени Ла-17. В части источников указывается на то, что комплекс с самолетом А-60 создавался в качестве авиационного лазерного компонента ПРО по программе «Терра-3».

В феврале 2010 г. в СМИ прошло сообщение о возобновлении работ по лазерному оружию воздушного базирования на платформе Ил-76МД-90А с двигателями ПС-90А-76. Концерн ВКО «Алмаз-Антей», ТАНТК имени Г.М. Бериева и предприятие «Химпромавтоматика» в Воронеже получили задание на создание авиационного комплекса с «лазером, способным прожигать корпуса самолетов, спутников и баллистических ракет». Самолет Ил-76МД-90А, переоборудованный для этой цели, в октябре 2014 года совершил первый полет и 24 ноября 2014 г. прибыл в Таганрог для установки лазерного комплекса. Доработка машины и ее наземная отработка продолжались два года, и 4 октября 2020 г. в СМИ прошло сообщение о начале летных испытаний преемника А-60. Как следует из слов заместителя министра обороны Российской Федерации Юрия Борисова, «продолжаются летные эксперименты, результаты которых подтверждают правильность принятых решений».

Какие типы лазеров наиболее перспективны для применения в военных целях в настоящее время? При всех достоинствах газодинамических и химических лазеров, у них есть существенные недостатки: необходимость в расходных компонентах, инерция запуска (по некоторым данным до одной минуты), значительное тепловыделение, большие габариты, выход отработанных компонентов активной среды. Такие лазеры могут быть размещены только на крупных носителях.

В настоящий момент наибольшие перспективы имеют твердотельные и волоконные лазеры, для работы которых необходимо лишь обеспечить их электроэнергией достаточной мощности. Военно-морские силы США активно прорабатывают технологию лазера на свободных электронах. К важным преимуществам волоконных лазеров можно отнести их масштабируемость, т.е. возможность объединять несколько модулей для получения большей мощности. Важна и обратная масштабируемость, если создан твердотельный лазер мощностью 300 кВт, то наверняка его основе может быть создан менее габаритный лазер мощностью, например, 30 кВт.

Какая ситуация с волоконными и твердотельными лазерами в России? Наука СССР в части разработки и создания лазеров была самой передовой в мире. К сожалению развал СССР изменил всё. Одна из крупнейших в мире компаний по разработке и производству волоконных лазеров IPG Photonics основана выходцем из России В. П. Гапонцевым на базе российской компании НТО «ИРЭ-Полюс». В настоящий момент головная компания IPG Photonics зарегистрирована в США. Несмотря на то, что одна из крупнейших производственных площадок IPG Photonics расположена в России (Фрязино, Московская область), компания действует в рамках законодательства США и её лазеры не могут применяться в вооружённых силах РФ, в том числе компания должна выполнять наложенные на Россию санкции.

Вместе с тем возможности волоконных лазеров, производимых IPG Photonics, чрезвычайно высоки. Волоконные лазеры непрерывного излучения высокой мощности компании IPG обладают диапазоном мощности от 1 кВт до 500 кВт, а также широким спектром длин волн, КПД преобразования электрической энергии в оптическую доходит до 50 %. Параметры расходимости волоконных лазеров IPG намного превосходят другие лазеры большой мощности.

Есть ли в России другие разработчики и производители современных мощных волоконных и твердотельных лазеров? Если судить по коммерческим образцам, то нет.

Отечественный производитель в промышленном сегменте предлагает газовые лазеры мощностью максимум десятки кВт. Например, компания «Лазерные системы» в 2001 году представила кислородно-йодный лазер мощностью 10 кВт с химической эффективностью, превышающей 32%, являющийся наиболее перспективным компактным автономным источником мощного лазерного излучения этого типа. Теоретически кислородно-йодные лазеры могут достигать мощности до одного мегаватта.

Вместе с тем нельзя полностью исключать то, что отечественным учёным удалось совершить прорыв в каком-либо другом направлении создания мощных лазеров, основанный на глубоком понимании физики лазерных процессов.

В 2020 году президент России Владимир Путин анонсировал лазерный комплекс «Пересвет», предназначенный для решения задач противоракетной обороны и поражения орбитальных аппаратов противника. Данные о комплексе «Пересвет» засекречены, включая тип используемого лазера (лазеров?) и оптическую мощность.

Можно предположить, что наиболее вероятным кандидатом для установки в этот комплекс является газодинамический лазер, потомок лазера, разрабатывающегося для программы А-60. В этом случае оптическая мощность лазера комплекса «Пересвет» может составлять 200-400 киловатт, в оптимистичном сценарии до 1 мегаватта. В качестве другого кандидата можно рассмотреть ранее упомянутый кислородно-йодный лазер.

Если исходить из этого, то со стороны кабины основной машины комплекса «Пересвет» предположительно последовательно расположены – дизельный или бензиновый генератор электрического тока, компрессор, отсек хранения химических компонент, лазер с системой охлаждения, система наведения лазерного луча. Нигде не видно РЛС или ОЛС обнаружения целей, что предполагает внешнее целеуказание.

В любом случае эти предположения могут оказаться ложными, как в связи с возможностью создания отечественными разработчиками принципиально новых лазеров, так и в связи с отсутствием достоверной информации по оптической мощности комплекса «Пересвет». В частности, в печати проскакивала информация о наличии в составе комплекса «Пересвет» малогабаритного ядерного реактора, в качестве источника энергии. Если это действительно так, то конфигурация комплекса и возможные характеристики могут быть совершенно иными.

Какой мощности нужен лазер, чтобы его можно было эффективно применять в военных целях как средство поражения? Во многом это зависит от предполагаемой дальности применения и характера поражаемых целей, а также способа их поражения.

В составе комплекса бортовой самозащиты «Витебск» присутствует станция активных помех Л-370-3С. Она осуществляет противодействие подлетающим ракетам противника с тепловой головкой самонаведения путём ослепления инфракрасным лазерным излучением. С учётом габаритов станции активных помех Л-370-3С, мощность лазерного излучателя составляет максимум несколько десятков ватт. Этого вряд ли достаточно для уничтожения тепловой головки самонаведения ракеты, но вполне достаточно для временного ослепления.

