Механические характеристики электроприводов

СОДЕРЖАНИЕ:

Блок модулей 1 Механические характеристики электроприводов

Блок модулей 1 Механические характеристики электроприводов — раздел Энергетика, Дисциплина:Пп.03.05 «Системы Управления Автоматизированного.

Дисциплина:ПП.03.05 «Системы управления автоматизированного

Блок модулей 1(ПП.03.05.01) «Механические характеристики электроприводов,

принципы регулирования скорости электропри-

Модуль 1.1(3 ПФ.С.11.ЗР.З.01.01) «Механика электропривода»

Лекция № 2

«Основное уравнение движения электропривода. Основные сведения о

механических характеристиках производственных механизмов и

План лекции:

1. Основное уравнение движения электропривода.

2. Основные сведения о механических характеристиках производственных

механизмов и электродвигателей.

Пункт 1 — Основное уравнение движения электропривода.

Уравнения движения электропривода описуется с помощью основных законов движения, известных Вам из курса физики. А известно следующее — движение каких-либо тел, механических звеньев или кинематической цепи любой рабочей машины подчиняется законам Ньютона.

Первый закон Ньютона — закон инерции. Для поступательно­го движения этот закон гласит, что каждое тело сохраняет состояние покоя или прямолинейного равномерного движения до тех пор, пока внешние силы (Примечание: обозначаются в физике латинской буквой F) не выведут его из этого состояния. Так как на тело всегда действует несколько внешних сил (например, сила, соз­даваемая двигателем, сила тяжести, силы трения и другие), для того, чтобы это тело находилось в состоянии покоя или прямолиней­ного равномерного движения необходимо, чтобы векторная (алгебраическая) сумма сил, действующих на тело, была равна нулю. Применительно к вращательному движению первый закон Ньютона может быть сформулирован следующим образом: тело, имеющее фиксированную ось вращения, будет находиться в со­стоянии покоя или равномерного вращения до тех пор, пока приложенные из вне моменты не выведут его из этого состояния.

Момент М яв­ляется физическим аналогом силы F для вращательного движения, а также формируется с непосредственным участием прилаживаемой силы F. Формирование момента может быть пояснено с помощью следующего рисунка:

Рисунок 1 – Формирование крутящего момента во вращающемся теле

Момент создается силой F, прилаживаемой к так называемому плечу вращающегося тела (Примечание: плечо — кратчайшее рас­стояние от оси вра­щения до линии действия силы). Т.е. величина момента, возникающего во вращающемся теле, зависит от диаметра данного тела и от величины приложенной силы – М = F·R. Другими словами, чем сильней Вы раскрутите, к примеру, с помощью руки какой-то диск с зафиксированной осью, то тем больший изначальный момент Вы ему зададите и тем дольше он будет вращаться вокруг оси. И тем дольше такой диск может вращаться, чем больше будет его диаметр, а соответственно и радиус. На данном принципе строится работа маховиков – крупных вращающихся тел, которые после передачи им какого-либо начального значения силы, за счёт своего большого диаметра могут развивать большой крутящий момент, а в дальнейшем накапливать и передавать другим механизмам огромное количество кинетической энергии.

Далее необходимо рассмотреть все виды моментов, с которыми имеют дело при изучении работы любой системы «Электрический двигатель – механизм» («Электропривод»).

1). Вращающий момент М двигателя — создается в результате взаимодействия магнитных полей неподвижной части двигателя (статора) и поля вокруг проводов обмотки подвижной части двигателя (ротора), создавае­мого током, протекающим в этой части двигателя.

Формирование вращающегося момента в электродвигателе можно пояснить с помощью следующего рисунка:

Рисунок 2 – Формирование крутящего момента в электрическом двигателе

Создаваемый на валу электродвигателя вращающий момент в основном зависит от угловой скорости и мощности самого двигателя:

где М — вращающий момент электродвигателя, Н·м;

Р — мощность электродвигателя, Вт;

ω — угловая скорость, с -1 или 1сек.

