Магнитные цепи электрических аппаратов


СОДЕРЖАНИЕ:

Магнитные цепи основные понятия и определения

Магнитные цепи. Законы и параметры магнитных цепей Понятие магнитной цепи

Контур с током или катушка с числом витков , по которой протекает ток , являются источниками магнитного поля (рис.6.1). Для определения характеристик магнитного поля (вектора магнитной индукции или вектора напряженности магнитного поля) в любой точке пространства необходимо решить достаточно сложную задачу расчета электромагнитного поля.

В электрических цепях удается создать пути для электрического тока, что является результатом весьма большого различия удельной проводимости проводников и проводимости окружающей их изолирующей среды ( ). Поэтому можно пренебречь током утечки в изолирующей среде и считать, что весь ток протекает только по проводнику. Подобно тому, как это делается в электрических цепях, стремятся создать определенный путь и для магнитного потока. Экспериментально установлено, что магнитные силовые линии стремятся проходить в среде с большим значением магнитной проницаемости (такие среды называютферромагнетиками). Располагая тела из ферромагнитного материала в среде со значительно меньшей магнитной проницаемостью, например, в воздухе или в немагнитном материале с проницаемостью ( ), создают определенный путь для прохождения магнитного потока. В дальнейшем магнитную проницаемость ферромагнитных веществ будем обозначать символом , опуская индекс “Fe”.

Магнитной цепьюназывается совокупность устройств, содержащих ферромагнитные тела, по которым замыкаются линии вектора магнитной индукции и которая может быть описана на основе интегральных понятий о магнитодвижущей силе (м.д.с.) и магнитном потоке .

Примером простейшей магнитной цепи является катушка с замкнутым ферромагнитным сердечником (рис.6.2). Магнитный поток , протекающий по сердечнику, называетсяосновным магнитный потоком.

Т ак как отношение , характерное для магнитных цепей, не столь значительно, как отношение проводимостей проводников и изолирующей среды для электрических цепей, то следует учитывать, что часть магнитного потока замыкается по воздуху. Этот магнитный поток назовем магнитным потоком рассеяния .

Наличие потока рассеяния приводит к необходимости рассматривать магнитные цепи в общем случае как цепи с распределенными параметрами поскольку магнитный поток различен во всех сечениях сердечника.

Еще одним важным свойством магнитных цепей является их нелинейность. Действительно, магнитная проницаемость ферромагнетиков зависит от напряженности магнитного поля ( ) и, следовательно, от токов контуров и катушек, создающих это поле. В сильных полях с увеличением напряженности магнитного поля в сердечнике магнитная проницаемость материала сердечника существенно уменьшается. Это обстоятельство приводит к увеличению отношения потока рассеяния к основному потоку. При разделение потока на основной поток и поток рассеяния теряет смысл. Одновременно теряет смысл понятие о магнитной цепи, и задача о распределении векторов и в пространстве должна в этом случае ставиться и решаться как задача расчета электромагнитного поля.

При переменной м.д.с. в соответствии с законом электромагнитной индукции проявляется эффект перераспределения магнитного потока по сечению. Вследствие этого в сердечнике создаются области с различной напряженностью магнитного поля и, следовательно, различной магнитной проницаемостью. Это обстоятельство еще более затрудняет расчеты магнитных цепей при рассмотрении всего комплекса электромагнитных явлений, протекающих в них. В то же время, значительные упрощения могут быть получены при сужении круга рассматриваемых явлений.

Таким образом, обоснованное применение понятия о магнитной цепи и математического аппарата ее расчета возможно лишь при правомерности целого ряда упрощающих предположений.

В дальнейшем будем предполагать справедливость следующих допущений:

считаем, что магнитная проницаемость цепи не зависит от напряженности магнитного поля и, следовательно, от тока, т.е. будем рассматривать магнитную цепь как линейную;

пренебрегаем потоками рассеяния , рассматривая магнитную цепь как цепь с сосредоточенными параметрами;

считаем, что основной магнитный поток равномерно распределен по сечению магнитопровода.

МАГНИТНЫЕ ЦЕПИ

Магнитная цепь – часть электротехнического устройства, предназначенного для создания в определенном месте пространства магнитного поля требуемой интенсивности и направленности. Магнитные цепи составляют основу практически всех электротехнических устройств и многих измерительных приборов.

В составе магнитной цепи имеются элементы, возбуждающие магнитное поле (одна или несколько намагничивающих обмоток или постоянные магниты) и магнитопровод (сердечник), выполненный в основном из ферромагнитных материалов. Использование ферромагнетиков обусловлено их способностью многократно усиливать внешнее магнитное поле, создаваемое намагничивающими обмотками или постоянными магнитами. Ферромагнетики отличает высокая магнитная проницаемость по сравнению с окружающей средой, что дает возможность концентрировать и направлять магнитные поля.

Магнитными цепями с постоянной магнитодвижущей силой (МДС) называются цепи, в которых магнитное поле возбуждается постоянными токами намагничивающих обмоток или постоянными магнитами.

При анализе и расчете магнитных цепей пользуются следующими величинами, характеризующими магнитное поле, приведенными в таблице 1.

Таблица 1. Векторные величины, характеризующие магнитное поле

Наименование Обозна-чение Единицы измерения Определение
Вектор магнитной индукции Тл (Тесла) Векторная величина, характеризующая интенсивность и направленность магнитного поля в данной точке пространства.
Вектор намагниченности А/м Магнитный момент единицы объема вещества.
Вектор напряженности магнитного поля А/м , где Гн/м – магнитная постоянная.

Основные скалярные величины, используемые при расчете магнитных цепей приведены в таблице 2.

Таблица 2. Основные скалярные величины, характеризующие магнитную цепь

Наименование Обозна-чение Единицы измерения Определение
Магнитный поток Вб (Вебер) Поток вектора магнитной индукции через поперечное сечение магнитопровода .
Магнитодвижущая сила (МДС) А , где — ток в обмотке, — число витков обмотки.
Магнитное напряжение А , где и — граничные точки участка магнитной цепи, для которого определяется .

Понятие магнитной цепи

МАГНИТНЫЕ ЦЕПИ. ЗАКОНЫ И ПАРАМЕТРЫ

МАГНИТНЫХ ЦЕПЕЙ

Понятие магнитной цепи

Контур с током или катушка с числом витков , по которой протекает ток , являются источниками магнитного поля (рис.6.1). Для определения характеристик магнитного поля (вектора магнитной индукции или вектора напряженности магнитного поля) в любой точке пространства необходимо решить достаточно сложную задачу расчета электромагнитного поля.

В электрических цепях удается создать пути для электрического тока, что является результатом весьма большого различия удельной проводимости проводников и проводимости окружающей их изолирующей среды ( ). Поэтому можно пренебречь током утечки в изолирующей среде и считать, что весь ток протекает только по проводнику. Подобно тому, как это делается в электрических цепях, стремятся создать определенный путь и для магнитного потока. Экспериментально установлено, что магнитные силовые линии стремятся проходить в среде с большим значением магнитной проницаемости (такие среды называют ферромагнетиками). Располагая тела из ферромагнитного материала в среде со значительно меньшей магнитной проницаемостью, например, в воздухе или в немагнитном материале с проницаемостью ( ), создают определенный путь для прохождения магнитного потока. В дальнейшем магнитную проницаемость ферромагнитных веществ будем обозначать символом , опуская индекс “Fe”.

Магнитной цепью называется совокупность устройств, содержащих ферромагнитные тела, по которым замыкаются линии вектора магнитной индукции и которая может быть описана на основе интегральных понятий о магнитодвижущей силе (м.д.с.) и магнитном потоке .

Примером простейшей магнитной цепи является катушка с замкнутым ферромагнитным сердечником (рис.6.2). Магнитный поток , протекающий по сердечнику, называется основным магнитный потоком.

Так как отношение , характерное для магнитных цепей, не столь значительно, как отношение проводимостей проводников и изолирующей среды для электрических цепей, то следует учитывать, что часть магнитного потока замыкается по воздуху. Этот магнитный поток назовем магнитным потоком рассеяния .

Наличие потока рассеяния приводит к необходимости рассматривать магнитные цепи в общем случае как цепи с распределенными параметрами поскольку магнитный поток различен во всех сечениях сердечника.

Еще одним важным свойством магнитных цепей является их нелинейность. Действительно, магнитная проницаемость ферромагнетиков зависит от напряженности магнитного поля ( ) и, следовательно, от токов контуров и катушек, создающих это поле. В сильных полях с увеличением напряженности магнитного поля в сердечнике магнитная проницаемость материала сердечника существенно уменьшается. Это обстоятельство приводит к увеличению отношения потока рассеяния к основному потоку. При разделение потока на основной поток и поток рассеяния теряет смысл. Одновременно теряет смысл понятие о магнитной цепи, и задача о распределении векторов и в пространстве должна в этом случае ставиться и решаться как задача расчета электромагнитного поля.

При переменной м.д.с. в соответствии с законом электромагнитной индукции проявляется эффект перераспределения магнитного потока по сечению. Вследствие этого в сердечнике создаются области с различной напряженностью магнитного поля и, следовательно, различной магнитной проницаемостью. Это обстоятельство еще более затрудняет расчеты магнитных цепей при рассмотрении всего комплекса электромагнитных явлений, протекающих в них. В то же время, значительные упрощения могут быть получены при сужении круга рассматриваемых явлений.

Таким образом, обоснованное применение понятия о магнитной цепи и математического аппарата ее расчета возможно лишь при правомерности целого ряда упрощающих предположений.

В дальнейшем будем предполагать справедливость следующих допущений:

· считаем, что магнитная проницаемость цепи не зависит от напряженности магнитного поля и, следовательно, от тока, т.е. будем рассматривать магнитную цепь как линейную;

· пренебрегаем потоками рассеяния , рассматривая магнитную цепь как цепь с сосредоточенными параметрами;

· считаем, что основной магнитный поток равномерно распределен по сечению магнитопровода.

Нелинейные магнитные цепи при постоянных потоках. Основные понятия и законы магнитных цепей

Лекция N 32

При решении электротехнических задач все вещества в магнитном отношении делятся на две группы:

  • ферромагнитные(относительная магнитная проницаемость );
  • неферромагнитные(относительная магнитная проницаемость ).

Для концентрации магнитного поля и придания ему желаемой конфигурации отдельные части электротехнических устройств выполняются из ферромагнитных материалов. Эти части называют магнитопроводами или сердечниками.Магнитный поток создается токами, протекающими по обмоткам электротехнических устройств, реже – постоянными магнитами. Совокупность устройств, содержащих ферромагнитные тела и образующих замкнутую цепь, вдоль которой замыкаются линии магнитной индукции, называют магнитной цепью.

Магнитное поле характеризуется тремя векторными величинами, которые приведены в табл. 1.

Таблица 1. Векторные величины, характеризующие магнитное поле

Наименование Обозначение Единицы измерения Определение
Вектор магнитной индукции Тл (тесла) Векторная величина, характеризующая силовое действие магнитного поля на ток по закону Ампера
Вектор намагниченности А/м Магнитный момент единицы объема вещества
Вектор напряженности магнитного поля А/м , где Гн/м- магнитная постоянная

Основные скалярные величины, используемые при расчете магнитных цепей, приведены в табл. 2.

Таблица 2. Основные скалярные величины, характеризующие магнитную цепь

Электрические и магнитные цепи Электротехника

Электрические и магнитные цепи Линейные цепи постоянного тока.

Электрический ток. Плотность тока. Электрическое напряжение.

Закон Ома В 1827 г. немецкий физик Г. Ом, проведя серию точных экспериментов, установил один из основных законов электрического тока.

Источник ЭДС и источник тока При преобразовании любого вида энергии в электрическую энергию в источниках происходит за счет электродвижущей силы (ЭДС).

Электрическая энергия и электрическая мощность Электрическая энергия.

КПД источника энергии Отношение мощности приемника (полезной мощности) к мощности источника энергии называется его коэффициентом полезного действия (КПД): (1.19).

Закон Ома для участка цепи, содержащего ЭДС Рассмотрим участок цепи, содержащий сопротивление и ЭДС (рис. 1.14).

Импульсная модерация Как уже указывалось, в процессе модуляции любого вида принимают участие модулирующий сигнал и некоторая функция, играющая роль несущей. В двух предыдущих главах описан случай, когда в качестве несущей используется гармоническое колебание. Другим важным примером является импульсная модуляция, при которой несущей служит последовательность одинаковых импульсов, один из параметров которых изменяется в соответствии с изменением модулирующего воздействия.

Законы Кирхгофа Законы Кирхгофа устанавливают соотношения между токами и напряжениями в разветвленных электрических цепях произвольного типа.

Преобразование линейных электрических схем Расчет и исследование сложных электрических схем во многих случаях можно значительно облегчить за счет преобразования.

Параллельное соединение резисторов Параллельным соединением приемников называется такое соединение, при котором к одним и тем же двум узлам электрической цепи присоединяется несколько ветвей (рис. 1.18).

Линейные цепи синусоидального тока Общие сведения В электроэнергетике используют в основном переменный ток.

Действующее значение синусоидального тока Мгновенное значение переменного тока все время изменяется от нуля до максимального значения.

Векторное представление синусоидальных токов и напряжений Как известно из математики, синусоидальная функция аргумента определяется как проекция радиуса единичной длины на ось ординат, если этот радиус поворачивается против часовой стрелки на радиан.

Резистор в цепи синусоидального тока Если синусоидальное напряжение (рис. 2.6 а) подключить к резистору с сопротивлением , то через него будет протекать синусоидальный ток (2.7).

Индуктивная катушка в цепи синусоидального тока Индуктивная катушка как элемент схемы замещения реальной цепи синусоидального тока дает возможность учитывать при расчете явление самоиндукции и явление накопления энергии в ее магнитном поле.

Конденсатор в цепи синусоидального тока Включение конденсатора в цепь переменного тока не вызывает разрыва цепи, так как ток в цепи все время поддерживается за счет заряда и разряда конденсатора.

Анализ цепей синусоидального тока с помощью векторных диаграмм Совокупность векторов, изображающих синусоидальные ЭДС, напряжения и токи одной частоты и построенных на плоскости с соблюдением их ориентации друг относительно друга, называют векторной диаграммой.

Цепь, содержащая резистор и конденсатор Напряжение на входе цепи (рис. 2.10 а) согласно второму закону Кирхгофа для действующих значений определяется по уравнению . (2.24).

Последовательное соединение резистора, катушки и конденсатора.

Неразветвленная цепь синусоидального тока Рассмотрим цепь из трех последовательных токоприемников (рис. 2.12 а): первые два имеют активно-индуктивный характер, третий является последовательным соединением резистора и конденсатора.

Параллельное включение приемников энергии Рассмотрим цепь из двух параллельных ветвей (рис. 2.13 а).

Реактивная составляющая входного тока определяется как алгебраическая сумма реактивных составляющих токов в параллельных ветвях.

Мощности цепи синусоидального тока Энергетические соотношения в отдельных элементах рассматривались в предыдущей теме.

Комплексный метод расчета цепей синусоидального тока Широкое распространение на практике получил метод расчета цепей синусоидального тока, который принято называть комплексным.