В ходе испытаний комплекса А-60 с лазером мощностью 100 кВт поражались мишени Л-17, представляющие аналог реактивного самолёта. Дальность поражения неизвестна, можно предположить, что она составляла порядка 5-10 км.


Примеры испытаний зарубежных лазерных комплексов:

В ходе испытаний американского воздушного лазерного комплекса Boeing YAL-1 были уничтожены баллистические ракеты-мишени. Одна ракета-мишень с жидкостным ракетным двигателем, вторая твердотопливная, дальность стрельбы на испытаниях составила порядка 100 км.

На испытательном полигоне в Шробенхаузене компанией Rheinmetall были проведены испытания лазерной установки мощностью 20 кВт, уничтожающей беспилотный летательный аппарат (БПЛА) на расстоянии в 500 метров за 3,39 секунды.

Боевая бронированная машина Армии США «Страйкер», оснащенная мобильным высокоэнергетическим лазером (Mobile High-Energy Laser, MEHEL) мощностью 5 кВт, поразила небольшой БЛА на полигоне Графенвер в Германии (земля Бавария)

В ходе более 100 испытаний израильская лазерная система ПРО «Керен Барзель» в апреле 2014 г. система поразила 90% целей (мины, снаряды, БПЛА) показала работоспособность (Proof Of Concept), было проведено более 100 испытаний. Мощность применяемого лазера составляет несколько десятков киловатт.

Каждый электрик должен знать:  Электроинструмент и измерительные приборы

Компания «Боинг» совместно с Армией США провели испытания перспективного боевого лазера HEL MD. Несмотря на плохую погоду – сильный ветер, дождь и туман – 10-киловаттная установка успешно поразила несколько воздушных целей на авиабазе Эглин во Флориде».

Предыдущее испытание комплекса проводились в 2013 г. на полигоне Уайт-Сэндз, штат Нью-Мексико. Тогда лазер поразил более 90 миномётных снарядов, и несколько БПЛА. В общей сложности за два испытания HEL MD поразил 150 воздушных целей, включая 60-миллиметровые миномётные снаряды и БЛА. В планах компании – увеличение мощности комплекса до 50-60 квт и усовершенствование системы энергообеспечения лазерной установки.

Исходя из изложенного, можно предположить:

— для поражения малых БПЛА на дальности 1-5 километров необходим лазер мощностью 2-5 кВт;

— для поражения неуправляемых мин, снарядов, и высокоточных боеприпасов на дальности 5-10 километров необходим лазер мощностью 20-100 кВт;

— для поражения целей типа самолёт или ракета на дальности 100-500 км необходим лазер мощностью 1-10 МВт.

Лазеры указанных мощностей или уже существуют, или будут созданы в обозримой перспективе. Какие образцы лазерного вооружения в недалёком будущем могут использоваться военно-воздушными силами, наземными войсками и флотом, рассмотрим в продолжении настоящей статьи.

Заметили ош Ы бку Выделите текст и нажмите Ctrl+Enter

Лазерная техника

НОЛАТЕХ (АО «НОВАЯ ЛАЗЕРНАЯ ТЕХНИКА») — научно-производственное предприятие в области разработки и изготовления полупроводниковых лазеров (в том числе одночастотных и перестраиваемых с волоконно-брегговской решеткой), суперлюминесцентных диодов, торцевых светодиодов, полупроводниковых оптических усилителей. Предприятие организовано в 1992 году. В компании работают доктора наук, кандидаты наук, аспиранты и другие высококвалифицированные специалисты.

Разрабатываемые лазеры обладают:

  • малыми пороговыми токами
  • высокой квантовой эффективностью
  • широкой полосой модуляции
  • высоким коэффицентом связи с волокном
  • высокой стабильностью мощности
  • малыми шумами
  • высокой скоростью модуляции
  • большим ресурсом работы

Лазерные модули изготавливаются в климатическом исполнении УХЛ по ГОСТ 15150-69 и соответствуют общим техническим условиям РШБА.433769.013 ТУ. Выпускаемая продукция поставляется более 10 зарубежным странам и более 50 предприятиям России.

Представленная продукция защищена патентами РФ.

Мы готовы рассмотреть любые Ваши предложения и заказы по части разработки и изготовления.

Лазерный луч: история технологии

Лазер, а точнее LASER — это акроним понятия, которое по-английски звучит Light Amplification by Stimulated Emission of Radiation, т.е. усиление света индуцированным (вынужденным) излучением. Устройство можно назвать оптическим квантовым генератором, который преобразует энергию накачки (электрическую ,световую и др.) в энергию узконаправленного монохроматического потока излучения. То есть в основе его работы лежит квантово-механическое явление индуцированного излучения. Это явление впервые было описано Эйнштейном, (им же была предложена идея создания генераторов-усилителей когерентного света) и стало основанием нынешней квантовой электроники и лазерных технологий. Первый же квантовый усилитель был предложен Дж. Вебером в 1953 г.

Во второй половине пятидесятых годов разрабатывались и создавались твердотельные молекулярные усилители, но охватывали они СВЧ-диапазон радиоволн, потому назывались мазерами (MASER — microwave amplification by stimulated emission of radiation). Первый был разработан в 1954 в Москве в институте академии наук им. Лебедева учеными Николаем Басовым, Александром Прохоровым. Независимо от них и в то же самое время в Колумбийском университете в Нью-Йорке разработками занимались Х. Цайгер, Д. Горлон и Ч. Таунс.

Следующей ступенью на пути развития квантовой электроники стало перенесение ее принципов на оптическое излучение. В 1958 Шавлов, Таунс и Прохоров продемонстрировали возможности использования этого явления.

Впервые лазер на рубиновом стержне создан был в 1960 году Т. Майманом. Все современные лазеры сегодня содержат элементы, которые использовались в том самом первом лазере. С того момента лазерная техника начала стремительно развиваться и распространяться.

С созданием лазеров стала развиваться новая тогда область физики — нелинейная оптика, которая изучает нелинейные оптические эффекты под воздействием индуцированного излучения. Первый лазер, работающий на смеси газов (гелия и неона), в котором атомы неона испускались инфракрасным когерентным излучением, был создан А. Джаваном.

