Малые ГЭС — виды и конструкции


СОДЕРЖАНИЕ:

Малая гидроэнергетика в России

В России к малой гидроэнергетике относят бесплотинные гидроэлектростанции (ГЭС), мощность которых не превышает 30 МВт, а мощность единичного гидроагрегата составляет менее 10 МВт.

Нынешнее состояние и перспективы

В России к малой гидроэнергетике относят бесплотинные гидроэлектростанции (ГЭС), мощность которых не превышает 30 МВт, а мощность единичного гидроагрегата составляет менее 10 МВт. Такие ГЭС, в свою очередь, делятся на:

  • микро-ГЭС (мощностью от 1.5 до 100 кВт);
  • малые ГЭС (мощньстью от 100 кВт до 30 МВт).

Примеры малых ГЭС в России: Республика Тыва – МГЭС установленной мощностью 168 кВт; Республика Алтай – МГЭС мощностью 400 кВт; Камчатская область — ГЭС-1 мощностью 1.7 МВт на реке Быстрая, каскад Толмачевских ГЭС.

Микро- и малые ГЭС играют большую роль в энергоснабжении отдаленных районов, являющихся энергодефицитными и занимающих до 40% территории России. Развитие малой гидроэнергетики в регионах обеспечивает:

  • создание собственных региональных генерирующих мощностей и снижение дефицита электроэнергии в регионе;
  • надежное электроснабжение качественной электроэнергией населенных пунктов в удаленных районах и на концевых участках магистральных линий электропередачи;
  • достижение экономической и социальной стабильности в населенных пунктах, которые до настоящего времени не подключены к единой энергетической системе;
  • снижение дотационности регионов, связанной с закупкой и завозом топлива в труднодоступные районы.

Одним из главных преимуществ малых гидроэлектростанций (МГЭС) эксперты называют общественное отношение к подобным проектам. Такие станции наносят экологии гораздо меньше вреда, чем большие ГЭС. Среди других преимуществ выделяется также благоприятное влияние МГЭС на региональное развитие и стимулирование бизнеса за счет рынка малой гидроэнергетики.

В настоящее время действующие на территории России малые ГЭС обеспечивают около 2.2 млрд. кВт·ч/год, а их технических потенциал оценивается в 382 млрд. кВт·ч/год.

Природные условия, характерные для европейской части России, могут обеспечить выработку электроэнергии на малых ГЭС, полностью удовлетворяющую потребности районов, экономика которых ориентирована на сельхозпроизводство. Строительство малых ГЭС позволит также эффективно использовать водные ресурсы рек в целях водоснабжения, рыболовства, транспорта и пр.

Перечень потенциальных источников энергии для малой гидроэнергетики необычайно широк. Это небольшие реки, ручьи, естественные перепады высот на озерных водосбросах и на оросительных каналах ирригационных систем. Турбины малых ГЭС можно использовать в качестве гасителей энергии на перепадах высот питьевых и других трубопроводов, предназначенных для перекачки различных видов жидких продуктов. Кроме того, установка небольших гидроэнергоагрегатов возможна на технологических водотоках, таких как промышленные и канализационные сбросы.

Подсчитано, что энергетический потенциал малой гидроэнергетики в России превышает потенциал таких возобновляемых источников энергии, как ветер, солнце и биомасса вместе взятых. Однако Россия, обладая таким громадным потенциалом, в настоящее время в силу ряда причин значительно отстаёт от других стран в использовании этого ресурса.

Таблица 1. Потенциал МГЭС в РФ (млрд. кВт·ч/год)

Федеральный округ Теоретический потенциал Технический потенциал
Северо-Западный 48.6 15.1
Центральный 7.6 2.9
Приволжский 35 11,4
Южный 50.1 15.5
Уральский 42.6 13.2
Сибирский 469.7 153
Дальневосточный 452 146
Итого по России 1105.6 357.1

В качестве основных факторов ускорения развития малой гидроэнергетики в России можно назвать:

  • аварии, участившиеся в энергосистеме страны (гидроагрегаты могут быть источниками автономного питания);
  • требования экологичности вырабатываемой энергии, которые стали особенно актуальными в связи с введением в действие Киотского протокола.

Первоочередными объектами рассмотрения для сооружения МГЭС являются существующие и незадействованные гидроузлы. По предварительным оценкам, 58% средних и 90% небольших водохранилищ страны (это 20 и 1 млн. м3 соответственно) не используются для выработки электроэнергии.

Энергоэкологической нишей для малых ГЭС может стать водоснабжение промышленности городов и пр. В системах водоснабжения на участках трассы с большой разницей отметок поверхности вместо различного рода шахтных сопряжений, энергогасителей и других сооружений могут быть построены микро-ГЭС. При расходах воды в пределах от 5 до 100 л/с их мощность может достигать от 20 до 200 кВт.

Рентабельность малых ГЭС обеспечивается упрощением схемы их управления (например, за счет балластной нагрузки) и работы без обслуживающего персонала. Эффективность МГЭС может быть повышена также за счет многоцелевого использования ее сооружений, а также при выдаче мощности в местную сеть (без длинных ЛЭП).

Программа развития малой гидроэнергетики

В настоящее время ОАО «ГидроОГК» (www.gidroogk.ru, крупнейшая федеральная гидроэлектрогенерирующая компания) разрабатывает комплексный план развития малой гидроэнергетики на 2008–2010 годы и на перспективу до 2020 года, предусматривающий ввод до 2010 года более 300 МВт установленной мощности. Основные створы сосредоточены в Центральной части, на Северо-западе России, в Поволжье, на Урале и на Кавказе (более 290 створов).

Таблица 2. План ввода мощностей

Год МВт
2007 5
2008 20
2009 125
2010 150
2011–2020 не менее 700
Итого к 2020 г. не менее 1000

Целью данной программы является реализация экономически эффективных проектов в области строительства и реконструкции МГЭС суммарной (общей) установленной мощностью не менее 1000 МВт в период до 2020 года, а также привлечение частных инвестиций в реализацию проектов.

Таблица 3. Проекты строительства малых ГЭС

Установ-

ленная мощность, МВт

Средне-

годовая выработка, млн. кВт·ч

Мощная универсальная бесплотинная микро–ГЭС своими руками

Дата публикации: 14 марта 2020

В настоящее время всё больше стран в мире выделяют колоссальные средства на развитие и внедрение возобновляемых источников энергии, понимая, что получать её посредством сжигания углеводородов – это всё равно, что пилить сук, на котором сидишь. К тому же, этот вид генерации достаточно дорогой и малоэффективный.

Кроме того, мировые торги нефтью контролируются правительством США, значит, развитие собственных источников ВИЭ способствует частичному уходу от долларовой зависимости.

Наиболее популярными являются солнечные и ветровые установки, хотя КПД последних не превышает 15 — 20% — солнце светит только днём, а ветер дует не всегда. Малая гидроэнергетика даёт энергию круглосуточно и стабильно, но несправедливо отодвинута на последнее место.

Доминирует предвзятое мнение, что течение равнинной реки не способно выдать большую мощность, а получать приличную можно лишь при наличии перепада воды, в виде плотины, или скорости течения не менее 2 – х м/с, как в случае горных рек. Практически все конструкции гидроустановок, предлагаемые современным рынком, адаптированы именно к таким условиям эксплуатации, других просто нет. Есть небольшой сегмент в виде нано — ГЭС, но их мощность рассчитана лишь на зарядку сотового телефона. К сожалению, наличие подобных условий в нашей стране весьма ограничено, и равнинные реки, которых подавляющее большинство, никак не подпадают под эту категорию.

Существует три причины, по которым гидроэнергетика признана дорогой и малоэффективной:

  • Первая — озвучена выше. Сооружение плотин занятие дорогое и долгосрочное, с большим периодом окупаемости, а желающих жить в горах очень мало.
  • Вторая — использование традиционных видов движителей, КПД которых не превышает 30 — 40%, при этом имеют малые обороты вращения, что чревато большими потерями на повышающем редукторе;
  • Третья – расчёт мощности потока производиться по старой академической формуле, которая в корне не соответствует истинному положению дел, именно для текущей воды. Официальная наука утверждает, что скорость ветра менее 6,0 м/с и воды менее 1,0 м/с не рентабельны. Ветер при скорости 10,0 м/с и вода при 1,0 м/с способны выдать лишь 0,5 кВт/м2. Это полный абсурд.

Нашей команде удалось выявить и устранить выше перечисленные недостатки в процессе практических испытаний собственных установок. Результаты наших скромных достижений представлены ниже.

Верторная микро – ГЭС

Разработана для эксплуатации на равнинных реках с малыми скоростями течения 0,6 – 0,9 м/с, а с применением ускорителей – от 0,4 м/с. Вес 12 кг, КПД до 70%, в отличие от ортогональной схемы и традиционного винта вращается в два раза быстрее, развивая 90 – 120 об/мин. на холостом ходу.

При скорости воды 0,7 м/с уверенно выдаёт 1,0 кВт/м2 чистой мощности. В реке располагается горизонтально (минимальная глубина 0,5м) или вертикально, если позволяют условия. Обороты основного вала регулируются ступенчато, а мощность — путём увеличения или уменьшения количества рабочих секций. Себестоимость изготовления, в среднем, 3000 рублей за киловатт, без генератора и редуктора.

Семкленовая микро – ГЭС

Представляет из себя новый вид винта, и в отличие от традиционного, вращается в 2,0 – 2,5 раза быстрее. Работает на реках со средними скоростями течения 0,9 – 1,5 м/с, а с ускорителями от 0,6 м/с. Вес 6 кг, КПД 50%, при скорости течения 1,0 м/с уверенно выдаёт 1,7 кВт/м2 чистой мощности.

Обороты вала регулируются ступенчато, а мощность только размерами винта или скоростью течения. Себестоимость изготовления, в среднем, 1000 рублей/1,0 кВт, без генератора и редуктора.

Дополнительная функции и оснастка для эксплуатации микро – ГЭС

1. Из вышесказанного, очевидно, что данные установки способны генерировать большую мощность при малых скоростях течения. Этот факт подтолкнул нас к созданию дополнительной оснастки для работы микро – ГЭС в условиях спокойной воды, т.е. озеро, пруд, залив и т.д. Установка, вращаясь по кругу при определённой постоянной скорости посредством маломощного мотор – редуктора, приводит во вращение движитель, который, в свою очередь, соединён с генератором. Конечная мощность на порядок больше, чем привод.

2. Наши установки, помимо выработки электроэнергии, могут быть использованы как мощный вращательный привод для множества агрегатов и оборудования, например:

  • — качать воду из реки с производительностью от нескольких десятков литров до 3 – х м3/час, давление может достигать 2 атмосфер (то есть 2 кг/см.кв.);
  • — вращать наждак, сверлильный станок, бетономешалку, дробилку, мини–пилораму, дерево- и металло-обрабатывающие станки максимальной мощностью до 10 кВт, при наличии соответствующих условий эксплуатации. КПД данного привода в 2 – 3 раза выше, чем применение электроинструмента, и безопасно.

3. Большинство равнинных рек имеют слабое течение 0,4 – 0,6 м/с. Для увеличения скорости на нужном участке реки разработаны ускорители потока. Данные конструкции способны ускорить его на 30 – 300%, соответственно, мощность возрастёт в геометрической прогрессии. По форме просты, но достаточно габаритны, можно устанавливать как временно, так и постоянно.

4. Кроме того, обе конструкции адаптированы для работы в зимний период, непосредственно подо льдом. Разработана специальная оснастка, позволяющая функционировать в морозы до — 40 0 .

Подводя итог, следует перечислить все достоинства и преимущества данных микро – ГЭС:

  • большая выходная мощность при малых скоростях течения, от 0,4 м/с и более, работают практически на любых равнинных реках;
  • способность генерировать электроэнергию в условиях спокойной воды;
  • возможность вращения различных видов агрегатов без электроэнергии;
  • высокий КПД установок, до 70%;
  • малый вес, от 12 кг;
  • низкая себестоимость изготовления, от 1000 рублей за 1,0 кВт, без генератора и редуктора;
  • способность работать круглый год, зимой и летом.

Серийное производство и реализация данных установок не встретит на рынке жёсткой конкуренции, фактически она отсутствует.

Подобного универсального оборудования нет ни в России, ни в мире.

Бутусов Иван Николаевич, raduga823@mail.ru

Вам нужно войти, чтобы оставить комментарий.

Электростанции – виды, характеристики электростанций

1. Типы электростанций и особенности их технологического процесса

Электрическая станция – совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории. В зависимости от источника энергии различают:

  • тепловые электростанции (ТЭС), использующие природное топливо;
  • гидроэлектростанции (ГЭС), использующие энергию падающей воды запруженных рек;
  • атомные электростанции (АЭС), использующие ядерную энергию;
  • нетрадиционные (иные) электростанции, использующие ветровую, солнечную, геотермальную и другие виды энергий.

В нашей стране производится и потребляется огромное количество электроэнергии. Она почти полностью вырабатывается тремя основными типами электростанций: тепловыми, атомными и гидроэлектростанциями. В России основная часть электроэнергии производится на тепловых электростанциях. ТЭС строят в районах добычи топлива или в районах потребления энергии.

ГЭС выгодно строить на полноводных горных реках, поэтому наиболее крупные ГЭС построены на сибирских реках: Енисее, Ангаре. Но также построены каскады ГЭС и на равнинных реках: Волге, Каме. АЭС построены в районах, где потребляется много энергии, а других энергоресурсов не хватает (в западной части страны). Основным типом электростанций в России являются тепловые (ТЭС).

Тепловые электростанции. Наиболее мощные электростанции располагаются в местах добычи топлива. ТЭС, использующие калорийное, транспортабельное топливо, ориентированы на потребителей. Принципиальная схема тепловой электростанции представлена на рис. 1. Стоит иметь в виду, что в ее конструкции может быть предусмотрено несколько контуров – теплоноситель от тепловыделяющего

реактора может не идти сразу на турбину, а отдать свое тепло в теплообменнике теплоносителю следующего контура, который уже может поступать на турбину, а может передавать свою энергию следующему контуру. Также в любой электростанции предусмотрена система охлаждения отработавшего теплоносителя, чтобы довести температуру теплоносителя до необходимого для повторного цикла значения.

Рис. 1. Принципиальная схема ТЭС с промперегревом

Если поблизости от электростанции есть населенный пункт, то тепло отработавшего теплоносителя используется для нагрева воды системы отопления домов или горячего водоснабжения, а если нет, то излишнее тепло отработавшего теплоносителя просто сбрасывается в атмосферу в градирнях или в водоем (пруд, озеро, река) охладитель.

ТЭС вырабатывают электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. В основном на большинстве ТЭС используют тепловые паротурбинные установки (ПТУ), на которых тепловая энергия используется в парогенераторе для получения водяного пара высокого давления, приводящего во вращение ротор паровой турбины, соединённый с ротором электрического генератора (обычно синхронного генератора). В качестве топлива на таких ТЭС используют уголь (преимущественно), мазут, природный газ, лигнит, торф, сланцы. ТЭС с ПТУ имеющие в качестве привода электрогенераторов конденсационные турбины и не использующие тепло отработавшего пара для снабжения тепловой энергией внешних потребителей, называются конденсационными электростанциями (КЭС или ГРЭС). ТЭС с ПТУ, оснащенные теплофикационными турбинами и отдающие тепло отработавшего пара промышленным или коммунально-бытовым потребителям, называются теплоэлектроцентралями (ТЭЦ).

ТЭС с приводом электрогенератора от газовой турбины называются ТЭС с газотурбинными установками (ГТУ). В камере сгорания ГТУ сжигают газ или жидкое топливо; продукты сгорания с температурой 750…900 °С поступают в газовую турбину, вращающую электрогенератор. КПД таких ТЭС обычно составляет 26…28 %, мощность – до нескольких сотен МВт. ТЭС с ГТУ обычно применяются для покрытия пиков электрической нагрузки.

ТЭС бывают с парогазотурбинной установкой (ПГУ), состоящей из паротурбинного и газотурбинного агрегатов. КПД такой станции может достигать 42…43 %. ГТУ и ПГУ также могут отпускать тепло внешним потребителям, т. е. работать как ТЭЦ. Тепловые электростанции используют широко распространенные топливные ресурсы, относительно свободно размещаются и способны вырабатывать электроэнергию без сезонных колебаний. Их строительство ведется быстро и связано с меньшими затратами труда и материальных средств. Но у ТЭС есть существенные недостатки. Они используют невозобновимые ресурсы, обладают низким КПД (30…35 %), оказывают крайне негативное влияние на экологическую обстановку. ТЭС всего мира ежегодно выбрасывают в атмосферу 200…250 млн т золы и около 60 млн т сернистого ангидрида, а также поглощают огромное количество кислорода. Установлено, что уголь в микродозах почти всегда содержит U238, Th232 и радиоактивный изотоп углерода. Большинство ТЭС России не оснащены эффективными системами очистки уходящих газов от оксидов серы и азота. Хотя установки, работающие на природном газе, экологически существенно чище угольных, сланцевых и мазутных, вред природе наносит прокладка газопроводов.

