Медианная фильтрация

Национальная библиотека им. Н. Э. Баумана
Bauman National Library

Персональные инструменты

Медианная фильтрация

Медианная фильтрация – достаточно часто применяемый метод предварительной обработки сигналов. Специфической особенностью медианных фильтров является избирательность по отношению к элементам массива, представляющим собой немонотонную составляющую последовательности чисел в пределах окна (апертуры) фильтра, и резко выделяющихся на фоне соседних отсчетов. В то же время на монотонную составляющую последовательности медианный фильтр не действует, оставляя её без изменений. Благодаря этой особенности, медианные фильтры при оптимально выбранной апертуре могут, например, сохранять без искажений резкие границы объектов, эффективно подавляя некоррелированные или слабо коррелированные помехи и малоразмерные детали. Это свойство позволяет применять медианную фильтрацию для устранения аномальных значений в массивах данных, уменьшения выбросов и импульсных помех. Характерной особенностью медианного фильтра является его нелинейность. Во многих случаях применение медианного фильтра оказывается более эффективным по сравнению с линейными фильтрами, поскольку процедуры линейной обработки являются оптимальными при равномерном или гауссовом распределении помех, что в реальных сигналах может быть далеко не так. В случаях, когда перепады значений сигналов велики по сравнению с дисперсией аддитивного белого шума, медианный фильтр дает меньшее значение среднеквадратической ошибки по сравнению с оптимальными линейными фильтрами. Особенно эффективным медианный фильтр оказывается при очистке сигналов от импульсных шумов при обработке изображений, акустических сигналов, передаче кодовых сигналов и т. п. Однако детальные исследования свойств медианных фильтров как средства фильтрации сигналов различного типа являются довольно редкими.

Содержание

Медианная фильтрация одномерных сигналов

Принцип фильтрации

Медианы давно использовались и изучались в статистике как альтернатива средним арифметическим значениям отсчетов в оценке выборочных средних значений. Медианой числовой последовательности x 1 , x 2 , . . . , x n <\displaystyle

Таким образом, медианная фильтрация осуществляет замену значений отсчетов в центре апертуры медианным значением исходных отсчетов внутри апертуры фильтра. На практике апертура фильтра для упрощения алгоритмов обработки данных, как правило, устанавливается с нечетным числом отсчетов, что и будет приниматься при рассмотрении в дальнейшем без дополнительных пояснений.

Одномерные фильтры

Медианная фильтрация реализуется в виде процедуры локальной обработки отсчетов в скользящем окне, которое включает определенное число отсчетов сигнала. Для каждого положения окна выделенные в нем отсчеты ранжируются по возрастанию или убыванию значений. Средний по своему положению отчет в ранжированном списке называется медианой рассматриваемой группы отсчетов. Этим отсчетом заменяется центральный отсчет в окне для обрабатываемого сигнала. В силу этого медианный фильтр относится к числу нелинейных фильтров, заменяющим медианным значением аномальные точки и выбросы независимо от их амплитудных значений, и является устойчивым по определению, способным аннулировать даже бесконечно большие отсчеты.

Алгоритм медианной фильтрации обладает явно выраженной избирательностью к элементам массива с немонотонной составляющей последовательности чисел в пределах апертуры и наиболее эффективно исключает из сигналов одиночные выбросы, отрицательные и положительные, попадающие на края ранжированного списка. С учетом ранжирования в списке медианные фильтры хорошо подавляют шумы и помехи, протяженность которых составляет менее половины окна. Стабильной точкой является последовательность (в одномерном случае) или массив (в двумерном случае), которые не изменяются при медианной фильтрации. В одномерном случае стабильными точками медианных фильтров являются «локально-монотонные» последовательности, которые медианный фильтр оставляет без изменений. Исключение составляют некоторые периодические двоичные последовательности.

Благодаря этой особенности, медианные фильтры при оптимально выбранной апертуре могут сохранять без искажений резкие границы объектов, подавляя некоррелированные и слабо коррелированные помехи и малоразмерные детали. При аналогичных условиях алгоритмы линейной фильтрации неизбежно «смазывает» резкие границы и контуры объектов. На рис. 1 приведен пример обработки сигнала с импульсными шумами медианным и треугольным фильтрами с одинаковыми размерами окна N = 3 <\displaystyle N=3 \,\!>. Преимущество медианного фильтра очевидно.

