Маломощные однофазные выпрямители


СОДЕРЖАНИЕ:

9.4. Однофазные выпрямительные схемы

Схема простейшего однополупериодного выпрямителя приведена на Рис. 9.1. Эта схема часто применяется в маломощных выпрямителях, работающих прямо от сети переменного тока. Она способна работать как с активной, так и с емкостной нагрузкой. Однополунериодный выпрямитель потребляет из сети постоянный ток и четные гармоники тока сетевой частоты, в дополнение к нечетным гармоникам, характерным для большинства нелинейных нагрузок. При питании однополупериодного выпрямителя через трансформатор постоянная составляющая потребляемого тока способна вызвать насыщение сердечника, но если использовать сердечник с зазором, то этой неприятности можно избежать.

Рис. 9.1. Однополунериодный выпрямитель и его поведение в разных условиях

Для уменьшения пульсаций напряжения при использовании однополупериодного выпрямителя часто применяют конденсаторные фильтры. При емкостной нагрузке уменьшается период, в течение которого ток поступает из сети (см. Рис. 9.1). При этом содержание высокочастотных гармоник в потребляемом токе увеличивается, а коэффициент мощности (P/V7) уменьшается. Сам выпрямительный диод в этой схеме подвергается воздействию обратного напряжения, равного напряжению на конденсаторе плюс пиковое входное напряжение. Вследствие того что конденсатор обычно заряжается почти до пикового входного напряжения, диод следует выбирать с обратным напряжением не менее удвоенного пикового входного напряжения.

Хотя одиополунериодные выпрямители и широко применяются в импульсных источниках питания, где плохая форма потребляемого тока не создает каких-либо проблем, в некоторых случаях, например в узлах обработки данных, могут возникать неприятности. Для этих выпрямителей в токе потребления характерно высокое содержание гармоник, кратных третьей — 3, 6, 9, 12, 15. Эти токи складываются в нейтральном проводе трехфазной цени питания, гак что ток нейтрального провода может превысить ток фазного провода в 2 раза. При этом необходимо использовать нейтральный провод существенно большего сечения, чем обычно. В соответствии с IEEE 519 не допускается использование оборудования с постоянной составляющей тока из потребительской сети. Однако при использовании трансформаторов, через которые эта компонента тока не проходит, одиополунериодные выпрямители находят применение.

На Рис. 9.2 приведена схема двухполунериодного выпрямителя. Во времена вакуумных ламп, когда оба диода удавалось поместить в одну лампу, эта схема широко применялась в радиоприемниках. А еще она подходит для низковольтных выпрямителей, ведь в ней последовательно с нагрузкой включен только один диод. Однако эти простейшие выпрямители все чаще заменяют импульсными преобразователями, в которых использование высокой рабочей частоты позволяет применять маленькие и легкие трансформаторы. Импульсные преобразователи будут описаны в гл. 13.

Рис. 9.2. Двухполупериодный выпрямитель и его токи и напряжения в разных точках

Каждый из диодов в этой схеме проводит ток только в течение половины периода входного напряжения, а его среднеквадратичное значение составляет 50% от полного тока. При напряжении на первичной обмотке, равном 1 B Rms, и при напряжениях на каждой половине вторичной обмотке тоже

1 BRms, на нагрузке 1 Ом ток в каждом плече составит 0.707 Arms, а u первичной обмотке — 1 Arms- Трансформатор должен быть рассчитан па мощность 1.0 В А по первичной цепи плюс каждая из вторичных обмоток должна быть на 0.707 ВА. Таким образом, при общем расчете трансформатора следует учитывать его мощность, равную (1 + 0.707 + 0.707)/2 = 1.207 ВА. Так что его размер для этой схемы выпрямителя должен быть на 20% больше, чем без выпрямителя.

На Рис. 9.3 приведена широко известная мостовая схема. В ней трансформатор используется лучше, чем в двухполупериодной схеме, так как в обеих обмотках ток имеет синусоидальную форму. В мостовой схеме последовательно с нагрузкой включено два диода, поэтому потери в диодах в

2 раза больше, чем в двухполупериодной схеме. Однако потери в трансформаторе меньше за счет меньшего возбуждения гармоник. В настоящее время широко распространены сборки из двух и четырех диодов для этих схем выпрямителей.

Рис. 9.3. Однофазный мостовой выпрямитель и ею токи и напряжения в разных точках схемы

Маломощные однофазные выпрямители. Выпрямители тока. Принцип работы и схемы выпрямления электрического тока

При выработке электроэнергии получают переменный ток. Передача и потребление энергии тоже, в основном, осуществляются на переменном токе. Но есть приборы, аппараты и системы, работающие на постоянном токе. Возникает потребность преобразовывать переменный сигнал в постоянный. Для этого служат выпрямители.

Что такое выпрямитель

Выпрямители переменного тока – это схемы с использованием полупроводниковых элементов для преобразования питания переменного тока в однонаправленное питание постоянного тока. Этот преобразовательный процесс называется еще выпрямлением.

Область применения выпрямителей:

  • контактная сеть электрифицированного транспорта;
  • электроприводы, работающие на постоянном токе;
  • компьютерные блоки питания;
  • зарядные устройства для электронных приборов и т. д.

Обычно в качестве выпрямляющего элемента применяется диод. Вторая используемая деталь – тиристор. Выбор выпрямителя зависит от требований нагрузки. При этом учитываются характеристики компонентов схемы выпрямителя тока: напряжение пробоя, номинальный ток, мгновенный ток, диапазоны температур, требования к монтажу и т. д.

Выпрямляющие устройства классифицируются по разным признакам.

  • неуправляемые на диодах;
  • управляемые на тиристорах (если требуется как выпрямление переменного тока, так и контроль напряжения);
  • частично управляемые с использованием в схеме диодов и тиристоров.

По значению мощности:

  • силовые;
  • выпрямители сигналов в устройствах малой мощности.

Принцип действия

Простейшая схема выпрямителя состоит из диода, подключаемого между источником питания и нагрузкой. Работа схемы основана на свойстве диода проводить ток в одном направлении и не пропускать его в обратном. На выходе получается напряжение, складывающееся только из положительных полуволн, и, соответственно, выпрямленный ток. Если диод подключить в обратном направлении, сигнал сложится из отрицательных полуволн.

Полуволновое выпрямление

После выпрямления ток протекает в одном направлении, чередуя положительную полуволну с нулевыми значениями напряжения. Количественный показатель этого меняющегося напряжения будет равен эквивалентному постоянному напряжению 0,318 U, где U – максимальное значение входного синусоидального сигнала.

  1. Так как напряжение на нагрузке присутствует только в положительную половину цикла (50% входного сигнала), это приводит к низкому среднему значению постоянного тока, подаваемому на нагрузку;

Важно! Иногда эта особенность применяется в схемах ограничения мощности резистивной нагрузки, например, при двухуровневом регулировании освещения.

  1. Изменение выпрямляемого выходного сигнала создает форму волны, имеющую большое количество пульсаций, что является нежелательным.

Иногда для разглаживания пульсаций применяют конденсатор. Но существуют ограничения по стоимости и размерам используемых конденсаторов. На практике полуволновое выпрямление применяется редко и только для питания схем небольшой мощности.

Полноволновое выпрямление

Почти все схемы требуют устойчивого и плавного напряжения постоянного тока. Один из способов этого добиться – использовать каждый полупериод входного напряжения.

Полноволновые выпрямители имеют фундаментальные преимущества перед их полуволновыми аналогами:

  • среднее выходное напряжение выше, чем для полуволнового сигнала;
  • выход полноволнового выпрямителя имеет гораздо меньшую пульсацию.

В схеме используется два диода, по одному на каждую половину цикла. Другим главным компонентом является трансформатор, вторичная обмотка которого разделена на две половины с общим центральным соединением. Такая конфигурация приводит к тому, что каждый диод проводит ток в свою полуволну, когда его анодный вывод положителен относительно центральной точки трансформатора, и на нагрузке создается выход в течение обоих полупериодов.

В результате протекающий через нагрузку ток проходит в одном направлении для обоих полупериодов, а выходное напряжение представляет суммарную частоту двух сигналов. Этот тип схемы известен, как двухфазная.

Среднее выходное напряжение через резистор нагрузки теперь вдвое больше и равно 0,637 U, где U – максимальное входное напряжение, или 0,9 U от среднеквадратичного значения.

Важно! Для получения другого выходного напряжения можно использовать различные коэффициенты трансформации.

Главный недостаток схемы – необходимость применения большого трансформатора для заданной выходной мощности с двумя отдельными, но идентичными вторичными обмотками, что делает ее дорогостоящей по сравнению с полноволновым мостом.

Мостовая схема

Этот тип однофазного выпрямителя использует четыре отдельных диода, соединенных в конфигурацию «мост» с замкнутым контуром, для получения желаемого выхода.

Основное достоинство мостовой схемы – не требуется специальный главный запорный трансформатор. Одинарная вторичная обмотка подключается к одной стороне диодного моста, а нагрузка – к другой.

Особенности работы диодного моста:

  1. В продолжение положительного полуцикла одна пара диодов в противоположных плечах моста открыта, другая – заперта. Токовый сигнал проходит по нагрузке однонаправленно;
  2. Когда наступает отрицательный полуцикл, другая пара диодов открывается, а первая – запирается. На выходе ток идет в аналогичном направлении;
  3. Напряжение выхода постоянное и составляет 0,637 от максимального амплитудного значения;

Важно! В действительности на самих диодах также происходит некоторое падение напряжения (2 х 0,7 = 1,4В для кремния). Но этот недостаток имеет значение только в схемах малых напряжений.

  1. Частота пульсаций выпрямленного сигнала в два раза превышает частоту питания. Для 50 Гц на выходе получается 100 Гц.

При практической реализации данных схем можно использовать четыре отдельных диода, но также в продаже доступны готовые мостовые выпрямительные компоненты в разных значениях напряжения и тока. Скошенный уголок указывает, что ближайший выходной контакт является положительным (+), противоположный от него – отрицательный (-), а два других вывода предназначены для входного переменного напряжения от вторичной обмотки трансформатора.

Сглаживающий конденсатор

Можно улучшить среднее выходное напряжение постоянного тока выпрямителя, одновременно добавив плавности сигналу, с помощью сглаживающих конденсаторов, которые соединяются параллельно с нагрузкой.

Конденсатор заряжается до пикового напряжения выходного импульса. Но когда напряжение падает до нуля, он не может разряжаться мгновенно из-за постоянной времени RC схемы. Конденсатор разряжается только до некоторого значения, поддерживая напряжение на нагрузке до тех пор, пока он снова не зарядится при следующем пике. Таким образом, изменения напряжения невелики, но можно еще увеличить сглаживание путем увеличения емкости конденсатора.

Обычно для цепей питания постоянного тока применяют конденсатор алюминиевого или электролитического типа емкостью 100 мкФ и более.

При выборе сглаживающего конденсатора учитываются:

  1. Рабочее напряжение элемента, которое должно быть выше выходного значения выпрямителя без нагрузки;
  2. Емкость, определяющая величину пульсации. Если она слишком низкая, то мало будет влиять на выходной сигнал.

Важно! При большой емкости и маленьком токе нагрузки можно получить почти чистый постоянный сигнал.

Максимальное напряжение пульсации при наличии сглаживающего конденсатора зависит от частоты и тока нагрузки и определяется по формуле:

U = I / f x C, где f – частота входного напряжения.

Достоинством мостового выпрямительного устройства является его легкая трансформация в трехфазную версию. Провод каждой фазы присоединяется между двумя диодами. После выпрямления полнофазного токового сигнала импульсы с фазовым сдвигом перекрываются друг с другом, и получается намного более плавный выходной показатель постоянного тока. Это решающее достоинство в мощных выпрямительных электроцепях, в которых физические габариты фильтрующих компонентов будут непомерно большими с такими параметрами, но оборудование требует постоянного токового сигнала с максимально сглаженной пульсацией.

Однофазные управляемые выпрямители

В частично управляемых схемах в плечи моста устанавливаются два диода и два тиристора. В полностью управляемой схеме все диоды заменяются тиристорами. Когда на тиристоры подается ток управления немедленно, как только анод оказывается под напряжением положительной полуволны, он работает аналогично диоду. Если открывающий сигнал задерживается, то тиристор начинает пропускать ток позже. Соответственно, снижается средний показатель напряжения.

Производство и распределение электрической энергии в основном осуществляется на переменном токе, вследствие простоты трансформации напряжения. Однако значительная часть производимой электрической энергии (30-35%) используется на постоянном токе, в том числе и для передачи на расстояния.

Выпрямитель – это электротехническое устройство, предназначенное для преобразования переменного напряжения в постоянное.
Основными элементами полупроводниковых выпрямителей являются трансформатор и вентили, с помощью которых обеспечивается одностороннее протекание тока в цепи нагрузки, в результате чего переменное напряжение преобразуется в пульсирующее. Для сглаживания пульсаций выпрямленного напряжения к выходным зажимам выпрямителя подключают электрический сглаживающий фильтр. Для регулирования или стабилизации выпрямленного напряжения и тока потребителя к выходным зажимам фильтра подключают регулятор или стабилизатор (стабилизатор может быть включён и на стороне переменного тока выпрямителя).

Режимы работы и параметры отдельных элементов выпрямителя, фильтра, регулятора и стабилизатора согласуются с заданными условиями работы потребителя постоянного тока, поэтому основная задача теории выпрямительных устройств сводится к определению расчётных соотношений, позволяющих по заданному режиму работы потребителя определить электрические параметры элементов стабилизатора, регулятора, фильтра, а также вентилей и трансформатора выпрямителя и затем произвести выбор этих элементов по каталогу или, если это необходимо, рассчитать их.

Структурная схема и классификация выпрямителей.

Выпрямитель можно представить в виде обобщенной структурной схемы (рис. 1) и структурной схемы с протекающими в нем напряжениями и токами (рис. 1.1), в которую входят:

  • силовой трансформатор (СТ),
  • вентильный блок (ВБ),
  • фильтрующее устройство (ФУ),
  • цепь нагрузки (Н), в которую может входить стабилизатор напряжения (СН) .

Рис. 1. Обобщенная структурная схема выпрямителя.

Рис. 1.1. Структурная схема выпрямителя с протекающими в нем напряжениями и токами.

Силовой трансформатор служит для согласования входного и выходного напряжений выпрямителя. Возможны различные соединения обмоток трансформатора соответственно с различными схемами выпрямления. Напряжение вторичной обмотки трансформатора U 2 определяет значение выпрямленного напряжения U н (или U d ).

Трансформатор позволяет одновременно гальванически развязать питающую сеть U 1 , I 1 с частотой f 1 , и цепь нагрузки с U н , I н (или U d , I d ). В последнее время в связи с появившейся возможностью разрабатывать и изготавливать высоковольтные инверторы, работающие на высокой частоте и при непосредственном выпрямлении напряжения сети, используются беcтрансформаторные схемы выпрямления, в которых вентильный блок присоединяется непосредственно к первичной питающей сети.

Вентильный блок выпрямляет переменный ток, подключая вторичное напряжение соответствующей фазы трансформатора к цепи постоянного тока. В вентильном блоке используются, как правило, полупроводниковые диоды или сборки на их основе. На выходе вентильного блока получают знакопостоянное напряжение с высоким уровнем пульсаций, определяемым только числом фаз питающей сети и выбранной схемой выпрямления.

Фильтрующее устройство обеспечивает требуемый уровень пульсаций выпрямленного тока в цепи нагрузки. В качестве ФУ используются последовательно включаемые резистор или сглаживающий дроссель и параллельно включаемые конденсаторы. Иногда ФУ строится по более сложным схемам. В выпрямителях малой мощности установка резистора или дросселя не обязательна.

При использовании многофазных (чаще всего трехфазных) схем выпрямления уровень пульсаций естественно снижается, и облегчаются условия работы ФУ.

Стабилизатор напряжения служит для уменьшения внешних воздействий, таких как: изменение напряжения питающей сети, изменение температуры, частоты и т.д.

Полупроводниковые выпрямители можно классифицировать по следующим признакам :

1) по выходной мощности (маломощные — до 600 Вт, средней мощности — до 100 кВт, и большой мощности — более 100 кВт);

2) по числу фаз источника (однофазные, многофазные);

3) по пульсности (р ) выпрямителя, определяемой числом полупериодов протекания тока во вторичной обмотке трансформатора за полный период напряжения U 1 ;

4) по числу знакопостоянных импульсов в кривой выпрямленного напряжения U 2 за период питающего напряжения:

Выпрямители могут быть построены на управляемых вентилях (тиристорах, транзисторах) – управляемые выпрямители и на неуправляемых вентилях (диодах) – неуправляемые выпрямители.

Для работы и расчета выпрямителя принципиальное значение имеет характер нагрузки включенной на выходе выпрямителя. Различают следующие режимы работы выпрямителя:

а) на активную нагрузку;

б) на активно-индуктивную нагрузку;

в) на активно-емкостную нагрузку;

Разные формы потребляемых из сети токов и их продолжительность при различном характере нагрузки выпрямителя приводит к тому, что методы расчетов выпрямителей существенно различаются.

Расчет выпрямителя сводится к выбору схемы выпрямления, типа диодов, определению электромагнитных нагрузок на обмотках трансформатора, диодах и элементах сглаживающего фильтра, а также энергетических показателей.

Выбор схемы выпрямителя зависит от ряда факторов, которые должны учитываться в зависимости от требований, предъявляемых к выпрямительному устрой­ству. К ним относятся:

Величины выпрямленного напряжения и мощности;

Частота и величина пульсации выпрямленного напряжения;

Число диодов и величина обратного напряжения на них;

Коэффициент полезного действия (к.п.д.);

Коэффициент мощности и другие энергетические показатели.

При расчете выпрямителя большое значение имеет также коэффи­циент использования трансформатора по мощности , который определяется как:

где U d , I d — средние значения выпрямленного напряжения и тока, U 1 , I 1 — действующие значения первичного напряжения и тока, U 2 , I 2 — действующие значения вторичного напряжения и тока.

При увеличении коэффициента использования трансформатора габариты выпрямителя в целом уменьшаются, а коэффициент полезного действия возрастает.

Основные схемы выпрямления.

Однофазные выпрямители.

Схемы выпрямителей однофазного питания применяются в основном для питания бытовых потребителей (бытовых устройств) и используют однофазные трансформаторы, в которых ток течет по двум проводам — фаза и ноль. Первичная и вторичная обмотка трансформаторов таких выпрямителей является однофазной.

Однофазная, однополупериодная схема.

Однофазную, однополупериодную схему (рис. 1.2, а) обычно применяют для выпрямления токов до нескольких десятков миллиампер и в тех случаях, когда не требуется высокой степени сглаживания выпрямленного напряжения. Эта схема характеризу­ется низким коэффициентом использования трансформатора по мощности и большими пульсациями выпрямленного напряжения.

Диаграммы напряжений и токов, поясняющие работу однополупериодного выпрямителя на активную нагрузку с учетом потерь в трансформаторе и вентиле, представлены на рис. 1.2,б.

Рис. 1.2. Однофазная, однополупериодная схема выпрямления (а) и диаграммы напряжений и токов в ней при работе на активную нагрузку (б).

Под действием ЭДС вторичной обмотки e 2 ток в цепи нагрузки i d может проходить только в течение тех полупериодов, когда анод диода имеет положительный потенциал относительно катода. Диод пропускает ток i vd в первый полупериод, во второй полупериод, когда потенциал анода становится отрицательным, ток в цепи равен нулю. Выпрямленное напряжение u d в любой момент времени меньше ЭДС вторичной обмотки e 2 , так как часть напряжения теряется на активных сопротивлениях трансформатора и открытого вентиля (учитывается сопротивлением r ). Максимальное обратное напряжение на вентиле U обрmax , как видно из рис. 1.2,б, достигает амплитудного значения ЭДС вторичной обмотки E 2m .

Диаграмма первичного тока трансформатора подобна диаграмме вторичного тока, если пренебречь током намагничивания и исключить из него постоянную составляющую I d , которая в первичную обмотку не трансформируется . В сердечнике трансформатора за счет постоянной составляющей тока вторичной обмотки создается добавочный постоянный магнитный поток, насыщающий сердечник. Это явление называют – вынужденное подмагничивание сердечника трансформатора постоянной составляющей тока, которое является главным недостатком этой схемы. В результате насыщения намагничивающий ток трансформатора возрастает в несколько раз по сравнению с током в нормальном режиме намагничивания сердечника. Возрастание намагничивающего тока обусловливает увеличение сечения провода первичной обмотки, следствием чего являются завышенные размеры трансформатора и габариты выпрямителя в целом.

Двухполупериодная схема со средней точкой (схема Миткевича).

Однофазный двухполупериодный выпрямитель со средним (нулевым) выводом вторичной обмотки трансформатора (рис. 1.3, а) применяют в низковольтных устройствах. Он позволяет уменьшить вдвое число диодов и тем самым понизить потери, но имеет более низкий коэффициент использования трансформатора и, следовательно, большие габариты по сравне­нию с однофазным мостовым выпрямителем, который рассмотрен ниже. Обратное напряжение на диодах выше в этой схеме, чем в мостовой.

Необходимым элементом данного выпрямителя является трансформатор с двумя вторичными обмотками. Выпрямитель со средней точкой является по существу двухфазным, так как вторичная обмотка трансформатора со средней точкой создает две ЭДС, равные по величине, но противоположные по направлению. Таким образом, схема соединения обмоток такова, что одинаковые по величине напряжения на выводах вторичных обмоток относительно средней точки сдвинуты по фазе на 180º.

Диаграммы напряжений и токов, поясняющие работу двухполупериодного выпрямителя со средним выводом на активную нагрузку с учетом потерь в трансформаторе и вентилях, представлены на рис.1.3,б.

Рис. 1.3. Двухполупериодная схема выпрямления со средней точкой (а) и диаграммы напряжений и токов в ней при работе на активную нагрузку (б).

Вторичные обмотки трансформатора подключены к анодам вентилей VD 1 и VD 2 . Напряжения на вторичных обмотках трансформатора w 21 и w 22 находятся в противофазе. Поэтому диоды схемы VD 1 и VD 2 проводят ток поочередно, каждый в соответствующий полупериод питающего напряжения. В течение первого полупериода положительный потенциал имеет анод диода VD 1 и ток i vd1 проходит через него, нагрузку и вторичную полуобмотку w 21 трансформатора. В течение второго полупериода положительный потенциал имеет анод диода VD 2 , ток i vd2 проходит через него, нагрузку и вторичную полуобмотку w 22 трансформатора, причем в цепи нагрузки ток i d проходит в том же направлении, что и в первый полупериод.

Таким образом, в отличие от простейшего однополупериодного выпрямителя в выпрямителе со средней точкой выпрямленный ток проходит через нагрузку в течение обоих полупериодов переменного тока, но каждая из половин вторичной обмотки трансформатора оказывается нагруженной током только в течение полупериода . В результате встречного направления м.д.с. постоянных составляющих токов вторичных обмоток i 21 и i 22 в сердечнике трансформатора нет вынужденного подмагничивания.

Рассмотрим расчет коэффи­циента использования трансформатора по мощности для выпрямителя без потерь при активной нагрузке на примере двухполупериодной схемы со средней точкой.

Выходное напряжение u d снимается в данной схеме между средней (нулевой) точкой трансформатора и общей точкой соединения катодов обоих вентилей. Среднее напряжение на нагрузке

т.е. между средним значением выпрямленного напряжения и действующим значением существует то же соотношение, что связывает среднее и действующее значение синусоидального тока.

Среднее значение тока через нагрузку: I d = U d / R d .

Поскольку ток i d протекает через диоды поочередно, средний ток через каждый диод составит:

Обратное напряжение прикладывается к закрытому диоду, когда проводит ток другой диод. Поскольку к закрытому диоду в этой схеме максимально прикладывается двойное амплитудное напряжение вторичной стороны, то

Величина U d при расчете выпрямителя является заданной, поэтому находим действующее значение напряжения на вторичной обмотке трансформатора

Действующее значение тока вторичной обмотки трансформатора

Габаритная мощность вторичных обмоток трансформатора

Габаритная мощность первичной обмотки трансформатора

Коэффициент использования трансформатора по мощности в двухполупериодной схеме со средней точкой

Таким образом, габаритная мощность трансформатора в двухполупериодной схеме со средней точкой в 1,48 раза превышает мощность в нагрузке.

Мостовая схема (схема Греца).

Однофазная мостовая схема (рис. 1.4, а) характеризуется высоким коэффициентом использования трансформатора по мощности и поэтому может быть рекомендована для использования в устройствах повышенной мощности при выходных напряжениях от десятков до сотен вольт; пульсации такие же, как в предыдущей схеме. По сути, работа мостовой схемы в течение каждого полупериода ничем не отличается от схемы со средней точкой трансформатора, только здесь пропускает ток не один вентиль, а два вентиля, соединенных последовательно, и для каждого полупериода используются не отдельные половины вторичной обмотки, а одна обмотка, что повышает эффективность использования трансформатора. Достоинства – меньшее обратное напряжение на диодах в 2 раза, меньшие габариты, выше коэффициент использования трансформатора, чем в схеме со средней точкой. Недостаток – на диодах падение напряжения в 2 раза больше.

Диаграммы напряжений и токов, поясняющие работу однофазного мостового выпрямителя на активную нагрузку с учетом потерь в трансформаторе и вентилях, представлены на рис. 1.4, б. Выходное напряжение u d при чисто активной нагрузке, как и в схеме с выводом средней точки трансформатора, имеет вид однополярных полуволн напряжения u 2 (рис.1.3, б). Это получается в результате поочередного отпирания диодов VD 1 , VD 4 и VD 2 , VD 3 . Диоды VD 1 и VD 4 открыты при полуволне напряжения u 2 положительной полярности (показана на рис. 1.4, а без скобок), обеспечивая связь вторичной обмотки трансформатора с нагрузкой и создавая на ней напряжение u d той же полярности, что и напряжение u 2 . На полуволне напряжения u 2 отрицательной полярности (показана на рис. 1.4, а со скобками) открыты диоды VD 2 и VD 3 , подключающие напряжение u 2 к нагрузке с той же полярностью, что и на предыдущем интервале.

Рис. 1.4. Однофазная мостовая схема выпрямления (схема Греца) (а) и диаграммы напряжений и токов в ней при работе на активную нагрузку (б).

Ввиду идентичности кривых u d для выпрямителей без потерь (мостового и со средней точкой) действительны те же соотношения между выпрямленным напряжением U d и действующим значением напряжения U 2.

поэтому и пульсации такие же, как в предыдущей схеме.

Ток I d распределяется поровну между парами диодов и ток каждого диода определяется также, как и в предыдущей схеме.

Обратное напряжение прикладывается одновременно к двум непроводящим диодам на интервале проводимости двух других диодов и его максимальное значение определяется амплитудным значением напряжения u 2

т.е. оно вдвое меньше, чем в схеме со средней точкой.

Ток в нагрузке протекает в течение обоих полупериодов переменного напряжения, как и ток во вторичной обмотке трансформатора имеющий форму синусоиды. Действующее значение тока вторичной обмотки трансформатора

это обусловлено тем, что в отличие от схемы со средней точкой ток i 2 здесь синусоидальный, а не пульсирующий.

С учетом того, что трансформатор имеет лишь одну вторичную обмотку, для мостовой схемы габаритная мощность первичной и вторичной обмоток будет одинакова и общая габаритная мощность S габ равна габаритной мощности первичной обмотки трансформатора в рассмотренной ранее схеме со средней точкой, т.е. 1,23P d .

На принципиальных схемах диодный мост может изображаться по разному и во многих случаях его изображают упрощенно (как показано на рисунке слева). Обычно, такое изображение служит для того, чтобы упростить общий вид принципиальной схемы, либо для того, чтобы показать, что в данном случае применена диодная сборка. Диодная сборка — это 4 диода с одинаковыми параметрами, размещенных в общем корпусе. Диодная сборка является более технологичной деталью, поскольку занимает меньше места на печатной плате.

Трехфазные выпрямители.

Схема выпрямителя трехфазного питания применяется в основном для питания потребителей средней и большой мощности.
Первичная обмотка трансформаторов таких выпрямителей состоит из трех фаз и соединяется либо в звезду, либо в треугольник. Вторичная обмотка трансформатора (их может быть несколько), также трехфазная. С помощью специальных схем соединения вторичной обмотки и всего выпрямителя, можно получить выпрямленное напряжение с числом пульсаций за период, кратным трем. С возрастанием числа пульсаций в выпрямленном напряжении значительно сокращаются габаритные размеры сглаживающих элементов фильтров, либо вообще отпадает необходимость в них. Выпрямители трехфазного питания равномерно нагружают сеть трехфазного тока, и отличаются высоким коэффициентом использования трансформатора.

Трехфазная нулевая схема (звезда-звезда).

В схему трехфазного выпрямителя со средней (нулевой) точкой входит трансформатор с вторичными обмотками, соединенными звездой. Выводы вторичных обмоток связаны с анодами трех вентилей. Нагрузка подключается к общей точке соединения катодов вентилей и среднему выводу вторичных обмоток (рис. 1.5, а).

Диаграммы напряжений и токов, поясняющие работу идеализированного трехфазного выпрямителя со средней точкой на активную нагрузку, представлены на рис. 1.5, б. В идеализированной схеме, без учета индуктивностей рассеяния обмоток трансформатора и полагая вентили идеальными, коммутация токов , т.е. переход тока с одного вентиля на другой, проходит мгновенно и в любой момент времени ток пропускает только один вентиль, анод которого имеет наиболее высокий потенциал.

Рис. 1.5. Трехфазная нулевая схема выпрямления (звезда-звезда) (а) и диаграммы напряжений и токов в ней при работе на активную нагрузку (б).

В схеме трехфазного выпрямителя со средней точкой ток нагрузки создается под действием фазного напряжения вторичной обмотки трансформатора. За период напряжения питания через каждую вторичную обмотку однократно протекает однополярный ток, при этом интервал проводимости каждого вентиля составляет 2π/3 (120º). Открытый вентиль подключает напряжение соответствующей фазы к нагрузке. В результате в нагрузке действует однополярное пульсирующее напряжение u d , представляющее собой участки фазных напряжений вторичных обмоток и содержащее трехкратные пульсации за период.

Достоинства схемы: малое число диодов и, соответственно, малое падение напряжения на них и поэтому может быть использована для выпрямления низких напряжений при повышенных мощностях (свыше 500 Вт); высокая частота пульсаций выпрямленного напряжения – три частоты питающей сети, что, в некоторых случаях, позволяет использовать эту схему без фильтра.

Недостатки: значительное обратное напряжение на диодах, низкий коэффициент использования трансформатора за счет явления подмагничивания магнитопровода.

Трехфазная мостовая схема (схема Ларионова).

Трехфазная мостовая схема (рис. 1.6, а) обладает наилучшим коэффициентом использования трансформатора по мощности, наименьшим обратным напряжением на диодах и высокой частотой пульсации (шестипульсная) выпрямленного напряжения, что, в некоторых случаях, позволяет использовать эту схему без фильтра. Схема приме­няется в широком диапазоне выпрямленных напряжений и мощностей.

Схема трехфазного мостового выпрямителя содержит выпрямительный мост из шести вентилей, в котором последовательно соединены две трехфазные группы. В нижней группе вентили соединены катодами (катодная группа), а в верхней – анодами (анодная группа). Нагрузка подключается между точками соединения катодов и анодов вентилей. Схема допускает соединение как первичных, так и вторичных обмоток трансформатора звездой или треугольником.

Диаграммы напряжений и токов, поясняющие работу идеализированного трехфазного мостового выпрямителя на активную нагрузку, представлены на рис. 1.6 (б, в).

Рис. 1.6. Трехфазная мостовая схема выпрямления (схема Ларионова) (а) и диаграммы напряжений и токов в ней при работе на активную нагрузку (б, в).

Каждая из двух групп выпрямителя повторяет работу трехфазного выпрямителя со средней точкой, поэтому при таком же значении напряжения вторичной обмотки трансформатора U 2 , как и в трехфазном выпрямителе со средней точкой, среднее выпрямленное напряжение U d данного выпрямителя будет в два раза больше или наоборот, при том же значении U d величина U 2 будет в два раза меньше.

В схеме трехфазного выпрямителя со средней точкой ток нагрузки создается под действием фазного напряжения вторичной обмотки трансформатора, а в мостовой схеме – под действием линейного напряжения. Ток нагрузки здесь протекает через два вентиля: один – с наиболее высоким потенциалом анода относительно нулевой точки трансформатора из катодной группы, другой – с наиболее низким потенциалом катода из анодной группы. Иными словами, в проводящем состоянии будут находиться те два накрест лежащих вентиля выпрямительного моста, между которыми действует в проводящем направлении наибольшее линейное напряжение.

За период напряжения питания происходит шесть переключений вентилей и схема работает в шесть тактов, в связи с чем ее часто называют шестипульсной . Таким образом, выпрямленное напряжение имеет шестикратные пульсации, хотя угол проводимости каждого вентиля такой же, как в трехфазной схеме со средней точкой, т.е. 2π/3 (120º). При этом интервал совместной работы двух вентилей равен π/3 (60º).

Кривая тока вторичной обмотки трансформатора определяется токами двух вентилей, подключенных к данной фазе. Один из вентилей входит в анодную группу, а другой – в катодную. Вторичный ток является переменным с паузой между импульсами длительностью π/3 (60º), когда оба вентиля данной фазы закрыты. Постоянная составляющая во вторичном токе отсутствует, в связи с чем поток вынужденного подмагничивания магнитопровода трансформатора в мостовой схеме не создается.

Более подробно можно прочесть здесь:

Для питания электронных устройств требуется постоянное напряжение различных значений. Наиболее распространенным источником электрической энергии является промышленная сеть переменного напряжения частотой 50 Гц. Для преобразования переменного напряжения в постоянное (однополярное) применяют выпрямительные устройства. Существует однополупериодное и двухполупериодное выпрямление переменного тока.

Рис. 9. Схема однополупериодного выпрямителя.

Схема полупроводникового однополупериодного выпрямителя приведена на рис. 9. В этом выпрямителе полупроводниковый диодVD включен последовательно с нагрузочным резисторомR н и вторичной обмоткой трансформатораT . Первичная обмотка трансформатора питается, как правило, от сети.

Из временных диаграмм (рис. 10) видно, что ток I н в нагрузке имеет импульсный характер. В течение первого полупериода напряженияU АБ , когда потенциал точкиа положителен по отношению к потенциалу точкиб , диод открыт и через нагрузку протекает ток.

Во второй полупериод полярность напряжений на вторичной обмотке трансформатора изменяется на противоположную и потенциал точки а становится отрицательным по отношению к потенциалу точкиб . При такой полярности диод включен в обратном направлении и ток в нагрузке будет равен нулю.

Рис. 10. Временные диаграммы однополупериодного выпрямителя.

Широкое применение нашли двухполупериодные выпрямители, в которых, в отличие от однополупериодных выпрямителей, используются оба полупериода напряжения сети. Из них наибольшее распространение получил мостовой двухполупериодньгй выпрямитель (рис. 11), состоящий из трансформатора, четырех полупроводниковых диодов VD 1VD 4 (включенных по мостовой схеме) и нагрузочного резистора.

Рис. 11. Схема двухполупериодного выпрямителя.

В один из полупериодов напряжения сети, когда точка а имеет положительный по отношению к точкеб потенциал, диодыVD2 иVD 3 открыты, а диодыVD 1 иVD4 закрыты. Ток в этот полупериод имеет направление: зажима вторичной обмотки трансформатора, диодVD2 , нагрузочный резисторR н , диодVD3 и зажимб . В следующий полупериод, когда потенциал точкиа становится отрицательным по отношению к точкеб , открыты диодыVD1 иVD4, а диодыVD2 иVD3 закрыты. Протекающий в схеме ток имеет следующее направление: точкаб , диодVD4 , нагрузочный резисторR н , диодVD1 и точкаа вторичной обмотки трансформатора. Таким образом, в течение всего периода ток в нагрузочном резистореR н имеет одно и то же направление. На рис. 12 представлены временные диаграммы токов и напряжений мостового двухполупериодного выпрямителя.

Рис. 12. Временные диаграммы двухполупериодного выпрямителя.

Мостовой выпрямитель по сравнению с однополупериодным имеет ряд преимуществ. В частности, при одном и том же напряжении вторичной обмотки трансформатора и сопротивлении нагрузки R н средний выпрямленный ток / н ср и напряжениеU н ср в мостовом выпрямителе почти в два раза больше, чем в однополупериодном.

Недостатком мостовой схемы выпрямителя является необходимость применения четырех диодов.

Для того, чтобы избежать пульсирующего характера напряжения U н и токаI н нагрузки, в выпрямительных устройствах применяются различныесглаживающие фильтры . Простейшим из них является ёмкостной фильтр. Для этого параллельно сопротивлению нагрузки подключается конденсатор.

Рис. 13. Схема однополупериодного выпрямителя со сглаживающим фильтром.