Первостепенную роль среди тепловых установок играют конденсационные электростанции (КЭС). Они тяготеют и к источникам топлива, а также к потребителям и поэтому очень широко распространены. Чем крупнее КЭС, тем дальше она может передавать электроэнергию, т. е. по мере увеличения мощности возрастает влияние топливноэнергетического фактора. ТЭЦ (теплоэлектроцентрали) представляют собой установки по комбинированному производству электроэнергии и теплоты. Их КПД доходит до 70 % против 32…38 % на КЭС. ТЭЦ привязаны к потребителям, т. к. радиус передачи теплоты (пара, горячей воды) составляет 15…20 км. Максимальная мощность ТЭЦ меньше, чем КЭС. В последнее время появились принципиально новые установки:

  • газотурбинные (ГТУ) установки, в которых вместо паровых применяются газовые турбины, что снимает проблему водоснабжения (на Краснодарской и Шатурской ГРЭС);
  • парогазотурбинные (ПГУ), где тепло отработавших газов используется для подогрева воды и получения пара низкого давления (на Невинномысской и Кармановской ГРЭС);
  • магнитогидродинамические генераторы (МГД-генераторы), которые преобразуют тепло непосредственно в электрическую энергию (на ТЭЦ-21 Мосэнерго и Рязанской ГРЭС).

В России мощные КЭС (2 млн. кВт и более) построены в Центральном районе, в Поволжье, на Урале и в Восточной Сибири. На базе Канско-Ачинского бассейна создается мощный топливно-энергетический комплекс (КАТЭК). В проекте предусмотрено строительство восьми ГРЭС мощностью по 6,4 млн. кВт.

Атомная электростанция (АЭС) – электростанция, в которой атомная (ядерная) энергия преобразуется в электрическую. Генератором энергии на АЭС является атомный реактор. Тепло, которое выделяется в реакторе в результате цепной реакции деления ядер некоторых тяжё- лых элементов, затем так же, как и на обычных тепловых электростанциях (ТЭС), преобразуется в электроэнергию. В отличие от ТЭС, работающих на органическом топливе, АЭС работает на ядерном горючем (в основном 233U, 235U, 239Pu). При делении 1 г изотопов урана или плутония высвобождается 22 500 кВтч, что эквивалентно энергии, содержащейся в 2800 кг условного топлива. Установлено, что мировые энергетические ресурсы ядерного горючего (уран, плутоний и др.) существенно превышают энергоресурсы природных запасов органического топлива (нефть, уголь, природный газ и др.). Это открывает широкие перспективы для удовлетворения быстро растущих потребностей в топливе. Кроме того, необходимо учитывать всё увеличивающийся объём потребления угля и нефти для технологических целей мировой химической промышленности, которая становится серьёзным конкурентом тепловых электростанций.

Несмотря на открытие новых месторождений органического топлива и совершенствование способов его добычи, в мире наблюдается тенденция к относительному увеличению его стоимости. Это создаёт наиболее тяжёлые условия для стран, имеющих ограниченные запасы топлива органического происхождения. Очевидна необходимость быстрейшего развития атомной энергетики, которая уже занимает заметное место в энергетическом балансе ряда промышленных стран мира. Первая в мире АЭС опытно-промышленного назначения мощностью 5 МВт была пущена в СССР 27 июня 1954 г. в г. Обнинске. До этого энергия атомного ядра использовалась преимущественно в военных целях. Пуск первой АЭС ознаменовал открытие нового направления в энергетике, получившего признание на 1-й Международной научно-технической конференции по мирному использованию атомной энергии (август 1955, Женева). Принципиальная схема АЭС с ядерным реактором, имеющим водяное охлаждение, приведена на рис. 2.

Рис. 2. Принципиальная схема АЭС с ядерным реактором, имеющим водяное охлаждение

Тепло, выделяющееся в активной зоне реактора, отбирается водой (теплоносителем) 1-го контура, которая прокачивается через реактор главным циркуляционным насосом. Нагретая вода из реактора поступает в теплообменник (парогенератор), где передаёт тепло, полученное в реакторе, воде 2-го контура. Вода 2-го контура испаряется в парогенераторе, и образующийся пар поступает в турбину. Наиболее часто на АЭС применяются 4 типа реакторов на тепловых нейтронах:

  • водо-водяные с водой в качестве замедлителя и теплоносителя;
  • графито-водные с водяным теплоносителем и графитовым замедлителем;
  • тяжеловодные с водяным теплоносителем и тяжёлой водой в качестве замедлителя;
  • графито-газовые с газовым теплоносителем и графитовым замедлителем.

Выбор преимущественно применяемого типа реактора определяется главным образом накопленным опытом в реакторостроении, а также наличием необходимого промышленного оборудования, сырьевых запасов и т. д. На АЭС США наибольшее распространение получили водоводяные реакторы. Графито-газовые реакторы применяются в Англии. В атомной энергетике Канады преобладают АЭС с тяжеловодными реакторами. В зависимости от вида и агрегатного состояния теплоносителя создаётся тот или иной термодинамический цикл АЭС. Выбор верхней температурной границы термодинамического цикла определяется максимально допустимой температурой оболочек тепловыделяющих элементов (ТВЭЛ), содержащих ядерное горючее, допустимой температурой собственно ядерного горючего, а также свойствами теплоносителя, принятого для данного типа реактора. На АЭС, тепловой реактор которой охлаждается водой, обычно пользуются низкотемпературными паровыми циклами. Реакторы с газовым теплоносителем позволяют применять относительно более экономичные циклы водяного пара с повышенными начальными давлением и температурой. Тепловая схема АЭС в этих двух случаях выполняется 2-контурной: в 1-м контуре циркулирует теплоноситель, 2-й контур – пароводяной. При реакторах с кипящим водяным или высокотемпературным газовым теплоносителем возможна одноконтурная тепловая АЭС. В кипящих реакторах вода кипит в активной зоне, полученная пароводяная смесь сепарируется, и насыщенный пар направляется или непосредственно в турбину, или предварительно возвращается в активную зону для перегрева; в высокотемпературных графитогазовых реакторах возможно применение обычного газотурбинного цикла. Реактор в этом случае выполняет роль камеры сгорания. При работе реактора концентрация делящихся изотопов в ядерном топливе постепенно уменьшается, т. е. ТВЭЛы выгорают, поэтому со временем их заменяют свежими. Ядерное горючее перезагружают с помощью механизмов и приспособлений с дистанционным управлением.

Отработавшие ТВЭЛы переносят в бассейн выдержки, а затем направляют на переработку. К реактору и обслуживающим его системам относятся: собственно реактор с биологической защитой, теплообменники, насосы или газодувные установки, осуществляющие циркуляцию теплоносителя; трубопроводы и арматура циркуляционного контура; устройства для перезагрузки ядерного горючего; системы специальная вентиляции, аварийного расхолаживания и др. В зависимости от конструктивного исполнения реакторы имеют отличительные особенности: в корпусных реакторах ТВЭЛы и замедлитель расположены внутри корпуса, несущего полное давление теплоносителя; в канальных реакторах ТВЭЛы, охлаждаемые теплоносителем, устанавливаются в специальных трубах-каналах, пронизывающих замедлитель, заключённый в тонкостенный кожух.

Такие реакторы применяются в СССР (Сибирская, Белоярская АЭС и др.). При авариях в системе охлаждения реактора для исключения перегрева и нарушения герметичности оболочек ТВЭЛов предусматривают быстрое (в течение несколько секунд) глушение ядерной реакции; аварийная система расхолаживания имеет автономные источники питания. Оборудование машинного зала АЭС аналогично оборудованию машинного зала ТЭС. Отличительная особенность большинства АЭС – использование пара сравнительно низких параметров, насыщенного или слабоперегретого. При этом для исключения эрозионного повреждения лопаток последних ступеней турбины частицами влаги, содержащейся в пару, в турбине устанавливают сепарирующие устройства. Иногда необходимо применение выносных сепараторов и промежуточных перегревателей пара. В связи с тем что теплоноситель и содержащиеся в нём примеси при прохождении через активную зону реактора активируются, конструктивное решение оборудования машинного зала и системы охлаждения конденсатора турбины одноконтурных АЭС должно полностью исключать возможность утечки теплоносителя.

На двухконтурных АЭС с высокими параметрами пара подобные требования к оборудованию машинного зала не предъявляются. Экономичность АЭС определяется её основными техническими показателями: единичная мощность реактора, КПД, энергонапряжённость активной зоны, глубина выгорания ядерного горючего, коэффициент использования установленной мощности АЭС за год. С ростом мощности АЭС удельные капиталовложения в неё (стоимость установленного кВт) снижаются более резко, чем это имеет место для ТЭС. В этом главная причина стремления к сооружению крупных АЭС с большой единичной мощностью блоков. Для экономики АЭС характерно, что доля топливной составляющей в себестоимости вырабатываемой электроэнергии – 30…40 % (на ТЭС – 60…70 %). Из-за аварии в Чернобыле в 1986 г. программа развития атомной энергетики была сокращена. После значительного увеличения производства электроэнергии в 80-е гг. темпы роста замедлились, а в 1992…1993 гг. начался спад. При правильной эксплуатации АЭС – наиболее экологически чистый источник энергии. Их функционирование не приводит к возникновению «парникового» эффекта, выбросам в атмосферу в условиях безаварийной работы, и они не поглощают кислород. К недостаткам АЭС можно отнести трудности, связанные с захоронением ядерных отходов, катастрофические последствия аварий и тепловое загрязнение используемых водоемов.

В нашей стране мощные АЭС расположены: в Центральном и Центрально-Черноземном районах, на Севере, на Северо-Западе, на Урале, в Поволжье и на Северном Кавказе. Новым в атомной энергетике является создание АТЭЦ и АСТ. На АТЭЦ, как и на обычной ТЭЦ, производится тепловая и электрическая энергия, а на АСТ – только тепловая. АТЭЦ действует в поселке Билибино на Чукотке.

Гидроэлектростанции (ГЭС) являются весьма эффективными источниками энергии. Они используют возобновимые ресурсы – механическую энергию падающей воды. Необходимый для этого подпор воды создается плотинами, которые воздвигают на реках и каналах. Гидравлические установки позволяют сокращать перевозки и экономить минеральное топливо (на 1 кВт·ч расходуется примерно 0,4 т угля). Они достаточно просты в управлении и обладают очень высоким коэффициентом полезного действия (более 80 %). Себестоимость этого типа установок в 5…6 раз ниже, чем ТЭС, и они требуют намного меньше обслуживающего персонала. Размещение ГЭС во многом зависит от природных условий, например характера и режима реки. Схема работы ГЭС представлена на рис. 3. В горных районах обычно возводятся высоконапорные ГЭС, на равнинных реках действуют установки с меньшим напором, но большим расходом воды.

Рис. 3. Схема работы ГЭС

Для создания напора поперёк русла реки сооружают плотину, чтобы накопить воду в водохранилище и сконцентрировать перепад уровня воды на сравнительно небольшом участке (по ширине плотины). Как правило, непосредственно к плотине примыкает здание ГЭС, в котором располагается основное оборудование – гидроагрегаты (в машинном здании) и устройства автоматического контроля и управления работой ГЭС.

Подвод воды к гидравлическим турбинам осуществляется по напорным водоводам. Вращение рабочего колеса гидротурбины под напором падающей воды передаётся на вал гидрогенератора, вырабатывающего электрический ток. На открытой площадке рядом со зданием ГЭС или в отдельном здании обычно сооружают повышающую трансформаторную подстанцию ГЭС с распределительными устройствами.

2. Нетрадиционные виды производства электроэнергии

(ветроэлектростанции, солнечные электростанции, геотермальные электростанции и т. д.)

В последние годы появляются многочисленные публикации о нетрадиционных возобновляемых источниках энергии. Оценки возможностей их широкого применения колеблются от восторженных до умеренно пессимистических. «Зеленые» призывают вообще заменить всю традиционную топливную и атомную энергетику на использование нетрадиционных возобновляемых источников.

К нетрадиционным возобновляемым источникам энергии обычно относят солнечную, ветровую и геотермальную энергию, энергию морских приливов и волн, биомассы (растения, различные виды органических отходов), низкопотенциальную энергию окружающей среды. В эту категорию также принято относить малые ГЭС (мощностью до 30 МВт при мощности единичного агрегата не более 10 МВт), которые отличаются от традиционных – более крупных – ГЭС только масштабом.

Указанные источники энергии имеют как положительные, так и отрицательные свойства. К положительным относятся повсеместная распространенность большинства их видов, экологическая чистота. Эксплуатационные затраты по использованию нетрадиционных источников не содержат топливной составляющей, т. к. энергия этих источников как бы бесплатная.

Отрицательные качества – это малая плотность потока (удельная мощность) и изменчивость во времени большинства источников энергии. Первое обстоятельство заставляет создавать большие площади энергоустановок, «перехватывающие» поток используемой энергии (приемные поверхности солнечных установок, площадь ветроколеса, протяженные плотины приливных электростанций и т. п.). Это приводит к большой материалоемкости подобных устройств, а следовательно, к увеличению удельных капиталовложений по сравнению с традиционными энергоустановками. Правда, повышенные капиталовложения впоследствии окупаются за счет низких эксплуатационных затрат, но на начальной стадии они чувствительно «бьют по карману» тех, кто хочет использовать нетрадиционные возобновляемые источники энергии.

Больше неприятностей доставляет изменчивость во времени таких источников энергии, как солнечное излучение, ветер, приливы, сток малых рек, тепло окружающей среды. Если, например, изменение энергии приливов строго циклично, то процесс поступления солнечной энергии, хотя в целом и закономерен, содержит тем не менее значительный элемент случайности, связанный с погодными условиями. Еще более изменчива и непредсказуема энергия ветра. Зато геотермальные установки при неизменном дебите геотермального флюида в скважинах гарантируют постоянную выработку энергии (электрической или тепловой). Кроме того, стабильное производство энергии могут обеспечить установки, использующие биомассу, если они снабжаются требуемым количеством этого «энергетического сырья».

Говоря о производстве электроэнергии, следует заметить, что она представляет собой весьма специфический вид продукции, который должен быть потреблен в тот же момент, что и произведен. Ее нельзя отправить «на склад», как уголь, нефть или любой другой продукт или товар, поскольку фундаментальная научно-техническая проблема аккумулирования электроэнергии в больших количествах пока не решена, и нет оснований полагать, что она будет решена в обозримом будущем.

Для малых автономных ветровых и солнечных энергоустановок возможно и целесообразно применение электрохимических аккумуляторов, но при производстве электроэнергии за счет этих нерегулируемых источников в промышленных масштабах возникают трудности, связанные с невозможностью постоянного сопряжения производства электроэнергии с ее потреблением (с графиком нагрузки). Достаточно мощная энергосистема, включающая также ветроэлектрические установки (ВЭУ) или ветроэлектростанции (ВЭС) и солнечные электростанции (СЭС), может компенсировать изменения мощности этих станций. Однако при этом (во избежание изменений параметров энергосистемы, прежде всего частоты) доля нерегулируемых электростанций не должна превышать, по предварительной оценке, 10…15 % (по мощности).

Что же касается «бесплатности» большинства видов нетрадиционных возобновляемых источников энергии, то этот фактор нивелируется значительными расходами на приобретение соответствующего оборудования. В результате возникает некоторый парадокс, состоящий в том, что бесплатную энергию способны использовать главным образом богатые страны. В то же время, наиболее заинтересованы в эксплуатации нетрадиционных возобновляемых источников энергии развивающиеся государства, не имеющие современной энергетической инфраструктуры, т. е. развитой сети централизованного энергоснабжения. Для них создание автономного энергообеспечения путем применения нетрадиционных источников могло бы стать решением проблемы, но в силу своей бедности они не имеют средств на закупку в достаточном количестве соответствующего оборудования. Богатые же страны энергетического голода не испытывают и проявляют интерес к альтернативной энергетике в основном по соображениям экологии, энергосбережения и диверсификации источников энергии.

В целом использование нетрадиционных возобновляемых источников энергии в мире приобрело ощутимые масштабы и устойчивую тенденцию к росту. В некоторых странах доля нетрадиционных источников в энергобалансе составляет единицы процентов. По различным прогнозным оценкам, в которых в настоящее время нет недостатка, эта доля в 2010–2015 гг. во многих государствах достигнет или превзойдет 10 %. Различные виды нетрадиционных возобновляемых источников энергии находятся на разных стадиях освоения. Как это ни парадоксально, наибольшее применение получил самый изменчивый и непостоянный вид энергии – ветер. Суммарная мировая установленная мощность крупных ВЭУ и ВЭС, по разным оценкам, составляет от 10 до 20 ГВт. Кажущийся парадокс объясняется тем, что удельные капиталовложения в ВЭУ ниже, чем при использовании большинства других видов НВИЭ.

Растет не только суммарная мощность ветряных установок, но и их единичная мощность, превысившая 1 МВт.

Во многих странах возникла новая отрасль – ветроэнергетическое машиностроение. По-видимому, и в ближайшей перспективе ветроэнергетика сохранит свои передовые позиции. Мировыми лидерами по применению энергии ветра являются США, Германия, Нидерланды, Дания, Индия. Второе место по объему применения занимает геотермальная энергетика. Суммарная мировая мощность ГеоТЭС составляет не менее 6 ГВт. Они вполне конкурентоспособны по сравнению с традиционными топливными электростанциями. Однако ГеоТЭС географически привязаны к месторождениям парогидротерм или к термоаномалиям, которые распространены отнюдь не повсеместно, что ограничивает область применения геотермальных установок. Наряду с ГеоТЭС широкое распространение получили системы геотермального теплоснабжения.

Далее следует солнечная энергия. Она используется в основном для производства низкопотенциального тепла для коммунально-бытового горячего водоснабжения и теплоснабжения. Преобладающим видом оборудования здесь являются так называемые плоские солнечные коллекторы. Их общемировое производство составляет, по нашим оценкам, не менее 2 млн м 2 в год, а выработка низкопотенциального тепла за счет солнечной энергии достигает 5×106 Гкал.