2. Момент статического сопротивления МСТ. Во время работы любого механизма возникает некоторое проти­водействующее усилие, направленное обычно навстречу прилагаемому усилию. Например, при фрезеровании, сверлении, точении в месте соприкосновения инструмента и обрабатываемой детали появляется сила трения, всегда направленная против движения и стремящаяся затормо­зить движение. Если изменить направление вращения фрезы, сверла или де­тали на токарном станке, то и сила трения изменит свое направление, и опять будет направлена на встречу движению усилия. Физическая величина её будет зависеть от твердости материала, подачи и глубины резания. Та­кую силу называют статической силой сопротивления FСТ, а момент ею вы­званный — статическим моментом сопротивления МСТ. Электродвигатель должен постоянно преодолевать этот момент, поэтому он и потребляет от се­ти электроэнергию.

Определение: Под статическим моментом сопротивления любого механизма понимается такой вращающий момент на валу этого механизма, который создается различными ста­тическими силами нагрузки: любого рода силами трения, резания, скручивания, сжатия, растяжения и т. п.

В зависимости от назначения и свойств ме­ханизма статический момент может оставаться постоянным или изменятся в зависимости от скорости, пути, времени и т.д.. В некоторых слу­чаях он может вместо тормозящего действия оказывать движу­щее действие, способствуя вращению. В связи с этим статические моменты могут быть разделены на две категории:

1) категория реактивных моментов;

Категория активных (потенциаль­ных) моментов.

Момент динамического сопротивления во вращающейся системе может возникнуть только при изменении скорости вращения вала электрического двигателя, т.е. при переходном процессе: пуске, ускорении, замедлении и т.п. Причём, при пуске или другом переходном процессе, связанным с ускорением электродвигателя, момент динамического сопротивления всегда будет создавать для вала электродвигателя дополнительную нагрузку (сопротивление), т.к. электродвигателю приходится часть своей кинетической энергии отдать остальным массам, находящимся у него на валу, т.е задать начальный, либо изменённый по величине, момент инерции. И наоборот, при переходном процессе, связанным с замедлением электродвигателя, момент динамического сопротивления всегда будет одинаково направлен с вращающим моментом самого электродвигателя, способствуя ему в преодолении какой-либо статической нагрузки на валу. Это связано всё с тем же высвобождением накопленной кинетической энергии во вращающихся массах электропривода, т.е. опять имеем дело с моментом инерции, но в этот раз энергия затрачивается не на её создание, а наоборот – используется энергия накопленной инерции J.

Характер движения электропривода описуется в большинстве случаев при помощи ОСНОВНОГО УРАВНЕНИЯ ДВИЖЕНИЯ ЭЛЕКТРОПРИВОДА. Исследование влияния различных величин, входящих в это уравнение, даёт представление о режиме работы электропривода в том или ином режиме работы. Это уравнение имеет следующий вид:

или ± М ∓ МСТ = J·(dω/dt ), (1)

где М — вращающий момент двигателя, Н·м;

МСТ — приведенный к валу двигателя момент сопротивления рабочего механизма, Н·м;

J — приведенный к валу двигателя момент инерции электропривода, кг·м 2 ;

ω — угловая частота вращения двигателя, с -1 или 1сек.

Правая часть основного уравнения движения– это и есть динамический момент(J·(dω/dt) = МДИН). В соответствии с основным уравнением движения значение динамического момента МДИН определяется разностью между моментом двигателя и моментом статического сопротивления. При условии, когда момент двигателя М становится больше значения MСТ электродвигатель ускоряет свое движение, а если момент М становится меньше значения МСТ – электродвигатель замедляет движение, т.е. можно сказать, что появление положительного момента динамического сопротивления обусловлено разгоном электропривода, а появление отрицательного момента динамического сопротивления – замедлением электропривода.

Пункт 2 — Основные сведения о механических характеристиках производ-

Ственных механизмов и электродвигателей.

При выборе электродвигателя для производственного механизма необходимо выявить соответствие его меха­нических свойств характеристикам этого механизма.

Соответствие механических характе­ристик производственного механизма и электродвигателя способствует повыше­нию надежности, производительности, экономичности работы машины, ее долго­вечности, повышению качества выполнения технологического процесса и. т. п. Поэтому при выборе электродвигателя прежде всего учитывают форму его механической характеристики.

