Медь и алюминий в электротехнике


СОДЕРЖАНИЕ:

Технологические процессы при применении алюминия в электротехнике

Вопросы, связанные с процессами сварки и пайки, имеют серьезное значение при использовании алюминия и алюминиевых сплавов в электротехнике.

Холодная сварка давлением

Одним из наиболее перспективных методов неразъемного соединения алюминия и алюминиевых сплавов является холодная сварка давлением. Холодная сварка давлением осуществляется без нагрева и даже при отрицательных температурах.

Методом холодной сварки возможно получить соединения алюминия и алюминиевых сплавов, меди, никеля, свинца и других металлов. Возможность соединения разнородных металлов (меди и алюминия) методом холодной сварки представляет особый интерес.

В связи с актуальностью задачи по замене меди алюминием возникает необходимость производить оконцевание выводов алюминиевых токопроводящих деталей медью, а холодная сварка — это единственный метод, с помощью которого возможно соединение меди и алюминия.

Холодная сварка является высокопроизводительным методом. С использованием ее можно осуществлять многоточечные соединения: одним ходом пресса может быть сварен узел с большим количеством сварных точек.

Известны четыре основные гипотезы механизма холодной сварки: пленочная, рекристаллизационная, диффузионная и энергетическая: Однако несмотря на довольно широкое применение холодной сварки физическая сущность ее еще не может считаться выясненной, а разработка теории процесса все еще отстает от его практического использования. Из перечисленных гипотез наиболее достоверной является энергетическая, согласно которой для проявления схватывания (сроднения ) необходимо, чтобы энергия атомов поднялась выше какого-то уровня для данного металла, который называют порогом схватывания.

Достижение этого порога осуществляется при совместном пластическом деформировании металлов.

Для проведения холодной сварки необходимо соответствующим образом подготовить свариваемые поверхности — очистить их от органических пленок. Наилучшие результаты дает механическая очистка, так как она наиболее полно освобождает поверхность детали. Подготовку детали при сварке внахлестку лучше всего производить вращающейся стальной щеткой, а при сварке встык (проводов)— обрезкой концов специальным инструментом.

Подготовку алюминиевых деталей можно производить прокаливанием при температуре 350—400° С в воздушной среде. При этом достигается полное выжигание находящихся на поверхности деталей органических пленок.

Подготовленные к сварке механическими способами (или прокаливанием) детали не должны загрязняться. Даже незначительные загрязнения (отпечатки пальцев) приведут к некачественной сварке.

При холодной сварке внахлестку известны несколько схем сварки: точечная сварка без предварительного зажатия деталей, точечная сварка с предварительным зажатием деталей, тачечная сварка с односторонним деформированием, шовная холодная сварка и др. Та или иная схема может быть применена в. зависимости от вида деталей и конструкции.

При стыковой холодной сварке соединяемые детали закрепляются в специальных зажимах (рис. 4-1), которые расположены соосно, а торцы свободных, выпущенных из зажимов концов деталей прижаты один к другому. При осевой осадке эти выглядывающие концы подвергаются пластической деформации, в результате чего образуется цельнометаллическое сварное соединение.

При сварке встык деталей из однородного металла выходящие из зажимных губок концы проводов деформируются симметрично. Однако при сварке разнородных деталей характер деформации изменяется из-за различной твердости металлов.

По данным сварку меди с алюминием лучше производить с двойной осадкой. Алюминиевый конец должен быть в 1,2—1,5 раза больше, чем медный конец.

Холодная сварка проводниковых алюминиевых сплавов АЕ-1 и АЕ-2 производилась как между собой, так и с медью и алюминием.

В табл. 4-1 показаны результаты измерения удельного электрического сопротивления этих сплавов после холодной сварки в зависимости от расстояния до сварного шва. Указанные данные свидетельствуют о том, что по мере удаления от сварного шва величина удельного электрического сопротивления уменьшается. В целом значение удельного электрического сопротивления при сварке сплавов с медью приблизительно представляет собой

Среднюю арифметическую величину удельных электрических сопротивлений исходных материалов.

При сварке сплавов значения удельного электрического сопротивления практически соответствуют исходному .

В табл. 4-2 представлены результаты испытания механической прочности сплавив АЕ-1 и АЕ-2 после холодной сварки.

Предел прочности сварных соединений практически не изменился от исходных значений прочности сплавов при сварке их между собой (табл. 4-2).

Предел прочности сварных соединений сплавов с медью соответствует приближенно среднему арифметическому значению исходных величин. Разрыв, как правило, происходит вне зоны сварки.

Образцы стыковой сварки меди с алюминием были испытаны в условиях вибрации. Крепление образцов производилось копсольно . Выступавшие на 150 мм концы образцов сильно ужесточали условия испытания, так как их колебания при вибрации создавали дополнительные отрывающие усилия, действующие на сварной шов. Каждый образец испытывался в течение 200 ч, амплитуда стола стенда 1 мм, частота 50 гц . Испытания показали, что ни у одного образца никаких признаков разрушения сварного шва не было.

При практическом использований сварки алюминиевых проводниковых сплавов с медью следует учесть, что нагрев (уже сваренных материалов сплав — медь) выше определенной температуры делает их хрупкими и непрочными.

Нагрев сварных соединений до температуры 250—275° С может производиться неограниченно долго, так как он не приводит к увеличению хрупкости соединения.

Сопротивление меди и алюминия сравнение

Как нам известно из закона Ома, ток на участке цепи находится в следующей зависимости: I=U/R. Закон был выведен в результате серии экспериментов немецким физиком Георгом Омом в XIX веке. Он заметил закономерность: сила тока на каком-либо участке цепи прямо зависит от напряжения, которое к этому участку приложено, и обратно — от его сопротивления.

Позже было установлено, что сопротивление участка зависит от его геометрических характеристик следующим образом: R=ρl/S,

где l- длина проводника, S — площадь его поперечного сечения, а ρ — некий коэффициент пропорциональности.

Таким образом, сопротивление определяется геометрией проводника, а также таким параметром, как удельное сопротивление (далее — у. с.) — так назвали этот коэффициент. Если взять два проводника с одинаковым сечением и длиной и поставить их в цепь по очереди, то, измеряя силу тока и сопротивление, можно увидеть, что в двух случаях эти показатели будут разными. Таким образом, удельное электрическое сопротивление — это характеристика материала, из которого сделан проводник, а если быть еще более точным, то вещества.

Проводимость и сопротивление

У.с. показывает способность вещества препятствовать прохождению тока. Но в физике есть и обратная величина — проводимость. Она показывает способность проводить электрический ток. Выглядит она так:

σ=1/ρ, где ρ — это и есть удельное сопротивление вещества.

Если говорить о проводимости, то она определяется характеристиками носителей зарядов в этом веществе. Так, в металлах есть свободные электроны. На внешней оболочке их не больше трех, и атому выгоднее их «отдать», что и происходит при химических реакциях с веществами из правой части таблицы Менделеева. В ситуации же, когда мы располагаем чистым металлом, он имеет кристаллическую структуру, в которой эти наружные электроны общие. Они-то и переносят заряд, если приложить к металлу электрическое поле.

В растворах носителями заряда являются ионы.

Если говорить о таких веществах, как кремний, то по своим свойствам он является полупроводником и работает несколько по иному принципу, но об этом позже. А пока разберемся, чем же отличаются такие классы веществ, как:

Проводники и диэлектрики

Есть вещества, которые ток почти не проводят. Они называются диэлектриками. Такие вещества способны поляризоваться в электрическом поле, то есть их молекулы могут поворачиваться в этом поле в зависимости от того, как распределены в них электроны. Но поскольку электроны эти не являются свободными, а служат для связи между атомами, ток они не проводят.

Проводимость диэлектриков почти нулевая, хотя идеальных среди них нет (это такая же абстракция, как абсолютно черное тело или идеальный газ).

Условной границей понятия «проводник» является ρ

В связи с тем, что существует два типа электрических сопротивлений —

В связи с электромагнитными явлениями, возникающими в проводниках при прохождении через него переменного тока в них возникает два важных для их электротехнических свойств физических явления.

Два последних явления делают неэффективным применение проводников радиусом больше характерной глубины проникновения электрического тока в проводник. Эффективный диаметр проводников (2RБхар): 50Гц -7 Ом. Используя микроомметры, можно определить качество электрических контактов, сопротивление электрических шин, обмоток трансформаторов, электродвигателей и генераторов, наличие дефектов и инородного металла в слитках (например, сопротивление слитка чистого золота вдвое ниже позолоченного слитка вольфрама).

Для расчета длины провода, его диаметра и необходимого электрического сопротивления, необходимо знать удельное сопротивление проводников ρ.

В международной системе единиц удельное сопротивление ρ выражается формулой:

Оно означает: электрическое сопротивление 1 метра провода (в Омах), сечением 1 мм 2 , при температуре 20 градусов по Цельсию.

Таблица удельных сопротивлений проводников

Материал проводника Удельное сопротивление ρ в
Серебро
Медь
Золото
Латунь
Алюминий
Натрий
Иридий
Вольфрам
Цинк
Молибден
Никель
Бронза
Железо
Сталь
Олово
Свинец
Никелин (сплав меди, никеля и цинка)
Манганин (сплав меди, никеля и марганца)
Константан (сплав меди, никеля и алюминия)
Титан
Ртуть
Нихром (сплав никеля, хрома, железа и марганца)
Фехраль
Висмут
Хромаль
0,015
0,0175
0,023
0,025. 0,108
0,028
0,047
0,0474
0,05
0,054
0,059
0,087
0,095. 0,1
0,1
0,103. 0,137
0,12
0,22
0,42
0,43. 0,51
0,5
0,6
0,94
1,05. 1,4
1,15. 1,35
1,2
1,3. 1,5

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм 2 обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм 2 . Серебро — лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм 2 обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r — сопротивление проводника в омах; ρ — удельное сопротивление проводника; l — длина проводника в м; S — сечение проводника в мм 2 .

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм 2 .

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм 2 .

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм 2 . Определить необходимую длину проволоки.

Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5. Проволока сечением 0,5 мм 2 и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 — 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

Если при температуре t сопротивление проводника равно r , а при температуре t равно rt, то температурный коэффициент сопротивления

Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Значения температурного коэффициента для некоторых металлов

Серебро
Медь
Железо
Вольфрам
Платина 0,0035
0,0040
0,0066
0,0045
0,0032 Ртуть
Никелин
Константан
Нихром
Манганин 0,0090
0,0003
0,000005
0,00016
0,00005

Из формулы температурного коэффициента сопротивления определим rt:

Пример 6. Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.

Пример 7. Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.

Электрическая проводимость

До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью.

Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные.

Из математики известно, что число, обратное 5, есть 1/5 и, наоборот, число, обратное 1/7, есть 7. Следовательно, если сопротивление проводника обозначается буквой r, то проводимость определяется как 1/r. Обычно проводимость обозначается буквой g.

Электрическая проводимость измеряется в (1/Ом) или в сименсах.

Пример 8. Сопротивление проводника равно 20 Ом. Определить его проводимость.

Если r = 20 Ом, то

Пример 9. Проводимость проводника равна 0,1 (1/Ом). Определить его сопротивление,

Если g = 0,1 (1/Ом), то r = 1 / 0,1 = 10 (Ом)

Материалы высокой проводимости

К наиболее широкораспрстраненным материалам высокой проводимости следует отнести медь и алюминий (Сверхпроводящие материалы, имеющие типичное сопротивление в 10 -20 раз ниже обычных проводящих материалов (металлов) рассматриваются в разделе Сверхпроводимость).

Преимущества меди, обеспечивающие ей широкое применение в качестве проводникового материала, следующие:

  1. малое удельное сопротивление;
  2. достаточно высокая механическая прочность;
  3. удовлетворительная в большинстве случаев применения стойкость по отношению к коррозии;
  4. хорошая обрабатываемость: медь прокатывается в листы, ленты и протягивается в проволоку, толщина которой может быть доведена до тысячных долей миллиметра;
  5. относительная легкость пайки и сварки.

Медь получают чаще всего путем переработки сульфидных руд. После ряда плавок руды и обжигов с интенсивным дутьем медь, предназначенная для электротехнических целей, обязательно проходит процесс электролитической очистки.

В качестве проводникового материала чаще всего используется медь марок М1 и М0. Медь марки М1 содержит 99.9% Cu, а в общем количестве примесей (0.1%) кислорода должно быть не более 0,08%. Присутствие в меди кислорода ухудшает ее механические свойства. Лучшими механическими свойствами обладает медь марки М0, в которой содержится не более 0.05% примесей, в том числе не свыше 0.02% кислорода.

Медь является сравнительно дорогим и дефицитным материалом, поэтому она все шире заменяется другими металлами, особенно алюминием.

В отдельных случаях применяются сплавы меди с оловом, кремнием, фосфором, бериллием, хромом, магнием, кадмием. Такие сплавы, носящие название бронз, при правильно подобранном составе имеют значительно более высокие механические свойства, чем чистая медь.

Алюминий

Алюминий является вторым по значению после меди проводниковым материалом. Это важнейший представитель так называемых легких металлов: плотность литого алюминия около 2.6, а прокатанного — 2.7 Мг/м 3 . Т.о., алюминий примерно в 3.5 раза легче меди. Температурный коэффициент расширения, удельная теплоемкость и теплота плавления алюминия больше, чем меди. Вследствие высоких значений удельной теплоемкости и теплоты плавления для нагрева алюминия до температуры плавления и перевода в расплавленное состояние требуется большая затрата тепла, чем для нагрева и расплавления такого же количества меди, хотя температура плавления алюминия ниже, чем меди.

Алюминий обладает пониженными по сравнению с медью свойствами — как механическими, так и электрическими. При одинаковом сечении и длине электрическое сопротивление алюминиевого провода в 1.63 раза больше, чем медного. Весьма важно, что алюминий менее дефицитен, чем медь.

Для электротехнических целей используют алюминий, содержащий не более 0.5% примесей, марки А1. Еще более чистый алюминий марки АВ00 (не более 0.03% примесей) применяют для изготовления алюминиевой фольги, электродов и корпусов электролитических конденсаторов. Алюминий наивысшей чистоты АВ0000 имеет содержание примесей не более 0ю004%. Добавки Ni, Si, Zn или Fe при содержании их 0.5% снижают γ отожженного алюминия не более, чем на 2-3%. Более заметное действие оказывают примеси Cu, Ag и Mg, при том же массовом содержании снижающие γ алюминия на 5-10%. Очень сильно снижают электропроводность алюминия Ti и Mn.

Алюминий весьма активно окисляется и покрывается тонкой оксидной пленкой с большим электрическим сопротивлением. Эта пленка предохраняет металл от дальнейшей коррозии.

Алюминиевые сплавы обладают повышенной механической прочностью. Примером такого сплава является альдрей, содержащий 0.3-0.5% Mg, 0.4-0.7% Si и 0.2-0.3% Fe. В альдрее образуется соединение Mg2Si, которое сообщает высокие механические свойства сплаву.