На рис. 13 приведена схема однополупериодного выпрямителя с ёмкостным сглаживающим фильтром, а на рис.14 – диаграммы, иллюстрирующие его работу.

По мере роста напряжения на зажимах вторичной обмотки трансформатора U АБ конденсаторC заряжается и напряжение на нём повышается. Во время положительного полупериода диодVD пропускает ток, который заряжает конденсатор (практически до амплитудного значения переменного напряжения) и одновременно питает сопротивление нагрузки. Затем напряжениеU АБ уменьшается и, когда оно становится меньше, чем напряжение на конденсаторе, диодVD запирается, а конденсатор начинает разряжаться на резисторR н . Скорость разряда конденсатора определяется постоянной времени разр =R нС . В дальнейшем описанный процесс периодически повторяется.

Рис. 14. Временные диаграммы двухполупериодного выпрямителя со сглаживающим фильтром.

При работе такого выпрямителя существенно уменьшаются пульсации выпрямленного напряжения. Однако следует помнить, что в выпрямителе с ёмкостным сглаживающим фильтром наблюдается значительная зависимость среднего значения выпрямленного напряжения от тока нагрузки.

Выпрямителем называется электронное устройство, предназначенное для преобразования электрической энергии переменного тока в постоянный. В основе выпрямителей лежат полупроводниковые приборы с односторонней проводимостью – диоды и тиристоры.

При небольшой мощности нагрузки (до нескольких сотен ватт) преобразование переменного тока в постоянный осуществляют с помощью однофазных выпрямителей. Такие выпрямители предназначены для питания постоянным током различных электронных устройств, обмоток возбуждения двигателей постоянного тока небольшой и средней мощности и т.д.

Для упрощения понимания работы схем выпрямления будем исходить из расчета, что выпрямитель работает на активную нагрузку.

На рисунке 1 представлена простейшая схема выпрямления. Схема содержит один выпрямительный диод, включенный между вторичной обмоткой трансформатора и нагрузкой.

Рисунок 1 — Однофазный однополупериодный выпрямитель: а) схема — диод открыт, б) схема — диод закрыт, в) временные диаграммы работы

Напряжение u2 изменяется по синусоидальному закону, т.е. содержит положительные и отрицательные полуволны (полупериоды). Ток в цепи нагрузки проходит только в положительные полупериоды, когда к аноду диода VD прикладывается положительный потенциал (рис. 1, а). При обратной полярности напряжения u2 диод закрыт, ток в нагрузке не протекает, но к диоду прикладывается обратное напряжение Uобр (рис. 1, б).

Т.о. на нагрузке выделяется только одна полуволна напряжения вторичной обмотки. Ток в нагрузке протекает только в одном направлении и представляет собой выпрямленный ток, хотя носит пульсирующий характер (рис. 1, в). Такую форму напряжения (тока) называют постоянно-импульсная.

Выпрямленные напряжения и ток содержат постоянную (полезную) составляющую и переменную составляющую (пульсации). Качественная сторона работы выпрямителя оценивается соотношениями между полезной составляющей и пульсациями напряжения и тока. Коэффициент пульсаций данной схемы составляет 1,57. Среднее за период значение выпрямленного напряжения Uн = 0,45U2. Максимальное значение обратного напряжения на диоде Uобр.max = 3,14Uн.

Достоинством данной схемы является простота, недостатки: плохое использование трансформатора, большое обратное напряжение на диоде, большой коэффициент пульсации выпрямленного напряжения.

Состоит из четырех диодов, включенных по мостовой схеме. В одну диагональ моста включается вторичная обмотка трансформатора, в другую – нагрузка (рис. 2). Общая точка катодов диодов VD2, VD4 является положительным полюсом выпрямителя, общая точка анодов диодов VD1, VD3 — отрицательным полюсом.

Рисунок 2 — Однофазный мостовой выпрямитель: а) схема — выпрямление положительной полуволны, б) выпрямление отрицательной полуволны, в) временные диаграммы работы

Полярность напряжения во вторичной обмотке меняется с частотой питающей сети. Диоды в этой схеме работают парами поочередно. В положительный полупериод напряжения u2 проводят ток диоды VD2, VD3, а к диодам VD1, VD4 прикладывается обратное напряжение, и они закрыты. В отрицательный полупериод напряжения u2 ток протекает через диоды VD1, VD4, а диоды VD2, VD3 закрыты. Ток в нагрузке проходит все время в одном направлении.

Схема является двухполупериодной (двухтактной), т.к. на нагрузке выделяется оба полупериода сетевого напряжения Uн = 0,9U2, коэффициент пульсаций — 0,67.

спользования мостовой схемы включения диодов позволяет для выпрямления двух полупериодов использовать однофазный трансформатор. Кроме того, обратное напряжение, прикладываемое к диоду в 2 раза меньше.

Питание постоянным током потребителей средней и большой мощности производится от , применение которых снижает загрузку диодов по току и уменьшает коэффициент пульсаций.

Схема состоит из шести диодов, которые разделены на две группы (рис. 2.61, а): катодную — диоды VD1, VD3, VD5 и анодную VD2, VD4, VD6. Нагрузка подключается между точками соединения катодов и анодов диодов, т.е. к диагонали выпрямленного моста. Схема подключается к трехфазной сети.

Рисунок 3 — Трехфазный мостовой выпрямитель: а) схема, б) временные диаграммы работы

В каждый момент времени ток нагрузки протекает через два диода. В катодной группе в течение каждой трети периода работает диод с наиболее высоким потенциалом анода (рис. 3, б). В анодной группе в данную часть периода работает тот диод, у которого катод имеет наиболее отрицательный потенциал. Каждый из диодов работает в течение одной трети периода. Коэффициент пульсаций данной схемы составляет всего 0,057.

Управляемыми выпрямителями — выпрямители, которые совместно с выпрямление переменного напряжения (тока) обеспечивают регулирование величины выпрямленного напряжения (тока).

Управляемые выпрямители применяют для регулирования частоты вращения двигателей постоянного тока, яркости свечения ламп накаливания, при зарядке аккумуляторных батарей и т.п.

Схемы управляемых выпрямителей строятся на тиристорах и основаны на управлении моментом открытия тиристоров.

На рисунке 4,а представлена схема однофазного управляемого выпрямителя. Для возможности выпрямления двух полуволн сетевого напряжения используется трансформатор с двухфазной вторичной обмоткой, в которой формируется два напряжения с противоположными фазами. В каждую фазу включается тиристор. Положительный полупериод напряжения U2 выпрямляет тиристор VS1, отрицательный – VS2.

Схема управления СУ формирует импульсы для открывания тиристоров. Время подачи открывающих импульсов определяет, какая часть полуволны выделяется на нагрузке. Тиристор отпирается при наличии положительного напряжения на аноде и открывающего импульса на управляющем электроде.

Если импульс приходит в момент времени t0 (рис. 4,б) тиристор открыт в течении всего полупериода и на нагрузке максимальное напряжение, если в моменты времени t1, t2, t3, то только часть сетевого напряжения выделяется в нагрузке.

Рисунок 4 — Однофазный выпрямитель: а) схема, б) временные диаграммы работы

Угол задержки, отсчитываемый от момента естественного отпирания тиристора, выраженный в градусах, называется углом управления или регулирования и обозначается буквой α. Изменяя угол α (сдвиг по фазе управляющих импульсов относительно напряжения на анодах тиристоров), мы изменяться время открытого состояния тиристоров и соответственно выпрямленное напряжение на нагрузке.

Выпрямитель — это устройство для преобразования переменного напряжения в постоянное. Это одна из самых часто встречающихся деталей в электроприборах, начиная от фена для волос, заканчивая всеми типами блоков питания с выходным напряжением постоянного тока. Есть разные схемы выпрямителей и каждая из них в определённой мере справляется со своей задачей. В этой статье мы расскажем о том, как сделать однофазный выпрямитель, и зачем он нужен.

Выпрямителем называется устройство, предназначенное для преобразования переменного тока в постоянный. Слово «постоянный» не совсем корректно, дело в том, что на выходе выпрямителя, в цепи синусоидального переменного напряжения, в любом случае окажется нестабилизированное пульсирующие напряжение. Простыми словами: постоянное по знаку, но изменяющееся по величине.

Различают два типа выпрямителей:

Однополупериодный . Он выпрямляет только одну полуволну входного напряжения. Характерны сильные пульсации и пониженное относительно входного напряжение.

Двухполупериодный . Соответственно, выпрямляется две полуволны. Пульсации ниже, напряжение выше чем на входе выпрямителя — это две основных характеристики.

Что значит стабилизированное и нестабилизированное напряжение?

Стабилизированным называется напряжение, которое не изменяется по величине независимо ни от нагрузки, ни от скачков входного напряжения. Для трансформаторных источников питания это особенно важно, потому что выходное напряжение зависит от входного и отличается от него на Ктрансформации раз.

Нестабилизированное напряжение — изменяется в зависимости от скачков в питающей сети и характеристик нагрузки. С таким блоком питания из-за просадок возможно неправильное функционирование подключенных приборов или их полная неработоспособность и выход из строя.

Основные величины переменного напряжения — амплитудное и действующее значение. Когда говорят «в сети 220В переменки» имеют в виду действующее напряжение.

Если говорят об амплитудной величине, то имеют в виду, сколько вольт от нуля до верхней точки полуволны синусоиды.

Опустив теорию и ряд формул можно сказать, что в 1.41 раз меньше амплитудного. Или:

Амплитудное напряжение в сети 220В равняется:

Первая схема более распространена. Состоит из диодного моста — соединены между собой «квадратом», а в его плечи подключена нагрузка. Выпрямитель типа «мост» собирается по схеме приведенной ниже:

Её можно подключить напрямую к сети 220В, так сделано в , или на вторичные обмотки сетевого (50 Гц) трансформатора. Диодные мосты по этой схеме можно собирать из дискретных (отдельных) диодов или использовать готовую сборку диодного моста в едином корпусе.

Вторая схема — выпрямитель со средней точкой не может быть подключена напрямую к сети. Её смысл заключается в использовании трансформатора с отводом от середины.

По своей сути — это два однополупериодных выпрямителя, подключенные к концам вторичной обмотки, нагрузка одним контактом подключается к точке соединения диодов, а вторым — к отводу от середины обмоток.

Её преимуществом перед первой схемой является меньшее количество полупроводниковых диодов. А недостатком — использование трансформатора со средней точкой или, как еще называют, отводом от середины. Они менее распространены чем обычные трансформаторы со вторичной обмоткой без отводов.

Питание пульсирующим напряжением неприемлемо для ряда потребителей, например, источники света и аудиоаппаратура. Тем более, что допустимые пульсации света регламентируются в государственных и отраслевых нормативных документах.

Для сглаживания пульсаций используют — параллельно установленный конденсатор, LC-фильтр, разнообразные П- и Г-фильтры…

Но самый распространенный и простой вариант — это конденсатор, установленный параллельно нагрузке. Его недостатком является то, что для снижения пульсаций на очень мощной нагрузке придется устанавливать конденсаторы очень большой емкости — десятки тысяч микрофарад.

Его принцип работы заключается в том, что конденсатор заряжается, его напряжение достигает амплитуды, питающее напряжение после точки максимальной амплитуды начинает снижаться, с этого момента нагрузка питается от конденсатора. Конденсатор разряжается в зависимости от сопротивления нагрузки (или её эквивалентного сопротивления, если она не резистивная). Чем больше емкость конденсатора — тем меньшие будут пульсации, если сравнивать с конденсатором с меньшей емкостью, подключенного к этой же нагрузке.

Простым словами: чем медленнее разряжается конденсатор — тем меньше пульсации.

Скорости разряда конденсатора зависит от потребляемого нагрузкой тока. Её можно определить по формуле постоянной времени:

где R — сопротивление нагрузки, а C — емкость сглаживающего конденсатора.

Таким образом, с полностью заряженного состояния до полностью разряженного конденсатор разрядится за 3-5 t. Заряжается с той же скоростью, если заряд происходит через резистор, поэтому в нашем случае это неважно.

Отсюда следует — чтобы добиться приемлемого уровня пульсаций (он определяется требованиями нагрузки к источнику питания) нужна емкость, которая разрядится за время в разы превышающее t. Так как сопротивления большинства нагрузок сравнительно малы, нужна большая емкость, поэтому в целях сглаживания пульсаций на выходе выпрямителя применяют , их еще называют полярными или поляризованными.

Обратите внимание, что путать полярность электролитического конденсатора крайне не рекомендуется, потому что это чревато его выходом из строя и даже взрывом. Современные конденсаторы защищены от взрыва — у них на верхней крышке есть выштамповка в виде креста, по которой корпус просто треснут. Но из конденсатора выйдет струя дыма, будет плохо, если она попадет вам в глаза.

Расчет емкости ведется исходя из того какой коэффициент пульсаций нужно обеспечить. Если выражаться простым языком, то коэффициентом пульсаций показывает, на какой процент проседает напряжение (пульсирует).

Где Iн — ток нагрузки, Uн — напряжение нагрузки, Kн — коэффициент пульсаций.

Для большинства типов аппаратуры коэффициент пульсаций берется 0.01-0.001. Дополнительно желательно установить как можно большей емкости, для фильтрации от высокочастотных помех.

Как сделать блок питания своими руками?

Простейший блок питания постоянного тока состоит из трёх элементов:

Это нестабилизированный блок питания постоянного тока со сглаживающим конденсатором. Напряжение на его выходе больше чем переменное напряжение вторичной обмотке. Это значит, что если у вас трансформатор 220/12 (первичная на 220В, а вторичная на 12В), то на выходе вы получите 15-17В постоянки. Эта величина зависит от емкости сглаживающего конденсатора. Эту схему можно использовать для питания любой нагрузки, если для нее неважно, то, что напряжение может «плавать» при изменениях напряжения питающей сети.

У конденсатора две основных характеристики — емкость и напряжение. Как подбирать емкость мы разобрались, а с подбором напряжения — нет. Напряжение конденсатора должно превышать амплитудное напряжение на выходе выпрямителя хотя бы в половину. Если фактическое напряжение на обкладках конденсатора превысит номинальное — велика вероятность его выхода из строя.

Старые советские конденсаторы делались с хорошим запасом по напряжению, но сейчас все используют дешевые электролиты из Китая, где в лучшем случае есть малый запас, а в худшем — и указанного номинального напряжения не выдержит. Поэтому не экономьте на надежности.

Стабилизированный блок питания отличается от предыдущего всего лишь наличием стабилизатора напряжения (или тока). Простейший вариант — использовать L78xx или другие , типа отечественного КРЕН.

Так вы можете получить любое напряжение, единственное условие при использовании подобных стабилизаторов, это то, напряжение до стабилизатора должно превышать стабилизированную (выходную) величину хотя бы на 1.5В. Рассмотрим, что написано в даташите 12В стабилизатора L7812:

Входное напряжение не должно превышать 35В, для стабилизаторов от 5 до 12В, и 40В для стабилизаторов на 20-24В.

Входное напряжение должно превышать выходное на 2-2.5В.

Т.е. для стабилизированного БП на 12В со стабилизатором серии L7812 нужно, чтобы выпрямленное напряжение лежало в пределах 14.5-35В, чтобы избежать просадок, будет идеальным решением применять трансформатора с вторичной обмоткой на 12В.

Но выходной ток достаточно скромный — всего 1.5А, его можно усилить с помощью проходного транзистора. Если у вас есть , можно использовать эту схему:

На ней изображено только подключение линейного стабилизатора «левая» часть схемы с трансформатором и выпрямителем опущена.

Если у вас есть NPN-транзисторы типа КТ803/КТ805/КТ808, то подойдет эта:

Стоит отметить, что во второй схеме выходное напряжение будет меньше напряжения стабилизации на 0.6В — это падение на переходе эмиттер база, подробнее об этом мы писали . Для компенсации этого падения в цепь был введен диод D1.

Можно и в параллель установить два линейных стабилизатора, но не нужно! Из-за возможных отклонений при изготовлении нагрузка будет распределяться неравномерно и один из них может из-за этого сгореть.

Установите и транзистор, и линейный стабилизатор на радиатор, желательно на разные радиаторы. Они сильно греются.

Регулируемые блоки питания

Простейший регулируемый блок питания можно сделать с регулируемым линейным стабилизатором LM317, её ток тоже до 1.5 А, вы можете усилить схему проходным транзистором, как было описано выше.

Вот более наглядная схема для сборки регулируемого блока питания.

С тиристорным регулятором в первичной обмотке, по сути такой же регулируемый блок питания.

Кстати похожей схемой регулируют и сварочный ток:

Выпрямитель используется в источниках питания для получения постоянного тока из переменного. Без его участия не получится запитать нагрузку постоянного тока, например светодиодную ленту или радиоприемник.

Также используются в разнообразных зарядных устройствах для автомобильных аккумуляторов, есть ряд схем с использованием трансформатора с группой отводов от первичной обмотки, которые переключаются галетным переключателем, а во вторичной обмотке установлен только диодный мост. Переключатель устанавливают со стороны высокого напряжения, так как, там в разы ниже ток и его контакты не будут пригорать от этого.

По схемам из статьи вы можете собрать простейший блок питания как для постоянной работы с каким-то устройством, так и для тестирования своих электронных самоделок.

Схемы не отличаются высоким КПД, но выдают стабилизированное напряжение без особых пульсаций, следует проверить емкости конденсаторов и рассчитать под конкретную нагрузку. Они отлично подойдут для работы маломощных аудиоусилителей, и не создадут дополнительного фона. Регулируемый блок питания станет полезным автолюбителями и автоэлектрикам для проверки реле регулятора напряжения генератора.

Регулируемый блок питания используется во всех областях электроники, а если его улучшить защитой от КЗ или стабилизатором тока на двух транзисторах, то вы получите почти полноценный лабораторный блок питания.

Маломощные однофазные выпрямители. Выпрямители

Выпрямитель — это устройство для преобразования переменного напряжения в постоянное. Это одна из самых часто встречающихся деталей в электроприборах, начиная от фена для волос, заканчивая всеми типами блоков питания с выходным напряжением постоянного тока. Есть разные схемы выпрямителей и каждая из них в определённой мере справляется со своей задачей. В этой статье мы расскажем о том, как сделать однофазный выпрямитель, и зачем он нужен.

Выпрямителем называется устройство, предназначенное для преобразования переменного тока в постоянный. Слово «постоянный» не совсем корректно, дело в том, что на выходе выпрямителя, в цепи синусоидального переменного напряжения, в любом случае окажется нестабилизированное пульсирующие напряжение. Простыми словами: постоянное по знаку, но изменяющееся по величине.

Различают два типа выпрямителей:

Однополупериодный . Он выпрямляет только одну полуволну входного напряжения. Характерны сильные пульсации и пониженное относительно входного напряжение.

Двухполупериодный . Соответственно, выпрямляется две полуволны. Пульсации ниже, напряжение выше чем на входе выпрямителя — это две основных характеристики.

Что значит стабилизированное и нестабилизированное напряжение?

Стабилизированным называется напряжение, которое не изменяется по величине независимо ни от нагрузки, ни от скачков входного напряжения. Для трансформаторных источников питания это особенно важно, потому что выходное напряжение зависит от входного и отличается от него на Ктрансформации раз.

Нестабилизированное напряжение — изменяется в зависимости от скачков в питающей сети и характеристик нагрузки. С таким блоком питания из-за просадок возможно неправильное функционирование подключенных приборов или их полная неработоспособность и выход из строя.

Основные величины переменного напряжения — амплитудное и действующее значение. Когда говорят «в сети 220В переменки» имеют в виду действующее напряжение.

Если говорят об амплитудной величине, то имеют в виду, сколько вольт от нуля до верхней точки полуволны синусоиды.

Опустив теорию и ряд формул можно сказать, что в 1.41 раз меньше амплитудного. Или:

Амплитудное напряжение в сети 220В равняется:

Первая схема более распространена. Состоит из диодного моста — соединены между собой «квадратом», а в его плечи подключена нагрузка. Выпрямитель типа «мост» собирается по схеме приведенной ниже:

Её можно подключить напрямую к сети 220В, так сделано в , или на вторичные обмотки сетевого (50 Гц) трансформатора. Диодные мосты по этой схеме можно собирать из дискретных (отдельных) диодов или использовать готовую сборку диодного моста в едином корпусе.

Вторая схема — выпрямитель со средней точкой не может быть подключена напрямую к сети. Её смысл заключается в использовании трансформатора с отводом от середины.

По своей сути — это два однополупериодных выпрямителя, подключенные к концам вторичной обмотки, нагрузка одним контактом подключается к точке соединения диодов, а вторым — к отводу от середины обмоток.

Её преимуществом перед первой схемой является меньшее количество полупроводниковых диодов. А недостатком — использование трансформатора со средней точкой или, как еще называют, отводом от середины. Они менее распространены чем обычные трансформаторы со вторичной обмоткой без отводов.

Питание пульсирующим напряжением неприемлемо для ряда потребителей, например, источники света и аудиоаппаратура. Тем более, что допустимые пульсации света регламентируются в государственных и отраслевых нормативных документах.

Для сглаживания пульсаций используют — параллельно установленный конденсатор, LC-фильтр, разнообразные П- и Г-фильтры…

Но самый распространенный и простой вариант — это конденсатор, установленный параллельно нагрузке. Его недостатком является то, что для снижения пульсаций на очень мощной нагрузке придется устанавливать конденсаторы очень большой емкости — десятки тысяч микрофарад.

Его принцип работы заключается в том, что конденсатор заряжается, его напряжение достигает амплитуды, питающее напряжение после точки максимальной амплитуды начинает снижаться, с этого момента нагрузка питается от конденсатора. Конденсатор разряжается в зависимости от сопротивления нагрузки (или её эквивалентного сопротивления, если она не резистивная). Чем больше емкость конденсатора — тем меньшие будут пульсации, если сравнивать с конденсатором с меньшей емкостью, подключенного к этой же нагрузке.

Простым словами: чем медленнее разряжается конденсатор — тем меньше пульсации.

Скорости разряда конденсатора зависит от потребляемого нагрузкой тока. Её можно определить по формуле постоянной времени:

где R — сопротивление нагрузки, а C — емкость сглаживающего конденсатора.

Таким образом, с полностью заряженного состояния до полностью разряженного конденсатор разрядится за 3-5 t. Заряжается с той же скоростью, если заряд происходит через резистор, поэтому в нашем случае это неважно.

Отсюда следует — чтобы добиться приемлемого уровня пульсаций (он определяется требованиями нагрузки к источнику питания) нужна емкость, которая разрядится за время в разы превышающее t. Так как сопротивления большинства нагрузок сравнительно малы, нужна большая емкость, поэтому в целях сглаживания пульсаций на выходе выпрямителя применяют , их еще называют полярными или поляризованными.

Обратите внимание, что путать полярность электролитического конденсатора крайне не рекомендуется, потому что это чревато его выходом из строя и даже взрывом. Современные конденсаторы защищены от взрыва — у них на верхней крышке есть выштамповка в виде креста, по которой корпус просто треснут. Но из конденсатора выйдет струя дыма, будет плохо, если она попадет вам в глаза.

Расчет емкости ведется исходя из того какой коэффициент пульсаций нужно обеспечить. Если выражаться простым языком, то коэффициентом пульсаций показывает, на какой процент проседает напряжение (пульсирует).

Где Iн — ток нагрузки, Uн — напряжение нагрузки, Kн — коэффициент пульсаций.

Для большинства типов аппаратуры коэффициент пульсаций берется 0.01-0.001. Дополнительно желательно установить как можно большей емкости, для фильтрации от высокочастотных помех.

Как сделать блок питания своими руками?

Простейший блок питания постоянного тока состоит из трёх элементов:

Это нестабилизированный блок питания постоянного тока со сглаживающим конденсатором. Напряжение на его выходе больше чем переменное напряжение вторичной обмотке. Это значит, что если у вас трансформатор 220/12 (первичная на 220В, а вторичная на 12В), то на выходе вы получите 15-17В постоянки. Эта величина зависит от емкости сглаживающего конденсатора. Эту схему можно использовать для питания любой нагрузки, если для нее неважно, то, что напряжение может «плавать» при изменениях напряжения питающей сети.

У конденсатора две основных характеристики — емкость и напряжение. Как подбирать емкость мы разобрались, а с подбором напряжения — нет. Напряжение конденсатора должно превышать амплитудное напряжение на выходе выпрямителя хотя бы в половину. Если фактическое напряжение на обкладках конденсатора превысит номинальное — велика вероятность его выхода из строя.

Старые советские конденсаторы делались с хорошим запасом по напряжению, но сейчас все используют дешевые электролиты из Китая, где в лучшем случае есть малый запас, а в худшем — и указанного номинального напряжения не выдержит. Поэтому не экономьте на надежности.

Стабилизированный блок питания отличается от предыдущего всего лишь наличием стабилизатора напряжения (или тока). Простейший вариант — использовать L78xx или другие , типа отечественного КРЕН.

Так вы можете получить любое напряжение, единственное условие при использовании подобных стабилизаторов, это то, напряжение до стабилизатора должно превышать стабилизированную (выходную) величину хотя бы на 1.5В. Рассмотрим, что написано в даташите 12В стабилизатора L7812:

Входное напряжение не должно превышать 35В, для стабилизаторов от 5 до 12В, и 40В для стабилизаторов на 20-24В.

Входное напряжение должно превышать выходное на 2-2.5В.

Т.е. для стабилизированного БП на 12В со стабилизатором серии L7812 нужно, чтобы выпрямленное напряжение лежало в пределах 14.5-35В, чтобы избежать просадок, будет идеальным решением применять трансформатора с вторичной обмоткой на 12В.

Но выходной ток достаточно скромный — всего 1.5А, его можно усилить с помощью проходного транзистора. Если у вас есть , можно использовать эту схему:

На ней изображено только подключение линейного стабилизатора «левая» часть схемы с трансформатором и выпрямителем опущена.

Если у вас есть NPN-транзисторы типа КТ803/КТ805/КТ808, то подойдет эта:

Стоит отметить, что во второй схеме выходное напряжение будет меньше напряжения стабилизации на 0.6В — это падение на переходе эмиттер база, подробнее об этом мы писали . Для компенсации этого падения в цепь был введен диод D1.

Можно и в параллель установить два линейных стабилизатора, но не нужно! Из-за возможных отклонений при изготовлении нагрузка будет распределяться неравномерно и один из них может из-за этого сгореть.

Установите и транзистор, и линейный стабилизатор на радиатор, желательно на разные радиаторы. Они сильно греются.

Регулируемые блоки питания

Простейший регулируемый блок питания можно сделать с регулируемым линейным стабилизатором LM317, её ток тоже до 1.5 А, вы можете усилить схему проходным транзистором, как было описано выше.

Вот более наглядная схема для сборки регулируемого блока питания.

С тиристорным регулятором в первичной обмотке, по сути такой же регулируемый блок питания.

Кстати похожей схемой регулируют и сварочный ток:

Выпрямитель используется в источниках питания для получения постоянного тока из переменного. Без его участия не получится запитать нагрузку постоянного тока, например светодиодную ленту или радиоприемник.

Также используются в разнообразных зарядных устройствах для автомобильных аккумуляторов, есть ряд схем с использованием трансформатора с группой отводов от первичной обмотки, которые переключаются галетным переключателем, а во вторичной обмотке установлен только диодный мост. Переключатель устанавливают со стороны высокого напряжения, так как, там в разы ниже ток и его контакты не будут пригорать от этого.

По схемам из статьи вы можете собрать простейший блок питания как для постоянной работы с каким-то устройством, так и для тестирования своих электронных самоделок.

Схемы не отличаются высоким КПД, но выдают стабилизированное напряжение без особых пульсаций, следует проверить емкости конденсаторов и рассчитать под конкретную нагрузку. Они отлично подойдут для работы маломощных аудиоусилителей, и не создадут дополнительного фона. Регулируемый блок питания станет полезным автолюбителями и автоэлектрикам для проверки реле регулятора напряжения генератора.

Регулируемый блок питания используется во всех областях электроники, а если его улучшить защитой от КЗ или стабилизатором тока на двух транзисторах, то вы получите почти полноценный лабораторный блок питания.

В электрических сетях используется преимущественно переменный ток, питающий большинство промышленных и бытовых потребителей. Однако существует немало электрических устройств — магнитофонов, приемников и других приборов, основой которых служат полупроводники или лампы. Для их работы требуется только постоянный ток. Кроме того, он используется во многих заводских производственных процессах.

Преимущественная выработка переменного тока связана с удобством его трансформации в разные значения напряжений. Другим положительным моментом считается передача переменного тока по ЛЭП с минимальными потерями. Поэтому все необходимые преобразования выполняют выпрямители переменного тока, позволяющие получить необходимое , обеспечивающее нормальную работу электрических приборов.

Принцип работы выпрямителя тока

Основной функцией выпрямителя тока является преобразование переменного напряжения в постоянное. Принцип работы этих устройств основан на свойствах переменного тока, величина и направление которого изменяются во времени.

Согласно стандартного значения изменение направления тока в сети составляет 50 раз в течение одной секунды. Такое колебание является частотой и составляет 50 герц или периодов. То есть значение электротока в определенный период достигает нулевой отметки, а затем постепенно набирает максимальное значение. Этот процесс постоянно повторяется и протекает в периодической форме. Значение тока постоянно изменяется в соответствии с синусоидальным законом.

Основная задача выпрямителя заключается в получении устойчивого постоянного напряжения, не изменяющего своей величины и направления. Сам процесс выпрямления заключается в работе вентиля, пропускающего ток лишь в одном направлении. В результате односторонней проводимости вентиля, прохождение тока через него осуществляется исключительно в положительные полупериоды. Во время отрицательных периодов ток в цепи отсутствует.

При наличии положительной полуволны, сопротивление в вентиле минимальное, что обеспечивает свободное прохождение тока. Отрицательная полуволна подвергается значительному сопротивлению, задерживается и не проходит через вентиль. В результате включения вентиля в цепь, переменный ток будет полностью отсутствовать. Изменения оставшегося в цепи тока будут касаться только его величины, а направление останется неизменным. Это так называемый первичный или пульсирующий ток. С его помощью можно зарядить аккумулятор, но, он не годится для питания, например, радиоэлектронной аппаратуры. Необходимо выполнить процедуру сглаживания, чтобы пульсирующий ток превратился в . С этой целью используется специальный фильтр.

В качестве такого фильтра используется конденсатор с большой емкостью. Выпрямляемый ток сглаживается или фильтруется за счет зарядки конденсатора током, идущим от вентиля. В результате, создается определенный запас электроэнергии. При уменьшении тока, проходящего через вентиль и падении напряжения на нагрузке в конце каждого положительного полупериода, происходит отдача конденсатором накопленной энергии.

Однополупериодные выпрямители

Далеко не все фильтры способны полностью избавить ток от резких пульсаций. Для этих целей требуются более совершенные фильтры, обеспечивающие на нагрузке лишь незначительные пульсации постоянного тока. Такие пульсации не оказывают решающего влияния на основные функции электронного устройства, получающего питание через выпрямитель.

К наиболее простым приборам относится . Основным принципом его работы является использование для выпрямления только положительных полупериодов. Выпрямленный ток и сетевое напряжение имеют одинаковую частоту пульсаций. Поэтому для их сглаживания в однополупериодном выпрямителе должен применяться хороший фильтр. С помощью данных устройств осуществляется питание аппаратуры с потреблением незначительного тока. В случае возрастания токовых значений, необходимо использовать более сложные фильтры.

Работа двухполупериодных выпрямителей

Более широкое распространение получили переменного тока, с использованием сразу двух вентилей. Течение тока в нагрузке происходит всегда в одном направлении.

Схема выпрямления действует следующим образом. В определенное время на одном из выводов вторичной обмотки трансформатора напряжение будет положительным по отношению к другому выводу. Ток проходит через первый вентиль с небольшим сопротивлением, после этого он идет по нагрузке к средней точке вторичной обмотки. Такое положение будет сохраняться весь положительный полупериод. Когда ток не первом выводе трансформатор изменится, напряжение станет отрицательным. Прохождения тока через первый вентиль не будет в связи с его большим сопротивлением. Второй конец обмотки будет с положительным напряжением, и ток начнет проходить по второму вентилю, нагрузке с выходом к средней точке вторичной обмотки трансформатора.

Данная схема выпрямления тока позволяет использовать два полупериода напряжения. Высокая частота пульсаций значительно облегчает фильтрацию выпрямленного напряжения.

Как происходит выпрямление переменного тока

В данной статье расскажем что такое выпрямитель тока, принципы его работы и схемы выпрямления электрического тока.

Выпрямитель электрического тока – электронная схема, предназначенная для преобразования переменного электрического тока в постоянный (одно полярный) электрический ток.

В полупроводниковой аппаратуре выпрямители исполняются на полупроводниковых диодах. В более старой и высоковольтной аппаратуре выпрямители исполняются на электровакуумных приборах – кенотронах. Раньше широко использовались – селеновые выпрямители.

Для начала вспомним, что собой представляет переменный электрический ток. Это гармонический сигнал, меняющий свою амплитуду и полярность по синусоидальному закону.

В переменном электрическом токе можно условно выделить положительные и отрицательные полупериоды. Всё то, что больше нулевого значения относится к положительным полупериодам (положительная полуволна – красным цветом), а всё, что меньше (ниже) нулевого значения – к отрицательным полупериодам (отрицательная полуволна – синим цветом).

Выпрямитель, в зависимости от его конструкции «отсекает», или «переворачивает» одну из полуволн переменного тока, делая направление тока односторонним.

Схемы построения выпрямителей сетевого напряжения можно поделить на однофазные и трёхфазные, однополупериодные и двухполупериодные.

Для удобства мы будем считать, что выпрямляемый переменный электрический ток поступает с вторичной обмотки трансформатора. Это соответствует истине и потому, что даже электрический ток в домашние розетки квартир домов приходит с трансформатора понижающей подстанции. Кроме того, поскольку сила тока – величина, напрямую зависящая от нагрузки, то при рассмотрении схем выпрямления мы будем оперировать не понятием силы тока, а понятием – напряжение, амплитуда которого напрямую не зависит от нагрузки.

На рисунке изображена схема и временная диаграмма выпрямления переменного тока однофазным однополупериодным выпрямителем.

Из рисунка видно, что диод отсекает отрицательную полуволну. Если мы перевернём диод, поменяв его выводы – анод и катод местами, то на выходе окажется, что отсечена не отрицательная, а положительная полуволна.

Среднее значение напряжения на выходе однополупериодного выпрямителя соответствует значению:

U ср = U max / π = 0,318 U max

Однополупериодные выпрямители используются в качестве выпрямителей сетевого напряжения в схемах, потребляющих слабый ток, а также в качестве выпрямителей импульсных источников питания. Они абсолютно не годятся в качестве выпрямителей сетевого напряжения синусоидальной формы для устройств, потребляющих большой ток.

Наиболее распространёнными являются однофазные двухполупериодные выпрямители. Существуют две схемы таких выпрямителей – мостовая схема и балансная.

Рассмотрим мостовую схему однофазного двухполупериодного выпрямителя и его работу.

Если ток вторичной обмотки трансформатора течёт по направлению от точки «А» к точке «В», то далее от точки «В» ток течёт через диод VD3 (диод VD1 его не пропускает), нагрузку R н , диод VD2 и возвращается в обмотку трансформатора через точку «А».

Каждый электрик должен знать:  Схема электропроводки в двухэтажном деревянном доме

Когда направление тока вторичной обмотки трансформатора меняется на противоположное, то вышедший из точки «А», ток течёт через диод VD4, нагрузку R н , диод VD1 и возвращается в обмотку трансформатора через точку «В».

Таким образом, практически отсутствует промежуток времени, когда напряжение на выходе выпрямителя равно нулю.

Рассмотрим балансную схему однофазного двухполупериодного выпрямителя.

По своей сути это два однополупериодных выпрямителя, подключенных параллельно в противофазе, при этом начало второй обмотки соединено с концом первой вторичной обмотки. Если в мостовой схеме во время действия обоих полупериодов сетевого напряжения используется одна вторичная обмотка трансформатора, то в балансной схеме две вторичных обмотки (2 и 3) используются поочерёдно.

Среднее значение напряжения на выходе двухполупериодного выпрямителя соответствует значению:

U ср = 2*U max / π = 0,636 U max

где: π — константа равная 3,14.

Представляет интерес сочетание мостовой и балансной схемы выпрямления, в результате которого, получается двухполярный мостовой выпрямитель, у которого один провод является общим для двух выходных напряжений (для первого выходного напряжения, он отрицательный, а для второго — положительный):

Трёхфазные выпрямители электрического тока (Схема Ларионова)

Трёхфазные выпрямители обладают лучшей характеристикой выпрямления переменного тока – меньшим коэффициентом пульсаций выходного напряжения по сравнению с однофазными выпрямителями. Связано это с тем, что в трёхфазном электрическом токе синусоиды разных фаз «перекрывают» друг друга. После выпрямления такого напряжения, сложения амплитуд различных фаз не происходит, а выделяется максимальная амплитуда из значений всех трёх фаз входного напряжения.