На­пример: для привода средств, транспортирующих жидкий металл, целесообразно использовать электродвигатель, имеющий мягкую механическую характеристику. Такой двигатель обеспечивает плавный пуск и торможение, плавно преодолевает перегрузки, не перегружает сеть пиками тока. Для привода валков прокатного стана целесообразно использовать электродвигатель с жесткой механической характеристикой, поскольку снижение скорости при случайном увеличении нагрузки может привести к ухудше­нию качества проката и снижению производительности стана.

Механической характеристикой производственного ме­ханизма называют зависимость между его скоростью и моментом статического сопротивления, создаваемого этим механизмом. Обычно записуется в виде соотношения п = f(Мс). Механические характеристики производственных ме­ханизмов можно ориентировочно разбить на такие основные категории:

Механической характеристикой электродвигателя называют зави­симость его скорости вращения от момента, развиваемого электродвигателем. Обычно записуется в виде соотношения п = f(М).

У подавляющего большинства электродвигателей прп увеличении нагрузки скорость вращения уменьшается. В зависимости от степени изменения скорости с изменением момента различают три основные категории механических характе­ристик электродвигателей:

Кроме вышеуказанной классификации механические характеристики электродвигателей могут быть естественными — при номинальных параметрах питаю­щего напряжения и отсутствии реостатов в цепях обмоток элект­родвигателя и искусственными, когда параметры питающего на­пряжения (его величина, частота) отличаются от номинального значения или когда в цепь двигателя введен реостат.

Оценить степень жесткости механической характеристики электродви­гателя можно с помощью коэффициента жесткости β = dM/dω.

Следует иметь в виду, что в современном электроприводе с по­мощью систем автоматического управления можно формировать семейства механических характеристик нужного в данных усло­виях вида независимо от формы естественной механической харак­теристики электродвигателя.

Контрольные вопросы для закрепления изученного материала:

1. Поясните, каким образом формируется крутящий момент вращающегося тела?

2. Поясните, какие моменты участвуют в работе электропривода? В чём заключается краткий

физический смысл каждого из этих моментов?

3. Поясните, как формируется крутящий момент в электродвигателе и от чего зависит его

4. Поясните, как Вы понимаете физический смысл момента статического сопротивления МСТ.

5. При каких условиях работы привода возникает момент динамического сопротивления? Как

этот момент может повлиять на работу электропривода?

6. Сформулируйте основное уравнение движения электропривода. Что обозначают знаки «+» и

«-» перед его составляющими?

7. Что такое механическая характеристика производственного механизма?

8. Что такое механическая характеристика электродвигателя?

9. На какие основные категории можно ориентировочно разложить механические характеристи-

ки производственных механизмов? Приведите примеры механизмов по каждой из категорий.

10. На какие основные категории можно разложить механические характеристики электродвига-

телей? Какие типы двигателей можно отнести к каждой из категорий?

11. Что представляют собой искусственная и естественная механические характеристики

12. Для чего используют коэффициент жёсткости? По какой формуле он определяется?

Механические характеристики электроприводов

Привод подъема, сухого и вязкого трения, транспортный, вентиляторный, позиционный привод. Трудности увязки характеристик двигателей и приводов

Каждый привод имеет свою механическую характеристику: соотношение между скоростью и моментом сопротивления. То есть, для каждой скорости привода есть какое-то определенное сопротивление вращению вала двигателя в устоявшемся режиме.

Так, например, существуют электроприводы, в которых нагрузка никак или почти никак не зависит от скорости. Классический образец – привод подъема грузоподъемной машины. С какой бы скоростью мы бы не поднимали груз, его масса, а значит и вес, будут неизменны, и нагрузка на электропривод не изменится.

В то же время при опускании груза момент нагрузки будет совпадать с направлением вращения двигателя, и это вынудит двигатель перейти в режим электромагнитного тормоза.

Другая категория условно называется приводами «сухого трения». Статический момент сопротивления в них не зависит от абсолютного значения скорости, но меняет свое направление вместе с ней.

Пример подобного привода – реверсивный привод металлорежущего станка. Вне зависимости от направления включения двигателя в нем всегда есть определенный постоянный момент статического сопротивления.

Один из самых редких на практике приводов – это привод «вязкого трения», статический момент сопротивления в котором прямо пропорционален скорости.

Теоретически модель подобного представить нетрудно. Достаточно вообразить себе механизм, перемещающий в двух направлениях рабочий орган в вязкой среде (в жидкости) при условии отсутствия помех со стороны земного притяжения.