Каждый электрик должен знать:  Как очистить энергосберегающую лампу от пыли и грязи

В качестве начальных и конечных условий фильтрации обычно принимаются концевые значения сигналов либо медиана находится только для тех точек, которые вписываются в пределы апертуры. На рис. 2 приведен пример медианной фильтрации модельного сигнала a k <\displaystyle a_k \,\!>, составленного из детерминированного сигнала s k <\displaystyle s_k \,\!>в сумме со случайным сигналом q k <\displaystyle q_k \,\!>, имеющим равномерное распределение с одиночными импульсными выбросами. Окно фильтра равно 5. Результат фильтрации – отсчеты b k <\displaystyle b_k \,\!>.

Подавление статистических шумов

Если случайные величины х являются НОР и равномерно распределены на отрезке [ 0 , 1 ] <\displaystyle [0, 1] \,\!>, то можно найти точное значение дисперсии медианы по формуле:

Положение изменяется, если плотность распределения случайных величин существенно отличается от нормального и имеет длинные хвосты, которые и ликвидируются медианным фильтром, что обеспечивает оптимальную и наиболее правдоподобную оценку текущих значений сигнала по минимуму среднеквадратического приближения. Так, при экспоненциальном (по модулю) распределении плотности шумов

дисперсия шумов после медианного фильтра на 50% меньше, чем после фильтра скользящего среднего.

Предельным случаем таких распределений является импульсный шум, случайный по амплитудам и месту появления, который и подавляется медианными фильтрами с наибольшей эффективностью.

Импульсные и точечные шумы

Под импульсным шумом понимается искажение сигналов большими импульсными выбросами произвольной полярности и малой длительности. Причиной появления импульсных потоков могут быть как внешние импульсные электромагнитные помехи, так и наводки, сбои и помехи в работе самих систем. Совокупность статистически распределенного шума и потока квазидетерминированных импульсов представляет собой комбинированную помеху. Радикальный метод борьбы с комбинированной помехой – применение помехоустойчивых кодов. Однако это приводит к снижению скорости и усложнению систем приемо-передачи данных. Простым, но достаточно эффективным альтернативным методом очистки сигналов в таких условиях является двухэтапный алгоритм обработки сигналов x ( t ) <\displaystyle x(t)\,\!>, где на первом этапе производится устранение из потока x ( t ) <\displaystyle x(t)\,\!>шумовых импульсов, а на втором – очистка сигнала частотными фильтрами от статистических шумов. Для сигналов, искаженных действием импульсных шумов, отсутствует строгая в математическом смысле постановка и решение задачи фильтрации. Известны лишь эвристические алгоритмы, наиболее приемлемым из которых является алгоритм медианной фильтрации.

Такое задание импульсной помехи соответствует потоку Бернулли.

Если вероятность ошибки не очень велика, то медианная фильтрация даже с достаточно малой апертурой значительно уменьшит число ошибок. Эффективность исключения шумовых импульсов повышается с увеличением апертуры фильтра, но одновременно может увеличиваться и искажение полезного сигнала.

Перепад плюс шум

Рассмотрим фильтрацию перепадов при наличии аддитивного белого шума, т. е. фильтрацию последовательностей, или изображений, с

Использованная мера точности может характеризовать только резкость поперек перепада и ничего не говорит о гладкости фильтрованного изображения вдоль перепада. Скользящее усреднение дает сигналы, гладкие вдоль перепада, тогда как при обработке с помощью медианным фильтром протяженные перепады оказываются слегка изрезанными.

Ковариационные функции

Ковариационные функции при белом шуме на входе и нормализованные функции автокореляции выходных сигналов медианных и усредняющих фильтров подобны друг другу. Сходство функций корреляции до некоторой степени объясняется относительно высокой корреляцией между медианой и средним, которая достигает 0.8 при больших n. Приближенная формула функции автоковариации для последовательности, подвергнутой медианной фильтрации определяется выражением:

Преобразование статистики шумов

На рис. 5 приведены примеры медианной фильтрации модельных шумовых сигналов с гауссовым и равномерным распределением при различной ширине окна фильтра. Как следует из этих графиков, при фильтрации происходит преимущественное подавление шумовых сигналов с большими отклонениями отсчетов от среднего значения с уменьшением стандарта (СКО – среднеквадратического отклонения) распределения. Уменьшение стандарта тем больше, чем больше окно фильтра. Этим же определяется и преобразование формы распределения выходного равномерного шума (а равно и других распределений шумов) к гауссовой по мере увеличения размера окна фильтра.