Лазер это — источник света. И от других источников света его отличает высокая стабильность интенсивного излучения в стационарном режиме, возможность генерировать очень короткие световые импульсы, монохроматичность и высокая спектральная плотность энергии. Эти свойства, собственно, и позволяют применять лазер так разнообразно в различных отраслях.

Сейчас лазерную технику используют в промышленности как метод обработки металла: лазерная резка, сварка, плавление, гравировка.

Лазерная технология (стр. 1 из 12)

1. История открытия

2. Принцип работы лазера

2.1 Сущность явления усиления света

2.2 Активные вещества

2.4 Устройства накачки

3. Применение лазеров

3.1 Термоядерный синтез

3.2 Лазеры в технологии

3.3 Лазеры в авиации

3.4 Лазеры в исследовании атмосферы и океана

3.5 Лазеры в медицине

3.6 Лазерная локация и связь

1. ИСТОРИЯ ОТКРЫТИЯ

Лазеры – это источники когерентного оптического излучения, принцип действия которых основан на использовании явления индуцированного излучения. Слово «лазер» представляет собой аббревиатуру английской фразы «LightAmplificationbyStimulatedEmissionofRadiation», переводимой как усиление света в результате вынужденного излучения. Гипотеза о существовании вынужденного (индуцированного) излучения была высказана в 1917 г. А. Эйнштейном. В 1940 г. профессор Московского энергетического института В. А. Фабрикант сформулировал условия, при выполнении которых можно обнаружить индуцированное излучение, а в 1951 г. он совместно с М. М. Вудынским и Ф. А. Бутаевой получил авторское свидетельство на способ усиления электромагнитного излучения. Устройство, генерирующее электромагнитные колебания на основе использования явления индуцированного излучения в СВЧ диапазоне, было создано в 1953—1954 гг. Н. Г. Басовым и А. М. Прохоровым в СССР и группой Ч. Таунса в США.

В 1958 г. А. М. Прохоров в СССР, а в США Ч. Таунс и А. Шавлов показали возможность использования индуцированного излучения для создания генераторов когерентного оптического излучения — лазеров. В 1959 г. Н. Г. Басову и А. М. Прохорову за разработку нового принципа генерирования и усиления электромагнитных колебаний и создание на основе этого принципа СВЧ генераторов и усилителей была присуждена Ленинская премия, а в 1964 г. совместно с Ч. Таунсом — Нобелевская премия по физике за исследования в области квантовой электроники.

2. ПРИНЦИП РАБОТЫ ЛАЗЕРА

2.1 Сущность явления усиления света

Для понимания сущности этого явления необходимо более подробно изучить элементарные акты взаимодействия электромагнитного излучения с атомной системой. Рассмотрим для простоты двухуровневую систему, т. е. атомы, обладающие двумя энергетическими уровнями Е1 и Е221 ). Пусть N1 — число атомов в единице объема вещества, находящихся на нижнем энергетическом уровне Е1, а N2 —- на верхнем уровне Е2. Тогда в результате взаимодействия электромагнитной волны с атомами вещества будут происходить изменения ее интенсивности, обусловленные следующими элементарными процессами.

Вынужденнное поглощение фотонов частоты V12 =(E2 -E1 )/h=V , которое будет происходить со скоростью

где B 12 коэффициент Энштейна, такой, что B 12 p ( v ) – вероятность этого вынужденного перехода, а p ( v ) – спектральная плотность энергии волны.

Спонтанное излучение атомов, при котором они самопроизвольно переходят с верхнего возбужденного состояния Е2 на уровень Е1 . число этих переходов в единицу времени будет равно


гдеA 21 — коэффициент Эйнштейна. Так как эти переходы происходят в результате внутренних причин и статистически независимы, то спонтанное излучение носит тепловой характер и по отношению к внешнему электромагнитному полю будет некогерентным.

Вынужденное, или индуцированное, излучение фотонов частоты v21 =v , при котором атомы переходят из возбужденного верхнего состояния Е2 на нижнее Е1 под действием внешнего светового поля. Скорость этого процесса будет

Главной особенностью этих переходов является то, что излучаемый под действием внешнего поля квант полностью когерентен с этим полем, т. е. имеет ту же частоту, фазу, поляризацию и распространяется по тому же направлению. Таким образом, вынужденное излучение является когерентным по отношению к внешнему полю. Вероятностные коэффициенты Эйнштейна, B21 и B12 связаны между следующим образом:

В обычных условиях сред, близких к равновесию, имеет место ослабление рассматриваемой волны по закону Бугера: I = I e kx , N 1 > N 2 , k N 1 , то в этом случаеk >0 и среда будет усиливать проходящую волну, т.е. будет наблюдаться отрицательное поглощение. Среды, у которых выполняется это условие, называются средами с инверсией заселенности или активными средами.

Когда в условиях инверсии заселенности уровней электрон переходит на нижний уровень, испуская фотон, то последний, проходит через множество окружающих его возбужденных атомов и способен вызвать излучение фотона у какого- либо из них. Оба фотона перемещаются в одном и том же направлении и к тому же они практически когерентны. Каждый из этой пары фотонов может повторить тот же процесс, и через очень непродолжительное время благодаря своего рода цепной реакции образуется фотонная лавина, в которой все фотоны имеют одну и туже частоту, все движутся в одном направлении и все оптически когерентны. Эта лавина фотонов может быть значительно усилена с помощью одного оптического трюка. Если всю систему поместить в резонатор (между двумя не полностью отражающими зеркалами), то в высокой степени когерентный и направленный свет будет многократно проходить внутри области инверсией заселенности. Поскольку скорость света очень велика, весь процесс многократного отражения света с постоянно нарастающей интенсивностью происходит за весьма малый промежуток времени, и при соблюдении необходимых условий возникает очень интенсивный и очень кратковременный световой импульс, обладающий совершено особыми свойствами. Лазерные лучи строго монохроматичны и когерентны, имеют очень малую угловую расходимость, имеют огромную мощность излучения.

Таким образом, для получения лазерного излучения необходимо иметь частицы, в которых может быть создана инверсная заселенность, резонатор и устройство, обеспечивающее получение инверсного состояния. Частицы, в которых может быть создана инверсная заселенность, называют активными веществами лазера. Совокупность же элементов, обеспечивающих получение инверсной заселенности, называют устройством или системой накачки.