Гораздо чаще нагрузка на привод возрастает не прямо пропорционально скорости вала, а по зависимости, описываемой параболой. То есть, даже при небольшом возрастании скорости, статический момент сопротивления будет возрастать очень резко.

Это характерно, например, для приводов вентиляторов и насосов, поэтому привод с такой статической характеристикой и получил название «вентиляторного».

В транспортном приводе момент сопротивления вращению зависит от текущего ускорения, то есть от динамической составляющей.

При разгоне, он преодолевает большой момент, а впоследствии работает практически без нагрузки, зато на большой скорости. Именно такой привод у трамваев, троллейбусов, железнодорожных локомотивов.

Есть и еще один, специфический тип привода – позиционный. Его статический момент сопротивления зависит от текущей позиции. Например, радиолокационная антенна, будучи расположенной перпендикулярно направлению ветра, будет оказывать гораздо большее сопротивление повороту в одну сторону, а в другую повернется свободно. В другом положении осложнен будет поворот в противоположную сторону. Таким образом, момент сопротивления позиционного привода зависит не от скорости, а от положения рабочего органа.

Таким разнообразием отличаются статические характеристики приводов. В идеале, механическая характеристика приводного электродвигателя в каждом случае должна быть как можно ближе к характеристике привода. Это позволит двигателю работать с оптимальными энергетическими показателями, и вообще даст возможность эффективного регулирования и управления.

Но механические характеристики двигателей – зависимости скорости вращения вала двигателя от момента, развиваемого на валу – не отличаются особым разнообразием.

Асинхронные , синхронные двигатели, двигатели постоянного тока параллельного и независимого возбуждения имеют жесткую механическую характеристику, подходящую для работы в составе привода подъема. Их скорость незначительно снижается при увеличении статического момента сопротивления на валу (у синхронного двигателя скорость даже не снижается вовсе).

Двигатели постоянного тока последовательного и смешанного возбуждения и коллекторные однофазные двигатели переменного тока способны развивать большой момент на малых скоростях, а при отсутствии момента сопротивления их скорость вращения резко возрастает. Их механическая характеристика подходит для транспортного электропривода.

Вот и все на этом. Двигателей, естественная механическая характеристика которых подходит для вентиляторного привода, например, просто не существует. Для привода вентилятора используется обычно асинхронный двигатель. При отсутствии какого-либо регулирования характеристика привода и характеристика двигателя сойдутся в одной общей точке. Следовательно, он будет работать только с одной постоянной скоростью при одном моменте на валу.

При использовании двигателя с жесткой характеристикой в транспортном приводе двигатель будет либо работать большую часть времени в недогруженном состоянии с низким КПД, либо будет запускаться с трудом.

Чтобы оптимизировать работу привода и добиться необходимого соотношения скорости вращения вала и электромагнитного момента, наиболее эффективно использование тиристорно-импульсного регулирования. Причем это в равной степени касается электродвигателей переменного и постоянного тока.

Полупроводниковые управляемые преобразователи позволяют формировать практически произвольные механические характеристики двигателей, обеспечивая лучший КПД и коэффициент мощности.

Электрические приводы. Виды и устройство. Применение и работа

Электропривод – электромеханическая система, служащая для привода в движение функциональных органов машин и агрегатов для выполнения определенного технологического процесса. Электрические приводы состоят из электродвигателя, устройства преобразования, управления и передачи.

С прогрессом промышленного производства электрические приводы заняли в быту и на производстве лидирующую позицию по числу электродвигателей и общей мощности. Рассмотрим структуру, типы, классификацию электроприводов, и предъявляемые к нему требования.

Устройство

1 — Передний крепеж
2 — Винтовая передача
3 — Концевой датчик
4 — Электродвигатель
5 — Зубчатая передача
6 — Задний крепеж

Функциональные компоненты
  • Р – регулятор служит для управления электроприводом.
  • ЭП – электрический преобразователь служит для преобразования электроэнергии в регулируемую величину напряжения.
  • ЭМП – электромеханический преобразователь электричества в механическую энергию.
  • МП – механический преобразователь способен изменять быстродействие и характер движения двигателя.
  • Упр – управляющее действие.
  • ИО – исполнительный орган.
Функциональные части
  • Электропривод.
  • Механическая часть.
  • Система управления.