Записать комплексы действующих значений напряжения и тока, если их мгновенные значения представлены уравнениями

Комплекс полного сопротивления и комплекс полной проводимости. Законы Кирхгофа в комплексной форме.

Мощности в комплексной форме Формулы для определения полной, активной и реактивной мощностей записаны раньше .

Повышение коэффициента мощности в цепях синусоидального тока Большинство современных потребителей электрической энергии имеют индуктивный характер нагрузки, токи которой отстают по фазе от напряжения источника.

Электрические цепи с взаимной индуктивностью Общие сведения При рассмотрении цепей синусоидального тока до сих пор учитывалось только явление самоиндукции катушек, обусловленное током в цепи.

ЭДС взаимной индукции ЭДС, индуктируемые в первом и втором контурах, с учетом (2.48, 2.49) можно записать в виде

Последовательное соединение двух индуктивно связанных катушек Рассмотрим две катушки, соединенные последовательно и имеющие активные сопротивления , индуктивности и взаимную индуктивность .

Переходные процессы в электрических цепях Общие сведения Понятие переходного процесса.

Переходный и свободный процессыь Переходный процесс в электрической цепи можно представить в виде двух составляющих: установившегося и свободного.

Переходные процессы в цепи с резистором и катушкой Короткое замыкание цепи .

Включение резистора и катушки на постоянное напряжение При этом решается уравнение токов аналогично предыдущему. Переходный ток в цепи (рис. 4.9) .

Переходные процессы в цепи с резистором и конденсатором Короткое замыкание цепи с резистором и конденсатором (разряд конденсатора на резистор).

Включение цепи с резистором и конденсатором на постоянное напряжение (заряд конденсатора).

Цепи несинусоидального тока Общие сведения Причин отличия кривых токов и напряжений от синусоидальной формы несколько.

Действующее и среднее по модулю значения несинусоидального тока и напряжения Действующее значение несинусоидального тока (напряжения) определяют как среднеквадратичное значение тока за период.

Мощности цепи несинусоидального тока Под активной мощностью несинусоидального тока понимают среднее значение мгновенной мощности за период первой гармоники .

Расчет электрических цепей несинусоидального тока Для расчета цепей несинусоидального тока напряжения источника или ЭДС должны быть представлены рядом Фурье.

Нелинейные цепи постоянного и синусоидального тока Общие сведения В теории линейных цепей предполагается, что параметры всех сосредоточенных элементов: сопротивление резистора , индуктивность катушки , емкость конденсатора – являются неизменными, не зависящими от токов и напряжений.

Расчет нелинейных цепей постоянного тока Выбор метода расчета нелинейной цепи в значительной мере зависит от того, как заданы ВАХ нелинейных элементов – графиком, таблицей или аналитическим выражением.

Параллельное соединение нелинейных элементов На рис. 6.5 а показаны соединенные параллельно два нелинейных элементы НС1 и НС2, ВАХ которых и заданы (рис. 6.5 б).

Нелинейные цепи переменного тока с ферромагнитными элементами Нелинейные индуктивные элементы.

Схема замещения и векторная диаграмма катушки с ферромагнитным магнитопроводом Рассмотрим процессы в катушке с замкнутым ферромагнитным магнитопроводом, обмотка которой имеет витков. Протекающий по обмотке ток (рис. 6.8 а) создает магнитный поток.

Магнитное поле и магнитные цепи Ферромагнитные материалы и их магнитные свойства.

Закон полного тока и его применение для расчета магнитного поля Магнитной цепью называется совокупность магнитодвижущих сил (МДС), ферромагнитных тел или каких-либо иных сред, по которым замыкается магнитный поток.

Для разветвленных магнитных цепей справедливы законы Кирхгофа.

Расчет неразветвленных магнитных цепей Первый вариант. Определение МДС по заданному магнитному потоку (задача синтеза, или прямая задача).

В магнитопроводе из электротехнической стали Э11 (рис. 7.5) необходимо обеспечить магнитную индукцию = 0,8 Тл.

Импульсные цепи Общие сведения В современных электронных устройствах, системах связи, автоматического управления и вычислительной технике информация часто передается в виде электрических импульсов различной формы.

Для примера рассмотрим реакцию цепи (ток через катушку L), схема которой приведена на рис. 8.4 а. Если входное напряжение изменяется скачком

а) б) в) Рис. 8.4 (форма показана на рис. 8.4 б), то ток в ветви с катушкой имеет вид, показанный на рис. 8.4 в.

Основные соотношения в идеальном трансформаторе Идеальным трансформатором называют трансформатор, у которого активное сопротивление обмоток равно нулю, отсутствуют магнитные потоки рассеяния, потери мощности в магнитопроводе равны нулю.

Векторная диаграмма трансформатора В реальном трансформаторе в отличие от идеального учитываются активные сопротивления обмоток, магнитные потоки рассеяния обмоток и потери мощности в стали.

Схема замещения трансформатора Электрические цепи с трансформаторами сложно рассчитывать из-за магнитной связи между обмотками.

Опытное определение параметров схемы замещения трансформатора Параметры схемы замещения можно определить по опытам холостого хода и короткого замыкания.

Внешняя характеристика трансформатора Внешняя характеристика трансформатора представляет собой зависимость между вторичным напряжением и током нагрузки при заданном первичном напряжении

Мощность потерь и КПД трансформатора Баланс мощности трансформатора выражается равенством .

Трехфазные трансформаторы Преобразование электрической энергии в трехфазной цепи осуществляют с помощью трехфазных трансформаторов, которые могут быть выполнены в виде трехстержневых или в виде группы из трех однофазных трансформаторов.

Специальные трансформаторы Автотрансформаторы – это трансформаторы, у которых наряду с магнитной связью между обмотками имеется электрическая связь.

Сварочные трансформаторы Источники для дуговой сварки должны иметь крутопадающую внешнюю (вольтамперную) характеристику (кривая 1 на рис. 9.16) с тем, чтобы она пересекалась с вольтамперной характеристикой дуги (кривая 2) в двух точках и .

Электрические машины переменного тока Асинхронная машина – это бесколлекторная машина переменного тока, у которой при работе возбуждается вращающееся магнитное поле, но ротор вращается асинхронно, т.е. с угловой скоростью, отличной от угловой скорости поля.

Получение вращающегося магнитного поляб Основой действия асинхронного двигателя является вращающееся магнитное поле.

Принцип действия асинхронной машины и режимы ее работы Трехфазная обмотка статора создает магнитное поле, вращающееся со скоростью

Электродвижущие силы в обмотках статора и ротора Вращающийся магнитный поток в воздушном зазоре пересекает проводники обмоток статора и ротора и индуктирует в них синусоидальные ЭДС.

Уравнения магнитодвижущих сил и ток статора асинхронного двигателя При холостом ходе асинхронного двигателя МДС ротора близка к нулю и вращающийся магнитный поток создается только МДС статора

Схема замещения и векторная диаграмма асинхронного двигателя При анализе работы асинхронной машины используют схему замещения.

Энергетический баланс асинхронного двигателя Асинхронный двигатель потребляет из сети активную и реактивную мощность.

Электромагнитный момент Электромагнитная мощность равна произведению электромагнитного вращающего момента и угловой скорости вращения магнитного потока

Согласно (11.43) электромагнитный момент при любом скольжении пропорционален квадрату напряжения фазы статора и тем меньше, чем больше и индуктивное сопротивление машины .

Механическая характеристика Механической характеристикой двигателя называется зависимость частоты вращения ротора от момента на валу .

Пуск и регулирование скорости асинхронного двигателя Способы пуска.

Однофазный асинхронный двигатель Принцип действия. Однофазный асинхронный двигатель – двигатель, на статоре которого однофазная обмотка, а на роторе – короткозамкнутая обмотка.

Трехфазный асинхронный двигатель в однофазном режиме. Возможны различные варианты использования трехфазных двигателей в однофазном режиме.

Холостой ход синхронного генератора При холостом ходе обмотка якоря (статора) разомкнута и магнитное поле машины создается только обмоткой возбуждения ротора (рис. 11.19).

Реакция якоря синхронной машины В машине, работающей под нагрузкой, магнитное поле создается в отличие от холостого хода не только в роторе, но и МДС токов статора.

Схема замещения и упрощенная векторная диаграмма ЭДС и МДС синхронного генератора Схема замещения синхронного генератора с учетом принятых допущений представлена на рис. 11.22 в виде источника ЭДС с внутренним сопротивлением .

Характеристики синхронного генератора при автономной работе Характеристика холостого хода была рассмотрена в параграфе 11.17.

Работа синхронной машины в режиме синхронного двигателя В отличие от синхронного генератора в синхронном двигателе ось полюсов ротора отстает от оси полюсов вращающегося магнитного поля статора на угол и электромагнитный момент определяется по уравнению (11.55).

Электронные приборы и устройсва Возникновение электроники было подготовлено всем ходом развития промышленного производства и в частности электротехники.

При изменении тока в электрической цепи, содержащей полупроводник, изменяется и сопротивление этой цепи.

Полупроводниковые диоды В пограничном слое двух полупроводников с различным характером электропроводности при одном направлении тока дырки и электроны движутся навстречу друг другу, и при их встрече происходит рекомбинация.

Стабилитроны Стабилитрон представляет собой специальный полупроводниковый диод, напряжение электрического пробоя которого очень слабо зависит от протекающего через него тока.

Тиристоры Тиристоры представляют собой кристаллическую структуру из четырех слоев чередующихся электронной и дырочной проводимостей (рис. 12.8) с тремя электродами: анодом А, катодом К и управляющим электродом УЭ, отходящими от слоев p1, n2 и n1 соответственно (тиристор с Nуправляющим электродом).

Холлотроны Холлотрон представляет собой магнитно-полупроводниковый прибор, действующий на основе гальваномагнитного эффекта возникновения ЭДС в кристалле проводника или полупроводника, находящемся в магнитном поле, при прохождении по нему электрического тока на основе эффекта Холла.

Биполярные транзисторы Транзисторы являются управляемыми полупроводниковыми приборами, обеспечивающими усиление сигналов.

Полевые транзисторы Полевые транзисторы разделяют на униполярные (с одним p-n — переходом) и полевые с изолированным затвором (без p-n — перехода) или со структурой МДП (металл – диэлектрик – полупроводник).

Интегральные микросхемы Постоянное усложнение схем электронных устройств привело к существенному увеличению количества входящих в них элементов.

Газоразрядные индикаторы Газоразрядный индикатор относится к ионным приборам тлеющего разряда и выполняется с холодным катодом.

Полупроводниковые индикаторы Принцип действия полупроводникового индикатора основан на излучении квантов света при рекомбинации носителей заряда в области р-n – перехода, к которому приложено прямое напряжение.

Жидкокристаллические индикаторы Жидкокристаллические индикаторы не излучают собственный свет, а только воздействуют на свет, проходящий через индикатор.

Оптоэлектронные приборы Оптоэлектронными называют приборы, преобразующие электрические сигналы в оптические.

Волоконно-оптические приборы Волоконно-оптический прибор – это диэлектрический волновод, по которому энергия передается в виде электромагнитных волн оптического диапазона (f ≈ 1014 Гц).

Электронные усилители и генераторы Электронные усилители .

Внутренняя положительная обратная связь в схеме включения биполярного транзистора с ОЭ, увеличивая коэффициент усиления мощности каскадом, одновременно увеличивает нестабильность коэффициента усиления.

Усилители на микросхемах В настоящее время многокаскадные усилители переменного тока с RC-связью выполняют на основе интегральных микросхем.

Операционные усилители С развитием интегральной технологии производства наиболее распространенным элементом для построения электронных устройств стал операционный усилитель.

При малом переменном напряжении входного сигнала, соизмеримом с падением напряжения на открытом диоде, для его выпрямления могут применяться схемы на основе ОУ.

Электронные генераторы Электронным генератором называют устройство, создающее электрические колебания определенной частоты и формы и использующее для этого энергию источника постоянного тока (напряжения).

Мультивибраторы Генератор, представляющий собой двухэлементный усилитель с емкостной связью, выход которого соединен с входом, называют мультивибратором.

Электронные коммутирующие элементы и устройства Электронные ключи.

Триггеры Электронное устройство, имеющее два устойчивых стационарных состояния, в котором переходы из одного состояния в другое и обратно осуществляются под действием запускающих импульсов, называется триггером.

Коммутационные схемы В сложных устройствах автоматического управления процессами для контроля большого числа параметров и различных переключений наряду с электронными ключами используют более сложные устройства, называемые коммутационными схемами.

Логические элементы и цифровые устройства Логические элементы.

Тип логических элементов определяется совокупностью схемных и технологических признаков, характеризующих интегральные микросхемы логических элементов.

Наиболее сложные логические операции реализуют в виде комбинаторных или последовательных схем. Комбинаторные схемы (КС) собирают из отдельных ИМС логических элементов (малой степени интеграции) или изготавливают в виде ИМС среднего уровня интеграции.

Аналого-цифровые и цифро-аналоговые преобразователи При использовании логических и цифровых устройств в системах автоматизированного управления возникает проблема связи их с различными электронными преобразователями входных сигналов и исполнительными механизмами, у которых в большинстве случаев информация представлена в аналоговой форме в виде различных уровней напряжения и тока.

Микропроцессоры Микропроцессор (МП) – программируемое электронное устройство, которое предназначено для обработки информации, представленной в цифровом коде, и управления процессом этой обработки.

Источники питания электронных устройств Применение различного рода электронных устройств для управления производственными процессами подразумевает использование электрической энергии определенного вида для их питания (постоянный, переменный ток).

Трехфазные выпрямители В трехфазных цепях переменного тока промышленной частоты (50 Гц) в основном используют две схемы выпрямителей: трехфазный выпрямитель с нейтральной точкой и трехфазный мостовой выпрямитель.

Сглаживающие фильтры Для уменьшения пульсаций (сглаживания) выпрямленного напряжения используют специальные устройства – сглаживающие фильтры.

Стабилизаторы Электронные устройства предъявляют достаточно жесткие требования к качеству электроэнергии, потребляемой от источников питания.

При увеличении напряжения, подаваемого на вход стабилизатора, рабочая точка характеристики (рис. 17.7 б) перемещается из точки 1 в точку 2.

Каждый электрик должен знать:  СИСТЕМЫ РЕГУЛИРОВАНИЯ ТОКА ЯКОРЯ

Инверторы Некоторые электронные устройства, входящие в состав автоматических систем управления производственными процессами, требуют для своей работы энергию переменного тока определенной частоты.

Электрические измерения Основные понятия и определения в метрологии.

Общие свойства электрических средств измерений Все эксплуатационные свойства измерительных приборов определяются их метрологическими характеристиками, которые указывают в документации прибора.

Магнитоэлектрические приборы. Принцип действия магнитоэлектрических приборов основан на взаимодействии магнитного поля постоянного магнита и поля контура с током.

Электромагнитные приборы. Действие электромагнитных приборов основано на взаимодействии магнитного поля неподвижной катушки, создаваемого измеряемым током, с одним или несколькими подвижными ферромагнитными магнитопроводами.