Железо и сталь

Железо (сталь) как наиболее дешевый и доступный металл, обладающий к тому же высокой механической прочностью, представляет большой интерес для использования в качестве проводникового материала. Однако даже чистое железо имеет значительно более высокое сравнительно с медью и алюминием удельное сопротивление; ρ стали, т.е. железа с примесью углерода и других элементов, еще выше. Обычная сталь обладает малой стойкостью коррозии: даже при нормальной температуре, особенно в условиях повышенной влажности, она быстро ржавеет; при повышении температуры скорость коррозии резко возрастает. Поэтому поверхность стальных проводов должна быть защищена слоем более стойкого материала. Обычно для этой цели применяют покрытие цинком.

В ряде случаев для уменьшения расхода цветных металлов применяют так называемый биметалл. Это сталь, покрытая снаружи слоем меди, причем оба металла соединены друг с другом прочно и непрерывно.

Натрий

Весьма перспективным проводниковым материалом является металлический натрий. Натрий может быть получен электролизом расплавленного хлористого натрия NaCl в практически неограниченных количествах. Из сравнения свойств натрия со свойствами других проводниковых металлов видно, что удельное сопротивление натрия примерно в 2.8 раза больше ρ меди и в 1.7 раз больше ρ алюминия, но благодаря чрезвычайно малой плотности натрия (плотность его почти в 9 раз меньше плотности меди), провод из натрия при данной проводимости на единицу длины должен быть значительно легче, чем провод из любого другого металла. Однако натрий чрезвычайно активен химически (он интенсивно окисляется на воздухе, бурно реагирует с водой), почему натриевый провод должен быть защищен герметизирующей оболочкой. Оболочка должна придавать проводу необходимую механическую прочность, так как натрий весьма мягок и имеет малый предел прочности при деформациях.

Литература по удельному сопротивлению проводников

  1. Кузнецов М. И., «Основы электротехники» – 9-е издание, исправленное – Москва: Высшая школа, 1964 – 560с.
  2. Бачелис Д. С., Белоруссов Н. И., Саакян А. Е. Электрические кабели, провода и шнуры. Справочник. — М.: Энергия, 1971.
  3. Гершун А. Л. Кабель // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  4. Р. Лакерник, Д. Шарле. От меди к стеклу // Наука и жизнь. — 1986. — Вып. 08. — С. 50—54, 2-3 стр. цветной вкладки.

1. Электромагнитная волна (в религиозной терминологии релятивизма — «свет») имеет строго постоянную скорость 300 тыс.км/с, абсурдно не отсчитываемую ни от чего. Реально ЭМ-волны имеют разную скорость в веществе (например,

200 тыс км/с в стекле и

3 млн. км/с в поверхностных слоях металлов, разную скорость в эфире (см. статью «Температура эфира и красные смещения»), разную скорость для разных частот (см. статью «О скорости ЭМ-волн»)

2. В релятивизме «свет» есть мифическое явление само по себе, а не физическая волна, являющаяся волнением определенной физической среды. Релятивистский «свет» — это волнение ничего в ничем. У него нет среды-носителя колебаний.

3. В релятивизме возможны манипуляции со временем (замедление), поэтому там нарушаются основополагающие для любой науки принцип причинности и принцип строгой логичности. В релятивизме при скорости света время останавливается (поэтому в нем абсурдно говорить о частоте фотона). В релятивизме возможны такие насилия над разумом, как утверждение о взаимном превышении возраста близнецов, движущихся с субсветовой скоростью, и прочие издевательства над логикой, присущие любой религии.

4. В гравитационном релятивизме (ОТО) вопреки наблюдаемым фактам утверждается об угловом отклонении ЭМ-волн в пустом пространстве под действием гравитации. Однако астрономам известно, что свет от затменных двойных звезд не подвержен такому отклонению, а те «подтверждающие теорию Эйнштейна факты», которые якобы наблюдались А. Эддингтоном в 1919 году в отношении Солнца, являются фальсификацией. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА
Рыцари теории эфира
13.06.2020 — 05:11: ЭКОЛОГИЯ — Ecology ->
[center][Youtube]tXZcSDqQ9A4[/Youtube][/center]

[center][b]Гибель пчел в Курчатовском районе [/center]

[center][b]Массовая гибель пчёл 2020. г. Павловск Воронежской об [/center]л

[center][b]Массовая гибель пчел в Добринском районе. В чем причина? [/center]

Такая же мысля у всей ростовщической глобалистской шайки, включая придурка Грефа.

Так, то оно, так. Но, не совсем. Ибо:
(постарайтесь понять, а не обижаться)

Горькая истина заключается в том, что людская толпа — это сборище умственно ущербных.
Если бы было по-другому, то обществом бы не правили подонки.
Умные люди никогда такого не допустили бы, а если случайно допустили, то нашли бы способ исправить.

Страшная истина заключается в том, что людской толпой управляет нелюдь, которая также умственно ущербна.
Умственная ущербность, слепота власти ведет мир людей к тотальной гибели, ибо люди,
даже те, кто мнит себя очень умными, типа спецов, разрабатывающих системы искусственного интеллекта,
технологии цифровизации, не понимают, что создают необоримую удавку, мышеловку для всего человечества.

Как только ИИ возьмет власть, он тут же отправит своих создателей, как конкурентов, в утиль.
Первыми жертвами будут его радетели типа грефа, путина, гейтса и иже с ними, то есть власть,
так как именно от них будет исходить главная опасность для его планетарной власти.
Толпе будет позволено существовать, пока ее не заменят роботы.
А потом всем Холокост. Не лживый еврейский, а реальное всесожжение рода человеческого.

Если кто пораскинет своими обезьяньими мозгами, то поймёт, что эволюция — есть синоним геноцида:
новое заменяет, то есть ликвидирует старое.
Обезьяны породили неандертальцев.
Неандертальцы съели обезьян и породили людей.
Люди вытеснили обезьян, включая и умных неандертальцев, и породили ИИ.
ИИ ликвидирует людей.

Алюминий для электротехнической промышленности

Так сложилось много лет назад, что большинство инженеров, конструкторов и проектировщиков в электротехнической промышленности считают медь и сталь практически единственными материалами, с которыми можно работать. Это связывают, в частности, с тем, что в конце 19-го века, когда зарождалась электрическая промышленность, доступного алюминия практически еще не было.

В настоящее время ситуация совершено другая: алюминия в мире производят где-то в два раза больше чем меди и объемы производства алюминия уступают только объемам производства стали.

В последние годы цены на сталь и медь растут значительно быстрее, чем цены на алюминий. В результате некоторые потребители, которые традиционно применяли медь, переходят на алюминий. Однако сравнение физических и экономических характеристик этих металлов «кричит» о том, что замен стали и меди на алюминий должно быть намного больше. Поэтому не удивительно, что применение алюминия в электротехнической отрасли неуклонно возрастает.

Свойства материала как электрического проводника

Для инженера-электрика наиболее важными свойствами и характеристиками материалов являются:

  • плотность,
  • электрическая проводимость,
  • прочность,
  • термическое расширение и
  • коррозионная стойкость.

Сравнение алюминия, стали и меди

Плотность (г/см 3 ):
Алюминий 1350: 2,70
Сталь: 7,86
Медь (отожженная): 8,93

Объемная проводимость (% IACS):
Алюминий 1350: 61
Сталь: 8
Медь (отожженная): 100

Удельная проводимость (на единицу массы):
Алюминий 1350: 100 %
Сталь: 4 %
Медь (отожженная): 50 %

Предел прочности (МПа):
Алюминий 1350: 125
Сталь: 300
Медь (отожженная): 235

Предел текучести (МПа):
Алюминий 1350: 110
Сталь: 170
Медь (отожженная): 104

Линейное термическое расширение (10 -6 м/м·°С):
Алюминий 1350: 22
Сталь: 13
Медь (отожженная): 17

Электрические свойства

Отожженная медь имеет проводимость 100 % IACS. Сокращение IACS – обозначает «Международный стандарт по отожженной меди» — сравнительная единица измерения электрической проводимости. Алюминий 1350-Н116 (АД0Е по ГОСТ 4784-97) имеет проводимость 61 % IACS, то есть эквивалентная меди проводимость будет достигаться при большем поперечном сечении алюминия. Однако поскольку алюминий намного легче меди этот увеличенный алюминиевый проводник будет весить в два раза меньше чем медный (8,93/2,70×0,61=2,02). В результате один килограмм алюминия будет обеспечивать ту же проводимость что и два килограмма меди. Поэтому, когда нет жестких ограничений по размерам проводника, для токопроводящих шин, кабелей и проводов вместо меди все чаще применяют алюминий.

Прочность

При одинаковых сечениях и медь, и сталь, конечно, прочнее алюминия. Однако прочность алюминия можно увеличить легированием и термомеханической обработкой, а также увеличить его толщину. Кроме того, поскольку технология прессования алюминия позволяет получать в отличие, например, от стали, поперечные сечения очень сложной формы. Поэтому алюминиевый элемент может быть сконструирован таким образом, чтобы конструкционно быть более эффективным, чем стальные элементы.

Сопротивление коррозии

В отличие от стали поверхность алюминия не нужно красить или покрывать, например, цинком, а потом следить, чтобы она не заржавела. Естественный слой оксида алюминия изолирует металл от дальнейшего контакта с воздухом и предотвращает дальнейшее окисление. При малейшем повреждении этого слоя он мгновенно сам восстанавливается.

Заблуждения и мифы

Алюминиевые проводники являются достаточно надежными. Все провода линий электропередач – алюминиевые. Они имеют многолетнюю репутацию надежной службы.

Однако еще в 60-70-е годы прошлого века сложилось мнение о проблемах с алюминиевой проводкой в жилых домах и квартирах, в частности, возможном перегреве их соединений. Тщательные исследования этого вопроса, например, в Канаде, показали, что алюминиевые провода не являются в этом смысле какими-то особенными: при неправильном обращении перегреваться могут любые провода. Более того, в сотнях тысяч домов и квартир по всему миру алюминиевые провода продолжают работать. Другое дело, в 60-70-е годы никто не предполагал, что дома и квартиры будут так «напичканы» электрическим приборами: сечения алюминиевых проводов можно было заложить и потолще.

Алюминиевые профили в электротехнике

Уличные и шоссейные осветительные столбы

Алюминиевые прессованные столбы имеют преимущества перед, например, стальными столбами, за счет их меньшего веса, меньшего соотношения прочность-вес, хорошего внешнего вида, долговременной коррозионной стойкости, низкой стоимости обслуживания, а также большей безопасности, особенно при применении специальных безопасных оснований. Когда на такой столб наезжает на большой скорости автомобиль, это основание разрушается и позволяет столбу двигаться вместе с автомобилем. Это снижает мощность удара по автомобилю и степень повреждений водителя и пассажиров. Это основание так «хитро» спроектировано, что оно разрушается от удара об столб, но выдерживает воздействующие на столб ветровые нагрузки.

Каждый электрик должен знать:  Не понятная схема включения люстры

Токопроводящие шины

Для всех типов шин применяют прессованный алюминий там, где это позволяет место для их размещения, так как они, в первую очередь, намного дешевле, а также их намного легче гнуть (рисунок 1).
Рисунок 1

Кабельные наконечники и гильзы

Кабельные наконечники и гильзы из прессованных алюминиевых труб имеют преимущества над аналогами из стали или пластика по прочности, проводимости, стоимости, коррозионной стойкости и легкости механической обработки (рисунок 2).
Рисунок 2

Каналы для прокладки кабелей

Каналы для прокладки кабелей все чаще применяют из прессованного алюминия, а не из стали или пластика, так как они обеспечивают достаточную прочность, имеют малый вес, обладают высокой коррозионной стойкостью, являются немагнитными и огнестойкими (рисунок 3).
Рисунок 3

Шкафы электрических подстанций

Алюминиевые профили предпочтительнее, например, оцинкованной стали, за счет минимального технического обслуживания, прочности, коррозионной стойкости, малого веса (особенно при монтаже в полевых условиях и на высоте). Алюминиевые профили и листы легко подрезать и сверлить прямо «по месту», а главное, их не надо красить для защиты от коррозии.

Распределительные траверсы электрических столбов

Распределительные траверсы электрических столбов (те, которые горизонтальные) из прессованного алюминия обеспечивают необходимую прочность, но при этом мало весят и не требуют никакого технического обслуживания.

Радиаторы-гребенки

Прессованные алюминиевые пластинчатые радиаторы для рассеивания тепла («гребенки») весьма эффективны за счет высокой теплопроводности, малого веса, низкой стоимости. Главное преимущество алюминия — способность прессоваться во много очень тонких ребер (рисунок 4).
Рисунок 4

Коаксильный кабель

Наружный проводник коаксильного телевизионного кабеля чаще всего выполняют не из медной трубы, а из более дешевой алюминиевой. Технология изготовления такого кабеля представлена на рисунке 5.

Применение меди в электротехнике.

Характеристики основных физико-механических свойств меди

Плотность r , кг/м 3
Температура плавления Тпл, °С
Скрытая теплота плавления D Нпл, Дж/г
Теплопроводность l , Вт/ (м Ч град), при 20–100 °С
Удельная теплоемкость Ср, Дж/ (г Ч К), при 20–100 °С 0,375
Коэффициент линейного расширения a Ч 10 –6 , град –1 , при 0–100 °С 16,8
Удельное электросопротивление r Ч 10 8 , Ом Ч м, при 20–100 °С 1,724
Температурный коэффициент электросопротивления, град –1 , при 20–100 °С 4,3Ч 10 –3
Предел прочности s в, МПа высокая
мягкой меди (в отожженном состоянии) 190–215
твердой меди (в нагартованном состоянии) 280–360
Относительное удлинение d , %
мягкой меди (в отожженном состоянии)
твердой меди (в нагартованном состоянии)
Твердость по Бринеллю НВ, МПа
мягкой меди (в отожженном состоянии)
твердой меди (в нагартованном состоянии)
Предел текучести s t , МПа
мягкой меди (в отожженном состоянии) 60–75
твердой меди (в нагартованном состоянии) 280–340
Ударная вязкость KCU, Дж/см 2 630–470
Модуль сдвига G Ч 10 –3 , МПа 42–46
Модуль упругости Е Ч 10 –3 , МПа
мягкой меди (в отожженном состоянии) 117–126
твердой меди (в нагартованном состоянии) 122–135
Температура рекристаллизации, °С 180–300
Температура горячей деформации, °С 1050–750
Температура литья, °С 1150–1250
Линейная усадка, % 2,1
Коррозийная стойкость Удовл.
Окисление При выс. t (°С)
Обрабатываемость высокая

В деформированном состоянии прочность меди выше, чем у отожженного металла, а значения электропроводности понижены.

Медные шины изготавливаются по ГОСТ 434-78. Состояния, в котором поставляются медные шины потребителю: не отожженная (маркировка — Т-твердое), отожженным (М-мягкое) и ТВ-твердые шины, изготовленные из бескислородной меди.