Каждый электрик должен знать:  Смогут ли транзисторы из карбида кремния вытеснить элементы из обычного кремния

На рис. 6 приведен пример изменения гистограмм шума при выполнении дву- и трехкратной последовательной фильтрации. Как видно из графиков, основной эффект фильтрации достигается на первом цикле.

Уменьшение количества больших шумовых отклонений от среднего значения шума приводит также к изменению спектра шума и к определенному подавлению его высокочастотных составляющих, которых больше в «хвостах» шумовых распределений. Это можно видеть на рис. 7 на спектрах плотности мощности входного и выходного сигналов.

Следует, однако, заметить, что нелинейность медианной фильтрации (замена больших отклонений средними по рангу в окне) приводит к повышению низкочастотных составляющих спектра шума. Этот эффект наглядно виден на рис. 8, где приводятся сглаженные значения отношения модулей спектров выходного модельного шумового сигнала к входному, т. е. эквивалент коэффициента передачи фильтром шумовых сигналов. На коэффициент передачи фильтром полезных низкочастотных сигналов это не отражается, он остается равным 1, но может приводить к ухудшению отношения сигнал/шум.

Попутно заметим, что медианный фильтр можно применять и по прямо противоположному назначению – обнаружению в сигналах и выделению квазидетерминированных помех.

Частотные свойства фильтра

Для описания линейных фильтров используют импульсную реакцию на единичный импульс, на ступенчатую функцию, и частотные передаточные функции в главном частотном диапазоне. Так как медианный фильтр ликвидирует единичные импульсы и сохраняет перепады, то можно говорить, что импульсная реакция фильтра равна нулю, а отклик на ступенчатую функцию равен 1. Что касается частотной характеристики фильтра, то, в силу нелинейности фильтра, ее нельзя представить какой-либо детерминированной функцией апертуры и частоты. В какой-то мере можно говорить о реакции фильтра на косинусоидальные функции, которая также существенно различается для низких и высоких частот главного частотного диапазона и фазы гармоник в апертуре фильтра, что можно видеть на рис. 9.

Для многотональных входных сигналов начинается также интерференция частот гармоник между собой, что приводит к появлению многочисленных ложных высокочастотных гармоник (верхние графики на рис. 10), а при наличии во входном сигнале высокочастотных гармоник искажаются также и коэффициенты передачи низкочастотных гармоник (нижние графики на рисунке), т. е. частотные отклики для одиночных гармонических функций не соответствуют передаточным характеристикам для произвольных сигналов, являющихся суммой косинусоидальных функций, т. к. передаточные функции становятся резко нерегулярными в силу интерференции разных частот.

Картина частотной интерференции зависит также от фазы гармоник, что усиливает нерегулярность конечных результатов и наглядно видна на рис. 11 при различных случайных реализациях фазы гармоник. При увеличении размеров апертуры фильтров нерегулярность передачи фильтров увеличивается.

Разновидности медианных фильтров

Взвешенно-медианные фильтры

y i = m e d ( x i − 1 , x i − 1 , x 0 , x 0 , x 0 , x 1 , x 1 ) <\displaystyle y_i = med (x_, x_, x_0, x_0, x_0, x_1, x_1) \,\!>

Такая растянутая последовательность также сохраняет перепады сигнала и в определенных условиях позволяет увеличить подавление дисперсии статистических шумов в сигнале. Ни один из весовых коэффициентов k i <\displaystyle k_i \,\!>не должен быть значительно больше всех других.

Итерационные медианные фильтры

Итерационные медианные фильтры выполняются последовательным повторением медианной фильтрации. Если апертура единичной медианной фильтрации сохраняет перепады в сигнале, то они сохраняются при итеративном применении фильтра вплоть до тех пор, пока не прекратятся изменения в фильтруемом сигнале, при этом конечный результат существенно отличается от итеративного применения скользящего среднего, где в пределе получается постоянная числовая последовательность. При использовании итерационных фильтров можно изменять апертуру фильтра при каждом шаге итерации.

Достоинства медианных фильтров

  1. Простая структура фильтра, как для аппаратной, так и для программной реализации.
  2. Фильтр не изменяет ступенчатые и пилообразные функции.
  3. Фильтр хорошо подавляет одиночные импульсные помехи и случайные шумовые выбросы отсчетов.