2.2 Активные вещества

В настоящее время в качестве активных веществ лазеров используются твердые тела, полупроводники, жидкости, газы. В соответствии с этим различают твердотельные лазеры, т. е. лазеры, у которых в качестве активного вещества используются диэлектрические кристаллы или стекла с примесью активных частиц; жидкостные лазеры, у которых активное вещество находится в жидком состоянии; полупроводниковые лазеры и газовые лазеры, активными частицами которых могут быть атомы, ионы или молекулы собственно газов или пары металлов.

Активное вещество твердотельных лазеров состоит из двух основных компонентов: матрицы и активатора. Энергетические уровни атомов в кристалле отличаются от уровней свободных атомов, так как на атом в кристалле воздействуют электрические и магнитные поля окружающих атомов. Это приводит к расщеплению уровней, появлению подуровней и, в конечном счете, энергетических полос. Наибольшее расширение испытывают уровни внешних электронов, так как внутренние электроны экранируются от воздействия полей соседних атомов внешними электронными оболочками. В качестве матрицы используются диэлектрические кристаллы, запрещенная зона которых обычно составляет несколько электрон-вольт. Поэтому чистая кристаллическая основа является совершенно бесцветной и прозрачной средой. Введение в кристаллическую основу ионов активатора приводит к появлению в активированном кристалле областей селективного поглощения и спонтанной люминесценции (центров окраски). Ионы активатора замещают ионы основы, поэтому радиус иона активатора должен практически совпадать с радиусом иона матрицы. Чем точнее это геометрическое соответствие, тем более высокие концентрации ионов активатора в основе могут быть достигнуты без заметных оптических дефектов. Атом активатора в кристаллической основе должен иметь метастабильный уровень с большим временем жизни и узкой линией люминесценции (шириной не более нескольких см -1 ). Чем больше время жизни верхнего уровня лазерного перехода и чем меньше ширина его линии, тем меньше мощность накачки, при которой достигается инверсная населенность. Ширина линий люминесценции и их число должны быть минимальными также и для увеличения квантового выхода люминесценции, т. е. отношения числа фотонов, поглощенных активным веществом на частоте накачки, к числу фотонов, излучаемых данным активным веществом на частоте лазерного перехода. Квантовый выход характеризует, в конечном счете, эффективность преобразования поглощенного некогерентного из лучения в когерентное. Перечисленным выше требованиям отвечают актиноидные (U —уран), редкоземельные (Nd, Pr, Sm, Eu, Tb, Dy, Но, Er, Tu, Yb) и некоторые переходные (Сг, Со, Ni) металлы. Малая ширина спектральных линий у этих атомов объясняется тем, что лазерные переходы у них соответствуют переходам электронов в глубоко лежащих слоях, хорошо экранированных от воздействия внешнего поля кристаллической решетки.

Свойства активного вещества определяются не только активатором, но и матрицей. Матрица должна быть прозрачной, т. е. не иметь ни собственного, ни примесного поглощения на частоте генерации, иметь высокую оптическую и механическую однородность, теплопроводность, твердость, термическую и химическую стойкость. В качестве матриц активных веществ широко используются:

Принцип работы лазерного луча

Как работает лазер — основы

В следующем видеоматериале мы в общих чертах покажем вам принципы работы и структуру лазера.

Термин «лазер»

ЛАЗЕР — это аббревиатура от «Light Amplification by Stimulated Emission of Radiation». То есть «усиление света посредством вынужденного излучения»- Говоря простым языком: частички света (протоны), возбужденные током, излучают энергию в форме света. Этот свет собирается в пучок. Таким образом образуются лазерные лучи.

Техническая структура лазера

Все лазеры состоят их трех компонентов, это:

  1. Внешний источник накачки
  2. Активная лазерная среда
  3. Оптический резонатор.

Источник накачки направляет внешнюю энергию к лазеру.

Активная лазерная среда находится внутри лазера. В зависимости от конструкции активная лазерная среда может состоять из смеси газа (CO2-лазер), кристаллического тела (YAG-лазер) или стекловолокна (волоконный лазер). Когда энергия подается в активную лазерную среду через систему накачки, то это ведет к выделению энергии в форме излучения.

Активная лазерная среда находится между двумя зеркалами в так называемом «оптическом резонаторе». Одно из зеркал полупрозрачное. Излучение активной лазерной среды усиливается в резонаторе. В то же время определенная часть излучения может выходить из резонатора через полупрозрачное зеркало. Собранное в пучок излучение представляет собой лазерное излучение.

Свойства лазерного луча: монохроматичность и высокая когерентность

Лазерное излучение обладает тремя фундаментальными свойствами, а это:

  1. Монохроматичность. Это значит, что излучение состоит только из волн одной длины.
  2. Высокая когерентность и, следовательно, синфазность (совпадение фаз).
  3. В связи с когерентностью волны лазера практически параллельны.

Благодаря этим свойствам лазерные лучи используются во многих областях современной обработки материалов. Интенсивность сохраняется на протяжении долгого времени благодаря когерентности, кроме того, лучи можно еще фокусировать при помощи линз. Лазерный луч попадает на поверхность материала, впитывается и нагревает таким способом материал. Благодаря этому тепловыделению материал удаляется или полностью испаряется. Таким образом предоставляется возможность гравировки, маркировки и резки множества материалов.

Дальнейшая информация относительно лазерной гравировки, резки и маркировки

Как выглядит принцип гравировки, резки и маркировки при помощи лазера? Мы покажем вам в этом видео

Лазерное оружие: технологии, состояние, перспективы. Часть 1

Лазерное оружие всегда вызывает множество споров. Одни считают его оружием будущего, другие категорически отрицают вероятность появления эффективных образцов такого оружия в ближайшем будущем. Люди задумывались о лазерном оружии даже до его фактического появления, вспомним классическое произведение «Гиперболоид инженера Гарина» Алексея Толстого (безусловно, в произведении указан не совсем лазер, но близкое к нему по действию и последствиям применения оружие).

Создание реального лазера в 50-х – 60-х годах XX века вновь подняло тему лазерного оружия. На протяжении десятилетий оно стало непременным атрибутом фантастических фильмов. Реальные успехи были гораздо скромнее. Да, лазеры заняли важную нишу в системах разведки и целеуказания, широко применяются в промышленности, но для использования в качестве средства поражения их мощность по-прежнему была недостаточной, а массогабаритные характеристики неприемлемыми. Как эволюционировали лазерные технологии, насколько они готовы к применению в военных целях в настоящее время?