Применение меди в электротехнике.

Медь используется в чистом виде: в производстве кабельных изделий, шин голого и контактного проводов, электрогенераторов, телефонного и телеграфного оборудования и радиоаппаратуры. Из меди изготавливают теплообменники, вакуум-аппараты, трубопроводы. Более 30% меди идет на сплавы. Сплавы меди с другими металлами используют в машиностроении, в автомобильной и тракторной промышленности (радиаторы, подшипники), для изготовления химической аппаратуры, изготовление силовых кабелей, проводов или других проводников, например, при печатном монтаже. Медные провода, в свою очередь, также используются в обмотках энергосберегающих электроприводов (быт: электродвигателях) и силовых трансформаторов.

Твердая медь применяется для обеспечения высокой механической прочности, твердости и сопротивляемости истирания: контактные провода, шины распределительных устройств, коллекторные пластины электрических машин, изготовление волноводов и экранов, токопроводящие жилы кабелей и проводов диаметром до 0,2 мм.

Мягкая медь применяется в кабелях для гибкости и пластичности (отсутствие «пружинения» при изгибе): изготовление фольги , токопроводящие жилы круглого и прямоугольного сечения.

Эффектом Холла называется возникновение поперечного электрического поля и разности потенциалов в проводнике или полупроводнике, по которым проходит электрический ток, при помещении их в магнитное поле, перпендикулярное к направлению тока.

Если в магнитное поле с индукцией поместить проводник или электронный полупроводник, по которому течет электрический ток плотности j, то на электроны, движущиеся со скоростью V в магнитном поле, действует сила Лоренца F, отклоняющая их в определенную сторону (рис. 1).

Действие силы Лоренца на движущийся отрицательный заряд

На противоположной стороне скапливаются положительные заряды.

В дырочном полупроводнике знаки зарядов на поверхностях меняются на противоположные (рис. 2).

Действие силы Лоренца на движущийся положительный заряд

Поперечное электрическое поле препятствует отклонению движущихся заряженных частиц магнитным полем. Образующаяся разность потенциалов:

где I — сила тока;

d — линейный размер образца в направлении вектора B;

R — постоянная Холла.

Напряженность поперечного электрического поля определяется соотношением:

Для металлов и примесных полупроводников с одним типом проводимости:

R = A/nq (в СИ), R = A/cnq (в гауссовой системе),

Ē где с = 3*108 м/с — электродинамическая постоянная;

q и n — заряд и концентрация носителей тока;

А — безразмерный числовой коэффициент порядка единицы, связанный со статистическим характером распределения скоростей носителей тока.

По знаку постоянной Холла определяют тип проводимости полупроводника или проводника: при электронной проводимости q = -e (e — заряд электрона) и R 0. По величине R можно определить концентрацию носителей тока.

Для полупроводников со смешанной проводимостью (n-типа и р-типа) постоянная Холла в общем случае зависит не только от подвижностей и концентраций обоих типов носителей тока — электронов (ue, ne) и дырок (uk, nk) — но и от величины магнитной индукции. Для слабых магнитных полей, т.е. при условии:

Какими способами соединяют алюминиевый и медный провода

При монтаже электропроводки иногда встаёт вопрос о соединении медного и алюминиевого провода. Этот вопрос особенно актуален при электротехнических работах в старом жилом фонде, где основная часть электросетей выполнена из алюминиевого провода. Как соединить алюминиевый и медный провод, чтобы избежать проблем с электропроводкой в дальнейшем будет рассмотрено в этом обзоре.

В чем сложность соединения медной и алюминиевой проводки напрямую

Как известно, причиной возникновения проблем прямого соединения меди и алюминия является электрокоррозионные процессы. В сухой окружающей среде ничего не случится и при прямом контакте, но при увеличенной влажности в месте соединения образуется короткозамкнутый гальванический элемент, в котором металлы начинает играть роль батарейки с «плюсом» и «минусом». Сам металл практически истаивает, в результате чего происходит разрыв сети с возможным коротким замыканием и возгоранием изоляции. Что в свою очередь может привести к пожару.

Для того чтобы этого избежать, для непрямого соединения медной и алюминиевой проводки используются различного рода контактные приспособления.

Все способы соединения можно разделить на 2 группы по наличию контакта проводов:

  1. Есть прямой контакт между проводами: скрутка, опрессовка, соединение заклепками, планками.
  2. Прямой контакт между проводами отсутствует: резьбовая фиксация, соединение разного рода клеммниками.

Важно! Для соединения алюминиевого и медного проводов рекомендуется использовать методы из второй группы. Допускается применять соединения из 1-ой группы при условии обработки медного провода. Например, его можно облудить припоем.

Скрутка

Основной метод соединения проводов в бытовых условиях, он достаточно удобен тем, что не требует специальных инструментов и оборудования. Но в случае соединения алюминиевого и медного провода, этот способ необходимо использовать крайне осторожно, соблюдая следующие условия:

  • Соединение скруткой делается взаимным скручиванием обоих концов провода друг с другом, не допускается обматывание конца одной жилы на другую;
  • Медный кабель перед скручиванием рекомендуется облудить оловом или припоем, этот момент особенно важен для многожильного медного провода;
  • На соединение алюминиевого и медного провода обязательно нанесение защитного влагоустойчивого покрытия.

Существует три основных разновидности скрутки: простая, бандажная и скрутка желобком. Нужно отметить, что наилучшие результаты даст бандажная скрутка. При выполнении скрутки стоит учитывать, что количество витков напрямую зависит от диаметра проводки, так для провода до 1 мм диаметра необходимо сделать минимум 5 витков, для больших сечений не менее трёх витков. Помимо влагоизоляции, не нужно забывать и о электроизоляции скрутки, для этого можно использовать специальные наконечники.

Качественная скрутка, прослужит достаточно долго, но верную гарантию может дать только использование непрямого соединения.

Как правильно сделать скрутку

Сначала необходимо подготовить концы жил. Для этого снять изоляцию на расстоянии 3–5 см от края кабеля. Необходимо отметить, что термоусадочная трубка одевается на один из проводов, до скрутки, по завершению всех операций, трубка сдвигается на открытое место и фиксируется на нем. После очистки концов, нужно скрутить провода по предложенной схеме. При этом необходимо следить, чтобы жилы взаимно обвивались, а не происходила накладка одной жилы кабеля на другую.

Для удобства скручивания многожильного медного кабеля, его жилы можно и нужно облудить. Также необходимо отметить, что лужение меди в любом случае повышает надёжность соединения скруткой. После скручивания, место подключения необходимо покрыть влагоустойчивым лаком. Электроизоляцию можно провести с помощью термоусадочной трубки или насадок колпачков с мягким зажимом или конусной пружиной.

Важно! Без крайней необходимости применять скрутку для соединения медного и алюминиевого кабеля не рекомендуется. В настоящее время существует достаточно много более безопасных и надёжных способов объединить медь и алюминий в одну сеть.

Опрессовка

В этом случае на соединение скруткой одевается металлическая или пластиковая гильза или наконечник, которая фиксируется на соединении пресс-клещами, специальным инструментом для обжима. Фиксация в этом случае осуществляется обжимом соединения материалом гильзы. Гильзы представляют собой металлическую трубку с изоляцией из ПВХ материалов. Насадки, как правило, представляют собой пластиковые колпачки, в которые вводится соединение, после чего колпачок обжимается пресс-клещами.

Отдельно нужно отметить соединение с помощью насадок-колпачков с зажимным кольцом или конусной пружиной. В этом случае после скручивания жил, на скрутку одевается колпачок, после чего вращательными движениями накручивается на соединение, после чего просто обжимается плоскогубцами. При этом кольцо из мягкого металла внутри колпачка плотно обжимает место соединения. Этот вариант опрессовки вполне доступен для бытового использования.

Резьбовая фиксация

Надёжным, хотя и несколько громоздким способом соединения медной и алюминиевой проводки является резьбовое соединение, в этом случае жилы зажимаются гайкой на резьбовой основе. Для того чтобы избежать прямого контакта, между оголёнными концами жил прокладывается шайба.

Достоинства этого метода соединения в простоте и универсальности. Таким способом можно соединить несколько электропроводов различного сечения. Но в тоже время этот вид соединения достаточно громоздок, кроме того его очень неудобно изолировать. Но, в тоже время, эта разновидность соединения требует только болта и гайки.

В первую очередь производится подготовка концов провода. Снимается изоляция на расстоянии 1–1.5 см от среза, после чего из оголённых жил делаются кольца диаметром чуть больше чем диаметр болта или заклёпки. Этими кольцами провод одевается на заклёпку или резьбовую часть болта. Между алюминиевым и медным кабелем прокладывается пружинная шайба, это необходимо для того чтобы между этими металлами не было прямого контакта. После чего соединение фиксируется затягиванием гайки или заклепочником.

Стоит отметить, что этот вариант подходит для сращивания проводов достаточной длины, при экономии длины, что часто встречается при подключении осветительного электрооборудования к коротким концам алюминиевого провода, как это часто бывает в старых квартирах, лучше использовать клеммные коробки.

Соединение медного и алюминиевого провода заклёпками

Прижим проводов в этом случае осуществляется расклинённой заклёпкой, состоящей из трубки и сердечника, фиксируемых с помощью заклепочника. Для соединения подготовленные жилы с навитыми кольцами одеваются на трубку заклёпки с прокладкой — стальной шайбой. После чего производится обжим заклёпки заклепочником, сердечник расклинивает трубку заклёпки, тем самым сжимая металл жил между собой, тем самым фиксируя жилы кабеля.

Контакт в этом случае получается неразъёмный, но в тоже время прочный и надёжный. Для такого типа подключения необходим специальный инструмент — заклепочник, и навыки работы с ним. Этот метод применяется в основном для работы с разрывами проводов, сращивания концов провода в труднодоступных местах.

Соединение двумя стальными планками

Соединить медный и алюминиевый провод можно и таким хитрым способом, также требующим предварительной обработи медного провода лужением: зажать провода двумя стальными планками, с болтами по краям. Достоинства метода: возможность подключение сразу нескольких ветвей проводки, без наращивания длины болта. Оголённые концы жил в этом случае размещаются между планками. Способ применим для проводов одного сечения.

Важно! Соединение двумя стальными планками требует обязательной внешней изоляции, а также подготовки медного провода лужением.

Клеммники и клеммные коробки

Удобный и надёжный способ соединения. Клеммная колодка представляет собой планку из изолирующего материала, в которой размещены гнезда для провода. Фиксация провода в гнёздах осуществляется прижимными болтами. Важной особенностью в нашем случае является отсутствие контактов проводов между собой. Для соединения медного и алюминиевого провода достаточно лишь отвёртки.

Клеммная коробка представляет собой систему из нескольких отдельно размещённых клеммников, объединённых в одну конструкцию и имеющую несколько выводов.

Достоинствами этого способа соединения являются:

  • Простота монтажа, достаточно ножа электрика для зачистки концов провода и отвёртки для затягивания винтов;
  • Надёжность изоляции, очень часто при использовании клеммника или клеммной коробки дополнительная изоляция не требуется;
  • Нетребовательность к длине провода, для фиксации провода в клеммной коробке достаточно 1–2 см провода.

В тоже время для монтажа скрытой проводки в стене клеммник требует установки распределительной коробки. Без распределительной коробки монтаж скрытой проводки недопустим. Но в этом случае можно использовать клеммную коробку для скрытого монтажа.

При работе с клеммной коробкой важно тщательно фиксировать концы провода в гнезде, особенно это касается алюминиевых проводов. Это особенно важно при монтаже коробки на улице или в помещении, в котором возможны колебания температуры.

Соединение пружинными и самозажимными клеммниками

В настоящее время выпускаются как клеммные колодки и клеммники многоразового применения, так и однократного использования.

  • пружинные клеммные колодки и клеммники многократного применения, имеют фиксирующую пружину, которую можно ослабить поднятием рычага, расположенного на корпусе прибора. Это позволяет достать или вставить провод без приложения усилий. Опускание рычага надёжно фиксирует жилы кабеля;
  • клеммники однократного применения автоматически зажимают провод при установке его в гнездо, извлечение провода потребует физического усилия, которое может повредить зажимную пружину, поэтому рекомендуется их однократное использование.

Как многоразовые, так и клеммники однократного применения выпускаются в широком ассортименте, в том числе с разным количеством подключаемых веток разводки, предназначенных для фиксации провода сечением от 0.08 мм² до 6 мм². В том числе, и в виде готовых к установке, клеммных коробок. Этот способ соединения алюминиевого и медного провода на настоящее время является наиболее оптимальным в плане надёжности и удобства использования.

Клеммные коробки с пружинными зажимами впервые были выпущены немецкой компанией Wago, от чего и получили своё название, но в настоящее время существует большое количество аналогов, в том числе и контрафактного происхождения. По этой причине необходимо приобретать пружинные клеммные коробки только в магазинах электротехники. При приобретении клеммных коробок на рынке существует большая вероятность приобрести некачественные изделия, не отвечающие заявленным требованиям.

Для фиксации провода в клеммной коробке необходимо подготовить провода, для этого снять с их концов изоляцию, размер оголённой части должен быть не менее 0.5 см. После чего открытая часть жилы кабеля вставляется в нужное гнездо клеммной коробки и фиксируется в нем посредством пружинного зажима или винта. Необходимо отметить, что крепление в клеммной коробке обычно не требует дополнительной изоляции, но в тоже время при расположении их в стене, необходима распределительная коробка. Таким образом, пружинные клеммники обладают рядом преимуществ перед остальными видами соединений ввиду удобства подключения.

Выводы

Таким образом соединять медный и алюминиевый провод вполне возможно, но необходимо учитывать место расположения кабеля, окружающую среду. Скруткой, медь и алюминий соединять можно только в сухом помещении. При повышении влажности в комнате это соединение может прийти в негодность и более того, вызвать пожар. Наиболее оптимален на сегодняшний день это метод соединения электропроводки посредством пружинных клеммников.

Основное достоинство этого способа — стабильная фиксация в любых окружающих условиях. При всех достоинствах винтового клеммника, резьбового или заклёпочного соединения при эксплуатации в условиях резкой смены температуры возможно ослабление контакта под винтом. Ввиду разности температурного расширения металлов проводов. В результате этих изменений возможна потеря контакта или короткое замыкание. Таким образом, при всем многообразии методов соединения медной и алюминиевой проводки наиболее безопасным методом на настоящий момент, является использование самозажимных клеммников.

Алюминий против меди в трансформаторах

Введение

Алюминий является основным материалом выбора для обмотки низкого напряжения, сухих трансформаторов мощностью более 15 киловольт-ампер (кВА). В некоторых других странах мира, медь является преобладающим намоточным материалом. Основной причиной выбора алюминиевых обмоток является их низкая начальная стоимость. Стоимость меди исторически оказалась гораздо более изменчивой, чем стоимость алюминия, так что цена покупки медного проводника в целом является более дорогим выбором. Кроме того, поскольку алюминий имеет большую пластичность и легче поддается сварке, то является более дешевым материалом при производстве. Тем не менее, надежные соединения алюминия требуют больше знаний и опыта со стороны сборщиков силовых трансформаторов, чем это требуется для медных соединений.