На следующем рисунке представлена схема трёхфазного однополупериодного выпрямителя и его выходное напряжение (красным цветом), образованное на «вершинах» трёхфазного напряжения.

За счёт «перекрытия» фаз напряжения, выходное напряжение трёхфазного однополупериодного выпрямителя имеет меньшую глубину пульсации. Вторичные обмотки трансформатора могут быть использованы только по схеме подключения «звезда», с «нулевым» выводом от трансформатора.

На следующем рисунке представлена схема трёхфазного двухполупериодного мостового выпрямителя (схема Ларионова) и его выходное напряжение (красным цветом).

За счёт использования положительной и перевернутой отрицательной полуволны трёхфазного напряжения, выходное напряжение (выделено красным цветом), образованное на вершинах синусоид, имеет самую маленькую глубину пульсаций выходного напряжения по сравнению со всеми остальными схемами выпрямления. Вторичные обмотки трансформатора могут быть использованы как по схеме подключения «звезда», без «нулевого» вывода от трансформатора, так и «треугольник».

При конструировании блоков питания

Для выбора выпрямительных диодов используют следующие параметры, которые всегда указаны в справочниках:

— максимальное обратное напряжение диода – U обр ;

— максимальный ток диода – I max ;

— прямое падение напряжения на диоде – U пр .

Необходимо выбирать все эти перечисленные параметры с запасом, для исключения выхода диодов из строя.

Максимальное обратное напряжение диода U обр должно быть в два раза больше реального выходного напряжения трансформатора. В противном случае возможен обратный пробой p-n , который может привести к выходу из строя не только диодов выпрямителя, но и других элементов схем питания и нагрузки.

Значение максимального тока I max выбираемых диодов должно превышать реальный ток выпрямителя в 1,5 – 2 раза. Невыполнение этого условия, также приводит к выходу из строя сначала диодов, а потом других элементов схем.

Прямое падение напряжения на диоде – U пр , это то напряжение, которое падает на кристалле p-n перехода диода. Если по пути прохождения тока стоят два диода, значит это падение происходит на двух p-n переходах. Другими словами, напряжение, подаваемое на вход выпрямителя, на выходе уменьшается на значение падения напряжения.

Схемы выпрямителей электрического тока предназначены для преобразования переменного — изменяющего полярность напряжения в однополярное — не изменяющее полярность. Но этого недостаточно для превращения переменного напряжения в постоянное. Для того, чтобы оно преобразовалось в постоянное необходимо применение сглаживающих фильтров питания , устраняющих резкие перепады выходного напряжения от нуля до максимального значения.

В современном многообразии электрических приборов как бытового назначения, так и для иных задач большинство содержит выпрямитель. Это связано с их непрерывным усложнением в связи с увеличением функциональности. А для многофункциональности необходима электроника, потребляющая постоянный ток. Его обеспечивает источник питания. В нем всегда расположен выпрямитель. Далее расскажем об этом устройстве более подробно.

Какими были первые выпрямители

Развитие электроснабжения начиналось с нуля. А это значит, что не было ни знаний, ни, тем более, оборудования для этого. Потребовалось почти столетие, чтобы появились современные полупроводниковые выпрямители. Они являются следствием исторически сложившейся инфраструктуры электроснабжения. А она, как известно, развивалась на основе переменного напряжения.

Электроснабжение на постоянном напряжении эффективнее, поскольку не сказываются потери в ЛЭП из-за индуктивности и емкости проводов. Но почти везде электроэнергия в сети соответствует переменному напряжению. Это происходит потому, что электроснабжение невозможно без изменения величины напряжения. А эту задачу до сих пор наиболее эффективно решает только трансформатор. Различие свойств электрических цепей с переменным и постоянным напряжением было сразу же замечено исследователями.

А поскольку эффективным источником электроэнергии является вторичная обмотка трансформатора, надо было так или иначе получить некое подобие постоянного напряжения на ее основе. На первом этапе развития электротехники появились только электромагнитные машины. Их и приспособили для выпрямления напряжения. Также было известно явление электролиза. Его тоже использовали для изготовления выпрямителей — электролитических.

Механическое выпрямление напряжения

Определение выпрямления означает получение однонаправленного электрического тока. Его величина при этом будет зависеть от формы переменного напряжения в каждом полупериоде. Но однонаправленный электрический ток при этом получается, как при положительном полупериоде напряжения, так и при его отрицательном значении. При этом нагрузка при переходе напряжения через ноль должна отключаться от ненужной полуволны напряжения. Первые выпрямители выполняли эту задачу механическими контактами.

Они либо приводились в движение синхронным двигателем, либо перемещались достаточно быстродействующим соленоидом. В обеих схемах контакты, переключающие напряжение, перемещаются синхронно с напряжением. В схеме с двигателем они вращаются, замыкаясь в нужный момент времени.

Узел, предназначенный для выпрямления напряжения, при вращении аналогичен коллектору двигателя постоянного тока. Количество ламелей – контактов определяется числом оборотов синхронного двигателя. При переходе синусоиды выпрямляемого напряжения через ноль обе щетки контактируют либо с началом, либо с концом ламели. Начало ламели совпадает с острием стрелки, указывающей направление вращения двигателя.

Время контакта щеток с ламелью совпадает с длительностью половины периода выпрямляемого напряжения. Синхронный двигатель вращается точно и кратно частоте питающего напряжения, которое он выпрямляет присоединенным к нему коллектором. Но его инерционность не позволит выпрямить скачкообразное изменение частоты питающего напряжения. Поэтому он эффективен только как выпрямитель напряжения электросети.

Выпрямитель на соленоиде замыкает контакт либо на время, когда сердечник втягивается, либо наоборот. Он может сработать только при некотором минимальном напряжении, которое достаточно для перемещения контактов. Поэтому часть полуволны вблизи перехода напряжения через ноль не будет обработана как следует. Но зато такой выпрямитель может быть изготовлен довольно-таки небольшим. Поэтому он был широко распространен в свое время.

Очевидно то, что без коммутации электрической цепи выпрямления напряжения не может быть. А возможности механического контакта ограничены мощностью искры, которая возникает в момент разрыва электрической цепи. Она постепенно уничтожает этот контакт тем быстрее, чем больше электрическая мощность при его размыкании.

Это устройство работает без коммутации. Однако оно было изобретено только после появления достаточно чистого алюминия. Известно, что этот металл образует тонкую пленку прочного окисла на своей поверхности. Окись алюминия — это почти изолятор. Если погрузить алюминиевую пластину в определенный раствор и подать на нее отрицательный потенциал, пленка разрушится. При этом ток в растворе должен исходить из погруженной рядом железной пластины — анода.

Пленка окиси алюминия моментально растворится в растворе, например, фосфорнокислого натрия. Поэтому поверхность катода получится из чистого алюминия. А ток будет беспрепятственно течь между погруженными электродами. Но как только полярность электродов сменится на противоположную, поверхность алюминиевой пластины моментально окислится. Пленка с большим сопротивлением не будет пропускать электрический ток.

Энергетические характеристики электролитического выпрямителя зависят от объема сосуда, а также от размеров и числа пластин. Пластина из чистого алюминия работоспособна длительное время. Вывести из строя такой выпрямитель можно только механическим разрушением. От увеличения тока он «застрахован» свойствами электролита. Слишком высокое напряжение просто не будет выпрямляться. Но при его возвращении к номинальной величине этот выпрямитель продолжит работу. Он просто не убиваем.

Ламповые варианты

Такие механические и электролитические выпрямляющие устройства просуществовали несколько десятилетий до того времени, как появились электронные лампы. Но и они были ограничены потерями электроэнергии. Хотя и не связанными с коммутацией. Дело в том, что для работы лампы необходим предварительно созданный запас электронов.

А его не научились получать в лампах иначе, как раскаляя нить накала. Вот и получалось, что, несмотря на быстродействие, обычная лампа-диод расходовала слишком много электроэнергии на выпрямление напряжения. Но со временем была изобретена мощная ртутная лампа — ртутный выпрямитель. Она отличалась тем, что в ней возникал управляемый электрический разряд в парах ртути. Разряд существовал только на одной полуволне напряжения.

Это позволило довести мощность выпрямителя до значений, приемлемых для промышленного использования. И на основе ртутных выпрямителей были построены первые ЛЭП, работающие при постоянном напряжении. А во всех остальных электроприборах так и применялись электронные лампы-диоды. В 30-е годы ХХ века появились первые полупроводниковые выпрямители на основе селена. Они так и назывались — «селеновые выпрямители».

Однако характеристики этих выпрямителей оставляли желать лучшего. Поэтому поиски более эффективных технических решений продолжались и завершились появлением полупроводникового диода. Но его преимущества тоже относительны. Температура полупроводника не может превышать 130–150 градусов Цельсия. По этой причине все предшествующие виды выпрямителей имеют свою нишу для условий с высокой температурой и радиацией. При остальных условиях эксплуатации применяются диодные выпрямители.

Полупроводниковые схемы

Любой выпрямитель — это схема. Она включает в себя вторичную обмотку трансформатора, выпрямляющий элемент, электрический фильтр и нагрузку. При этом существует возможность получать умножение напряжения. Выпрямленное напряжение — это сумма постоянного и переменного напряжений. Переменная составляющая — это нежелательная компонента, которую уменьшают тем или иным способом. Но поскольку используются полуволны переменного напряжения, иначе быть не может.

Влияние переменной составляющей оценивается коэффициентом пульсации.

Его можно уменьшить двумя способами:

  • улучшая эффективность электрического фильтра;
  • улучшая параметры выпрямляемого переменного напряжения.

Простейший выпрямитель однополупериодный. Он отсекает одну из полуволн переменного напряжения. Поэтому коэффициент пульсаций в такой схеме получается самым большим. Но если выпрямляется трехфазное напряжение с одним диодом в каждой фазе, а также одним и тем же фильтром, получится в три раза меньший коэффициент пульсаций. Однако наилучшими характеристиками обладают двухполупериодные выпрямители.

Использовать обе полуволны переменного напряжения можно двумя способами:

  • по схеме моста;
  • по схеме со средней точкой обмотки (схема Миткевича).

Сравним обе эти схемы для одного и того же значения выпрямленного напряжения. В схеме моста используется меньше витков вторичной обмотки трансформатора, что является преимуществом. Но при этом в однофазном выпрямительном мосте необходимы четыре диода. В схеме со средней точкой необходимо в два раза больше витков вторичной обмотки со средней точкой, что является недостатком. Еще один недостаток этой схемы — необходимость симметрии частей обмотки относительно средней точки.

Асимметрия будет дополнительным источником пульсаций. Но зато в этой схеме нужны только два диода, что является преимуществом. При выпрямлении на диоде существует напряжение. Его величина почти не изменяется в зависимости от силы тока, протекающего через этот диод. Поэтому мощность, рассеиваемая на полупроводниковом диоде, растет по мере увеличения силы выпрямленного тока. Это весьма ощутимо при большой силе тока, и поэтому полупроводниковые диоды размещаются на охлаждающих радиаторах и при необходимости обдуваются.

При выпрямлении тока большой силы два диода схемы со средней точкой будут экономичнее и компактнее в сравнении с четырьмя диодами выпрямительного моста. Схемы выпрямителей в свое время не появились из ниоткуда. Их изобрели инженеры. Поэтому схемы выпрямителей в литературе иногда называются в связи с именами своих первооткрывателей. Мостовая схема именуется как «полный мост Гретца». Схема со средней точкой — «выпрямитель Миткевича».

Полупроводниковые диоды вместе с конденсаторами позволяют создавать схемы, в которых конденсаторы за полпериода заряжаются и за полпериода разряжаются в нагрузку. При этом напряжения, которые на них накапливаются, суммируются. Таким путем можно создавать схемы для умножения напряжения. Наиболее простая и эффективная схема выпрямителя, который удвоит напряжение, содержит два диода и два конденсатора. Ее называют схемой Латура-Делона. Ее аналогом является схема Гренашера.

Создавая необходимое число ячеек, содержащих конденсаторы и диоды, можно получить любое напряжение, кратное их числу. Схема, соответствующая этому решению, показана далее. В ней каждая из ячеек содержит конденсатор и диод.

В статье были подробно рассмотрены лишь некоторые виды выпрямителей, имеющие наиболее широкое использование.

Делая выбор того или иного устройства, необходимо руководствоваться параметрами напряжения нагрузки. Только таким путем получается эффективное выпрямление напряжения.

Как известно, электрическая энергия производится, распределяется и потребляется преимущественно в виде энергии переменного тока. Так удобнее. Однако потребители электрической энергии бывают разные. Для потребителей переменного тока (асинхронных и синхронных электрических двигателей, трансформаторов, люминесцентных ламп) важно, чтобы потребляемый ими ток был знакопеременным (лучше всего – синусоидальным). Частота изменения знака тока стандартизована (в Украине – 50 Гц). Другие потребители требуют, ток был одного знака. К таким относятся электрические двигатели переменного тока, аккумуляторные батареи во время их заряда, гальванические и электролизные ванны, сварочные установки, электронные микросхемы и т.п. Их называют потребителями постоянного тока.

Выпрямитель – полупроводниковый преобразователь энергии, предназначенный для преобразования электрической энергии переменного тока в энергию постоянного тока. Потребность в использовании выпрямителя возникает тогда, когда для питания потребителя постоянного тока необходимо использовать энергию из источника переменного тока (например, промышленной или бытовой сети переменного тока). В таком случае выпрямитель включают между источником переменного тока и потребителем постоянного тока.

Выпрямители широко используются в блоках питания компьютеров, агрегатах бесперебойного питания, зарядных устройствах для мобильных телефонов и ноутбуков, на преобразовательных подстанциях электрического транспорта, в электроприводах постоянного тока, разнообразных электронных схемах.

Какие бывают выпрямители

Если задачей выпрямителя есть лишь преобразование рода тока (выпрямление), их строят на основе неуправляемых вентилей (диодов). В случае, когда на выпрямитель возложено также регулирование уровня напряжения, подаваемого к потребителю, необходимо использование управляемых вентилей (тиристоров). Подобного регулирования требует, например, электрический двигатель постоянного тока для изменения скорости вращения.

В зависимости от количества фаз питающей сети различают однофазные выпрямители и трехфазные.

По уровню мощности выпрямители подразделяют на маломощные (выпрямители сигналов) и мощные или силовые.

Вентили

Современные вентили – обычно полупроводниковые (маломощные – на основе кристаллов германия, более мощные – кремниевые). Не вдаваясь в подробности их внутреннего строения и физических принципов функционирования, рассмотрим только потребительские свойства.

Простейший из вентилей (диод ) является неуправляемым. Он имеет два вывода (анод А и катод К, см. рис. 1) и может проводить ток только в одном направлении – от анода к катоду. Если к аноду приложен положительный потенциал, а к катоду – отрицательный (как на рис. 1а), диод будет открыт, и через него будет протекать ток. Если поменять направление включения диода (как на рис. 1б) или источника питания U , ддиод будет закрыт, а ток – отсутствовать. Будем считать диод идеальным вентилем (то есть, его внутреннее сопротивление в открытом состоянии равно нулю, а в закрытом – бесконечности). Графическое обозначение диода на электрических схемах похоже на стрелку, показывающую единственное возможное направление протекания тока. Чтобы отличить на схеме один диод от других, рядом с их графическим обозначением пишут VD и текущий номер диода (например VD1 ).

Рис. 1. Способы включения диода (а – прямой, б – обратный)

Тиристор является вентилем управляемым. Кроме анода и катода, он имеет третий вывод (управляющий электрод УЭ на рис. 2). Он также проводит ток только в одном направлении (от анода к катоду). Для его отрывания необходимо выполнить два условия:

  • подать на анод положительный потенциал относительно катода (как для диода);
  • обеспечить протекание в цепи между управляющим электродом и катодом тока управления i у , направленного как на рис 2а.

Рис. 2. Два состояния тиристора (а – открыт и б – закрыт)

Для обеспечения протекания тока управления используют дополнительный источник напряжения u у . ВВеличина тока управления намного меньше тока между анодом и катодом (то есть силового тока). Если цепь управляющего электрода разомкнуть (как на рис. 2б), ток управления будет отсутствовать, и тиристор не откроется. Графическое обозначение тиристора похоже на обозначение диода, однако имеет третий вывод УЭ. Нумерацию тиристоров на схемах производят с использованием букв VS. Благодаря наличию управляющего электрода тиристор становится управляемым вентилем. Он открывается только тогда, когда будет выполнено на только первое условие его открывания, но и второе. Потому ток управления могут подавать не сразу после выполнения первого условия, а несколько позднее. Этот ток подается от специальной системы управления. Долее мы не будем показывать цепь, по которой протекает ток управления.

Рис. 3. Диоды

Тиристор имеет одну особенность: он открывается при помощи управляющего электрода, но закрывается только тогда, когда ток между анодом и катодом исчезнет. Добиться этого с помощью управляющего электрода невозможно. Поэтому тиристор иногда вентилем. называют полууправляемым вентилем.

Конструкция диодов малой мощности показана на рис. 3. У верхнего диода (более мощного, чем нижние) катод расположен слева. Внизу изображен диодный мостик (о них ниже).

Более мощные диоды и тиристоры изображены на рис. 4. Катод обычно имеет резьбу, которой крепится на охладителе, анод – гибкий вывод. Охладители (рис. 5), отводя тепло от вентиля, предотвращают их перегрев. Наиболее мощные приборы имеют таблеточную конструкцию (см. нижнюю часть рис. 4), которая обеспечивает отвод тепла наружу от обоих торцов (справа на рис. 5).

Простейший выпрямитель

ВВыпрямитель (рис. 6а) питается от источника знакопеременного (обычно синусоидального) напряжения u . Он состоит только из одного диода. Будем считать, что нагрузка выпрямителя – потребитель с чисто активным внутренним сопротивлением (R ). Ток, протекающий через нагрузку, и приложенное к ней напряжение обозначены на рис. 6б индексами d (от англ. Direct – постоянный). Диод открыт только тогда, когда к аноду приложен положительный потенциал (напряжение источника положительное, первый полупериод на рис. 6б).

Рис. 4. Мощные диоды и тиристоры

Рис. 5. Тиристоры с охладителями

Рис. 6. Процессы в простейшем выпрямителе

К нагрузке через открытый диод подается напряжение от источника. Ток, протекающий по цепи «источник u – диод – нагрузка» при чисто активной нагрузке повторяет по форме напряжение: . Поэтому со снижением напряжения до нуля исчезает и ток, а диод закрывается. На следующем полупериоде, когда напряжение источника отрицательно, ток отсутствует, напряжение на нагрузке равняется нулю. После того, как напряжение источника снова станет положительным, открывается диод, и к нагрузке снова прикладывается напряжение. Таким образом, благодаря выпрямителю напряжение на нагрузке (выпрямленное напряжение u d ) содержит в себе только положительные полупериоды напряжения u , а выпрямленный ток повторяет по форме выпрямленное напряжение. В нижней части рис. 6б изображена диаграмма работы диода (черная линия показывает интервалы времени, когда диод открыт).

Только что рассмотренная схема используется только для питания потребителей малой мощности. Более распространена мостовая схема (рис. 7а).

Рис. 7. Мостовой выпрямитель

В ее состав входят четыре диода, работающие попарно-поочередно. На первом полупериоде питающего напряжения (правая клемма источника имеет положительный потенциал) открыты диоды VD1 и VD4 , образуется путь протекания тока, изображенный на рис. 7б. К нагрузке прикладывается положительное напряжение. На втором полупериоде открыты VD2 та VD3 , а ток протекает, как показано на рис. 7в (в нагрузке – в прежнем направлении). К нагрузке вновь приложено положительное напряжение. Выпрямленные напряжение и ток во времени изменяются согласно рис. 7г. Поскольку оба полупериода напряжения питания являются рабочими, среднее значение выпрямленного напряжения вдвое больше по сравнению со схемой рис. 6а. Мостовые выпрямители небольшой мощности выпускают в виде т.н. «диодных мостиков» (снизу на рис. 3).

Если необходимо не только формировать на нагрузке знакопостоянное напряжение, но и изменять при необходимости ее среднее значение (для регулирования сварочного тока, скорости электродвигателя), вместо диодов в выпрямителях используют тиристоры (рис. 8а). Если тиристоры получают в цепь управления управляющий сигнал сразу же после того, как напряжение их анодах становится положительным, тиристоры работают также, как и диоды, и процессы в схеме ничем не отличаются от рассмотренных ранее. Если же задержать подачу тока управления, открывание тиристоров происходит позднее (на рис. 8б – по окончании времени задержки t з ). Пока тиристоры закрыты, ток отсутствует, и напряжение к нагрузке не прикладывается. Из кривой выпрямленного напряжения «вырезается» определенный участок, и среднее значение напряжения уменьшается. Увеличение задержки t з приводит к дальнейшему уменьшению среднего выпрямленного напряжения.

Рис. 8. Тиристорный мостовой выпрямитель

Тиристорные выпрямители используются в электроприводах постоянного тока для питания обмоток якоря и возбуждения электродвигателей постоянного тока. На рис. 9 показан внешний вид подобного электропривода. Кроме собственно выпрямителя, в его состав входят микропроцессорные системы управления вентилями, скоростью и моментом электродвигателя, дисплей и пульт управления для диалога с пользователем, а также дополнительные элементы, обеспечивающие функционирование электропривода. Выпрямители большой мощности размещаются в электрических шкафах (рис. 10).

Рис. 9. Современный электропривод постоянного тока на базе тиристорного выпрямителя

ИССЛЕДОВАНИЕ ОДНОФАЗНЫХ ВЫПРЯМИТЕЛЕЙ

2. Вторичные источники электропитания.
Основные схемы, параметры и характеристики

2.1. Структурная схема ВИЭПа

Выпрямительные устройства преобразуют переменное напряжение питающей сети в постоянное напряжение на нагрузке. Они применяются в качестве вторичных источников электропитания (ВИЭП), структурная схема которого представлена на рис. 2.1.

Рис. 2.1. Структурная схема ВИЭПа

Силовой трансформатор Тр понижает переменное напряжение сети U1 частотой f=50 Гц до необходимого значения U2. Кроме того трансформатор осуществляет гальваническую развязку питающей сети и нагрузки ВИЭПа. Выпрямитель В преобразует переменное напряжение U2 в выпрямленное пульсирующее напряжение одной полярности Ud. Сглаживающий фильтр Ф уменьшает пульсации выпрямленного напряжения Ud. Стабилизатор Ст поддерживает неизменным выходное постоянное напряжение Uвых при колебаниях напряжения сети U1 или изменении нагрузки ВИЭПа.

2.2. Основные схемы выпрямления

В маломощных источниках питания (до нескольких сотен Ватт) обычно используют выпрямители, питаемые однофазным напряжением сети. В однофазных выпрямителях используют три основные схемы включения диодов: однофазная однополупериодная схема на одном диоде, однофазные двухполупериодные схемы: схема со средней точкой (нулевая схема) на двух диодах и мостовая схема на четырех диодах.

В источниках питания постоянного тока средней (до 1000 Вт) и больше (свыше 1000 Вт) мощности используются выпрямительные устройства, запитываемые трёхфазным напряжением. Трёхфазный выпрямитель может быть выполнен НПО однополуперионной схеме на трёх диодах или по двуполупериодной схеме на шести диодах, которую называют трехфазной мостовой или схемой Ларионова.

2.3. Однофазные схемы выпрямления

2.3.1. Однополупериодная схема выпрямления

Однофазная однополупериодная схема выпрямления (рис. 2.2) является простейшей. Полупроводниковый диод VD1, обладающий односторонней проводимостью, включается последовательно с нагрузкой Rd.

Рис. 2.2. Однополупериодная схема выпрямления

Временные диаграммы (рис. 2.3) напряжений и токов выпрямителя показывают, что в такой схеме ток id через нагрузку протекает только в течение положительного полупериода напряжения u2, поступающего со вторичной обмотки трансформатора (рис. 2.3 а, б). В результате на нагрузке Rd появляется пульсирующее напряжение ud положительной полярности (рис. 2.3 в). В отрицательный полупериод напряжения u2 диод VD1 закрывается, ток id=0 и диод оказывается под воздействием обратного напряжения u2, максимальное значение которого равно амплитуде U2m, т. е. напряжение на диоде (рис. 2.3 г).

Выпрямленное пульсирующее напряжение на нагрузке ud описывается выражением в диапазонах и т.д. и может быть представлено суммой постоянной и переменной составляющих

Несинусоидальная переменная составляющая может быть представлена рядом гармоник, т. е. рядом синусоидальных составляющих с увеличивающейся с порядковым номером частотой и убывающей амплитудой. Тогда пульсирующее напряжение может быть представлено в виде гармонического ряда Фурье

Рис. 2.3. Временные диаграммы однополупериодной схемы

который для однополупериодной схемы выпрямления запишется в виде выражения:

С помощью ряда Фурье определяются основные параметры схемы выпрямления.

Постоянная составляющая рассчитывается как среднее значение выпрямленного напряжения на нагрузке при работе выпрямителя в режиме холостого хода за период напряжения сети

Среднее значение пульсирующего тока в нагрузке определяется выражением: .

Переменная составляющая выпрямленного напряжения характеризуется своим максимальным значением (основной гармоникой): , где – амплитуда основной гармоники.

Эффективность работы выпрямителя определяется величиной коэффициента пульсаций , который определяется отношением амплитуды основной гармоники Um к среднему значению выпрямленного напряжения

При этом частота пульсаций основной гармоники совпадает с частотой пульсаций выпрямленного напряжения и равна частоте напряжения сети:

Достоинство однополупериодной схемы – простота. Недостатки: большие габариты трансформатора, большой коэффициент пульсаций, низкая частота основной гармоники. Поэтому такая схема выпрямления находит ограниченное применение, в основном для питания цепей малой мощности и высокого напряжения, например: электронно-лучевых трубок.

2.3.2. Двухполупериодная схема со средней точкой

Однофазная двухполупериодная схема со средней точкой (рис. 2.4) представляет собой параллельное соединение двух однополупериодных выпрямителей, диоды которых работают на общую нагрузку.

Рис. 2.4. Двухполупериодная схема со средней точкой

При подаче напряжения u1 на первичную обмотку трансформатора на каждой половине вторичной обмотки возникают напряжения u21, u22 (рис. 2.5 а). Вторичные обмотки W21 и W22 включены последовательно и согласно. Диоды схемы проводят ток поочередно, каждый в течение полупериода (рис. 2.5 б, в). В первый полупериод к диоду VD1 приложена положительная полуволна напряжения u21, в цепи диод VD1 — нагрузка Rd — обмотка W21 протекает ток i21 (см. рис. 2.5 б). Диод VD2 в это время закрыт, так как к нему через открытый в это время диод VD1 приложено обратное напряжение обеих обмоток трансформатора (рис. 2.5 е). В следующий полупериод откроется диод VD2, и ток i22 будет протекать по цепи диод VD2 — нагрузка Rd — обмотка W22. (см. рис. 2.5 в). Таким образом, через сопротивление нагрузки Rd поочередно проходят в одном и том же направлении токи i21 и i22. В результате на нагрузке Rd образуются полуволны тока id и напряжения ud одного и того же знака (рис. 2.5 г, д).

Выпрямленное данной схемой напряжение, как и напряжение однополупериодной схемы, является пульсирующим, т. е. может быть разложено в гармонический ряд Фурье.

где – среднее значение выпрямленного напряжения на нагрузке. При работе выпрямителя в режиме холостого хода, определяется выражением:

Рис. 2.5. Временные диаграммы для схемы со средней точкой

Отсюда действующее значение напряжения во вторичной обмотке трансформатора:

Величина выпрямленного тока Id определяется выражением:

Амплитуда тока во вторичной обмотке трансформатора а действующее значение .

В двухполупериодной схеме уменьшилась амплитуда основной гармонической составляющей до величины , а следовательно уменьшился и коэффициент пульсаций:

Из временных диаграмм (см. рис. 2.5 а, д) видно, что напряжение на нагрузке достигает максимального значения U2m два раза за период выпрямляемого напряжение. Поэтому частота пульсаций напряжения нагрузки Ud равна удвоенной частоте напряжения сети:

В схеме выпрямления со средней точкой токи во вторичных обмотках протекают поочередно (в обмотке W21 от конца к началу, а в обмотке W22 от начала к концу), поэтому сердечник трансформатора не подмагничивается и в первичной обмотке действует чисто синусоидальный ток, что приводит к снижению типовой мощности и лучшему использованию трансформатора. По сравнению с однополупериодной схемой выпрямления в два раза увеличилось значение выпрямленного напряжения Ud и тока Id, уменьшился коэффициент пульсаций.

Недостатки схемы: необходимость вывода средней точки вторичной обмотки, необходимость симметрирования вторичных обмоток для обеспечения равенства большое обратное напряжение на диодах, увеличение габаритов трансформатора.

2.3.3. Двухполупериодная мостовая схема

В рассматриваемой схеме (рис. 2.6) выпрямитель состоит из четырех полупроводниковых диодов, собранных по схеме моста, в одну из диагоналей которого ab подключается напряжение вторичной обмотки трансформатора, а в другую cd – сопротивление нагрузки Rd. Положительным полюсом нагрузки является общая точка соединения катодов диодов (точка d), отрицательным – точка соединения анодов (точка с).

Рис. 2.6. Двухполупериодная мостовая схема

Работа схемы показано на рис. 2.7, где показаны формы токов и напряжений для идеализированной мостовой схемы в разных ее сечениях. Напряжение и ток вторичной обмотки трансформатора изменяются во времени по гармоническому закону (рис. 2.7а)

В положительный полупериод питающего напряжения потенциал точки а положителен, а точки b – отрицателен. Диоды VD1 и VD3 будут включены в прямом направлении и импульс тока i13 будет проходить от положительного зажима вторичной обмотки через диод VD1, нагрузку Rd и через открытый диод VD3 к отрицательному зажиму вторичной обмотки трансформатора (рис. 2.6). Форма этого тока будет повторять форму тока i2 вторичной обмотки трансформатора (рис. 2.7б). Проходя через нагрузку Rd , импульс тока i13 выделяет на ней напряжение ud (рис. 2.7д), которое без учета потерь напряжения на диодах повторяет форму положительной полуволны напряжения , т. е. имеет амплитуду пульсаций В течение первого полупериода диоды VD2 и VD4 заперты, так как включены в обратном направлении. Эти диоды находятся под воздействием отрицательного обратного напряжения , максимальная величина которого (рис. 2.7е).

При происходит смена полярности напряжения на вторичной обмотке трансформатора, при этом анод диода VD2 подключается к « + », а катод диода VD4 к « – » напряжения (см. рис. 2.6). Теперь в течение второго полупериода под воздействием прямого напряжения будут

Рис. 2.7. Временные диаграммы для мостовой схемы

находиться диоды VD2 и VD4,а диоды VD1 и VD3 заперты обратным напряжением (см. рис. 2.7ж).

В цепи вторичной обмотки трансформатора, открытых диодов VD2 и VD4 и нагрузки Rd будет проходить импульс тока i24 (см. рис. 2.7в) такой же формы как импульс тока i13, выделяя на нагрузке импульс напряжения , величина и полярность которого такая же как в первом полупериоде (рис. 2.7д).

Таким образом, за период преобразуемого напряжения в цепи нагрузки Rd проходят два импульса тока, не меняя своего направления и создавая ток нагрузки (см. рис. 2.7г), под воздействием которого на нагрузке выделяется напряжение пульсирующего характера (см. рис. 2.7д), такого же вида, как для схемы со средней точкой, Выпрямленное напряжение содержит постоянную составляющую и бесконечный ряд гармонических составляющих и может быть записано в виде гармонического ряда Фурье:

Постоянная составляющая рассчитывается как среднее значение выпрямленного напряжения на нагрузке при работе выпрямителя в режиме холостого хода:

Отсюда можно рассчитать действующее значение напряжения во вторичной обмотке трансформатора:

При расчете выпрямленного тока Id через нагрузку следует учесть, что при прохождении тока через открытый диод на нем падает напряжение , величина которого указывается в справочниках, поэтому ток в нагрузке определяется выражением:

Действующее значение тока вторичной обмотки связано с током нагрузки соотношением: Основная гармоническая составляющая выпрямленного напряжения определяется выражением:

следовательно частота пульсаций равна удвоенной частоте преобразуемого сетевого напряжения:

Амплитуда основной гармонической составляющей уменьшилась по сравнению с однополупериодной схемой, а следовательно уменьшился и коэффициент пульсаций:

Чтобы не допустить повреждения диодов при их работе в схемах выпрямления, необходимо учитывать при выборе диодов максимальные значения напряжения и тока во вторичной обмотке трансформатора. Максимальное обратное напряжение на диоде равно напряжению на концах вторичной обмотки. Поэтому для схем со средней точкой , а для однополупериодной и мостовой схемы — . В двухполупериодных схемах выпрямления импульс тока проходит через диод только в течение полупериода, поэтому среднее значение тока, протекающего через диод, в два раза меньше выпрямленного тока : В однополупериодной схеме через диод и нагрузку протекает одинаковый ток:

Мостовая схема является основной схемой для однофазных выпрямителей. Она может использоваться без трансформатора, то есть включаться непосредственно в цепь переменного тока, если напряжение сети обеспечивает требуемую величину выпрямленного напряжения. При работе с трансформатором импульсы токов i13 и i24 во вторичной обмотке трансформатора направлены навстречу друг другу, поэтому их постоянные составляющие компенсируются, а трансформатор работает в режиме без постоянного подмагничивания. По сравнению со схемой со средней точкой мостовая схема имеет меньшие габариты трансформатора, так как на вторичной стороне помещается только одна обмотка.

2.4. Сглаживающие фильтры

Напряжение на выходе любого блока диодов всегда является пульсирующим, содержащим кроме постоянного напряжения ряд синусоидальных составляющих разных частот. В большинстве случаев питание электронных устройств пульсирующим напряжением совершенно неприемлемо. Требования к допустимой величине коэффициента пульсаций зависят от назначения и режима работы устройства. Например, для входных усилительных каскадов коэффициент пульсаций может находиться в пределах . Для питания устройств эти пульсации должны быть снижены до минимального уровня, при котором они не оказывают существенного влияния на работу электротехнических устройств.

С этой целью используются сглаживающие фильтры, которые пропускают на выход только постоянную составляющую выпрямленного напряжения и максимально ослабляют его переменные составляющие. Основными элементами фильтров являются индуктивность (включается последовательно с нагрузкой) и конденсатор (включается параллельно нагрузке). Сглаживающее действие этих элементов связано с тем, что индуктивность представляет большое сопротивление ( ) для токов высокой частоты и малое для токов низкой частоты, а конденсатор – большое сопротивление ( для токов низкой частоты и малое сопротивление для токов высокой частоты.

Эффективность сглаживания пульсаций оценивается коэффициентом сглаживания, который представляет собой отношение коэффициента пульсаций на входе и выходе фильтра

Коэффициент сглаживания показывает, во сколько раз фильтр уменьшает пульсации выпрямленного напряжения.

В зависимости от способа включения конденсатора и индуктивности различают следующие виды фильтров: емкостные (рис. 2.8 а), индуктивные (рис. 2.8 б), Г-образные (рис. 2.8 в), Г-образные (рис. 2.8 г).

Рис. 2.8. Электрические схемы сглаживающих фильтров

На рис. 2.9 приведены осциллограммы выходных напряжений двухполупериодного выпрямителя при работе без фильтра (рис. 2.9 а), при включении емкостного (рис. 2.9 б) и индуктивного (рис. 2.9 в) фильтров.

Рис. 2.9. Временные диаграммы при работе: а) без фильтра;
б) с емкостным фильтром; в) с индуктивным фильтром

При использовании емкостного фильтра сглаживание пульсации выпрямленного напряжения и тока происходит за счет периодической зарядки конденсатора и последующей его разрядки на сопротивление нагрузки . Зарядка конденсатора происходит током id протекающим через диод в течение небольшого промежутка времени, когда мгновенное значение пульсирующего напряжения на выходе выпрямителя (рис. 2.9 а) выше напряжения на нагрузке (и на конденсаторе). Постоянная времени заряда конденсатора определяется емкостью конденсатора фильтра и небольшим сопротивлением, равным сумме прямого сопротивления открытых диодов и приведенного ко вторичной обмотке активного сопротивления трансформатора. Когда напряжение становится меньше напряжения на конденсаторе, диоды закрываются и конденсатор разряжается через сопротивление нагрузки (рис. 2.9 б). При большой емкости конденсатора и сопротивления нагрузки постоянная времени разрядка конденсатора значительно больше постоянной времени его зарядки. При этом разрядка конденсатора протекает во времени практически по линейному закону, а выходное напряжение (рис. 2.9 б) не уменьшается до нуля, а пульсирует в некоторых пределах. увеличивая среднее значение выпрямленного напряжения , которое может достигнуть максимального значения при большой емкости конденсатора.