Все активнее идет преобразование солнечной энергии в электроэнергию. Здесь используются два метода – термодинамический и фотоэлектрический, причем последний лидирует с большим отрывом. Так, суммарная мировая мощность автономных фотоэлектрических установок достигла 500 МВт. Здесь следует упомянуть проект «Тысяча крыш», реализованный в Германии, где 2250 домов были оборудованы фотоэлектрическими установками. При этом роль резервного источника играет электросеть, из которой возмещается нехватка энергии. В случае же избытка энергии она, в свою очередь, передается в сеть. Любопытно, что при реализации этого проекта до 70 % стоимости установок оплачивалось из федерального и земельного бюджетов. В США принята еще более масштабная программа «Миллион солнечных крыш», рассчитанная до 2010 г. Расходы федерального бюджета на ее реализацию составят 6,3 млрд долларов. Однако пока основное количество автономных фотоэлектрических установок поступает за счет международной финансовой поддержки в развивающиеся страны, где они наиболее необходимы. Значительное развитие получило направление, связанное с использованием низкопотенциального тепла окружающей среды (воды, грунта, воздуха) с помощью теплонасосных установок (ТНУ). В ТНУ при расходе единицы электрической энергии производится 3–4 эквивалентные единицы тепловой энергии, следовательно, их применение в несколько раз выгоднее, чем прямой электрический нагрев. Они успешно конкурируют и с топливными установками.

Не менее интенсивно развивается использование энергии биомассы. Последняя может конвертироваться в технически удобные виды топлива или использоваться для получения энергии путем термохимической (сжигание, пиролиз, газификация) и (или) биологической конверсии. При этом используются древесные и другие растительные, а также органические отходы, в том числе городской мусор, отходы животноводства и птицеводства. При биологической конверсии конечными продуктами являются биогаз и высококачественные экологически чистые удобрения. Это направление имеет значение не только с точки зрения производства энергии. Пожалуй, еще большую ценность оно представляет с позиций экологии, т. к. решает проблему утилизации вредных отходов.

В последние годы наблюдается возрождение интереса к созданию и использованию малых ГЭС. Они получают во многих странах все большее распространение на новой, более высокой технической основе, связанной, в частности, с полной автоматизацией их работы при дистанционном управлении.

Гораздо меньше развито практическое применение приливной энергии. В мире существует только одна крупная приливная электростанция (ПЭС) мощностью 240 МВт (Ранс, Франция). Еще менее развито использование энергии морских волн.

В России же практическое их применение значительно отстает от масштабов, достигнутых в других странах. И это несмотря на такие благоприятные предпосылки, как практически неограниченные ресурсы нетрадиционных возобновляемых источников энергии, достаточно высокий научно-технический и промышленный потенциал в данной области.

3. Графики электрических нагрузок

Графики нагрузок, характеризующие работу как потребителей, так и источников электроэнергии, представляют собой диаграммы в прямоугольных осях координат, где по оси абсцисс откладывается время, в течение которого показывается изменение нагрузки, а по оси ординат – соответствующие данному моменту времени нагрузки, обычно в виде активной, реактивной или полной (кажущейся) мощностей. Чаще всего строят суточные, месячные, сезонные и годовые графики нагрузок. При построении так называемых ступенчатых графиков нагрузок (рис. 4) считают, что нагрузка в интервале между двумя измерениями остается постоянной. Исходными для построения годового графика нагрузки по продолжительности являются суточные графики нагрузки для характерных зимних и летних суток. График строится по 12 точкам, соответствующим наибольшим суточным нагрузкам каждого месяца.

Площадь годового графика нагрузки по продолжительности представляет собой в определенном масштабе потребляемую (отдаваемую) за год энергию (кВт·ч), а площадь суточных графиков – энергию, потребляемую (отдаваемую) за сутки (кВт·ч).

Годовые графики нагрузки дают возможность определить оптимальное количество и мощность агрегатов электростанции или трансформаторов подстанции, уточнить режимы их работы, выявить возможные сроки их планово-предупредительных ремонтов. Графики также дают возможность приближенно рассчитать годовую потребность в электроэнергии, годовые потери в сетях, трансформаторах и других элементах установки. По графикам нагрузки определяется ряд техникоэкономических показателей для действующих или вновь проектируемых электроустановок, таких, как средняя (среднесуточная, среднемесячная или среднегодовая) нагрузка электростанции или подстанции, число часов использования установленной мощности, коэффициент заполнения графика, коэффициент использования установленной мощности.

Рис. 4. Суточный ступенчатый график активной нагрузки

Графики нагрузки предназначены для следующих целей:

  • для определения времени пуска и остановки агрегатов, включения и отключения трансформаторов;
  • определения количества выработанной (потребленной) электроэнергии, расхода топлива и воды;
  • ведения экономичного режима электроустановки;
  • планирования сроков ремонтов оборудования;
  • проектирования новых и расширения действующих электроустановок;
  • проектирования новых и развития существующих энергосистем, их узлов нагрузки и отдельных потребителей электроэнергии.

Чем равномернее нагрузка генераторов, тем лучше условия их работы, поэтому возникает так называемая проблема регулирования графиков нагрузки, проблема их выравнивания. При этом следует иметь в виду, что целесообразно по возможности более полно использовать установленную мощность электростанций.

Для регулирования графиков нагрузки используют различные способы, в том числе:

  • подключение сезонных потребителей;
  • подключение нагрузки ночью;
  • увеличение числа рабочих смен;
  • смещение начала работы смен и начала работы предприятий;
  • разнос выходных дней;
  • введение платы как за активную, так и за реактивную энергию;
  • уменьшение перетоков реактивной мощности по сети;
  • объединение районных энергосистем.

Суточный график нужен для оперативного регулирования и планирования балансов электроэнергии и мощности до нескольких суток.

  • определение готовности работы оборудования.
  • управление режимами с учетом недельной неравномерности;
  • проведение текущих осмотров ревизий текущих ремонтов;
  • регулирование водно-энергетических режимов ГЭС.
  • планирование хозяйств деятельности;
  • планирование капитального ремонта;
  • планирование обеспечения топливом;
  • водно-энергетическое регулирование ресурсов водохранилища ГЭС;
  • планирование товарно-ценовой деятельности.

11 мифов о пользе малых ГЭС

Застройщики сейчас активно популяризируют малые ГЭС, для того, чтобы получить разрешения у местных общин на их постройку. Но экологический вред плотин настолько велик, а производительность гидроэнергетики настолько низкая, что все это похоже скорее на бизнес девяностых. Давайте рассмотрим несколько мифов связанных с малыми гидроэлектростанциями.

Миф 1. Малые ГЭС — помогут достичь энергонезависимости.

Этот миф сформировался на основании изучений гидроэнергетического потенциала малых рек, без учета экологических, социально-экономических, законодательных и других ограничений и рисков, которые влияют на то, какую часть этого потенциала можно использовать без вреда для природы, местных хозяйств, без нарушения законов и международных правовых актов, без учета рисков связанных с гидроэнергетикой в целом.
На самом деле все значительно сложнее.

Если говорить об энергонезависимости целой страны. То в Украине, например, большие и средние ГЭС составляют только 7,88% (9 обьектов) от общего обьема поставляемой энергии. Малые ГЭС составляют всего — 0,16% (80 обьектов).


При чем обьемы производства электроэнергии в Украине намного превышает потребности населения и активно экспортируется. И наращивать эти обьемы в масштабах страны перекрывая все реки малыми греблями и плотинами это по сути вредительство, с целью обогащения.

Миф 2. Малые ГЭС дают дешевую экологически чистую энергию, которая поможет улучшить энергообеспеченность отдаленных общин.

Стоимость электроэнергии малых ГЭС абсолютно неконкурентноспособна по сравнению с другими видами производимой энергии. Даже с учетом «зеленых тарифов», прибыль от малых ГЭС обеспечивается только наличием схем обязательного выкупа производимой энергии.

Это не говоря уже об экологичности самой постройки малых ГЭС, которые, как правило, сопровождаются грубыми нарушения всех экологических норм, игнорированием законов и давлением на местные общины.

Миф 3. Малых ГЭС планируется немного и решения об их постройке касается только некоторых общин.

От инвесторов малых ГЭС очень часто можно услышать, что ни о каких сотнях малых ГЭС речь не идет, ведь нет столько мест для их постройки и все это только планы, которые вряд ли будут когда-то воплощены в жизнь.

На самом деле таких проектов тысячи. И каждый раз местные активисты сталкиваются со случаями, когда органы местного самоуправления тайком от общин выдают разрешения на постройки малых ГЭС застройщикам. И местная община узнает о постройке плотины только когда тяжелая техника заходит в русло реки и начинает разрушать водоемы.

Практически каждая речка с более-менее значительным перепадом высот и минимальным наполнением воды становится жертвой горе-бизнесменов. Преимущество отдается горным частям рек, а также малым рекам.

Причина неочевидна, она определяется кинетической энергией воды. Просто большим перепадом воды можно достигнуть нужного преобразования механической энергии в электрическую, а расходы в постройке малых ГЭС в верховьях рек значительно ниже чем в низовье, где русло всегда шире.

Миф 4. ГЭС не несет угрозы окружающей среде, не будет иметь негативного влияния для населения и общин.

На самом деле ГЭС наносит огромный вред окружающий среде на всех этапах ее существования. Особо опасным является постройка одновременно сотен малых ГЭС без учета их кумулятивного эффекта.

Миф 5. Малая гидроэнергетика — это передовой мировой опыт. Она соответствует самым безопасным для природы мировым образцам.

На самом деле, основным технологиям, которые используются в малых ГЭС уже боле ста лет. А большинство ГЭС построено там, где их вообще не должно быть через экологические ограничения.
Миф 6. Малые ГЭС всегда лучше для окружающей среды, чем большие.

Долгое время считалось, что малые ГЭС намного безопасней чем крупные. Но когда исследователи сравнили потери суходола и прибрежных поселений в расчете на 1МВт произведенной электроэнергии, то оказалось, что потери территорий экосистем от малых ГЭС могут в сотни раз превышать потери от больших ГЭС в расчете на 1МВт.

Также малые ГЭС вызывают большую фрагменитацию экосистем, ухудшают качество воды и влияют на гидрологию рек и их бассейнов.

Миф 7. Малые ГЭС будут защищать от паводков и наводнений.

На самом деле, нормальный режим работы малых ГЭС несовместимый с противопаводковой защитой.

Последние исследования показывают, что лучшей защитой от наводнений и паводков являются не дорогостоящие инженерные сооружения, а естественные речные поймы и снесение всех инженерных сооружений (плотин, дамб и т.д.), которые перекрывают русло реки и сужают пойму, создают помехи свободному ходу водных потоков.

Миф 8. Малые ГЭС не опаснее водяных мельниц

Часто этот факт, преподают как аксиому. Но это далеко не так. Малые ГЭС намного опаснее, чем водяные мельницы. Основные отличия кроются в специфике работы этих сооружений.

Водяные мельницы работают нерегулярно и часто для их запуска достаточно погрузить колесо в воду, без перекрытия реки плотиной. Кроме этого эти плотины были значительно меньше, чем плотины малых ГЭС и при паводках они полностью затапливались не создавая препятствий для миграции рыбы. Кстати, особенности конструкции этих плотин не создавали препятствий для миграции мальков вниз по течению.

Малые ГЭС — капитальные сооружения, которые работают максимальное количество дней в году. Постоянная работа таких дамб приводит к тому, что в период нереста и миграции риб, молодая рыба не способна преодолеть плотину и гибнет в турбинах. А часто в результате работы турбин происходит высушивание русла реки, что приводит к разрушению местной экосистемы.

Миф 9. Малые ГЭС принесут благополучие общинам, сопутствуют развитию туризму и рекреации

На самом деле, малые ГЭС делают невозможным некоторые виды туризма и рекреации, в частности сплавный и зеленый туризм.

Кроме того, все поступления в местный бюджет и выплаты, которые инвесторы обещают местным общинам, это просто подкуп обещаниями. Малые ГЭС создаются только с одной целью, выкачивание компенсаций из госбюджета в частные карманы.

Миф 10. Малые ГЭС уменьшают выбросы парниковых газов и препятствуют изменению климата.

Еще одно утверждение, которые построено на неполноте всех собранных аргументов.
Дело в том, что при строительстве ГЭС, как правило создается водохранилище, а в момент его наполнения увеличиваются выбросы другого газа — метана, который имеет парниковый потенциал в 20 раз выше, чем СО2. Это обусловлено процессами разложения органических веществ, например растений, в условиях затопления водохранилища.

Тем более для запуска ГЭС нужна электроэнергия с ТЭС, которая работает на ископаемом топливе. А электроэнергия, вырабатываемая малыми ГЭС выкупается вынуждено и по завышенным тарифам.

Миф 11. Экологи критикуют не предлагая альтернативы.

На самом деле экологи предлагают целый ряд альтернатив, которые позволяют повышать энергетическую безопасность, благополучие местных жителей и сохранять природу.

Одним из самых перспективных направлений является энергосбережение, которое может уменьшить потребление энергии страны в 2 раза уже к 2030 году.

Возможным является развитие бесплотинных ГЭС, которые не забирают русло в трубы, а устанавливаются в потоке. Но для бизнеса они не интересны, так как вырабатывают слишком мало энергии, достаточной только для обеспечения частного домохозяйства.
Их можно устанавливать достаточно много, без вреда для окружающей среды и такие ГЭС способны обеспечивать энергонезависимость небольших отдаленных общин.

Как можно остановить развития гидроэнергетики и прекратить уничтожение окружающей среды

Единственный путь — это просвещение местных общин и защита местных рек во имя нашего общего будущего. От делков из 90-х можно защитится только реальными уверенными действиями на месте.

Кстати эта борьба идет не только у нас. В США (штат Вашингтон) на реке Евла недавно были снесены две плотины высотой 33 и 64 метра, которые 102 года перекрывали реку и миграционные пути рыбы. Это снос, который является крупнейшим сносом плотины по экологическим причинам в истории, произошел благодаря борьбе местных жителей и экологов — защитников рек. Здоровье реки и рыбы оказались, в конце концов, важнее и для местной общины, и для государства.

16.Основные сооружения гэс, виды компоновок гэс. Гэс виды

Виды гидроэлектростанций

Электростанции, которые используют энергию водного потока в качестве источника энергии, называются гидроэлектростанциями. Они, как правило, сооружаются на реках, плотинах и водохранилищах.

Для эффективной работы и производства электроэнергии на гидроэлектростанции необходимо соблюсти два основных фактора:

1) Бесперебойное обеспечение водой на протяжении всего года;

2) Для строительства выбрать место с большими уклонами реки;

Основным принципом работы гидроэлектростанции является преобразование механической энергии воды, которая обусловлена разностью высот, при помощи турбины и генератора, в электрическую энергию.

Гидроэлектростанции подразделяются на следующие виды: гидроаккумулирующие, деривационные и плотинные станции.

Наиболее распространенным видом гидроэлектростанций в России являются плотинные станции. Для них используют плотину, которая перегораживает русло реки и создает водоем. Чтобы поддерживать уровень в водоеме, а также для производства электроэнергии, производится спуск воды. Такой вид гидроэлектростанций сооружают в местах, где имеются многоводные равнинные реки, а также горные реки, в местах, где наиболее сжатое и узкое русло реки.

В отличие от плотинных ГЭС, деривационный тип не использует весь поток реки, а забирает необходимое количество воды из реки, при помощи каналов и водоотводов, для подачи ее на турбину. Водоотводы выпрямлены, при этом получается уклон намного меньше, чем средний уклон реки. Воду подводят прямо к зданию ГЭС. Деривационные ГЭС подразделяются на безнапорные и с напорной деривацией. В связи с этим для этих станций плотины не сооружаются. Данный вид гидроэлектростанций сооружают в местах, в которых уклон реки наиболее велик.

Принцип работы гидроаккумулирующих станций заключается в перекачивании воды из более низкого резервуара в более высокий, в тот момент, когда стоимость и спрос на электроэнергию низкие. Сбрасывание воды и вырабатывание электроэнергии происходит в тот момент, когда спрос и цена на электроэнергию возрастают.

Существует еще один вид гидроэлектростанций, которые называются морские станции. Они функционируют за счет энергии волн, а также приливов и отливов.

Гидроэлектростанции оборудуются дополнительными сооружениями, например шлюзами и судоподъемниками, которые способствуют навигации по водоему, в зависимости от их назначения.

Дата публикации: 21.01.2012

Похожие записи:

16. Основные сооружения гэс и виды компоновок гэс.

Состав сооружений ГЭС зависит от ее типа и особенностей конструкции. Плотинные ГЭС включают в себя одну или несколько плотин, здание ГЭС ( может быть совмещено с плотиной или размещаться отдельно) и открытое (реже закрытое) распределительное устройство. При необходимости сооружается судоходный шлюз.

Деривационные ГЭС обычно состоят из головного узла (плотина и водозаборные сооружения), деривации (каналы, тоннели) и станционного узла (здание ГЭС, напорный бассейн, отводящий канал, распределительное устройство).

Плотинно- деривационные гидростанции имеют и высокую плотину, и деривацию.

Компоновки: Приплотинная- напор которой создаётся посредством плотины, а машинный зал и здание ГЭС вынесены за пределы плотины. Характерная особенность приплотинного здания ГЭС состоит в том, что оно не является водоподпорным сооружением и располагается за плотиной или в стороне от нее.