Трехфазный счетчик электрической энергии представляет собой двухэлементный (для трехпроводных систем) или трехэлементный (для четырехпроводных систем) индукционный прибор.

Регистрирующие приборы. Регистрирующие измерительные приборы дают возможность не только определять фиксированные (мгновенные) значения измеряемых величин, но и регистрировать на носитель информации их изменения во времени.

Цифровые измерительные приборы Цифровой измерительный прибор – это прибор, автоматически вырабатывающий сигналы измерительной информации, показания которого представлены в цифровой форме.

Измерение электрических величин Измерение тока и напряжения.

Измерение сопротивлений Сопротивления относятся к числу основных параметров электротехнического оборудования.

Измерение и контроль сопротивления изоляции. Электрическая изоляция оборудования, находящегося под различными потенциалами (в том числе и по отношению к земле), необходима не только для нормального функционирования оборудования, но и для безопасности обслуживающего персонала.

Измерение неэлектрических величин Общие свойства измерительных цепей и приборов.

Индуктивные преобразователи. Принцип действия индуктивных преобразователей основан на преобразовании измеряемой величины в индуктивность за счет изменения параметров магнитной цепи.

Фототранзисторы. В фототранзисторах используются усилительные свойства р–n–р или n–р–n -переходов, включенных в обратном направлении.

Резистивные измерительные преобразователи. Резистивные преобразователи представляют собой разновидность параметрических преобразователей, которые под воздействием измеряемой величины изменяют собственное электрическое сопротивление или сопротивление участка цепи.

Измерение и контроль параметров в механизации Принцип измерения механических величин при помощи электрических средств основан на известных в механике зависимостях деформаций и напряжений в материале от приложенных сил и давлений.

Современные средства измерения угловых скоростей (частоты вращения) основаны на сравнении стабильных интервалов времени (или частоты) и частоты сигнала, получаемого с измерительного преобразователя.

Измерение и контроль параметров в растениеводстве Технологические процессы в растениеводстве неразрывно связаны с периодическим (в зависимости от сезонных или климатических условий) или с непрерывным (например, в процессе переработки продукции) измерением и контролем разнообразных параметров.

В цепь переменного тока напряжением U = 300 В, и частотой 50 Гц включена последовательно катушка с индуктивным сопротивлением
ХL =40 Ом и активным сопротивлением R= 30 Ом и конденсатор ёмкостью С = 400 мкФ.

В сеть переменного тока напряжением U = 250 В включена цепь, состоящая из двух параллельных ветвей с сопротивлениями R1 = 25 Ом, R2 = 10 Ом и XL = 7 Ом.

В трёхфазную четырехпроводную цепь с симметричным линейным напряжением UЛ = 220 В включены звездой сопротивлением RA = 6 Ом, RB = 7 Ом, RC = 9 Ом, XA = 7 Ом, XB = 6 Ом, XC = 11 Ом.

В трехфазную трехпроводную цепь с симметричным линейным напряжением UЛ=120 В включены треугольником активные сопротивления RAB=5 Ом, RBC=9 Ом и RCA=12 Ом.

Заданы параметры трехфазного трансформатора. Номинальная мощность S1ном=100 кВ × А. Номинальные напряжения . Потери холостого хода PX=395 Вт.

Для асинхронного двигателя с короткозамкнутым ротором, определить номинальный и пусковой ток, номинальную частоту вращения, номинальный, максимальный и пусковой моменты.

Рассчитать электрическую линию однофазного переменного тока для питания группы ламп накаливания мощностью Р = 1.4 кВт при напряжении питающей сети U = 127 B и протяженности линии L = 45 м.

Рассчитать электрическую линию для питания электродвигателя 4А200М493. Напряжение питающей сети U=220 В. Проводку выполнить в трубах изолированными алюминиевыми проводами.

Рассчитать мощность электродвигателя насоса с номинальной производительностью Q=18 м3/ч=0.005 м3/с и частотой вращения nном=920 об/мин = 15.33 об/с при расчетном напоре Н = 28 м. Плотность перекачиваемой жидкости g = 1.4 кГс/дм3 = 1400 кГс/м3, КПД насоса h ном=0,8, коэффициент загрузки Kз=1,0.

Для измерения мощности трехфазной цепи с симметричным линейным напряжением Uл=220 В используются два ваттметра. Приемник содержит симметричную активно- индуктивную нагрузку, ZA = ZB = ZC, соединенную звездой. Мощность каждой фазы PФ =380 кВт при cos j = 0.6, j =53о.

В цепь переменного тока напряжением U и частотой 50 Гц включена последовательно катушка с индуктивным сопротивлением ХL и активным сопротивлением R Ом и конденсатор ёмкостью С.

Начертить схему защиты и управления заданного электродвигателя для механизма. В качестве аппаратов защиты принять предохранители, а в качестве аппарата управления – магнитный пускатель. Выбрать их типы.

Вопросы теории электрических аппаратов. Качественные задачи

Определить минимальный диаметр медной проволоки длиной 100м, если её сопротивление не должно превышать 1 Ом. Чему равно сопротивление одного метра медной проволоки диаметром 2мм? Как изменится его величина, если температура медной проволоки возрастёт на 65 єС?

Используем формулу сопротивления для проволочных резисторов [2]

— удельное сопротивление, Ом м, l- длина, м; R — сопротивление, Ом; — площадь поперечного сечения, ; =1,71·, Ом м; l= 100, м;

Следовательно: d = 0,0045, ;

=1,71·, Ом м, l= 1, м, d= 0,002 м;

Ответ: d = 0,0045, ; R= 0,54, Ом; R(t)= 0,68, Ом. По [1].

Укажите направление ЭДУ, действующих на проводники с токами с направлениями, указанными на рисунке 2.2. Дайте необходимые пояснения.

Направление ЭДУ определяется правилом «левой руки». За направление проводника принимается направление тока в проводнике(направление четырех пальцев). Направление индукции В, создаваемое током определяется по правилу буравчика, причем вектор В направляется в ладонь, тогда направление большого пальца показывает направление ЭДУ [3].

Рисунок 2.1- Направление ЭДУ действующей на проводники

Рисунок 2.2- Направление ЭДУ действующей на проводники

Рисунок 2.3- Направление ЭДУ действующей на проводники

В чём состоит принцип действия и какие основные варианты реализации магнитоуправляемых контактов? Назовите основные функции, которые выполняют магнитоуправляемые контакты в герконовых реле.

Принцип действия герконов

Принцип действия герконов основан на использовании сил взаимодействия, возникающих в магнитном поле между ферромагнитными телами. При этом силы вызывают деформацию и перемещение ферромагнитных токопроводов электронов. Магнитоуправляемый контакт (геркон) представляет собой электрический аппарат, изменяющий состояние электрической цепи посредством механического размыкания или замыкания ее при воздействии управляющего магнитного поля на его элементы, совмещающие функции контактов, пружин и участков электрической и магнитной цепей.

Рисунок 2.4- Простейшее герконовое реле с симметричным замыкающим контактом

Использование герконов в технике. Герконовое реле.

В настоящее время на базе герконов создано большое количество герконовых реле, кнопок, тумблеров, переключателей, распределителей сигналов, датчиков, регуляторов, сигнализаторов и т. д. Во многих отраслях техники для контроля положения подвижных деталей целесообразно использование герконовых датчиков, счетчиков готовой продукции.

Устройство простейшего герконового реле.

Простейшее герконовое реле с замыкающими контактами состоит из двух контактных сердечников с высокой магнитной проницаемостью (пермаллой), размещенных в стеклянном герметичном баллоне, заполненном либо инертным газом, либо чистым азотом, либо сочетанием азота с водородом. Давление внутри баллона герконового реле Па.

Инертная среда предотвращает окисление контактных сердечников. Стеклянный баллон герконового реле устанавливается внутри обмотки

управления, питаемой постоянным током. При подаче тока в обмотку герконового реле возникает магнитное поле, которое проходит по контактным сердечникам через рабочий зазор между ними и замыкается по

воздуху вокруг катушки управления. Создаваемый при этом магнитный поток при прохождении через рабочий зазор образует тяговую электромагнитную силу, которая, преодолевая упругость контактных сердечников, соединяет их между собой.

Для создания минимального переходного сопротивления контактов, поверхности касания герконов покрывают золотом, радием, палладием или (на худой конец) серебром.

При отключении тока в обмотке электромагнита герконового реле сила исчезает, и под действием сил упругости контакты размыкаются.

В герконовых реле отсутствуют детали, подвергающиеся трению, а контакты сердечника многофункциональны, так как при этом выполняют одновременно функцию магнитопровода, пружины и токопровода.

Для уменьшения размеров намагничивающей катушки увеличивают допустимую плотность тока, используя для намотки теплостойкий эмалированный провод. Все детали изготавливаются штамповкой, а соединяются сваркой или пайкой. Для уменьшения зоны включенного состояния в герконах применяются магнитные экраны.

Пружины герконов не имеют предварительных натягов, поэтому включение их контактов происходит без периода трогания.

Если в герконах наряду с электромагнитом используется постоянный магнит, то герконы из нейтральных переходят в поляризованные.

В отличии от электромагнитных реле обычного типа, у которых контактное нажатие зависит от параметров контактных пружин, контактное нажатие герконовых реле зависит от МДС обмотки и увеличивается с ее ростом [3].

Магнитопровод имеет две одинаковые обмотки. Как нужно подключить катушки к источнику постоянного напряжения, чтобы поток в магнитопроводе был: а) максимальным; б) равным нулю?

При подключении катушек магнитопровода как показано на рисунке (2.5 а), то по правилу буравчика определяем направление вектора магнитной индукции, и узнаём, что магнитный поток будет компенсироваться, и поток в

магнитопроводе будет равен нулю. Если подключить катушки магнитопровода как показано на рисунке (2.5 б), то магнитный поток будет усиливаться и будет максимальным [4].

Рисунок 2.5 — Способы подключения катушек магнитопровода

Как изменится ток в цепи при: а) увеличении потока рассеяния между индуктивно связанными и включёнными встречно катушками; б) уменьшении потока рассеяния между двумя индуктивно связанными и включёнными согласно катушками?

Поток рассеяния определяется по формуле [4]:

— поток рассеяния, Вб; — магнитная проводимость пути, См, по которому замыкается поток рассеяния первой катушки, — число витков; — ток в цепи, А. Поток рассеяния не зависти от подключения катушек. При увеличении потока рассеяния, при неизменных , возрастает и ток, а при уменьшении потока рассеяния ток будет уменьшаться [4].

Рисунок 2.6 — Включённые встречно и согласно катушки.

Онлайн журнал электрика

Статьи по электроремонту и электромонтажу

Расчет магнитной цепи

Расчет магнитных цепей

Задачей расчета почти всегда является определе­ние намагничивающей силы Iw нужной для того, чтоб возбудить в магнитопроводе определенный магнитный поток либо определенную магнитную индукцию в неком участке магнит­ной цепи (в большинстве случаев в воздушном промежутке).

Расчет ведется на основании закона полного тока, согласно которому сумма магнитных напряжений на отдельных участках магнитной цепи равна намагничивающей силе:

Н1lл + H1l1 + … + Hklk + … + Hnln = ? Hklk= Iw, при (k=n, k=1)

тут магнитным напряжением именуется произведе­ние напряженности поля Нk на длину соответственного участка, т. е. Hklk.

Магнитная цепь делится по способности на маленькое число n участков, в границах каждого из которых можно принять на­пряженность H и индукцию В неизменными (на рис.1 п = 3). Потом, если задан магнитный поток Ф, то для 1-го из участ­ков, имеющего сечение S1, определяется магнитная индукция B1= ф :S1

Рис.1 Магнитная цепь с магнитным зазором

а на основании значения магнитной индукции В1 при помощи кривой намагничивания ферромагнитного материала этого участ­ка сердечника определяется напряженность H1 соответственная

индукции В1 (рис.2). В таком же порядке для второго участка необходимо отыскать поначалу В2=Ф:S2, а потом по кривой намагничи­вания H2. Таким методом поочередно определяется значение напряженности для всех n участков магнитной цепи.

Если в магнитной цепи имеется воздушный просвет (либо неферромагнитный участок), то сечение пути потока в воздухе можно принять равным сечению прилегающего ферромагнитно­го участка. Как следует, индукция в воздушном промежутке Вв равна индукции на этом примыкающем участке. На основании этой индукции определяем напряженность магнитного поля; обычно в воздухе она оказывается достаточно большой: Hв= Bв :µ

Рис. 2 Определение напряженности поля при помощи кривой намагничивания

из-за того что магнитная проницаемость воздуха µвоз от­носительно мала и потому для возбуждения сколько-либо зна­чительной индукции нужна большая напряженность поля.

Длиной каждого из участков магнитной цепи следует считать длину пути потока, т. е. длину средней магнитной полосы.

После того как определено магнитное напряжение Hl для всех участков цепи, пользуясь законом полного тока, подсчиты­ваем нужную намагничивающую силу: H1l1+ H2l2+…+ Hвlв=Iw

либо, если понятно число витков катушки, то I=( H1l1+ H2l2+…+ Hвlв):w

При расчете полезно направить внимание на то, что на малень­кий воздушный просвет затрачивается большая часть намагничивающей силы.

Если же необходимо решить оборотную задачку, найти магнит­ный поток либо индукцию по данной намагничивающей силе Iw, то расчет несколько усложняется из-за того, что непонятно рассредотачивание напряженности Н меж отдельными участками магнитной цепи, а оно находится в зависимости от неведомой магнитной индук­ции. По этой причине задачку приходится решать методом подбора либо средством построения магнитной свойства устройст­ва. Необходимо задаться неким возможным значением магнитно­го потока Ф’ (либо индукции для 1-го из участков) и рассчи­тать, как это было изготовлено выше, намагничивающую силу Iw’, нужную для возбуждения этого потока. Приобретенное таким методом значение Iw’ следует сравнить с данным значением Iw. Если Iw’ значительно отличается от Iw, то необходимо повторить расчет, задавшись новым значением потока Ф”; на основании этого расчета отыскать новое значение Iw” и т. д.

Кривая зависимости потока Ф от намагничивающей силы I w, построенная средством таких расчетов, выполненных пример­но для 5 значений Ф, будет представлять собой магнит­ную характеристику цепи. С помощью таковой характе­ристики просто найти поток, соответственный хоть какому зна­чению намагничивающей силы.

12. Элементы магнитной цепи

12. Элементы магнитной цепи.

Магнитная цепь-это путь по которому замыкается магнитный поток. Является одним из основных элементов различных электромагнитных устройств (э-м трансформаторов).

Магнитная цепь состоит из ферромагнитных магнитопроводов и воздушных зазоров, входят постоянные магниты и прокладки из геомагнитных материалов.

L- длина средней линии тороида.

— закон Ома для магнитной цепи

— причина создания магнитного потока

Величина F прапорциональна т.е. при той же силе ток магнитного потока тем больше, чем больше витков в обмотке.

Друзья! Приглашаем вас к обсуждению. Если у вас есть своё мнение, напишите нам в комментарии.