Для эффективной работы сглаживающего фильтра емкостное сопротивление на частоте основной гармоники должно быть по крайней мере на порядок меньше сопротивления нагрузки :

Отсюда следует, что применение емкостного фильтра более эффективно при высокоомной нагрузке с малыми значениями выпрямленного тока, так как при этом возрастает эффективность сглаживания.

При включении последовательно с нагрузкой индуктивного фильтра (рис. 2.8 б) изменяющееся магнитное поле, возбуждаемое пульсирующим током, наводит электродвижущую силу самоиндукции . В соответствии с принципом Ленца электродвижущая сила направлена так, чтобы сгладить пульсации тока в цепи, а следовательно, и пульсации напряжения нагрузки (рис. 2.9 в). Эффективность сглаживания увеличивается при больших значениях выпрямленного тока.

Величину индуктивности фильтра выбирают таким образом, чтобы индуктивное сопротивление было значительно больше величины сопротивления нагрузки .

Большее уменьшение пульсаций выпрямленного напряжения обеспечивают смешанные фильтры, в которых используются конденсаторы и индуктивности, например, Г-образные сглаживающие фильтры (рис. 2.8 в, г). Однако при использовании этих фильтров уменьшается величина постоянной составляющей выпрямленного напряжения на нагрузке за счет падения части напряжения на активных сопротивлениях обмотки дросселя или .

2.5. Внешняя характеристика выпрямительного устройства

Внешняя характеристика определяет границы изменения тока нагрузки , при которых выпрямленное напряжение на нагрузке не уменьшается ниже допустимой величины при изменении сопротивления нагрузки . Внешняя характеристика описывается уравнением:

где – среднее значение выпрямленного напряжения в режиме холостого хода выпрямителя, – активная составляющая сопротивлений обмоток трансформатора, – падение напряжения на диодах одного плеча выпрямителя. Для схемы со средней точкой , для мостовой – , – падение напряжения на открытом диоде.

Внешняя характеристика 1 (рис. 2.10) соответствует выпрямителю без фильтра, характеристика 2 – выпрямителю с емкостным фильтром, а при включении в схему Г-образного LC фильтра получается характеристика 3. Напряжение холостого хода для двухполупериодной схемы без фильтра , а при включении емкостного фильтра за счет заряда конденсатора может повысится до максимального значения .

Рис. 2.10. Внешние характеристики выпрямительного устройства

Уменьшение выходного напряжения при увеличении тока нагрузки объясняется падением напряжения на элементах схемы: сопротивление и диодах. При включении емкостного фильтра дополнительное уменьшение выходного напряжения происходит за счет более быстрого разряда конденсатора на меньшее сопротивление нагрузки . При включении Г – образного LC фильтра дополнительное снижение напряжения на нагрузке вызвано падением напряжения на последовательном включенном индуктивном фильтре.

2.6. Трехфазные схемы выпрямления

2.6.1. Трехфазная схема выпрямления со средней точкой

Трехфазную схему выпрямления со средней точкой (рис. 2.11) называют также трехфазной однотактной схемой, поскольку выпрямлению подвергается только одна из полуволн переменного напряжения каждой фазы. В трехфазную схему выпрямления входит трансформатор, первичные обмотки которого могут быть соединены в звезду или треугольник, а вторичные обмотки – только в звезду. Концы a, b, c вторичных обмоток трансформатора соединены с анодами трех диодов VD1, VD2, VD3. Катоды диодов соединяются вместе и служат положительным полюсом для цепи нагрузки, а вывод средней точки трансформатора – отрицательным полюсом.

Рис. 2.11. Схема выпрямления

Работа выпрямителя на активную нагрузку.

Первоначально допустим, что нагрузка схемы выпрямления активная, т.е. Xd = 0. Для упрощения будем считать диоды и трансформатор идеальными, т.е. сопротивление диода в прямом направлении равно нулю, а в обратном – бесконечно велико, активное сопротивление и индуктивность рассеяния Xa обмоток трансформатора и индуктивность питающей сети принимаем равными нулю. Тогда переход тока с одного диода на другой считаем мгновенным. Работа схемы иллюстрируется диаграммами, приведенными на рис. 2.12. Из временной диаграммы (см. рис. 2.12 а) видно, что напряжения u2a, u2b, u2c сдвинуты по фазе на одну треть периода (2p/3) и в течение этого интервала напряжение одной фазы выше напряжения двух других фаз относительно нулевой точки трансформатора. Диоды схемы работают попеременно по 1/3 периода (2p/3). В какой-либо момент времени проводит ток тот диод, потенциал анода которого по отношению к нулевой точке трансформатора выше, чем у других диодов. Это справедливо для случая соединения диодов в катодную группу. Ток в каждом диоде протекает в течение 1/3 периода (2p/3) и прекращается тогда, когда потенциал анода работающего диода становится ниже потенциала катодов. Диод закрывается и к нему прикладывается обратное напряжение ub (см. рис. 2.12 в). Переход тока от одного диода к другому происходит в момент пересечения кривых фазных напряжений (точки а, б, в, г на рис. 2.12а). Выпрямленный ток id проходит через нагрузку Rd непрерывно и складывается из чередующихся анодных токовia1, ia2, ia3. Мгновенное значение выпрямленного напряжения ud (см. рис.2.12б) в каждый момент определяется мгновенным значением напряжения той фазы, с которой соединен работающий диод. Выпрямленное напряжение ud представляет собой огибающую синусоид фазных напряжений u2 вторичной обмотки трансформатора Т. Кривая выпрямленного тока id при Xa = 0, Xd = 0 повторяет кривую выпрямленного напряжения. Форма кривой тока ia в диоде VD1 изображена на рис. 2.12в. Ток диода VD1 в этом случае будет являться также и током i2a вторичной обмотки трансформатора. Кривая обратного напряжения ub1 на диоде VD1 формируется из участков синусоид линейных напряжений (uab, uсa), т.к. анод неработающего диода присоединен к одной из фаз, а катод через открытый диод – к другой фазе вторичной обмотки. Мгновенные значения междуфазного (линейного) напряжения соответствуют ординатам площади, заштрихованной на рис. 2.12а. По ним построена линейная диаграмма обратного напряжения ub1, на диоде VD1 (см. рис. 2.12 в).

Рис. 2.12. Временные диаграммы

Среднее значение выпрямленного напряжения при холостом ходе можно определить путем интегрирования кривой ud за треть периода:

где − действующее значение фазного напряжения на вторичной обмотке трансформатора.

Коэффициент пульсаций выпрямленного напряжения определяется соотношением

где − амплитуда первой (основной) гармонической составляющей выпрямленного напряжения;

m – эквивалентное число фаз выпрямления, т.е. число полуволн в кривой ud выпрямленного напряжения за один период переменного тока, питающего выпрямитель.

Частота пульсаций для первой гармоники выпрямленного напряжения

Среднее значение выпрямленного тока в нагрузке

Максимальное значение тока диода

Максимальное значение обратного напряжения на диоде

По среднему и максимальному значениям токов и максимальному значению обратного напряжения выбираются диоды.

Определим электрические параметры трансформатора. Действующее значение напряжения вторичной обмотки

Действующее значение тока вторичной обмотки

Действующее значение тока первичной обмотки трансформатора зависит от коэффициента трансформации и схем соединения фаз первичных и вторичных обмоток трансформатора. При соединении первичных обмоток трансформатора по схеме «звезда» действующее значение тока первичной обмотки трансформатора в общем виде

Типовая мощность трансформатора для конструктивного расчета магнитопровода и обмоток без учета повышения веса магнитной системы трансформатора, связанного с появлением потока вынужденного намагничивания, равна

где S1 = 3U1I1 = 1,21Pd – расчетная мощность первичной обмотки трансформатора;

В трехфазном выпрямителе со средней точкой имеет место явление вынужденного намагничивания магнитопровода трансформатора, т.к. токи вторичных обмоток трансформатора i2a, i2b, i2c содержат постоянную составляющую, равную Id, которая создает в каждом стержне магнитопровода однонаправленный поток вынужденного намагничивания трансформатора. Этот поток, пульсируя с тройной частотой по отношению к частоте питающей сети, замыкается частично по сердечнику, частично по воздуху и стальной арматуре, окружающей сердечник трансформатора, вызывая их нагрев. В результате сердечник трансформатора насыщается, а в стальной арматуре возникают тепловые потери за счет вихревых токов, индуцируемых переменной составляющей потока вынужденного намагничивания. Насыщение магнитопровода трансформатора приводит к резкому увеличению намагничивающего тока (тока холостого хода) трансформатора. Во избежание насыщения приходится увеличивать сечение магнитопровода. Однако это приводит к завышению массогабаритных показателей трансформатора и всей выпрямительной установки. Для устранения дополнительных потерь, вызванных переменной составляющей потока вынужденного намагничивания, первичные обмотки трансформатора необходимо соединять «треугольником». При этом в потоке вынужденного намагничивания остается только постоянная составляющая; переменная же составляющая с явно выраженной третьей гармоникой компенсируется потоками, которые создают токи высших гармоник с частотой, кратной трем, содержащиеся в токах первичных обмоток трансформатора и замыкающиеся по контуру, образованному этими обмотками. Расчетная мощность трансформатора при соединении обмоток «треугольником» не изменяется.

2.6.2.Трехфазная мостовая схема

Значительное количество выпрямителей трехфазного тока выполняется по мостовой схеме (схеме Ларионова), содержащей трехфазный трансформатор и выпрямительный блок из шести диодов (рис. 2.13.) Первичные и вторичные обмотки трансформатора могут соединяться по схеме звезды или треугольника. Вместе с тем мостовая схема выпрямления может применяться и без трансформатора. Диоды в выпрямительном блоке разделяют на две группы:

1) катодную, или нечетную (диоды VD1, VD3, VD5), в которой электрически связаны катоды диодов и общий вывод их является положительным полюсом для внешней цепи, а аноды присоединены к выводам вторичных обмоток трансформатора;

2) анодную, или четную (диоды VD2, VD4, VD6), в которой электрически связаны между собой аноды диодов, а катоды соединяются с анодами первой группы. Общая точка связи анодов является отрицательным полюсом для внешней цепи. Нагрузка подключается между точками соединения катодов и анодов диодов.

Трехфазная мостовая схема может быть представлена как последовательное соединение двух трехфазных схем со средней точкой, питаемых от одной обмотки трансформатора. В любой момент времени в катодной группе будет открыт тот диод, потенциал анода которого выше потенциалов анодов других диодов в катодной группе, а в анодной группе − диод, потенциал катода которого ниже потенциалов катодов других диодов анодной группы.

Рис. 2.13. Схема выпрямления

Работу схемы можно проследить с помощью временных диаграмм рис. 2.14. Так как режимы работы схемы на активную и активно-индуктивную нагрузку отличается незначительно, то анализ работы схемы проведем для наиболее распространенной активно-индуктивной нагрузки, принимая Xa=0, Xd=0. Диоды катодной группы открываются в момент пересечения положительных участков кривых фазных напряжений (точки а, б, в, г, д на рис. 2.14а), а диоды анодной группы − в момент пересечения отрицательных участков кривых фазных напряжений (точки к, л, м, н). Каждый диод открыт в течение одной трети периода . При мгновенной коммутации тока в трехфазной мостовой схеме в любой момент времени проводят ток на

Дата добавления: 2020-10-26 ; просмотров: 12575 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Чем выпрямить напряжение. Маломощные однофазные выпрямители. Что такое выпрямитель

В электрических сетях используется преимущественно переменный ток, питающий большинство промышленных и бытовых потребителей. Однако существует немало электрических устройств — магнитофонов, приемников и других приборов, основой которых служат полупроводники или лампы. Для их работы требуется только постоянный ток. Кроме того, он используется во многих заводских производственных процессах.

Преимущественная выработка переменного тока связана с удобством его трансформации в разные значения напряжений. Другим положительным моментом считается передача переменного тока по ЛЭП с минимальными потерями. Поэтому все необходимые преобразования выполняют выпрямители переменного тока, позволяющие получить необходимое , обеспечивающее нормальную работу электрических приборов.

Принцип работы выпрямителя тока

Основной функцией выпрямителя тока является преобразование переменного напряжения в постоянное. Принцип работы этих устройств основан на свойствах переменного тока, величина и направление которого изменяются во времени.

Согласно стандартного значения изменение направления тока в сети составляет 50 раз в течение одной секунды. Такое колебание является частотой и составляет 50 герц или периодов. То есть значение электротока в определенный период достигает нулевой отметки, а затем постепенно набирает максимальное значение. Этот процесс постоянно повторяется и протекает в периодической форме. Значение тока постоянно изменяется в соответствии с синусоидальным законом.

Основная задача выпрямителя заключается в получении устойчивого постоянного напряжения, не изменяющего своей величины и направления. Сам процесс выпрямления заключается в работе вентиля, пропускающего ток лишь в одном направлении. В результате односторонней проводимости вентиля, прохождение тока через него осуществляется исключительно в положительные полупериоды. Во время отрицательных периодов ток в цепи отсутствует.

При наличии положительной полуволны, сопротивление в вентиле минимальное, что обеспечивает свободное прохождение тока. Отрицательная полуволна подвергается значительному сопротивлению, задерживается и не проходит через вентиль. В результате включения вентиля в цепь, переменный ток будет полностью отсутствовать. Изменения оставшегося в цепи тока будут касаться только его величины, а направление останется неизменным. Это так называемый первичный или пульсирующий ток. С его помощью можно зарядить аккумулятор, но, он не годится для питания, например, радиоэлектронной аппаратуры. Необходимо выполнить процедуру сглаживания, чтобы пульсирующий ток превратился в . С этой целью используется специальный фильтр.

В качестве такого фильтра используется конденсатор с большой емкостью. Выпрямляемый ток сглаживается или фильтруется за счет зарядки конденсатора током, идущим от вентиля. В результате, создается определенный запас электроэнергии. При уменьшении тока, проходящего через вентиль и падении напряжения на нагрузке в конце каждого положительного полупериода, происходит отдача конденсатором накопленной энергии.

Однополупериодные выпрямители

Далеко не все фильтры способны полностью избавить ток от резких пульсаций. Для этих целей требуются более совершенные фильтры, обеспечивающие на нагрузке лишь незначительные пульсации постоянного тока. Такие пульсации не оказывают решающего влияния на основные функции электронного устройства, получающего питание через выпрямитель.

К наиболее простым приборам относится . Основным принципом его работы является использование для выпрямления только положительных полупериодов. Выпрямленный ток и сетевое напряжение имеют одинаковую частоту пульсаций. Поэтому для их сглаживания в однополупериодном выпрямителе должен применяться хороший фильтр. С помощью данных устройств осуществляется питание аппаратуры с потреблением незначительного тока. В случае возрастания токовых значений, необходимо использовать более сложные фильтры.

Работа двухполупериодных выпрямителей

Более широкое распространение получили переменного тока, с использованием сразу двух вентилей. Течение тока в нагрузке происходит всегда в одном направлении.

Схема выпрямления действует следующим образом. В определенное время на одном из выводов вторичной обмотки трансформатора напряжение будет положительным по отношению к другому выводу. Ток проходит через первый вентиль с небольшим сопротивлением, после этого он идет по нагрузке к средней точке вторичной обмотки. Такое положение будет сохраняться весь положительный полупериод. Когда ток не первом выводе трансформатор изменится, напряжение станет отрицательным. Прохождения тока через первый вентиль не будет в связи с его большим сопротивлением. Второй конец обмотки будет с положительным напряжением, и ток начнет проходить по второму вентилю, нагрузке с выходом к средней точке вторичной обмотки трансформатора.

Данная схема выпрямления тока позволяет использовать два полупериода напряжения. Высокая частота пульсаций значительно облегчает фильтрацию выпрямленного напряжения.

Как происходит выпрямление переменного тока

Выпрямителем называется электронное устройство, предназначенное для преобразования электрической энергии переменного тока в постоянный. В основе выпрямителей лежат полупроводниковые приборы с односторонней проводимостью – диоды и тиристоры.

При небольшой мощности нагрузки (до нескольких сотен ватт) преобразование переменного тока в постоянный осуществляют с помощью однофазных выпрямителей. Такие выпрямители предназначены для питания постоянным током различных электронных устройств, обмоток возбуждения двигателей постоянного тока небольшой и средней мощности и т.д.

Для упрощения понимания работы схем выпрямления будем исходить из расчета, что выпрямитель работает на активную нагрузку.

На рисунке 1 представлена простейшая схема выпрямления. Схема содержит один выпрямительный диод, включенный между вторичной обмоткой трансформатора и нагрузкой.

Рисунок 1 — Однофазный однополупериодный выпрямитель: а) схема — диод открыт, б) схема — диод закрыт, в) временные диаграммы работы

Напряжение u2 изменяется по синусоидальному закону, т.е. содержит положительные и отрицательные полуволны (полупериоды). Ток в цепи нагрузки проходит только в положительные полупериоды, когда к аноду диода VD прикладывается положительный потенциал (рис. 1, а). При обратной полярности напряжения u2 диод закрыт, ток в нагрузке не протекает, но к диоду прикладывается обратное напряжение Uобр (рис. 1, б).

Т.о. на нагрузке выделяется только одна полуволна напряжения вторичной обмотки. Ток в нагрузке протекает только в одном направлении и представляет собой выпрямленный ток, хотя носит пульсирующий характер (рис. 1, в). Такую форму напряжения (тока) называют постоянно-импульсная.

Выпрямленные напряжения и ток содержат постоянную (полезную) составляющую и переменную составляющую (пульсации). Качественная сторона работы выпрямителя оценивается соотношениями между полезной составляющей и пульсациями напряжения и тока. Коэффициент пульсаций данной схемы составляет 1,57. Среднее за период значение выпрямленного напряжения Uн = 0,45U2. Максимальное значение обратного напряжения на диоде Uобр.max = 3,14Uн.

Достоинством данной схемы является простота, недостатки: плохое использование трансформатора, большое обратное напряжение на диоде, большой коэффициент пульсации выпрямленного напряжения.

Состоит из четырех диодов, включенных по мостовой схеме. В одну диагональ моста включается вторичная обмотка трансформатора, в другую – нагрузка (рис. 2). Общая точка катодов диодов VD2, VD4 является положительным полюсом выпрямителя, общая точка анодов диодов VD1, VD3 — отрицательным полюсом.

Рисунок 2 — Однофазный мостовой выпрямитель: а) схема — выпрямление положительной полуволны, б) выпрямление отрицательной полуволны, в) временные диаграммы работы

Полярность напряжения во вторичной обмотке меняется с частотой питающей сети. Диоды в этой схеме работают парами поочередно. В положительный полупериод напряжения u2 проводят ток диоды VD2, VD3, а к диодам VD1, VD4 прикладывается обратное напряжение, и они закрыты. В отрицательный полупериод напряжения u2 ток протекает через диоды VD1, VD4, а диоды VD2, VD3 закрыты. Ток в нагрузке проходит все время в одном направлении.

Схема является двухполупериодной (двухтактной), т.к. на нагрузке выделяется оба полупериода сетевого напряжения Uн = 0,9U2, коэффициент пульсаций — 0,67.

спользования мостовой схемы включения диодов позволяет для выпрямления двух полупериодов использовать однофазный трансформатор. Кроме того, обратное напряжение, прикладываемое к диоду в 2 раза меньше.

Питание постоянным током потребителей средней и большой мощности производится от , применение которых снижает загрузку диодов по току и уменьшает коэффициент пульсаций.

Схема состоит из шести диодов, которые разделены на две группы (рис. 2.61, а): катодную — диоды VD1, VD3, VD5 и анодную VD2, VD4, VD6. Нагрузка подключается между точками соединения катодов и анодов диодов, т.е. к диагонали выпрямленного моста. Схема подключается к трехфазной сети.

Рисунок 3 — Трехфазный мостовой выпрямитель: а) схема, б) временные диаграммы работы

В каждый момент времени ток нагрузки протекает через два диода. В катодной группе в течение каждой трети периода работает диод с наиболее высоким потенциалом анода (рис. 3, б). В анодной группе в данную часть периода работает тот диод, у которого катод имеет наиболее отрицательный потенциал. Каждый из диодов работает в течение одной трети периода. Коэффициент пульсаций данной схемы составляет всего 0,057.

Управляемыми выпрямителями — выпрямители, которые совместно с выпрямление переменного напряжения (тока) обеспечивают регулирование величины выпрямленного напряжения (тока).

Управляемые выпрямители применяют для регулирования частоты вращения двигателей постоянного тока, яркости свечения ламп накаливания, при зарядке аккумуляторных батарей и т.п.

Схемы управляемых выпрямителей строятся на тиристорах и основаны на управлении моментом открытия тиристоров.

На рисунке 4,а представлена схема однофазного управляемого выпрямителя. Для возможности выпрямления двух полуволн сетевого напряжения используется трансформатор с двухфазной вторичной обмоткой, в которой формируется два напряжения с противоположными фазами. В каждую фазу включается тиристор. Положительный полупериод напряжения U2 выпрямляет тиристор VS1, отрицательный – VS2.

Схема управления СУ формирует импульсы для открывания тиристоров. Время подачи открывающих импульсов определяет, какая часть полуволны выделяется на нагрузке. Тиристор отпирается при наличии положительного напряжения на аноде и открывающего импульса на управляющем электроде.

Если импульс приходит в момент времени t0 (рис. 4,б) тиристор открыт в течении всего полупериода и на нагрузке максимальное напряжение, если в моменты времени t1, t2, t3, то только часть сетевого напряжения выделяется в нагрузке.

Рисунок 4 — Однофазный выпрямитель: а) схема, б) временные диаграммы работы

Угол задержки, отсчитываемый от момента естественного отпирания тиристора, выраженный в градусах, называется углом управления или регулирования и обозначается буквой α. Изменяя угол α (сдвиг по фазе управляющих импульсов относительно напряжения на анодах тиристоров), мы изменяться время открытого состояния тиристоров и соответственно выпрямленное напряжение на нагрузке.

В этой статье мы разберем какие бывают выпрямители, для какой цели служат, в чем заключаются особенности того или иного выпрямителя. Если мы решаем собрать какое-либо устройство или просто необходимо запитать готовое, то мы можем использовать питание от гальванических элементов (батареек), либо воспользоваться для этих целей аккумуляторами. Но как быть, если радиоустройство не планируется носить с собой и оно потребляет значительный ток? В таких случаях запитывают устройство от сети 220 вольт.

Напрямую запитать от 220 вольт, разумеется, мы не можем, напряжение слишком высокое и ток переменный, а для питания электронных устройств почти всегда необходим постоянный ток и более низкое напряжение. Необходим так называемый сетевой адаптер .

Понизить напряжение мы можем с помощью трансформатора, о нем мы поговорим в одной из следующих статей, пока нам достаточно знать, что с помощью трансформатора мы можем понизить или повысить напряжение при переменном токе. Далее нам необходимо сделать из переменного тока постоянный, для этих целей и служит выпрямитель. Существуют три основных типа выпрямителей.

Однополупериодный выпрямитель

Этот выпрямитель работает только в течение положительного полупериода синусоиды. Это можно видеть на следующем графике:

На выходе после диода мы получаем пульсирующее напряжение, нам нужно сделать из него постоянное, то есть из пульсирующего тока получить постоянный. Для этих целей служит электролитический конденсатор большой емкости, подключенный параллельно выходу питания в соответствии с полярностью. На фотографии ниже можно увидеть внешний вид подобного конденсатора:

Такой конденсатор благодаря большой емкости разряжается в течении отрицательного полупериода синусоиды. Обычно для фильтрации напряжения в выпрямителях применяют электролитические конденсаторы от 2200 микрофарад. В усилителях и других устройствах, где важно чтобы напряжение не проседало при увеличении мощности нагрузки, ставят конденсаторы на большую емкость, чем 2200 микрофарад. Для устройств питающих бытовую аппаратуру обычно конденсаторов такой емкости бывает достаточно. На следующем графике (выделено красным), мы можем видеть, как конденсатор поддерживает напряжение стабильным во время прохождения отрицательной полуволны.

Двухполупериодный выпрямитель со средней точкой

Для этой схемы необходим трансформатор, с двумя вторичными обмотками. Напряжение на диодах в два раза выше, чем при включении схемы с однополупериодным выпрямителем или при включении мостовой схемы. В этой схеме попеременно работают оба полупериода. В течении положительного полупериода работает одна часть схемы обозначенная В1 , во время отрицательного полупериода работает вторая часть схемы обозначенная В2 . Эта схема является менее экономичной, чем мостовая схема, в частности у неё более низкий коэффициент использования трансформатора. В этой схеме после диодов получается также пульсирующее напряжение, но частота пульсаций в два раза выше. Что мы и можем видеть на следующем графике:

Двухполупериодный выпрямитель, мостовая схема

И наконец, рассмотрим схему мостового выпрямителя, самую распространенную схему, по которой сделана большая часть всех выпущенных трансформаторных блоков питания. Сейчас объясню принцип работы :

Ток у нас на выходе с трансформатора переменный, а переменный ток, как известно, в течение периода дважды меняет свое направление. Говоря другими словам, конечно же упрощенно, при переменном токе с частотой 50 герц, ток у нас 100 раз в секунду меняет свое направление. То есть сначала он течет от вывода диодного моста под цифрой один , ко второму, потом в течение другой полуволны он течет от вывода под номером два к первому.

Рассмотрим, что происходит с диодным мостом при подаче напряжения, мы видим, на рисунке обозначен красным путь тока, напрямую пройти к выводу диодного моста соединенного с переменным током не позволит диод, который получается у нас включенный в обратном включении, а в обратном включении, как мы помним, диоды не пропускают ток. Току остается только один путь (выделено на рисунке синим), через нагрузку и через диод уйти в провод соединенный с выводом переменного тока. Когда у нас ток меняет свое направление, то вступает в действие вторая часть диодного моста, которая действует аналогично той, что описал выше. В итоге у нас получается на выходе такой же график напряжения, как и у двухполупериодного выпрямителя со средней точкой:

При сборке выпрямителя нужно учитывать полярность на выходе диодного моста, если мы подключим электролитический конденсатор неправильно, то рискуем испортить конденсатор и можно считать, что повезло, если этим все ограничится. Поэтому при сборке диодного моста важно помнить одно правило, плюс на выходе с моста всегда будет в точке соединения 2 катодов диодов, а минус в точке соединения анодов. Встречается и такое обозначение на схемах диодного моста:

Диодный мост можно собрать как из отдельных диодов, так и взять специальную сборку из 4 диодов, уже соединенных по мостовой схеме, и имеющий 4 вывода. В таком случае остается только подать переменный ток, идущий обычно с вторичной обмотки трансформатора на два вывода моста, а с оставшихся двух выводов снимать плюс и минус. Обычно на самой детали бывает обозначено, где какой вывод у моста. Так выглядит импортный диодный мост:

Фото диодный мост кц405

Трехфазные выпрямители

Существуют и трехфазные трансформаторы. Обычным однофазным диодным мостом с такого трансформатора не получится на выходе постоянный ток. Конечно, если нагрузка небольшая можно подключиться к одной фазе и к нулевому проводу трансформатора, но экономичным такое решение не назовешь.

Для трехфазного тока существуют специальные схемы выпрямителей, две таких схемы приведены на рисунках ниже. Первая, известная как схема Миткевича , имеет низкий коэффициент габаритной мощности трансформатора. Эта схема применяется при небольших мощностях нагрузки.

Вторая схема, известная как , нашла широкое применение в электротехнике, так как имеет лучшие технико-экономические показатели по сравнению со схемой Миткевича.

Схема Ларионова может использоваться как «звезда-Ларионов” и «треугольник-Ларионов”. Вид подключения зависит от схемы подключения трансформатора, либо генератора, с выходом которого соединен этот выпрямитель. Автор статьи — AKV .

Обсудить статью ВЫПРЯМИТЕЛИ

Основными характеристиками выпрямителей являются:

Номинальное напряжение постоянного тока – среднее значение выпрямленного напряжения, заданное техническими требованиями. Обычно указывается напряжение до фильтра U0 и напряжение после фильтра (или отдельных его звеньев – U. Определяется значением напряжения, необходимым для питаемых выпрямителем устройств.

Номинальный выпрямленный ток I0 – среднее значение выпрямленного тока, т.е. его постоянная составляющая, заданная техническими требованиями. Определяется результирующим током всех цепей питаемых выпрямителем.

Напряжение сети Uсети – напряжение сети переменного тока, питающей выпрямитель. Стандартное значение этого напряжения для бытовой сети –220 вольт с допускаемыми отклонениями не более 10 %.

Пульсация – переменная составляющая напряжения или тока на выходе выпрямителя. Это качественный показатель выпрямителя.

Частота пульсаций – частота наиболее резко выраженной гармонической составляющей напряжения или тока на выходе выпрямителя. Для самой простой однополупериодной схемы выпрямителя частота пульсаций равна частоте питающей сети. Двухполупериодные, мостовые схемы дают пульсации, частота которых равна удвоенной частоте питающей сети. Многофазные схемы выпрямления имеют частоту пульсаций, зависящую от схемы выпрямителя и числа фаз.

Коэффициент пульсаций – отношение амплитуды наиболее резко выраженной гармонической составляющей напряжения или тока на выходе выпрямителя к среднему значению напряжения или тока. Различаюткоэффициент пульсаций на входе фильтра (p0 %) икоэффициент пульсаций на выходе фильтра (p %). Допускаемые значения коэффициента пульсаций на выходе фильтра определяются характером нагрузки.

Коэффициент фильтрации (коэффициент сглаживания) – отношение коэффициента пульсаций на входе фильтра к коэффициенту пульсаций на выходе фильтра k с = p0 / p. Для многозвенных фильтров коэффициент фильтрации равен произведению коэффициентов фильтрации отдельных звеньев.

Колебания (нестабильность) напряжения на выходе выпрямителя –изменение напряжения постоянного тока относительно номинального. При отсутствии стабилизаторов напряжения определяются отклонениями напряжения сети.

Схемы выпрямителей.

Выпрямители, применяемые для однофазной бытовой сети выполняются по 3 основным схемам: однополупериодной, двухполупериодной с нулевой точкой (или просто- двухполупериодной), двухполупериодной мостовой(или просто –мостовой, реже называется как “схема Герца”),. Для многофазных промышленных сетей применяются две разновидности схем: Однополупериодная многофазная и схема Ларионова.

Чаще всего используются трехфазные схемы выпрямителей. Основные показатели, характеризующие схемы выпрямителей могут быть разбиты на 3 группы:

Относящиеся ко всему выпрямителю в целом: U0 -напряжение постоянного тока до фильтра, I0 – среднее значение выпрямленного тока, p0 – коэффициент пульсаций на входе фильтра.

Определяющие выбор выпрямительного элемента (вентиля): Uобр – обратное напряжение (напряжение на выпрямительном элементе (вентиле) в непроводящую часть периода), Iмакс – максимальный ток проходящий через выпрямительный элемент (вентиль) в проводящую часть периода.

Определяющие выбор трансформатора: U2 – действующее значение напряжения на вторичной обмотке трансформатора, I2 – действующее значение тока во вторичной обмотке трансформатора, Pтр – расчетная мощность трансформатора.

В современном многообразии электрических приборов как бытового назначения, так и для иных задач большинство содержит выпрямитель. Это связано с их непрерывным усложнением в связи с увеличением функциональности. А для многофункциональности необходима электроника, потребляющая постоянный ток. Его обеспечивает источник питания. В нем всегда расположен выпрямитель. Далее расскажем об этом устройстве более подробно.

Какими были первые выпрямители

Развитие электроснабжения начиналось с нуля. А это значит, что не было ни знаний, ни, тем более, оборудования для этого. Потребовалось почти столетие, чтобы появились современные полупроводниковые выпрямители. Они являются следствием исторически сложившейся инфраструктуры электроснабжения. А она, как известно, развивалась на основе переменного напряжения.

Электроснабжение на постоянном напряжении эффективнее, поскольку не сказываются потери в ЛЭП из-за индуктивности и емкости проводов. Но почти везде электроэнергия в сети соответствует переменному напряжению. Это происходит потому, что электроснабжение невозможно без изменения величины напряжения. А эту задачу до сих пор наиболее эффективно решает только трансформатор. Различие свойств электрических цепей с переменным и постоянным напряжением было сразу же замечено исследователями.

А поскольку эффективным источником электроэнергии является вторичная обмотка трансформатора, надо было так или иначе получить некое подобие постоянного напряжения на ее основе. На первом этапе развития электротехники появились только электромагнитные машины. Их и приспособили для выпрямления напряжения. Также было известно явление электролиза. Его тоже использовали для изготовления выпрямителей — электролитических.

Механическое выпрямление напряжения

Определение выпрямления означает получение однонаправленного электрического тока. Его величина при этом будет зависеть от формы переменного напряжения в каждом полупериоде. Но однонаправленный электрический ток при этом получается, как при положительном полупериоде напряжения, так и при его отрицательном значении. При этом нагрузка при переходе напряжения через ноль должна отключаться от ненужной полуволны напряжения. Первые выпрямители выполняли эту задачу механическими контактами.

Они либо приводились в движение синхронным двигателем, либо перемещались достаточно быстродействующим соленоидом. В обеих схемах контакты, переключающие напряжение, перемещаются синхронно с напряжением. В схеме с двигателем они вращаются, замыкаясь в нужный момент времени.

Узел, предназначенный для выпрямления напряжения, при вращении аналогичен коллектору двигателя постоянного тока. Количество ламелей – контактов определяется числом оборотов синхронного двигателя. При переходе синусоиды выпрямляемого напряжения через ноль обе щетки контактируют либо с началом, либо с концом ламели. Начало ламели совпадает с острием стрелки, указывающей направление вращения двигателя.

Время контакта щеток с ламелью совпадает с длительностью половины периода выпрямляемого напряжения. Синхронный двигатель вращается точно и кратно частоте питающего напряжения, которое он выпрямляет присоединенным к нему коллектором. Но его инерционность не позволит выпрямить скачкообразное изменение частоты питающего напряжения. Поэтому он эффективен только как выпрямитель напряжения электросети.

Выпрямитель на соленоиде замыкает контакт либо на время, когда сердечник втягивается, либо наоборот. Он может сработать только при некотором минимальном напряжении, которое достаточно для перемещения контактов. Поэтому часть полуволны вблизи перехода напряжения через ноль не будет обработана как следует. Но зато такой выпрямитель может быть изготовлен довольно-таки небольшим. Поэтому он был широко распространен в свое время.

Очевидно то, что без коммутации электрической цепи выпрямления напряжения не может быть. А возможности механического контакта ограничены мощностью искры, которая возникает в момент разрыва электрической цепи. Она постепенно уничтожает этот контакт тем быстрее, чем больше электрическая мощность при его размыкании.

Это устройство работает без коммутации. Однако оно было изобретено только после появления достаточно чистого алюминия. Известно, что этот металл образует тонкую пленку прочного окисла на своей поверхности. Окись алюминия — это почти изолятор. Если погрузить алюминиевую пластину в определенный раствор и подать на нее отрицательный потенциал, пленка разрушится. При этом ток в растворе должен исходить из погруженной рядом железной пластины — анода.

Пленка окиси алюминия моментально растворится в растворе, например, фосфорнокислого натрия. Поэтому поверхность катода получится из чистого алюминия. А ток будет беспрепятственно течь между погруженными электродами. Но как только полярность электродов сменится на противоположную, поверхность алюминиевой пластины моментально окислится. Пленка с большим сопротивлением не будет пропускать электрический ток.

Энергетические характеристики электролитического выпрямителя зависят от объема сосуда, а также от размеров и числа пластин. Пластина из чистого алюминия работоспособна длительное время. Вывести из строя такой выпрямитель можно только механическим разрушением. От увеличения тока он «застрахован» свойствами электролита. Слишком высокое напряжение просто не будет выпрямляться. Но при его возвращении к номинальной величине этот выпрямитель продолжит работу. Он просто не убиваем.

Ламповые варианты

Такие механические и электролитические выпрямляющие устройства просуществовали несколько десятилетий до того времени, как появились электронные лампы. Но и они были ограничены потерями электроэнергии. Хотя и не связанными с коммутацией. Дело в том, что для работы лампы необходим предварительно созданный запас электронов.

А его не научились получать в лампах иначе, как раскаляя нить накала. Вот и получалось, что, несмотря на быстродействие, обычная лампа-диод расходовала слишком много электроэнергии на выпрямление напряжения. Но со временем была изобретена мощная ртутная лампа — ртутный выпрямитель. Она отличалась тем, что в ней возникал управляемый электрический разряд в парах ртути. Разряд существовал только на одной полуволне напряжения.

Это позволило довести мощность выпрямителя до значений, приемлемых для промышленного использования. И на основе ртутных выпрямителей были построены первые ЛЭП, работающие при постоянном напряжении. А во всех остальных электроприборах так и применялись электронные лампы-диоды. В 30-е годы ХХ века появились первые полупроводниковые выпрямители на основе селена. Они так и назывались — «селеновые выпрямители».