Первый действующий лазер был создан в 1960 году. Это был импульсный твердотельный лазер на искусственном рубине. На момент создания это были самые высокие технологии. В наше время такой лазер можно собрать в домашних условиях, при этом энергия его импульса может достигать 100 Дж.

Ещё более простым в реализации является азотный лазер, для его реализации не нужны сложные покупные изделия, он может работать даже на азоте, содержащемся в атмосфере. При наличии прямых рук он может быть легко собран в домашних условиях.

Процесс самостоятельной сборки и демонстрация работы азотного лазера

С момента создания первого лазера найдено огромное количество способов получения лазерного излучения. Существуют твердотельные лазеры, газовые лазеры, лазеры на красителях, лазеры на свободных электронах, волоконные лазеры, полупроводниковые и другие лазеры.

Также лазеры различаются по способу возбуждения. Например, в газовых лазерах различных конструкций, возбуждение активной среды может осуществляться оптическим излучением, разрядом электрического тока, химической реакцией, ядерной накачкой, тепловой накачкой (газодинамические лазеры, ГДЛ). Появление полупроводниковых лазеров породило лазеры типа DPSS (Diode-pumped solid-state laser – твердотельный лазер с диодной накачкой).

Различные конструкции лазеров позволяют получить на выходе излучение разных длин волн, от мягкого рентгеновского излучения, до излучения инфракрасного спектра. В разработке находятся лазеры, излучающие жесткое рентгеновское излучение и гамма-лазеры. Это позволяет подбирать лазер исходя из решаемой задачи. Относительно военного применение, это означает, к примеру, возможность выбора лазера, с излучением такой длины волны, которая минимально поглощается атмосферой планеты.

С момента разработки первого прототипа, непрерывно росла мощность, улучшались массогабаритные характеристики и коэффициент полезного действия (КПД) лазеров. Очень наглядно это заметно на примере лазерных диодов. В 90-х годах прошлого века в широкой продаже появились лазерные указки мощностью 2-5 мВт, в 2005-2010 годах уже можно было приобрести лазерную указку 200-300 мВт, сейчас, в 2020 году, в продаже есть лазерные указки с оптической мощностью 7 Вт. В России в открытой продаже есть модули инфракрасных лазерных диодов с оптоволоконным выходом, оптической мощностью 350 Вт.

Темпы роста мощности лазерных диодов сравнимы со скоростью роста вычислительной мощностью процессоров, в соответствии с законом Мура. Безусловно лазерные диоды не пригодны для создания боевых лазеров, но они в свою очередь используются для накачки эффективных твердотельных и волоконных лазеров. Для лазерных диодов КПД преобразования электрической энергии в оптическую может составлять свыше 50%, теоретически можно получить КПД и свыше 80%. Высокий КПД не только снижает требования к источнику питания, но и упрощает охлаждение лазерного оборудования.

Важным элементом лазера является система фокусировки луча – чем меньше площадь пятна на цели, тем выше удельная мощность, позволяющая нанести повреждение. Прогресс в создании сложных оптических систем и появление новых высокотемпературных оптических материалов позволяет создавать высокоэффективные системы фокусировки. В систему фокусировки и наведения американского экспериментального боевого лазера HEL входит 127 зеркал, линз и светофильтров.

Ещё одним важным компонентом, обеспечивающим возможность создания лазерного оружия, является разработка систем наведения и удержания луча на цели. Чтобы поражать цели «мгновенным» выстрелом, за доли секунды, нужны гигаваттные мощности, но создание таких лазеров и источников питания для них на мобильном шасси дело отдалённого будущего. Соответственно, для уничтожения целей лазерами мощностью сотни киловатт – десятки мегаватт, необходимо удержание пятна лазерного излучения на цели некоторое время (от нескольких секунд до нескольких десятков секунд). Для этого необходимы высокоточные и высокоскоростные приводы, способные осуществлять слежение лучом лазера за целью, по данным системы наведения.

Каждый электрик должен знать:  Статьи про аппараты защиты

При стрельбе на большие дальности система наведения должна компенсировать искажения, вносимые атмосферой, для чего в системе наведения могут применяться несколько лазеров различного назначения, обеспечивающих точное наведение основного «боевого» лазера на цель.

Какие лазеры получили приоритетное развитие в сфере вооружений? В связи с отсутствием мощных источников оптической накачки таковыми стали в первую очередь газодинамические и химические лазеры.

В конце XX века общественное мнение всколыхнула американская программа Стратегической оборонной инициативы (СОИ). В рамках этой программы предполагалось развёртывание лазерного оружия на земле и в космосе для поражения советских межконтинентальных баллистических ракет (МБР). Для размещения на орбите предполагалось использовать лазеры с ядерной накачкой, излучающие в рентгеновском диапазоне или химические лазеры мощностью до 20 мегаватт.

Программа СОИ столкнулась с многочисленными техническими трудностями и была закрыта. В тоже время некоторые проводимые в рамках программы исследования позволили получить достаточно мощные лазеры. В 1985 году лазер на фториде дейтерия с выходной мощностью 2,2 мегаватта разрушил закреплённую в 1 километре от лазера жидкостную баллистическую ракету. В результате 12-секундного облучения стенки корпуса ракеты потеряли прочность и были разрушены внутренним давлением.

В СССР также велись разработки боевых лазеров. В 80-е годы XX века велись работы по созданию орбитальной платформы «Скиф» с газодинамическим лазером мощностью 100 кВт. Массогабаритный макет «Скиф-ДМ» (космический аппарат «Полюс») был выведен на орбиту Земли в 1987 году, но из-за ряда ошибок не вышел на расчётную орбиту и по баллистической траектории был затоплен в Тихом океане. Развал СССР поставил крест на этом и аналогичных проектах.

Масштабные исследования лазерного оружия проводились в СССР в рамках программы «Терра». Программа зональной системы противоракетной и противокосмической обороны с лучевым поражающим элементом на основе лазерного оружия высокой мощности «Терра» реализовывалась с 1965 г. по 1992 г. По открытым данным, в рамках данной программы прорабатывались газодинамические лазеры, твердотельные лазеры, взрывные иодные фотодиссоционные и другие типы лазеров.