Русловая- В состав сооружений, кроме плотины, входят здание ГЭС и водосбросные сооружения. У русловой ГЭС здание с размещенными в нём гидроагрегатами служит продолжением плотины и вместе с ней создаёт напорный фронт. При этом с одной стороны к зданию ГЭС примыкает верхний бьеф, а с другой — нижний бьеф.

17. Основания гидротехнический сооружений и способы его улучшения.

●Скальное-бетонные сооружения высокой высоты;прочные горные породы(гранит,мрамор)

При появлении трещины- убрать слой и залить бетоном.

●Полускальное-порода осадочных пород(известняк). Улучшение- противофильтрационные средства.

●Нескальные-из грунтов: ○не связные(пески,галька), ○связные(глина).

Способы: Площедная укрепительная цементация; цементация локального характера в береговых массивах; укрепление склонов.

18. Типы грунтовых плотин- их характерные конструктивные элементы. От чего, прежде всего, необходимо защитить грунтовую плотину?

Основными конструктивными элементами грунтовой плотины являются : тело плотины обеспечивающее ее прочность и устойчивость, противофильтрационные устройства(ядра, экраны, диафрагмы, обеспечивающие водонепроницаемость и дренажные устройства для сбора воды профильтровавшейся через противофильтрационные устройства.

а — из однородного грунта(Большая часть тела однородной плотины водонасыщена из-за фильтрующейся воды. Свободная поверхность фильтрующейся через тело плотины воды называется поверхностью депрессии. В теле однородной плотины поверхность депрессии плавно понижается от УВБ до УНБ.)

б — из разнородных грунтов (с водонепроницаемой верховой призмой)

в — с экраном из грунтового материала(тело плотины практически сухое за экраном водонасыщеным будет только грунт ниже НПУ)

г — с экраном из негрунтового материала (бетона, железобетона, металла и др)

д — с ядром(верховая призма насыщена, а низовая практически сухая)

е — с диафрагмой

В зависимости от грунта делятся на: земляные насыпные, земляные намывные и каменно-набросные.

19. Гравитационные бетонные плотины-типы конструкций и основные элементы.

Гравитационная плотина, бетонная или каменная плотина, устойчивость которой по отношению к сдвигающим силам (давление воды, льда, волн и пр.) обеспечивается в основном силами трения по основанию, пропорциональными собственному весу плотины. Гравитационная плотина — весьма распространённый тип плотин, применяемый как на скальных, так и на нескальных грунтах. Наиболее экономичные формы очертания поперечного профиля Гравитационная плотина близки к треугольнику или трапеции. Обычно представляют собой дуги, опирающиеся на крутые и прочные берега реки; таким сооружениям присущи свойства арок.

Бетонные и железобетонные плотины по своей конструкции делятся на гравитационные, контрофорсные и арочные.

Чаще всего бетонные гравитационные плотины возводятся на скальных основаниях.

Устойчивость и прочность гравитационных плотин при воздействии внешних нагрузок обеспечиваются их собственным весом. .

Современные виды Саратовской ГЭС

Вид на здание СарГЭС с левого берега (нижний бьеф)Автор — А. Терелюк

Статор генератора на закрытой монтажной площадке (на реконструкции)Автор — А. Терелюк

Подпятник и шахта генератора Саратовской ГЭСАвтор — А. Терелюк

Шлюзование теплохода (г. Балаково, Саратовский гидроузел)Автор — А. Терелюк

В машинном залеАвтор — А. Терелюк

Крышка турбины на закрытой монтажной площадке (на реконструкции)Автор — А. Терелюк

Ночной вид на здание СарГЭС с нижнего бьефаАвтор — А. Терелюк

Открытые распределительные устройстваАвтор — А. Терелюк

Реконструкция горизонтально-капсульного агрегатаАвтор — А. Терелюк

Саратовское водохранилище, вид с правого берегаАвтор — А. Терелюк

Саратовская ГЭС. Паводок.Автор — А. Терелюк

Саратовская ГЭС. Машинный залАвтор — А. Терелюк

HydroMuseum – Здание ГЭС

Здание ГЭС

Здание ГЭС. Наиболее эффективное использование энергии водотока возможно при концентрации перепадов уровней воды на сравнительно коротком участке. При наличии естественного водопада решение этой задачи упрощается, однако подобные условия встречаются очень редко. Для использования падений рек, распределенных по значительной длине водотока, прибегают к искусственному сосредоточению перепада. Такое сосредоточение может быть осуществлено различными способами (рис. 1).

Рис. 1. Принципиальные схемы гидроэлектростанций.I – приплотинная; II – деривационная.

Плотинная схема (рис. 1. I) создания напора, т.е. концентрации перепада в наиболее удобном для использования месте, предусматривает подпор уровня реки путем создания плотины. Образующееся при этом водохранилище используется в качестве регулирующей емкости, позволяющей периодически создавать запасы воды и более полно использовать энергию водотока. Деривационная схема (рис. 1.II) позволяет получить сосредоточенный перепад путем отвода воды из естественного русла по искусственному водоводу, имеющему меньший продольный уклон, чем уклон русла. Благодаря этому уровень воды в конце водовода оказывается выше уровня воды в реке. Этой разностью уровней и создается напор гидроэлектростанции. ГЭС, у которых напор частично создается с помощью плотины достаточно большой высоты и частично с помощью деривации, называют смешанными (смешанная схема энергоиспользования реки). Выбор схемы энергетического использования водотока – плотинной, деривационной, смешанной – определяется падением реки, расходом воды, топографическими и инженерно-геологическими уровнями русла, поймы и долины. Плотинные ГЭС более выгодны при малых уклонах рек, так в этом случае получение необходимого напора с помощью деривации потребует значительной длины последней, и она будет дороже плотины. При очень больших расходах воды плотинные схемы энергоиспользования тоже более выгодны, так как каналы больших сечений оказываются дороже плотин. Расходы воды, используемые в плотинных ГЭС, в настоящее время достигают 14000 м3/с (Волжская им. В. И. Ленина на р. Волге). Напоры, используемые на плотинных ГЭС, колеблются в очень широких пределах. Минимальные значения используемого напора достигают 1,5–3,0 м. Например, на ГЭС Диксон (США) используемый напор равен 2,45 м (ее мощность 2800 кВт, максимальный расход 140 м3/с). Максимальный напор ГЭС плотинного типа около 280 м (Нурекская ГЭС). На горных реках с большими падениями (выше 6 – 8 м на 1 км длины реки) деривационные ГЭС выгоднее плотинных. Напоры деривационных ГЭС колеблются от нескольких метров до 1767 м (ГЭС Райссек в Австрии). Расходы на деривационных ГЭС колеблются в очень значительных пределах – от нескольких кубических метров в секунду до 1530 м3/с (ГЭС Донзер-Мондрагон на р. Роне во Франции). Самый большой напор на деривационных ГЭС в СССР достигает 600 м, а самый большой расход 700 м3/с на Нарвской ГЭС.Выбор схемы использования водотока есть один из сложных вопросов гидроэнергетики и выполняется на основе технического и экономического сопоставлений ряда возможных вариантов.

Здание ГЭС, агрегатная часть – агрегатная секция: Часть здания ГЭС, ГАЭС, отделенная межсекционными швами, в которой располагается один или несколько агрегатов со всем оборудованием.

Здание ГЭС, агрегатный блок. Компоновочные решения строительной гидротехнической части зданий ГЭС, ГАЭС и НС должны предусматривать разбивку здания на агрегатные секции, разделенные температурно-осадочными швами. Размеры секций следует назначать в зависимости от габаритов агрегата, вида грунта основания, конструктивного решения строительной части.

При надлежащем обосновании допускается принимать подводную часть зданий ГЭС, ГАЭС и НС неразрезной конструкции для любых оснований.

Монтажную площадку, как правило, следует отделять от основного здания станции температурным или температурно-осадочным швом. Размеры монтажной площадки необходимо принимать минимальными и выбирать из расчета раскладки одного монтируемого агрегата и главного повышающего трансформатора. При этом следует учитывать возможность использования для монтажных работ части машинного зала. В подземных зданиях необходимо предусматривать возможность сокращения площади монтажной площадки за счет использования площадей на дневной поверхности.

Для ГАЭС, как правило, агрегаты следует размещать в створе напорных водоводов. При расположении здания ГАЭС на нескальном основании надлежит рассматривать компоновки станций с наименьшей подрезкой естественных склонов, на которых укладываются напорные трубопроводы, обеспечивая устойчивость склонов, как в строительный, так и в эксплуатационный период.

Размеры агрегатного блока здания ГЭС, оборудованного радиально-осевыми турбинами, обычно определяются в зависимости от размеров его проточной части – турбинной камеры и отсасывающей трубы.

Здание ГЭС бычковое. Русловые здания ГЭС бычкового типа применяются иногда на реках, несущих большое количество влекомых и взвешенных наносов при слабо зарегулированном стоке. Особенностью компоновки таких зданий ГЭС является расположение агрегатов в бычках вертикального или горизонтального (прямоточного, полупрямоточого или капсульного) агрегата приводит к необходимости значительного утолщения бычков. Подобные компоновки обладают рядом преимуществ: возможностью некоторого уменьшения гидравлических потерь на входе в турбинную камеру и в самой камере из-за упрощения её формы.

Здание ГЭС, верхнее строение. Планировка машинного зала, конструкция и размеры верхнего строения тесно связаны между собой. В зависимости от типа верхнего строения различают закрытое, полуоткрытое и открытое здания ГЭС. Размеры верхнего строения закрытого здания ГЭС определяются из условия, что все оборудование, включая грузоподъемные краны, находится под крышей здания ГЭС. При этом, обычно во избежание установки дополнительного крана, ревизия силовых трансформаторов производится на монтажной площадке основным краном.

Верхнее строение воспринимает большие нагрузки от кранового оборудования, грузоподъемность которого в настоящее время достигает 1900 тонн, а в перспективе может еще возрасти.

На крупных ГЭС с верхним строением полуоткрытого типа транспортировка вспомогательного оборудования может осуществляться без раскрытия машинного зала при помощи крана малой грузоподъемности, расположенного внутри машинного зала. Этот же кран облегчает работу на монтажной площадке, обслуживая те участки, которые недоступны для крюка главного крана.

Полуоткрытые здания ГЭС применяются в различных климатических условиях, включая и весьма суровые. Открытые здания ГЭС не имеют машинного зала. Генератор в этом случае располагается под съемным колпаком, вспомогательное оборудование помещается на различных этажах здания и под монтажной площадкой. Ремонт оборудования на открытой монтажной площадке неудобен, в связи с чем этот тип верхнего строения не получил широкого распространения.

Здание ГЭС встроенное. К приплотинным зданиям ГЭС условно можно отнести и так называемые встроенные здания, т.е. размещенные внутри полости в теле бетонной гравитационной плотины. Такое решение целесообразно лишь при определенных соотношениях высоты плотины и размеров гидроагрегатов. Устройство полости внутри тела плотины уменьшает объем бетона, но при этом значительно усложняется напряженное состояние конструкции.

Здание ГЭС деривационное. Деривационные гидроэлектростанции. Такие электростанции строят в тех местах, где велик уклон реки. Необходимая концентрация воды в ГЭС такого типа создается посредством деривации. Вода отводится из речного русла через специальные водоотводы. Последние — спрямлены, и их уклон значительно меньший, нежели средний уклон реки. В итоге вода подводится непосредственно к зданию ГЭС. Деривационные ГЭС могут быть разного вида — безнапорные или с напорной деривацией. В случае с напорной деривацией, водовод прокладывается с большим продольным уклоном. В другом случае в начале деривации на реке создается более высокая плотина, и создается водохранилище — такая схема еще называется смешанной деривацией, так как используются оба метода создания необходимой концентрации воды.

Здание ГЭС, каркас – конструкция верхнего строения здания ГЭС состоит из несущего каркаса, подкрановых конструкций и заполнения. Каркас состоит из системы колонн, на которые опираются фермы перекрытия и подкрановые балки, разрезанные в местах расположения осадочных швов. Балки и колонны могут быть выполнены из металла, монолитного или сборного железобетона.

Здание ГЭС, надагрегатная часть. Верхнюю, менее массивную часть здания (включая верхнее строение), в которой размещаются машинный зал и гидрогенераторы, подъемно-транспортное и другое оборудование, будем называть надагрегатной частью. Особо можно выделить монтажную площадку, обычно отличающуюся по конструкции от основного здания ГЭС.

Здание ГЭС подземное. Подземные здания ГЭС находят применение как в плотинных так и в деривационных схемах ГЭС. Значительное число подземных зданий ГЭС построено в Скандинавских странах, в Италии, Канаде и США. Крупные ГЭС с подземными зданиями построены и строятся также в нашей стране.

Здание ГЭС полуподземное. В большинстве случаев здания полуподземных гидроэлектростанций выполняются в траншейных выработках, где размещают гидротурбины с элементами проточного тракта, гидрогенераторы и вспомогательное оборудование. Над машинными залами на поверхности земли сооружают верхние строения, внутри которых устанавливают монтажные краны. Иногда гидрогенераторы устанавливают в наземном помещении, а гидротурбины и вспомогательное оборудование – в траншейной выработке.

Возможны и некоторые другие варианты компоновок полуподземных зданий ГЭС. В частности, их иногда выполняют в виде шахтных конструкций: в отдельных шахтах размещают один или несколько агрегатов, а над шахтами на поверхности земли сооружают помещение, в котором устанавливают монтажные краны.

Здание ГЭС полуподземное траншейное. При некоторых условиях достаточно экономичными являются варианты, когда полуподземные здания полностью располагаются в траншейной выработке: под перекрытием машинного зала, расположенным на уровне поверхности земли, размещают на только агрегаты, но и монтажные краны. Перекрытие машинного зала выполняют либо плоским с несущими поперечными фермами, либо в виде бетонного или железобетонного арочного свода. В практике строительства полуподземных зданий ГЭС имеются примеры, когда над перекрытием устраивают искусственную засыпку.

Здание ГЭС приплотинное. При более высоких напорах оказывается нецелесообразным передавать на здание ГЭС гидростатическое давление воды. В этом случае применяется тип приплотинной ГЭС, у которой напорный фронт на всём протяжении перекрывается плотиной, а здание ГЭС располагается за плотиной, примыкает к нижнему бьефу. В состав гидравлической трассы между верхним и нижним бьефом ГЭС такого типа входят глубинный водоприёмник с мусорозадерживающей решёткой, турбинный водовод, спиральная камера, гидротурбина, отсасывающая труба. В качестве дополнительных сооружений в состав узла могут входить судоходные сооружения и рыбоходы, а также дополнительный водосброс. Примером подобного типа станций на многоводной реке служит Братская ГЭС на р. Ангара.

Другой вид компоновки приплотинных ГЭС, соответствующий горным условиям, при сравнительно малых расходах реки, характерен для Нурекской ГЭС на р. Вахш (Средняя Азия), проектной мощностью 2700 МВт. Здание ГЭС открытого типа располагается ниже плотины, вода подводится к турбинам по одному или нескольким напорным туннелям. Иногда здание ГЭС размещают ближе к верхнему бьефу в подземной (подземная ГЭС) выемке. Такая компоновка целесообразна при наличии скальных оснований, особенно при земляных или набросных плотинах, имеющих значительную ширину. Сброс паводковых расходов производится через водосбросные туннели или через открытые береговые водосбросы.

Здание ГЭС русловое. В русловых и приплотинных ГЭС напор воды создаётся плотиной, перегораживающей реку и поднимающей уровень воды в верхнем бьефе. При этом неизбежно некоторое затопление долины реки. В случае сооружения двух плотин на том же участке реки площадь затопления уменьшается. На равнинных реках наибольшая экономически допустимая площадь затопления ограничивает высоту плотины. Русловые и приплотинные ГЭС строят и на равнинных многоводных реках и на горных реках, в узких сжатых долинах.

В состав сооружений русловой ГЭС, кроме плотины, входят здание ГЭС и водосбросные сооружения. Состав гидротехнических сооружений зависит от высоты напора и установленной мощности. У русловой ГЭС здание с размещенными в нём гидроагрегатами служит продолжением плотины и вместе с ней создаёт напорный фронт. При этом с одной стороны к зданию ГЭС примыкает верхний бьеф, а с другой — нижний бьеф. Подводящие спиральные камеры гидротурбин своими входными сечениями закладываются под уровнем верхнего бьефа, выходные же сечения отсасывающих труб погружены под уровнем нижнего бьефа

Здание ГЭС совмещенное. Чтобы уменьшить величину более дорогой, железобетонной части плотины, советские инженеры разработали типы так называемых совмещённых ГЭС (рис. 2), У таких ГЭС сооружения для сброса избыточных вод размещаются в зданиях ГЭС рядом с турбинами. Имеются также проекты «встроенных» ГЭС, у которых гидроагрегаты размещены в самом теле железобетонной плотины.

Рис. 2. ГЭС совмещённого типа. Вода, пройдя сороудерживающие решётки 1, напорный водовод 2, поступает в спиральную камеру гидравлической турбины 3 и уходит через всасывающую трубу 4. Здесь же находится и водослив 5. Избыточная вода пропускается щитами 6.