Каждый электрик должен знать:  Чем симистор отличается от тиристора

Однако характеристики этих выпрямителей оставляли желать лучшего. Поэтому поиски более эффективных технических решений продолжались и завершились появлением полупроводникового диода. Но его преимущества тоже относительны. Температура полупроводника не может превышать 130–150 градусов Цельсия. По этой причине все предшествующие виды выпрямителей имеют свою нишу для условий с высокой температурой и радиацией. При остальных условиях эксплуатации применяются диодные выпрямители.

Полупроводниковые схемы

Любой выпрямитель — это схема. Она включает в себя вторичную обмотку трансформатора, выпрямляющий элемент, электрический фильтр и нагрузку. При этом существует возможность получать умножение напряжения. Выпрямленное напряжение — это сумма постоянного и переменного напряжений. Переменная составляющая — это нежелательная компонента, которую уменьшают тем или иным способом. Но поскольку используются полуволны переменного напряжения, иначе быть не может.

Влияние переменной составляющей оценивается коэффициентом пульсации.

Его можно уменьшить двумя способами:

  • улучшая эффективность электрического фильтра;
  • улучшая параметры выпрямляемого переменного напряжения.

Простейший выпрямитель однополупериодный. Он отсекает одну из полуволн переменного напряжения. Поэтому коэффициент пульсаций в такой схеме получается самым большим. Но если выпрямляется трехфазное напряжение с одним диодом в каждой фазе, а также одним и тем же фильтром, получится в три раза меньший коэффициент пульсаций. Однако наилучшими характеристиками обладают двухполупериодные выпрямители.

Использовать обе полуволны переменного напряжения можно двумя способами:

  • по схеме моста;
  • по схеме со средней точкой обмотки (схема Миткевича).

Сравним обе эти схемы для одного и того же значения выпрямленного напряжения. В схеме моста используется меньше витков вторичной обмотки трансформатора, что является преимуществом. Но при этом в однофазном выпрямительном мосте необходимы четыре диода. В схеме со средней точкой необходимо в два раза больше витков вторичной обмотки со средней точкой, что является недостатком. Еще один недостаток этой схемы — необходимость симметрии частей обмотки относительно средней точки.

Асимметрия будет дополнительным источником пульсаций. Но зато в этой схеме нужны только два диода, что является преимуществом. При выпрямлении на диоде существует напряжение. Его величина почти не изменяется в зависимости от силы тока, протекающего через этот диод. Поэтому мощность, рассеиваемая на полупроводниковом диоде, растет по мере увеличения силы выпрямленного тока. Это весьма ощутимо при большой силе тока, и поэтому полупроводниковые диоды размещаются на охлаждающих радиаторах и при необходимости обдуваются.

При выпрямлении тока большой силы два диода схемы со средней точкой будут экономичнее и компактнее в сравнении с четырьмя диодами выпрямительного моста. Схемы выпрямителей в свое время не появились из ниоткуда. Их изобрели инженеры. Поэтому схемы выпрямителей в литературе иногда называются в связи с именами своих первооткрывателей. Мостовая схема именуется как «полный мост Гретца». Схема со средней точкой — «выпрямитель Миткевича».

Полупроводниковые диоды вместе с конденсаторами позволяют создавать схемы, в которых конденсаторы за полпериода заряжаются и за полпериода разряжаются в нагрузку. При этом напряжения, которые на них накапливаются, суммируются. Таким путем можно создавать схемы для умножения напряжения. Наиболее простая и эффективная схема выпрямителя, который удвоит напряжение, содержит два диода и два конденсатора. Ее называют схемой Латура-Делона. Ее аналогом является схема Гренашера.

Создавая необходимое число ячеек, содержащих конденсаторы и диоды, можно получить любое напряжение, кратное их числу. Схема, соответствующая этому решению, показана далее. В ней каждая из ячеек содержит конденсатор и диод.

В статье были подробно рассмотрены лишь некоторые виды выпрямителей, имеющие наиболее широкое использование.

Делая выбор того или иного устройства, необходимо руководствоваться параметрами напряжения нагрузки. Только таким путем получается эффективное выпрямление напряжения.

Московский государственный университет печати

Горбачев Г.Н., Чаплыгин Е.Е.

Промышленная электроника

Учебник для вузов

Горбачев Г.Н., Чаплыгин Е.Е.
Промышленная электроника
Начало
Печатный оригинал
Об электронном издании
Оглавление

Для питания постоянным током электронных управляющих, измерительных и вычислительных устройств применяют источники питания малой мощности (единицы, десятки и сотни ватт), которые обычно получают энергию от однофазной цепи переменного тока. Такие источники питания в настоящее время строятся как по традиционной схеме с выпрямителем, подключенным к сети через трансформатор так и по схеме с бестрансформаторным входом, работа которой основана на многократном преобразовании электрической энергии. Рассмотрим вначале традиционное решение.

Источник питания в общем случае может содержать следующие узлы ( рис. 5.1 , а ):

Т — трансформатор, повышающий или понижающий напряжение в зависимости от соотношения напряжений на выходе источника питания и напряжения сети;

ВК — вентильный комплект, служащий для преобразования переменного тока в ток одного направления;

Ф — фильтр для сглаживания пульсации выпрямленного напряжения;

СН — стабилизатор постоянного напряжения, обеспечивающий постоянство выходного напряжения при изменении нагрузки, напряжения питающей сети и т.п.

На рис. 5.1, б приведены кривые напряжения на различных участках схемы источника питания при двух значениях сетевого напряжения.

Основным узлом источника питания является вентильный комплект, содержащий группу вентилей, т.е. приборов с нелинейной вольт-амперной характеристикой, обладающих однонаправленной проводимостью. В качестве вентилей в источниках питания небольшой мощности используются обычно кремниевые, реже германиевые диоды (см. § 1.3). Остальные узлы, перечисленные выше, могут в отдельных случаях отсутствовать. Поэтому приступим в первую очередь к рассмотрению принципа действия основных выпрямительных схем, различающихся способами соединения вентилей между собой и с обмотками трансформатора.

Познакомимся с основными понятиями преобразовательной техники на примере работы однофазной схемы выпрямления с выводом нулевой точки трансформатора (однофазной нулевой ) при активной нагрузке ( рис. 5.2 , а ).

При полярности переменного напряжения, указанной на рис. 5.2, а, к вентилю V1 прикладывается прямое напряжение (плюс на анод, минус на катод). Вентиль V1 проводит ток » />, который замыкается через нагрузку » /> и верхнюю полуобмотку трансформатора. Будем считать вентили идеальными, т.е. имеющими нулевое падение напряжения при протекании прямого тока и нулевой обратный ток при приложенном к ним обратном напряжении. Поэтому при протекании прямого тока анод с катодом вентиля считаем короткозамкнутыми, а при обратном напряжении на вентиле считаем цепь с вентилем разорванной. В связи с принятым допущением напряжение на нагрузке » /> на полупериоде 0- » /> (рис. 5.2, б) принимаем равным напряжению верхней полуобмотки трансформатора » /> Вентиль V2 в это время находится под обратным напряжением и ток не пропускает.

Во второй полупериод (от » /> до 2 » />) из-за изменения полярности переменного напряжения на вторичных обмотках трансформатора отпирается вентиль V2 и к нагрузке прикладывается напряжение нижней полуобмотки. Затем снова работает вентиль V1 и т.д. Напряжение нагрузки при поочередном отпирании вентилей представляет, собой следующие друг за другом положительные полусинусоиды (рис. 5.2, б). Ток в нагрузке » /> протекает в течение всего периода в одном направлении.

Напряжение на нагрузке » /> постоянно по направлению, но не постоянно по величине. Пульсация напряжения, т.е. изменение напряжения, говорит о наличии переменной составляющей в кривой выпрямленного напряжения и свидетельствует о некачественном (неполном) выпрямлении. Выходное напряжение » /> представляет собой периодическую функцию, а поэтому может быть разложено в ряд Фурье, т.е. представлено в виде

— постоянная (полезная) составляющая или, иначе, среднее значение напряжения за период повторяемости кривой » /> — напряжение пульсации, т.е. переменная составляющая, равная сумме всех гармонических составляющих.

На рис. 5.3 показано графическое разложение кривой напряжения » />(t) на две составляющие. Можно считать, что на нагрузке действует постоянное по величине и форме напряжение » />, искаженное переменной составляющей — напряжением пульсации » />. Основной характеристикой выпрямленного напряжения является его среднее значение . Среднее значение напряжения (или тока) за период повторяемости равно высоте прямоугольника, площадь которого равна площади, ограниченной кривой напряжения (или тока).

В рассматриваемой схеме период повторяемости выходного напряжения (не путать с периодом напряжения сети) равен » />, поэтому

Учтем, что амплитудное значение напряжения на нагрузке » /> равно амплитуде ЭДС » /> — действующее значение ЭДС вторичной обмотки трансформатора. Тогда

Наибольшую величину в кривой выпрямленного напряжения имеет 1-я гармоника, частота которой » /> в 2 раза выше частоты питающей сети. Эту гармонику наиболее трудно подавить фильтрами, поэтому по ее величине судят об искажении выпрямленного напряжения. На рис. 5.3 штриховой линией показана первая гармоника пульсации » /> и ее амплитуда » />. Пульсация выпрямленного напряжения характеризуется коэффициентом пульсации q , равным отношению амплитуды 1-й гармоники напряжения пульсации к среднему значению:

Из разложения в ряд Фурье кривой выпрямленного напряжения получаем в общем виде формулу

где m — кратность частоты переменной составляющей выпрямленного напряжения к частоте сети, зависящая от схемы выпрямления и называемая числом фаз выпрямления или пульсностью выпрямителя. Для рассматриваемых однофазных выпрямителей (например, рис. 5.2, а) m = 2, тогда q = 0,67. Для выбора вентилей в схеме рис. 5.2, а определим среднее значение тока через вентиль. По временным диаграммам рис. 5.2, б видно, что

К закрытому вентилю V1 прикладывается напряжение двух вторичных обмоток: одна из них подключена к аноду вентиля, вторая связана с катодом через проводящий ток вентиль V2. Поэтому максимальное обратное напряжение на вентиле с учетом (5.1)

На основании вычисленных значений » /> выбираются вентили.

Активная мощность, отдаваемая в нагрузку в схеме рис. 5.2, а, определяется действующим значением » />

Активная мощность, передаваемая в виде постоянной составляющей тока и напряжения, определяется средним значением » />

Следовательно, в схеме рис. 5.2, б значительная часть активной мощности передается в нагрузку в виде переменной (невыпрямленной) составляющей, что говорит о некачественном выпрямлении. Поэтому для создания источников питания вентильный комплект снабжается фильтром. При работе на активно-индуктивную нагрузку используют фильтрующие свойства индуктивности нагрузки.

Выясним влияние индуктивности нагрузки либо фильтра на примере работы однофазной мостовой схемы выпрямления ( рис. 5.4 , а ).

При положительной полуволне ЭДС » /> (интервал 0- » />) и указанной на рис. 5.4, а полярности выпрямленный ток будет протекать через диод V1, нагрузку » /> и диод V4. Диоды V2 и V3 находятся под обратным напряжением и тока не проводят (минус прикладывается у них к аноду, а плюс к катоду).

При изменении полярности переменного напряжения (интервал » />) открываются диоды V2 я V3, однако ток в нагрузке сохраняет прежнее направление.

Если нагрузка активная ( » /> = 0), то ток » /> повторяет форму напряжения на нагрузке, а токи первичной и вторичной обмоток » /> имеют синусоидальную форму (штриховые кривые на рис. 5.4, б, в). Если в цепи нагрузки имеется индуктивность » /> то она препятствует изменению тока и ток в нагрузке не будет успевать следовать за напряжением » />, так что ток » /> будет сглаживаться (сплошная кривая » /> на рис. 5.4, в). При значительной индуктивности в цепи нагрузки » /> ток в нагрузке из-за малой пульсации можно считать постоянным (идеально сглаженным), при этом передача активной мощности в па-грузку переменными составляющими тока отсутствует. В таком режиме ток диодов » />, вторичный » /> и первичный » /> токи трансформатора принимают форму прямоугольных импульсов.

При активно-индуктивной нагрузке длительность проводящего состояние вентилей » />, как и при активной нагрузке, остается равной » />, поэтому в любой момент времени напряжение на нагрузке повторяет вторичное напряжение » /> (рис. 5.4, б), а его значение определяется выражением (5.1).

Проведем расчет мостовой схемы выпрямления, позволяющий по известным параметрам нагрузки выбрать тип вентилей и определить параметры трансформатора. Пренебрежем потерями в сглаживающем дросселе » />, вентилях и трансформаторе и положим ток нагрузки идеально сглаженным: » />

Среднее значение выходного напряжения нулевого и мостового выпрямителей определяется при индуктивной нагрузке так же, как и при активной, и равно в соответствии с (5.1)

Отсюда действующее значение ЭДС » />

Поскольку мы приняли, что дроссель » /> не имеет потерь, среднее значение тока нагрузки

Вентили проводят ток нагрузки в течение половины периода как в нулевой, так и в мостовой схемах, поэтому справедливо (5.4)

Максимальное значение тока вентилей при идеальном сглаживании

В мостовой схеме амплитудное значение обратного напряжения на вентилях равно амплитуде ЭДС » />, так как закрытый вентиль (через проводящий ток вентиль) подключается параллельно обмотке трансформатора, следовательно

Из сравнения (5.5) и (5.5а) видно, что в мостовой схеме выпрямления обратное напряжение на вентиле при одинаковом » /> вдвое меньше, чем в нулевой. По значениям » /> выбирают вентили. При применении трансформатора (в нулевой схеме наличие трансформатора является обязательным, в мостовой возможно бестрансформаторное включение вентильного комплекта к сети) необходимо знать расчетную мощность его обмоток.

В мостовой схеме действующее значение тока во вторичной обмотке » /> находим, учитывая » /> По определению

Поскольку ток » /> при подстановке получаем

Расчетная мощность вторичной обмотки в мостовой схеме

где » /> — мощность нагрузки, равная » />.

В мостовой схеме токи и напряжения в первичной и вторичной обмотках имеют одинаковую форму, поэтому расчетная мощность первичной обмотки » /> Расчетная мощность трансформатора в мостовой схеме при активно-индуктивной нагрузке

Аналогично можно рассмотреть работу на RL-нагрузку и нулевой схемы. Основные процессы в этих двух схемах протекают аналогично, различие заключается лишь в том, что в нулевой схеме обратное напряжение на вентиле в 2 раза выше, чем в мостовой (см. § 5.2), а ток вторичной обмотки трансформатора повторяет форму тока вентиля » /> и его действующее значение

Результаты расчета основных параметров нулевой и мостовой схем выпрямления при работе на R- и RL-нагрузки приведены в табл. 5.1.

Как сделать выпрямитель и простейший блок питания. Маломощные однофазные выпрямители

Поскольку большинство радиоэлектронных устройств питаются постоянным током, а в нашей сети переменный, то самое время научиться его «выпрямлять». Для преобразования переменного напряжения или тока в постоянный служат выпрямители, о которых мы и поговорим. Самый простой выпрямитель можно выполнить всего на одном диоде:

На графиках, полученных с помощью осциллографа и представленных на рисунке, хорошо видно, что до диода напряжение было переменным, разнополярным. Диод «обрезал» отрицательные полуволны, и остались одни положительные. Таким образом, мы получили однополярное напряжение, но оно сильно пульсирует, и питать им электронику невозможно. Чтобы сгладить пульсации используют конденсаторы большой емкости:

Пока проходит положительная полуволна, конденсатор заряжается, во время провала он отдает запасенную энергию и разряжается. Теперь дело обстоит несколько лучше, но не совсем хорошо — чем мощнее нагрузка, тем глубже будут провалы и тем большую емкость нужно включать, чтобы как-то спасти положение. Поэтому такой вид выпрямителя, который называется однополупериодным , используют достаточно редко и только для выпрямления переменного тока достаточно высокой частоты и малых токов нагрузки. В противном случае размеры сглаживающих конденсаторов будут неоправданно большими.

Для улучшения формы выпрямленного напряжения достаточно добавить в схему еще три диода:

В этом выпрямителе, который называют двухполупериодным, волны перенаправляются диодами и на выходе получается тоже пульсирующее напряжение, но удвоенной частоты, а пауз между импульсами практически нет. Добавим сюда сглаживающий конденсатор и увидим, что постоянное напряжение действительно похоже на постоянное:

Преимущество такого типа выпрямителя не только в лучшей форме выпрямленного напряжения, но и в том, что в качестве диодов можно использовать приборы, рассчитанные на вдвое меньший ток, поскольку в каждый момент времени через каждый диод течет только половина тока нагрузки. Такая схема получила настолько широкое распространение, что диоды собирают в мосты прямо на заводе. Такие сборки мы называем диодными или выпрямительными мостами.

Но двухполупериодная схема может иметь и другой вид, в котором присутствует всего два диода:

Здесь «минусовым» проводом служит отвод от середины вторичной обмотки трансформатора, а положительные полуволны собираются двумя диодами на «плюсе» благодаря двум одинаковым полуобмоткам. В этой схеме диоды тоже работают с половинным током нагрузки, но оправдана она лишь тогда, когда трансформатор имеет две обмотки, каждая из которых выдает номинальное напряжение и обмотки эти можно включить последовательно.

Итак, дорогие мои, мы собрали нашу схемку и пришло время ее проверить, испытать и нарадоваться сему счастью. На очереди у нас — подключение схемы к источнику питания. Приступим. На батарейках, аккумуляторах и прочих прибамбасах питания мы останавливаться не будем, перейдем сразу к сетевым источникам питания. Здесь рассмотрим существующие схемы выпрямления, как они работают и что умеют. Для опытов нам потребуется однофазное (дома из розетки) напряжение и соответствующие детальки. Трехфазные выпрямители используются в промышленности, мы их рассматривать также не будем. Вот электриками вырастете — тогда пожалуйста.

Источник питания состоит из нескольких самых важных деталей: Сетевой трансформатор — на схеме обозначается похожим как на рисунке,

Выпрямитель — его обозначение может быть различным. Выпрямитель состоит из одного, двух или четырех диодов, смотря какой выпрямитель. Сейчас будем разбираться.

а) — простой диод.
б) — диодный мост. Состоит из четырех диодов, включенных как на рисунке.
в) — тот же диодный мост, только для краткости нарисован попроще. Назначения контактов такие же, как у моста под буквой б).

Конденсатор фильтра. Эта штука неизменна и во времени, и в пространстве, обозначается так:

Обозначений у конденсатора много, столько же, сколько в мире систем обозначений. Но в общем они все похожи. Не запутаемся. И для понятности нарисуем нагрузку, обозначим ее как Rl — сопротивление нагрузки. Это и есть наша схема. Также будем обрисовывать контакты источника питания, к которым эту нагрузку мы будем подключать.

Далее — пара-тройка постулатов.
— Выходное напряжение определяется как Uпост = U*1.41. То есть если на обмотке мы имеем 10вольт переменного напряжения, то на конденсаторе и на нагрузке мы получим 14,1В. Примерно так.
— Под нагрузкой напряжение немного проседает, а насколько — зависит от конструкции трансформатора, его мощности и емкости конденсатора.
— Выпрямительные диоды должны быть на ток в 1,5-2 раза больше необходимого. Для запаса. Если диод предназначен для установки на радиатор (с гайкой или отверстие под болт), то на токе более 2-3А его нужно ставить на радиатор.

Так же напомню, что же такое двуполярное напряжение. Если кто-то подзабыл. Берем две батарейки и соединяем их последовательно. Среднюю точку, то есть точку соединения батареек, назовем общей точкой. В народе она известна так же как масса, земля, корпус, общий провод. Буржуи ее называют GND (ground — земля), часто ее обозначают как 0V (ноль вольт). К этому проводу подключаются вольтметры и осциллографы, относительно нее на схемы подаются входные сигналы и снимаются выходные. Потому и название ее — общий провод. Так вот, если подключим тестер черным проводом в эту точку и будем мерить напряжение на батарейках, то на одной батарейке тестер покажет плюс1,5вольта, а на другой — минус1,5вольта. Вот это напряжение +/-1,5В и называется двуполярным. Обе полярности, то есть и плюс, и минус, обязательно должны быть равными. То есть +/-12, +/-36В, +/-50 и т.д. Признак двуполярного напряжения — если от схемы к блоку питания идут три провода (плюс, общий, минус). Но не всегда так — если мы видим, что схема питается напряжением +12 и -5, то такое питание называется двухуровневым, но проводов к блоку питания будет все равно три. Ну и если на схему идут целых четыре напряжения, например +/-15 и +/-36, то это питание назовем просто — двуполярным двухуровневым.

Ну а теперь к делу.

1. Мостовая схема выпрямления.
Самая распространенная схема. Позволяет получить однополярное напряжение с одной обмотки трансформатора. Схема обладает минимальными пульсациями напряжения и несложная в конструкции.

2. Однополупериодная схема.
Так же, как и мостовая, готовит нам однополярное напряжение с одной обмотки трансформатора. Разница лишь в том, что у этой схемы удвоенные пульсации по сравнению с мостовой, но один диод вместо четырех сильно упрощает схему. Используется при небольших токах нагрузки, и только с трансформатором, намного большим мощности нагрузки, т.к. такой выпрямитель вызывает одностороннее перемагничивание трансформатора.

3. Двухполупериодная со средней точкой.
Два диода и две обмотки (или одна обмотка со средней точкой) будут питать нас малопульсирующим напряжением, плюс ко всему мы получим меньшие потери в сравнении с мостовой схемой, потому что у нас 2 диода вместо четырех.

4. Мостовая схема двуполярного выпрямителя.
Для многих — наболевшая тема. У нас есть две обмотки (или одна со средней точкой), мы с них снимаем два одинаковых напряжения. Они будут равны, пульсации будут малыми, так как схема мостовая, напряжения на каждом конденсаторе считается как напряжение на каждой обмотке помножить на корень из двух — всё, как обычно. Провод от средней точки обмоток выравнивает напряжения на конденсаторах, если нагрузки по плюсу и по минусу будут разными.

5. Схема с удвоением напряжения.
Это две однополупериодные схемы, но с диодами, включенными по разному. Применяется, если нам надо получить удвоенное напряжение. Напряжение на каждом конденсаторе будет определяться по нашей формуле, а суммарное напряжение на них будет удвоенным. Как и у однополупериодной схемы, у этой так же большие пульсации. В ней можно усмотреть двуполярный выход — если среднюю точку конденсаторов назвать землей, то получается как в случае с батарейками, присмотритесь. Но много мощности с такой схемы не снять.

6. Получение разнополярного напряжения из двух выпрямителей.
Совсем не обязательно, чтобы это были одинаковые блоки питания — они могут быть как разными по напряжению, так и разными по мощности. Например, если наша схема по +12вольтам потребляет 1А, а по -5вольтам — 0,5А, то нам и нужны два блока питания — +12В 1А и -5В 0,5А. Так же можно соединить два одинаковых выпрямителя, чтобы получить двуполярное напряжение, например, для питания усилителя.

7. Параллельное соединение одинаковых выпрямителей.
Оно нам дает то же самое напряжение, только с удвоенным током. Если мы соединим два выпрямителя, то у нас будет двойное увеличение тока, три — тройное и т.д.

Ну а если вам, дорогие мои, всё понятно, то задам, пожалуй, домашнее задание. Формула для расчета емкости конденсатора фильтра для двухполупериодного выпрямителя:

Для однополупериодного выпрямителя формула несколько отличается:

Двойка в знаменателе — число «тактов» выпрямления. Для трехфазного выпрямителя в знаменателе будет стоять тройка.

Во всех формулах переменные обзываются так:
Cф — емкость конденсатора фильтра, мкФ
Ро — выходная мощность, Вт
U — выходное выпрямленное напряжение, В
f — частота переменного напряжения, Гц
dU — размах пульсаций, В

Для справки — допустимые пульсации:
Микрофонные усилители — 0,001. 0,01%
Цифровая техника — пульсации 0,1. 1%
Усилители мощности — пульсации нагруженного блока питания 1. 10% в зависимости от качества усилителя.

Эти две формулы справедливы для выпрямителей напряжения частотой до 30кГц. На бОльших частотах электролитические конденсаторы теряют свою эффективность, и выпрямитель рассчитывается немного не так. Но это уже другая тема.

Как известно, электрическая энергия производится, распределяется и потребляется преимущественно в виде энергии переменного тока. Так удобнее. Однако потребители электрической энергии бывают разные. Для потребителей переменного тока (асинхронных и синхронных электрических двигателей, трансформаторов, люминесцентных ламп) важно, чтобы потребляемый ими ток был знакопеременным (лучше всего – синусоидальным). Частота изменения знака тока стандартизована (в Украине – 50 Гц). Другие потребители требуют, ток был одного знака. К таким относятся электрические двигатели переменного тока, аккумуляторные батареи во время их заряда, гальванические и электролизные ванны, сварочные установки, электронные микросхемы и т.п. Их называют потребителями постоянного тока.

Выпрямитель – полупроводниковый преобразователь энергии, предназначенный для преобразования электрической энергии переменного тока в энергию постоянного тока. Потребность в использовании выпрямителя возникает тогда, когда для питания потребителя постоянного тока необходимо использовать энергию из источника переменного тока (например, промышленной или бытовой сети переменного тока). В таком случае выпрямитель включают между источником переменного тока и потребителем постоянного тока.

Выпрямители широко используются в блоках питания компьютеров, агрегатах бесперебойного питания, зарядных устройствах для мобильных телефонов и ноутбуков, на преобразовательных подстанциях электрического транспорта, в электроприводах постоянного тока, разнообразных электронных схемах.

Какие бывают выпрямители

Если задачей выпрямителя есть лишь преобразование рода тока (выпрямление), их строят на основе неуправляемых вентилей (диодов). В случае, когда на выпрямитель возложено также регулирование уровня напряжения, подаваемого к потребителю, необходимо использование управляемых вентилей (тиристоров). Подобного регулирования требует, например, электрический двигатель постоянного тока для изменения скорости вращения.

В зависимости от количества фаз питающей сети различают однофазные выпрямители и трехфазные.

По уровню мощности выпрямители подразделяют на маломощные (выпрямители сигналов) и мощные или силовые.

Вентили

Современные вентили – обычно полупроводниковые (маломощные – на основе кристаллов германия, более мощные – кремниевые). Не вдаваясь в подробности их внутреннего строения и физических принципов функционирования, рассмотрим только потребительские свойства.

Простейший из вентилей (диод ) является неуправляемым. Он имеет два вывода (анод А и катод К, см. рис. 1) и может проводить ток только в одном направлении – от анода к катоду. Если к аноду приложен положительный потенциал, а к катоду – отрицательный (как на рис. 1а), диод будет открыт, и через него будет протекать ток. Если поменять направление включения диода (как на рис. 1б) или источника питания U , ддиод будет закрыт, а ток – отсутствовать. Будем считать диод идеальным вентилем (то есть, его внутреннее сопротивление в открытом состоянии равно нулю, а в закрытом – бесконечности). Графическое обозначение диода на электрических схемах похоже на стрелку, показывающую единственное возможное направление протекания тока. Чтобы отличить на схеме один диод от других, рядом с их графическим обозначением пишут VD и текущий номер диода (например VD1 ).

Рис. 1. Способы включения диода (а – прямой, б – обратный)

Тиристор является вентилем управляемым. Кроме анода и катода, он имеет третий вывод (управляющий электрод УЭ на рис. 2). Он также проводит ток только в одном направлении (от анода к катоду). Для его отрывания необходимо выполнить два условия:

  • подать на анод положительный потенциал относительно катода (как для диода);
  • обеспечить протекание в цепи между управляющим электродом и катодом тока управления i у , направленного как на рис 2а.

Рис. 2. Два состояния тиристора (а – открыт и б – закрыт)

Для обеспечения протекания тока управления используют дополнительный источник напряжения u у . ВВеличина тока управления намного меньше тока между анодом и катодом (то есть силового тока). Если цепь управляющего электрода разомкнуть (как на рис. 2б), ток управления будет отсутствовать, и тиристор не откроется. Графическое обозначение тиристора похоже на обозначение диода, однако имеет третий вывод УЭ. Нумерацию тиристоров на схемах производят с использованием букв VS. Благодаря наличию управляющего электрода тиристор становится управляемым вентилем. Он открывается только тогда, когда будет выполнено на только первое условие его открывания, но и второе. Потому ток управления могут подавать не сразу после выполнения первого условия, а несколько позднее. Этот ток подается от специальной системы управления. Долее мы не будем показывать цепь, по которой протекает ток управления.

Рис. 3. Диоды

Тиристор имеет одну особенность: он открывается при помощи управляющего электрода, но закрывается только тогда, когда ток между анодом и катодом исчезнет. Добиться этого с помощью управляющего электрода невозможно. Поэтому тиристор иногда вентилем. называют полууправляемым вентилем.

Конструкция диодов малой мощности показана на рис. 3. У верхнего диода (более мощного, чем нижние) катод расположен слева. Внизу изображен диодный мостик (о них ниже).

Более мощные диоды и тиристоры изображены на рис. 4. Катод обычно имеет резьбу, которой крепится на охладителе, анод – гибкий вывод. Охладители (рис. 5), отводя тепло от вентиля, предотвращают их перегрев. Наиболее мощные приборы имеют таблеточную конструкцию (см. нижнюю часть рис. 4), которая обеспечивает отвод тепла наружу от обоих торцов (справа на рис. 5).

Простейший выпрямитель

ВВыпрямитель (рис. 6а) питается от источника знакопеременного (обычно синусоидального) напряжения u . Он состоит только из одного диода. Будем считать, что нагрузка выпрямителя – потребитель с чисто активным внутренним сопротивлением (R ). Ток, протекающий через нагрузку, и приложенное к ней напряжение обозначены на рис. 6б индексами d (от англ. Direct – постоянный). Диод открыт только тогда, когда к аноду приложен положительный потенциал (напряжение источника положительное, первый полупериод на рис. 6б).

Рис. 4. Мощные диоды и тиристоры

Рис. 5. Тиристоры с охладителями

Рис. 6. Процессы в простейшем выпрямителе

К нагрузке через открытый диод подается напряжение от источника. Ток, протекающий по цепи «источник u – диод – нагрузка» при чисто активной нагрузке повторяет по форме напряжение: . Поэтому со снижением напряжения до нуля исчезает и ток, а диод закрывается. На следующем полупериоде, когда напряжение источника отрицательно, ток отсутствует, напряжение на нагрузке равняется нулю. После того, как напряжение источника снова станет положительным, открывается диод, и к нагрузке снова прикладывается напряжение. Таким образом, благодаря выпрямителю напряжение на нагрузке (выпрямленное напряжение u d ) содержит в себе только положительные полупериоды напряжения u , а выпрямленный ток повторяет по форме выпрямленное напряжение. В нижней части рис. 6б изображена диаграмма работы диода (черная линия показывает интервалы времени, когда диод открыт).

Только что рассмотренная схема используется только для питания потребителей малой мощности. Более распространена мостовая схема (рис. 7а).

Рис. 7. Мостовой выпрямитель

В ее состав входят четыре диода, работающие попарно-поочередно. На первом полупериоде питающего напряжения (правая клемма источника имеет положительный потенциал) открыты диоды VD1 и VD4 , образуется путь протекания тока, изображенный на рис. 7б. К нагрузке прикладывается положительное напряжение. На втором полупериоде открыты VD2 та VD3 , а ток протекает, как показано на рис. 7в (в нагрузке – в прежнем направлении). К нагрузке вновь приложено положительное напряжение. Выпрямленные напряжение и ток во времени изменяются согласно рис. 7г. Поскольку оба полупериода напряжения питания являются рабочими, среднее значение выпрямленного напряжения вдвое больше по сравнению со схемой рис. 6а. Мостовые выпрямители небольшой мощности выпускают в виде т.н. «диодных мостиков» (снизу на рис. 3).

Если необходимо не только формировать на нагрузке знакопостоянное напряжение, но и изменять при необходимости ее среднее значение (для регулирования сварочного тока, скорости электродвигателя), вместо диодов в выпрямителях используют тиристоры (рис. 8а). Если тиристоры получают в цепь управления управляющий сигнал сразу же после того, как напряжение их анодах становится положительным, тиристоры работают также, как и диоды, и процессы в схеме ничем не отличаются от рассмотренных ранее. Если же задержать подачу тока управления, открывание тиристоров происходит позднее (на рис. 8б – по окончании времени задержки t з ). Пока тиристоры закрыты, ток отсутствует, и напряжение к нагрузке не прикладывается. Из кривой выпрямленного напряжения «вырезается» определенный участок, и среднее значение напряжения уменьшается. Увеличение задержки t з приводит к дальнейшему уменьшению среднего выпрямленного напряжения.

Рис. 8. Тиристорный мостовой выпрямитель

Тиристорные выпрямители используются в электроприводах постоянного тока для питания обмоток якоря и возбуждения электродвигателей постоянного тока. На рис. 9 показан внешний вид подобного электропривода. Кроме собственно выпрямителя, в его состав входят микропроцессорные системы управления вентилями, скоростью и моментом электродвигателя, дисплей и пульт управления для диалога с пользователем, а также дополнительные элементы, обеспечивающие функционирование электропривода. Выпрямители большой мощности размещаются в электрических шкафах (рис. 10).

Рис. 9. Современный электропривод постоянного тока на базе тиристорного выпрямителя

Рис. 10. Мощный выпрямитель

преобразователь электрического тока переменного направления в ток постоянного направления. Большинство мощных источников электрической энергии вырабатывают ток переменного направления (см. Переменный ток). Однако многие электрические устройства на городском и железнодорожном транспорте, в химической и радиотехнической промышленности, в цветной металлургии и др. работают на токе постоянного направления (см. Постоянный ток) различного напряжения. В простейшем случае переменный ток выпрямляется вентилем электрическим (См. Вентиль электрический), пропускающим ток (например, синусоидальный) только или преимущественно в одном направлении. По видам применяемых вентилей В. т. подразделяют на электроконтактные, кенотронные, газотронные, тиратронные, ртутные, полупроводниковые и тиристорные.

Различают схемы В. т. однополупериодные, двухполупериодные с нулевым выводом и мостовые. На рис. 1 , а приведена однополупериодная схема выпрямителя однофазного тока. Основные элементы В. т.: трансформатор Тр, вентиль В и сглаживающий фильтр С . Напряжение U 1 , обычно синусоидальное, от источника переменного тока через трансформатор Тр подаётся на вентиль В. Ток J в нагрузке R н течёт только при положительной полярности подводимого напряжения, т. е. при открытом состоянии В . Конденсатор С заряжается положительными полуволнами пульсирующего тока, а в паузах, соответствующих по времени отрицательным полуволнам, разряжается на нагрузку. Таким образом, пульсирующий ток сглаживается, усредняется.

Однополупериодные однофазные схемы В. т. применяют главным образом в маломощных устройствах с ёмкостным или индуктивным сглаживающим фильтром. Основное преимущество — простота и малое число вентилей; недостатки — большие пульсации выпрямленного напряжения и высокое обратное напряжение на вентилях (при ёмкостном фильтре).

В двухполупериодной схеме В. т. (рис. 1 , б) применяют трансформатор со средней точкой во вторичной обмотке. Благодаря такому соединению обмотки с вентилями выпрямленный ток формируется из обеих полуволн тока. Частота пульсаций выпрямленного тока при этом возрастает в два раза по сравнению с однополупериодным В. т. (так, если U 1 — напряжение промышленной частоты 50 гц , то частота пульсации тока на нагрузке будет 100 гц ), что облегчает сглаживание. Мостовая схема В. т. (рис. 1 , в) также двухполупериодная, но вторичная обмотка трансформатора выполнена без средней точки и имеет в два раза меньшее количество витков по сравнению со вторичной обмоткой трансформатора на рис. 1 , б. Дополнительное сглаживание выпрямленного тока в этих схемах обеспечивается индуктивно-ёмкостными либо резистивно-ёмкостными фильтрами (см. Электрический фильтр). Указанные схемы В. т. применяют обычно в системах питания устройств, у которых потребляемая мощность не превышает нескольких квт (радиоприёмники, телевизоры, некоторые устройства автоматики и телемеханики и др.), и лишь в отдельных случаях для питания мощных (до тысячи квт ) устройств (например, двигателей электровозов). Существуют В. т., в которых наряду с выпрямлением тока осуществляется умножение выпрямленного напряжения. Схемы с умножением обычно применяют в высоковольтных установках, предназначенных для испытания электрической изоляции, а также в рентгеновских установках, электронных осциллографах и т.п.

В трёхфазных цепях (См. Трёхфазная цепь) для питания мощных промышленных установок, во избежание несимметричности нагрузки на сеть электроснабжения, применяют схемы трёхфазных В. т. Первичная обмотка трансформатора в таких В. т. соединяется в звезду или треугольник. В зависимости от числа вторичных обмоток трансформатора различают 3-, 6-, 12-, 18-фазные и т.д. однополупериодные и мостовые выпрямители трёхфазного тока. На рис. 2, а приведена трёхфазная однополупериодная схема. Первичная обмотка трансформатора соединена треугольником, а вторичная — звездой. Фазные токи i 1 , i 2 , i 3 выпрямляются и суммируются, образуя выпрямленный выходной ток J . В мостовой трёхфазной схеме (рис. 2 , б) обе обмотки трансформатора соединены звездой. Основные преимущества её такие же, как и у однофазных схем В. т.