Также в СССР с середины 70-х годов XX века разрабатывался лазерный комплекс воздушного базирования А-60 на базе самолёта Ил-76МД. Изначально комплекс предназначался для борьбы с автоматическими дрейфующими аэростатами. В качестве вооружения должен был быть установлен непрерывный газодинамический СО-лазер мегаваттного класса разработки КБ «Химавтоматики» (КБХА).

В рамках испытаний было создано семейство стендовых образцов ГДЛ с мощностью излучения от 10 до 600 кВт. Можно предположить, что на момент испытаний комплекса А-60 на нём был установлен лазер мощностью 100 кВт.

Было выполнено несколько десятков полетов с испытанием лазерной установки по стратосферному аэростату, находящемуся на высоте 30-40 км и по мишени Ла-17. В части источников указывается на то, что комплекс с самолетом А-60 создавался в качестве авиационного лазерного компонента ПРО по программе «Терра-3».


В феврале 2010 г. в СМИ прошло сообщение о возобновлении работ по лазерному оружию воздушного базирования на платформе Ил-76МД-90А с двигателями ПС-90А-76. Концерн ВКО «Алмаз-Антей», ТАНТК имени Г.М. Бериева и предприятие «Химпромавтоматика» в Воронеже получили задание на создание авиационного комплекса с «лазером, способным прожигать корпуса самолетов, спутников и баллистических ракет».

Самолет Ил-76МД-90А, переоборудованный для этой цели, в октябре 2014 года совершил первый полет и 24 ноября 2014 г. прибыл в Таганрог для установки лазерного комплекса. Доработка машины и ее наземная отработка продолжались два года, и 4 октября 2020 г. в СМИ прошло сообщение о начале летных испытаний преемника А-60. Как следует из слов заместителя министра обороны Российской Федерации Юрия Борисова, «продолжаются летные эксперименты, результаты которых подтверждают правильность принятых решений».

Какие типы лазеров наиболее перспективны для применения в военных целях в настоящее время? При всех достоинствах газодинамических и химических лазеров, у них есть существенные недостатки: необходимость в расходных компонентах, инерция запуска (по некоторым данным до одной минуты), значительное тепловыделение, большие габариты, выход отработанных компонентов активной среды. Такие лазеры могут быть размещены только на крупных носителях.

В настоящий момент наибольшие перспективы имеют твердотельные и волоконные лазеры, для работы которых необходимо лишь обеспечить их электроэнергией достаточной мощности. Военно-морские силы США активно прорабатывают технологию лазера на свободных электронах. К важным преимуществам волоконных лазеров можно отнести их масштабируемость, т.е. возможность объединять несколько модулей для получения большей мощности. Важна и обратная масштабируемость, если создан твердотельный лазер мощностью 300 кВт, то наверняка его основе может быть создан менее габаритный лазер мощностью, например, 30 кВт.

Какая ситуация с волоконными и твердотельными лазерами в России? Наука СССР в части разработки и создания лазеров была самой передовой в мире. К сожалению развал СССР изменил всё. Одна из крупнейших в мире компаний по разработке и производству волоконных лазеров IPG Photonics основана выходцем из России В. П. Гапонцевым на базе российской компании НТО «ИРЭ-Полюс».

В настоящий момент головная компания IPG Photonics зарегистрирована в США. Несмотря на то, что одна из крупнейших производственных площадок IPG Photonics расположена в России (Фрязино, Московская область), компания действует в рамках законодательства США и её лазеры не могут применяться в вооружённых силах РФ, в том числе компания должна выполнять наложенные на Россию санкции.

Вместе с тем возможности волоконных лазеров, производимых IPG Photonics, чрезвычайно высоки. Волоконные лазеры непрерывного излучения высокой мощности компании IPG обладают диапазоном мощности от 1 кВт до 500 кВт, а также широким спектром длин волн, КПД преобразования электрической энергии в оптическую доходит до 50 %. Параметры расходимости волоконных лазеров IPG намного превосходят другие лазеры большой мощности.

Есть ли в России другие разработчики и производители современных мощных волоконных и твердотельных лазеров? Если судить по коммерческим образцам, то нет.

Отечественный производитель в промышленном сегменте предлагает газовые лазеры мощностью максимум десятки кВт. Например, компания «Лазерные системы» в 2001 году представила кислородно-йодный лазер мощностью 10 кВт с химической эффективностью, превышающей 32%, являющийся наиболее перспективным компактным автономным источником мощного лазерного излучения этого типа. Теоретически кислородно-йодные лазеры могут достигать мощности до одного мегаватта.

Вместе с тем нельзя полностью исключать то, что отечественным учёным удалось совершить прорыв в каком-либо другом направлении создания мощных лазеров, основанный на глубоком понимании физики лазерных процессов.

В 2020 году президент России Владимир Путин анонсировал лазерный комплекс «Пересвет», предназначенный для решения задач противоракетной обороны и поражения орбитальных аппаратов противника. Данные о комплексе «Пересвет» засекречены, включая тип используемого лазера (лазеров?) и оптическую мощность.

Можно предположить, что наиболее вероятным кандидатом для установки в этот комплекс является газодинамический лазер, потомок лазера, разрабатывающегося для программы А-60. В этом случае оптическая мощность лазера комплекса «Пересвет» может составлять 200-400 киловатт, в оптимистичном сценарии до 1 мегаватта. В качестве другого кандидата можно рассмотреть ранее упомянутый кислородно-йодный лазер.

Если исходить из этого, то со стороны кабины основной машины комплекса «Пересвет» предположительно последовательно расположены – дизельный или бензиновый генератор электрического тока, компрессор, отсек хранения химических компонент, лазер с системой охлаждения, система наведения лазерного луча. Нигде не видно РЛС или ОЛС обнаружения целей, что предполагает внешнее целеуказание.

В любом случае эти предположения могут оказаться ложными, как в связи с возможностью создания отечественными разработчиками принципиально новых лазеров, так и в связи с отсутствием достоверной информации по оптической мощности комплекса «Пересвет». В частности, в печати проскакивала информация о наличии в составе комплекса «Пересвет» малогабаритного ядерного реактора, в качестве источника энергии. Если это действительно так, то конфигурация комплекса и возможные характеристики могут быть совершенно иными.