Виды гидроэлектростанций | Капиталстройсервис

Все нам известно назначение гидроэлектростанций, но не все мы знаем, что они разделяются на несколько видов, а вот каких, попробуем разобраться вместе. Итак, гидроэлектростанции принято разделять на мощные и средние, а также маломощные, а зависит это от вырабатываемой гидроэлектростанцией мощности. Мощности гидроэлектростанций естественно зависят от того какой водяной напор через нее проходит, и то какой генератор на ней стоит. Совершенно ясно, что в природе уровень воды не может быть постоянен, он изменяется, и на него влияет множество процессов, будь то сезонность или что то еще, и поэтому чтобы выразить мощность ГЭС, обычно за основу берут цикличные мощности. Это обычные временные циклы, где рамками берутся года, месяцы, недели и дни.

Помимо этого гидроэлектростанции отличаются одна от другой максимальными напорами используемой воды. Так ГЭС может быть высоконапорной, средненапорной и низконапорной. От того каким водяным напором располагает станция, в ГЭС применяют разные турбины. Если ГЭС высоконапорная, то турбины на ней уместно применение ковшовых турбин и турбин с металлической спиральной камерой. Если это средненапорная станция, то уместно использование поворотнолорпастных и радиально-осевых. А при низком напоре, турбину применяют поворотнолопастные находящиеся в ж/б камере.

Кроме того при различии гидроэлектростанций, принимаются во внимание используемые ресурсы и от них есть прямая зависимость от концентрации образующегося водяного объема. Так легко различить русловые и приплотинные гидроэлектростанции. Тогда на ГЭС строятся плотины, на узком участке реки, и тем самым поднимая уровень реки. Лучше всего для этого подходят равнинные многоводные речки, либо же горные. Причем плотину устанавливают в самом узком месте рек. А в случае с приплотинными, плотину монтируют на любую ширину реки, и здания ГЭС делают сразу за ней, перегородив ее в полной мере. И тогда вода подходит в турбины при помощи напорных тоннелей. Есть еще один тип, деривационных ГЭС, они ставятся на уклонах рек, и объемы воды отводят с использованием систем специального водоотведения, выпрямленных и имеющих не такой сильный наклон, по отношению к речному склону. Если же используются деривационные ГЭС, весь объем жидкости будет подводиться непосредственно к помещениям ГЭС. И еще одним видом принято считать гидроаккумулирующий вид ГЭС, в них объем воды накапливается и пускается к моменту пиковых нагрузок. На всех видах гидроэлектростанций, устанавливаются устройства КРУ, комплектные распределительные устройства, в виде отдельных узлов, и элементов, в последующем подключаемых к ним силовых и других видов проводов. Это обычная комплектация, для любой электростанции.

Так работа гидроэлектростанций обеспечивает энергией возобновимого вида, около 60 процентов, и до 20 процентов всей мировой электроэнергии, и потому важность использования гидроэлектростанций неоспорима.

Основные виды гидравлических электростанций

Рис.2.6. Приплотинная гидроэлектростанция

Вклад гидроэнергетики, которая обеспечивает получение энергии от текущей воды, в общее мировое использование энергии невелик, примерно 6 %. Однако в ряде стран мира гидроэнергетика занимает ведущее место. На долю ГЭС в Норвегии приходится около 100% всего производства электроэнергии, в Бразилии, Канаде, Швеции более 50 %, в России – 19 %. ( PS. В 2005 г. в России приходилось 18.2% из-за снижения воды в бассейне Европейской части РФ).

Гидроэлектростанция (ГЭС) представляет собой комплекс различных сооружений и оборудования, использование которых позволяет преобразовывать энергию воды в электроэнергию, при этом гидротехнические сооружения обеспечивают необходимую концентрацию кинетической энергии падающей воды, т.к. мощность ГЭС напрямую зависит от количества протекающей через них воды Q и высоты ее падения (напора) Н. Для преобразования этой энергии применяются гидротурбины и гидрогенераторы.

Главной составляющей гидроэлектростанций являются гидравлические турбины. Они преобразуют энергию воды, текущей под напором, в механическую энергию вращения вала. Турбины бывают разных видов и зависят от скорости течения и напора воды.

Принцип работы всех видов турбин схож – вода, находящаяся под давлением (напор воды) поступает на лопасти турбины, которая начинает вращаться. Механическая энергия, таким образом, передается на гидрогенератор (синхронный генератор), который и вырабатывает электроэнергию. Турбины различаются некоторыми техническими характеристиками, а также камерами – железными или железобетонными, и рассчитаны на различный напор воды.

Конструкция гидрогенератора зависит от частоты вращения и мощности гидротурбины. Его устанавливают вертикально на подпятниках с соответствующими направляющими подшипниками. В него также входит замкнутая система воздушного охлаждения с теплообменниками и возбудитель.

Гидроэлектростанции разделяются на плотинные (необходимый уровень реки обеспечивается за счёт строительства плотины, которые увеличивают напор воды, повышая мощность гидроэлектростанций) и деривационные, где велик уклон реки.

В зависимости от вырабатываемой мощности ГЭС подразделяют на:

– мощные, вырабатывающие 250 МВт и выше;

– средние – до 25 МВт;

– малые гидроэлектростанции – до 5 МВт.

Гидроэлектростанции также делятся в зависимости от максимального напора воды:


– высоконапорные – более 60 м;

– средненапорные – от 25 м;

– низконапорные – от 3 до 25 м.

В электрической части ГЭС во многом подобны конденсационным электростанциям, поскольку гидроэлектростанции обычно удалены от центров потребления, так как место их строительства определяется природными условиями. Поэтому электроэнергия, вырабатываемая ГЭС, выдается на высоких и сверхвысоких напряжениях (110 750 кВ). Отличительной особенностью ГЭС является небольшое потребление электроэнергии на собственные нужды, которое обычно в несколько раз меньше, чем на ТЭС. Это объясняется отсутствием на ГЭС крупных механизмов в системе собственных нужд.

Технология производства электроэнергии на ГЭС довольно проста и легко поддается автоматизации. Пуск агрегата ГЭС занимает не более 50 с, поэтому резерв мощности в энергосистеме целесообразно обеспечить именно этими агрегатами. Коэффициент полезного действия ГЭС обычно находится в диапазоне (85.. .90) %.

Благодаря меньшим эксплуатационным расходам себестоимость электроэнергии на ГЭС, как правило, в несколько раз меньше, чем на тепловых электростанциях

Достоинствами ГЭС можно считать экономию топлива, снижение загрязнения окружающей среды.

Похожие статьи:

16.Основные сооружения гэс, виды компоновок гэс.

Состав сооружений ГЭС зависит от ее типа и особенностей конструкции. Плотинные ГЭС включают в себя одну или несколько плотин, здание ГЭС ( может быть совмещено с плотиной или размещаться отдельно) и открытое (реже закрытое) распределительное устройство. При необходимости сооружается судоходный шлюз.

Деривационные ГЭС обычно состоят из головного узла (плотина и водозаборные сооружения), деривации (каналы, тоннели) и станционного узла (здание ГЭС, напорный бассейн, отводящий канал, распределительное устройство).

Плотинно-деривационные гидростанции имеют и высокую плотину, и деривацию.

— приплотинная (если здание ГЭС не участвует в создании напора)

— русловая (в зависимости от величины напора в состав напорного фронта может входить здание ГЭС)

17.Основания гидротехнических сооружений и способы его улучшения.

18. Типы грунтовых плотин- их характерные конструктивные элементы. От чего прежде всего нужно защищать грунтовую плотину.

Основными конструктивными элементами грунтовой плотины являются тело плотины, обиспеч её прочность и устойчивость, противофильтрационные устройства(экраны, диафрагмы), обеспечивающие водонепроницаемость и дренажные устройства для сбора воды. Грунтовую плотину нужно защищать от вымывания мелких частиц песка в каменную наброску.

(грунт плотины делятся на земляные насыпные, каменно-земляные, каменно- набросные, в зависимости от типа грунта)

19.Гравитационные бетонные плотины- типы конструкций и основные элементы.

20.Контрфорсные бетонные плотины, принцип работы и конструкции напорных граней.

Контрфорсные плотины представляют собой наклонные стены, перегораживающие поток, и опирающиеся на контрфорсы- треугольные опоры- стены, расположенные вдоль потока. Устойчивость контрфорсных плотин на сдвиг от действия гидростатического давления верхнего бьефа обеспечивается не только весом самой плотины, но и пригрузкой воды напорной грани плотины. У массивно- контрфорсных плотин роль перекрытий играют утолщения со стороны напорной грани- оголовки контрфорсов. В контрфорсных плотинах давление воды верхнего бьефа передаётся перекрытиям. Перекрытия покоятся на вертикальных стенах- контрфорсах, которые передают нагрузку от перекрытий к основанию. Если контрфорсы выполняют тонкими, то между ними располагают балки жёсткости препятствующие продольному сдвигу контрфорсов. Поскольку сплошной подошвы такие плотины не имеют, то фильтрационное противодавление действует лишь в пределах толщины перекрытий, т е на очень малую площадь.

21.Арочные и арочно- гравитационные бетонные плотины, особенности их работы и характерные параметры.

Арочные плотины представляют собой арки.

22.Противофильтрационные устройства в бетонных плотинах, назначение и виды.

23.Подземный контур плотины- назначение и основные конструктивные элементы.

24.Что такое фильтрация, начертите эпюру давления фильтрующейся воды на подошву плотины, что такое обходная фильтрация и чем она опасна.

25.Судоподъёмник- основные элементы и принцип работы.

27. для чего проводят изыскательские работы, и их основные виды. Выбор створа будущей ГЭС.

Для создания грамотного проекта требуется хорошо изучить местность, рассчитать ее рельеф, сделать измерения, начертить план, вычислить координаты объектов, которые уже находятся на местности. Для этого проводят геодезические изыскательские работы. Не менее важно исследовать состав и свойства грунта, оценить его несущие способности, выявить возможные опасности для возведения здания. Все эти мероприятия проводятся в рамках геологических изысканий. На сегодняшний день изыскательские работы включают в себя комплекс услуг, в том числе: геодезические работы, геологические изыскания, топографическую съемку, экологическое обследование.

Микро — и малые ГЭС

В данном разделе приведены основные технические характеристики серийно выпускаемых в России напорных микро-и малых ГЭС, а также бесплотинных ГЭС, использующих скоростные характеристики набегающего водяного потока.

Малые ГЭС: хорошо забытое старое

Одним из наиболее эффективных направлений развития нетрадиционной энергетики является использование энергии небольших водотоков с помощью микро — и малых ГЭС. Это объясняется, с одной стороны, значительным потенциалом таких водотоков при сравнительной простоте их использования, а с другой – практическим исчерпанием гидроэнергетического потенциала крупных рек в этом регионе.

Объекты малой гидроэнергетики условно делят на два типа: “мини” — обеспечивающие единичную мощность до 5000 кВт, и “микро” — работающие в диапазоне от 3 до 100 кВт. Использование гидроэлектростанций таких мощностей — для России вовсе не новое, а хорошо забытое старое: в 50-60-х годах у нас работало несколько тысяч малых ГЭС. Сегодня их количество едва достигает нескольких сотен штук. Между тем, постоянный рост цен на органическое топливо приводит к значительному удорожанию электрической энергии, доля которой в себестоимости производимой продукции достигает 20 и более процентов. На этом фоне малая гидроэнергетика обретает новую жизнь.

Преимущества малой гидроэнергетики

Современная гидроэнергетика по сравнению с другими традиционными видами электроэнергетики является наиболее экономичным и экологически безопасным способом получения электроэнергии. Малая гидроэнергетика идет в этом направлении еще дальше. Небольшие электростанции позволяют сохранять природный ландшафт, окружающую среду не только на этапе эксплуатации, но и в процессе строительства. При последующей эксплуатации отсутствует отрицательное влияние на качество воды: она полностью сохраняет первоначальные природные свойства. В реках сохраняется рыба, вода может использоваться для водоснабжения населения.

В отличие от других экологически безопасных возобновляемых источников электроэнергии — таких, как солнце, ветер, — малая гидроэнергетика практически не зависит от погодных условий и способна обеспечить устойчивую подачу дешевой электроэнергии потребителю.

Еще одно преимущество малой энергетики — экономичность. В условиях, когда природные источники энергии — нефть, уголь, газ — истощаются, постоянно дорожают, использование дешевой, доступной, возобновляемой энергии рек, особенно малых, позволяет вырабатывать дешевую электроэнергию. К тому же сооружение объектов малой гидроэнергетики низкозатратно и быстро окупается.

Так, при строительстве малой ГЭС установленной мощностью около 500 кВт стоимость строительно-монтажных работ составляет порядка 14,5-15,0 млн рублей. При совмещенном графике разработки проектной документации, изготовления оборудования, строительства и монтажа малая ГЭС вводится в эксплуатацию за 15-18 месяцев.

Себестоимость электроэнергии, вырабатываемой на подобной ГЭС, составляет не более 0,45-0,5 рублей за 1 кВтч, что в 1,5 раза ниже, чем стоимость электроэнергии, фактически реализуемой энергосистемой. Кстати, в ближайшие один-два года энергосистемы планируют ее увеличить в 2-2,2 раза.

Таким образом, затраты на строительство окупятся за 3,5-5 лет. Реализация такого проекта с точки зрения экологии не нанесет ущерба окружающей среде.

Необходимо отметить, кроме этого, что реконструкция выведенной ранее из эксплуатации малой ГЭС обойдется в 1,5- 2 раза дешевле.

Оборудование для малых ГЭС

Проектированием и разработкой оборудования для таких ГЭС занимаются многие российские научно-производственные организации и фирмы. Одна из крупнейших — межотраслевое научно-техническое объединение “ИНСЭТ” (Санкт-Петербург). Специалистами “ИНСЭТ” разработаны и защищены патентами оригинальные технические решения систем автоматического управления малыми и микроГЭС. Использование таких систем не требует постоянного присутствия на объекте обслуживающего персонала — гидроагрегат надежно работает в автоматическом режиме. Система управления может быть выполнена на базе программируемого контроллера, который позволяет визуально контролировать параметры гидроагрегата на экране компьютера.

Гидроагрегаты для малых и микроГЭС, выпускаемые МНТО “ИНСЭТ”, предназначены для эксплуатации в широком диапазоне напоров и расходов с высокими энергетическими характеристиками и выпускаются с пропеллерными, радиально-осевыми и ковшовыми турбинами. В комплект поставки входят, как правило, турбина, генератор и система автоматического управления гидроагрегатом. Проточные части всех турбин разработаны с использованием метода математического моделирования.

Малая энергетика — это на сегодняшний день наиболее экономичное решение энергетических проблем для территорий, относящихся к зонам децентрализованного электроснабжения, которые составляют более 70% территории России. Обеспечение энергией удаленных и энергодефицитных регионов требует значительных затрат. И здесь далеко не всегда выгодно использовать мощности существующей федеральной энергосистемы. Гораздо экономичнее развивать мощности малой энергетики, экономический потенциал которой в России превышает потенциал таких возобновляемых источников энергии, как ветер, солнце и биомасса, вместе взятых.

Гидроагрегаты для малых ГЭС предназначены для эксплуатации в широком диапазоне напоров и расходов с высокими энергетическими характеристиками. Наиболее ответственные узлы под контролем наших специалистов серийно изготавливаются на конверсионных оборонных заводах Санкт-Петербурга с использованием новейших технологий, что позволяет обеспечить их высокое качество. В комплект поставки входят: турбина, генератор и система автоматического управления.

МикроГЭС “ИНСЭТ” — надежные, экологически чистые, компактные, быстроокупаемые источники электроэнергии для деревень, хуторов, дачных поселков, фермерских хозяйств, а также мельниц, хлебопекарен, небольших производств в отдаленных, горных и труднодоступных районах, где нет поблизости линий электропередач, а строить такие линии сейчас и дольше, и дороже, чем приобрести и установить МикроГЭС.

В комплект поставки входят: энергоблок (турбина-3, генератор-5), водозаборное устройство (2), выпускной коллектор (4) и устройство автоматического регулирования (6).

Схема установки микроГЭС

Имеется успешный опыт эксплуатации оборудования на перепадах уже существующих плотин, каналов, систем водоснабжения и водоотведения промышленных предприятий и объектов городского хозяйства, очистных сооружений, оросительных систем и питьевых водоводов.

Основные технические решения, использованные при создании оборудования, выполнены на уровне изобретений и защищены патентами.

Оборудование изготавливается серийно, отличается высокими технико-эксплуатационными показателями и доступными ценами.

1. МИКРОГИДРОЭЛЕКТРОСТАНЦИИ
с пропеллерным рабочим колесом
— мощностью до 10 кВт ( МГЭС-10Пр) на напор 2,0- 4,5 м и расход 0,07 — 0,14 м3/ с;
— мощностью до 10 кВт ( МГЭС-10Пр) на напор 4,0-10,0 м и расход 0,10 — 0,21 м3/ с;
— мощностью до 50 кВт ( МГЭС- 50Пр) на напор 2,0-10,0 м и расход 0,36 — 0,80 м3/ с;
с диагональным рабочим колесом
— мощностью 20 кВт ( МГЭС- 20ПрД ) на напор 8-18 м и расход 0,08 — 0,17 м3/ с;
с ковшовым рабочим колесом
— мощностью до 100 кВт ( МГЭС-100К ) на напор 40-250 м и расход 0,015 — 0,046 м3/ с;
— мощностью до 200 кВт ( МГЭС-200К ) на напор 40-250 м и расход 0,015 — 0,013 м3/ с;

2. ГИДРОАГРЕГАТЫ ДЛЯ МАЛЫХ ГЭС
— гидроагрегаты с осевыми турбинами (ГА-1, ГА-8, ГА13) мощностью до 1800 кВт;
— гидроагрегаты с радиально-осевыми турбинами (ГА-2, ГА-4, ГА-9, ГА-11,) мощностью
до 5500 кВт;
— гидроагрегаты с ковшовыми турбинами (ГА-5, ГА-10) мощностью до 3300 кВт.