Лит.: Каганов И. Л., Электронные и ионные преобразователи, ч. 1-3, М. — Л., 1950-56.

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое «Выпрямитель тока» в других словарях:

ВЫПРЯМИТЕЛЬ ТОКА — устройство для преобразования переменного электрического тока в постоянный; действие всех выпрямителей основано на том, что внутри них создаются условия, при которых электрические заряды определённого знака могут проходить только в одном… … Большая политехническая энциклопедия

У этого термина существуют и другие значения, см. Выпрямитель (значения) … Википедия

Прибор для преобразования тока переменного в ток постоянного направления (выпрямленный ток). Это преобразование достигается двояким способом: 1) задерживают импульсы одного направления; в этом случае от В. получается ток прерывистый, состоящий из … Технический железнодорожный словарь

Выпрямитель: Выпрямитель устройство для преобразования входного переменного напряжения и тока в выходное постоянное напряжение и ток. Выпрямитель НДС в экономике, методика сбора налогов. Выпрямитель (в парикмахерском деле) устройство … Википедия

Устройство, преобразующее переменный ток в постоянный. В современных ИБП выпрямитель также выполняет функцию коррекции входного коэффициента мощности источник бесперебойного питания. EN rectifier… …

выпрямитель — выпрямитель Преобразователь электрической энергии, который преобразует систему переменных токов в ток одного направления [ОСТ 45.55 99] выпрямитель Устройство, преобразующее переменный ток в постоянный с использованием… … Справочник технического переводчика

Выпрямитель — электрический, преобразователь переменного электрического тока в постоянный, выполненный обычно на основе электрического вентиля. Применяется в устройствах автоматики и телемеханики, измерительной техники и радиотехники (однофазный выпрямитель),… … Иллюстрированный энциклопедический словарь

Преобразователь переменного электрического тока в постоянный. Обычно выпрямление тока осуществляется электрическим вентилем, по типу которого различают выпрямители электрические: вакуумные, газоразрядные, полупроводниковые, электроконтактные.… … Большой Энциклопедический словарь

выпрямитель с неизменным напряжением, питающийся от сети переменного тока — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN ac line fixed voltage rectifier … Справочник технического переводчика

Выпрямление электрических колебаний , это процесс, в результате которого переменное входное колебание преобразуется в выходное колебание только одного знака (рисунок 1.5). Процесс выпрямления используется в устройствах электропитания (блоках питания) и демодуляторах.

Выпрямление всегда осуществляется при использовании нелинейных элементов, обладающих свойством однонаправленного пропускания электрического тока. Благодаря таким свойствам на выходе выпрямляющего элемента получают ток одного знака.

Для выпрямления применяют полупроводниковые и вакуумные (кенотроны) диоды, газоразрядные диоды (газотроны), тиратроны , кремниевые и селеновые элементы, тиристоры и другие элементы с нелинейными свойствами в зависимости от применения, значений выпрямленных напряжений и токов, отбираемых нагрузкой. В маломощных электронных устройствах для выпрямления чаще всего применяют полупроводниковые диоды.

Название “выпрямитель” используется, прежде всего, для схем, преобразующих переменный ток в постоянный. Выпрямителем называется также и сам элемент с однонаправленными свойствами, используемые в процессе выпрямления.

Однополупериодным выпрямителем называется такой выпрямитель, на выходе которого после процесса выпрямления остаются колебания одного знака. Схема однополупериодного выпрямителя, возбуждаемого синусоидальным сигналом, представлена на рисунке 1.6.

Диод, включенный таким образом, что приводит ток только при положительных полупериодах входного колебания, т.е. когда напряжение на его аноде больше потенциала катода. Среднее значение колебания, полученного в результате выпрямления синусоидального напряжения с действующим значением и максимальным значением , равно

Например, при выпрямлении напряжения с действующим значением , после выпрямления получаем напряжение .

В отрицательный полупериод диод не проводит ток, и все подведенное к выпрямителю напряжение действует на диоде как обратное напряжение выпрямителя. При изменение направления включения диода он будет проводить в отрицательные полупериоды и не проводить в положительные.

Рассматриваемая схема выпрямителя называется последовательной. Название связано с тем, что нагрузка включается последовательно с нелинейным элементом (вентилем).

Двухполупериодным выпрямителем называют такой выпрямитель, в котором после процесса выпрямления остаются участки входного колебания, имеющие один знак. К ним после изменения знака добавляются участки, имеющие противоположный знак.

Принципиальная схема двухполупериодного выпрямителя, управляемого синусоидальным сигналом от трансформатора, показана на рисунке 1.7.

В периоды времени, когда на аноде диода Д1 действует положительное напряжение, на аноде диода Д2 присутствует отрицательное и наоборот. Это происходит потому, что средняя точка вторичной обмотки трансформатора заземлена, и, следовательно, она имеет нулевой потенциал. При положительной полуволне напряжения на вторичной обмотке диод Д1 пропускает ток, а диод Д2 не пропускает.

При отрицательной полуволне положительное напряжение действует на диоде Д2, который при этом проводит, а диод Д1, смещенный в обратном направлении, не проводит. Среднее значение напряжения, полученого на выходе двухполупериодного выпрямителя в 2 раза больше напряжения, полученного на выходе однополупериодного выпрямителя.

Технические параметры выпрямителя:

Коэффициент пульсаций выпрямителя называется отношение максимального значения переменной составляющей напряжения на выходе выпрямителя к значению его постоянной составляющей на этом выходе. В большинстве применений желательно, чтобы коэффициент пульсаций был как можно меньше. Уменьшение пульсаций достигается путем применения соответствующих фильтров.

Коэффициент использования трансформатора в выпрямительной схеме , определяется как отношение двух мощностей: выходной мощности постоянного тока и номинальной мощности вторичной обмотки трансформатора.

Коэффициент полезного действия , это параметр, характеризующий эффективность схемы выпрямителя при преобразовании переменного напряжения в постоянное. КПД выпрямителя выражается отношением мощности постоянного тока, выделяемой в нагрузке, к входной мощности переменного тока. Коэффициент полезного действия определяется для резистивной нагрузки.

Частотная пульсация выпрямителя , это основная частота переменной составляющей, существующей на выходе выпрямителя. В случае однополупериодного выпрямителя частота пульсаций равна частоте входного колебания. Фильтрация пульсаций тем проще, чем выше частота пульсации.

АВТОМИР

Выпрямителем называется электронное устройство, предназначенное для преобразования электрической энергии переменного тока в постоянный. В основе выпрямителей лежат полупроводниковые приборы с односторонней проводимостью – диоды и тиристоры.

При небольшой мощности нагрузки (до нескольких сотен ватт) преобразование переменного тока в постоянный осуществляют с помощью однофазных выпрямителей. Такие выпрямители предназначены для питания постоянным током различных электронных устройств, обмоток возбуждения двигателей постоянного тока небольшой и средней мощности и т.д.

Для упрощения понимания работы схем выпрямления будем исходить из расчета, что выпрямитель работает на активную нагрузку.

На рисунке 1 представлена простейшая схема выпрямления. Схема содержит один выпрямительный диод, включенный между вторичной обмоткой трансформатора и нагрузкой.

Рисунок 1 — Однофазный однополупериодный выпрямитель: а) схема — диод открыт, б) схема — диод закрыт, в) временные диаграммы работы

Напряжение u2 изменяется по синусоидальному закону, т.е. содержит положительные и отрицательные полуволны (полупериоды). Ток в цепи нагрузки проходит только в положительные полупериоды, когда к аноду диода VD прикладывается положительный потенциал (рис. 1, а). При обратной полярности напряжения u2 диод закрыт, ток в нагрузке не протекает, но к диоду прикладывается обратное напряжение Uобр (рис. 1, б).

Т.о. на нагрузке выделяется только одна полуволна напряжения вторичной обмотки. Ток в нагрузке протекает только в одном направлении и представляет собой выпрямленный ток, хотя носит пульсирующий характер (рис. 1, в). Такую форму напряжения (тока) называют постоянно-импульсная.

Выпрямленные напряжения и ток содержат постоянную (полезную) составляющую и переменную составляющую (пульсации). Качественная сторона работы выпрямителя оценивается соотношениями между полезной составляющей и пульсациями напряжения и тока. Коэффициент пульсаций данной схемы составляет 1,57. Среднее за период значение выпрямленного напряжения Uн = 0,45U2. Максимальное значение обратного напряжения на диоде Uобр.max = 3,14Uн.

Достоинством данной схемы является простота, недостатки: плохое использование трансформатора, большое обратное напряжение на диоде, большой коэффициент пульсации выпрямленного напряжения.

Состоит из четырех диодов, включенных по мостовой схеме. В одну диагональ моста включается вторичная обмотка трансформатора, в другую – нагрузка (рис. 2). Общая точка катодов диодов VD2, VD4 является положительным полюсом выпрямителя, общая точка анодов диодов VD1, VD3 — отрицательным полюсом.

Рисунок 2 — Однофазный мостовой выпрямитель: а) схема — выпрямление положительной полуволны, б) выпрямление отрицательной полуволны, в) временные диаграммы работы

Полярность напряжения во вторичной обмотке меняется с частотой питающей сети. Диоды в этой схеме работают парами поочередно. В положительный полупериод напряжения u2 проводят ток диоды VD2, VD3, а к диодам VD1, VD4 прикладывается обратное напряжение, и они закрыты. В отрицательный полупериод напряжения u2 ток протекает через диоды VD1, VD4, а диоды VD2, VD3 закрыты. Ток в нагрузке проходит все время в одном направлении.

Схема является двухполупериодной (двухтактной), т.к. на нагрузке выделяется оба полупериода сетевого напряжения Uн = 0,9U2, коэффициент пульсаций — 0,67.

спользования мостовой схемы включения диодов позволяет для выпрямления двух полупериодов использовать однофазный трансформатор. Кроме того, обратное напряжение, прикладываемое к диоду в 2 раза меньше.

Питание постоянным током потребителей средней и большой мощности производится от , применение которых снижает загрузку диодов по току и уменьшает коэффициент пульсаций.

Схема состоит из шести диодов, которые разделены на две группы (рис. 2.61, а): катодную — диоды VD1, VD3, VD5 и анодную VD2, VD4, VD6. Нагрузка подключается между точками соединения катодов и анодов диодов, т.е. к диагонали выпрямленного моста. Схема подключается к трехфазной сети.

Рисунок 3 — Трехфазный мостовой выпрямитель: а) схема, б) временные диаграммы работы

В каждый момент времени ток нагрузки протекает через два диода. В катодной группе в течение каждой трети периода работает диод с наиболее высоким потенциалом анода (рис. 3, б). В анодной группе в данную часть периода работает тот диод, у которого катод имеет наиболее отрицательный потенциал. Каждый из диодов работает в течение одной трети периода. Коэффициент пульсаций данной схемы составляет всего 0,057.

Управляемыми выпрямителями — выпрямители, которые совместно с выпрямление переменного напряжения (тока) обеспечивают регулирование величины выпрямленного напряжения (тока).

Управляемые выпрямители применяют для регулирования частоты вращения двигателей постоянного тока, яркости свечения ламп накаливания, при зарядке аккумуляторных батарей и т.п.

Схемы управляемых выпрямителей строятся на тиристорах и основаны на управлении моментом открытия тиристоров.

На рисунке 4,а представлена схема однофазного управляемого выпрямителя. Для возможности выпрямления двух полуволн сетевого напряжения используется трансформатор с двухфазной вторичной обмоткой, в которой формируется два напряжения с противоположными фазами. В каждую фазу включается тиристор. Положительный полупериод напряжения U2 выпрямляет тиристор VS1, отрицательный – VS2.

Схема управления СУ формирует импульсы для открывания тиристоров. Время подачи открывающих импульсов определяет, какая часть полуволны выделяется на нагрузке. Тиристор отпирается при наличии положительного напряжения на аноде и открывающего импульса на управляющем электроде.

Если импульс приходит в момент времени t0 (рис. 4,б) тиристор открыт в течении всего полупериода и на нагрузке максимальное напряжение, если в моменты времени t1, t2, t3, то только часть сетевого напряжения выделяется в нагрузке.

Рисунок 4 — Однофазный выпрямитель: а) схема, б) временные диаграммы работы

Угол задержки, отсчитываемый от момента естественного отпирания тиристора, выраженный в градусах, называется углом управления или регулирования и обозначается буквой α. Изменяя угол α (сдвиг по фазе управляющих импульсов относительно напряжения на анодах тиристоров), мы изменяться время открытого состояния тиристоров и соответственно выпрямленное напряжение на нагрузке.

Выпрямители классифицируют по следующим признакам:

Применение

Выпрямление электрического тока

Выпрямители обычно используются там, где нужно преобразовать переменный ток в постоянный ток. Применение выпрямителей для преобразования переменного тока в постоянный вызвало понятие среднего значения тока по модулю (т. е. без учета знака ординаты) за период. При двухполупериодном выпрямлении среднее значение по модулю определяется как среднеарифметическое значение всех ординат обеих полуволн за целый период без учета их знаков (т. е. полагая все ординаты за период положительными, что и имеет место при двухполупериодном идеальном выпрямлении).

Приемниками электроэнергии с нелинейными характеристиками являются в первую очередь всевозможные преобразовательные установки переменного тока в постоянный, использующие различные вентили.

Сюда относятся выпрямительные установки для:

  • железнодорожной тяги
  • городского электротранспорта
  • электролиза (производство алюминия, хлора, едкого натра и др.)
  • питания приводов прокатных станов
  • возбуждения генераторов электростанций

В качестве вентилей до последнего времени использовались в основном ртутные выпрямители (неуправляемые и управляемые). В настоящее время широкое применение находят преимущественно кремниевые полупроводниковые выпрямители. Внедряются тиристорные выпрямители.

Обычно выпрямительные установки выполняются большой мощности и присоединяются через специальные трансформаторы к питающей сети на напряжении 6 — 10 кВ. Выпрямительные установки небольшой мощности выполняются по трехфазной схеме с нулевым выводом.

Блоки питания аппаратуры

  • Преобразователи бортового электроснабжения постоянного тока автономных транспортных средств: автотракторной, железнодорожной, водной, авиационной и другой техники.

Генерация электроэнергии на транспортном средстве обычно производится генератором переменного тока, но для питания бортовой аппаратуры необходим постоянный ток. Например, в легковых автомобилях применяются электромеханические или полупроводниковые выпрямители.

Сварочные аппараты

В сварочных аппаратах постоянного тока применяются чаще всего мостовые схемы на мощных кремниевых выпрямительных диодах — вентилях, с целью получения постоянного сварочного напряжения и тока. Он отличается от переменного тем, что при использовании его сильнее нагревается область дуги около положительного (+) её полюса, что позволяет либо осуществлять щадящую сварку свариваемых деталей преимущественно плавящимся сварочным электродом, либо экономить электроды, осуществляя резку металла электродуговой сваркой.

Вентильные блоки преобразовательных подстанций систем энергоснабжения

  • Для питания главных двигателей постоянного тока прокатных станов, кранов и другой техники

Энергоснабжение заводов осуществляется электросетью переменного тока, но для приводов прокатных станов и других агрегатов выгоднее использовать двигатели постоянного тока по той же причине, что и для двигателей транспортных средств.

  • Для гальванических ванн (электролизёров) для получения цветных металлов и стали , нанесения металлических покрытий и гальванопластики.
  • Установки электростатической очистки промышленных газов (электростатический фильтр)
  • Установки очистки и обессоливания воды
  • Для электроснабжения контактных сетей электротранспорта постоянного тока (трамвай , троллейбус , электровоз , метро)

Выпрямители высокочастотных колебаний

  • в перспективных системах сбора энергии окружающих шумовых электромагнитных сигналов.
  • в перспективных системах беспроводной передачи электроэнергии .

Детектирование высокочастотного сигнала

Допущения: нагрузка чисто активная, вентиль — идеальный электрический ключ.

Напряжение со вторичной обмотки трансформатора проходит через вентиль на нагрузку только в положительные полупериоды переменного напряжения. В отрицательные полупериоды вентиль закрыт, всё падение напряжения происходит на вентиле, а напряжение на нагрузке Uн равно нулю.

Эта величина вдвое меньше, чем в полномостовом.

  • Большая величина пульсаций
  • Сильная нагрузка на вентиль (требуется диод с большим средним выпрямленным током)
  • Низкий коэффициент использования габаритной мощности трансформатора (около 0,45) (не путать с КПД, который зависит от потерь в меди и потерь в стали и в однополупериодном выпрямителе почти такой же, как и в двухполупериодном).

Преимущество: экономия на количестве вентилей.

Полумост

На двух диодах и двух конденсаторах, широко известный как «с удвоением напряжения» или «удвоитель Латура — Делона — Гренашера».

Известна также схема с удвоением тока: параллельно единственной вторичной обмотке трансформатора включаются два последовательно соединённых дросселя, средняя точка соединения между которыми используется как средняя точка в «двухполупериодном выпрямителе со средней точкой».

Полный мост (Гретца)

На четырёх диодах, широко известный как «двухполупериодный», изобретён немецким физиком Лео Гретцем .

Средняя ЭДС равна то есть вдвое больше, чем в четвертьмостовом.

Эквивалентное внутреннее активое сопротивление равно .

Ток в нагрузке равен

Мощность в нагрузке равна

Наибольшее мгновенное значение напряжения на диодах —

Двухфазные выпрямители со сдвигом фаз 180°

Два четвертьмоста параллельно («двухполупериодный со средней точкой»)

Широко известный как «двухполупериодный со средней точкой». Предложил в 1901 г. профессор Миткевич В. Ф. . В этом выпрямителе две противофазных обмотки создают двухфазный переменный ток со сдвигом между фазами 180 угловых градусов. Двухфазный переменный ток выпрямляется двумя однополупериодными четвертьмостовыми выпрямителями, включенными параллельно и работающими на одну общую нагрузку. Является почти аналогом полномостового выпрямителя Гретца , но имеет почти вдвое большее эквивалентное внутреннее активное сопротивление, вдвое меньше диодов и средний ток через один диод почти вдвое больше, чем в полномостовом, при амплитуде выпрямляемого напряжения сопоставимой с падением напряжения на переходе твердотельного диода обладает значительно лучшим КПД по сравнению с мостовой схемой. Применялась, когда медь была дешевле диодов. В одной из работ отмечается, что в этом выпрямителе выпрямленные полупериоды имеют колоколообразную форму, то есть форму близкую к функции .

Площадь под интегральной кривой равна:

Средняя ЭДС равна:

Относительное эквивалентное активное внутреннее сопротивление равно , то есть вдвое больше, чем в однофазном полномостовом, следовательно больше потери энергии на нагрев меди обмоток трансформатора (или расход меди).

Ток в нагрузке равен

Мощность в нагрузке равна

Частота пульсаций равна , где — частота сети.

Два полных моста параллельно

Позволяет применять диоды со средним током почти вдвое меньшим, чем в однофазном полномостовом.

Двухфазные выпрямители со сдвигом фаз 90°

Два полных моста параллельно

На двух параллельных полных мостах.

Площадь под интегральной кривой равна:

Средняя ЭДС равна: то есть в раз больше, чем в однофазном полномостовом.

В режиме холостого хода и близких к нему ЭДС в мосту с наибольшей на данном отрезке периода ЭДС обратносмещает (закрывает) диоды моста с меньшей на данном отрезке периода ЭДС. Эквивалентное внутреннее активное сопротивление при этом равно При увеличении нагрузки (уменьшении ) появляются и увеличиваются отрезки периода на которых оба моста работают параллельно на общую нагрузку, эквивалентное внутреннее активное сопротивление на этих отрезках периода равно В режиме короткого замыкания оба моста работают параллельно на нагрузку на всём периоде, но полезная мощность в этом режиме равна нулю.

Два полных моста последовательно

На двух последовательных полных мостах.

Площадь под интегральной кривой равна:

Средняя ЭДС равна: то есть вдвое больше, чем в однофазном полномостовом.

Относительное эквивалентное внутреннее активное сопротивление равно

Ток в нагрузке равен

Мощность в нагрузке равна

Частота пульсаций равна

Трёхфазные выпрямители

Является почти аналогом выпрямителя «три полных моста параллельно» и имеет почти такие же свойства, как и выпрямитель «три полных моста параллельно», но эквивалентное внутреннее активное сопротивление почти вдвое больше, число диодов вдвое меньше, средний ток через один диод почти вдвое больший.

Площадь под интегральной кривой равна:

Три двухфазных двухчетвертьмостовых параллельных выпрямителей Миткевича последовательно (6 диодов)

Является почти аналогом выпрямителя «три полных моста последовательно» и имеет почти такие же свойства, но эквивалентное внутреннее активное сопротивление почти вдвое больше, число диодов вдвое меньше, средний ток через один диод почти вдвое больше.

Три полных моста параллельно (12 диодов)

Менее известны полномостовые трёхфазные выпрямители по схеме «три параллельных моста» (на двенадцати диодах), «три последовательных моста» (на двенадцати диодах), и др., которые по многим параметрам превосходят выпрямитель Ларионова А.Н.

По схемам выпрямителей можно видеть, что выпрямитель Миткевича В. Ф. является «недостроенным» выпрямителем Ларионова А.Н., а выпрямитель Ларионова А.Н. является «недостроенным» выпрямителем «три параллельных моста».

Вид ЭДС на входе (точками) и на выходе (сплошной).

Площадь под интегральной кривой равна:

Средняя ЭДС равна: , то есть такая же, как и в схеме «треугольник-Ларионов» и в раз меньше, чем в схеме «звезда-Ларионов».

В режиме холостого хода ЭДС в мосту с наибольшей на данном отрезке большого периода ЭДС обратносмещает (закрывает) диоды в мостах с меньшими на данном отрезке большого периода ЭДС. Эквивалентное внутреннее активное сопротивление при этом равно сопротивлению одного моста При увеличении нагрузки (уменьшении ) появляются и увеличиваются отрезки периода на которых два моста работают на нагрузку параллельно, эквивалентное внутреннее активное сопротивление на этих отрезках периода при этом равно сопротивлению двух параллельных мостов При дальнейшем увеличении нагрузки появляются и увеличиваются отрезки периода на которых все три моста работают на нагрузку параллельно, эквивалентное внутреннее активное сопротивление на этих отрезках периода равно сопротивлению трёх параллельных мостов В режиме короткого замыкания все три параллельных моста работают на нагрузку, но полезная мощность в этом режиме равна нулю.

Выпрямитель «три параллельных полных моста» на холостом ходу имеет такую же среднюю ЭДС, как в выпрямителе «треугольник-Ларионов» и такие же сопротивления обмоток, но, так как у него схема с независимыми от соседних фаз диодами, то моменты переключения диодов отличаются от моментов переключения диодов в схеме «треугольник-Ларионов». Нагрузочные характеристики этих двух выпрямителей получаются разными.

Частота пульсаций равна , где — частота сети.

Абсолютная амплитуда пульсаций равна .

Относительная амплитуда пульсаций равна .

Три полных моста последовательно (12 диодов)

Площадь под интегральной кривой равна:

Средняя ЭДС равна: , то есть вдвое больше, чем в схеме «треугольник-Ларионов».

Эквивалентное внутреннее активное сопротивление равно сопротивлению трёх последовательно включенных мостов с сопротивлением 3*r каждый, то есть .

Ток в нагрузке равен

Мощность в нагрузке равна

Частота пульсаций равна , где — частота сети.

Основными характеристиками выпрямителей являются:

Номинальное напряжение постоянного тока – среднее значение выпрямленного напряжения, заданное техническими требованиями. Обычно указывается напряжение до фильтра U0 и напряжение после фильтра (или отдельных его звеньев – U. Определяется значением напряжения, необходимым для питаемых выпрямителем устройств.

Номинальный выпрямленный ток I0 – среднее значение выпрямленного тока, т.е. его постоянная составляющая, заданная техническими требованиями. Определяется результирующим током всех цепей питаемых выпрямителем.

Напряжение сети Uсети – напряжение сети переменного тока, питающей выпрямитель. Стандартное значение этого напряжения для бытовой сети –220 вольт с допускаемыми отклонениями не более 10 %.

Пульсация – переменная составляющая напряжения или тока на выходе выпрямителя. Это качественный показатель выпрямителя.

Частота пульсаций – частота наиболее резко выраженной гармонической составляющей напряжения или тока на выходе выпрямителя. Для самой простой однополупериодной схемы выпрямителя частота пульсаций равна частоте питающей сети. Двухполупериодные, мостовые схемы дают пульсации, частота которых равна удвоенной частоте питающей сети. Многофазные схемы выпрямления имеют частоту пульсаций, зависящую от схемы выпрямителя и числа фаз.

Коэффициент пульсаций – отношение амплитуды наиболее резко выраженной гармонической составляющей напряжения или тока на выходе выпрямителя к среднему значению напряжения или тока. Различаюткоэффициент пульсаций на входе фильтра (p0 %) икоэффициент пульсаций на выходе фильтра (p %). Допускаемые значения коэффициента пульсаций на выходе фильтра определяются характером нагрузки.

Коэффициент фильтрации (коэффициент сглаживания) – отношение коэффициента пульсаций на входе фильтра к коэффициенту пульсаций на выходе фильтра k с = p0 / p. Для многозвенных фильтров коэффициент фильтрации равен произведению коэффициентов фильтрации отдельных звеньев.

Колебания (нестабильность) напряжения на выходе выпрямителя –изменение напряжения постоянного тока относительно номинального. При отсутствии стабилизаторов напряжения определяются отклонениями напряжения сети.

Схемы выпрямителей.

Выпрямители, применяемые для однофазной бытовой сети выполняются по 3 основным схемам: однополупериодной, двухполупериодной с нулевой точкой (или просто- двухполупериодной), двухполупериодной мостовой(или просто –мостовой, реже называется как “схема Герца”),. Для многофазных промышленных сетей применяются две разновидности схем: Однополупериодная многофазная и схема Ларионова.

Чаще всего используются трехфазные схемы выпрямителей. Основные показатели, характеризующие схемы выпрямителей могут быть разбиты на 3 группы:

Относящиеся ко всему выпрямителю в целом: U0 -напряжение постоянного тока до фильтра, I0 – среднее значение выпрямленного тока, p0 – коэффициент пульсаций на входе фильтра.

Определяющие выбор выпрямительного элемента (вентиля): Uобр – обратное напряжение (напряжение на выпрямительном элементе (вентиле) в непроводящую часть периода), Iмакс – максимальный ток проходящий через выпрямительный элемент (вентиль) в проводящую часть периода.

Определяющие выбор трансформатора: U2 – действующее значение напряжения на вторичной обмотке трансформатора, I2 – действующее значение тока во вторичной обмотке трансформатора, Pтр – расчетная мощность трансформатора.

Очень много вопросов задают по статье как получить из переменного напряжения постоянное . Напомню, что мы получали постоянное напряжение с помощью типичной схемы, которая используется во всей электронике:

Да, та статья получилась чуток сыровата, но суть преобразования переменного тока в постоянный мы постарались объяснить на пальцах. Но читатели все равно «не вкурили» ту статью, поэтому было решено написать еще одну статейку, но на этот раз разжевать все досконально.

Снова да ладом…

Придется возвращаться к истокам. Вместо трансформатора я возьму ЛАТР , который будет выдавать переменный ток:

Выставляем на ЛАТРе с помощью напряжение амплитудой в 10 Вольт:

Как мы можем увидеть в нижнем левом углу, частота нашего сигнала 50 Герц. Это и есть частота сети. Длина одного кубика по вертикали равна 2 Вольтам.

И спаиваем из них вот по такой схеме:

Подаем напряжение с ЛАТРа на диодный мост, а с других концов цепляем щуп осциллографа

Тыкаем щупом осциллографа в эти красные кружочки на схеме. Землю на один кружочек, а сигнальный на другой.

Смотрим, что получилось на дисплее осциллографа

Дело в том, что сопротивление щупа осциллографа обладает очень высоким , или иначе простыми словами: мы подцепили очень-очень высокоомный резистор к выходу диодного моста. Поэтому диодный мост в холостом режиме, то есть в режиме без нагрузки, не функционирует.

Для того, чтобы проверить диодный мост на работоспособность, нам надо его нагрузить . Это может быть резистор в несколько десятков или сотен Ом, лампочка, либо какая-нибудь электронная безделушка. В моем случае я взял лампочку накаливания на 12 Вольт от поворотника мотоцикла:

Цепляем ее к диодному мосту

Тыкаем щуп осциллографа в эти точки и смотрим осциллограмму

Как мы видим, напряжение с ЛАТРа чуть просело. Все зависит, конечно, от подключаемой нагрузки и мощности самого ЛАТРа. Про это я писал еще в статье

Теперь тыкаем щупом в эти точки

Классика жанра! Превращаем отрицательную полуволну в положительную и получаем «горки» с частотой в 100 Герц;-). Но ваш внимательный глаз ничего не заметил? Если даже мы и выпрямили напряжение с помощью диодного моста, то почему амплитуда каждой полуволны стала еще чуть меньше?

Дело все в том, что на диода в прямом смещении падает напряжение в 0,6-0,7 Вольт. Именно поэтому оно и вычитается с амплитуды напряжения, которое надо выпрямить.

Давайте теперь к диодному мосту запаяем конденсатор емкостью в 5000 мкФ и не будем цеплять никакую нагрузку

Тыкаем щупом сюда

Получили вот такую осциллограмму постоянного тока. Она в 1,41 раз больше, чем действующее (среднеквадратичное) значение сигнала с ЛАТРа (о действующем напряжении чуть ниже)

А теперь цепляем лампочку

Осциллограмма кардинально изменилась.

Как мы видим, напряжение просело и у нас получилась осциллограмма постоянного напряжения с небольшими пульсациями. Вот эти маленькие «холмики» и есть пульсации, в отличите от «гор» сразу после диодного моста с лампочкой-нагрузкой. Физический смысл здесь такой: конденсатор не успевает разряжаться на нагрузке, как снова приходит новая «горка» и снова заряжает конденсатор.

Правило диодного выпрямителя с конденсатором очень простое: чем больше емкость конденсатора и чем больше сопротивление нагрузки, тем меньше по амплитуде будут пульсации, и наоборот.

Но почему у нас просело напряжение? Ведь было уже 10 Вольт постоянного напряжения на конденсаторе без нагрузки?

А как цепанули лампочку стало намного меньше…

В чем же проблема? А проблема именно в законе сохранения энергии…

Среднеквадратичное значения напряжения

Итак, давайте еще раз вспомним: что такое ?

Допустим, у нас есть лампочка накаливания. Я ее подцепил к источнику постоянного тока и она у меня загорелась с какой-то яркостью. Потом я цепляю эту лампу к источнику переменного тока и добиваюсь такого же свечения лампы. Форма сигнала постоянного и переменного напряжения разные, а мощность, выдаваемая в нагрузку, в данном случае лампочку, одинаковая. Можно сказать, что среднеквадратичное значение переменного тока равняется значению постоянного тока.

То есть если у нас лампочка на 12 Вольт, я могу подать на нее 12 Вольт с блока питания или 12 Вольт с ЛАТРа. Лампочка будет светить с такой же яркостью. Мультиметр в режиме измерения переменного тока показывает именно среднеквадратичное значение напряжения .

Итак, чему же равняется среднеквадратичное значение вот этого сигнала?

А давайте замеряем. Для этого я беру мой любимый прибор токоизмерительные клещи , в который встроен целый мультиметр с True RMS и начинаю замерять среднеквадратичное значение

Мультиметр показал 7,18 Вольт. Это и есть среднеквадратичное значение этого сигнала.

Для синусоидальных сигналов оно легко вычисляется по формуле:

U max — максимальная амплитуда, В

U Д — действующее (среднеквадратичное) значение напряжения, В

Как мы подцепили нагрузку, у нас сразу просела амплитуда напряжения с ЛАТРа, а следовательно, и среднеквадратичное значение напряжения

6, 68 Вольт. Хотя по формуле получается 9/1,41=6,38. Спишем на погрешности измерения.

Среднеквадратичное значение сложных сигналов

Но чему же равняется среднеквадратичное значение напряжения после диодного моста с включенной нагрузкой-лампочкой?

Для определения среднеквадратичного значения такого сигнала:

нам понадобится формула и табличка.

где K a — это коэффициент амплитуды

U max — максимальная амплитуда сигнала

U — действующее (среднеквадратичное) значение сигнала

А вот и табличка:

Теперь ищем по табличке наш пульсирующий сигнал с выпрямителя. Как мы видим, его коэффициент амплитуды равен 1,41 или, если быть точнее, √2. То есть точно такой же, как и у синусоидального сигнала.

Вычисляем по формуле и получаем:

После того, как мы поставили конденсатор, у нас почти получилась осциллограмма постоянного тока с значением в примерно в 6 Вольт, если полностью усреднить нашу кривую, то есть пренебречь небольшими пульсациями. Можно даже сказать, что это значение постоянного тока будет равняться среднеквадратичному значению переменного тока номиналом в 6 Вольт. Не забываем, что 0,6-0,7 Вольт у нас падают на диодах.

Заключение

Итак, какие выводы делаем из всего вышесказанного и показанного? Среднеквадратичное значение напряжения на выходе диодного выпрямителя чуточку меньше, чем до диодного моста. По 0,6-0,7 Вольт падает на диодах. Если бы мы поставили диоды Шоттки, то выиграли бы 0,3-0,4 Вольта, так как падения на Шоттках 0,2-0,3 Вольта. Схема двухполупериодного выпрямителя, с энергетической точки зрения является очень неплохой и поэтому используется в большинстве радиоэлектронных устройств.

Итак, дорогие мои, мы собрали нашу схемку и пришло время ее проверить, испытать и нарадоваться сему счастью. На очереди у нас — подключение схемы к источнику питания. Приступим. На батарейках, аккумуляторах и прочих прибамбасах питания мы останавливаться не будем, перейдем сразу к сетевым источникам питания. Здесь рассмотрим существующие схемы выпрямления, как они работают и что умеют. Для опытов нам потребуется однофазное (дома из розетки) напряжение и соответствующие детальки. Трехфазные выпрямители используются в промышленности, мы их рассматривать также не будем. Вот электриками вырастете — тогда пожалуйста.

Источник питания состоит из нескольких самых важных деталей: Сетевой трансформатор — на схеме обозначается похожим как на рисунке,

Выпрямитель — его обозначение может быть различным. Выпрямитель состоит из одного, двух или четырех диодов, смотря какой выпрямитель. Сейчас будем разбираться.

а) — простой диод.
б) — диодный мост. Состоит из четырех диодов, включенных как на рисунке.
в) — тот же диодный мост, только для краткости нарисован попроще. Назначения контактов такие же, как у моста под буквой б).

Конденсатор фильтра. Эта штука неизменна и во времени, и в пространстве, обозначается так:

Обозначений у конденсатора много, столько же, сколько в мире систем обозначений. Но в общем они все похожи. Не запутаемся. И для понятности нарисуем нагрузку, обозначим ее как Rl — сопротивление нагрузки. Это и есть наша схема. Также будем обрисовывать контакты источника питания, к которым эту нагрузку мы будем подключать.

Далее — пара-тройка постулатов.
— Выходное напряжение определяется как Uпост = U*1.41. То есть если на обмотке мы имеем 10вольт переменного напряжения, то на конденсаторе и на нагрузке мы получим 14,1В. Примерно так.
— Под нагрузкой напряжение немного проседает, а насколько — зависит от конструкции трансформатора, его мощности и емкости конденсатора.
— Выпрямительные диоды должны быть на ток в 1,5-2 раза больше необходимого. Для запаса. Если диод предназначен для установки на радиатор (с гайкой или отверстие под болт), то на токе более 2-3А его нужно ставить на радиатор.

Так же напомню, что же такое двуполярное напряжение. Если кто-то подзабыл. Берем две батарейки и соединяем их последовательно. Среднюю точку, то есть точку соединения батареек, назовем общей точкой. В народе она известна так же как масса, земля, корпус, общий провод. Буржуи ее называют GND (ground — земля), часто ее обозначают как 0V (ноль вольт). К этому проводу подключаются вольтметры и осциллографы, относительно нее на схемы подаются входные сигналы и снимаются выходные. Потому и название ее — общий провод. Так вот, если подключим тестер черным проводом в эту точку и будем мерить напряжение на батарейках, то на одной батарейке тестер покажет плюс1,5вольта, а на другой — минус1,5вольта. Вот это напряжение +/-1,5В и называется двуполярным. Обе полярности, то есть и плюс, и минус, обязательно должны быть равными. То есть +/-12, +/-36В, +/-50 и т.д. Признак двуполярного напряжения — если от схемы к блоку питания идут три провода (плюс, общий, минус). Но не всегда так — если мы видим, что схема питается напряжением +12 и -5, то такое питание называется двухуровневым, но проводов к блоку питания будет все равно три. Ну и если на схему идут целых четыре напряжения, например +/-15 и +/-36, то это питание назовем просто — двуполярным двухуровневым.