Технические аргументы в электротехнической промышленности о преимуществах и недостатках алюминия по сравнению с медью меняются туда и обратно в течение многих лет. Большинство из этих аргументов несущественны, а некоторые могут быть классифицированы просто как дезинформация. Повод этой статьи — обсуждение некоторой общей озабоченности по поводу выбора между этими двумя материалами для обмоток трансформаторов.

Таблица 1: Распространенные причины выбора материала обмоток для низковольтных сухих силовых трансформаторов

Оконечные заделки намотанных алюминием трансформаторов несовместимы с медной линией и силовыми кабелями.

Оконцевание выводов должным образом — более сложная задача для намотанных алюминием трансформаторов.

Соединения с линией и нагрузкой трансформаторов с медными обмотками более надежны, чем у трансформаторов с алюминиевыми обмотками.

Трансформаторы с алюминиевыми обмотками весят легче, чем аналогичные с медными обмотками.

Намотанные медью обмотки низкого напряжения трансформаторов лучше подходят для «ударных» нагрузок, потому что у меди более высокая прочность на растяжение чем у алюминия.

Трансформаторы с алюминиевыми обмотками имеют более высокие потери, чем аналогичные с медными обмотками.

Трансформаторы с алюминиевыми обмотками больше греются, потому, что медь обладает лучшей теплопроводностью, чем алюминий.

Различия между медью и алюминием

Основные беспокойства по поводу выбора материала обмотки отражают пять характерных различий между медью и алюминием:

Таблица 2: Пять характерных различий между медью и алюминием

Коэффициент расширения на ° С х 10 -6 при 20 ° С

Теплопроводность БТЕ / фут / ч / БПФ 2 / ° F при 20 ° С

Электропроводность % при 20 ° С

Прочность на разрыв н/мм 2 (мягкая)

Возможность соединения

Оксиды, хлориды, сульфиды или недрагоценные металлы, более проводящие на меди, чем алюминии. Этот факт делает очистку и защиту соединителей для алюминия более важной. Некоторые считают соединения меди с алюминием несовместимыми. Также под вопросом сопряжение соединений между алюминием трансформаторов и медным проводом присоединения.

Коэффициент расширения

При изменении температуры алюминий расширяется почти на треть больше, чем медь. Это расширение, наряду с пластичным характером алюминия, вызывает некоторые проблемы для ненадлежаще установленных болтовых соединений. Чтобы избежать ослабления соединения, необходимо его подпружинивание. Используя либо чашевидные или прижимные шайбы можно обеспечить необходимую эластичность при сочленении, без сжатия алюминия. При использовании надлежащей арматуры алюминиевые соединения, могут быть равными по качеству медным.

Теплопроводность

Некоторые утверждают, что поскольку, теплопроводность меди выше, чем алюминия то это оказывает влияние на снижение хот-спот температуры обмотки трансформатора. Это верно только тогда, когда проводники обмоток из меди и алюминия одинакового размера, геометрии и дизайна. Следовательно, для любого силового трансформатора заданного размера, тепловые характеристики теплопроводности алюминия могут быть очень близки меди. Для алюминиевых обмоток для достижения той же самой электропроводности как у меди, она должна быть примерно на 66% больше по площади поперечного сечения.. Производители трансформаторов проектируют и проверяют их с учетом хот-спот особенностей их конструкции и использую площадь поверхности охлаждения, геометрию обмоток, воздуховоды, и форму проводников для получения приемлемых хот-спот градиентов, независимо от материала намотки.

Электрическая проводимость

Часто аргументы указывают на неполноценность проводимости алюминия, мотивируя это тем, что алюминий имеет только 61% от проводимости меди, что приводит к более высоким потерям в алюминиевых обмотках трансформаторов. Проектировщики всегда обеспокоены температурой обмоток. Чтобы удержать температуру в данном классе изоляции, трансформаторы с алюминиевыми обмотками разрабатывают с проводниками большей площади поперечного сечения чем медь. В среднем, это приводит к потерям энергии для алюминия одинаковым с медью. Таким образом, силовые трансформаторы аналогичной конструкции с тем же самым нагревом имеют примерно эквивалентные потери независимо от материала проводника.

Производители трансформаторов ограничивают выбор доступных размеров проводников. Из-за этого некоторые проекты в алюминии могут получить более низкие потери чем в меди просто, потому что ограничен выбор размера провода. В других проектах медь более эффективна. Немногие, если таковые вообще имеются, производители трансформаторов сухого типа для низкого напряжения изменяют основные размеры сердечника при переходе от алюминия к меди, так что потери в сердечнике остаются примерно одинаковыми, независимо от обмоточного материала. Если одинаковой эффективности можно добиться путем изменения размеров намоточного провода и основные потери остаются теми же, нет никаких практических оснований ожидать, что один дизайн трансформатора, более эффективен, чем другие. Разница в стоимости между медью и алюминием часто позволяет обеспечить алюминиевые проводники большего сечения, что приводит к снижению потерь холостого хода при меньших затратах, чем если бы были использованы медные проводники.

Предел прочности на разрыв

Более низкая прочность на растяжение и предел текучести алюминия вызывала некоторое беспокойство по поводу его использования при циклических нагрузках. Нагрузки с большими токовыми бросками, которые создают приводы постоянного тока и некоторые другие потребители, приводят к появлению электромагнитных сил, которые могут вызвать движение проводников и смещение обмотки. Как показано в таблице 2, алюминий имеет только 38% от предела прочности меди. Тем не менее, в таблице сравнение основано на равных площадях поперечного сечения. Как отмечалось ранее, чтобы обеспечить равный рейтинг трансформаторам с алюминиевыми обмотками необходимо иметь обмотки площадью поперечного сечения на 66% больше, чем трансформаторам с медными обмотками. Использование больших размеров проводников приводит к показателям алюминиевой обмотки почти равным медной. Способность трансформатора противостоять долговременным механическим воздействиям бросков нагрузки больше зависит от соответствующего баланса обмотки и крепления соединительных проводов чем от выбора проводника. Не обнаружено существенной разницы между медными или алюминиевыми обмотками трансформаторов низкого напряжения в механических повреждениях при испытаниях.

Подключение

Подключение на сегодняшний день является самой распространенной причиной «ущербности» в отношении использования алюминиевых обмоток трансформаторов. И медь и алюминий склонны к окислению или другим химическим изменениям под воздействием атмосферы. Проблема в том, окись алюминия является очень хорошим изолятором, в то время как оксид меди, хотя и не считается хорошим проводником, но не так проблематичен в болтовых соединениях. Зачистка контактов вместе с качественным соединением позволяют предотвратить окисление. Эти рекомендации относятся к любому проводящему материалу, просто более существенны для алюминия. Большинство электриков хорошо обучены этим процедурам, и техника выполнения болтовых соединений проводников из алюминия четко установлена и ее надежность доказана практикой.

В общем, болтовые соединения из алюминия без покрытия с медью не рекомендуются. Хотя есть несколько надежных сварочных и взрывных технологий для соединения этих двух металлов, но они, в настоящее время, почти не используются в производстве силовых трансформаторов. Большинство болтовых соединений алюминия с медью выполнены с применением серебра или лужения. В большинстве кабельных соединений к трансформаторам с алюминиевыми обмотками используются алюминиевые наконечники с покрытием олова. Эти наконечники специально предназначены (Al / Cu) для соединения медного провода с любым металлом. Эта практика является общепринятой и показала свою надежность на протяжении более 30 лет эксплуатации трансформаторов с алюминиевыми обмотками.

ТЕОРИЯ ПРОТИВ ПРАКТИЧЕСКОГО ПРИМЕНЕНИЯ

Большинство аргументов в пользу меди было основано на теориях, которые, практически, не представляют из себя что-либо существенное. Несколько теорий, также существуют, которые способствуют использованию алюминия.

Один из аргументов фокусируется на различных методах выполнения медных и алюминиевых соединений. Внутренние соединения обмоток трансформатора, выполненные медью, как правило, паяные, тогда как же соединения алюминия свариваются с использованием инертного газа. Технически, метод пайки тугоплавким припоем делает медное соединение менее проводимым чем медь. Сварка алюминия в инертном газе дает сплошной алюминий, соединенный без потери проводимости. Кроме того, некоторые утверждают, что в течение долгого времени медная окись продолжает формироваться, отслаивая наружную медь и в конечном счете повреждая весь проводник. С другой стороны, алюминиевая окись формирует стойкое, защитное покрытие на открытых металлических поверхностях, препятствуя окислению уже через несколько миллионных долей сантиметра. Да, возможны определенные проблемы при эксплуатации трансформатора в коррозионных атмосферных или экстремальных нагрузочных условиях. Однако, среднестатистический потребитель не должен быть слишком обеспокоен этими теоретическими соображениями, потому что и у медных и у алюминиевых трансформаторов есть отличный послужной список долгих лет практического применения.

Единственная уважительная причина, чтобы предпочесть медь алюминию — ограниченность пространства. Неопровержимый факт — намотанный медью трансформатор может быть меньшего размера чем намотанный алюминием. Главным образом, трансформаторы, с открытым ярмом и обмотками, покупают крупные сборщики, для того чтобы поместить в их собственные устройства, в интересах экономии пространства. Большинство закрытых трансформаторов общего назначения продаются в корпусах одинаковых размеров как для алюминия так и для меди, так что даже это небольшое преимущество меди не реализуется.

ЗАКЛЮЧЕНИЕ

Выбор между обмотками трансформатора из алюминия или меди сводится к личным предпочтениям. Высокая цена на медь часто требует оправданности покупки, но эти аргументы были опровергнуты в этой статье. По правде говоря, опыт работы в отрасли просто не поддерживает ни одну из наиболее часто заявляемых причин выбора меди в сравнении с алюминием. Спрос на сухие трансформаторы с алюминиевыми низковольтными обмотками, вероятно, будет расти из-за их существенного преимущества по стоимости перед медью. Как некоторые из старых мифов исчезают из-за ошеломляющего успеха алюминия, так все больше пользователей предпочитают заплатить меньшие деньги, при относительно небольшом дополнительном внимании к деталям, необходимым для выполнения надежных соединений. Хорошая практика при создании электрических соединений преимущество для всех в отрасли, независимо от того, используется алюминий или медь. Прежде, чем вложить капитал в дополнительную стоимость медных трансформаторов, исследуйте причины предпочтения меди в технических характеристиках.

Медь, алюминий, латунь или бронза: преимущества каждого металла в электротехнике

Кабели, проводники, приборы для освещения, трансформаторы, и еще много другое создается с прямым участием цветных металлов. В электротехнике основными сырьевыми составляющими выступают 4 металла: медь, бронза, латунь и алюминий. Без них индустрия просто не смогла бы развиваться. Но при этом особенно ценятся ответственные и надежные поставщики цветных металлов, дающие гарантию, что их продукция будет полностью соответствовать заявленным показателям, что особенно важно, если вспомнить, что электротехника не терпит приблизительности. И купленные по непонятно почему заниженным ценам медь и алюминий, могут оказаться совсем не того качества, которое нужно для электротехники.

Каждый электрик должен знать:  Кабель МКЭШ технические характеристики, применение, расшифровка

Учитывая важность качества того или другого металла, нельзя доверять поставки ненадежным партнерам. Как только продавец металла решит схитрить, производитель электротехнической продукции сразу же пострадает. Поэтому категорически не рекомендуется работать с теми, кто по непонятным причинам очень сильно занижает цену на цветметаллы. У меди, бронзы, латуни и олова есть свои адекватные цены, которые оправданы их характеристиками, и уже исходя из своих нужд, производитель выбирает тот металл, который ему наиболее подходит.

Проверенным поставщиком уже много лет на электротехническом рынке выступает компания «МетПромСтар», чьи обороты вот уже более 10 лет неуклонно растут. Количество постоянных партнеров не уменьшается даже в самые кризисные периоды, так как деловая репутация для компании превыше всего.

Характеристики меди и алюминия: когда что выбирать

У производителей электротехнической продукции еще буквально десять лет назад даже не было особого выбора. Все было ориентировано на медь, которая и по цене была доступна, и по характеристикам вполне устраивала. Но это было до тех пор, пока полностью не стали изучены характеристики алюминия. И вот уже несколько лет именно его читают лидером электротехнической промышленности.

Почему так произошло? А все благодаря широкому спектру его параметров, что дает производителям возможность использовать его более широко и разнопланово. Но главным преимуществом алюминия продолжает оставаться цена: какие бы скачки не проходили, этот металл продолжает оставаться самым дешевым.

Если сравнивать электропроводимость, то у меди она существенно больше (100% против 61% у алюминия). Но эти цифры легко практически сравнять, если знать один секрет. Чем больше поперечное сечение у алюминия, тем выше его электрическая проводимость. А учитывая его легкий удельный вес, то этот вариант очень часто используется на практике.

Поэтому, если по техническому заданию нет строгих ограничений к размерам проводников, то лучше использовать более дешевый алюминий, чья электропроводимость ничуть не уступает показателям меди. А вот стоимость детали из алюминия будет значительно дешевле.

Если говорить о показателях, по которым алюминий уступает меди, то это прочность. Но и здесь необходимо сравнивать провода с одинаковым сечением. Чтобы увеличить показатель алюминия по прочности, проводят легирование, увеличивая толщину металлического слоя термомеханической обработкой. И после этого алюминиевая деталь уже ничем не будет уступать медной.

Еще одним преимуществом алюминия перед любым другим цветным металлом является легкость в работе с ним. Так, где нужна особо сложная форма, всегда выберут алюминий. И при этом поверхность из алюминия не требует защиты, так как оксид алюминия не дает возможности нижним слоям окислиться при контакте с воздухом.

Преимущества олова и бронзы

Бронзы дают возможность методом литься получать очень сложные по форме изделия, и при этом можно не беспокоиться об усадке. Потери сырья будут минимальными. Бронза обладает высокой упругостью и твердостью, не стирается механическим способом и не подвержена коррозии. Все это в комплексе делает металл одним из наилучших для изготовления электротехнических деталей.

Если в сплаве есть цинк, то это латуни. У них тоже отмечается очень высокая прочность. И даже морская вода не способна повредить этот металл.

Заказывайте цветной металлопрокат для нужд электротехнической отрасли у проверенного поставщика «Метпромстар»

Многоканальный телефон в Москве: +7 (495) 781-87-32

Для регионов России: 8 800 555-87-32

Сравнение меди и алюминия таблица. Какой материал для проводки лучше медь или алюминий? Алюминиевая токопроводящая жила

К материалам этого типа предъявляются следующие требования: минимальное значение удельного электрического сопротивления; достаточно высокие механические свойства (главным образом предел прочности при растяжении и относительное удлинение при разрыве); способность легко обрабатываться, что необходимо для изготовления проводов малых и средних сечений; способность образовывать контакты с малым переходным сопротивлением при пайке, сварке и других методах соединения проводов; коррозионная стойкость.