Какой мощности нужен лазер, чтобы его можно было эффективно применять в военных целях как средство поражения? Во многом это зависит от предполагаемой дальности применения и характера поражаемых целей, а также способа их поражения.

В составе комплекса бортовой самозащиты «Витебск» присутствует станция активных помех Л-370-3С. Она осуществляет противодействие подлетающим ракетам противника с тепловой головкой самонаведения путём ослепления инфракрасным лазерным излучением. С учётом габаритов станции активных помех Л-370-3С, мощность лазерного излучателя составляет максимум несколько десятков ватт. Этого вряд ли достаточно для уничтожения тепловой головки самонаведения ракеты, но вполне достаточно для временного ослепления.

В ходе испытаний комплекса А-60 с лазером мощностью 100 кВт поражались мишени Л-17, представляющие аналог реактивного самолёта. Дальность поражения неизвестна, можно предположить, что она составляла порядка 5-10 км.

Примеры испытаний зарубежных лазерных комплексов:

В ходе испытаний американского воздушного лазерного комплекса Boeing YAL-1 были уничтожены баллистические ракеты-мишени. Одна ракета-мишень с жидкостным ракетным двигателем, вторая твердотопливная, дальность стрельбы на испытаниях составила порядка 100 км.

На испытательном полигоне в Шробенхаузене компанией Rheinmetall были проведены испытания лазерной установки мощностью 20 кВт, уничтожающей беспилотный летательный аппарат (БПЛА) на расстоянии в 500 метров за 3,39 секунды.

Боевая бронированная машина Армии США «Страйкер», оснащенная мобильным высокоэнергетическим лазером (Mobile High-Energy Laser, MEHEL) мощностью 5 кВт, поразила небольшой БЛА на полигоне Графенвер в Германии (земля Бавария)

В ходе более 100 испытаний израильская лазерная система ПРО «Керен Барзель» в апреле 2014 г. система поразила 90% целей (мины, снаряды, БПЛА) показала работоспособность (Proof Of Concept), было проведено более 100 испытаний. Мощность применяемого лазера составляет несколько десятков киловатт.

Компания «Боинг» совместно с Армией США провели испытания перспективного боевого лазера HEL MD. Несмотря на плохую погоду – сильный ветер, дождь и туман – 10-киловаттная установка успешно поразила несколько воздушных целей на авиабазе Эглин во Флориде».

Предыдущее испытание комплекса проводились в 2013 г. на полигоне Уайт-Сэндз, штат Нью-Мексико. Тогда лазер поразил более 90 миномётных снарядов, и несколько БПЛА. В общей сложности за два испытания HEL MD поразил 150 воздушных целей, включая 60-миллиметровые миномётные снаряды и БЛА. В планах компании – увеличение мощности комплекса до 50-60 квт и усовершенствование системы энергообеспечения лазерной установки.

Испытания боевого лазера HEL MD

Исходя из изложенного, можно предположить:

— для поражения малых БПЛА на дальности 1-5 км необходим лазер мощностью 2-5 кВт;

— для поражения неуправляемых мин, снарядов, и высокоточных боеприпасов на дальности 5-10 км необходим лазер мощностью 20-100 кВт;

— для поражения целей типа самолёт или ракета на дальности 100-500 км необходим лазер мощностью 1-10 МВт.

Лазеры указанных мощностей или уже существуют, или будут созданы в обозримой перспективе. Какие образцы лазерного вооружения в недалёком будущем могут использоваться военно-воздушными силами, наземными войсками и флотом, рассмотрим в продолжении настоящей статьи.

Лазерная технология

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .

Смотреть что такое «Лазерная технология» в других словарях:

ЛАЗЕРНАЯ ТЕХНОЛОГИЯ — совокупность приёмов и способов обработки материалов и изделий с использованием лазеров. В Л. т. применяются твердотельные лазеры и газовые лазеры, работающие в импульсном, импульсно периодическом и непрерывном режимах. Осн. операции связаны с… … Физическая энциклопедия

ЛАЗЕРНАЯ ТЕХНОЛОГИЯ — технологические процессы, основанные на применении лазерного излучения для термической обработки, сварки, резки деталей, получения отверстий малого диаметра в сверхтвердых материалах и др … Большой Энциклопедический словарь

лазерная технология — технологические процессы, основанные на применении лазерного излучения для термической обработки, сварки, резки деталей, получения отверстий малого диаметра в сверхтвёрдых материалах и др. * * * ЛАЗЕРНАЯ ТЕХНОЛОГИЯ ЛАЗЕРНАЯ ТЕХНОЛОГИЯ,… … Энциклопедический словарь

лазерная технология — lazerinė technologija statusas T sritis fizika atitikmenys: angl. laser technology vok. Laserstrahltechnologie, f; Lasertechnologie, f rus. лазерная технология, f pranc. technologie laser, f … Fizikos terminų žodynas

лазерная технология — [laser engineering] совокупность технологических процессов и устройств для обработки материалов с использованием лазерного излучения разных режимов действия: импульсивного, импульсно периодического и непрерывного при плотности мощностью до 1… … Энциклопедический словарь по металлургии

ЛАЗЕРНАЯ ТЕХНОЛОГИЯ — совокупность способов обработки, изготовления, изменения состояния, св в и формы материала или полуфабриката, осуществляемых посредством лазерного излучения. В большинстве процессов Л. т. используется термин, действие лазерного луча на… … Большой энциклопедический политехнический словарь

лазерная технология печати — Технология цифровой печати, основанная на применении полупроводникового лазера с оптико механической разверткой или на применении линейки светоизлучающих диодов типа LED (light emiting diode) В 1973 г. фирма Xerox создала первый ЭФГ принтер Xerox … Справочник технического переводчика

Лазерная графика — Пример лазерного рисунка Лазерная графика (также англ. Sub Surface Laser Engraving, SSLE) вид лазерной гравировки, рисование лучом лазера на поверхности или внутри объема стекла (кристалла). Основное распространение лазерная графика имеет в… … Википедия