Ну а теперь к делу.

1. Мостовая схема выпрямления.
Самая распространенная схема. Позволяет получить однополярное напряжение с одной обмотки трансформатора. Схема обладает минимальными пульсациями напряжения и несложная в конструкции.

2. Однополупериодная схема.
Так же, как и мостовая, готовит нам однополярное напряжение с одной обмотки трансформатора. Разница лишь в том, что у этой схемы удвоенные пульсации по сравнению с мостовой, но один диод вместо четырех сильно упрощает схему. Используется при небольших токах нагрузки, и только с трансформатором, намного большим мощности нагрузки, т.к. такой выпрямитель вызывает одностороннее перемагничивание трансформатора.

3. Двухполупериодная со средней точкой.
Два диода и две обмотки (или одна обмотка со средней точкой) будут питать нас малопульсирующим напряжением, плюс ко всему мы получим меньшие потери в сравнении с мостовой схемой, потому что у нас 2 диода вместо четырех.

4. Мостовая схема двуполярного выпрямителя.
Для многих — наболевшая тема. У нас есть две обмотки (или одна со средней точкой), мы с них снимаем два одинаковых напряжения. Они будут равны, пульсации будут малыми, так как схема мостовая, напряжения на каждом конденсаторе считается как напряжение на каждой обмотке помножить на корень из двух — всё, как обычно. Провод от средней точки обмоток выравнивает напряжения на конденсаторах, если нагрузки по плюсу и по минусу будут разными.

5. Схема с удвоением напряжения.
Это две однополупериодные схемы, но с диодами, включенными по разному. Применяется, если нам надо получить удвоенное напряжение. Напряжение на каждом конденсаторе будет определяться по нашей формуле, а суммарное напряжение на них будет удвоенным. Как и у однополупериодной схемы, у этой так же большие пульсации. В ней можно усмотреть двуполярный выход — если среднюю точку конденсаторов назвать землей, то получается как в случае с батарейками, присмотритесь. Но много мощности с такой схемы не снять.

6. Получение разнополярного напряжения из двух выпрямителей.
Совсем не обязательно, чтобы это были одинаковые блоки питания — они могут быть как разными по напряжению, так и разными по мощности. Например, если наша схема по +12вольтам потребляет 1А, а по -5вольтам — 0,5А, то нам и нужны два блока питания — +12В 1А и -5В 0,5А. Так же можно соединить два одинаковых выпрямителя, чтобы получить двуполярное напряжение, например, для питания усилителя.

7. Параллельное соединение одинаковых выпрямителей.
Оно нам дает то же самое напряжение, только с удвоенным током. Если мы соединим два выпрямителя, то у нас будет двойное увеличение тока, три — тройное и т.д.

Ну а если вам, дорогие мои, всё понятно, то задам, пожалуй, домашнее задание. Формула для расчета емкости конденсатора фильтра для двухполупериодного выпрямителя:

Для однополупериодного выпрямителя формула несколько отличается:

Двойка в знаменателе — число «тактов» выпрямления. Для трехфазного выпрямителя в знаменателе будет стоять тройка.

Во всех формулах переменные обзываются так:
Cф — емкость конденсатора фильтра, мкФ
Ро — выходная мощность, Вт
U — выходное выпрямленное напряжение, В
f — частота переменного напряжения, Гц
dU — размах пульсаций, В

Для справки — допустимые пульсации:
Микрофонные усилители — 0,001. 0,01%
Цифровая техника — пульсации 0,1. 1%
Усилители мощности — пульсации нагруженного блока питания 1. 10% в зависимости от качества усилителя.

Эти две формулы справедливы для выпрямителей напряжения частотой до 30кГц. На бОльших частотах электролитические конденсаторы теряют свою эффективность, и выпрямитель рассчитывается немного не так. Но это уже другая тема.

какой то “куцый” обзор… как будто спешили куда то

Маломощные однофазные выпрямители. Выпрямители: разновидности, схемы, формулы и функции расчета

Ещё в начале ХХ века имел место очень принципиальный спор между корифеями электротехники. Какой ток выгоднее передавать потребителю на большие расстояния: постоянный или переменный? Научный спор выиграли сторонники передачи переменного тока по проводам высоковольтных линий от подстанции к потребителю. Эта система принята во всём мире и успешно эксплуатируется до сих пор.

Но большинство электронной техники и не только бытовой, но и промышленной питается постоянными напряжениями и это привело к созданию целой отрасли электрики – преобразование (выпрямление) переменного тока. После того как электронная лампа была забыта, главным элементом любого выпрямителя стал полупроводниковый диод.

Схемотехника выпрямителей весьма обширна, но самым простым является однополупериодный выпрямитель .

Однополупериодный выпрямитель.

Напряжение с вторичной обмотки силового трансформатора подаётся на один единственный диод. Вот схема.

Поэтому выпрямитель и назван однополупериодным. Выпрямляется только один полупериод и на выходе получается импульсное напряжение. Форма его показана на рисунке.

Схема проста и не требует большого количества элементов. Это и сказывается на качестве выпрямленного напряжения. При низких частотах переменного напряжения (например, как в электросети — 50 Гц) выпрямленное напряжение получается сильно пульсирующим. А это очень плохо.

Для того чтобы снизить величину пульсации выпрямленного напряжения приходится брать величину конденсатора С1 очень большую, порядка 2000 – 5000 микрофарад, что увеличивает размер блока питания, так как электролиты на 2000 — 5000 мкф имеют довольно большие размеры. Поэтому на низких частотах эта схема практически не используется. Зато однополупериодные выпрямители прекрасно зарекомендовали себя в импульсных блоках питания работающих на частотах 10 – 15 кГц (килогерц). На таких частотах величина ёмкости фильтра может быть очень небольшой, а простота схемы уже не столь сильно влияет на качество выпрямленного напряжения.

Примером использования однополупериодного выпрямителя может служить простой зарядник от сотового телефона. Так как зарядник сам по себе маломощный, то в нём применяется однополупериодная схема, причём как во входном сетевом выпрямителе 220V (50Гц), так и в выходном, где требуется выпрямить переменное напряжение высокой частоты со вторичной обмотки импульсного трансформатора.

К несомненным достоинствам такого выпрямителя следует отнести минимум деталей, низкую стоимость и простые схемные решения. В обычных (не импульсных) блоках питания многие десятилетия успешно работают двухполупериодные выпрямители.

Двухполупериодные выпрямители.

Они бывают двух схемных решений: выпрямитель со средней точкой и мостовая схема, известная, как схема Гретца. Выпрямитель со средней точкой требует более сложного в исполнении силового трансформатора, хотя диодов там используется в два раза меньше чем в мостовой схеме. К недостаткам двухполупериодного выпрямителя со средней точкой можно отнести то, что для получения одинакового напряжения, число витков во вторичной обмотке трансформатора должно быть в два раза больше, чем при использовании мостовой схемы. А это уже не совсем экономично с точки зрения расходования медного провода.

Величина пульсаций выпрямленного напряжения меньше чем у однополупериодного выпрямителя и величину конденсатора фильтра так же можно использовать гораздо меньшую. Наглядно увидеть, как работает двухполупериодная схема можно по рисунку.

Как видим, на выходе выпрямителя уже в два раза меньше «провалов» напряжения — тех самых пульсаций.

Активно применяется схема выпрямителя со средней точкой в выходных выпрямителях импульсных блоков питания для ПК. Так как во вторичной обмотке высокочастотного трансформатора требуется меньшее число витков медного провода, то гораздо эффективнее применять именно эту схему. Диоды же применяются сдвоенные, т.е. такие, у которых общий корпус и три вывода (два диода внутри). Один из выводов — общий (как правило катод). По виду сдвоенный диод очень похож на транзистор.

Наибольшую популярность приобрела в бытовой и промышленной аппаратуре мостовая схема . Взгляните.

Можно без преувеличения сказать, что это самая распространённая схема. На практике вы с ней ещё не раз встретитесь. Она содержит четыре полупроводниковых диода, а на выходе, как правило, ставится RC-фильтр или только электролитический конденсатор для сглаживания пульсаций напряжения.

О данной схеме уже рассказывалось на странице про диодный мост. Стоит отметить, что и у мостовой схемы есть недостатки. Как известно, у любого полупроводникового диода есть так называемое прямое падение напряжения (Forward voltage dropV F ). Для обычных выпрямительных диодов оно может быть 1 — 1,2 V (зависит от типа диода). Так вот, при использовании мостовой схемы на диодах теряется напряжение, равное 2 x V F , т.е. около 2 вольт. Это происходит потому, что в выпрямлении одной полуволны переменного тока участвуют 2 диода (затем другие 2). Получается, что на диодном мосте теряется часть напряжения, которое мы снимаем со вторичной обмотки трансформатора, а это явные потери. Поэтому в некоторых случаях в составе диодного моста применяются диоды Шоттки, у которых прямое падение напряжения невелико (около 0,5 вольта). Правда, стоит учесть, что диод Шоттки не рассчитан на большое обратное напряжение и очень чувствителен к его превышению.

Большой интерес вызывает выпрямитель с удвоением напряжения .

Выпрямитель с удвоением напряжения.

Принцип удвоителя напряжения Латура-Делона-Гренашера основан на поочерёдном заряде-разряде конденсаторов С1 и С2 разными по полярности полуволнами входного напряжения. В результате между катодом одного диода и анодом второго диода возникает напряжение в два раза превышающее входное. Схема в студию:)

Стоит отметить, что данная схема применяется в блоках питания нечасто. Но её можно смело использовать, если необходимо вдвое увеличить напряжение, которое снимается со вторичной обмотки трансформатора. Это будет более логичным и правильным решением, чем перематывать вторичную обмотку трансформатора с целью увеличить выходное напряжение вторичной обмотки в 2 раза (ведь при этом придётся наматывать вторичную обмотку с вдвое большим числом витков). Так что, если не удалось найти подходящий трансформатор — смело применяем данную схему.

Развитием схемы стало создание умножителя на полупроводниковых диодах.

Умножитель напряжения.

Каждый диод и конденсатор образуют «звено» и эти звенья можно соединять последовательно до получения напряжения в несколько десятков киловольт. Конечно, для этого входное напряжение тоже должно быть достаточно большим.

На рисунке изображён четырёхзвенный умножитель и на выходе мы получаем напряжение в четыре раза превышающее входное (U ). Эти выпрямители получили большое распространение там, где нужно получить высокое напряжение при достаточно малом токе. Например, по такой схеме были выполнены источники высокого напряжения в старых телевизорах и осциллографах для питания анода электронно-лучевой трубки.

Сейчас такие источники питания используются в научных лабораториях, в детекторах элементарных частиц, в медицинской аппаратуре (люстра Чижевского) и в оружии самообороны (электрошокер). При повторении подобных конструкций и подборе деталей, следует учитывать рабочее напряжение , как диодов, так и конденсаторов исходя из напряжения, которое вы хотите получить. Весь умножитель, как правило, заливается специальным компаундом или эпоксидной смолой во избежание высоковольтных пробоев между элементами схемы.

Для нормальной работы некоторых устройств как, например, люстры Чижевского необходимы достаточно высокие напряжения. Как считают специалисты, излучатель отрицательных аэроионов, эффективен только при напряжении не менее 60 киловольт.

Трёхфазные выпрямители.

Устройства, которые используются для получения постоянного тока из переменного трёхфазного тока, называются трёхфазными выпрямителями. Трёхфазные выпрямители в бытовой технике, конечно, не используются. Единственный прибор, который может использоваться в быту это сварочный аппарат. В качестве трёхфазных выпрямителей используются наработки двух известных электротехников Миткевича и Ларионова. Самая простая схема Миткевича называется «три четверти моста параллельно», что означает три силовых диода включенных параллельно через вторичные обмотки трёхфазного трансформатора. Схема.

Коэффициент пульсаций на нагрузке очень мал, что позволяет использовать конденсаторы фильтра небольшой ёмкости и малых габаритов.

Более сложной является схема Ларионова, которая называется «три полумоста параллельно», что это такое хорошо видно из рисунка.

В схеме используется уже шесть диодов и немного другая схема включения. Вообще схем трёхфазных выпрямителей достаточно много и наиболее совершенной, хотя редко употребляемой является схема «шесть мостов параллельно», а это уже 24 диода! Зато эта схема может выдавать высокое напряжение при большой мощности.

Трёхфазные мощные выпрямители используются в электровозах, городском электротранспорте (трамвай, троллейбус, метро), в промышленных установках для электролиза. Так же промышленные системы очистки газовых смесей, буровое и сварочное оборудование используют трёхфазные выпрямители.

Теперь вы знаете, какие бывают выпрямители переменного тока и сможете легко обнаружить их на принципиальной схеме или печатной плате любого прибора.

  • » onclick=»window.open(this.href,» win2 return false >Печать
  • E-mail

Подробности Категория: Электротехника

Выпрямители переменного тока

Электростанции вырабатывают переменный ток. Однако 25-30% электрической энергии используется в устройствах, работающих на постоянном токе. Для преобразования переменного тока в постоянный ток применяют выпрямители .
Для выпрямления переменного тока раньше использовались электромагнитные преобразователи, ртутные, ионные, электронные лампы . В настоящее время в основном применяются полупроводниковые выпрямители. Они проще по конструкции, меньше по размерам, надежнее при эксплуатации, удобнее при обслуживании и имеют более высокий КПД.

Полупроводники по электропроводимости занимают промежуточное место между проводниками и изоляторами . Для них характерно наличие двух типов проводимости: электронной , или n -проводимости, за счет свободных электронов; дырочной , или p -проводимости, за счет валентных электронов (дырок). Введение определенных примесей позволяет получать полупроводники проводимости n — или p -типа. Если полупроводник имеет две зоны с различными типами проводимости, то на их границе образуется n — p -переход, обладающий односторонней проводимостью электрического тока.

Действительно, при подключении положительного полюса источника к зоне с проводимостью р -типа, а отрицательного — к зоне с проводимостью n -типа дырки будут отталкиваться положительным потенциалом источника тока, а электроны — отрицательным. В результате этого они движутся навстречу друг другу, частично рекомбинируя в зоне перехода, а затем притягиваются к электродам источника питания, обеспечивая прохождение электрического тока через диод (рис. справа, а ). Если же последний подключить иначе (рис. справа, б ), то зона перехода обедняется носителями зарядов, а его сопротивление резко возрастает и ток через диод не проходит.

Одностороннюю проводимость диода демонстрируют с помощью установки, схематически изображенной на рис. слева.

Такая конструкция диода имеет специфическую зависимость тока от напряжения и имеет вид «клюшки ». Для резистора вольт-амперная характеристика имеет вид прямой линии.

Для наблюдения
осциллограммы вольт-амперной характеристики диода, выражающей зависимость величины проходящего через него тока от приложенного напряжения, собирают установку, изображенную на рис. справа, а . Используя вольт-амперную характеристику диода, можно объяснить его свойство выпрямлять переменный ток, нарисовав графики тока и напряжения (рис. справа, б ). Если включить генератор развертки осциллографа в установке, то можно наблюдать осциллограмму выпрямленного тока.

Для проводника развернутая диаграмма тока имеет вид синусоиды.

С помощью выпрямителей получают пульсирующий ток , направление которого не меняется, а меняется величина. Для того, чтобы сгладить пульсацию тока, последовательно с диодом включают дроссель (катушка с сердечником), а параллельно — конденсаторы большой емкости (рис. слева). Дроссель и конденсаторы представляют собой фильтр , который сглаживает пульсацию тока. На выходе выпрямителя получают постоянный ток по величине и направлению.

Для выпрямления переменного тока используют три вида выпрямителей: однополупериодный (рис. справа, а ), двухполупериодный со средней точкой (рис. справа, б ) и двухполупериодный по мостовой схеме (рис. справа, в ).
Полупроводниковые диоды разнообразны по конструкции и назначению. Для сильных токов применяют плоскостные диоды, а для слабых токов — точечные диоды.

Для питания электронных устройств требуется постоянное напряжение различных значений. Наиболее распространенным источником электрической энергии является промышленная сеть переменного напряжения частотой 50 Гц. Для преобразования переменного напряжения в постоянное (однополярное) применяют выпрямительные устройства. Существует однополупериодное и двухполупериодное выпрямление переменного тока.

Рис. 9. Схема однополупериодного выпрямителя.

Схема полупроводникового однополупериодного выпрямителя приведена на рис. 9. В этом выпрямителе полупроводниковый диодVD включен последовательно с нагрузочным резисторомR н и вторичной обмоткой трансформатораT . Первичная обмотка трансформатора питается, как правило, от сети.

Из временных диаграмм (рис. 10) видно, что ток I н в нагрузке имеет импульсный характер. В течение первого полупериода напряженияU АБ , когда потенциал точкиа положителен по отношению к потенциалу точкиб , диод открыт и через нагрузку протекает ток.

Во второй полупериод полярность напряжений на вторичной обмотке трансформатора изменяется на противоположную и потенциал точки а становится отрицательным по отношению к потенциалу точкиб . При такой полярности диод включен в обратном направлении и ток в нагрузке будет равен нулю.

Рис. 10. Временные диаграммы однополупериодного выпрямителя.

Широкое применение нашли двухполупериодные выпрямители, в которых, в отличие от однополупериодных выпрямителей, используются оба полупериода напряжения сети. Из них наибольшее распространение получил мостовой двухполупериодньгй выпрямитель (рис. 11), состоящий из трансформатора, четырех полупроводниковых диодов VD 1VD 4 (включенных по мостовой схеме) и нагрузочного резистора.

Рис. 11. Схема двухполупериодного выпрямителя.

В один из полупериодов напряжения сети, когда точка а имеет положительный по отношению к точкеб потенциал, диодыVD2 иVD 3 открыты, а диодыVD 1 иVD4 закрыты. Ток в этот полупериод имеет направление: зажима вторичной обмотки трансформатора, диодVD2 , нагрузочный резисторR н , диодVD3 и зажимб . В следующий полупериод, когда потенциал точкиа становится отрицательным по отношению к точкеб , открыты диодыVD1 иVD4, а диодыVD2 иVD3 закрыты. Протекающий в схеме ток имеет следующее направление: точкаб , диодVD4 , нагрузочный резисторR н , диодVD1 и точкаа вторичной обмотки трансформатора. Таким образом, в течение всего периода ток в нагрузочном резистореR н имеет одно и то же направление. На рис. 12 представлены временные диаграммы токов и напряжений мостового двухполупериодного выпрямителя.

Рис. 12. Временные диаграммы двухполупериодного выпрямителя.

Мостовой выпрямитель по сравнению с однополупериодным имеет ряд преимуществ. В частности, при одном и том же напряжении вторичной обмотки трансформатора и сопротивлении нагрузки R н средний выпрямленный ток / н ср и напряжениеU н ср в мостовом выпрямителе почти в два раза больше, чем в однополупериодном.

Недостатком мостовой схемы выпрямителя является необходимость применения четырех диодов.

Для того, чтобы избежать пульсирующего характера напряжения U н и токаI н нагрузки, в выпрямительных устройствах применяются различныесглаживающие фильтры . Простейшим из них является ёмкостной фильтр. Для этого параллельно сопротивлению нагрузки подключается конденсатор.

Рис. 13. Схема однополупериодного выпрямителя со сглаживающим фильтром.

На рис. 13 приведена схема однополупериодного выпрямителя с ёмкостным сглаживающим фильтром, а на рис.14 – диаграммы, иллюстрирующие его работу.

По мере роста напряжения на зажимах вторичной обмотки трансформатора U АБ конденсаторC заряжается и напряжение на нём повышается. Во время положительного полупериода диодVD пропускает ток, который заряжает конденсатор (практически до амплитудного значения переменного напряжения) и одновременно питает сопротивление нагрузки. Затем напряжениеU АБ уменьшается и, когда оно становится меньше, чем напряжение на конденсаторе, диодVD запирается, а конденсатор начинает разряжаться на резисторR н . Скорость разряда конденсатора определяется постоянной времени разр =R нС . В дальнейшем описанный процесс периодически повторяется.

Рис. 14. Временные диаграммы двухполупериодного выпрямителя со сглаживающим фильтром.

При работе такого выпрямителя существенно уменьшаются пульсации выпрямленного напряжения. Однако следует помнить, что в выпрямителе с ёмкостным сглаживающим фильтром наблюдается значительная зависимость среднего значения выпрямленного напряжения от тока нагрузки.

Одними из самых распространенных преобразователей тока являются выпрямители переменного тока в пульсирующий (постоянный по направлению движения носителей, но переменный по мгновенной величине) ток. Они имеют очень широкое применение. Условно их можно разделить на маломощные выпрямители (до нескольких сотен ватт и выпрямители большой мощности (киловатты и больше)).

Главною его частью является выпрямляющее устройство В, образованное из диодов, объединенных особым образом. Именно здесь и происходит преобразование переменного тока в пульсирующий постоянный. Переменное напряжение подается на выпрямляющее устройство через трансформатор Тр. В некоторых случаях трансформатора может и не быть (если напряжение силовой сети отвечает той, которая необходима для работы выпрямителя). Трансформатор(если он есть) в большинстве также имеет особенности в соединении его обмоток. Пульсирующий ток, как правило не является постоянным по величине в каждое мгновение времени, и когда необходимо иметь более сглаженное его значение, чем полученный после выпрямляющего устройства, применяют фильтры Ф. В случае необходимости выпрямитель дополняют стабилизатором напряжения или тока Ст, который поддерживает их на постоянном уровне, если параметры силовой сети изменяется по разным причинам. Структурную схему завершает нагрузка Н, которая значительно влияет на работу всего устройства и поэтому считается составляющей частью всего преобразователя.

Собственно выпрямителем является та его часть, которая обведена на рисунке выше пунктиром и состоит из трансформатора и выпрямительного устройства.

В этом подразделе рассматриваются выпрямители малой мощности, которые необходимы для обеспечения постоянным напряжением всяких устройств в областях управления, регулирования, усилителях тока, генераторах малой мощности и так далее. Как правило, они питаются от однофазного переменного напряжения 220 или 380 В частотою 50 Гц.

Нулевая схема выпрямления

Рассмотреть принцип действия самого простого выпрямителя однофазного тока целесообразно на так называемой нулевой схеме. Хотя она сейчас встречается относительно редко (о чем речь пойдет далее), знание физических процессов, которые происходят в этой схеме, очень важны для понимания дальнейшего материала.

Нулевая схема выглядит так:

Трансформатор Тр имеет на вторичной стороне две обмотки, соединенные последовательно таким образом, что относительно средней точки а напряжения на свободных концах обмоток в и с одинаковые по величине, но противоположные по фазе. Выпрямительное устройство образовано двумя диодами D1 и D2, которые соединены вместе своими катодами, тогда как каждый анод соединен с соответствующей обмоткой. Нагрузка Zн присоединена между катодами диодов и точкой трансформатора.

Рассмотрим, как возникает пульсирующее напряжение на нагрузке. Сначала будем считать нагрузку чисто активным сопротивлением, Z н =R н. Когда напряжение в обмотках будет изменяться по синусоидальному закону, то в тот полупериод, когда к аноду диода приложен положительный потенциал, будет проходить прямой ток. Поскольку напряжение на диоде составляет доли вольта, пренебрежем им. Тогда вся положительная полуволна переменного напряжения будет приложена просто к нагрузке R н. Когда напряжение приложенное минусом к аноду, тока не будет (малым обратным током диода также пренебрежем). Таким образом, до нагрузки будем доходить лишь положительная полуволна переменного напряжения в течении половины периода. Вторая половина периода будет свободна от тока.

Вторичные обмотки соединены противофазно, нагрузка общая для обеих обмоток, таким образом, в то время, когда в одной из них (например в верхней) ток будет проходить, другая будет от него свободна и наоборот.

Поэтому в нагрузке каждый полупериод будет заполнен полуволной переменного напряжения:

И выпрямленное напряжение U d будет иметь вид одинаковых полуволн, которые повторяются с периодом, вдвое меньшим, чем период переменного напряжения в сети питания (2π радиан). Для обобщения, что будет удобно, далее будем считать, что период изменения выпрямленного напряжения меньше 2π в m раз и равняется 2π/m (в нашем случае m -2). Если нагрузка активное сопротивление R н, то и ток в нем i d , будет повторять кривую напряжения.

Рассмотренная схема будет иметь тот недостаток, что во вторичных обмотках по сравнению с первичной имеют место значительные пульсации тока, потому что эти обмотки работают по очереди. Поскольку они намотаны на один сердечник, магнитный поток в последнем будет переменным, поэтому и в первичной обмотке ток будет переменным, имея как положительную, так и отрицательную полуволны. Как известно из курса электротехники, действующие и средние значения тока или напряжения одинаковые только для постоянного тока. Чем больше пульсации, тем больше будет действующее значение относительно среднего. Поэтому мощности обеих сторон трансформатора не будут одинаковыми. Однако трансформатор один, и объем железа для его сердечника следует выбирать, исходя из какого-то одного значения мощности.

Поэтому условно ввели понятие типовой мощности трансформатора, которая равняется среднему мощностей обеих сторон:

Выпрямительный мост или схема Гретца

Указанный недостаток можно исправить, используя выпрямляющее устройство в виде так называемого моста (схема Гретца):

В этом случае первые полупериоды будут работать, например, диоды D2 и D4, а вторые полупериода — D1 и D3. На нагрузке каждый раз будет полная полуволна вторичного напряжения:

Мостовая схема кроме того имеет менее сложный, более легкий и дешевый трансформатор. у нее есть еще несколько преимуществ.

Интересно, что эта схема появилась исторически раньше нулевой однако распространения не получила, потому что имела во-первых четыре диода вместо двух. Однако главным было не их количество, а то что при работе каждые полупериода ток проходит через два последовательно соединенных диода, на которые падает двойное напряжение. На то время полупроводниковых диодов еще не было, а вакуумные или ртутные имели значительное падение напряжения при прохождении прямого тока, что существенно понижало коэффициент полезного действия. Оказалось, что более сложный трансформатор нулевой схемы, но с одним диодом в кругу выпрямления тока экономично выгоднее, чем мостовая схема с удвоенным числом диодов и двойным расходом энергии на них. И только появление относительно дешевых полупроводниковых диодов с очень маленьким падением прямого напряжения позволило повернуться к мостовым схемам, которая сейчас практически вытеснила нулевую (в этом при желании можно усмотреть проявление одного из диалектических законов – развитие по спирали).

Основные соотношения для выпрямителя

Выведем некоторые важные формулы, которые описывают процессы, существующие в этой схеме. Будем считать, что заданными величинами являются средние значения напряжения на нагрузку U d и среднее значение тока в нем I d .

Запомним это выражение на дальнейшее. В нашем случае m=2 и . Поскольку U d считаем заданным, то

Из предыдущего выражения имеем:

Этот коэффициент определяет отношения питающей сети к напряжению на обмотке вторичной стороны:

Действующее значение тока вторичной обмотки

Ток вторичной обмотки в то же время есть током в нагрузке. Поскольку нагрузка чисто активная и ток в ней повторяет по форме пульсирующее напряжение, то между его средним значением и его действующим значением существует такая же зависимость, что и для напряжений, то есть

Действующее значение тока первичной обмотки

Ток в первичной обмотке повторяет с учетом n ток вторичной обмотки:

Мощность трансформатора

Мощности первичной и вторичной сторон трансформатора в этой схеме одинаковые, поэтому:

Пульсация выпрямленного напряжения

Пульсирующее напряжение состоит из среднего значения U d и бесконечного количества гармоничных составляющих, амплитуды которых можно определить по формулам Фурье. Если начало координат выбрать так как на рисунке, то в гармоничном составе будут присутствовать только косинусные гармоники (т.к. кривая симметрична относительна оси координат). Амплитуда k-ой гармоники определяется по формуле:

Где: l – полупериод π/m;

Наибольшую амплитуду будет иметь первая гармоника U (1) m , поэтому определим только ее, предположив, что k=1:

Отношение первой гармоники к среднему значению называют коэффициентом пульсаций:

Запомним эту формулу на будущее, а сейчас отметим, что в нашем случае при m – 2, q – 2/3. Это большие пульсации – амплитуда первой гармоники составляет 67% от среднего значения выпрямленного напряжения.

Средний ток диодов

Как мы уже видели диоды работают по очереди – каждый из них проводит в среднем половину общего тока, который есть в нагрузке. Поэтому каждый из диодов должен быть рассчитан на ток I в = I d /2

Наибольшее обратное напряжение на диоде

В то время когда диод B1 проводит его можно считать замкнутым, и тогда к диоду B2 будет приложено в обратном направлении напряжение вторичной обмотки. Поэтому каждый из диодов должен быть рассчитан на ее амплитудное значение:

Выпрямители классифицируют по следующим признакам:

Применение

Выпрямление электрического тока

Выпрямители обычно используются там, где нужно преобразовать переменный ток в постоянный ток. Применение выпрямителей для преобразования переменного тока в постоянный вызвало понятие среднего значения тока по модулю (т. е. без учета знака ординаты) за период. При двухполупериодном выпрямлении среднее значение по модулю определяется как среднеарифметическое значение всех ординат обеих полуволн за целый период без учета их знаков (т. е. полагая все ординаты за период положительными, что и имеет место при двухполупериодном идеальном выпрямлении).

Приемниками электроэнергии с нелинейными характеристиками являются в первую очередь всевозможные преобразовательные установки переменного тока в постоянный, использующие различные вентили.

Сюда относятся выпрямительные установки для:

  • железнодорожной тяги
  • городского электротранспорта
  • электролиза (производство алюминия, хлора, едкого натра и др.)
  • питания приводов прокатных станов
  • возбуждения генераторов электростанций

В качестве вентилей до последнего времени использовались в основном ртутные выпрямители (неуправляемые и управляемые). В настоящее время широкое применение находят преимущественно кремниевые полупроводниковые выпрямители. Внедряются тиристорные выпрямители.

Обычно выпрямительные установки выполняются большой мощности и присоединяются через специальные трансформаторы к питающей сети на напряжении 6 — 10 кВ. Выпрямительные установки небольшой мощности выполняются по трехфазной схеме с нулевым выводом.

Блоки питания аппаратуры

  • Преобразователи бортового электроснабжения постоянного тока автономных транспортных средств: автотракторной, железнодорожной, водной, авиационной и другой техники.

Генерация электроэнергии на транспортном средстве обычно производится генератором переменного тока, но для питания бортовой аппаратуры необходим постоянный ток. Например, в легковых автомобилях применяются электромеханические или полупроводниковые выпрямители.

Сварочные аппараты

В сварочных аппаратах постоянного тока применяются чаще всего мостовые схемы на мощных кремниевых выпрямительных диодах — вентилях, с целью получения постоянного сварочного напряжения и тока. Он отличается от переменного тем, что при использовании его сильнее нагревается область дуги около положительного (+) её полюса, что позволяет либо осуществлять щадящую сварку свариваемых деталей преимущественно плавящимся сварочным электродом, либо экономить электроды, осуществляя резку металла электродуговой сваркой.

Вентильные блоки преобразовательных подстанций систем энергоснабжения

  • Для питания главных двигателей постоянного тока прокатных станов, кранов и другой техники

Энергоснабжение заводов осуществляется электросетью переменного тока, но для приводов прокатных станов и других агрегатов выгоднее использовать двигатели постоянного тока по той же причине, что и для двигателей транспортных средств.

  • Для гальванических ванн (электролизёров) для получения цветных металлов и стали , нанесения металлических покрытий и гальванопластики.
  • Установки электростатической очистки промышленных газов (электростатический фильтр)
  • Установки очистки и обессоливания воды
  • Для электроснабжения контактных сетей электротранспорта постоянного тока (трамвай , троллейбус , электровоз , метро)

Выпрямители высокочастотных колебаний

  • в перспективных системах сбора энергии окружающих шумовых электромагнитных сигналов.
  • в перспективных системах беспроводной передачи электроэнергии .

Детектирование высокочастотного сигнала

Допущения: нагрузка чисто активная, вентиль — идеальный электрический ключ.

Напряжение со вторичной обмотки трансформатора проходит через вентиль на нагрузку только в положительные полупериоды переменного напряжения. В отрицательные полупериоды вентиль закрыт, всё падение напряжения происходит на вентиле, а напряжение на нагрузке Uн равно нулю.

Эта величина вдвое меньше, чем в полномостовом.

  • Большая величина пульсаций
  • Сильная нагрузка на вентиль (требуется диод с большим средним выпрямленным током)
  • Низкий коэффициент использования габаритной мощности трансформатора (около 0,45) (не путать с КПД, который зависит от потерь в меди и потерь в стали и в однополупериодном выпрямителе почти такой же, как и в двухполупериодном).

Преимущество: экономия на количестве вентилей.

Полумост

На двух диодах и двух конденсаторах, широко известный как «с удвоением напряжения» или «удвоитель Латура — Делона — Гренашера».

Известна также схема с удвоением тока: параллельно единственной вторичной обмотке трансформатора включаются два последовательно соединённых дросселя, средняя точка соединения между которыми используется как средняя точка в «двухполупериодном выпрямителе со средней точкой».

Полный мост (Гретца)

На четырёх диодах, широко известный как «двухполупериодный», изобретён немецким физиком Лео Гретцем .

Средняя ЭДС равна то есть вдвое больше, чем в четвертьмостовом.

Эквивалентное внутреннее активое сопротивление равно .

Ток в нагрузке равен

Мощность в нагрузке равна

Наибольшее мгновенное значение напряжения на диодах —

Двухфазные выпрямители со сдвигом фаз 180°

Два четвертьмоста параллельно («двухполупериодный со средней точкой»)

Широко известный как «двухполупериодный со средней точкой». Предложил в 1901 г. профессор Миткевич В. Ф. . В этом выпрямителе две противофазных обмотки создают двухфазный переменный ток со сдвигом между фазами 180 угловых градусов. Двухфазный переменный ток выпрямляется двумя однополупериодными четвертьмостовыми выпрямителями, включенными параллельно и работающими на одну общую нагрузку. Является почти аналогом полномостового выпрямителя Гретца , но имеет почти вдвое большее эквивалентное внутреннее активное сопротивление, вдвое меньше диодов и средний ток через один диод почти вдвое больше, чем в полномостовом, при амплитуде выпрямляемого напряжения сопоставимой с падением напряжения на переходе твердотельного диода обладает значительно лучшим КПД по сравнению с мостовой схемой. Применялась, когда медь была дешевле диодов. В одной из работ отмечается, что в этом выпрямителе выпрямленные полупериоды имеют колоколообразную форму, то есть форму близкую к функции .

Площадь под интегральной кривой равна:

Средняя ЭДС равна:

Относительное эквивалентное активное внутреннее сопротивление равно , то есть вдвое больше, чем в однофазном полномостовом, следовательно больше потери энергии на нагрев меди обмоток трансформатора (или расход меди).

Ток в нагрузке равен

Мощность в нагрузке равна

Частота пульсаций равна , где — частота сети.

Два полных моста параллельно

Позволяет применять диоды со средним током почти вдвое меньшим, чем в однофазном полномостовом.

Двухфазные выпрямители со сдвигом фаз 90°

Два полных моста параллельно

На двух параллельных полных мостах.

Площадь под интегральной кривой равна:

Средняя ЭДС равна: то есть в раз больше, чем в однофазном полномостовом.

В режиме холостого хода и близких к нему ЭДС в мосту с наибольшей на данном отрезке периода ЭДС обратносмещает (закрывает) диоды моста с меньшей на данном отрезке периода ЭДС. Эквивалентное внутреннее активное сопротивление при этом равно При увеличении нагрузки (уменьшении ) появляются и увеличиваются отрезки периода на которых оба моста работают параллельно на общую нагрузку, эквивалентное внутреннее активное сопротивление на этих отрезках периода равно В режиме короткого замыкания оба моста работают параллельно на нагрузку на всём периоде, но полезная мощность в этом режиме равна нулю.

Два полных моста последовательно

На двух последовательных полных мостах.

Площадь под интегральной кривой равна:

Средняя ЭДС равна: то есть вдвое больше, чем в однофазном полномостовом.

Относительное эквивалентное внутреннее активное сопротивление равно

Ток в нагрузке равен

Мощность в нагрузке равна

Частота пульсаций равна

Трёхфазные выпрямители

Является почти аналогом выпрямителя «три полных моста параллельно» и имеет почти такие же свойства, как и выпрямитель «три полных моста параллельно», но эквивалентное внутреннее активное сопротивление почти вдвое больше, число диодов вдвое меньше, средний ток через один диод почти вдвое больший.

Площадь под интегральной кривой равна:

Три двухфазных двухчетвертьмостовых параллельных выпрямителей Миткевича последовательно (6 диодов)

Является почти аналогом выпрямителя «три полных моста последовательно» и имеет почти такие же свойства, но эквивалентное внутреннее активное сопротивление почти вдвое больше, число диодов вдвое меньше, средний ток через один диод почти вдвое больше.