§ 41. МАГНИТНЫЕ ЦЕПИ И ИХ РАСЧЁТ

Магнитной цепью называется путь, по которому замыкается магнитный поток.

На рис. 84, а показан соленоид. Магнитная цепь здесь проходит через воздух. Магнитное сопротивление воздуха очень велико,

поэтому даже при большой намагничивающей силе магнитный поток мал.

Для увеличения магнитного потока в состав магнитной цепи вводят ферромагнитные материалы (обычно литая или электро­техническая сталь), имеющие меньшее магнитное сопротивление. Устройство, выполненное из ферромагнитных материалов, в котором замыкается магнитный поток, называется магнитопроводом, или сердечником.

На рис. 84, б представлен прямой электромагнит с разомкнутым сердечником. Магнитные линии только небольшую часть своего пути проходят по стальному сердечнику, большую же часть своего пути они проходят по воздуху. Полюсы электромагнита можно определить при помощи «правила буравчика».

Подковообразный электромагнит, изображенный на рис. 84, в, представляет магнитную цепь с лучшими условиями для прохождения магнитного потока. При такой конструкции поток Ф большую часть пути проходит по стали и меньшую часть от полюса N до полюса S по воздуху.

На рис. 84, г представлена конструкция магнитной цепи, применяемая в электромашиностроении и приборостроении. Между полюсами электромагнита помещается стальной якорь. Большую часть своего пути магнитные линии проходят по стали и только очень малую часть (от нескольких долей миллиметра до 2—3 мм) проходят по двум воздушным промежуткам.

Трансформаторы имеют замкнутый стальной сердечник (рис. 84, д). Сердечники трансформаторов собирают из нескольких частей, но во время сборки принимают меры к тому, чтобы воздушные зазоры между отдельными частями практически были равны нулю.

До сих пор мы не говорили о том, что магнитный поток, созданный намагничивающей силой, не весь замыкается по тому пути, который ему предназначен. Помимо рабочего магнитного потока, существует магнитный поток рассеяния, который замыкается по воздуху вне того места, где используется рабочий поток. На рис. 84, б, в, г, д показан также поток рассеяния.

Таким образом, общий магнитный поток, который должна создать обмотка возбуждения электромагнита, равен сумме рабочего потока и потока рассеяния.

Расчет магнитной цепи, казалось бы, можно производить по формуле

Но если вспомнить, что относительная магнитная проницаемость (х для ферромагнитных тел непостоянна и зависит от многих причин, то становится ясно, что этой формулой можно пользоваться лишь в том случае, когда в состав магнитной цепи входят только немагнитные тела (в том числе и воздух), для которых р, есть заранее заданная постоянная величина.

На практике для расчета магнитных цепей предпочитают пользоваться графическими методами решения.

Расчет магнитной цепи производят в следующем порядке. Задаются необходимой величиной магнитного потока. Разбивают магнитную цепь на участки, имеющие одинаковые поперечные сечения и однородный материал, и для каждого участка определяют величину магнитной индукции по формуле

Затем по кривым намагничивания для данного материала находят для каждого значения магнитной индукции величину Я. Если в магнитной цепи встречаются воздушные зазоры, зависимость между В0 и #0 определяется по формул

Здесь В выражено в вб/м 2 .

Если индукция выражена в гауссах, а напряженность — в а/см, то зависимость между В и Н будет

Определив величину Н для каждого участка, находим по закону полного тока величину необходимой намагничивающей силы по формуле:

Пример 1. Найти намагничивающую силу обмотки электромагнита, изображенного на рис. 85. Размеры даны в миллиметрах. Материал сердечника — электротехническая сталь. В сердечнике необходимо создать магнитный поток 60 000 мкс. Магнитным рассеянием пренебрегаем.

Проводим среднюю линию по всей длине магнитной цепи. Разбиваем цепь на пять участков и определяем длину каждого участка.

Так как магнитный поток во всех участках одинаков и площадь поперечного сечения всех участков магнитной цепи одинакова (2X2см), то магнитная индукция также будет везде одинакова:

По кривой намагничивания (рис. 82) для электротехнической стали по индукции 15 000 гс находим напряженность магнитного поля Я = 30 а/см. Для воздушного зазора имеем

Умножая величины напряженности на длину соответствующих участков, получаем произведения Hl для этих участков.

Результаты вычислении записываем в таблицу (табл. 10).

магнитного потока необходима намагничивающая сила 1068 а (240 + 600 + 228 а), то на воздушный зазор длиной всего 4 мм (в 89 раз меньше длины пути но стали) нужна намагничивающая сила 4800 а. Отсюда становится понятной необходимость создания магнитных цепей с минимальными воздушными зазорами.

Электрические аппараты.

Рубильники и переключатели

Рубильники и переключатели служат для замыкания и размыкания вручную электрических цепей переменного тока напряжением до 500 В и постоянного тока напряжением до 440 В. Они устанавливаются на панелях распределительных устройств, в шкафах и ящиках.

Технические данные рубильников и переключателей приведены в табл. 2. 23.

Первая цифра в обозначении аппарата соответствует числу полюсов, вторая соответствует его величине по току: 1 —

100 А, 2 — 250 А, 4 — 400 А, 6 — 600 А. В таблице показаны только аппараты на 100 А.

Рубильники Р и переключатели П изготовляются без дугогасительных камер и могут работать только в качестве разъединителей, т. е. размыкать обесточенные электрические цепи. Рубильники и переключатели прочих типов изготовляются с дугогасительными камерами и могут коммутировать электрические цепи под нагрузкой.

Таблица 2. 23 ДАННЫЕ О РУБИЛЬНИКАХ И ПЕРЕКЛЮЧАТЕЛЯХ

Предохранители предназначены для защиты электрооборудования и сетей от токов короткого замыкания и недопустимых длительных перегрузок.

Данные плавких предохранителей массового применения показаны в табл. 2. 24. Данные предохранители имеют кварцевое заполнение корпуса в виде кварцевого песка, у предохранителей НПН стеклянный корпус круглого сечения, а у ПН2 — фарфоровый корпус прямоугольного сечения.

Таблица 2. 24 ДАННЫЕ НЕКОТОРЫХ ПЛАВКИХ ПРЕДОХРАНИТЕЛЕЙ

Автоматические выключатели (автоматы)

Автоматы предназначены для защиты от токов короткого замыкания и перегрузки электрических линий и приемников энергии, для включений и отключений линий и приемников энергии.

Данные выключателей массового применения приведены в табл. 2.25.

Выключатель АК63 разработан с целью замены выключателя АП—50, имеющего малую коммутационную способность. Выключатель имеет расцепители максимального тока на 0, 63. 63 А, 500 В переменного и 220 В постоянного напряжения, его коммутационная способность в 2, 5 раза больше, чем у выключателя АП50.

В отличие от выключателей АП50 выключатели АК63 имеют открытые выводы, для закрывания которых могут поставляться крышки. Открытые выводы, не соприкасающиеся с корпусом выключателя, имеют лучший теплоотвод, а при нагреве выводов не происходит выгорания корпуса выключателя.

Автоматические выключатели АЕ2000 разрабатывались с целью замены всех других выключателей на ток до 100 А. Они имеют величины на 25, 63 и 100 А с расцепителями максимального тока на 0, 6 А и выше, тепловыми и комбинированными расцепителями.

Выключатели серии АЕ1000 предназначены для защиты участков сетей жилых и общественных зданий. Они являются

Таблица 2. 25 АВТОМАТИЧЕСКИЕ ВЫКЛЮЧАТЕЛИ

Примечание: выключатели без расцепителя обозначаются цифрой 7 (например, А3114/7).

Продолжение табл. 2. 25

Окончание табл. 2.25

однополюсными с расцепителями тепловыми, электромагнитными или комбинированными на токи 6, 10 и 16 А.

Расцепитель любого автоматического выключателя представляет собой блок, встроенный в корпус выключателя и предназначенный для отключения выключателя под действием тока, большего того, на который он настроен.

Действие теплового расцепителя основано на изменении формы биметаллической пластинки при протекании по ней тока нагрузки выключателя, большего номинального тока этого выключателя. Пластинка действует на механизм выключения выключателя.

Электромагнитный расцепитель состоит из электромагнитов, по катушкам которых проходит ток выключателя. Электромагниты приводятся в действие только при токе аварийной перегрузки, например, заклинивания механизма, или токе короткого замыкания, и воздействуют на механизм отключения выключателя.

Комбинированный расцепитель содержит расцепители обоих видов.

Для выключателя данной величины может быть несколько расцепителей, имеющих свои разные номинальные токи, которые могут регулироваться. Уставка на ток мгновенного срабатывания, или ток отсечки, означает, что при данном токе срабатывает электромагнитный расцепитель данного выключателя.

Предельная коммутационная способность означает предельный ток, который может отключить выключатель.

Магнитные пускатели предназначены для дистанционного управления трехфазными асинхронными электродвигателями с короткозамкнутым ротором и другими приемниками энергии.

Включение магнитных пускателей может производиться вручную с помощью кнопочного поста и автоматически с помощью датчиков автоматики непосредственно или через промежуточные реле, с помощью блок-контактов других пускателей. Отключение пускателей производится вручную или при аварийных режимах с помощью реле тепловых или реле максимального тока, при отключении сблокированных с ними других пускателей, при действии устройств автоматики.

Данные некоторых пускателей приведены в табл. 2. 26. Пускатели типа ПМЕ и ПА в таблице только нереверсивные. У реверсивных пускателей данные те же, но они состоят из двух

пускателей, сблокированных механически и электрически против одновременного включения, а в обозначении типа реверсивных пускателей последняя цифра больше на два, например, ПМЕ—111 — нереверсивный, ПМЕ—113 — реверсивный.

Пускатели ПМЕ и ПА заменяются пускателями типов ПМЛ и ПАЕ — см. табл. 2. 27, 2. 28, 2. 29.

Таблица 2. 2 6 МАГНИТНЫЕ ПУСКАТЕЛИ

Таблица 2. 27 ДАННЫЕ ПУСКАТЕЛЕЙ ПМЛ И ТЕПЛОВЫХ РЕЛЕ РТЛ

Таблица 2.28 СТРУКТУРА УСЛОВНЫХ ОБОЗНАЧЕНИЙ МАГНИТНЫХ ПУСКАТЕЛЕЙ СЕРИИ ПАЕ

Таблица 2.2 9 ДАННЫЕ СИЛОВОЙ ЦЕПИ МАГНИТНЫХ ПУСКАТЕЛЕЙ СЕРИИ ПАЕ

Данные тепловых реле приведены в табл. 2. 30.

Таблица 2. 30 ТЕХНИЧЕСКИЕ ДАННЫЕ ТЕПЛОВЫХ РЕЛЕ

Окончание табл. 2 30

Тепловые реле могут поставляться в блоке с пускателями или отдельно.

Тепловые реле предназначены для защиты от перегрузок асинхронных электродвигателей с короткозамкнутым ротором. Так как они не защищают от коротких замыканий и сами нуждаются в такой защите, то на ответвлении к электродвигателю перед пускателем ставится автоматический выключатель с электромагнитным расцепителем.

Чувствительным элементом у реле служит термобиметалл, по которому проходит ток. У реле на большие токи имеется нихромовый нагреватель для дополнительного нагрева биметалла.

Чувствительные элементы реле включаются в две фазы электродвигателя, контакты реле включаются в цепь катушки пускателя.

Реле максимального тока

Токовые реле, или реле максимального тока, применяются для защиты асинхронных электродвигателей с короткозамкнутым ротором от внезапных перегрузок при заклинивании приводимого механизма, например, дозатора муки, ротора дробилки и т. д.

В качестве максимального реле применяются электромагнитные реле с последовательным присоединением обмоток в цепь двигателя.

Технические данные некоторых реле приведены в табл. 2. 31.

Таблица 2. 31 МАКСИМАЛЬНЫЕ РЕЛЕ


Выбор электрических аппаратов для замены вышедших из строя

На практике приходится заменять электрические аппараты любого вида. Замена требуется, когда аппарат вышел из строя полностью или когда ремонт на месте не возможен.

С течением времени меняется ток, проходящий через аппараты с изменением нагрузки от приемников энергии, заменой электродвигателей и т. д., что также влечет за собой замену аппаратов.

В таких случаях необходимы рекомендации по выбору аппаратов.

Прежде всего, степень защиты аппарата должна соответствовать условиям той среды, где он будет работать.

Номинальный ток аппарата должен быть не меньше расчетного тока нагрузки, напряжение аппарата должно соответствовать напряжению сети, где он будет применяться.

Аппараты должны быть устойчивы к току короткого замыкания, который может через них проходить, а те аппараты, которые должны отключать этот ток, должны быть устойчивы при его отключении.

Номинальный ток плавкой вставки предохранителя должен быть не меньше расчетного тока цепи, т. е. Iв>Iр.

Плавкая вставка не должна перегорать при нормальных перегрузках на данном ответвлении, например, при пусковых токах двигателей.

Предохранители не желательно устанавливать на ответвлении к одному двигателю для защиты его от тока короткого замыкания, так как при перегорании одной вставки двигатель выйдет из строя при работе на двух фазах.

Ток вставки на ответвлении, где более одного двигателя,

где Iр — расчетный ток ответвления, Iп — пусковой ток наиболее мощного двигателя. При тяжелых условиях пуска в знаменателе вместо 2,5 нужно ставить 1,6. 2.

Плавкие вставки, установленные последовательно в сети, должны работать селективно, т. е. должна перегорать вставка, установленная ближе к месту короткого замыкания, а не наоборот. Для этого практически нужно, чтобы ток вставки, расположенной ближе к месту короткого замыкания, был на одну-две ступени ниже по шкале номинальных токов вставок.

Для автоматических выключателей номинальный ток расцепителя должен быть не меньше расчетного тока цепи, т. е. Iн,расц>=Iр- Автоматический выключатель не должен отключать установку при нормальных перегрузках.

Ток уставки регулируемого теплового расцепителя должен быть равен 1,25 расчетного тока цепи, т. е. Iуст, тепл = 1.25Iр.

Ток уставки регулируемого электромагнитного расцепителя должен быть пропорционален току наибольшей кратковременной перегрузки:

Автоматы для защиты асинхронных двигателей должны удовлетворять следующим условиям.

Для двигателей повторно-кратковременного режима при ПВ = 25% или длительного режима с легкими условиями пуска

/н, а >Iн.дв Для двигателей, работающих в напряженном повторно-кратковременном режиме и для двигателей с длительным режимом работы с тяжелыми условиями пуска Iн, а>1,5Iн дв, где Iн,а — номинальный ток автомата, Iн,дв — номинальный ток двигателя.

Ток уставки электромагнитного элемента должен соответствовать:

Каждый электрик должен знать:  10 вопросов по теме Основные понятия и законы электрических цепей

для двигателя с короткозамкнутым ротором

Iуст, эл-магн> (1.5. 1,8)Iп, для двигателя с фазовым ротором

Iуст , эл-магн > (2,5. 3)Iн,дв,

где Iп — пусковой ток двигателя.