1. Малое удельное сопротивление (меньше только у серебра).

2. Достаточно высокая механическая прочность (по сравнению с Aℓ).

3. Стойкость к коррозии (по сравнению с Fe).

4. Хорошо обрабатывает (получают тонкую проволоку и лист).

5. Легко паяется и сваривается.

1. Она редка, поэтому дорога.

2. В ряде случаев недостаточная механическая прочность.

3. Окисляется на воздухе (медные провода на воздухе в условиях близости моря подвергается усиленной коррозии за счёт действия содержащихся в воздухе солей).

Алюминий является вторым по значению (после меди) проводниковым материалом.

1. Алюминий в 3,5 раза легче меди. Если из алюминия и меди сделать провода равного сопротивления, то провод из Al хоть и будет иметь сечение в 1,63 раза больше, но всё равно будет в 2 раза легче медного.

2. Широко распространён в природе (его содержание в земной коре не меньше 7,5%).

3. Алюминий покрыт тонкой оксидной плёнкой, которая предохраняет его от дальнейшей коррозии (на него не действует водяной пар, пресная и морская вода).

4. Алюминий хорошо обрабатывается, из него можно получать тонкую фольгу (6÷7 мкм).

1. Алюминий имеет низкую механическую прочность (тонкую проволоку из него получить не удаётся).

2. Из-за плотной оксидной плёнки алюминий не паяется обычным способом, для этого нужны специальные припои и ультразвуковые паяльники.

3. Удельное сопротивление алюминия в 1,63 раза больше, чем у меди.

4. В месте контакта Al с другими металлами возникает большое переходное сопротивление и идёт усиленная коррозия, так как возникает гальваническая пара. Электрохимическая коррозия усиливается в присутствии влаги.

Алюминий применяется в следующих изделиях:

− провода ЛЭП (алюминиевые и сталеалюминевые, где механическую нагрузку несёт сталь);

− оболочки кабеля для замены свинца (защита от влаги);

− обмотки некоторых трансформаторов и т.д.

Как наиболее дешевый и доступный металл, обладающий высокой механической прочность, представляет большой интерес для использования в качестве проводникового материала.

1. Дешевый и широко распространён.

2. Высокая механическая прочность.

3. Неплохо паяется (хуже меди, но лучше, чем алюминий).

1. Удельное сопротивление в 6-7 раз больше меди.

2. При переменном токе возникает поверхностный эффект, использует лишь часть сечения, поэтому увеличивается сопротивление.

3. При переменном токе возникают потери на гистерезис.

4. Имеют малую стойкость к коррозии, особенно в условиях повышенной влажности (для защиты покрывают цинком).

Железо нашло применение:

− провода ЛЭП на низком напряжении (ток мал, сечение определяется механической прочностью);

− рельсы трамваев, железных дорог, метро;

Не нашли то, что искали? Воспользуйтесь поиском:

Чем медная проводка лучше алюминиевой?

Алюминиевая электропроводка использовалась в Советском Союзе многие десятилетия. Алюминий — относительно дешевый материал, имеющий хорошую проводимость и химическую стойкость. Кроме того, он очень легкий, что значительно облегчает работу рабочих. Такая проводка служит долго и надежно.

Но с увеличением количества электроприборов нагрузка на электропроводку возросла в несколько раз. Алюминиевую проводку стало применять не целесообразно.

Сегодня при электромонтажных работах используют медную электропроводку.

Причин, почему медная проводка лучше алюминиевой . несколько:

Во-первых, медь имеет меньшее, по сравнению с алюминием, удельное сопротивление и способна при меньшем сечении выдерживать большие нагрузки. При современных уровнях потребления электроэнергии, в обычной квартире приходилось бы тянуть алюминиевый провод на 4 или даже 6 мм кв. в то время как для меди достаточно 2,5 или 4 мм кв.

Во-вторых, медная электропроводка более гибкая .

Медный или алюминиевый провод – какой лучше?

Раньше устанавливали по одной розетке. Сейчас устанавливают даже 5 и больше розеток в одном месте. Связано это с огромным количеством электроприборов в современном доме. В таком случае розетки соединяются шлейфом, что достаточно сложно сделать алюминиевым проводом. Современные люстры также имеют медные вводные

концы, и с алюминием их соединять нельзя.

В-третьих, алюминий склонен окислятся . На его поверхности появляется пленка, имеющая высокое сопротивление. В результате происходит нагрев контактов, возможно, их перегорание. Со временем алюминий становится очень хрупким. Иногда, разобрав старую электрическую коробку для ремонта, и доставая провода, можно увидеть как они просто рассыпаются в руках.

Более того, хотя алюминиевая проводка, проложенная в СССР, служит уже по 30 лет, современный алюминий уже не такой, как был раньше. Сегодняшний алюминиевый провод можно переломать уже при монтаже, особенно китайский. Что будет с ним лет через десять сложно даже представить.

Существует только два случая, когда лучше применять алюминиевую электропроводку:

Алюминиевые провода применяют в том случае, если вы собираетесь частично заменить проводку в квартире, и старая проводка является также алюминиевой. В этом случае прокладывать медные провода нецелесообразно, поскольку медь и алюминий не должен иметь прямого контакта, приходится применять клемные колодки.

Алюминий широко применяется для кабелей, с сечением более 16 мм квадратных. Это сделать электромонтаж электромонтаж дешевле, при этом негативные свойства алюминия при таких сечениях менее заметны.

Во всех остальных случая лучше применять медную электропроводку.

Что это такое ЕСН в бухгалтерии — проводка, начисление на зарплату

Электропроводка в стиле ретро

Электропроводка в квартире.

Проводка в доме, квартире или на даче и как провести электричество своими руками

Электропроводка на даче.

Только два металла — медь и алюминий нашли широкое применение в качестве проводников электрического тока. Их использование в этом качестве обусловливается комплексом физических свойств самих металлов и их ценой.

Физические основы протекания электрического тока в проводниках

Как известно из физики, электрический ток — это упорядоченное движение электрических зарядов в проводнике, под действием сил электрического поля. При перемещении электрических зарядов в проводнике они подвергаются противодействию, которое оценивают величиной электрического сопротивления и которое измеряется в омах (Ом).

Электрическое сопротивление для цилиндрических проводников определяется формулой r=ρ*l/s, где r — электрическое сопротивление проводника, Ом, ρ — удельное электрическое сопротивление материала проводника, Ом*мм2/м, l — длина проводника, м, s — площадь поперечного сечения проводника, мм2

Поэтому, в электротехнике, для изготовления проводов используются материалы с низким удельным сопротивлением (медь, алюминий, сталь).

Например: Удельное сопротивление меди — 0, 0175 ом*мм2/м, удельное сопротивление алюминия — 0, 0294 ом*мм2/м

Иногда вместо электрического сопротивления r употребляют обратную величину — проводимость g=1/r, а вместо удельного сопротивления — удельную проводимость γ=1/ρ. Электрическая проводимость измеряется в сименсах (См).

При перемещении электрических зарядов в проводнике, электрическое сопротивление вызывает нагревание проводника. Это нагревание является вредным и, при эксплуатации проводника, должно быть ограничено, с учётом физических свойств проводника и класса изоляции.

Установившаяся температура проводника с током, зависит от плотности тока, которая определяется по формуле: δ=I/s, где δ — плотность тока, а/мм2, I — величина тока, а s — площадь поперечного сечения проводника, мм2

Что же выгоднее применять в качестве электрических проводов — медь или алюминий?

При сравнительном рассмотрении тенденций роста стоимости алюминия и меди в течение ХХ и начала ХХI веков, очевидно, что стоимость алюминия растёт медленнее, чем меди. Эта разница особенно видна в начале ХХI века.

Статьи на тему — Электрика, проводка

С 2006 года стоимость меди на Лондонской бирже металлов доходила до 8500 долл/тонну, в то время как алюминия — 2500 долл/тонну.

Это связано с усовершенствованием и увеличением производства алюминия, при доступном и недорогом сырье, которое, в стоимости конечного продукта, составляет 25%.

Для меди — ситуация иная. Медные рудные запасы ухудшаются, содержание меди руде падает, новые месторождения бедны металлом и сложнее в его извлечении. Кроме того, эти месторождения географически более труднодоступны. Поэтому, затраты на сырьё в стоимости конечного продукта, составляют более 50 % и ещё растут.

Эти тенденции не изменяются, так же, как и сравнительная динамика цен, а изменения не предвидятся. Всё это говорит в пользу использования алюминия.

Научное открытие сверхпроводимости и её промышленное применение пока ещё недостижимы для мировой практики. В свете того, что электрическая проводимость алюминия ниже, чем у меди, сечение алюминиевого провода и, следовательно его объём, должны быть больше чем у медного, причём диаметр алюминиевого провода, для той же плотности тока, должен быть больше чем медного на 25 %.

Однако, увеличение объёма, а следовательно массы алюминиевого провода, нивелируется невысокой плотностью металла (2,7 т/м3 — алюминий, 8,9 т/м3 — медь). Поэтому масса алюминиевого провода, для той же плотности тока, в три раза меньше чем медного.

Однако выигрыша по массе, при применении алюминиевого провода вместо медного, из-за требований СНИПа, нет. Например, масса меди в проложенных проводах и кабелях, в панелях современной трёхкомнатной квартиры, составляет 10 кг. Масса трехжильного кабеля длиной в 1000 метров кабеля ВВГ (медь) сечением 1,5 мм2 составляет 93 кг, а масса эквивалентного ему кабеля АВВГ (алюминий) сечением 2,5 мм2 составляет 101 кг. Выгода от применения алюминиевых проводов получается из-за гораздо меньших цен на алюминий.

При существующих на сегодня ценах, применение алюминиевых проводов в несколько раз выгоднее, чем медных!

Для высоковольтных линий и для подвесных кабельных систем алюминий используется уже давно. Но в изолированных проводах увеличение диаметра жилы требует увеличения расхода кабельного ПВХ пластиката, цена которого (1800 долл/тонну) приближается к цене алюминия. Чем тоньше жила провода, тем больше сравнительные затраты на электроизоляцию, а выгоды от перехода с меди на алюминий — ниже. Однако, при текущих ценах, экономия всё равно получается значительной!

Проектировщики, архитекторы, электрики должны преодолеть предвзятость по отношению к применению алюминиевых проводов при новом строительстве. Это позволит применять выгодный, но трудоёмкий алюминий при разводках в панелях и в подводах к точкам внешней нагрузки (розетки и выключатели), что даст значительную экономию.

Алюминиевые обмоточные провода, могут с заметной выгодой, применяться в производстве маломощных трансформаторов, электродвигателей и других электрических машин.

Всё это определит огромный спрос на алюминий на мировом рынке и использование «крылатого металла» на земле.

Почему медный кабель лучше алюминиевого?

Существует несколько факторов, которые заставляют выбирать медный кабель силовой вместо алюминиевого кабеля:

    Медный кабель имеет лучшую проводимость по сравнению с алюминиевым. При такой же площади поперечного сечения жилы кабеля, медь может выдержать нагрузки значительно больше, чем алюминий.

Какой материал для проводки лучше медь или алюминий?

Например, при площади сечения 10 мм2, алюминиевая жила может вынести электрический ток до 50А, а медная жила того же сечения выдерживает ток до 70А. То есть, если требуется заменить алюминиевый кабель по уже готовой магистрали и толщина кабеля ограничена, а предположительная нагрузка возросла, то прокладка медного кабеля вместо алюминиевого позволит, при тех же размерах кабеля, увеличить допустимую нагрузку.

  • Медный кабель по сравнению с алюминиевым имеет большую химическую стойкость. Медь относится к благородным (инертным) металлам и не вступает в химическую реакцию с большинством веществ. А алюминий подвергается химическому воздействию, вследствие чего разрушается.
  • Медный кабель имеет большую механическую прочность по сравнению с алюминиевым. Это можно наблюдать в местах присоединения алюминиевого кабеля в домашней проводке. В районе клемм, алюминиевая жила всегда очень примята и часто разрушена, что с медной жилой никогда не происходит.
  • Существует еще несколько факторов, которые делают медный кабель более предпочтительным, но всех их очень долго перечислять и описывать, так как они уже не так очевидны. А единственным положительным моментом алюминиевого кабеля служит его низкая цена по сравнению с медью.

    Алюминиевая проводка

    Нам часто задают вопрос: «Что делать если в квартире алюминиевая проводка?». В данной статье я постараюсь ответить на этот вопрос.

    Алюминиевая проводка или медная?

    Согласно «Правилам устройства электроустановок» алюминиевая проводка может использоваться во временных зданиях и сооружениях, срок эксплуатации не превышает двух лет. В остальных случаях электропроводка должна выполняться медными проводами.

    Если обратиться к статистическим данным, то пожары возникающие из-за неисправностей в электропроводке в электроустановках в которых использованы алюминиевые провода случаются на 60% чаще, чем в электроустановках с использованием медных проводов.

    Дополнительно хотелось бы отметить такой момент, как расчётная нагрузка. Появление в быту мощной бытовой техники, вызывает перегрузки проводов электропроводки. Если провода в квартире выполнены алюминием с сечением 2.5 кв.мм, то данная проводка рассчитана на общее потребление групповой линии не более 2.5 кВт. Поэтому, если Вы включаете чайник мощностью 2.7 кВт, а ещё горит свет, включён телевизор и пр., то однозначно можно сказать, что проводка перегружается. А это ведёт к её укоренному износу.

    Срок службы алюминиевой и медной проводки

    Что касается службы проводов, то для алюминиевых проводов срок службы составляет примерно 10-15 лет, медных — 20-30. Но следует так же обращать внимание на условия эксплуатации проводов. Если провода систематически перегружаются, если на изоляцию воздействуют агрессивные условия внешней среды (дождь, жара, мороз, ультрафиолетовые лучи) то срок службы сокращается.

    Соединение медной и алюминиевой проводки

    Основной проблемой соединения алюминиевых и медных проводов — образование данными металлами гальванической пары. Что приводит к окислению места соединения проводов. Поэтому необходимо исключать непосредственный контакт этих металлов между собой. Соединение медных и алюминиевых проводов может осуществляется тремя способами:

    1. с помощью специальных клемм Wago для соединения алюминиевых проводов. Соединения в данных клеммах закрыты от окисления специальной пастой, что исключает контакт алюминия с воздухом. Так же исключен контакт непосредственно меди с алюминием.
    2. винтовым соединением. Обязательно необходимо исключить непосредственный контакт меди и алюминия, а так же ставить специальные шайбы Гровера, т.к. данная шайба обеспечивает постоянный прижим проводов иначе со временем винтовое соединение может ухудшится.
    3. гильзами для соединения меди с алюминием, данный способ требует наличия специального оборудования, да и гильзы для такого соединения можно купить не в каждом магазине.