Три полных моста параллельно (12 диодов)

Менее известны полномостовые трёхфазные выпрямители по схеме «три параллельных моста» (на двенадцати диодах), «три последовательных моста» (на двенадцати диодах), и др., которые по многим параметрам превосходят выпрямитель Ларионова А.Н.

По схемам выпрямителей можно видеть, что выпрямитель Миткевича В. Ф. является «недостроенным» выпрямителем Ларионова А.Н., а выпрямитель Ларионова А.Н. является «недостроенным» выпрямителем «три параллельных моста».

Вид ЭДС на входе (точками) и на выходе (сплошной).

Площадь под интегральной кривой равна:

Средняя ЭДС равна: , то есть такая же, как и в схеме «треугольник-Ларионов» и в раз меньше, чем в схеме «звезда-Ларионов».

В режиме холостого хода ЭДС в мосту с наибольшей на данном отрезке большого периода ЭДС обратносмещает (закрывает) диоды в мостах с меньшими на данном отрезке большого периода ЭДС. Эквивалентное внутреннее активное сопротивление при этом равно сопротивлению одного моста При увеличении нагрузки (уменьшении ) появляются и увеличиваются отрезки периода на которых два моста работают на нагрузку параллельно, эквивалентное внутреннее активное сопротивление на этих отрезках периода при этом равно сопротивлению двух параллельных мостов При дальнейшем увеличении нагрузки появляются и увеличиваются отрезки периода на которых все три моста работают на нагрузку параллельно, эквивалентное внутреннее активное сопротивление на этих отрезках периода равно сопротивлению трёх параллельных мостов В режиме короткого замыкания все три параллельных моста работают на нагрузку, но полезная мощность в этом режиме равна нулю.

Выпрямитель «три параллельных полных моста» на холостом ходу имеет такую же среднюю ЭДС, как в выпрямителе «треугольник-Ларионов» и такие же сопротивления обмоток, но, так как у него схема с независимыми от соседних фаз диодами, то моменты переключения диодов отличаются от моментов переключения диодов в схеме «треугольник-Ларионов». Нагрузочные характеристики этих двух выпрямителей получаются разными.

Частота пульсаций равна , где — частота сети.

Абсолютная амплитуда пульсаций равна .

Относительная амплитуда пульсаций равна .

Три полных моста последовательно (12 диодов)

Площадь под интегральной кривой равна:

Средняя ЭДС равна: , то есть вдвое больше, чем в схеме «треугольник-Ларионов».

Эквивалентное внутреннее активное сопротивление равно сопротивлению трёх последовательно включенных мостов с сопротивлением 3*r каждый, то есть .

Ток в нагрузке равен

Мощность в нагрузке равна

Частота пульсаций равна , где — частота сети.

Что такое выпрямитель тока. Маломощные однофазные выпрямители

В маломощных источниках питания (до нескольких сотен ватт) обычно используют однофазные выпрямители. В мощных источниках целесообразно применять трехфазные выпрямители.

Выпрямители имеют следующие основные параметры: а) среднее значение выходного u вых

U ср = 1/T· T ∫ 0 u вых dt

в) среднее значение

I д.ср тока отдельного вентиля;

г) максимальное (амплитудное) значение

I д.макс тока отдельного вентиля.

Токи I д.ср и I д.макс принято выражать через I ср. Значение U обр.макс используется для выбора вентиля по напряжению. Значения

I д.ср и I д.макс используются для выбора вентиля по току. Здесь следует иметь в виду, что вследствие малой тепловой инерционности полупроводникового вентиля он может выйти из строя даже в том случае, когда его средний I д.срм мал, но велик максимальный I д.макс.


Однофазный однополупериодный выпрямитель

Он является простейшим и имеет схему, изображенную на рис. 2.73, а . В таком выпрямителе через нагрузку протекает лишь в течение полупериода сетевого (рис. 2.73, б ).

Исходя из приведенных выше определений, получим основные параметры:

U ср = √2 / π · U вх вх ≈ 2,22 · U ср

I ср = U ср R н ε= π/ 2 = 1,57

U обр. макс = √2 · U вх = π· U ср

I д. макс = √2 · U вх / R н = π · I ср

Такой выпрямитель находит ограниченное применение в маломощных устройствах. Кроме прочего, характерной отрицательной чертой однополупериодного выпрямителя является протекание постоянной составляющей тока во входной цепи. Если выпрямитель питается через трансформатор, как показано на рис. 2.73, в , то наличие указанной постоянной составляющей тока вызывает подмагничивание сердечника трансформатора, что приводит к необходимости увеличивать его габаритные размеры.

Двухполупериодный выпрямитель со средней точкой

Представляет собой параллельное соединение двух однополупериодных выпрямителей. Рассматриваемый выпрямитель может использоваться только с трансформатором, имеющим вывод от середины вторичной обмотки (рис. 2.74, а ).

Диоды схемы проводят поочередно, каждый в течение полупериода (рис. 2.74, б ).

Основные параметры такого выпрямителя получим аналогично тому, как это делалось ранее:

U ср = 2 · √2 · U 2 / π≈ 0,9 · U 2

I ср = U ср / R н

U обр.макс = 2 · √2 · U 2 = π · U ср

I д.макс = √2 · U 2 / R н = π· I ср / 2

где U 2 — действующее значение каждой половины вторичной обмотки.

Рассматриваемый выпрямитель характеризуется довольно высокими технико-экономическими показателями и широко используется на практике. При его проектировании полезно помнить о сравнительно большом обратном напряжении на диодах.

Однофазный мостовой выпрямитель

Не известна другая однофазная схема без трансформатора, в которой бы так рационально использовались диоды. Диоды в рассматриваемой схеме включаются и выключаются парами. Одна пара — это диоды D 1 и D 2 , а другая — D 3 и D 4 . Таким образом, к примеру, диоды D 1 и D 2 или оба включены и проводят ток, или оба выключены (рис. 2.75, б ).

Если не забывать мысленно заменять каждый включенный диод закороткой, а каждый выключенный — разрывом цепи, то анализ работы этой схемы оказывается совсем нетрудным.

Основные параметры усилителя следующие:

U ср = 2 · √2 / π· U вх ≈ 0,9 · U вх

U вх ≈ 1,11 · U ср

I ср = U ср / R н

U обр.макс = √2 · U вх = π/2 · U ср

I д.макс = √2 · U вх / R н = π/2 · I ср

Такой выпрямитель характеризуется высокими технико-экономическими показателями и широко используется на практике. Часто все четыре диода выпрямителя помещают в один корпус.

Схема трехфазного выпрямителя с нулевым выводом

Его временные диаграммы работы приведены на рис. 2.76.

Коэффициент пульсаций выпрямленного составляет 0,25, в то время как для двухполупериодного однофазного выпрямителя коэффициент пульсаций равен 0,67. пульсаций в трехфазном выпрямителе в три раза выше частоты питающей сети.

Схема трехфазного мостового выпрямителя (схема Ларионова)

приведена на рис. 2.77.

Используемые в данной схеме 6 диодов выпрямляют как положительные, так и отрицательные полуволны трехфазного напряжения. Этот выпрямитель является аналогом однофазного мостового выпрямителя.

Рассматриваемый выпрямитель характеризуется высокими технико-экономическими показателями и очень широко используется на практике. Коэффициент пульсаций схемы очень мал (ε = 0,057), а пульсаций в шесть раз выше частоты сети. Все это позволяет в некоторых случаях не использовать выходной фильтр. Анализ работы рассматриваемой схемы сложнее, чем анализ работы однофазного мостового выпрямителя, однако не сопряжен с какими-либо принципиальными затруднениями.

В электрических сетях используется преимущественно переменный ток, питающий большинство промышленных и бытовых потребителей. Однако существует немало электрических устройств — магнитофонов, приемников и других приборов, основой которых служат полупроводники или лампы. Для их работы требуется только постоянный ток. Кроме того, он используется во многих заводских производственных процессах.

Преимущественная выработка переменного тока связана с удобством его трансформации в разные значения напряжений. Другим положительным моментом считается передача переменного тока по ЛЭП с минимальными потерями. Поэтому все необходимые преобразования выполняют выпрямители переменного тока, позволяющие получить необходимое , обеспечивающее нормальную работу электрических приборов.

Принцип работы выпрямителя тока

Основной функцией выпрямителя тока является преобразование переменного напряжения в постоянное. Принцип работы этих устройств основан на свойствах переменного тока, величина и направление которого изменяются во времени.

Согласно стандартного значения изменение направления тока в сети составляет 50 раз в течение одной секунды. Такое колебание является частотой и составляет 50 герц или периодов. То есть значение электротока в определенный период достигает нулевой отметки, а затем постепенно набирает максимальное значение. Этот процесс постоянно повторяется и протекает в периодической форме. Значение тока постоянно изменяется в соответствии с синусоидальным законом.

Основная задача выпрямителя заключается в получении устойчивого постоянного напряжения, не изменяющего своей величины и направления. Сам процесс выпрямления заключается в работе вентиля, пропускающего ток лишь в одном направлении. В результате односторонней проводимости вентиля, прохождение тока через него осуществляется исключительно в положительные полупериоды. Во время отрицательных периодов ток в цепи отсутствует.

При наличии положительной полуволны, сопротивление в вентиле минимальное, что обеспечивает свободное прохождение тока. Отрицательная полуволна подвергается значительному сопротивлению, задерживается и не проходит через вентиль. В результате включения вентиля в цепь, переменный ток будет полностью отсутствовать. Изменения оставшегося в цепи тока будут касаться только его величины, а направление останется неизменным. Это так называемый первичный или пульсирующий ток. С его помощью можно зарядить аккумулятор, но, он не годится для питания, например, радиоэлектронной аппаратуры. Необходимо выполнить процедуру сглаживания, чтобы пульсирующий ток превратился в . С этой целью используется специальный фильтр.

В качестве такого фильтра используется конденсатор с большой емкостью. Выпрямляемый ток сглаживается или фильтруется за счет зарядки конденсатора током, идущим от вентиля. В результате, создается определенный запас электроэнергии. При уменьшении тока, проходящего через вентиль и падении напряжения на нагрузке в конце каждого положительного полупериода, происходит отдача конденсатором накопленной энергии.

Однополупериодные выпрямители

Далеко не все фильтры способны полностью избавить ток от резких пульсаций. Для этих целей требуются более совершенные фильтры, обеспечивающие на нагрузке лишь незначительные пульсации постоянного тока. Такие пульсации не оказывают решающего влияния на основные функции электронного устройства, получающего питание через выпрямитель.

К наиболее простым приборам относится . Основным принципом его работы является использование для выпрямления только положительных полупериодов. Выпрямленный ток и сетевое напряжение имеют одинаковую частоту пульсаций. Поэтому для их сглаживания в однополупериодном выпрямителе должен применяться хороший фильтр. С помощью данных устройств осуществляется питание аппаратуры с потреблением незначительного тока. В случае возрастания токовых значений, необходимо использовать более сложные фильтры.

Работа двухполупериодных выпрямителей

Более широкое распространение получили переменного тока, с использованием сразу двух вентилей. Течение тока в нагрузке происходит всегда в одном направлении.

Схема выпрямления действует следующим образом. В определенное время на одном из выводов вторичной обмотки трансформатора напряжение будет положительным по отношению к другому выводу. Ток проходит через первый вентиль с небольшим сопротивлением, после этого он идет по нагрузке к средней точке вторичной обмотки. Такое положение будет сохраняться весь положительный полупериод. Когда ток не первом выводе трансформатор изменится, напряжение станет отрицательным. Прохождения тока через первый вентиль не будет в связи с его большим сопротивлением. Второй конец обмотки будет с положительным напряжением, и ток начнет проходить по второму вентилю, нагрузке с выходом к средней точке вторичной обмотки трансформатора.

Данная схема выпрямления тока позволяет использовать два полупериода напряжения. Высокая частота пульсаций значительно облегчает фильтрацию выпрямленного напряжения.

Как происходит выпрямление переменного тока

В современном многообразии электрических приборов как бытового назначения, так и для иных задач большинство содержит выпрямитель. Это связано с их непрерывным усложнением в связи с увеличением функциональности. А для многофункциональности необходима электроника, потребляющая постоянный ток. Его обеспечивает источник питания. В нем всегда расположен выпрямитель. Далее расскажем об этом устройстве более подробно.

Какими были первые выпрямители

Развитие электроснабжения начиналось с нуля. А это значит, что не было ни знаний, ни, тем более, оборудования для этого. Потребовалось почти столетие, чтобы появились современные полупроводниковые выпрямители. Они являются следствием исторически сложившейся инфраструктуры электроснабжения. А она, как известно, развивалась на основе переменного напряжения.

Электроснабжение на постоянном напряжении эффективнее, поскольку не сказываются потери в ЛЭП из-за индуктивности и емкости проводов. Но почти везде электроэнергия в сети соответствует переменному напряжению. Это происходит потому, что электроснабжение невозможно без изменения величины напряжения. А эту задачу до сих пор наиболее эффективно решает только трансформатор. Различие свойств электрических цепей с переменным и постоянным напряжением было сразу же замечено исследователями.

А поскольку эффективным источником электроэнергии является вторичная обмотка трансформатора, надо было так или иначе получить некое подобие постоянного напряжения на ее основе. На первом этапе развития электротехники появились только электромагнитные машины. Их и приспособили для выпрямления напряжения. Также было известно явление электролиза. Его тоже использовали для изготовления выпрямителей — электролитических.

Механическое выпрямление напряжения

Определение выпрямления означает получение однонаправленного электрического тока. Его величина при этом будет зависеть от формы переменного напряжения в каждом полупериоде. Но однонаправленный электрический ток при этом получается, как при положительном полупериоде напряжения, так и при его отрицательном значении. При этом нагрузка при переходе напряжения через ноль должна отключаться от ненужной полуволны напряжения. Первые выпрямители выполняли эту задачу механическими контактами.

Они либо приводились в движение синхронным двигателем, либо перемещались достаточно быстродействующим соленоидом. В обеих схемах контакты, переключающие напряжение, перемещаются синхронно с напряжением. В схеме с двигателем они вращаются, замыкаясь в нужный момент времени.

Узел, предназначенный для выпрямления напряжения, при вращении аналогичен коллектору двигателя постоянного тока. Количество ламелей – контактов определяется числом оборотов синхронного двигателя. При переходе синусоиды выпрямляемого напряжения через ноль обе щетки контактируют либо с началом, либо с концом ламели. Начало ламели совпадает с острием стрелки, указывающей направление вращения двигателя.

Время контакта щеток с ламелью совпадает с длительностью половины периода выпрямляемого напряжения. Синхронный двигатель вращается точно и кратно частоте питающего напряжения, которое он выпрямляет присоединенным к нему коллектором. Но его инерционность не позволит выпрямить скачкообразное изменение частоты питающего напряжения. Поэтому он эффективен только как выпрямитель напряжения электросети.

Выпрямитель на соленоиде замыкает контакт либо на время, когда сердечник втягивается, либо наоборот. Он может сработать только при некотором минимальном напряжении, которое достаточно для перемещения контактов. Поэтому часть полуволны вблизи перехода напряжения через ноль не будет обработана как следует. Но зато такой выпрямитель может быть изготовлен довольно-таки небольшим. Поэтому он был широко распространен в свое время.

Очевидно то, что без коммутации электрической цепи выпрямления напряжения не может быть. А возможности механического контакта ограничены мощностью искры, которая возникает в момент разрыва электрической цепи. Она постепенно уничтожает этот контакт тем быстрее, чем больше электрическая мощность при его размыкании.

Это устройство работает без коммутации. Однако оно было изобретено только после появления достаточно чистого алюминия. Известно, что этот металл образует тонкую пленку прочного окисла на своей поверхности. Окись алюминия — это почти изолятор. Если погрузить алюминиевую пластину в определенный раствор и подать на нее отрицательный потенциал, пленка разрушится. При этом ток в растворе должен исходить из погруженной рядом железной пластины — анода.

Пленка окиси алюминия моментально растворится в растворе, например, фосфорнокислого натрия. Поэтому поверхность катода получится из чистого алюминия. А ток будет беспрепятственно течь между погруженными электродами. Но как только полярность электродов сменится на противоположную, поверхность алюминиевой пластины моментально окислится. Пленка с большим сопротивлением не будет пропускать электрический ток.

Энергетические характеристики электролитического выпрямителя зависят от объема сосуда, а также от размеров и числа пластин. Пластина из чистого алюминия работоспособна длительное время. Вывести из строя такой выпрямитель можно только механическим разрушением. От увеличения тока он «застрахован» свойствами электролита. Слишком высокое напряжение просто не будет выпрямляться. Но при его возвращении к номинальной величине этот выпрямитель продолжит работу. Он просто не убиваем.

Ламповые варианты

Такие механические и электролитические выпрямляющие устройства просуществовали несколько десятилетий до того времени, как появились электронные лампы. Но и они были ограничены потерями электроэнергии. Хотя и не связанными с коммутацией. Дело в том, что для работы лампы необходим предварительно созданный запас электронов.

А его не научились получать в лампах иначе, как раскаляя нить накала. Вот и получалось, что, несмотря на быстродействие, обычная лампа-диод расходовала слишком много электроэнергии на выпрямление напряжения. Но со временем была изобретена мощная ртутная лампа — ртутный выпрямитель. Она отличалась тем, что в ней возникал управляемый электрический разряд в парах ртути. Разряд существовал только на одной полуволне напряжения.

Это позволило довести мощность выпрямителя до значений, приемлемых для промышленного использования. И на основе ртутных выпрямителей были построены первые ЛЭП, работающие при постоянном напряжении. А во всех остальных электроприборах так и применялись электронные лампы-диоды. В 30-е годы ХХ века появились первые полупроводниковые выпрямители на основе селена. Они так и назывались — «селеновые выпрямители».

Однако характеристики этих выпрямителей оставляли желать лучшего. Поэтому поиски более эффективных технических решений продолжались и завершились появлением полупроводникового диода. Но его преимущества тоже относительны. Температура полупроводника не может превышать 130–150 градусов Цельсия. По этой причине все предшествующие виды выпрямителей имеют свою нишу для условий с высокой температурой и радиацией. При остальных условиях эксплуатации применяются диодные выпрямители.

Полупроводниковые схемы

Любой выпрямитель — это схема. Она включает в себя вторичную обмотку трансформатора, выпрямляющий элемент, электрический фильтр и нагрузку. При этом существует возможность получать умножение напряжения. Выпрямленное напряжение — это сумма постоянного и переменного напряжений. Переменная составляющая — это нежелательная компонента, которую уменьшают тем или иным способом. Но поскольку используются полуволны переменного напряжения, иначе быть не может.

Влияние переменной составляющей оценивается коэффициентом пульсации.

Его можно уменьшить двумя способами:

  • улучшая эффективность электрического фильтра;
  • улучшая параметры выпрямляемого переменного напряжения.

Простейший выпрямитель однополупериодный. Он отсекает одну из полуволн переменного напряжения. Поэтому коэффициент пульсаций в такой схеме получается самым большим. Но если выпрямляется трехфазное напряжение с одним диодом в каждой фазе, а также одним и тем же фильтром, получится в три раза меньший коэффициент пульсаций. Однако наилучшими характеристиками обладают двухполупериодные выпрямители.

Использовать обе полуволны переменного напряжения можно двумя способами:

  • по схеме моста;
  • по схеме со средней точкой обмотки (схема Миткевича).

Сравним обе эти схемы для одного и того же значения выпрямленного напряжения. В схеме моста используется меньше витков вторичной обмотки трансформатора, что является преимуществом. Но при этом в однофазном выпрямительном мосте необходимы четыре диода. В схеме со средней точкой необходимо в два раза больше витков вторичной обмотки со средней точкой, что является недостатком. Еще один недостаток этой схемы — необходимость симметрии частей обмотки относительно средней точки.

Асимметрия будет дополнительным источником пульсаций. Но зато в этой схеме нужны только два диода, что является преимуществом. При выпрямлении на диоде существует напряжение. Его величина почти не изменяется в зависимости от силы тока, протекающего через этот диод. Поэтому мощность, рассеиваемая на полупроводниковом диоде, растет по мере увеличения силы выпрямленного тока. Это весьма ощутимо при большой силе тока, и поэтому полупроводниковые диоды размещаются на охлаждающих радиаторах и при необходимости обдуваются.

При выпрямлении тока большой силы два диода схемы со средней точкой будут экономичнее и компактнее в сравнении с четырьмя диодами выпрямительного моста. Схемы выпрямителей в свое время не появились из ниоткуда. Их изобрели инженеры. Поэтому схемы выпрямителей в литературе иногда называются в связи с именами своих первооткрывателей. Мостовая схема именуется как «полный мост Гретца». Схема со средней точкой — «выпрямитель Миткевича».

Полупроводниковые диоды вместе с конденсаторами позволяют создавать схемы, в которых конденсаторы за полпериода заряжаются и за полпериода разряжаются в нагрузку. При этом напряжения, которые на них накапливаются, суммируются. Таким путем можно создавать схемы для умножения напряжения. Наиболее простая и эффективная схема выпрямителя, который удвоит напряжение, содержит два диода и два конденсатора. Ее называют схемой Латура-Делона. Ее аналогом является схема Гренашера.

Создавая необходимое число ячеек, содержащих конденсаторы и диоды, можно получить любое напряжение, кратное их числу. Схема, соответствующая этому решению, показана далее. В ней каждая из ячеек содержит конденсатор и диод.

В статье были подробно рассмотрены лишь некоторые виды выпрямителей, имеющие наиболее широкое использование.

Делая выбор того или иного устройства, необходимо руководствоваться параметрами напряжения нагрузки. Только таким путем получается эффективное выпрямление напряжения.

Одними из самых распространенных преобразователей тока являются выпрямители переменного тока в пульсирующий (постоянный по направлению движения носителей, но переменный по мгновенной величине) ток. Они имеют очень широкое применение. Условно их можно разделить на маломощные выпрямители (до нескольких сотен ватт и выпрямители большой мощности (киловатты и больше)).

Главною его частью является выпрямляющее устройство В, образованное из диодов, объединенных особым образом. Именно здесь и происходит преобразование переменного тока в пульсирующий постоянный. Переменное напряжение подается на выпрямляющее устройство через трансформатор Тр. В некоторых случаях трансформатора может и не быть (если напряжение силовой сети отвечает той, которая необходима для работы выпрямителя). Трансформатор(если он есть) в большинстве также имеет особенности в соединении его обмоток. Пульсирующий ток, как правило не является постоянным по величине в каждое мгновение времени, и когда необходимо иметь более сглаженное его значение, чем полученный после выпрямляющего устройства, применяют фильтры Ф. В случае необходимости выпрямитель дополняют стабилизатором напряжения или тока Ст, который поддерживает их на постоянном уровне, если параметры силовой сети изменяется по разным причинам. Структурную схему завершает нагрузка Н, которая значительно влияет на работу всего устройства и поэтому считается составляющей частью всего преобразователя.

Собственно выпрямителем является та его часть, которая обведена на рисунке выше пунктиром и состоит из трансформатора и выпрямительного устройства.

В этом подразделе рассматриваются выпрямители малой мощности, которые необходимы для обеспечения постоянным напряжением всяких устройств в областях управления, регулирования, усилителях тока, генераторах малой мощности и так далее. Как правило, они питаются от однофазного переменного напряжения 220 или 380 В частотою 50 Гц.

Нулевая схема выпрямления

Рассмотреть принцип действия самого простого выпрямителя однофазного тока целесообразно на так называемой нулевой схеме. Хотя она сейчас встречается относительно редко (о чем речь пойдет далее), знание физических процессов, которые происходят в этой схеме, очень важны для понимания дальнейшего материала.

Нулевая схема выглядит так:

Трансформатор Тр имеет на вторичной стороне две обмотки, соединенные последовательно таким образом, что относительно средней точки а напряжения на свободных концах обмоток в и с одинаковые по величине, но противоположные по фазе. Выпрямительное устройство образовано двумя диодами D1 и D2, которые соединены вместе своими катодами, тогда как каждый анод соединен с соответствующей обмоткой. Нагрузка Zн присоединена между катодами диодов и точкой трансформатора.

Рассмотрим, как возникает пульсирующее напряжение на нагрузке. Сначала будем считать нагрузку чисто активным сопротивлением, Z н =R н. Когда напряжение в обмотках будет изменяться по синусоидальному закону, то в тот полупериод, когда к аноду диода приложен положительный потенциал, будет проходить прямой ток. Поскольку напряжение на диоде составляет доли вольта, пренебрежем им. Тогда вся положительная полуволна переменного напряжения будет приложена просто к нагрузке R н. Когда напряжение приложенное минусом к аноду, тока не будет (малым обратным током диода также пренебрежем). Таким образом, до нагрузки будем доходить лишь положительная полуволна переменного напряжения в течении половины периода. Вторая половина периода будет свободна от тока.

Вторичные обмотки соединены противофазно, нагрузка общая для обеих обмоток, таким образом, в то время, когда в одной из них (например в верхней) ток будет проходить, другая будет от него свободна и наоборот.

Поэтому в нагрузке каждый полупериод будет заполнен полуволной переменного напряжения:

И выпрямленное напряжение U d будет иметь вид одинаковых полуволн, которые повторяются с периодом, вдвое меньшим, чем период переменного напряжения в сети питания (2π радиан). Для обобщения, что будет удобно, далее будем считать, что период изменения выпрямленного напряжения меньше 2π в m раз и равняется 2π/m (в нашем случае m -2). Если нагрузка активное сопротивление R н, то и ток в нем i d , будет повторять кривую напряжения.

Рассмотренная схема будет иметь тот недостаток, что во вторичных обмотках по сравнению с первичной имеют место значительные пульсации тока, потому что эти обмотки работают по очереди. Поскольку они намотаны на один сердечник, магнитный поток в последнем будет переменным, поэтому и в первичной обмотке ток будет переменным, имея как положительную, так и отрицательную полуволны. Как известно из курса электротехники, действующие и средние значения тока или напряжения одинаковые только для постоянного тока. Чем больше пульсации, тем больше будет действующее значение относительно среднего. Поэтому мощности обеих сторон трансформатора не будут одинаковыми. Однако трансформатор один, и объем железа для его сердечника следует выбирать, исходя из какого-то одного значения мощности.

Поэтому условно ввели понятие типовой мощности трансформатора, которая равняется среднему мощностей обеих сторон:

Выпрямительный мост или схема Гретца

Указанный недостаток можно исправить, используя выпрямляющее устройство в виде так называемого моста (схема Гретца):

В этом случае первые полупериоды будут работать, например, диоды D2 и D4, а вторые полупериода — D1 и D3. На нагрузке каждый раз будет полная полуволна вторичного напряжения:

Мостовая схема кроме того имеет менее сложный, более легкий и дешевый трансформатор. у нее есть еще несколько преимуществ.

Интересно, что эта схема появилась исторически раньше нулевой однако распространения не получила, потому что имела во-первых четыре диода вместо двух. Однако главным было не их количество, а то что при работе каждые полупериода ток проходит через два последовательно соединенных диода, на которые падает двойное напряжение. На то время полупроводниковых диодов еще не было, а вакуумные или ртутные имели значительное падение напряжения при прохождении прямого тока, что существенно понижало коэффициент полезного действия. Оказалось, что более сложный трансформатор нулевой схемы, но с одним диодом в кругу выпрямления тока экономично выгоднее, чем мостовая схема с удвоенным числом диодов и двойным расходом энергии на них. И только появление относительно дешевых полупроводниковых диодов с очень маленьким падением прямого напряжения позволило повернуться к мостовым схемам, которая сейчас практически вытеснила нулевую (в этом при желании можно усмотреть проявление одного из диалектических законов – развитие по спирали).

Основные соотношения для выпрямителя

Выведем некоторые важные формулы, которые описывают процессы, существующие в этой схеме. Будем считать, что заданными величинами являются средние значения напряжения на нагрузку U d и среднее значение тока в нем I d .

Запомним это выражение на дальнейшее. В нашем случае m=2 и . Поскольку U d считаем заданным, то

Из предыдущего выражения имеем:

Этот коэффициент определяет отношения питающей сети к напряжению на обмотке вторичной стороны:

Действующее значение тока вторичной обмотки

Ток вторичной обмотки в то же время есть током в нагрузке. Поскольку нагрузка чисто активная и ток в ней повторяет по форме пульсирующее напряжение, то между его средним значением и его действующим значением существует такая же зависимость, что и для напряжений, то есть

Действующее значение тока первичной обмотки

Ток в первичной обмотке повторяет с учетом n ток вторичной обмотки:

Мощность трансформатора

Мощности первичной и вторичной сторон трансформатора в этой схеме одинаковые, поэтому:

Пульсация выпрямленного напряжения

Пульсирующее напряжение состоит из среднего значения U d и бесконечного количества гармоничных составляющих, амплитуды которых можно определить по формулам Фурье. Если начало координат выбрать так как на рисунке, то в гармоничном составе будут присутствовать только косинусные гармоники (т.к. кривая симметрична относительна оси координат). Амплитуда k-ой гармоники определяется по формуле:

Где: l – полупериод π/m;

Наибольшую амплитуду будет иметь первая гармоника U (1) m , поэтому определим только ее, предположив, что k=1:

Отношение первой гармоники к среднему значению называют коэффициентом пульсаций:

Запомним эту формулу на будущее, а сейчас отметим, что в нашем случае при m – 2, q – 2/3. Это большие пульсации – амплитуда первой гармоники составляет 67% от среднего значения выпрямленного напряжения.

Средний ток диодов

Как мы уже видели диоды работают по очереди – каждый из них проводит в среднем половину общего тока, который есть в нагрузке. Поэтому каждый из диодов должен быть рассчитан на ток I в = I d /2

Наибольшее обратное напряжение на диоде

В то время когда диод B1 проводит его можно считать замкнутым, и тогда к диоду B2 будет приложено в обратном направлении напряжение вторичной обмотки. Поэтому каждый из диодов должен быть рассчитан на ее амплитудное значение:

Итак, дорогие мои, мы собрали нашу схемку и пришло время ее проверить, испытать и нарадоваться сему счастью. На очереди у нас — подключение схемы к источнику питания. Приступим. На батарейках, аккумуляторах и прочих прибамбасах питания мы останавливаться не будем, перейдем сразу к сетевым источникам питания. Здесь рассмотрим существующие схемы выпрямления, как они работают и что умеют. Для опытов нам потребуется однофазное (дома из розетки) напряжение и соответствующие детальки. Трехфазные выпрямители используются в промышленности, мы их рассматривать также не будем. Вот электриками вырастете — тогда пожалуйста.

Источник питания состоит из нескольких самых важных деталей: Сетевой трансформатор — на схеме обозначается похожим как на рисунке,

Выпрямитель — его обозначение может быть различным. Выпрямитель состоит из одного, двух или четырех диодов, смотря какой выпрямитель. Сейчас будем разбираться.

а) — простой диод.
б) — диодный мост. Состоит из четырех диодов, включенных как на рисунке.
в) — тот же диодный мост, только для краткости нарисован попроще. Назначения контактов такие же, как у моста под буквой б).

Конденсатор фильтра. Эта штука неизменна и во времени, и в пространстве, обозначается так:

Обозначений у конденсатора много, столько же, сколько в мире систем обозначений. Но в общем они все похожи. Не запутаемся. И для понятности нарисуем нагрузку, обозначим ее как Rl — сопротивление нагрузки. Это и есть наша схема. Также будем обрисовывать контакты источника питания, к которым эту нагрузку мы будем подключать.

Далее — пара-тройка постулатов.
— Выходное напряжение определяется как Uпост = U*1.41. То есть если на обмотке мы имеем 10вольт переменного напряжения, то на конденсаторе и на нагрузке мы получим 14,1В. Примерно так.
— Под нагрузкой напряжение немного проседает, а насколько — зависит от конструкции трансформатора, его мощности и емкости конденсатора.
— Выпрямительные диоды должны быть на ток в 1,5-2 раза больше необходимого. Для запаса. Если диод предназначен для установки на радиатор (с гайкой или отверстие под болт), то на токе более 2-3А его нужно ставить на радиатор.

Так же напомню, что же такое двуполярное напряжение. Если кто-то подзабыл. Берем две батарейки и соединяем их последовательно. Среднюю точку, то есть точку соединения батареек, назовем общей точкой. В народе она известна так же как масса, земля, корпус, общий провод. Буржуи ее называют GND (ground — земля), часто ее обозначают как 0V (ноль вольт). К этому проводу подключаются вольтметры и осциллографы, относительно нее на схемы подаются входные сигналы и снимаются выходные. Потому и название ее — общий провод. Так вот, если подключим тестер черным проводом в эту точку и будем мерить напряжение на батарейках, то на одной батарейке тестер покажет плюс1,5вольта, а на другой — минус1,5вольта. Вот это напряжение +/-1,5В и называется двуполярным. Обе полярности, то есть и плюс, и минус, обязательно должны быть равными. То есть +/-12, +/-36В, +/-50 и т.д. Признак двуполярного напряжения — если от схемы к блоку питания идут три провода (плюс, общий, минус). Но не всегда так — если мы видим, что схема питается напряжением +12 и -5, то такое питание называется двухуровневым, но проводов к блоку питания будет все равно три. Ну и если на схему идут целых четыре напряжения, например +/-15 и +/-36, то это питание назовем просто — двуполярным двухуровневым.

Ну а теперь к делу.

1. Мостовая схема выпрямления.
Самая распространенная схема. Позволяет получить однополярное напряжение с одной обмотки трансформатора. Схема обладает минимальными пульсациями напряжения и несложная в конструкции.

2. Однополупериодная схема.
Так же, как и мостовая, готовит нам однополярное напряжение с одной обмотки трансформатора. Разница лишь в том, что у этой схемы удвоенные пульсации по сравнению с мостовой, но один диод вместо четырех сильно упрощает схему. Используется при небольших токах нагрузки, и только с трансформатором, намного большим мощности нагрузки, т.к. такой выпрямитель вызывает одностороннее перемагничивание трансформатора.

3. Двухполупериодная со средней точкой.
Два диода и две обмотки (или одна обмотка со средней точкой) будут питать нас малопульсирующим напряжением, плюс ко всему мы получим меньшие потери в сравнении с мостовой схемой, потому что у нас 2 диода вместо четырех.

4. Мостовая схема двуполярного выпрямителя.
Для многих — наболевшая тема. У нас есть две обмотки (или одна со средней точкой), мы с них снимаем два одинаковых напряжения. Они будут равны, пульсации будут малыми, так как схема мостовая, напряжения на каждом конденсаторе считается как напряжение на каждой обмотке помножить на корень из двух — всё, как обычно. Провод от средней точки обмоток выравнивает напряжения на конденсаторах, если нагрузки по плюсу и по минусу будут разными.

5. Схема с удвоением напряжения.
Это две однополупериодные схемы, но с диодами, включенными по разному. Применяется, если нам надо получить удвоенное напряжение. Напряжение на каждом конденсаторе будет определяться по нашей формуле, а суммарное напряжение на них будет удвоенным. Как и у однополупериодной схемы, у этой так же большие пульсации. В ней можно усмотреть двуполярный выход — если среднюю точку конденсаторов назвать землей, то получается как в случае с батарейками, присмотритесь. Но много мощности с такой схемы не снять.

6. Получение разнополярного напряжения из двух выпрямителей.
Совсем не обязательно, чтобы это были одинаковые блоки питания — они могут быть как разными по напряжению, так и разными по мощности. Например, если наша схема по +12вольтам потребляет 1А, а по -5вольтам — 0,5А, то нам и нужны два блока питания — +12В 1А и -5В 0,5А. Так же можно соединить два одинаковых выпрямителя, чтобы получить двуполярное напряжение, например, для питания усилителя.

7. Параллельное соединение одинаковых выпрямителей.
Оно нам дает то же самое напряжение, только с удвоенным током. Если мы соединим два выпрямителя, то у нас будет двойное увеличение тока, три — тройное и т.д.

Ну а если вам, дорогие мои, всё понятно, то задам, пожалуй, домашнее задание. Формула для расчета емкости конденсатора фильтра для двухполупериодного выпрямителя:

Для однополупериодного выпрямителя формула несколько отличается:

Двойка в знаменателе — число «тактов» выпрямления. Для трехфазного выпрямителя в знаменателе будет стоять тройка.

Во всех формулах переменные обзываются так:
Cф — емкость конденсатора фильтра, мкФ
Ро — выходная мощность, Вт
U — выходное выпрямленное напряжение, В
f — частота переменного напряжения, Гц
dU — размах пульсаций, В

Для справки — допустимые пульсации:
Микрофонные усилители — 0,001. 0,01%
Цифровая техника — пульсации 0,1. 1%
Усилители мощности — пульсации нагруженного блока питания 1. 10% в зависимости от качества усилителя.

Эти две формулы справедливы для выпрямителей напряжения частотой до 30кГц. На бОльших частотах электролитические конденсаторы теряют свою эффективность, и выпрямитель рассчитывается немного не так. Но это уже другая тема.

Каждый электрик должен знать:  Измерение потребляемой мощности магазина
Добавить комментарий