Аппараты защиты по своей отключающей способности должны соответствовать току короткого замыкания при замыкании в ближайшей точке за аппаратом. Все аппараты должны быть защищены от замыканий внутри них предохранителями или автоматами.

Реле тепловое выбирают так, чтобы максимальный ток продолжительного режима реле с данным тепловым элементом был не менее номинального тока защищаемого двигателя, ток уставки реле был равен номинальному току защищаемого двигателя, запас регулировки тока уставки на шкале реле должен быть небольшим, особенно в сторону увеличения, т. к. при большом запасе регулировки в сторону увеличения возможно загрубление защиты, когда реле не будет работать.

Монтаж и наладка электрических аппаратов

Аппараты, имеющиеся в наличии для замены вышедших из строя, часто не подходят по месту установки. Прежде всего может не подходить расположение мест крепления. Тогда приходится на месте установки аппарата делать новые отверстия для крепления, исходя из имеющихся средств. В металле отверстия могут быть сделаны пробиванием, сверлением ручной или электрической сверлильной машиной, газовой или электрической сваркой, в дереве — сверлением буравами, сверлильной машиной, в стенах или перегородках из каменных материалов — шлямбурами или сверлильными машинами с применением сверл с твердыми наконечниками. При этом для ввертывания винтов в отверстия забиваются деревянные пробки.

Может случиться, что новый аппарат по размерам не подходит в данном месте. Тогда его нужно укрепить в другом доступном месте, применив для присоединения другие провода или кабели. В случае необходимости для установки аппарата можно установить дополнительное основание, раму или каркас.

При установке аппарата в новом месте нужно обеспечить его доступность для осмотра и ремонта, доступность винта зануления (заземления), свободное открывание крышки корпуса.

Следует учесть, что предохранители типов НПН и ПН2 не являются взаимозаменяемыми по способу установки, поэтому при их взаимной замене нужно менять и устройства их фиксации — контактные стойки.

Защитные реле монтируют на вертикальной панели обычно под тем пускателем, на отключение которого они воздействуют. Если пускатель смонтирован в отдельном ящике, где предусмотрено место для реле теплового, то оно монтируется там же.

Реле тепловые типа РТН монтируют зажимами цепи управления вверх. Реле типа ТРП—25 монтируют зажимами цепи управления вниз, а остальные реле этого типа — зажимами цепи управления вверх. Между металлическим основанием и корпусом реле ТРП—25 ставят изолирующую прокладку.

Не гарантируется срабатывание реле в нужный момент, если:

рядом с реле (особенно под ним) размещен аппарат или прибор, выделяющий дополнительное тепло (резистор, реостат),

реле смонтировано в верхних, наиболее нагреваемых частях ящиков и шкафов,

реле и защищаемый двигатель установлены в местах, где значительная разница температур окружающей среды.

После монтажа аппаратов производят их наладку, в которую входят внешний осмотр, проверка работы аппаратов без напряжения, проверка схем управления, сигнализации и блокировки, измерение сопротивления изоляции, опробование работы аппаратов и схем под напряжением.

При внешнем осмотре проверяют:

завершение всех монтажных работ;

соответствие установленных аппаратов и приборов току нагрузки защищаемого электроприемника и условиям его работы;

соответствие напряжении обмоток реле и катушек аппаратов напряжению сети;

исправность тепловых элементов реле и соответствие их току защищаемого двигателя;

отсутствие вблизи реле теплового дополнительных источников нагрева;

отсутствие механических повреждений;

правильность установки аппаратов и надежность их крепления;

состояние всех контактов аппаратов, отсутствие пыли, грязи, ржавчины, особенно в местах прилегания якоря и сердечника магнитопровода;

целость заземляющей проводки от аппаратов до мест присоединения к общей сети заземления (зануления);

отсутствие прокладок, подвязок, ограничивающих ход подвижных деталей аппаратов при транспортировке;

отсутствие перекосов контактов и подвижных механических частей, их свободный ход;

наличие и исправность возвратных пружин подвижных систем;

наличие растворов и провалов у глазных контактов и блок-контактов (см. п. 2.9.9). Величины растворов и провалов должны соответствовать прикладываемой к аппарату инструкции.

У реверсивных пускателей проверяют работу механической блокировки против одновременного срабатывания двух контакторов.

Аппарат отсоединяется от электрической схемы и измеряется сопротивление изоляции его токоведущих частей. Если монтаж и наладку производит один и тот же электрик, то сопротивление изоляции можно измерять до присоединении аппарата к электрической- схеме.

Проверка аппаратов на механическую регулировку включает операции по проверке и устранению замеченных отклонений от нормы:

проверка плотности прилегания якоря к ярму;

проверка крепления демпферных витков;

при необходимости зачистка главных контактов и блок-контактов;

проверка отсутствия трения между контактами и дугогасительными камерами;

проверка крепления катушки;

проверка растворов и провалов главных контактов и при необходимости их регулировка, проверка одновременности замыкания главных контактов, проверка их нажатия.

При механической регулировке производится затяжка всех гаек, винтов, установка недостающих деталей.

Проверка электромагнитных элементов автоматов и токовых реле, тепловых элементов автоматов и тепловых реле производится при их нагрузке током на специальных стендах опытными специалистами. Этими же специалистами проверяются схемы управления, сигнализации и блокировки.

Влияние контактов и контактных соединений на работу электроаппаратов

Контакты определяют коммутационную способность аппарата, производящего коммутационные операции. Коммутационными операциями называются операции включения и отключения аппаратов. Операции имеют обозначение, например, О — отключение, В — включение.

Коммутационной способностью аппарата называется его способность произвести определенное число коммутационных операций при сохранении работоспособности. Например, для автомата коммутационными операциями являются О—ВО—ВО. Обычно рассматривается предельная коммутационная способность при верхнем пределе коммутируемого тока. Но аппарат может не коммутировать ток, по величине ниже некоторого предельного, и в этом случае существует интервал критических значений токов.

На коммутационную способность аппарата влияет и характер нагрузки коммутируемой цепи. В цепях, содержащих индуктивность и емкость, происходит накопление энергии на индуктивности и емкости, и при разрыве цепи контактами аппарата происходят перенапряжения, что выражается в повышенном искрообразовании от дуги. Поэтому в цепях с такой нагрузкой коммутационная способность контактов ниже.

Повторно-кратковременный режим работы электроприемника, управляемого данным аппаратом, отрицательно влияет на контакты, так как происходит частое возникновение дуги при пусковом токе, что увеличивает износ контактов.

Приведем определения некоторых величин, относящихся к контактам.

Раствор контактов — кратчайшее расстояние между контактными поверхностями подвижного и неподвижного контактов в разомкнутом положении. Начальное нажатие контакта — нажатие пружин на контакт при разомкнутом положении контактов.

Конечное нажатие контакта — нажатие в момент окончания замыкания подвижного контакта с неподвижным.

Провал контакта — расстояние, на которое может сместиться место конечного касания подвижного контакта с неподвижным из положения полного замыкания, если будет удален жестко закрепленный контакт (подвижный или неподвижный). Значения вышеприведенных величин приведены в табл. 2. 32.

Таблица 2.32 ВЕЛИЧИНЫ РАСТВОРА И НАЖАТИЯ КОНТАКТОВ ЭЛЕКТРИЧЕСКИХ АППАРАТОВ

Раствор контактов в аппарате делается таким, чтобы не было затяжной дуги при отключении. Для исключения повторного замыкания контактов после удара механизма об упор при отключении раствор контактов делают не менее 2 мм.

На прохождение тока через контакты оказывает влияние переходное сопротивление в месте касания контактов, обусловленное наличием пленок окислов на поверхности контактов.

Большое значение в предотвращении образования пленок окислов имеет нажатие на контакты, так как оно препятствует проникновению воздуха в места контакта, разрушает пленки, снижает переходное сопротивление контактов и уменьшает их нагрев.

При наладке аппарата проверяют плотность крепления неподвижных контактов, плотность прилегания к ним подвижных контактов во включенном положении. Определение силы конечного нажатия контактов пускателя ПМЕ-211 показано на рис. 2. 6, а. Предварительно для безопасности отключается напряжение с контактов силовой цепи, потом к подвижному контакту присоединяется динамометр, например, с помощью лески, и пускатель включается. Предварительно под подвижный контакт ложится полоска тонкой бумаги. Подвижный контакт оттягивается с помощью динамометра по линии, перпендикулярной плоскости касания контактов, пока полоска бумаги не будет свободно выниматься, и в этот момент динамометр покажет силу нажатия контактов.

Определение силы начального нажатия контактов показано на рис. 2. 6, б. Полоска бумаги подкладывается под пластинчатую пружину над контактом, пускатель не включается, и контакт так же оттягивается через динамометр, пока не вынется полоска бумаги, и в этот момент определяется сила начального нажатия контакта.

Недостаточное начальное нажатие приводит к оплавлению и привариванию контактов, а чрезмерное нажатие — к нечеткому срабатыванию контактора пускателя.

При длительном прохождении тока через контакты они нагреваются тем больше, чем больше переходное сопротивление, а медные контакты также окисляются, поэтому аппараты с медными контактами для длительной работы не применяются. С увеличением нагрева контактов переходное сопротивление в месте касания контактов увеличивается до размягчения материала контактов. При размягчении увеличиваются площадки касания контактов, и сопротивление уменьшается. При достижении контактной точкой температуры плавления происходит дальнейшее уменьшение переходного сопротивления, уменьшается количество выделяемой теплоты и место контакта охлаждается, увеличиваются силы сцепления материала контактов. Если эти силы больше, чем разъединяющие силы при отключении аппарата, то его нельзя отключить, что говорит о приваривании контактов. Их можно разъединить только после снятия напряжения с аппарата механическим воздействием.

На работу аппаратов влияют различные контактные соединения, которыми они присоединяются к сети, и соединения проводников в сети.

На рис. 2. 7 показаны разборные контактные соединения;

а-г алюминиевых проводников с выводами аппаратов, д соединения алюминиевых шин, е-з медных проводников с выводами аппаратов.

Особенностью алюминия является то, что он образует на поверхности деталей пленку, которая тугоплавка и обладает большим сопротивлением для тока. Поэтому перед соединением алюминиевые проводники защищаются под слоем кварцевазелиновой пасты, которая затем обтирается и проводники сразу соединяются.

Другой особенностью алюминия является текучесть при зажатии гайкой в зажиме, поэтому для присоединения кольца из провода применяются специальные шайбы — звездочки 3 при сечении провода до 10 мм2, при большей площади сечения применяются алюминиевые наконечники и тарельчатые шайбы 6. При отсутствии таких шайб может быть применена вторая гайка — контргайка.

С учетом отрицательного влияния соединений медь—алюминий на состояние контакта выводы аппаратов делают лужеными, а если они не луженые, то соединения медь—алюминий не применяются в сырых помещениях, если аппараты не герметичны.

Рис. 2.7. Разборные контактные соединения:

а) ) присоединения алюминиевых проводников: а), б), в) — присоединения к плоским выводам электрических аппаратов; а) присоединение провода, согнутого на конце в кольцо: 1 — винт, 2 — шайба пружинная, 3 — шайба-звездочка; б), в) 4 — болт, 5 — гайка, 6 — шайба тарельчатая, 7 — шайбы, 8 — наконечники; г) присоединение к штыревому выводу: 9 — шпилька; д) соединение алюминиевых шин; е), ж) присоединение медных проводников к плоским выводам аппаратов; е) присоединение провода, согнутого на конце в кольцо: 1— винт, 2 — шайба пружинная, 3 — шайба; ж) 4— болт, 5 — гайка, 6 шайба пружинная, 7 — шайба; я) гнездовой зажим.

Для присоединения конца медного провода в виде кольца или с наконечником применяется шайба и пружинная шайба, а при отсутствии пружинной шайбы применяется контргайка.

На рис. 2.8 показаны неразборные соединения пайкой — а, прессованием — б,г, сваркой — в, д.

Рис. 2. 8. Неразборные соединения:

о) паяные соединения медных проводов. Подготовка к панке: 1 — проводов, 2 — присоединения провода к выводу; 1, 2 — готовые соединения; б) оконцевание трубчатым наконечником прессованием; в) оконцевание литым наконечником сваркой: 1 — вверху — наконечник после прессования, внизу — он же, покрытый изолентой, 2 — то же литой наконечник; г) соединение проводов прессованием. 3 — гильза; д) соединение проводов сваркой: 4 — форма; б)-д): 5 — изолента.

На рис. 2.9 показано разъемное контактное соединение для трехфазной сети. Такие соединения применяют для присоединение кабелей передвижных машин и инструментов к источнику питания. При этом для безопасности нужно помнить, что часть соединения, содержащая гнезда, присоединяется к источнику питания, стержень 1 для заземления или зануления всегда длиннее других, чтобы при соединении разъема этот стержень входил в гнездо первым, подготавливая цепь заземления или зануления, а при рассоединении выходил последним, когда силовая цепь уже рассоединена. Для предотвращения рассоединения разъема или ослабления контактов должен быть специальный замок, предотвращающий рассоединение.

На таком же принципе устроены разъемы для однофазной сети с двумя рабочими контактами и одним зануляющим или заземляющим, или просто с двумя контактами, в том числе и обычные розетки с вилками.

Нужно постоянно следить за контактами аппаратов, разъемов и соединений, так как от их состояния зависит надежность работы электроустановок.

Неисправности электрических аппаратов

Основные неисправности электрических аппаратов приведены в табл. 2.33.

Таблица 2.33 ОТКАЗЫ ЭЛЕКТРИЧЕСКИХ АППАРАТОВ

Продолжение табл. 2.33

Продолжение табл. 2.33

Продолжение табл. 2.33

Продолжение табл. 2.33

Окончание табл. 2.33

Примечание. Несимметрия питающего напряжения обычно выражается в понижении напряжения одной из фаз. Причиной часто является сгорание зажима или перегорание предохранителя в сети до того места, где эта несимметрия ощущается. Место повреждения можно найти, измеряя напряжения в фазах относительно земли, двигаясь по направлению к питающему трансформатору. Если неисправность на участке другой службы, то об этом сообщается электрикам этой службы.

Рис. 2.10. Отсутствие касания контактов пускателя:

а) наличие препятствия между контактами; 6) контакты отпаялись от мостика.

Рис. 2.11. Неплотное прилегание якоря электромагнита пускателя:

1 — воздушный зазор.

Рис. 2.12. Неисправности кнопочного поста управления типа ПКЕ—222—2У2 — заклинивание кнопки «Ход» во включенном положении и замыкание неподвижных контактов кнопки «Стоп» по пластмассовому корпусу: 1 — место замыкания

Рис. 2.13. Автомат не отключается и его нельзя подготовить к включению — препятствие ходу рукоятки автомата при отводе ее назад.

Рис. 2.14. Нож рубильника не входит в контактную стойку.

Рис. 2.9. Принцип ycтройства разъемною контактного соединения.

1 — зануляющий (заземляющий) стержень с гнездом, 2 — силовые стержни с гнездами, 3 — изоляционные распорные диски, 4 —- замок, 5 — жили кабеля, б — корпус половины разъема.