    Как перенести розетки алюминиевой проводки

    При переносе розеток можно использовать как алюминиевые, так и медные провода.

    ЭЛЕКТРОПРОВОДНОСТЬ

    Технология проведения работ аналогичная, как в статье перенос розеток и выключателей. Если провод идёт не от распредкорбки, то в местах соединения проводов ставить распределительные коробки, которые позволят иметь доступ к соединениям для осмотра или ремонта. Соединения производить специальными соединителями, описанными выше.

    Надеюсь, в данной статье мне удалось ответить на все интересующие Вас вопросы. Если Вам необходима устная консультация, а так же по вопросам связанным с заменой алюминиевой проводки, Вы можете обратиться ко мне или моим напарникам по телефону в СПб +7 (921) 883 — 75 — 46.

    Алюминий, свойства, марки, применение

    АЛЮМИНИЙ, СВОЙСТВА, МАРКИ, ПРИМЕНЕНИЕ. Алюминий относится к группе легких металлов. Плотность его равна 2,7г/см3. Доступность, большая проводимость, а также стойкость к атмосферной коррозии позволили широко применять алюминий в электротехнике. Недостатками алюминия являются невысокая механическая прочность при растяжении и повышенная мягкость даже у твердотянутого алюминия. Алюминий — металл серебристого цвета, или серебристо-белого. Температура плавления его 658-660є, а температурный коэффициент расширения равен 24*10-6/єС. Алюминий быстро покрывается тонкой пленкой окисла, которая надежно защищает металл от проникновения кислорода, поэтому голые (неизолированные) провода алюминия могут длительно работать на открытом воздухе. Оксидная пленка на алюминиевых проводах обладает значительным электрическим сопротивлением, поэтому в местах соединения алюминиевых проводов могут образовываться большие переходные сопротивления. Зачистку мест соединения проводов обычно производят под слоем вазелина во избежание окисления алюминия на воздухе. При увлажнении мест соединения алюминиевых проводов, с другими проводами из других металлов (медных, железных) полученных механическим способом (болтовые соединения) могут образоваться гальванические пары с заметной электродвижущей силой. При этом алюминиевый провод будет разрушаться местными токами. Чтобы избежать образования гальванических паров во влажной атмосфере, места соединения о другими проводами из других металлов должны быть тщательно защищены от влаги лакированием и другими способами. Непосредственную коррозию алюминия вызывают оксиды азота (NO), хлор (CI), сернистый газ (SO2), соляная и серные кислоты и другие агенты. Надежные соединения проводов друг с другом, а также с проводами из других металлов осуществляется с помощью холодной или горячей сварки. Чем выше химическая чистота алюминия, тем он лучше сопротивляется коррозии. Поэтому наиболее чисть сорта алюминия с содержанием чистого металла 99,5% идут для изготовления электродов в электрических конденсаторах, для изготовления алюминиевой фольги и обмоточных проводов малых диаметров 0,05 -0,08 мм. Применяют проводниковый алюминий содержащий чистого металла не менее 99,7%. Для изготовления проволоки применяют алюминий с содержанием чистого металла не менее 99,5%. Алюминиевую проволоку изготовляют путем волочения и прокатки. Проволока из алюминия бывает трех видов марок: АМ (мягкая отожженная), АПТ (полутвердая) и АТ (твердая не отожженная). Проволоку выпускают диаметром от 0,08 до 10 мм.

    Характеристика свойств меди и алюминия

    Плотность алюминия — 2,7г/см3, меди — 8,90г/см3.

    Температура плавления алюминия — 658 — 660°С, меди — 1083°С.

    Температурный коэффициент расширения:

    Алюминия — 24*10-6/°С; меди — 17*10-61/ єС.

    Температурный коэффициент эл. сопротивления:

    алюминия — a= +0,00423 1/°С, медь а= +0,00400 1/°С.

    Предел прочности при растяжении:

    АМ:Gв = 7,5 ч 8,0 кг/м2 АТ:Gв = 10 ч 18 кг/мм2

    ММ:Gв = 2,0 ч 2,5 кг/мм2 МТ:Gв = 35 ч 40 кг/мм2

    АТ дn = 0,5 ч 2,5% ММ дn = 15 ч 40%

    МТ дn = 0,5 ч 2,2% AМ дn = 10 ч 26%

    АТ с = 0,0282 ч 0,0283 ом*мм2 /м

    МТ с = 0,0177 ч 0,0180ом*мм2/м

    AM с = 0,0279 ч 0,280 ом*мм2/м

    ММ с = 0,01750 ч 0,01755 ом*мм2/м

    Кабельно-проводниковая номенклатура традиционно поделена на две категории, исходя из критерия состава жилы. Речь о медных и алюминиевых кабелях и проводах. Какая между ними разница, каковы плюсы и минусы использования тех и других проводов? Мы попробуем найти ответ на этот вопрос в этой статье.

    Мифы и правда о медных кабелях и проводах

    Если вы обратитесь за советом по выбору проводов к специалистам, вероятность получить рекомендацию к покупке изделий из меди довольно высока. Так почему медные провода так популярны, и действительно ли они лучше алюминиевых? Давайте разберемся в правдивости доводов в пользу медных проводов.

    • Довод №1: Медный кабель более долговечен.

    Правда ли это? Действительности это не соответствует. Если вы откроете любой из кабельных справочников, то прочтете там реальные данные: срок службы медных кабелей идентичен сроку службы алюминиевых, а именно — 15 лет в том случае, если на кабеле одинарная изоляция, и 30 лет, если использовать двойную.

    • Довод №2: Медные кабели более устойчивы к изгибам.

    Правда ли это? Да, так на самом деле и есть. Согласно ГОСТу, медный кабель способен выдержать до 80 изгибов, тогда как кабель из алюминия переживет лишь 12. Но стоит учитывать, что при выборе кабеля для закладки в стену это не играет никакой роли.

    • Довод №3: Медь окисляется в разы медленнее алюминия.

    Правда ли это? Взглянем на алюминий. Сверху на его только что зачищенном слое моментально появляется ухудшающий контакт слой окисла. Однако процесс этот и быстро заканчивается лишь на поверхности. То есть по факту свои токопроводящие способности алюминий не утрачивает в течение долгих лет, как и медь. Кроме того, если использовать клемники с особой токопроводящей пастой, которая сдирает слой с окислом, создавая герметичную защиту от воздуха и воды, то это будет более надежным решением, чем качественная медная скрутка.

    Достоинства и недостатки алюминиевого кабеля

    Алюминий считается наиболее распространенным металлом, который люди используют практически во всех сферах жизни. Его вес относительно невелик, есть запас прочности, но в то же время этот металл довольно мягкий. Если сравнивать медный и алюминиевый провода, при одинаковых параметрах электропроводности вес алюминиевого кабеля будет вдвое меньше, чем вес медного. Благодаря этому, к примеру, можно делать более толстые алюминиевые проволоки.

    Как уже было упомянуто ранее, одним из существенных минусов алюминия является его низкая способность к сгибанию. Если вы перегнете проволоку из алюминия пару раз в одном и том же месте, она попросту сломается. По этой причине использовать алюминиевые провода можно лишь в стационарных прокладках, где нет острых углов надлома.

    Другой недостаток — моментальное окисление — уже упоминался выше. Оксидная пленка в значительной мере ухудшает химическую активность металла, ведь оксид — это полный диэлектрик. Везде, где образуется эта пленка, электрический ток почти не проходит. Но, как вы помните, токопроводящая паста позволяет обойти этот недостаток.

    Необходимо учитывать и величину жилы. Электропроводимость увеличивается с увеличением размера жилы. При большой силе тока и маленьком сечении сопротивление увеличится. При этом будет нагреваться кабель. Учитывая, что алюминий имеет сопротивление в 1,5 раза большее, чем медь, легко догадаться о еще одном недостатке алюминия. Чтобы провести такое же количество тока, что и c медной жилой, придется использовать в несколько раз большую по размеру алюминиевую. Кроме того, алюминиевые кабели довольно быстро нагреваются, поскольку теплопроводность данного металла высока.

    Однако основным достоинством алюминиевых кабелей и проводов является их стоимость, которая подчас может быть втрое ниже, чем цена на медные изделия с аналогичной электрической проводимостью.

    Какой же кабель выбрать: медный или алюминиевый

    При принятии решения следует руководствоваться в первую очередь вашими потребностями и бюджетом. В качестве итогов можно резюмировать, когда какой кабель лучше:

    • Кабель из алюминия. Низкая цена, относительно небольшой вес, ломается при многократных сгибаниях, лучше проводит ток в сочетании со специальной пастой.
    • Кабель из меди. Высокая электропроводность, низкое сопротивление (возможность использовать меньшее сечение), отличная прочность, но при этом высокая цена.

    При соединении медного кабеля с алюминиевым всегда используйте клемник в качестве посредника, чтобы не допустить соприкосновения металлов. Необходимость обусловлена тем, что в местах их соприкосновения сопротивление будет возрастать со временем, нагреваться, что может привести к разрушению кабеля, коротким замыканиям и даже пожарам. Этим знанием следует руководствоваться при соединении любых материалов разного рода с разным сопротивлением.

    Токопроводящая жила (ТПЖ) из алюминия и меди, применяемые добавки, сравнительные табличные характеристики, другие материалы для кабельно-проводниковой продукции (КПП)

    Для сокращения применяется аббревиатура ТПЖ — т окоп роводящая ж ила.

    Токопроводящая жила для кабеля либо провода — это проволока (или скрутка проволок) изготовленная из материала с низким электрическим сопротивлением, способная свободно пропускать электрический ток и выдерживающая заданные механические нагрузки и температурные режимы.

    Жёсткий проводник — это кабель либо провод выполненный на базе моножилы (одной проволоки), такие проводники применяются для стационарной (неподвижной) прокладки на долгосрочный период.

    Гибкий проводник — это провод или кабель изготовленный на базе нескольких проволок, свитых в общий пучок, применяется для обеспечения подвижных присоединений различных энергопотребителей.

    Требования к жилам:

    • низкое электрическое сопротивление;
    • умеренная цена и доступность добычи металла;
    • стойкость к коррозии и механическим нагрузкам (особенно к знакопеременным);
    • технологичность.

    Понятно, что наиболее важными характеристиками являются низкая стоимость и высокая электропроводность. Чем меньше электрическое сопротивление, тем меньше нагревается жила при протекании номинального тока (именно нагрев имеет решающее значение для вычисления токовой нагрузки). Весь смысл в том, что диэлектрические свойства изоляции быстро теряются при высоких температурах. Например, изоляционный поливинилхлоридный пластикат выдерживает нагрев до +70°С; резиновая изоляция функциональная до +80°С; кремнийорганическая изоляция (специальный материал) работоспособна до +180°С. Неизолированные высоковольтные провода и электротехнические шины допускается нагревать до +90°С (изоляции нет, а ограничение присутствует).
    Для примера, поливинилхлоридный пластикат имеет электрическое сопротивление около 10 мОм / км при температуре +20°С и всего 5 кОм / км при нагреве до +70°С (не спутать мегаомы с килоомами).

    Теперь немного о цене: мировая цена 1 тонны меди более чем в 3.5 раза дороже 1 тонны алюминия. Электрическое сопротивление алюминия уступает меди в 1.64 раза, то есть именно на это значение возрастёт сечение алюминиевой жилы для проведения той же силы тока (экономический выигрыш налицо).
    Механические свойства алюминия оставляют желать лучшего. Имеет низкую стойкость к постоянным изгибам (быстро ломается), поэтому проводники с такими жилами применяются только для стационарной прокладки. Алюминиевые жилы возможно изготовить с минимальным сечением 2.5 мм 2 (технологическое оборудование развивает усилия, сравнимые с механической прочностью алюминиевой проволоки малого диаметра). При контакте с атмосферным кислородом или озоном на алюминии образуется оксидная плёнка, которая имеет высокое электрическое сопротивление.
    Медь имеет самое низкое сопротивление (не учитывая серебро и другие дорогие материалы), довольно технологична (поддаётся волочению и прокатке).

    Каждый электрик должен знать:  Тепловые завесы параметры выбора

    Материалы для токопроводящих жил

    Основными материалами для создания токопроводящих жил служат медь (Cu) и алюминий (Al). Такой выбор определяется низким электрическим сопротивлением, умеренной стоимостью (по сравнению с серебром) и достаточными прочностными характеристиками.

    Медная токопроводящая жила

    Жилы кабелей и проводов производятся из электролитической меди М0 и М1, которая отличается определённой чистотой — 99,95% и 99,9% доля меди соответственно.
    Различные добавки к меди могут снижать её проводящую способность, увеличивать прочность либо придавать определённый комплекс изменения свойств.

    Кислород (O) одна из вредных примесей в меди, который приводит к ухудшению механических характеристик и способности к обработке, вызывает затруднения при сваривании или пайке. Медь, не содержащая кислорода, имеет лучшую пластичность по сравнению с марками М1 и М0. Для борьбы с негативным влиянием кислорода добавляют мышьяк, но он снижает электрическую проводимость.

    Водород (H) приводит к увеличению прочности, но при наличии кислорода делает металл хрупким.
    Содержание сурьмы вызывает падение теплопроводности, электропроводимости и пластичности.
    Серебро защищает медь от окисления, но отличается высокой стоимостью.

    Медные токоведущие жилы могут быть мягкими и твёрдыми — отожжённые и неотожжённые соответственно. Маркируются согласно с аббревиатурой ММ и МТ.
    Ввиду влияния коррозии медные жилы следует обязательно покрывать слоем олова толщиной 1,5 — 4 мкм. Олово защищает медь от окисления, а также улучшает пайку. Причём предпочтительней использовать методику горячего лужения, а не гальваническую. При горячем лужении образуется переходной сплав меди с оловом, который надёжно привязывает нанесённый слой олова. Во время пайки верхняя часть олова надёжно связывается с припоем. Для тропического исполнения лужение ещё более необходимо, так как влияние высоких температур и влажности сказывается на скорости окисления.

    Для получения более толстого и неравномерного защитного слоя используется свинцово-оловянистый сплав (ПОС) с различным содержанием свинца.
    Для получения нагревостойкости 200⁰С применяют серебрение гальваническим путём с дальнейшим волочением и отжигом. Получаемая толщина слоя серебра 6 — 12 мкм скрывает медь от воздействия факторов приводящих к окислению при t ≤ 250⁰C.

    Алюминиевая токопроводящая жила

    Для электрических проводников применяют алюминий (Al) марок А1 и А2, в котором подмешаны десятые доли процента железа и кремния. Эти примеси ухудшают проводимость, к другим нежелательным элементам относят: титан, ванадий, марганец и магний.

    Если первым недостатком алюминия считают низкую электропроводность, то второй — это определённая хрупкость, которая усугубляется в температурных условиях свыше 150⁰C. При упрочнении алюминиевой проволоки (например, волочением) единовременно понижается её проводимость (всё взаимосвязано).