Недостатки медианных фильтров

  1. Медианная фильтрация нелинейна, так как медиана суммы двух произвольных последовательностей не равна сумме их медиан, что в ряде случаев может усложнять математический анализ сигналов.
  2. Фильтр вызывает уплощение вершин треугольных функций.
  3. Подавление белого и гауссового шума менее эффективно, чем у линейных фильтров. Слабая эффективность наблюдается также при фильтрации флюктуационного шума.
  4. При увеличении размеров окна фильтра происходит размытие крутых изменений сигнала и скачков.
Каждый электрик должен знать:  Станции управления промышленного назначения

Недостатки метода можно уменьшить, если применять медианную фильтрацию с адаптивным изменением размера окна фильтра в зависимости от динамики сигнала и характера шумов (адаптивная медианная фильтрация). В качестве критерия размера окна можно использовать, например, величину отклонения значений соседних отсчетов относительно центрального ранжированного отсчета. При уменьшении этой величины ниже определенного порога размер окна увеличивается.

Медианная фильтрация изображений

Шумы в изображениях

Никакая система регистрации не обеспечивает идеального качества изображений исследуемых объектов. Изображения в процессе формирования их системами (фотографическими, голографическими, телевизионными) обычно подвергаются воздействию различных случайных помех или шумов. Фундаментальной проблемой в области обработки изображений является эффективное удаление шума при сохранении важных для последующего распознавания деталей изображения. Сложность решения данной задачи существенно зависит от характера шумов. В отличие от детерминированных искажений, которые описываются функциональными преобразованиями исходного изображения, для описания случайных воздействий используют модели аддитивного, импульсного и мультипликативного шумов.

Наиболее распространенным видом помех является случайный аддитивный шум, статистически независимый от сигнала. Модель аддитивного шума используется тогда, когда сигнал на выходе системы или на каком-либо этапе преобразования может рассматриваться как сумма полезного сигнала и некоторого случайного сигнала. Модель аддитивного шума хорошо описывает действие зернистости фотопленки, флуктуационный шум в радиотехнических системах, шум квантования в аналого-цифровых преобразователях и т.п.

Аддитивный гауссов шум характеризуется добавлением к каждому пикселю изображения значений с нормальным распределением и с нулевым средним значением. Такой шум обычно вводится на этапе формирования цифровых изображений. Основную информацию в изображениях, как правило, несут контуры объектов. Классические линейные фильтры способны эффективно удалить статистический шум, но степень размытости мелких деталей на изображении может превысить допустимые значения. Для решения этой проблемы используются нелинейные методы, например алгоритмы на основе анизотропной диффузии Перрона и Малика, билатеральные и трилатеральные фильтры. Суть таких методов заключается в использовании локальных оценок, адекватных определению контура на изображении, и сглаживания таких участков в наименьшей степени.

Импульсный шум характеризуется заменой части пикселей на изображении значениями фиксированной или случайной величины. На изображении такие помехи выглядят изолированными контрастными точками. Импульсный шум характерен для устройств ввода изображений с телевизионной камеры, систем передачи изображений по радиоканалам, а также для цифровых систем передачи и хранения изображений. Для удаления импульсного шума используется специальный класс нелинейных фильтров, построенных на основе ранговой статистики. Общей идеей таких фильтров является детектирование позиции импульса и замена его оценочным значением, при сохранении остальных пикселей изображения неизменными.

Двумерные фильтры

Медианная фильтрация изображений наиболее эффективна, если шум на изображении имеет импульсный характер и представляет собой ограниченный набор пиковых значений на фоне нулей. В результате применения медианного фильтра наклонные участки и резкие перепады значений яркости на изображениях не изменяются. Это очень полезное свойство именно для изображений, на которых, как известно, контуры несут основную информацию.

При медианной фильтрации зашумленных изображений степень сглаживания контуров объектов напрямую зависит от размеров апертуры фильтра и формы маски. Примеры формы масок с минимальной апертурой приведены на рис. 12. При малых размерах апертуры лучше сохраняются контрастные детали изображения, но в меньшей степени подавляется импульсные шумы. При больших размерах апертуры наблюдается обратная картина. Оптимальный выбор формы сглаживающей апертуры зависит от специфики решаемой задачи и формы объектов. Особое значение это имеет для задачи сохранения перепадов (резких границ яркости) в изображениях.

Добавить комментарий