Электрические аппараты

Раздел 1. Основы теории электрических аппаратов

Электрический аппарат — это электротехническое устройство, которое используется для включения и отключения электрических цепей, контроля, измерения, защиты, управления и регулирования установок, предназначенных для передачи, преобразования, распределения и потребления электроэнергии.

Под электрическими аппаратами понимается широкий круг всевозможных устройств, применяемых в быту, промышленности и энергетике.

В настоящем курсе лекций рассматриваются основы теории, конструкция и эксплуатационные характеристики аппаратов, которые применяются в электрических системах, схемах электроснабжения промышленных предприятий и при автоматизации производственных процессов и электропривода.

Для изучения курса электрических аппаратов можно рекомендовать следующую литературу:

1.Алиев И.И., Абрамов М.Б. Электрические аппараты.

Справочник-М: радио софт, 2004.

2.Чунихин А.А. Электрические аппараты. – М.: Энергоатомиздат,CD-ROM, 2005

3. Родштейн Л.А.Электрические аппараты. – М.: Энергоатомиздат, CD-ROM, 2005.

4. Розанов Ю.К. и др. Электрические и электронные аппараты. -М,: Информэлектро,2001

5. Буткевич Г. В. и др. Задачник по электрическим аппаратам. М., Высш. школа,1977

6. Буль Б.К. и др.Основы теории электрических аппаратов. Под ред. Г. В. Буткевича. Учеб. пособие для электротехнич. специальностей вузов. М., «Высшая школа», 1970. 600 с. с илл.

7. Гольдберг О.Д. и др. Переходные процессы в электрических машинах и аппаратах, вопросы их проектирования. М,: Высшая школа, 2001.

8. Сахаров П.В. Проектирование электрических аппаратов.–М,:Энергия, 1971

Дается краткая характеристика каждого издания с рекомендациями по использованию.

Классификация электрических аппаратов может быть проведена по ряду признаков: назначению (основной выполняемой функции), области применения, принципу действия, роду тока, исполнению защиты от воздействий окружающей среды, конструктивным особенностям и др. Основной является классификация по назначению, которая предусматривает разделение электрических аппаратов на следующие большие группы.

1. Коммутационные аппараты распределительных устройств , служащие для включения и отключения электрических цепей. К этой группе относятся рубильники, пакетные выключатели, выключатели нагрузки, выключатели высокого напряжения, разъединители, отделители, короткозамыкатели, автоматические выключатели, предохранители. Для аппаратов этой группы характерно относительно редкое их включение и отключение. Могут быть и случаи, когда такие аппараты довольно часто включаются и отключаются (например, выключатели высокого напряжения в цепях питания электрических печей).

2.Ограничивающие аппараты , предназначенные для ограничения токов короткого замыкания (реакторы) и перенапряжений (разрядники). Режимы короткого замыкания и перенапряжений являются аварийными, и эти аппараты редко подвергаются наибольшим нагрузкам.

3.Пускорегулирующие аппараты, предназначенные для пуска, регулирования частоты вращения, напряжения и тока электрических машин или каких-либо других потребителей электрической энергии. К этой группе относятся контроллеры, командоконтроллеры, контакторы, пускатели, резисторы и реостаты. Для аппаратов этой группы характерны частые включения и отключения, число которых достигает 3600 в час и более.

4.Аппараты для контроля заданных электрических или неэлектрических параметров. К этой группе относятся реле и датчики. Для реле характерно плавное изменение входной (контролируемой) величины, вызывающее скачкообразное изменение выходного сигнала. Выходной сигнал обычно воздействует на схему автоматики. В датчиках непрерывное изменение входной величины преобразуется в изменение какой-либо электрической величины, являющейся выходной. Это изменение выходной величины может быть как плавным (измерительные датчики), так и скачкообразным (реле-датчики). С помощью датчиков могут контролироваться как электрические, так и неэлектрические величины.

5.Аппараты для измерений. С помощью этих аппаратов цепи первичной коммутации (главного тока) изолируются от цепей измерительных и защитных приборов, а измеряемая величина приобретает стандартное значение, удобное для измерений. К ним относятся трансформаторы тока, напряжения, емкостные делители напряжения.

6.Электрические регуляторы. Предназначены для регулирования заданного параметра по определенному закону. В частности, такие аппараты служат для поддержания на неизменном уровне напряжения, тока, температуры, частоты вращения и других величин

Разделение аппаратов по областям применения более условно. Аппараты для электрических систем и электроснабжения объединяют в группу аппаратов распределительных устройств низкого и высокого напряжения. Аппараты, применяющиеся в схемах автоматического управления электроприводами и для автоматизации производственных процессов.

По номинальному напряжению электрические аппараты разделяются на две группы: аппараты низкого напряжения (с номинальным напряжением до 1000 В) и высокого напряжения (с номинальным напряжением более 1000 В).

Защитные оболочки электрических аппаратов . Для предотвращения соприкосновения обслуживающего персонала с токоведущими или подвижными частями и исключения попадания в аппараты инородных тел устанавливаются специальные защитные оболочки. Согласно ГОСТ 14254—80 защитные свойства оболочки обозначаются буквами IP и двумя цифрами. Первая цифра обозначает степень защиты от прикосновения персонала к опасным деталям аппарата, вторая характеризует защиту от попадания внутрь аппарата инородных предметов и жидкостей. Ниже приводятся защитные свойства некоторых исполнений по ГОСТ 14254—80.

I Р00. Открытое исполнение. Защита персонала от соприкосновения с токоведущими или подвижными частями отсутствует. Инородные тела могут попадать внутрь аппарата.

IP20. Защищенное исполнение. Оболочка таких аппаратов предохраняет от случайного прикосновения к токоведущим или подвижным частям или от проникновения внутрь аппарата посторонних предметов. Оболочка должна препятствовать соприкосновению с деталями аппарата металлического щупа (диаметр 12, длина 80 мм), шарик диаметром 12 мм не должен проникать внутрь аппарата.

IP 22. В дополнение к свойствам исполнения IP20 оболочка защищает от вредного воздействия капель жидкости, падающих на стенку оболочки, наклоненную к вертикали под углом в пределах 15°.

IP 23. В дополнение к свойствам исполнения IP20 оболочка защищает от дождя, падающего под углом 60° к вертикали.

IP 40. Оболочка защищает аппарат от попадания внутрь него мелких предметов диаметром более 1 мм.

IP 42. В дополнение к свойствам исполнения IP40 оболочка защищает от воздействия капель жидкости (так же как IP22).

IP 44. В дополнение к свойствам исполнения 1Р40 оболочка защищает от воздействия брызг жидкости, падающих под любым углом.

IP 50. Оболочка аппарата защищает от вредного воздействия пыли (допускается попадание внутрь небольшого количества пыли, не нарушающего нормальной работы аппарата).

IP 60. Пылезащищенное исполнение. Оболочка полностью препятствует попаданию пыли.

IP 65. Пылеводозащищенное исполнение. В дополнение к свойствам исполнения IР60 оболочка защищает от воздействия струи воды, направленной под любым углом к ее поверхности.

IP 66. Пылеводонепроницаемое исполнение. В дополнение к свойствам исполнения IP60 оболочка обеспечивает полную защиту от попадания воды внутрь аппарата при воздействии струи под любым углом к поверхности (морское исполнение).

IP 67. Герметичное исполнение. В дополнение к свойствам исполнений IP60 оболочка обеспечивает полную герметичность аппарата.

Воздействия механических и климатических факторов на электрические аппараты в условиях эксплуатации регламентируются действующими стандартами (ГОСТ 15150—69 и 15543—70). Под климатическими факторами внешней среды понимаются температура и влажность окружающего аппарат воздуха, давление воздуха (высота над уровнем моря), солнечное излучение, дождь, ветер, пыль (в том числе и снежная), солевой туман, иней, гидростатическое давление воды, действие плесневых грибков, содержание в воздухе коррозионно-активных агентов. Нормальные значения климатических факторов внешней среды, принятые для использования в технике, соответствуют данной географической зоне с учетом места размещения аппарата. В технической документации на электрический аппарат всегда оговариваются значения климатических факторов, в пределах которых обеспечивается нормальная эксплуатация изделий. Эти значения принято называть номинальными. Различают также рабочие и предельные значения факторов. Значения климатических факторов, при которых обеспечивается сохранение номинальных параметров и гарантированный срок службы аппаратов, называются рабочими. Значения климатических факторов: а) при которых сохраняется работоспособность аппарата при допустимых отклонениях точности и номинальных параметров, б) после прекращения действия которых точность и номинальные параметры аппарата восстанавливаются, принято называть предельными рабочими.

С точки зрения воздействия климатических факторов поверхность земного шара делится на ряд макроклиматических районов. Каждый макроклиматический район характеризуется однородностью географических факторов и количественных показателей климатических факторов на своей территории.

В табл.1.1 приведены климатические исполнения электрических аппаратов, предназначенных для эксплуатации на суше, озерах и реках морского климата. В зависимости от места размещения в условиях эксплуатации электрические аппараты делятся на категории, указанные в табл. 1.2. Следует отметить, что на работу аппаратов оказывает влияние также атмосферное давление. От плотности атмосферного воздуха зависят прочность внешней электрической изоляции и охлаждение электрических аппаратов. Большинство электрических аппаратов изготовляют для работы на нормальной высоте 1000 м над уровнем моря, при которой аппараты работают с номинальными параметрами. Однако аппараты могут работать на высотах, превышающих нормальную. При этом в соответствующих стандартах или технических условиях указывается уменьшение номинальной нагрузки на каждые 100 или 1000 м высоты, превышающей нормальную. Аналогично учитывается уменьшение электрической прочности воздушных промежутков. Электрические аппараты для самолетов и других летательных аппаратов работают при пониженном давлении на высоте значительно выше 1000 м, которое регламентировано в пределах 70—1,3-10 -4 кПа.

Климатическое исполнение и категория размещения указываются в конце сокращенного обозначения электрических аппаратов. Так, например, обозначение ВЭ-10-1250-20-УЗ означает выключатель электромагнитный на номинальное напряжение 10 кВ, номинальный ток 1250 А, номинальный ток отключения 20 кА, для умеренного климата (У), и для эксплуатации в закрытых помещениях (категория размещения 3). Предприятия, разрабатывающие и изготавливающие электрические аппараты, руководствуются стандартами, предусматривающими нормы механических испытаний (на удары, вибрацию, механические нагрузки на выводы аппарата), акустических испытаний, климатических испытаний (теплостойкость, холодостойкость, грибоустойчивость, водонепроницаемость, брызгозащищенность, солнечная радиация и др.).

Требования к электрическим аппаратам весьма разнообразны и зависят от назначения, условий эксплуатации, необходимой надежности и т. д. Однако можно сформулировать требования, которые являются общими для всех электрических аппаратов.

1. При номинальном режиме работы температура токоведущих элементов аппарата не должна превосходить значений, рекомендуемых соответствующим ГОСТ или другим нормативным документом.

При коротком замыкании (КЗ) токоведущие элементы аппарата подвергаются значительным термическим и динамическим нагрузкам, вызываемым большим током. Эти нагрузки не должны вызывать остаточных явлений, нарушающих работоспособность аппарата после устранения КЗ.

2. Аппараты, предназначенные для частого включения и отключения, должны иметь высокую износостойкость.

3. Контакты аппаратов, предназначенных для отключений токов КЗ, должны быть рассчитаны на этот режим.

4. Изоляция электрических аппаратов должна выдерживать перенапряжения, которые имеют место в эксплуатации, и обладать определенным запасом, учитывающим ухудшение свойств изоляции с течением времени и вследствие осаждения пыли, грязи и влаги.

5. К каждому аппарату предъявляется ряд специфических требований, обусловленных его назначением. Так, например, выключатель высокого напряжения должен отключать ток КЗ за малое время (0,04—0,06 с). Трансформатор тока должен давать токовую и угловую погрешности, не превышающие определенного значения.

6. В связи с широкой автоматизацией производственных процессов, применением сложных схем автоматики увеличивается число аппаратов, участвующих в работе. Возможность отказа в работе электрических аппаратов требует их резервирования и создания специальной системы поиска неисправностей. В связи с этим электрические аппараты должны обладать высокой надежностью. Выход из строя аппаратов высокого напряжения приводит к большим разрушениям и материальным потерям.

7.Масса, габаритные размеры, стоимость и время, необходимые для установки и обслуживания электрических аппаратов, должны быть минимальными. Отвечающие современным требованиям электрические аппараты за срок службы 25 лет не должны нуждаться в ремонте и сложной
ревизии. Конструкция электрических аппаратов должна обеспечивать возможность автоматизации в процессе их изготовления и эксплуатации.

Электромагниты постоянного тока

Электромагнитными называются устройства, предназначенные для создания в определенном пространстве магнитного поля с помощью обмотки, обтекаемой электрическим током.

В нейтральных электромагнитах постоянного тока рабочий магнитный поток создается с помощью обмотки постоянного тока. Действие таких электромагнитов, в отличие от поляризованных, не зависит от направления тока в обмотке, они наиболее экономичны и благодаря разнообразию конструктивных исполнений их легко приспосабливать в различных конструкциях к различным условиям работы. Поэтому они получили наибольшее распространение.

Исполнение для макроклима-

Обозначения буквенное русские латинские

С умеренным климатом

С умеренным и холодным климатом

С влажным тропическим климатом

С сухим тропическим климатом

С сухим и влажным тропическим климатом

Для всех макроклиматических районов на суше, кроме района с очень холодным климатом (общеклиматическое исполнение)

Электрические аппараты

Электрический аппарат представляет собой устройство необходимое для осуществления операций запуска и отключения цепей электрического тока. Это оборудование требуется для выполнения функций по контролю, защите и управлению различными установками, служащими для передачи, преобразования, распределения и потребления электрической энергии.

Электроаппараты нашли своё применение в быту и в самых разных областях промышленности. В некоторых случаях такие аппараты исполняют роль вспомогательного устройства. Определенная категория электрических устройств может выполнять контролирующую и корректирующую функцию, что позволяет добиться бесперебойной работы электрического оборудования и предупредить появление возможных сбоев и поломок электрических машин.

Классификация электрических аппаратов

В большинстве своём работа электрических аппаратных устройств не ограничивается выполнением какой-то одной конкретной функции, а, напротив, связана с реализацией целого набора действий. В связи с этим возникает определенная трудность в разделении таких устройств на конкретные виды и группы.