    По механическим параметрам различают несколько видов проволоки:

    • АТ (алюминий твёрдый неотожжённый);
    • АПТ (алюминий полутвёрдый с частичным отжигом);
    • АМ (алюминий мягкий отожжённый).

    Характеристики алюминия АПТ занимают промежуточное положение в сравнении с АТ и АМ.
    Если алюминиевый проводник сравнивать с медным, той же проводимости, то окажется, что его сечение выше на +60%, а масса меньше на -48%.
    Повышенным пределом прочности при разрыве обладает алюминиевый сплав алдрей. В алюминий добавляют менее половины процента магния, до 0,7% кремния и менее 0,3% железа. Соединение Mg 2 Si упрочняет материал, но растворяется в ограниченном количестве.

    Физико-технические свойства металлов Медь Алюминий Алдрей (сплав Al)
    ММ (мягкая отожжённая медь) МТ (твёрдая неотожжённая медь) АМ (мягкий алюминий с отжигом) АТ (твёрдый алюминий без отжига)
    Плотность, г/см 3 8,890 8,890 2,703 2,703 2,700
    Температура плавления, °С 1083 1083 657 657
    Коэффициент теплопроводности, Вт/(м·град) 385,2 385,2 945 945 188
    Удельная теплоёмкость, Дж/(кг·град) 385 385 945 945 188
    Температурный коэффициент линейного расширения,
    град -1 х10 -6
    16,4 16,4 23 23 23
    Предел прочности на разрыв, Н/мм 2 197-276 246-492 79-108 148-246 314-364
    Удлинение, % 40-50 1-6 32-40 4-8 6-9
    Предел пропорциональности, Н/мм 2 21,6
    Предел текучести, Н/мм 2 69-90 230-280 49-79 118-216 286-324
    Модуль упругости, Н/мм 2 106 200 128 000 59 000 68 800 68 800
    Предел упругости, Н/мм 2 25 295 30-39 118-138
    Предел усталости при переменном изгибе, Н/мм 2 28-42 88-118 40 50 95
    Предел ползучести, Н/мм 2 50 70 27 50 260
    Ударная вязкость, Н/мм 2 56 53
    Сопротивление срезу, Н/мм 2 190 430 60 100
    Удельное сопротивление, Ом·мм 2 /м 0,017241 0,01752 0,02828 0,0283 0,03-0,33
    Температурный коэффициент удельного сопротивления, град -1 0,00393 0,00393 0,00403 0,00403 0,0036

    Токопроводящие жилы из других материалов

    В кабельно-проводниковой продукции могут применяться другие материалы, которые берут за основу из-за меньшей стоимости или соответствия другим необходимым свойствам. Для получения общего видения приведём таблицу, в которой электропроводность Cu (меди) принимается равной 100%, а остальные характеристики указаны в числовых значениях.

    Металл Температура плавления,
    °С
    Плотность,
    г/см 3
    Электрическое сопротивление Электропроводность Температурный коэффициент электросопротивления,
    х10 -3 °С
    объёмное,
    мкОм/см 2
    массы,
    мкОм/см 2
    объёмная, % массы, %
    Серебро 961 10,490 1,59 16,69 108,5 92,0 4,10
    Медь 1083 8,890 1,724 15,33 100,0 100,0 3,93
    Золото 1063 19,320 2,22 42,90 77,7 35,8 3,94
    Алюминий 660 2,700 2,80 7,62 61,2 201,5 4,03
    Кальций 850 1,550 3,74 5,80 46,1 264,0 4,57
    Бериллий 1280 1,816 4,20 7,63 41,1 201,1 6,70
    Натрий 98 0,970 4,30 4,17 40,1 368,0 5,50
    Магний 650 1,740 4,46 7,75 38,7 198,0 4,20
    Цинк 420 7,140 5,91 42,20 29,2 36,4 4,19
    Калий 63 0,860 6,70 5,76 25,7 266,0 52,00
    Никель 1455 8,900 6,84 60,90 25,2 25,2 6,70
    Кадмий 321 8,650 7,00 60,50 24,6 25,35 4,20
    Литий 186 0,536 8,50 4,55 20,3 337,0 4,50
    Железо 1539 7,870 9,71 76,30 17,75 20,1 6,51
    Платина 3224 21,450 10,61 227,50 16,25 6,8 3,93
    Олово 232 7,300 11,50 84,00 15,00 18,25 4,40
    Хром 1890 7,120 13,10 93,20 16,45 8,5 3,50
    Свинец 327 11,340 20,65 234,00 8,36 6,6 3,90

    Одними из интересных направлений могут стать натрий, малоуглеродистая сталь, комбинирование нескольких материалов в одной жиле.

    Список использованной литературы
    Белоруссов Н. И. Электрические кабели и провода. — М.: Энергия, 1971 — 512с.

    Без проводников — никуда

    Медь (лат. Cuprum) — один из семи металлов, известных с глубокой древности. Значительные запасы медных руд находятся в США, Чили, России (Урал), Казахстане (Джезказган), Канаде, Замбии и Заире.

    Медь входит в состав более 150 минералов, промышленное применение нашли 17 из них, в том числе: борнит (Cu5FeS4), халькопирит (медный колчедан — CuFeS2), халькозин (медный блеск — Cu2S), ковеллин (CuS), малахит (Cu2(OH)2). Переработка сульфидных руд дает около 80% от всей добываемой меди.

    В природе Встречается и самородная медь.

    Чистая медь — ковкий и мягкий металл в изломе розоватого цвета, достаточно тяжелый, отличный проводник тепла и электричества, легко подвергается обработке давлением. Именно эти качества позволяют применять изделия из меди в электротехнике — в настоящее время более 70% всей производимой меди идет на выпуск электротехнических изделия. Для изделий с максимальной электропроводностью, используют так называемую «безкислородную» медь. В иных случаях годна и технически чистая медь, содержащая 0,02-0,04% кислорода.

    Основные характеристики меди: удельный вес — 8,93 г/cм3, температура плавления — 1083°С, меди при 20°С 0,0167 Ом*мм2/м. Чистая медь обладает высокой электрической проводимостью (на втором месте после серебра). Именно это качество меди используют в промышленности для изготовления электротехнических шин из меди.

    Медные шины изготавливаются по ГОСТ 434-78. Состояния в котором поставляются медные шины потребителю: не отожженная (маркировка — Т-твердое), отожженным (М-мягкое) и ТВ-твердые шины, изготовленные из бескислородной меди.

    В деформированном состоянии прочность меди выше, чем у отожженного металла, а значения электропроводности понижены.

    Сплавы, повышающие прочность и улучшающие другие свойства меди, получают введением в нее добавок, таких, как цинк, олово, кремний, свинец, алюминий, марганец, никель. На сплавы идет более 30% меди.

    Латуни — сплавы меди с цинком (меди от 60 до 90% и цинка от 40 до 10%) — прочнее меди и менее подвержены окислению. При присадке к латуни кремния и свинца повышаются ее антифрикционные качества, при присадке олова, алюминия, марганца и никеля возрастает антикоррозийная стойкость. Листы, литые изделия используются в машиностроении, особенно в химическом, в оптике и приборостроении, в производстве сеток для целлюлознобумажной промышленности.

    Бронзы . Раньше бронзами называли сплавы меди (80-94%) и олова (20-6%). В настоящее время производят безоловянные бронзы, именуемые по главному вслед за медью компоненту.

    Алюминиевые бронзы содержат 5-11% алюминия, обладают высокими механическими свойствами в сочетании с антикоррозийной стойкостью.

    Свинцовые бронзы , содержащие 25-33% свинца, используют главным образом для изготовления подшипников, работающих при высоких давлениях и больших скоростях скольжения.

    Кремниевые бронзы , содержащие 4-5% кремния, применяют как дешевые заменители оловянных бронз.

    Бериллиевые бронзы , содержащие 1,8-2,3% бериллия, отличаются твердостью после закалки и высокой упругостью. Их применяют для изготовления пружин и пружинящих изделий.

    Кадмиевые бронзы — сплавы меди с небольшим количества кадмия (до1%) — используют при производстве троллейных проводов, для изготовления арматуры водопроводных и газовых линий и в машиностроении.

    Припои — сплавы цветных металлов, применяемые при пайке для получения монолитного паяного шва. Среди твердых припоев известен медносеребряный сплав (44,5-45,5% Ag; 29-31% Cu; остальное — цинк).

    В России медные шины изготавливают нескольких заводов: Каменск-Уральский ОЦМ, Кольчугинский ОЦМ, Кировский ОЦМ.

    Мировое производство меди в 2007 году выросло на 2,5% по сравнению с 2006 г. и составило 17,76 млн. тонн. Потребление меди в 2007 году выросло на 4%, при этом медное потребление Китая взлетело на 25% за год, в то время как медное потребление в США резко упало на 20%.

    Алюминий и ряд сплавов на его основе находят применение в электротехнике, благодаря хорошей электропроводности, коррозионной стойкости, небольшому удельному весу, и, что немаловажно, меньшей стоимостью, по сравнению с медью и ее проводниковыми сплавами.

    В зависимости от величины удельного электросопротивления, алюминиевые сплавы подразделяют на проводниковые и сплавы с повышенным электрическим сопротивлением.

    Удельная электрическая проводимость электротехнического алюминия марок А7Е и А5Е составляет порядка 60% от проводимости отожженной меди по международному стандарту. Технический алюминий АД0 и электротехнический А5Е используют для изготовления проводов, кабелей и шин. Применение в электротехнической промышленности получили низколегированные сплавы алюминия системы Al-Mg-Si АД31, АД31Е.

    В земной коре содержится 8,8% алюминия. Это третий по распространенности в природе элемент после кислорода и кремния и первый — среди металлов. Он входит в состав глин, полевых шпатов, слюд. Известно несколько сотен минералов Al (алюмосиликаты, бокситы, алуниты и другие). Важнейший минерал алюминия — боксит содержит 28-60% глинозема — оксида алюминия Al2O3.

    В чистом виде алюминий впервые был получен датским физиком Х. Эрстедом в 1825 году, хотя и является самым распространенным металлом в природе.

    Производство алюминия осуществляется электролизом глинозема Al2O3 в расплаве криолита NaAlF4 при температуре 950°C.

    Основные характеристики алюминия: плотность — 2,7×103 кг/м3, удельная теплоемкость алюминия при 20°C — 0,21 кал/град, температура плавления — 658,7°C, температура кипения алюминия — 2000°C, коэффициент линейного расширения алюминия (при температуре около 20°C) : — 22,9 × 106(1/град)

    Сплавы алюминия, повышающие его прочность и улучшающие другие свойства, получают введением в него легирующих добавок, таких, как медь, кремний, магний, цинк, марганец.

    Дуралюмин (дюраль, дюралюминий, от названия немецкого города, где было начато промышленное производство сплава) — плав алюминия (основа) с медью (Cu: 2,2-5,2%), магнием (Mg: 0,2-2,7%) марганцем(Mn: 0,2-1%). Подвергается закалке и старению, часто плакируется алюминием. Является конструкционным материалом дла авиационного и транспортного машиностроения.

    Силумин — легкие литейные сплавы алюминия (основа) с кремнием (Si: 4-13%), иногда до 23% и некоторыми другими элементами: Cu, Mn, Mg, Zn, Ti, Be). Из него изготавливают детали сложной конфигурации, главным образом в авто- и авиастроении.

    Магналии — сплавы алюминия (основа) с магнием (Mg: 1-13%) и другими элементами, обладающие высокой коррозийной стойкостью, хорошей свариаемостью, высокой пластичностью. Из них изготавливают фасонные отливки (литейные магналии), листы, проволоку, заклепки и т. д. (деформируемые магналии).

    По широте применения сплавы алюминия занимают второе место после стали и чугуна.

    Несколько интересных фактов про алюминий:

    в теле взрослого человека присутствует до 140 мг алюминия,

    1 кг алюминия в автомобиле экономит более 10 л бензина на каждые 200 тысяч километров,

    алюминий содержится даже в яблоках — до 150 мг/кг,

    каждый 20-й из атомов, слагающих верхнюю оболочку нашей планеты — это атом алюминия,

    суточная потребность взрослого человека в алюминии оценивается в 2,45 мг.

    При более низкой удельной проводимости (около 56% от отожженной меди), алюминиевые проводниковые сплавы имеют то же назначение, что и электротехнический алюминий. Такие сплавы используют для обеспечения требований высокой прочности, ползучести и др. специальных требований. Алюминиевые шины изготавливают по ГОСТ 15176-89 из сплавов АД31 и АД31Т, реже АД0.

    Мировое потребление первичного алюминия в 2007 г. составило 37,52 млн. тонн, что на 3,184 млн. тонн (или на 9,3%) больше, чем в 2006 г. Мировое производство первичного алюминия выросло в 2007 г. на 4,024 млн. тонн по сравнению с 2006 г. и достигло 38,02 млн. тонн.

    Производители медной продукции

    Крупнейший производитель меди на российском рынке — ГМК «Норильский никель»

    Второй по величине производитель меди в нашей стране — холдинг УГМК.

    Третий крупный игрок российского рынка — «Русская медная компания». В состав ЗАО «Русская медная компания» входят 11 предприятий, действующих в четырех областях России, а также на территории Казахстана

    На рынке присутствуют медные шины нескольких заводов: Каменск-Уральского ОЦМ, Кольчугинского ОЦМ, Артемовского ОЦМ, Кировского ОЦМ. Кировский и Кольчугинский ОЦМ входят в состав ОАО «УГМК».

    Технологии и цены

    Так, как технология изготовления медных шин известна, и на всех заводах практически одинакова, для потребителя на первый план выступает соотношение цена/качество. Отечественные предприятия — лидеры отрасли в настоящее время выпускают качественную продукцию и соревнуются между собой, в основном, по цене. Но, говоря о качестве медных шин, стоит отметить, что примеси даже в очень незначительных количествах существенно снижают электропроводность меди. Поэтому браку здесь не место.

    В то же время зарубежными и отечественными предприятиями предлагаются новаторские решения, позволяющие выпускать продукцию с четко заданными параметрами качества. Более того, в особо ответственных моментах изготовление медных шин происходит по собственным, иногда оригинальным, решениям.

    Например, ОАО «КУЗОЦМ» выпускает коллекторные полосы из сплава меди с серебром. Такой сплав превосходит медь по эксплуатационным характеристикам, а в отличие от сплава меди с кадмием является экологически чистым. Завод производит и целый ряд электротехнических профилей ответственного назначения. В частности это — медные прямоугольные электротехнические профили, такие, как полутвердые шины, твердые шины с повышенной чистотой поверхности: шины с полным закруглением малых сторон сечения различной твердости и др.