Малые ГЭС — виды и конструкции

НОВЫЕ ТЕХНОЛОГИИ И ОБОРУДОВАНИЕ ПРОИЗВОДСТВА

Регион Название МГЭС
Авилов
Валерий Дмитриевич
доктор технических наук, профессор,
заведующий кафедрой «Электрические машины и общая электротехника»
Омского государственного университета путей сообщения

Серкова
Любовь Ефимовна
кандидат технических наук,
доцент кафедры «Электрические машины и общая электротехника»
Омского государственного университета путей сообщения

Малая гидроэнергетика и
энергетическая стратегия Сибирского региона

Рис. 11. Схема рукавной микро-ГЭС:
1 – ручей; 2 – уровень запруды; 3 – плотина; 4 – труборукав; 5 – гидротурбина;
6 – электрогенератор

Рис. 12. Рукавная мини-ГЭС промышленного производства

Рис. 13. Рукавная микро-ГЭС

Рис. 14. Мини-ГЭС барабанного типа

Рис. 15. Мини-ГЭС барабанного типа на водоёме

Рис. 16. Турбина Франсиса

Рис. 17. Турбина Пэлтона

Рис. 18. Ковшовая турбина на сборке ИНСЭТ

Рис. 19. Поперечно-струйные турбины

УДК 620.9
Дата поступления статьи в редакцию: 09.02.2009
Опубликовано:
Научный журнал «Национальные приоритеты России» • № 1(1) • 2009

Малая гидроэнергетика. Требования к установке и основные параметры

Гидроэлектростанции отличаются высоким уровнем надежности энергоснабжения, ГЭС малого типа к которым можно отнести малые, мини и микро ГЭС, в зависимости от мощности. ГЭС этих типов способны накапливать энергию и обеспечивать быструю подачу электроэнергии, создавая стабильную работу электросетей.

Разработка таких объектов выполняется для стабильного экологического состояния окружающей среды, для избежания вреда, приносимого крупными ГЭС, а также для снабжения электроэнергией отдаленных районов, куда затруднено строительство централизованных линий электропередач с целью достижения эффективной экономической окупаемости и небольших затрат на строительство ЛЭП.

Наиболее распространённым типом ГЭС является: русловая или речная электростанция, которая использует энергию течения реки.

Мощность электростанции рассчитывается по скорости потока и уровню воды. Вода может накапливаться в периоды низкого энергопотребления с последующим использованием в периоды повышенного энергопотребления. Особым типом русловой ГЭС является деривационная или плотинная электростанция, в этом случае вода перекрывается плотиной по отдельному каналу отводится для подачи в турбины. Такая электростанция работает с большим перепадом высот (или большим напором), создаваемом плотиной.

Микро ГЭС применяются на небольших водотоках. Такие электростанции можно поставить практически на любых небольших речках, ручьях, в любых районах. Станция может вырабатывать мощность до 100 кВт. Используются для применения в электроснабжении небольших населенных пунктов, сельскохозяйственных объектов.

Экологическая безопасность — вот главное достоинство малой гидроэнергетики.

Отсутствует вредное влияние на окружающую среду как в процессе строительства, так и эксплуатации. Водоемы имеют многоцелевое назначение кроме выработки электроэнергии могут применяться для рыбного хозяйства и для водоснабжения населения водой.

К достоинствам можно отнести:

  • Простоту конструкции;
  • Автоматическое управление;
  • Отсутствие дежурного персонала;
  • Получаемый в процессе работы переменный электрический ток полностью соответствует качественным характеристикам, по ГОСТу.
  • МГЭС могут функционировать как независимо от централизованного энергохозяйства, так и составе энергосистемы.
  • Станция рассчитана на срок работы до 40 лет.
  • Для работы ГЭС не требуются создание водохранилищ, которые могу привести к затоплению местностей.

Малые ГЭС, благодаря различным природным условиям и разным уровням развития энергетического хозяйства, имеют многообразную классификацию.

Они классифицируются по типу турбины:

  1. Радиально-осевая гидротурбина, пригодна, для использования для низких напоров воды и средних норм стока;
  2. Турбины на основе архимедовой винтопропеллерной турбины;
  3. Двукратная гидравлическая турбина типа (банки), содержащая водоподвод, направляющий аппарат и рабочее колесо с лопастями, применяются при низких напорах и высоких нормах воды;
  4. Прямоточные турбины, применяемые при низком напоре и малых нормах стока, относятся к маломощным.

Такие агрегаты способны выдавать до 1000 кВт.

Применительно к различным природным условиям установки подразделяются на реализующие:

  1. потенциальную энергию водостока;
  2. кинетическую энергию водостока.

Это русловые и деривационные микро ГЭС и рукавные ГЭС.

По напору воды:

  1. низконапорные — до 20 м напора.
  2. средненапорные – напор достигает до 75 м.
  3. высоконапорные — до 80 м.

Рис 2. Напорная микро ГЭС с деривационным каналом

МГЭС могут работать как параллельно с энергосистемой, так и быть, независимыми, а также могут использоваться в параллели с другими источниками (к примеру, с дизельными или ветровыми электростанциями).

Могут классифицироваться по разным уровням автоматизации:

  • полуавтоматизированные, с дежурным персоналом;
  • полностью автоматическими, без дежурных.

Оптимизация и модернизация существующих гидроэлектростанций открывает потенциальные возможности для эксплуатации гидроэлектростанций без вредного влияния на окружающую среду. Происходит улучшение экологического состояния водоемов, при создании отдельных каналов и структурного улучшения водохранилищ, изменение формы речного берега, контроль за качеством воды.

Нормативные документы

Главное меню

СНиП 2.06.01-86 ГИДРОТЕХНИЧЕСКИЕ СООРУЖЕНИЯ. ОСНОВНЫЕ ПОЛОЖЕНИЯ ПРОЕКТИРОВАНИЯ
Автор Редактор контента
14.08.2008 г.

4. ГИДРОЭЛЕКТРОСТАНЦИИ, ГИДРОАККУМУЛИРУЮЩИЕ ЭЛЕКТРОСТАНЦИИ, НАСОСНЫЕ СТАНЦИИ И МАЛЫЕ ГИДРОЭЛЕКТРОСТАНЦИИ

4.1. Выбор типа здания гидроэлектростанции (ГЭС), гидроаккуму­ли­ру­ющей электростанции (ГАЭС), насосной станции (НС) следует произво­дить на основании сравнения технико-экономиче­ских показателей вариантов и с учетом:

обеспечения высокой эффективности работы станции, в том числе основного и вспомогательного оборудования;

обеспечения надежности работы и удобства пос­тоянной и временной эксплуатации сооружений и оборудования;

величины напора на сооружения и выбранного технологического оборудования;

положения станционного здания в гидроузле и типа основных подпорных сооружений;

вида грунтов основания;

условий и методов производства строительно-монтажных и ремонтно-восстановительных работ.

4.2. При проектировании зданий русловых и приплотинных ГЭС необходимо рассматривать не совмещенные и совмещенные с водосбросными устройствами (с поверхностными или напорными водосбросами) компоновки как с вертикальными, так и с горизонтальными гидроагрегатами. Для горных условий с расположением здания ГЭС в уз­ком ущелье целесообразно рассматривать двухряд­ное или иное расположение гидроагрегатов.

Для деривационных ГЭС следует проектировать отдельно стоящие здания с открытым, подземным или шахтным расположением машинного зала, с различным расположением гидроагрегатов (одно- или двухрядным).

4.3. Компоновочные решения строительной гид­ротехнической части зданий ГЭС, ГАЭС и НС должны предусматривать разбивку здания на агрегатные секции, разделенные температурно-осадочными швами. Размеры секций следует назначать в зависимости от габаритов агрегата, вида грунта основания, конструктивного решения строительной части.

При надлежащем обосновании допускается при­нимать подводную часть зданий ГЭС, ГАЭС и НС неразрезной конструкции для любых оснований.

Монтажную площадку, как правило, следует отделять от основного здания станции температурным или температурно-осадочным швом. Размеры мон­тажной площадки необходимо принимать минимальными и выбирать из расчета раскладки одного мон­тируемого агрегата и главного повышающего трансформатора. При этом следует учитывать воз­можность использования для монтажных работ час­ти машинного зала. В подземных зданиях необходи­мо предусматривать возможность сокращения пло­щади монтажной площадки за счет использования площадей на дневной поверхности.

Для ГАЭС, как правило, агрегаты следует разме­щать в створе напорных водоводов. При расположе­нии здания ГАЭС на нескальном основании надле­жит рассматривать компоновки станций с наимень­шей подрезкой естественных склонов, на которых укладываются напорные трубопроводы, обеспечи­вая устойчивость склонов как в строительный, так и в эксплуатационный период.

4.4. В водоприемниках зданий ГЭС надлежит пре­дусматривать пазы для установки сороудерживающих решеток, аварийно-ремонтных и ремонтных затворов.

На выходных отверстиях отсасывающих труб сле­дует устраивать пазы для установки переносных ремонтных заграждений.

В совмещенных зданиях ГЭС на входных, а для напорных водосбросов — и на выходных отверстиях необходимо предусматривать устройство пазов для установки основных, аварийно-ремонтных и ремонт­ных затворов. Местоположение затворов надлежит определять в зависимости от типа и конструкции водосброса.

Водоприемники верховых бассейнов ГАЭС и НС должны иметь пазы для установки аварийно-ремонтных и ремонтных затворов, а также заградительных решеток.

Входные отверстия всасывающих труб ГАЭС и НС должны иметь пазы для ремонтных затворов и сороудерживающих решеток. Пазы решеток, как правило, следует совмещать с пазами ремонтных затворов.

Для НС на выходных отверстиях следует преду­сматривать установку аварийно-ремонтных затво­ров или сифонов.

При наличии закрытой напорной или безнапорной деривации необходимо предусматривать возмож­ность ее опорожнения для ремонта. Размеры прямо­угольных отверстий водопропускных сооружений ГЭС, ГАЭС и НС, перекрываемых затворами, сле­дует принимать типовыми в соответствии с обяза­тельным приложением 6.

4.5. Размеры подводной части зданий ГЭС, ГАЭС и НС надлежит назначать минимально необходимы­ми исходя из габаритов проточной части агрегата, технологических требований по размещению и экс­плуатации основного и вспомогательного оборудо­вания, а также с учетом габаритов строительных конструкций.

Размеры производственных, служебных и вспо­могательных помещений в здании ГЭС (ГАЭС, НС) не должны вызывать увеличения размеров подвод­ной части. Для размещения вспомогательных поме­щений следует использовать объемы, имеющиеся над проточной частью. Элементы конструкций под­водной части здания ГЭС, ГАЭС и НС подлежат уни­фикации по всем агрегатным секциям.

4.6. Для осмотра и ремонта турбинных и насос­ных камер (с насосами подачей свыше 100 м 3 /с), отсасывающих и всасывающих труб в подводной части здания следует предусматривать служебные галереи, проходы, лазы и лифты (при глубине 12 м и более).

В начале и конце галереи надлежит предусматри­вать выходы, изолированные от других помещений и имеющие лестничные клетки.

Верх лестничных клеток следует размещать вы­ше максимального расчетного уровня воды нижнего бьефа на 0,5 м. При этом должны быть предусмотре­ны герметичные люки или двери, исключающие воз­можность затопления галерей.

4.7. В случаях, когда напорные водоводы НС, приплотинных и деривационных ГЭС и ГАЭС выпол­няются открытыми стальными или деревянными, следует предусматривать меры по защите зданий станции от последствий внезапного разрушения тру­бопровода. Для открытых железобетонных, сталежелезобетонных и туннельных водоводов таких мер предусматривать не требуется.

4.8. ГАЭС и НС, близкие по капорам, следует уни­фицировать по основному турбинному и насосному оборудованию и по конструктивному решению.

4.9. В горных районах при проектировании ГЭС, ГАЭС и НС выбор подземного или открытого типа турбинных водоводов и деривационных туннелей должен быть обоснован технико-экономическим сопоставлением.

Помещения подсобно-производственного назначения, в том числе масляного хозяйства, при отсут­ствии специальных требований следует выносить на дневную поверхность.

При проектировании подземных зданий станции необходимо предусматривать сообщение с дневной поверхностью по транспортным галереям или шах­там, через которые осуществляется механизирован­ная транспортировка оборудования, материалов и перевозка эксплуата­цион­ного персонала. Для эксплуатационного персонала должны быть преду­смотрены пешеходные дороги или лестницы, дубли­рующие выход на дневную поверхность.

4.10. Транспортные галереи и шахты должны при­мыкать к монтажной площадке. Кабельные комму­никации необходимо совмещать с транспортными шахтами и галереями.

4.11. Гидравлический режим в отводящем тунне­ле при всех уровнях воды в нижнем бьефе необхо­димо поддерживать только напорным или безнапор­ным. Переходные режимы от напорного к безнапор­ному и наоборот в отводящем туннеле допускаются кратковременными при надлежащем обосновании. В отводящие безнапорные туннели необходимо предусматривать подвод воздуха при любых режи­мах работы.

4.12. При проектировании насосных станций должна быть предусмотрена подача воды в заданном объеме и в соответствии с графиками водоподачи при всех режимах работы системы водоснабжения.

Объем и графики водоподачи необходимо опре­делять водохозяйст­вен­ным балансом системы учетом:


расчетных параметров проектируемой системы;

гидрологических параметров источника водо­снабжения;

обеспечения необходимых расходов воды в водотоке ниже водозабора.

4.13. Число резервных агрегатов на насосной станции необходимо устанавливать в зависимости от категории надежности подачи воды и числа агре­гатов в соответствии с требованиями соответствующих строительных норм и правил.

4.14. При назначении режима работы насосной станции большой мощности (свыше 10-15 тыс. кВт) следует рассматривать возможность использования ее (частично или на полную мощность) в качестве потребителя-регулятора мощности энергосистемы, а также для работы в турбинном режиме.

4.15. При проектировании водовыпускных соору­жений насосных станций следует предусматривать плавный выпуск воды в канал с растеканием пото­ка, перераспределением и уменьшением скоростей течения воды.

На водовыпускном сооружении необходимо пре­дусматривать установку оборудования, обеспечи­вающего автоматическое отключение трубопрово­дов от канала (обратных клапанов, затворов, кла­панов срыва вакуума и т.п.).

Мини гэс мощностью 10 квт цена

Бесплотинная всесезонная гидроэлектростанция

Бесплотинная всесезонная гидроэлектростанция

Предлагается бесплотинная всесезонная гидроэлектростанция (БВГЭС), которая предназначена для выработки электроэнергии без сооружения плотины за счет использования энергии самотечного потока.

За счет изготовления различных типоразмеров под разные скорости течения, а также каскадного монтажа установки БВГЭС могут использоваться как в малых хозяйствах так и для промышленного производства электроэнергии, особенно в местах, удаленных от ЛЭП.

Конструктивно ротор ГЭС устанавливается вертикально, высота ротора от 0,25до2,5м…Фиксация конструкции на реках с ледоставом производится на дне русла, а в открытом (незамерзающем русле ) __ на закрепленном катамаране.

Мощность установки пропорциональна площади лопасти и скорости течения в кубе. Зависимость мощности, получаемой на валу БВГЭС от ее размеров и скорости течения, а также оценочная стоимость гидроагрегата представлена в следующей таблице:

Мощность БВГЭС , кВт в зависимости от скорости потока и размеров установки

Стоимость БВГЭС
у.е.

Скорость течения , м/с

1,0 1,5 2,0
0,7 1,5х0,6 от 5000,0 10 >40,0

Срок окупаемости установки не превышает 1 года . Опытный образец БВГЭС прошел испытания на натурном водном полигоне.

В настоящее время имеется техническая документация для производства промышленных образцов по техническим условиям заказчика.

Напорные микро-и малые ГЭС

Гидроагрегаты для малых ГЭС предназначены для эксплуатации в широком диапазоне напоров и расходов с высокими энергетическими характеристиками.

МикроГЭС — надежные, экологически чистые, компактные, быстроокупаемые источники электроэнергии для деревень, хуторов, дачных поселков, фермерских хозяйств, а также мельниц , хлебопекарен, небольших производств в отдаленных горных и труднодоступных районах, где нет поблизости линий электропередач, а строить такие линии сейчас и дольше и дороже, чем приобрести и установить микроГЭС.

В комплект поставки входят: энергоблок, водозаборное устройство и устройство автоматического регулирования.

Имеется успешный опыт эксплуатации оборудования на перепадах уже существующих плотин, каналов, систем водоснабжения, и водоотведения промышленных предприятий и объектов городского хозяйства, очистных сооружений, оросительных систем и питьевых водоводов. Более 150 комплектов оборудования поставлено заказчикам в различные регионы России, страны СНГ, а также в Японию, Бразилию, Гватемалу, Швецию и Латвию.

Основные технические решения, использованные при создании оборудования , выполнены на уровне изобретений и защищены патентами.