Для того чтобы провести классификацию электрических аппаратов, важно выделить главные функциональные особенности конкретных типов электрического оборудования:

  1. Коммутационные устройства. Такое оборудование служит для размыкания и замыкания цепей электрического тока. К таким устройствам относятся различные рубильники, выключатели, разъединители.
  2. Устройства защиты. Аппараты предохраняют проводящие элементы электрических цепей от перепадов напряжения, повышенной нагрузки сети и замыканий. Представленные функции защиты могут быть реализованы в различных видах предохранителей и реле.
  3. Аппараты, регулирующие запуск электрических машин. Устройства подобного рода предназначены для обеспечения плавного пуска и остановки промышленных потребителей электрического тока. Аппараты регулируют скорость вращения якоря двигателя. К подобным устройствам можно отнести пускатели, реостаты, контакторы.
  4. Ограничивающие аппараты. Подобные устройства называют реакторами и разрядниками, они обладают функцией ограничения токов короткого замыкания и перенапряжения.
  5. Аппараты, обеспечивающие контроль различных параметров электрических цепей. Самые распространенные виды таких устройств – датчики и реле.
  6. Аппараты, позволяющие проводить корректировку и изменение различных параметров электрического оборудования. К таким аппаратам относятся регуляторы и стабилизаторы.
  7. Измерительные аппараты. Функция данного оборудования сводится к тому, чтобы обеспечить изоляцию линии первичной коммутации от цепей измерительных приборов и приборов защиты.
  8. Устройства для проведения работ механического характера. Основным элементом таких устройств является электромагнит, призванный выполнять конкретные функции: подъемный электромагнит, электромагнитный тормоз.
Каждый электрик должен знать:  Кофемашина delonghi esam 3000 функции и особенности

Каждое электрическое устройство имеет в своем составе три основных элемента:

  • воспринимающий;
  • преобразующий;
  • исполнительный элемент.

Если исходить из принципа действия воспринимающего элемента устройства, то электрические аппараты подразделяются на электромагнитные, индукционные, полупроводниковые, магнитные.

В зависимости от принципа действия исполнительного элемента, электрические устройства подразделяются на контактные и бесконтактные аппараты.

Существует еще ряд принципиальных различий, связанных с особенностями эксплуатации рассматриваемого оборудования, которые позволяют провести разделение электрических устройств на определенные группы. Электрические аппараты могут быть рассчитаны на высокое или низкое напряжение. По продолжительности работы, такие устройства могут работать в режиме кратковременной или продолжительной эксплуатации.

Если принимать во внимание принцип управления, то можно выделить два основных вида устройств: с автоматическим и ручным управлением.

Коммутационные электрические аппараты

Коммутационные электрические аппараты получили широкое распространение в различных отраслях промышленности. Трудно себе представить, как бы выполнялись различные задачи по эксплуатации и выполнению операций, связанных с электрическим оборудованием, без этого функционального устройства.

Коммутационный электрический аппарат служит для разъединения и замыкания электрической цепи при помощи контактной группы. Проще говоря, такое устройство можно назвать выключателем. К основным видам представленного устройства относятся: рубильники, выключатели, контакторы, реле. Несмотря на то, что в этих приборах заложен практически один и тот же принцип работы, все они имеют ряд отличий друг от друга.

Рассмотрим каждый вид аппаратов в отдельности.

Рубильник относится к наиболее простому коммутационному аппарату. Аппарат приводится в действие вручную с помощью рукоятки. Такой вид устройств рассчитан на большие значения силы тока.

Выключатели имеют разные модификации. В промышленном применении, к наиболее распространенным видам таких устройств относятся масляные выключатели. Такие выключатели рассчитаны на напряжение до 220кВ. Масло, в данном случае, служит для подавления/гашения, проходящей через него дуги электрического тока. Особого внимания заслуживают воздушные и электрогазовые выключатели. Гашение дуги, то есть прекращение подачи электрического тока, происходит за счет подачи струи сжатого воздуха или электроотрицательного газа.

Кардинально новый способ размыкания токопроводящей линии воплощен в электромагнитных выключателях. Принцип действия такого устройства заключается в следующем: электрическая дуга горит в нормальных условиях при атмосферном давлении – цепь включена. Как только потребуется разомкнуть цепь, по направлению к дуге подается сильное магнитное поле. За счет воздействия магнитного поля, дуга начинает растягиваться и, в конечном итоге, расщепляется, размыкая тем самым токопроводящую линию.

Реле предназначено для размыкания и замыкания электрической цепи. Основным характерным свойством данного коммутационного аппарата является принципиально новый способ работы контактной пары. Электромагнитное реле, как и в контакторе, под воздействием электрического тока, приводит в движение сердечник электромагнита с установленными на нем контактами, что приводит к замыканию цепи. Способ воздействия на контактную пару реле может быть не только электрическим, но также тепловым или акустическим.

Контакторы представляют собой разновидность электромагнитного реле. Основное назначение – включение и выключение токопроводящей линии силовых электрических цепей. Контакторы могут применяться как в цепи переменного, так и постоянного электрического тока. Принцип работы контактора основан на электромагнитном эффекте. Сердечник электромагнита контактора под действием электрического тока увлекает за собой подвижный контакт, который, вследствие такого перемещения, прижимается к неподвижному контакту и цепь замыкается. Как только подача тока прекращается, сердечник возвращается в свое первоначальное положение и контакты размыкаются.

Электрические аппараты высокого напряжения

К электрическим аппаратам высокого напряжения относятся различные устройства, выполняющие функции по управлению, защите и контролю электрических цепей и систем. Перечень видов электрических аппаратов высокого напряжения схож с рассмотренным выше списком электрических устройств. К таким видам аппаратов относятся:

  • коммутационные аппараты;
  • устройства для заземления отдельных участков цепи электрического тока (заземлители);
  • приборы для замыкания цепи под нагрузкой (короткозамыкатели);
  • оборудование для выключения цепи электрического тока при коротком замыкании, ограничивающие аппараты.

Электрические аппараты до 1000 вольт

Электрические аппараты до 1000 вольт принято называть аппаратами электрического тока низкого напряжения.

Оборудование разделяется на три категории. Первая – это устройства по управлению и защите электрических цепей (контакторы, реле, пускатели, предохранители, рубильники). Следующий вид – аппараты с функцией автоматизированной настройки параметров электрической линии (стабилизаторы, регуляторы). И, наконец, аппараты автоматики (датчики, реле, усилители).

Электрические аппараты до 1000 вольт выполняют определенные функции по контролю, усилению и преобразованию электрического сигнала.

Аппараты защиты электрических сетей

Для обеспечения соответствующего уровня безопасности токопроводящей линии и исключения негативных последствий из-за короткого замыкания или перегрузки сети, применяют разнообразные аппараты защиты электрических сетей. Самым распространенным устройством, обеспечивающим такую защиту, служит предохранительное устройство, выполненное в виде плавких предохранителей или автоматических выключателей. Составные элементы плавкого предохранителя: корпус, плавкое вещество и контактная часть.

Принцип действия такого устройства основан на выделении большого количества тепла проводником с плавким веществом, в случае прохождения через него большого значения силы тока. Такой эффект приводит к разрыву проводящего элемента предохранителя и цепи.

Следующим видом защитных устройств является автоматический выключатель. Такой аппарат состоит из крышки, корпуса, дугогасительной камеры и механизма свободного расцепления. Последний элемент устройства может быть электромагнитным или же тепловым. Автоматические выключатели, которые снабжены механизмом электромагнитного расцепления, предназначены для защиты от короткого замыкания. Если же в аппарате установлен механизм теплового расцепления, то предназначение такого устройства – защита от перегрузок сети.

Электрические аппараты тепловоза

Электрические аппараты тепловоза подразделяются на следующее виды: устройства защиты, устройства управления и измерительные приборы. В зависимости от напряжения сети можно выделить низковольтные и высоковольтные устройства.

К наиболее распространенным видам электрических аппаратов тепловоза относят аппараты управления:

Контроллеры выполняют функцию настройки мощности дизельного двигателя. Элементы управления данным устройством выполнены в виде двух рукояток: главной и реверсивной. С контроллера помощью машинист подает ток на тягловые электродвигатели. Движение реверсивного рычага приводит к смене полярности электродвигателя, и, соответственно изменяет направления движения тепловоза.

Выключатели служат для включения и выключения вспомогательных устройств и осветительных приборов.

Контакторы выполняют функцию выключателей, размыкая и замыкая силовые линий.

Реле управления позволяет включать и отключать соответствующие линии управления. Реле перехода позволяет осуществлять переключение силовых электроустановок тепловоза в автоматическом режиме.

Другая группа электрического оборудования для тепловоза – это аппараты автоматического регулирования (регуляторы напряжения и амплистаты).

Регуляторы напряжения обеспечивают постоянное напряжение вспомогательной генераторной установки.

Амплистат выполнен в виде магнитного усилителя. Основная функция данного устройства – регулирование силы тока возбуждения тягового генератора тепловоза.

Защитные электрические аппараты тепловоза – это блокировочный магнит, реле давления масла, реле заземления, реле боксования, реле ограничения тока и температурное реле.

Режимы работы и нагрева электрических аппаратов

Любые устройства, вне зависимости от области применения и характера, выполняемых ими функций, рассчитаны на определенные режимы эксплуатации. Электрические аппараты могут работать в кратковременном, повторно-кратковременном, продолжительном и прерывисто продолжительном режиме.

Существует два вида режимов нагрева электрических аппаратов: установившийся и переходный. Процесс нагрева можно считать установившимся в том случае, если спустя один час нагрева, температура электрического аппарата возрастет не более чем на 1 0 С. Для того чтобы рассчитать значение температуры в переходном режиме, необходимо использовать уравнение теплового баланса.

Тепловые расчеты токоведущих частей электрических аппаратов

При прохождении тока по проводнику, происходит выделение мощности Р, которая вычисляется по формуле: P=I2R, где R – активное сопротивление проводника длиной l и поперечным сечением S: R=pl/S.

Удельное сопротивление p находится в прямой зависимости от температуры Т и рассчитывается по следующей формуле: p=p(1+aT), где p – удельное сопротивление материала проводника при температуре равной 0 0 С, aT – температурный коэффициент расширения.

Рассмотрим понятие поверхностного эффекта и эффекта близости. Поверхностный эффект представляет собой неравномерное распределение плотности переменного электрического тока по всей площади поперечного сечения проводника. Эффект близости сводится к неравномерному распределению плотности переменного тока в связи с тем, что два проводника находятся на близком расстоянии друг от друга. Такое явление является причиной значительных потерь мощности.

Испытание электрических машин, аппаратов и приборов

Для подтверждения полного соответствия заявленным требованиям и стандартам, электрические машины подвергаются разного рода испытаниям, которые проводятся на разных этапах производства и эксплуатации оборудования.

Испытания могут быть:

  • приемочные – таким испытаниям подвергают опытные образцы, для того чтобы в дальнейшем запустить оборудование в серию;
  • приемо-сдаточные – проводится с каждой единицей оборудования с целью установления оптимальных технических и эксплуатационных параметров;
  • периодические – проводятся в определенное время и призваны выявить соответствие технических характеристик оборудования заявленным требованиям и стандартам предприятия;
  • типовые – необходимы при внесении определенных изменений в конструкцию устройства;
  • аттестационные – направлены на установление стандартов качества выпускаемой продукции;
  • эксплуатационные – осуществляют в процессе работы оборудования. Такие испытания нацелены на выявление возможных неисправностей и сбоев в работе устройств.

Термическая и электродинамическая стойкость электрических аппаратов

Оборудование, испытывающее чрезмерные тепловые нагрузки, подвержено риску преждевременного выхода из строя. Нагрев составных частей и узлов электрических устройств может протекать настолько интенсивно, что тепло не будет своевременно отводиться от нагретых элементов.

Термической стойкостью электрических аппаратов принято называть их способность преодолевать чрезмерные тепловые нагрузки без ущерба для узлов оборудования и токопроводящих линии. К количественной характеристике термической стойкости относится ток термической стойкости, проходящий по проводнику за определенный промежуток времени. Самый неблагоприятный режим работы устройства – режим короткого замыкания, при котором резко возрастает значение силы тока и мощности источников теплоты.

Под электродинамической стойкостью электрических аппаратов подразумевается способность данного оборудования противостоять электродинамическому эффекту тока короткого замыкания, без возникновения сбоев и других пагубных последствий, негативно сказывающихся на его работе.

Электродинамическая стойкость характеризуется номинальным током электродинамической стойкости, значение которого устанавливается по результатам типовых испытаний, а именно: действующее и мгновенное значение силы тока.

При проведении проверочных работ на электродинамическую стойкость, необходимо провести сравнение номинального значения токов с расчетными значениями.

Электродинамические усилия в электрических аппаратах

Если эксплуатация электрического аппарата протекает в оптимальном режиме, электродинамические силы очень малы и не создают никаких трудностей для бесперебойной работы оборудования. При возникновении короткого замыкания, такие силы могут привести к серьезным поломкам электрических устройств.

Для того чтобы избежать таких ситуаций, необходимо провести расчет аппарата или же отдельных его узлов, на электродинамическую устойчивость. Потребность в таком расчете вызвана еще одной причиной. Дело в том, что реализация новых технических решений по минимизации элементов оборудования приводит к тому, что токопроводящие линии находятся в непосредственной близости друг от друга, что повышает риск возникновения короткого замыкания.

Производители и поставщики электрических аппаратов

Среди наиболее популярных отечественных и зарубежных производителей и поставщиков электрических аппаратов можно выделить следующие компании:

  • «Электромонтаж»;
  • «КЭАЗ»;
  • «Престиж»;
  • «Электроконтактор»;
  • «Электродруг»;
  • «Электроцентр»;
  • «Legrand»;
  • «Schneider Electric».

Ассортимент современных предприятий включает весь спектр электрических аппаратов разного назначения.

Общие сведения о магнитных цепях аппаратов

Общие сведения о магнитных цепях аппаратов — раздел Философия, Электрические и электронные аппараты А) Магнитная Цепь Аппарата, Основные Законы. Электромагниты .

а) Магнитная цепь аппарата, основные законы. Электромагниты нашли в аппаратостроении широкое при­менение и как элемент привода аппаратов (контакторы, пускатели, реле, автоматы, выключатели) и как устройство, создающее силы в муфтах, тормозах и подъемных механиз­мах.

Конфигурация магнитной це­пи электромагнита зависит от на­значения аппарата и может быть самой разнообразной.

Основные соотношения для магнитной цепи мы рассмотрим на примере клапанной системы, изображенной на рис. 3.1. По­движная часть магнитной цепи называется якорем 1. Часть магнитной цепи, на которой си­дит намагничивающая катушка 2, называется сердечником 3. Вертикальные и параллельные части магнитопровода 3 и 4 ча­сто называют стержнями.

В клапанной системе якорь может иметь как поступательное движение так и вращательное.

Намагничивающая катушка создает намагничиваю­щую силу (н. с), под действием которой возбуждается магнитный поток. Этот поток замыкается как через за­зор б, так и между другими частями магнитной цепи, имеющими различные магнитные потенциалы.

Рис. 3.1. Магнитная цепь клапанной системы

Воздушный зазор б, меняющийся при перемещении якоря, называется рабочим зазором. Соответ­ственно поток, проходящий через рабочий зазор, назы­вается рабочим потоком и обозначается обычно Ф5. Все остальные потоки в магнитной цепи называются потоками рассеяния Фв. Сила, развиваемая якорем электромагнита, как правило, определяется по­током в рабочем зазоре Фъ.

Задачей расчета магнитной цепи является либо определение н. с. катушки, необходимой для создания рабочего потока заданной величины (прямая задача), либо определение рабочего потока по известной н. с. катушки (обратная задача). Эти задачи могут быть решены с помощью двух законов Кирхгофа примени­тельно к магнитной цепи.