Технология — [(production) process, technology] совокупность приемов и способов получения, обработки и переработки сырья, материалов, полуфабрикатов или изделий в разных отраслях промышленности, в строительстве и т.д.; научная дисциплина, разрабатывающая и… … Энциклопедический словарь по металлургии

технология металлов — [metals technology] совокупность приемов и способов получения и обработки металлических материалов; научная дисциплина, охватывающая весь комплекс указанных проблем. Технология металлов охватывает подготовку металлических руд, извлечение из них… … Энциклопедический словарь по металлургии

Как работает лазер, принцип действия, устройство, виды

Лазеры (или оптические квантовые генераторы) — это одно из самых замечательных и перспективных достижений науки и техники последних десятилетий, одно из «чудес» XX века. У оптических квантовых генераторов, несомненно, блестящее будущее, так как область их применения поистине безгранична: с помощью лазеров изучают плазму, ускоряют химические реакции, следят за движением искусственных спутников Земли, производят разнообразные научные исследования и многое, многое другое. Так, например, используя лазерное излучение было определено расстояние до Луны с точностью до 100 метров. Если обычная современная вычислительная машина может в секунду произвести несколько миллионов арифметических действий, то вычислительная машина с использованием луча ОКГ за ту же секунду может произвести несколько сотен или тысяч миллионов операций.

Как работает лазер

Все оптические квантовые генераторы состоят их внешнего источника накачки, активной лазерной среды, оптического резонатора. С помощью источника накачки внешняя энергия направляется к оптическому квантовому генератору. Активная лазерная среда, находящаяся внутри, в зависимости от конструкции может состоять из кристаллического тела (YAG-лазер), смеси газа (CO₂-лазер) или стекловолокна (волоконный лазер). При подаче энергии через систему накачки в активную лазерную среду выделяется энергия в форме излучения. Активная лазерная среда находится в так называемом «оптическом резонаторе» между двумя зеркалами, одно из которых полупрозрачное. В резонаторе происходит усиление излучения активной лазерной среды, а в то же время часть излучения способна выходить из оптического резонатора через полупрозрачное зеркало. Таким образом собранное в пучок электромагнитное излучение оптического (светового) диапазона и представляет собой лазерное излучение.

Виды лазеров

Оптические квантовые генераторы подразделяются на основе множества признаков, но в основном используется следующая классификация:

  • по режиму работы:
    • импульсные;
    • непрерывного действия;
  • по виду активной среды:
    • жидкостные;
    • газовые;
    • твердотельные;
    • лазеры на свободных электронах;
  • по способу возбуждения лазерного вещества (накачки):
    • газоразрядные (в разрядах на полых электродах, в дуговых, тлеющих разрядах);
    • газодинамические (с созданием инверсий населенностей путем расширения горячих газов);
    • диодные или инжекционные (возбуждение при прохождении тока в полупроводнике);
    • химические лазеры (возбуждение на основе химических реакций);
    • с оптической накачкой (с возбуждением при помощи лампы непрерывного горения, лампы-вспышки, светодиода или другого лазера);
    • с ядерной накачкой (возбуждение в результате ядерного взрыва или с помощью излучения из атомного реактора);
    • с электронно-лучевой накачкой (специальные типы полупроводниковых и газовых лазеров).

В настоящее время различают следующие виды лазерных устройств:

  • твердотельные лазеры с твердым рабочим веществом (кристаллы искусственного рубина, неодимовые стекла, фтористый кальций, некоторые редкоземельные элементы и др.), обладающие большой мощностью излучения;
  • газовые лазеры, в которых в качестве активного вещества используются различные инертные газы (гелий, неон, аргон и др.); они менее мощные по сравнению со твердотельными лазерами;
  • полупроводниковые лазеры с использованием арсенида галлия и др., обладающие большим коэффициентом полезного действия и относительно большой удельной мощностью по сравнению с другими лазерами.

Применение лазеров

В настоящее время имеется много типов различных ОКГ, предназначенных для научных исследований, для использования в области техники и промышленности. Созданы оптические квантовые генераторы с различными специальными устройствами (приставками) в виде микроскопов, телевизоров и т. п. для биологических и медицинских целей. Сочетание с микроскопом («лазерный микроскоп») позволяет облучать не только отдельные клетки, но даже и различные образования, находящиеся в них, как например, ядра и другие. В зависимости от материала, служащего активным веществом, меняется интенсивность излучения и длина волны. Большинство лазеров, применяемых в настоящее время, работает в красном и инфракрасном диапазоне светового спектра.

Импульсные оптические квантовые генераторы, дающие кратковременные импульсы большой энергии, могут применяться в медицине, в основном, для одно- или многократного воздействия на различные патологические очаги, например, для «обстрела» опухолей и др. Менее мощные приборы непрерывного действия предназначаются по преимуществу для производства различных оперативных вмешательств. В первом случае лазерный луч можно образно назвать «световой пулей», поражающей избранную цель, а во втором — «световым ножом» (или «световым скальпелем»).

Нефокусированный лазерный луч обычно имеет ширину в 1-2 см, а с наведенным фокусом — от 1 до 0,01 мм и меньше. Благодаря этому возникла возможность концентрировать огромную световую энергию на площади в несколько микрон, то есть меньше поперечного сечения человеческого волоса, и достигать при этом очень высоких температур — до многих миллионов градусов! Именно благодаря такой способности концентрировать энергию на минимальной площади облучаемой поверхности лазеры и представляют огромный интерес для медицины. Интенсивность лазерного излучения определяется по величине энергии импульса, приходящейся на квадратный сантиметр, и выражается в джоулях (Дж/см²) или калориях, а для устройств непрерывного действии — в ваттах на см². Энергия каждой вспышки лазера может колебаться от долей джоуля до 1000 джоулей и более. Сфокусированный пучок мощного лазера буквально не знает преград. Достаточно сказать, что луч лазера способен «просверливать», плавить и обращать в пар сталь, вольфрам, алмаз, корунд и все другие известные человечеству материалы. В настоящее время мощность оптических квантовых генераторов достигла колоссальной величины. В течение импульса продолжительностью в несколько наносекунд (10-11 сек) она превосходит 10 миллионов киловатт! За последние годы сконструированы лазерные устройства, яркость излучения которых в миллион раз больше яркости солнца, а импульсная мощность превышает мощность крупных электростанций.

Добавить комментарий