с пропеллерным рабочим колесом
— мощностью до 10 кВт (МГЭС-10ПР) на напор 2,0-4,5 м и расход 0,07 — 0,14 м3/с;
— мощностью до 10 кВт (МГЭС-10ПР) на напор 4,5-8,0 м и расход 0,10 — 0,21 м3/с;
— мощностью до 15 кВт (МГЭС-15ПР) на напор 1,75-3,5 м и расход 0,10 — 0,20 м3/с;
— мощностью до 15 кВт (МГЭС-15ПР) на напор 3,5-7,0 м и расход 0,15 — 0,130м3/с;
— мощностью до 50 кВт (МГЭС-50ПР) на напор 4,0-10,0 м и расход 0,36 — 0,80 м3/с;

с диагональным рабочим колесом
— мощностью10- 50 кВт (МГЭС-50Д) на напор 10,0-25,0 м и расход 0,05 — 0,28 м3/с;
— мощностью до100кВт (МГЭС-100Д) на напор 25,0-55,0 м и расход 0,19 — 0,25 м3/с;

2. ГИДРОАГРЕГАТЫ ДЛЯ МАЛЫХ ГЭС

-гидроагрегаты с осевыми турбинами мощностью до 1000 кВт;
-гидроагрегаты с радиально-осевыми турбинами мощностью до 5000 кВт;
-гидроагрегаты с ковшовыми турбинами мощностью до 5000 кВт;

МикроГЭС10кВт; 15кВт поставляется в срок до 3 месяцев после подписания контракта.
МикроГЭС 50кВт; поставляется в срок до 6 месяцев после подписания контракта.
МикроГЭС 100кВт; поставляется в срок до 8 месяцев после подписания контракта.
Гидроагрегаты поставляется в срок от 6 до 12 месяцев после подписания контракта.

Специалисты фирмы готовы помочь Вам определить оптимальный вариант установки микро-и малых ГЭС, выбрать оборудование для них, оказать помощь в монтаже и пуске гидроагрегатов, а также обеспечить сервисное обслуживание оборудования в
процессе его эксплуатации.

Микро-ГЭС-10 8280 у.е.
Микро-ГЭС-50 35880 у.е.
Гидроагрегаты с радиально-осевыми турбинами 276-296 у.е. за 1 кВт установленной мощности
Гидроагрегаты с осевыми и ковшовыми турбинами 336-296 у.е. за 1 кВт установленной мощности

Микро-ГЭС российского производства

Микро-ГЭС 10 кВТ

Микро-ГЭС 50 кВт

Мини ГЭС. Микрогидроэлектростанции

Малая гидроэлектростанция или малая ГЭС (МГЭС) – гидроэлектростанция, вырабатывающая сравнительно малое количество электроэнергии и состоящая из гидроэнергетических установок с установленной мощностью от 1 до 3000 кВт.

Микро-гидроэлектростанция предназначена для преобразования гидравлической энергии потока жидкости в электрическую для дальнейшей передачи сгенерированной электроэнергии в энергосистему.

Под термином микро подразумевается, что данная гидроэлектростанция устанавливается на малых водных объектах – небольших речках или даже ручьях, технологических протоках или перепадах высот систем водоподготовки, а мощность гидроагрегата не превышает 10 кВт.

МГЭС разделяют на два класса: это микро-гидроэлектростанции (до 200 кВт) и мини-гидроэлектростанции (до 3000 кВт). Первые применяются в основном в домохозяйствах, и на небольших предприятиях, вторые – на более крупных объектах.

Для владельца загородного дома или небольшого бизнеса, очевидно больший интерес представляют первые.

Исходя из принципа действия, микро-гидроэлектростанции разделяют на следующие типы:

Водяное колесо. Это колесо с лопастями, установленное перпендикулярно поверхности воды и наполовину в неё погруженное. В процессе работы вода давит на лопасти и заставляет вращаться колесо.

С точки зрения простоты изготовления и получения максимального КПД с минимальными затратами, эта конструкция хорошо работает.

Поэтому часто применяется и на практике.

Гирляндная мини-ГЭС. Представляет собой перекинутый с одного берега реки на другой трос с жестко закрепленными на нем роторами. Поток воды вращает роторы, а от них вращение передаётся на трос, один конец которого соединен с подшипником, а второй – с валом генератора.

Недостатки гирляндной ГЭС: большая материалоемкость, опасность для окружающих (длинный подводный трос, скрытые в воде роторы, перегораживание реки), низкий КПД.

Ротор Дарье.

Это вертикальный ротор, который вращается за счет разности давлений на его лопастях. Разница давлений создается за счет обтекания жидкостью сложных поверхностей. Эффект подобен подъемной силе судов на подводных крыльях или подъемной силе крыла самолета. Фактически, МГЭС данной конструкции идентичны одноименным ветрогенераторам, но располагаются в жидкостной среде.

Ротор Дарье сложен в изготовлении, в начале работы его нужно раскрутить.

Но он привлекателен тем, что ось ротора расположена вертикально и отбор мощности можно производить над водой, без дополнительных передач. Такой ротор будет вращаться при любом изменении направления потока. Как и у его воздушного собрата, КПД ротора Дарье уступает КПД МГЭС пропеллерного типа.

Пропеллер.

Это имеющий вертикальный ротор подводный «ветряк», который в отличие от воздушного, имеет лопасти минимальной ширины всего в 2 см. Такая ширина обеспечивает минимальное сопротивление и максимальную скорость вращения и выбиралась для наиболее часто встречающейся скорости потока – 0.8-2 метра в секунду.

Пропеллерные МГЭС, также как и колесные, просты в изготовлении и обладают сравнительно высоким КПД, их частое применение этим и обусловлено.

Классификация Мини ГЭС

Классификация по вырабатываемой мощности (области применения) .

Вырабатываемая микро ГЭС мощность определяется сочетанием двух факторов, первый это напор воды, поступающей на лопасти гидротурбины, которая приводит в действие вырабатывающий электроэнергию генератор, и второй фактор – расходом, т.е.

объемом воды, проходящем, через турбину за 1 секунду. Расход является определяющим фактором при отнесении ГЭС к определенному типу.

По вырабатываемой мощности МГЭС подразделяются на:

  • Бытовые мощностью до 15 кВт: используются для обеспечения электроэнергией частных домовладений и ферм.
  • Коммерческие мощностью до 180 кВт: питают электроэнергией небольшие предприятия.

  • Промышленные мощностью свыше 180 кВт: генерируют электроэнергию на продажу, либо энергия передается на производство.
  • Классификация по конструкции

      Осевые турбины.

    У турбин такого типа поток воды движется вдоль оси, попадая на лопасти.

  • Радиально-осевые турбины. В рабочем колесе турбин данного типа поток сначала движется радиально (от периферии к центру), а затем в осевом направлении (на выход).
  • Ковшовые турбины.

    В этом типе турбин вода подаётся через сопла по касательной к окружности, проходящей через середину ковша. При этом она, проходя через сопло, формирует струю, летящую с большой скоростью и ударяющую о лопатку турбины, после чего колесо проворачивается, совершая работу.

    После отклонения одной лопатки под струю подставляется другая.

    Данный тип конструкции очень распространен в микро-гидроэнергетике.
    Поворотно-лопастные турбины.

    У данной турбины лопасти могут поворачиваться вокруг своей оси одновременно, за счёт чего регулируется её мощность.

    Классификация по месту установки

    • Высоконапорные — более 60 м;
    • Средненапорные — от 25 м;
    • Низконапорные — от 3 до 25 м.

    Данная классификация подразумевает, что электростанция работает на разных частотах вращения, и для ее механической стабилизации принимается ряд мер, т.к.

    скорость потока зависит от напора.

    Составные части Мини ГЭС

    Электрогенерирующая установка малой ГЭС состоит из турбины, генератора и системы автоматического управления. Часть элементов системы аналогичны для систем солнечной генерации или ветряной генерации. Основные элементы системы:

    • Гидротурбина с лопатками, соединённая валом с генератором
    • Генератор.

    Мини гидроэлектростанция (ГЭС) для дома

    Предназначен для выработки переменного тока. Присоединяется к валу турбины. Параметры генерируемого тока быть относительно нестабильны, однако ничего похожего на скачки мощности при ветряной генерации не происходит;
    Блок управления гидротурбиной обеспечивает пуск и останов гидроагрегата, автоматическую синхронизацию генератора при подключении к энергосистеме, контроль режимов работы гидроагрегата, аварийную остановку.

  • Блок балластной нагрузки, предназначенный для рассеивания неиспользуемой потребителем на данный момент мощность, позволяет избежать выхода из строя электрогенератора и системы контроля и управления.
  • Контроллер заряда/ стабилизатор: предназначен для управления зарядом аккумуляторных батарей, контроля поворота лопастей и преобразования напряжения.
  • Банк АКБ: накопительная ёмкость, от размера которой зависит продолжительность функционирования в автономном режиме питаемого ею объекта.

  • Инвертор, во многих гидрогенерирующих системах применяются инверторные системы. При наличии банка АКБ и контроллера заряда, гидросистемы мало чем отличаются от других систем, применяющих ВИЭ.
  • Мини ГЭС для частного дома

    Рост тарифов на электроэнергию и отсутствие достаточных мощностей, делают актуальными вопросы о применение бесплатной энергии возобновляемых источники в домашних хозяйствах.

    По сравнению с другими источниками ВИЭ, мини ГЭС представляют интерес, так как при равной мощности с ветряком и солнечной батареей они способны выдать за равный промежуток времени гораздо больше энергии.

    Естественное ограничение на их применение является отсутствие реки

    Если возле вашего дома протекает небольшая река, ручей или имеют место перепады высот на озерных водосбросах, то значит у вас имеются все условия для установки мини ГЭС. Потраченные на её приобретение деньги быстро окупятся – вы будете в любое время года обеспечены дешёвой электроэнергией, независимо от погодных условий и иных внешних факторов.

    Основным показателем, который указывает на эффективность использования МГЭС является скорость потока водоема.

    Если скорость меньше 1 м/с, то необходимо принять дополнительные меры по его разгону, например, сделать обводной канал переменного сечения или организовать искусственный перепад высот.

    Далее, определяется необходимая хозяйству мощность и геометрические особенности канала. Все эти показатели учитываются при выборе типа и конструкции устанавливаемой микро-ГЭС.

    Преимущества и недостатки микрогидроэнергетики

    К преимуществам мини гэс для дома можно отнести:

    • Экологическая безопасность (с оговорками для рыб-мальков) оборудования и отсутствие необходимости затопления больших площадей с колоссальным материальным ущербом;
    • Экологическая чистота получаемой энергии.

    Отсутствует влияние на свойства и качество воды. Водоемы можно использовать и для рыбохозяйственной деятельности, и как источники водоснабжения населения;

  • Низкую стоимость получаемой электроэнергии, которая в разы дешевле вырабатываемой на ТЭС;
  • Простоту и надёжность применяемого оборудования, и возможность его работы в автономном режиме (как в составе, так и вне сети электроснабжения).

    Вырабатываемый ими электрический ток соответствует требованиям ГОСТа по частоте и напряжению;

  • Полный ресурс работы станции — не менее 40 лет (не менее 5 лет до капитального ремонта);
  • неисчерпаемость используемых для выработки энергии ресурсов.

    Основной недостаток микро-гэс это относительная опасность для обитателей водной фауны, т.к. вращающиеся лопатки турбин, особенно в скоростных потоках, могут представлять угрозу для рыб или мальков.

    Условным недостатком можно так же считать ограниченность применения технологии.

    общая информация

    Микрогидроэлектростанция (Micro HPP) предназначена для обеспечения электроснабжения потребителя, изолированного от энергосистемы.

    Полнота поставки микро-ГЭС приведена в таблице 1

    — температура воздуха, 0 ° C

    — в точке питания от -10 до +40;

    — в месте расположения электрических шкафов от 0 до +40;

    — высота над уровнем моря, м до 1000; (При установке микро-ГЭС на высоте более 1000 м максимальная мощность должна быть ограничена)

    — относительная влажность воздуха в месте расположения электрических шкафов не превышает 98% при t = + 250 ° C.

    Гарантийный срок для микроГЭС 1 год с даты его запуска, но не более 1,5 лет с даты отправки, возведение контроля и ввод в эксплуатацию работы с участием компании и соблюдение правил транспорта, хранения и эксплуатации экспертов.

    Полная поставка микро-ГЭС

    Блок загрузки балласта BBN15

    Автоматический блок управления UAR15M / 400

    технические данные

    Спецификации MicroHP приведены в таблице 2

    Расход воды, м3 / с

    Выходная мощность, кВт

    Скорость вращения, об / мин

    Текущая частота, Гц

    Диаметр диска, мм

    Диаметр подачи, мм

    Требования к сети и нагрузке потребителя (нагрузка определяется как процент от фактического поступления на микро-ГЭС):

    — характеристика местного, четырехфазного, трехфазного;

    — нагрузка на двигатель ограничена;


    — мощность каждого двигателя,% не более 10;

    -общая мощность двигателя, если установлены дополнительные компенсационные конденсаторы,% не более 30.

    ДИЗАЙН

    Блок питания предназначен для выработки электроэнергии и состоит из гидравлической турбины и асинхронного двигателя, который используется в качестве генератора.

    Блочная нагрузка с балластом

    Он предназначен для поглощения избыточной активной мощности микро-ГЭС. BNN — это шкаф, внутри которого расположены термоэлектрические нагреватели.

    Устройство автоматического управления предназначено для управления и защиты привода. Он обеспечивает возбуждение асинхронного генератора и автоматическое управление производимым напряжением и частотой.

    UAR обеспечивает защиту от перегрузки, перенапряжения и коротких замыканий

    Устройство подачи воды выполнено в виде сетевого ящика, внутри которого имеется шланг подачи воды с закрывающим корпусом.

    Устройство подачи воды сконструировано таким образом, что плавающие остатки не входят в привод.

    Полные, монтажные и присоединительные размеры показаны на рисунке 1.

    требования к установке

    Для работы микроэлектростанции наличие давления (разница в уровнях воды) является предварительным условием (см. Рисунок 2).

    Полноэкранная гидроэлектрическая плотина

    Голова может быть получена из-за разницы в водяных знаках между:

    — на той же реке, из-за выравнивания кривой.

    Давление также возможно при строительстве плотины.

    На рисунке 2 показана установка микро HP в соответствии со схемой конструкции барьера. Для создания давления на турбину вдоль реки, которая имеет множество склонов и порогов, установлен выходной трубопровод.

    Небольшая каменная плотина рассеивается, чтобы увеличить давление.

    Трубопровод должен обеспечивать воду для установки с минимальной потерей головки.

    Длина трубопровода определяется местными условиями.

    Перед блоком питания входной и основной клапаны, необходимые для запуска и остановки микро HPW, должны быть установлены на трубопроводе.

    Рис. 1
    В общем, размеры монтажа и подключения Micro HPP 10Pr.
    1 — привод,
    2 — блочная балластная нагрузка BBN,
    3 — Автоматическое устройство управления UAR

    Когенерационные установки малой мощности (обзор)

    Когенерационные установки для индивидуальных домов — микро-ТЭЦ, «Микро-CHP (microCHP)» – аббревиатура от “heat and power combined” (комбинирование тепла и электричества) – это установка, предназначенная для отопления индивидуального жилья) — одно из наиболее интересных направлений развития отопительной техники.

    Микро-ТЭЦ (microCHP) уже нашли тысячи пользователей и войдут в каталоги производителей в ближайшие годы.

    В выпускаемых и проектируемых конструкциях реализуются различные технические решения — от традиционного двигателя внутреннего сгорания (двигатель Отто), до паровых турбин и поршневых двигателей, а также двигателя внешнего сгорания Стирлинга. Продвигая данное оборудование, производители приводят аргументы как экономического, так и экологического характера: высокий (более 90 %) совокупный КПДмикро-ТЭЦ обеспечивает снижение затрат на энергоснабжение и объем вредных выбросов, в частности углекислого газа, в атмосферу.

    Компания Senertec GmbH, входящая в Вахi Group, реализовавшая к настоящему времени порядка полутора десятка тысяч установок Dachs(Барсук) с двигателем внутреннего сгорания.

    Электрическая мощность — от 5 кВт, тепловая — от 12,5 до 20,5. Senertec предлагает энергоцентр для индивидуального дома, а при использовании нескольких модулей и крупного коммерческого объекта. Кроме компактного когенерационного модуля он включает в стандартном исполнении буферный накопитель емкостью до 1000 л со смонтированным на нем тепловым пунктом, объединяющим все элементы обвязки, необходимые для отопления и ГВС.

    Дополнительно имеется также внешний конденсационный теплообменник. Различные модели установок Dachs работают на природном, сжиженном газе, дизельном топливе.

    Имеется модель Dachs RS, созданная для работы на биодизельном топливе из рапсового масла. Ориентировочная стоимость газовой модели — 25 тыс. евро.

    МикроТЭЦ (Mini-BHKW) ecopover немецкой компании PoverPlus Technologies (входит в Vaillant Group) уже продается на европейском рынке.

    Её электрическая мощность модулируется в диапазоне от 1,3 до 4,7, тепловая — в диапазоне от 4,0 до 12,5 кВт. Суммарный КПД установки превышает 90 %, топливом для нее служит природный или сжиженный газ.

    Ориентировочная стоимость модели — 20 тыс. евро.

    В конце прошлого года компанией Otag Vertribes выпущена пилотная партия напольной газовой микроТЭЦ lion®- Powerblock электрической мощностью 0.2-2,2, тепловой — 2,5-16,0 кВт.

    В ней применен паровой двухцилиндровый двигатель со сдвоенным свободно движущимся поршнем: пар поочередно поступает то в левый, то в правый цилиндр, приводя в движение рабочий поршень.

    Парогенератор аппарата состоит из наддувной горелки и стального змеевика; температура пара — 350 °С, давление — 25-30 бар. Его конденсация осуществляется непосредственно в аппарате.