Согласно первому закону алгебраическая сумма по­токов в узле магнитной цепи равна нулю:

Второй закон Кирхгофа можно получить из известного закона полного тока

где Н — напряженность магнитного поля;

dl— элемент длины, по которому проходит магнитный поток;

— сумма н. с., действующих в контуре.

Помня, что , можно написать в виде

где S — сечение магнитной цепи; µ— магнитная про­ницаемость.

Магнитная проницаемость µ характеризует прово­димость магнитного материала цепи. Выражение d l/µS аналогично сопротивлению элемента электрической це­пи dl/x (где х — электрическая проводимость мате­риала проводника). Тогда можно представить в виде

где dR — магнитное сопротивление участка дли­ной- dl.

Падение магнитного потенциала по замкнутому кон­туру равно сумме намагничивающих сил, действующих в этом контуре. Это и есть второй закон Кирхгофа маг­нитной цепи.

В системе единиц СИ размерность , сле­довательно, магнитное сопротивление получает размер­ность µ=1/1 Гн — единица, деленная на генри.

В том случае, когда поток в отдельных частях маг­нитной цепи не меняется, интеграл можно за­менить конечной суммой

Таким образом, сумма падений магнитного напря­жения по замкнутому контуру равна сумме намагничи­вающих сил, связанных с потоками, проходящими че­рез магнитную цепь.

По аналогии с электрической цепью магнитное со­противление участка конечной длины l можно предста­вить в виде

где —магнитное сопротивление единицы длины магнитной цепи при сечении, также равном единице, м/гн.

Полная аналогия законов Кирхгофа электрической и магнитной цепей позволяет составить для последней электрическую схему замещения.

Для расчета по (3.5) необходимо иметь кривую (В), Если задана не кривая (В), а кривая намаг­ничивания материала В(Н), для расчета удобно ис­пользовать (3.2). Если на отдельных участках индук­ция постоянна, то интеграл в (3.2) можно заменить ко­нечной суммой

По известной индукции в каждом участке с помощью кривой В(Н) находят напряженность Hj на участке, после чего с помощью (3.7) можно отыскать потребную н. с. катушки.

При расчете магнитной цепи часто более удобным является введение величины, обратной магнитному со­противлению — магнитной проводимости

Уравнение (3.5) при этом принимает вид:

Для простейшей неразветвленной цепи

Магнитное сопротивление и проводимость ферромаг­нитных материалов являются сложной нелинейной функцией индукции. Зависимость относительной магнит­ной проницаемости , а следовательно, и магнит­ной проводимости от величины индукции для магнитномягкого материала пред­ставлена на рис.1.2. Макси­мальное значение (ми­нимальное магнитное сопро­тивление) имеет место при средних величинах индук­ции. В слабых и сильных полях магнитное сопротив­ление материала резко воз­растает. Изменение магнит­ного сопротивления от ве­личины индукции сильно затрудняет решение как прямой, так и обратной задачи.

Эта тема принадлежит разделу:

Электрические и электронные аппараты

Государственное образовательное учреждение.. высшего профессионального образования.. самарский государственный технический университет..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Общие сведения о магнитных цепях аппаратов

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Дается краткая характеристика каждого издания с рекомендациями по использованию
Классификация электрических аппаратовможет быть проведена по ряду признаков: назначению (основной вы­полняемой функции), области применения, принципу дей­ствия, роду тока, исполнен

Электромагниты постоянного тока
Электромагнитными называются устройства, предназначен­ные для создания в определенном пространстве магнитного поля с помощью обмотки, обтекаемой электрическим током. В нейтральны

Характеристики некоторых магнитномягких материалов
Для магнитных цепей электрических аппаратов применяются самые разнообразные магнитномягкие материалы, от правильного выбора которых во многом зависит качество конструкции электри­че

Промежутков
Для магнитных систем электрических аппаратов, когда учиты­ваются потоки рассеяния и полные потоки воздушного зазора, су­щественным является определение магнитных проводимостей воз­душных путей — пр

Для случая полюс — плоскость
Линии индукции, выходящие из боковых граней, занимают весь объем вокруг полюса и имеют сложную форму (рис.2.1). Поле в результате этого, как уже указывалось, получается не плоскопараллельным. В это

Б. Полюса цилиндрической формы
Для электрических аппаратов широко применяются магнитные системы с цилиндрическими полюсами. Опыт показывает, что боковая удельная проводимость между цилиндрическими полю­сами зависит от величины д

Полюс — плоскость по координате z
Для плоскопараллельного поля суммарный поток с правой половины торца полюса и грани в (рис.) можно опреде­лить как

Простых объемных фигур поля
Расчет проводимостей воздушного зазора методом суммирования простых объемных фигур поля, предложенный Ротерсом, на практике получил достаточно широкое распространение. Однако сущест

Расчет магнитных проводимостей воздушных путей графическим методом
Для практических целей широко используются магнитные цепи, у которых магнитная проводимость рассеяния на единицу длины сердечника непостоянна. Поле таких цепей неоднородно. Оно силь

Постоянного тока
а.) Расчет потоков рассеивания и индуктивности ка­тушки без учета сопротивления стали. Для электромаг­нитов, у которых катушка располагается на стержне, поток рассеяния связ

Магнитная цепь электромагнитов переменного тока
Магнитные цепи на переменном токе обладают сле­дующими особенностями. 1. Ток в катушке электромагнита зависит главным образом от ее индуктивного сопротивления. 2. Магнитное сопрот

Катушки электромагнитов
В результате расчета магнитной цепи определяется поток в катушке и ее н. с. Катушка должна быть рас­считана таким образом, чтобы, с одной стороны, обес­печить требуемую н. с, а с др

Постоянного и переменного тока
При заданном потоке падение магнитного потенциала уменьшает­ся с уменьшением магнитного сопротивления. Так как сопротивление обратно пропорционально магнитной проницаемости материал

Сила тяги электромагнитов
а) Энергетический баланс электромагнита постоянно­го тока. Рассмотрим процесс возникновения магнитного поля в простейшем клапанном электромагните (рис. 4.1,а). После включения цепи напряжение источ

Динамика электромагнитов, время трогания и движения. Ускорение и замедление срабатывания
г) Сравнение статических тяговых характеристик электромагнитов постоянного и переменного тока. Для электромагнитов постоянного и переменного тока вели­чина силы может быть рассчита

Динамика и время срабатывания электромагнитов
а) Время срабатывания. До сих пор мы рассматри­вали только статические характеристики электромагни­тов, когда в их обмотке проходит неизменный ток, при­чем якорь либо неподвижен, л

Магнитные цепи с постоянными магнитами
а) Общие сведения.Для создания постоянного маг­нитного поля в целом ряде электрических аппаратов ис­пользуются постоянные магниты, которые изготавлива­ются из магнитно-твер­дых мат

Нагрев электроаппаратов. Нормы нагрева, термическая устойчивость
ЭЛЕКТРОДИНАМИЧЕСКИЕ УСИЛИЯ В ЭЛЕМЕНТАХ АППАРАТОВ При коротком замыкании в сети через токоведущую часть ап­парата могут протекать токи, в десятки раз превышающие номи­нальные. Эти токи, вза

Электродинамическая устойчивость аппаратов
Электродинамические силы, возникающие в токоведущих ча­стях аппаратов, стремятся деформировать как сами проводники, так и изоляторы, с помощью которых эти проводники укреплены к заземленным частям

Изолированные проводники электрического тока в нормальном режиме
Как показывают наблюдения, чем выше температура, воздейст­вию которой подвергаются изоляционные материалы, входящие в конструкции аппаратов, тем быстрее ухудшаются их механические и электрические к

При коротких замыканиях
Короткое замыкание в электроустановках сопровождается про­теканием по проводникам токов, значительно превышающих токи нормального рабочего режима. Так как длительность протекания токов короткого за

Понятие о видах теплообмена
При наличии разницы температур в теле в нем происходит процесс выравнивания температур из-за потока тепла от мест с более высокой температурой к местам с более низкой температу­рой. По ана

Отдачи тепла с наружной поверхности
ОКРУЖАЮЩЕЙ СРЕДЕ (ЖИДКОСТИ, ГАЗУ) В электротехнической практике весьма часто приходится рассчитывать превышение температуры наружной поверхности относительно температуры ж

Для рассмотрения устанавливающегося процесса нагрева тела от источников тепла, расположенных внутри тела
Пусть внутри тела действует источник тепла постоянной мощ­ности Р. Введем следующие предположения: температура тела в любой момент времени одинакова во всех точках о

Основной закон теплопроводности Био — Фурье
Основной закон теплопроводности математически описывается выражением (6.46)

Плоскостями
Рассмотрим простейшие случаи, когда тепловой поток Ф и его плотность Ф0 не изменяются во времени (стационарное состояние) и в пространстве. Такой случай может иметь место при на

Процесс нагрева при коротком замыкании. Понятие 0 термической устойчивости
Режим короткого замыкания в цепи большей частью является ава­рийным и его обычно ликвидируют за малые промежутки времени — секунды и доли секунды, однако, как ни мала длительность протека­ния токов

Жидкометаллические контакты
Наиболее характерные недостатки твердометаллических контактов следующие: 1.С ростом длительного номинального тока возрастают необходимое значение контактного нажатия, габариты и масса конт

Общие сведения
Большая группа электрических аппаратов представле­на коммутационными устройствами, с помощью которых замыкается и размыкается электрическая цепь. Электриче­ский разряд, возникающий при размыкании к

Физические особенности дуг030г0 разряда при высокой плотности газовой среды
Явление прохождения электрического тока через газ, называемое газовым разрядом, может наблюдаться практически при любых значениях тока. На рис. 8.2 изображена вольтамперная характе­ристика последов

Гашение электрических дуг в цепях постоянного тока
При размыкании контактов аппарата, находящегося в цепи пос­тоянного тока, возникает дуговой разряд. Для гашения возникающей дуги постоянного тока обычно стремятся повысить напряжени

Условия гашения дуг переменного тока
Дуга переменного тока обычно гасится легче, чем дуга постоянно­го тока. Чтобы погасить дугу постоянного тока, надо насильственно свести к нулю ток цепи путем непрерывного увеличения

Открытая дуга переменного тока при высоком напряжении источника
Открытая дуга переменного тока в моменты перехода тока через нуль сохраняет высокую проводимость, и поэтому в установках высокого напряжения гашение открытой дуги происходит не вслед­ствие перехода

Дуга переменного тока в условиях активной деионизации
Если столб дуги переменного тока подвергается интенсивной деионизации, то в этом случае механизм гашения дуги существенно меняется по сравнению с предыдущим (открытая дуга в цепи вы

Дуга переменного тока в условиях отключения цепей низкого напряжения
В установках низкого напряжения (до 1000 В) электрическое сопротивление столба дуги обычно бывает соизмеримым с сопротив­лением отключаемой цепи, а напряжение на дуге — с напряже­нием источн

Общие сведения
Бесконтактными электроаппаратами называют устройства, предназначенные для включения, выключения или переключения (ком­мутации) электрических цепей без физического разрыва цепи. Осно

Двухполупериодные схемы МУС
Однополупериодная схема (рис. 10.6) практически не применяется из-за следующих недостатков: 1.Для ограничения наведенных в обмотке управления токов необходим балластный дроссель, наличие к

Статические параметры
а) Крутизна характеристики управления.Для МУС характерна зависимость выходного напряжения Up только от

Общие сведения
Предохранители — это электрические аппараты, предназначенные для зашиты электрических цепей от токовых перегрузок и токов КЗ. Основными элементами предохрани­теля являются плавкая в

Нагрев плавкой вставки при длительной нагрузке
Основной характеристикой предохранителя является времятоковая характеристика, представляющая собой зави­симость времени плавления вставки от протекающего тока. Для совершенной защиты желательно, чт

Конструкция предохранителей низкого напряжения
а) Предохранители с гашением дуги в закрытом объеме. Предохранители на токи от 15 до 60 А имеют упрощенную конструкцию. Плавкая вставка 1 прижимается к латунной обойме 4

Выбор предохранителей
а) Выбор по условиям длительной эксплуатации и пус­ка.В процессе длительной эксплуатации температура на­грева предохранителя не должна превосходить допустимых значений. В этом случ

Контактная система
Контакторы переменного то­ка выпускаются на токи от 100 до 630 А. Число главных контактов колеблется от одного до пяти. Это отражает­ся на конструкции всего аппарата в целом. Наиболее широко

Общие сведения
Реле – это электрический аппарат, в котором при плавном изменении входной (управляющей) величины происходит скачкообразное изменение выходной (управляемой) величины. Причём, хотя бы

Тепловое реле. Устройство, характеристики. Реле времени
1.ТЕПЛОВЫЕ РЕЛЕ. Тепловые реле основаны на принципе изменения физических свойств тел при их нагревании электрическим током или другими источниками тепла. Он

Общие сведения
В схемах защиты и автоматики часто требуется выдер­жка времени между срабатыванием двух или нескольких аппаратов. При автоматизации технологических процессов также может возникнуть необходимость в

Работу
Принцип электромагнитного замедления рас­смотрен выше. Конструкция реле с таким замедлением типа РЭВ-800 (рис.14.11)содержит П-образный магнитопровод 1 и якорь 2 с немагнитн

Полупроводниковые реле
а) Общие сведения. Полупроводниковые реле в отноше­нии быстродействия, чувствительности, селективности и на­дежности превосходят электромагнитные. В ряде случаев полупроводниковые

Регулирующие полупроводниковые
УСТРОЙСТВА ПЕРЕМЕННОГО ТОКА (БКРПУ) а) Общие сведения.На основе тиристоров возможно осуществление следующих операций: 1) включение и отключение э

Тиристорный пускатель
На рис. 16.4 показан один из вариантов схемы бесконтактного — тиристорного пускателя. Силовой блок Б1 содержит силовые тиристоры VS1—VS3 и диоды VD1—VD3, рассчита

Общие сведения
Для регулирования частоты вращения, вращающего мо­мента на валу, для соединения и разъединения ведущего и ведомого валов применяются электрические аппараты в виде муфт с электрическим управлением.

Электромагнитные фрикционные муфты
а) Принципдействия. Простейшая конструкция элект­ромагнитной фрикционной муфты представлена на рис. 14.3. Постоянное напряжение подводится к щеткам, скользящим по контактным кольца

Электромагнитные ферропорошковые муфты
В ферропорошковой муфте барабанного типа (рис. 17.5) ведущий вал 1 через немагнитные фланцы 2 соединен с ферромагнитным цилиндром (барабаном) 3. Внутри цилиндра располагается э

Гистерезисные муфты
Возможны два варианта исполнения гистерезисных муфт: в первом — магнитное поле индуктора создается об­моткой, во втором — постоянными магнитами. Недостатком первого варианта является наличие контак

Ограничители напряжения
Назначение и классификация электрических аппаратов высокого напряжения Электрические аппараты высокого напряжения (АВН) исполь­зуются в электроэнергетических системах (объединенных и

Заключение
Развитие науки и техники, научно-технические исследования предполагают развитие и совершенствование методов проектирования и расчета существующих, а также разработку новых электриче

Добавить комментарий