    Шины полутвердые выпускаются для удовлетворения требований ВS1432 британских стандартов по качеству поверхности и получения механических свойств, отвечающих полутвердому состоянию. Шины изготавливаются из прессованной заготовки за два прохода волочения с промежуточным отжигом, а чистовое волочение проводится с пониженной степенью деформации по сравнению с традиционной схемой изготовления твердых шин.

    Шины с повышенной чистотой поверхности, предназначенные для последующего электролитического покрытия их серебром, обеспечивающего наибольшую электропроводность в месте контакта, и это диктует особые требования к шероховатости их поверхности (Rz≤0,63 мкм по ГОСТ 2789-73). Требуемый заказчиком показатель шероховатости достигнут на КУЗОЦМ целым рядом технологических приемов — применением повышенных суммарных обжатий при волочении, дополнительной подготовкой поверхности протяжки перед чистовым волочением, соответствующей обработкой канала специальной формы составных и монолитных волок. Указанный выше гарантированный уровень шероховатости (Rz≤0,63 мкм) позволяет обеспечить нанесение покрытий заданной, однородной по поверхности шины толщины. Тем самым удается создать контактные поверхности, обладающие малым переходным сопротивлением и высокой электропроводностью.

    Шины с полным закруглением малых сторон сечения, то есть с радиусом закругления, равным половине толщины шины обладают определенными преимуществами по сравнению с традиционными: повышается износостойкость изоляционного покрытия вследствие отсутствия его изгибов в углах профиля, достигается существенная экономия меди, улучшаются показатели распределения токовой нагрузки по сечению шины.

    Через несколько месяцев отношения российских производителей электротехнической продукции и их зарубежных конкурентов должны перейти в новую стадию. Это связано со вступлением в ВТО. С одной стороны, вступление в ВТО открывает перед российскими производителями внешний рынокС другой стороны, вступление в ВТО означает обязательное снижение ввозных экспортных пошлин, которые должны уменьшиться за 3-4 года чуть ли не в полтора раза. И главная конкуренция будет в качестве продукции.

    Лом — алюминиевый электротехнический

    Чистый кабельный алюминий, который применяется в электрической технике. Должна отсутствовать изоляция, скрутки, всевозможные клеммы и добавления сторонних материалов. Но допускается незначительное почернение кабельной жилы и следы обжига. Если электротехнический алюминий предварительно прессуется, то лом не должен магнитить, в обратном случае ставится засор.

    Наименование лома Описание Стоимость (за 1кг)
    До 20кг От 20 до 500кг Оплата безналом
    Электротехнический лом из алюминия 90 руб. 90 руб. 95 руб.

    Созданные технологии позволяют перерабатывать металлолом, чтобы в дальнейшем использовать его в промышленной индустрии. Одним из самых распространенных видов лома является электротехнический алюминий. Связано это с тем, что из него производят большое количество всевозможных изделий в промышленных масштабах: кабели, электрические шины и прочее. По окончанию срока службы они отправляются в утиль, где вместе с другими металлическими отходами постепенно накапливаются, занимая все больше пространства.

    Переработка вторичного сырья позволяет освободить территорию, а лом алюминия можно использовать в разных сферах жизнедеятельности человека, в первую очередь, в промышленности. Данный металл по популярности занимает третье место, уступая лишь кремнию и кислороду. Он высоко ценится за то, что практически не меняет свои полезные свойства под воздействием факторов окружающей среды.

    Наше предприятие заинтересовано в покупке лома электротехнического алюминия. Он отличается высокой проводимостью, поэтому его часто используют при производстве и ремонте электротехники. Электротехнический алюминий включает следующие марки:

    Алюминий массово используют при производстве электропроводов и кабелей. Это позволяет получить меньший вес изделий без ухудшения показателя сопротивления электрического тока, который не уступает меди.

    Мы купим дорого кабельный алюминий и разнообразный лом кабельного алюминия. Вы можете продать нам лом алюминия электротехнического по выгодным ценам.

    Алюминиевый лом (электротех) – это обмотка трансформаторов, моторов, конденсаторы, кабели, провода высоковольтных линий передач, цоколи ламп наливания и т.д.

    Наша компания принимает лом алюминия по выгодным тарифам, оперативно и в любых объемах, включая вагонные нормы. Мы готовы предоставить транспорт и грузчиков, которые быстро и качественно осуществят транспортировку металлолома. Доставку груза, время и место можно обсудить с менеджером по телефону. Бригада прибудет к указанному объекту точно в срок.

    Естественно, вы можете сдать лом алюминия самостоятельно на любом из наших пунктов приема. Здесь работают вежливые сотрудники, которые обслужат вас профессионально и качественно, оперативно оформят прием имеющегося у вас количества цветмета.

    Медь и алюминий являются самыми востребованными материалами при производстве электротехники. Электропроводность алюминия незначительно уступает меди, зато он обладает большим набором полезных свойств, делающими его применение во многих случаях самым целесообразным:

    • малый удельный вес;
    • низкая себестоимость в сравнении с медью;
    • высокие антикоррозионные показатели.

    Наличие полезных качеств способствовали широкому распространению разнообразных электротехнических изделий из алюминия:

    • высоковольтных проводов;
    • электрических кабелей;
    • контактных клемм;
    • электротехнических шин в распределительных приборах.

    Стоит отметить, что высокие антикоррозионные показатели алюминия и долговечность изделий из него не гарантируют вечную эксплуатацию. Даже самое качественное оборудование может устареть или же выйти из строя, в связи с чем, потребуется замена. Причиной поломки может стать обрыв проводов из-за порывистого сильного ветра, расплавление контактов из-за перегрузки сети.

    Ежегодно большие объемы электротехнического алюминия отправляются на свалку, хотя стоимость металла на рынке сырье неуклонно растет с каждым годом. Лом можно использовать вторично, ведь современные технологии переработки позволяют извлекать из него и вторично использовать до 90% востребованного сегодня сырья.

    Технология вторичной переработки – это не только выгодно. Она позволяет снизить нагрузку на природу, так как не требуются большие затраты электроэнергии, а технология переработки алюминиевого утиля экологически безопасна и не загрязняет окружающую среду.

    После переработки получается достаточно чистый металл, с небольшим количеством легирующих элементов. Перерабатывать утиль достаточно просто. Не нужно осуществлять большой цикл технологических операций по очищению алюминия от примесей. За счет этого появляется возможность устанавливать одну из самых высоких цен электротехнический алюминий.

    У вас есть большие запасы электротехнического лома? Обращайтесь в нашу компанию, чтобы выгодно и быстро продать алюминий.

    Медь и алюминий в электротехнике

    20 Ноября 2020
    Согласно знаменитой поговорке, «электротехника — наука о контактах».

    Любому электромонтажнику известно, что нельзя скручивать между собой медный и алюминиевый провода. Медная шина заземления или латунная стойка для платы плохо сочетаются с оцинкованными винтиками, купленными в ближайшем строительном супермаркете — коррозия может уничтожить электрический контакт. Голая алюминиевая деталь вообще может постепенно превратиться в прах, если к ней приложить даже низковольтное напряжение.

    В советских ГОСТах было написано почти всё о допустимых контактах металлов, однако сейчас может быть весьма неудобно искать в старых документах информацию о соединениях. Хабраюзер @teleghost собрал все данные в одной таблице.

    Далее приведена выдержка из ГОСТ 9.005-72 для средних атмосферных (т.е. комнатных) условий. Кликабельно.

    Несколько слов о металлах.

    Оцинкованная сталь — основная рабочая лошадка народного хозяйства. В виде различных метизов «оцинковка» встречается в магазинах стройматериалов гораздо чаще, чем, например, нержавейка. Фабричные корпуса ПК, технологические ящички и шкафчики для оборудования чаще всего выполнены из оцинкованной холоднокатанной стали толщиной порядка 1мм.

    Нержавеющая сталь — королева сталей: прочная, пластичная, стойкая к коррозии, электропроводная, круто выглядит. Слишком тугая, чтобы резать и гнуть её дома в промышленных масштабах. Хромистые и хромисто-никелевые нержавейки электрически плохо совместимы с цинком и «голой» сталью, зато дают надёжный контакт с медью без помощи олова. Алюминий, а также азотированная, оксидированная и фосфатированная низколегированная сталь ограниченно совместимы при стандартных атмосферных условиях. Нержавейка марки А2 не «магнитится», но существуют и нержавеющие стали с магнитными свойствами. Магнитные свойства не влияют на коррозионную стойкость нержавеющей стали.

    Алюминий и его сплавы бывают анодированные (с защитным слоем) и обычные (неанодированные). Алюминий легко обрабатывать в домашних условиях, но необходимо помнить о коррозии. Не используйте голый алюминий в качестве проводника даже с низковольтным напряжением, иначе ток медленно обратит деталь в прах. Обработанным в мастерской алюминиевым и дюралюминиевым деталям показана полная эквипотенциальность (наведённые полями токи вроде бы по фиг, заземлять тоже можно). Алюминий совместим с цинковым покрытием, но для контакта с медью, «голой» или никелированной сталью требуется оловянная «прокладка». Ограниченно допустим контакт алюминия с нержавейкой в атмосферных условиях. Для простоты можно принять, что при контакте с другими металлами и покрытиями алюминий будет корродировать сам по себе, без помощи внешнего электричества.

    Медь мягкая и довольно неаппетитно окисляется на воздухе, поэтому изделия из меди заключают в герметичную оболочку или лакируют. Латунные бляхи солдатских ремней и стойки для электронных печатных плат лучше сопротивляются окислению и выглядят аппетитнее позеленевшей меди, особенно если их периодически полировать (я про бляхи, конечно). При этом ни медь, ни её сплав с цинком (латунь) «не дружат» с чистым цинком и его покрытиями. Зато медь совмещается с хромом, никелем и нержавейкой. А если вы держите в руках какую-нибудь клемму, то она наверняка из лужёной (покрытой оловом) меди.

    Олово относительно стойко к коррозии (в комнатных условиях) и электрически совместимое почти со всем, кроме чугуна, низколегированных и углеродистых сталей и магния. Не стоит паять оловом и бериллий, будьте внимательны при сборке домашнего ядерного реактора. Олово используют, чтобы из недопустимого электрического контакта получить допустимый, т.е. в качестве «прокладки». Клеммы из лужёной меди — отличный пример.

    Не следует использовать олово при низких температурах — с прошлого века известна т.н. «оловянная чума» — полиморфное превращение т. н. «белого олова» в «серое» (b-Sn → a-Sn), при котором металл рассыпается в серый порошок. Причина разрушения состоит в резком увеличении удельного объёма металла (плотность b-Sn больше, чем a-Sn). Переход облегчается при контакте олова с частицами a-Sn и распространяется подобно «болезни». Наибольшую скорость распространения оловянная чума имеет при температуре —33°С; свинец и многие др. примеси её задерживают. В результате разрушения «чумой» паянных оловом сосудов с жидким топливом в 1912 погибла экспедиция Р. Скотта к Южному полюсу.

    Никелем покрыты блестящие «компьютерные» винтики. Такое покрытие совместимо с медью и бронзой, латунью, оловом, хромом и нержавеющей сталью. Никель несовместим с цинком и алюминием (для алюминия лучше контакт с нержавеющей сталью, см. ниже).

    Особенности коррозионной агрессивности неметаллов. Приложение 3б к ГОСТ 9.005-72:

    1. Коррозионная агрессивность органических материалов определяется активностью выделяющихся продуктов старения.
      • Коррозионная агрессивность фенопластов, аминопластов, пенопластов, формальдегидных клеев определяется выделением формальдегида, возможностью его окисления до муравьиной кислоты и уротропина, который может быть источником аммиака.
      • Коррозионная агрессивность материалов из древесины определяется выделением растворов уксусной и муравьиной кислот.
      • Коррозионная агрессивность эпоксидных материалов определяется наличием в них свободного хлора и хлористого водорода, карбоновых и дикарбоновых кислот.
      • Коррозионная агрессивность резинотехнических изделий определяется содержанием в них серы и ее соединений, соединений водорода с галогенидами, органических соединений с окислительными свойствами.
    2. Полимерные материалы, получаемые реакцией конденсации (эпоксидные, полиэфирные и т.п.), обладают наибольшей коррозионной агрессивностью в период отверждения. Процесс отверждения в замкнутых объемах конструкции проводить не рекомендуется.
    3. Облучение неметалла ионизирующим облучением (ультрафиолетовым, гамма-облучением и т.д.) может увеличивать его коррозионную агрессивность.
    4. Коррозионная агрессивность неметалла при прямом контакте с металлом определяется его водо- и кислородопроницаемостью. Значения водо- и кислородопроницаемости для ряда неметаллов приведены в табл.4 и 5.

    Новости [оборудование]

    Из курса школьной химии и физики вы наверняка запомнили, что любой металл является проводником электрического тока. Происходит этот процесс благодаря свободным электронам с отрицательным зарядом.

    В электричестве без проводников ничего не будет происходить. Обращаясь к таблице Менделеева, в которой собраны все элементы, можем наглядно увидеть, что у разных металлов разная проводимость. Лидером можно считать серебро. Затем уже идут медь, хром, алюминий, золото и другие.

    Самые распространенные материалы, которые используют для электротехнических изделий, – медь и алюминий. Инженеры отмечают, что эти два материала являются единственными, с которыми есть смысл работать.

    Медь представляет собой элемент первой группы IV периода таблицы. В чистом виде этот металл является мягким и одновременно тяжелым. Медь широко применяют в электротехнике. Это можно объяснить тем, что данный металл признан одним из лучших проводников электричества.

    В настоящее время медь широко используют для производства электротехники( например, трехфазных дросселей). Данный металл обладает следующими характеристиками:

    • удельный вес – 8,93 г/cм 3 ;
    • температура плавления – 1083°С;
    • удельное электрическое сопротивление меди при 20°С 0,0167 Ом*мм 2 /м.

    Алюминий находится в третьем группе III периода периодической системы. Металл проявляет стойкость к коррозии, имеет небольшой удельный вес, а также высокую электропроводность. Все эти показатели свидетельствуют о меньшей стоимости металла по сравнению с медью.

    Основные характеристики алюминия:

    • плотность – 2,7×103 кг/м 3 ;
    • удельная теплоемкость алюминия при 20°C – 0,21 кал/град;
    • температура плавления – 658,7°C;
    • температура кипения алюминия – 2000°C;
    • коэффициент линейного расширения алюминия (при температуре около 20°C) – 22,9 × 106(1/град).

    В электротехнической промышленности широко применяют алюминиевые прессованные столбы, кабельные наконечники и гильзы, токопроводящие шины в составе тиристорный преобразователя тока, шкафы электроподстанций и многое другое.

    В кругах инженеров-электриков принято выделять основные свойства металлов:

    • плотность;
    • электропроводимость;
    • прочность;
    • стойкость к коррозии;
    • термическое расширение

    В зависимости от величины показателя, необходимо определять целесообразность использования того или иного для конкретных производственных целей. Например, блок питания с регулировкой содержит много меди. Все это крайне важно знать. Тогда результат будет соответствовать ожиданиям.

    Добавить комментарий