    Как ожидается, lion® на пеллетах будет доступна апреля 2010 года.

    Компания Microgen (Великобритания), один из лидеров в производстве мини-ТЭЦ, впервые разработала двигатель Стирлинга настолько маленького размера, что его можно встроить в котёл автономной системы отопления.

    Компанией Вахi Heating UK было объявлено о намерении вывести в 2008 г. на рынок Великобритании компактную (в настенном исполнении) микроТЭЦ электрической мощностью 1, тепловой — до 36 кВт. Установка разрабатывалась совместно с компанией Microgen Energy и представляет собой сочетание созданного ею компактного однопоршневого двигателя Стирлинга с конденсационным котлом Вахi.

    Модель оснащена двумя горелками: первая — наддувная модуляционная -обеспечивает работу электрогенератора и получение 15 кВт тепловой мощности, вторая -удовлетворяет дополнительную потребность объекта в тепле. Прототип установки был представлен на выставке ISН-2007.

    Microgen, в сотрудничестве с голландской компанией-поставщиком природного газа Gausine и De Dietrich Remeha Group, производящим котлы Remeha, разрабатывает комплексное решение для отопления и производства электричества.

    Группа De Dietrich-Remeha планирует производить и продавать настенный конденсационный котел со встроенным двигателем Стирлинга. Он уже экспонировался на выставках ISН-2007, 2009. Котел будет выпускаться в одно- и двух-контурном исполнениях. Некоторые технические характеристики котла: Его тепловая мощность составит 23 кВт, во втором случае — 28 кВт; электрическая мощность — 1 кВт; тепловая мощность Stirling – 4.8 кВт, КПД при 40/30°C – более 107%, низкие выбросы CO2 и NOx, уровень шума – менее 43 дб(A) на 1 м.

    Габариты: 900x420x450 мм.

    Самое главное преимущество котла HRE состоит в том, что часть его высокой производительности до 107% (благодаря технологии конденсации) используется для выработки электричества. Стоимость электричества, а также выбросы вредных веществ снижены на 65% по сравнению с тепловыми электростанциями на традиционном топливе.

    Для среднего жилища котел “Remeha-HRE” производит 2500 – 3000 кВт в год, что составляет 75% от среднего потребления, тем самым экономится примерно 400 евро в год. При отоплении и производстве электроэнергии на 20 % сокращаются выбросы вредных веществ. В Голландии тестируются 8 котлов. В настоящий момент для более масштабного тестирования запускаются еще 120 котлов. Коммерческое производство предусмотрено начать в 2010 году.

    В Японии более 30.000 домовладельцев установили микро-ТЭЦ Honda с тихими, эффективными двигателями внутреннего сгорания, размещенными в гладком металлическом корпусе.

    Автоматизированные газогенераторные установки KOHLER® производства США мощностью 13 кВА, предназначенные для использования в жилых домах.

    Они обладают оптимальной компактностью и отменной шумоизоляцией.

    Газовые генераторы предназначены для наружной установки и не требуют особого помещения. Для их работы пригоден как природный магистральный газ, так и сжиженный газ в баллонах или газгольдерах.

    Система противоаварийной автоматики делает их использование безопасным и комфортным.

    Данное оборудование позволяет наиболее эффективно решать следующие, увы, нередкие проблемы с электроснабжением, встающие перед собственниками загородных домов:

    • Сеть хорошая, мощности хватает, но иногда случаются перебои электроснабжения
    • Сеть слабая, перегруженная, сильные «просадки» напряжения, частые отключения
    • Недостаточно выделенной электроснабжающей организацией мощности
    • Сети нет вообще

    У Вас никогда не будет недостатка в энергии!

    Вашему дому нужна энергия.

    Генераторные установки KOHLER® сделаны с профессиональным качеством, но спроектированы для домашнего использования, чтобы Вы могли продолжать свои занятия и наслаждаться комфортом даже во время отключения электроэнергии. Генераторные установки KOHLER® компактны, обладают шумовой изоляцией и включаются автоматически, если произошло отключение электричества, обеспечивая продолжение нормальной жизни в доме и абсолютное душевное спокойствие.

    Будьте уверены в Вашей генераторной установке KOHLER®.

    Она начнет работу, если произойдет отключение электричества, неважно, дома Вы или нет, и обеспечит Ваш дом электроэнергией, например, для того, чтобы:

    • Продолжили работать холодильники и морозильные камеры.
    • Функционировали кондиционеры, системы отопления и сигнализации.
    • Функционировали дренажные насосы, морозозащитные системы и т.д.
    • Обеспечить энергией Вашу компьютерную систему.
    • Обыденная жизнь продолжалась без потерь.

    Генераторные установки KOHLER® устанавливаются стационарно вне стен дома и включаются автоматически для выработки энергии, если энергоснабжение от сети прекращается.

    Сбои в электроснабжении могут привести к поломке электрического оборудования (плазменные дисплеи, холодильники с электронным управлением температурой, компьютеры и т.д.).

    Гидроэлектростанции в России

    Генераторные установки KOHLER® обеспечивают резервной электроэнергией, которая соответствует европейским стандартам для жилых помещений. Генераторная установка KOHLER® не испортит дорогостоящее электронное оборудование!

  • Лучшая звуковая изоляция. Генераторные установки KOHLER® работают практически бесшумно, сохраняя комфортные условия для Вас и Ваших соседей. Уровень шума при работе не выше 65 децибел на расстоянии 7 м, что соответствует шуму обычного бытового кондиционера.
    • Быстрый запуск.

      Генераторные установки KOHLER® за несколько секунд восстанавливают электроснабжение. Они обладают автоматической системой еженедельного тестирования для поддержания установки в рабочем состоянии при редком использовании.
      Топливо. Генераторные установки KOHLER® пригодны для работы на жидком газе пропан или природном газе, а также на дизельном топливе.

      Газовые генераторные установки имеют низкий уровень эмиссии, что делает их более безопасными с экологической точки зрения, работают бесшумно и требует менее частого технического обслуживания.

      Выбор за Вами.

    • Качество KOHLER®. KOHLER® является признанной международной группой компаний с почти 90-летним опытом производства генераторных установок для обеспечения резервной энергией. Первая установка была собрана в 1920 году.

    Характеристики газогенератора SDMO RES 13

    на сетевом газе

    на сжиженном газе

    9,3 кВт / 11,625 кВ*А

    10,5 кВт / 13,125 кВ*А

    65 Дб @ 7 метров

    Потребление при 75% нагрузки:

    Электростанции и генераторы

    Малые гидроэлектростанции обычно делятся на два типа: «мини» — обеспечивают единицу мощности до 5000 кВт, а «микро» — в диапазоне от 3 до 100 кВт. Использование гидроэлектростанций таких мощностей для России не ново, но хорошо забытое старое: в 50-е и 60-е годы действовали тысячи малых гидроэлектростанций.

    В настоящее время их количество почти не достигает сотен штук. Между тем, постоянный рост цен на органическое топливо приводит к значительному увеличению стоимости электроэнергии, доля которой в производственных издержках составляет 20% и более. В связи с этим небольшая гидроэлектростанция получила новую жизнь.

    Современная гидроэнергетика по сравнению с другими традиционными видами электроэнергии является наиболее эффективным и экологически безопасным способом производства электроэнергии.

    Малая гидроэлектростанция продолжается в этом направлении. Малые электростанции позволяют сохранять природный ландшафт, окружающую среду не только во время фазы эксплуатации, но и в процессе строительства.

    Мини-гидроэлектростанция 10-15-30-50 кВт

    В будущем отрицательное влияние на качество воды не оказывает: полностью сохраняет первоначальные природные свойства.

    В реках рыбных консервов вода может использоваться для водных видов растений. В отличие от других экологически чистых возобновляемых источников энергии, таких как солнце, ветер, небольшие гидроэлектростанции практически не зависят от погодных условий и могут обеспечить стабильное снабжение экономичных потребителей электроэнергией. Еще одним преимуществом небольшой энергии является экономия.

    В то время, когда природные источники энергии — нефть, уголь и газ — истощаются, постоянный прирост дороже, использование дешевых, доступных возобновляемых источников энергии, особенно малых, позволяет производить дешевую электроэнергию. Кроме того, строительство объектов малых ГЭС дешево и быстро окупается.Так, строительство небольшой ГЭС с установленной мощностью около 500 кВт, стоимость строительных работ составляет около 14,5-15,0 млн рублей.

    В комбинированном столе вводятся в эксплуатацию проектная документация, строительство оборудования, строительство и монтаж малых ГЭС на 15-18 месяцев. Высокая частота электроэнергии от ГЭС составляет не более 0,45-0,5 рубля за 1 кВтч, в 1, Это в пять раз ниже, чем затраты на электроэнергию, фактически проданные энергосистемой.

    Кстати, в следующем году или двух годах электроэнергетические системы намерены увеличить в 2-2,2 раза, поэтому затраты на строительство будут погашены через 3,5-5 лет. Реализация такого проекта с точки зрения окружающей среды не повредит окружающей среде.

    Кроме того, следует отметить, что реконструкция, ранее вычитаемая из эксплуатации небольшой гидроэлектростанции, обойдется в 1,5-2 раза дешевле.

    Многие российские научные и производственные организации и компании занимаются проектированием и разработкой оборудования для таких ГЭС.

    Одним из крупнейших является межотраслевое научно-техническое объединение «ИНСЕТ» (Санкт-Петербург). Специалисты INSET разработали и запатентовали оригинальные технические решения для автоматизированных систем управления для малых и микро-ГЭС. Использование таких систем не требует постоянного присутствия обслуживающего персонала на объекте — гидравлический блок надежно работает в автоматическом режиме. Система управления может быть реализована на основе программируемого контроллера, который позволяет визуально контролировать параметры гидравлического блока на экране компьютера.

    Гидравлические установки для малых и микрогидроэлектростанций производят MNTO «встроенный», предназначенный для работы в широком диапазоне потоков и давлений с высокими энергетическими свойствами и изготовленных с помощью пропеллерной, радиальной и осевой лопастей турбины.

    Объем поставки включает, как правило, турбину, генератор и автоматическое управление гидравлическим блоком. Скорости потока всех турбин основаны на методе математического моделирования.

    Малая энергия является наиболее эффективным решением энергетических проблем для районов, относящихся к районам децентрализованного электроснабжения, что составляет более 70% территории России. Обеспечение энергии для отдаленных регионов и нехватка энергии требуют значительных затрат.

    И здесь далеко не полезно использовать возможности существующей федеральной энергетической системы. Экономический потенциал в России значительно выше, чем потенциал возобновляемых источников энергии, таких как ветер, солнечная энергия и биомасса, вместе взятые.В национальной энергетической программе развивается компания «ИНСЕТ» «Концепция развития и объектов схема размещения малых гидроэлектростанций на территории Республики Тыва », согласно которой в этом году будет введена в эксплуатацию небольшая гидроэлектростанция в селе Кызыл-Хая.

    В настоящее время гидроэлектростанции INSET работают в России (Кабардино-Балкария, Башкортостан), Содружестве Независимых Государств (Беларусь, Грузия), а также в Латвии и других странах.

    Экологически чистая и экономичная мини-энергия давно привлекает внимание иностранцев.

    Micro INESET работает в Японии, Южной Корее, Бразилии, Гватемале, Швеции, Польше.

    Бесплатное электричество — мини ГЭС своими руками

    Если у Вашего жилища протекает река или даже небольшой ручей, то с помощью самодельной мини ГЭС Вы можете получить бесплатную электроэнергию. Возможно это будет не очень большое пополнение бюджета, но осознание того, что у Вас есть своя собственная электроэнергия — стоит гораздо дороже.

    Ну а если, например на даче, нет центрального электроснабжения — то даже небольшие мощности электроэнергии будут просто необходимы. И так, для создания самодельной гидроэлектростанции необходимо как минимум два условия — наличие водяного ресурса и желание.

    Если и то и другое присутствует, то то первое, что нужно сделать – это измерить скорость потока реки.

    Сделать это очень просто — бросаете в реку веточку и замерьте время, в течении которого она проплывет 10 метров. Поделив метры на секунды, вы получите скорость течения в м/с. Если скорость меньше 1 м/с, то продуктивной мини ГЭС не получится.

    В этом случае можно попробовать увеличить скорость потока искусственно заузив русло или сделав небольшую плотину, если имеете дело с не большим ручьем.

    Для ориентира, можно использовать соотношение между скоростью потока в м/с и мощностью снимаемой электроэнергии с вала винта в кВт (диаметр винта 1 метр).

    Данные экспериментальные, в реальности полученная мощность зависит от многих факторов, но для оценки подойдет. Так:

    • 0.5 м/с – 0.03 кВт,
    • 0.7 м/с – 0.07 кВт,
    • 1 м/с – 0.14 кВт,
    • 1.5 м/с – 0.31 кВт,
    • 2 м/с – 0.55 кВт,
    • 2.5 м/с – 0.86 кВт,
    • 3 м/с -1.24 кВт,
    • 4 м/с – 2.2 кВт и т.д.

    Мощность самодельной мини ГЭС пропорциональна кубу скорости потока.

    Как уже указывалось, если скорость течения недостаточная, попробуйте ее искусственно увеличить, если это конечно возможно.

    Типы мини-ГЭС

    Существует несколько основных вариантов самодельных мини гидроэлектростанций.

    Это колесо с лопастями, установленное перпендикулярно поверхности воды.

    Колесо погружено в поток меньше чем наполовину. Вода давит на лопасти и вращает колесо. Существуют также колеса-турбины со специальными лопатками, оптимизированными под струю жидкости. Но это достаточно сложные конструкции скорее заводского, чем самодельного изготовления.

    Это ротор с вертикальной осью вращения, используемый для генерации электрической энергии.

    Вертикальный ротор, который вращается за счет разности давлений на его лопастях. Разница давлений создается за счет обтекания жидкостью сложных поверхностей. Эффект подобен подъемной силе судов на подводных крыльях или подъемной силе крыла самолета. Эта конструкция была запатентована Жорж Жан-Мари Дарье, французским авиационным инженером в 1931 году. Также часто используется в конструкциях ветрогенераторов.

    Гирляндная гидроэлектростанция состоит из легких турбин — гидровингроторов, нанизанных и жестко закрепленными в виде гирлянды на тросе, переброшенном через реку.

    Один конец троса закрепляется в опорном подшипнике, второй — вращает ротор генератора.

    Мини-ГЭС — гидроэнергоблок Ленева

    Трос в этом случае играет роль своеобразного вала, вращательное движение которого передается к генератору. Поток воды вращает роторы, роторы вращают трос.

    Также заимствован из конструкций ветровых электростанций, такой себе «подводный ветряк» с вертикальным ротором. В отличие от воздушного, подводный пропеллер имеет лопасти минимальной ширины. Для воды достаточно ширины лопасти всего в 2 см. При такой ширине будет минимальное сопротивление и максимальная скорость вращения.

    Такая ширина лопастей выбиралась для скорости потока 0.8-2 метра в секунду. При больших скоростях, возможно, оптимальны другие размеры. Пропеллер движется не за счет давления воды, а за счет возникновения подъемной силы. Так же как крыло самолета. Лопасти пропеллера движутся поперек потока, а не увлекаются потоком в направлении течения.

    Преимущества и недостатки различных систем самодельной мини ГЭС

    Недостатки гирляндной ГЭС очевидны: большая материалоемкость, опасность для окружающих ( длинный подводный трос, скрытые в воде роторы, перегораживание реки), низкий КПД.

    Гирляндная ГЭС – это своего рода небольшая плотина. Целесообразно использовать в безлюдных, удаленных местах с соответствующими предупредительными знаками.

    Возможно потребуется разрешение властей и экологов. Второй вариант — небольшой ручей у Вас в огороде.

    Ротор Дарье — сложен в расчете и изготовлении.

    В начале работы его нужно раскрутить. Но он привлекателен тем, что ось ротора расположена вертикально и отбор мощности можно производить над водой, без дополнительных передач. Такой ротор будет вращаться при любом изменении направления потока — это плюс.

    Наибольшее распространение при построении самодельных гидроэлектростанций получили схемы пропеллера и водяного колеса.

    Так как эти варианты сравнительно просты в изготовлении, требуют минимальных расчетов и реализуются при минимальных затратах, имеют высокий КПД, просты в настройке и эксплуатации.

    Пример простейшей мини-ГЭС

    Простейшую гидроэлектростанцию можно быстро соорудить из обычного велосипеда с динамкой для велофары.

    Из оцинкованного железа или не толстого листового алюминия надо заготовить несколько лопастей (2-3). Лопасти должны быть длиной от обода колеса до втулки, а шириной 2-4 см.

    Эти лопасти устанавливаются между спицами любым подручным способом или заранее заготовленными креплениями.

    Если вы используете две лопасти, то установите их напротив друг друга.

    Если захотите добавить большее количество лопастей, то разделите окружность колеса на число лопастей и установите их через равные промежутки. С глубиной погружения колеса с лопастями в воду можете поэкспериментировать. Обычно его погружают от одной трети до половины.

    Вариант походной ветроэлектростанции рассматривался ранее.

    Такая микро ГЭС не занимает много места и отлично послужит велотуристам — главное наличие ручья или речушки — что обычно и есть в месте разбивки лагеря.

    Мини ГЭС из велосипеда сможет освещать палатку и заряжать сотовые телефоны или другие гаджеты.

    Каждый электрик должен знать:  Не светит светильник Армстронг- в чем причина
    Добавить комментарий