Исполнительный механизм является устройством, которое смещает рабочую деталь по поступающему сигналу от управляющего механизма. Рабочими деталями могут быть шиберы, клапаны, задвижки, заслонки. Они изменяют количество поступающего вещества на объект.

Рабочие органы могут двигаться поступательно, вращательно в определенных пределах. С их участием производится воздействие на объект. Чаще всего электропривод с исполнительным механизмом состоят из электропривода, редуктора, датчиков положения и узла обратной связи.

Сегодня электрические приводы модернизируются по их снижению веса, эффективности действия, экономичности, долговечности и надежности.

Свойства привода
  • Статические . Механическая и электромеханическая характеристика.
  • Механические . Это зависимость скорости вращения от момента сопротивления. При анализе динамических режимов механические характеристики полезны и удобны.
  • Электромеханические . Это зависимость скорости вращения от тока.
  • Динамические . Это зависимость координат электропривода в определенный момент времени при переходном режиме.
Классификация

Электрические приводы обычно классифицируются по различным параметрам и свойствам, присущим им. Рассмотрим основные из них.

По виду движения:
  • Вращательные.
  • Поступательные.
  • Реверсивные.
  • Возвратно-поступательные.
По принципу регулирования:
  • Нерегулируемый.
  • Регулируемый.
  • Следящий.
  • Программно управляемый.
  • Адаптивный. Автоматически создает оптимальный режим при изменении условий.
  • Позиционный.
По виду передаточного устройства:
  • Редукторный.
  • Безредукторный.
  • Электрогидравлический.
  • Магнитогидродинамический.
По виду преобразовательного устройства:
  • Вентильный. Преобразователем является транзистор или тиристор.
  • Выпрямитель-двигатель. Преобразователем является выпрямитель напряжения.
  • Частотный преобразователь-двигатель. Преобразователем является регулируемый частотник.
  • Генератор-двигатель.
  • Магнитный усилитель-двигатель.
По методу передачи энергии:
  • Групповой . От одного мотора через трансмиссию приводятся в движение другие исполнительные органы рабочих машин. В таком приводе очень сложное устройство кинематической цепи. Электрические приводы такого вида являются неэкономичными из-за их сложной эксплуатации и автоматизации. Поэтому такой привод сегодня не нашел широкого применения.
  • Индивидуальный . Он характерен наличием у каждого исполнительного органа отдельного электродвигателя. Такой привод является одним из основных на сегодняшний день, так как кинематическая передача имеет простое устройство, улучшены условия техобслуживания и автоматизации. Индивидуальный привод нашел популярность в современных механизмах: сложных станках, роботах-манипуляторах, подъемных машинах.
  • Взаимосвязанный . Такой привод имеет несколько связанных электроприводов. При их функционировании поддерживается соотношение скоростей и нагрузок, а также положение органов машин. Взаимосвязанные электрические приводы необходимы по соображениям технологии и устройству. Для примера можно назвать привод ленточного конвейера, механизма поворота экскаватора, или шестерни винтового пресса большой мощности. Для постоянного соотношения скоростей без механической связи применяется схема электрической связи нескольких двигателей. Такая схема получила название схемы электрического вала. Такой привод используется в сложных станках, устройствах разводных мостов.
По уровню автоматизации:
  • Автоматизированные.
  • Неавтоматизированные.
  • Автоматические.
По роду тока:
  • Постоянного тока.
  • Переменного тока.
По важности операций:
  • Главный привод.
  • Вспомогательный привод.
Подбор электродвигателя

Чтобы приводы производили качественную работу, необходимо правильно выбрать электрический двигатель. Это создаст условия долгой и надежной работы, а также повысит эффективность производства.

При подборе электродвигателя для привода агрегатов целесообразно следовать некоторым советам по:
  • Требованиям технологического процесса выбирают двигатель с соответствующими характеристиками, конструктивного исполнения, а также метода фиксации и монтажа.
  • Соображениям экономии подбирают надежный, экономичный и простой двигатель, который не нуждается в больших расходах на эксплуатацию, имеет малый вес, низкую цену и небольшие размеры.
  • Условиям внешней среды и безопасности подбирают соответствующее исполнение мотора.

Правильный подбор электродвигателя обуславливает технико-экономические свойства всего привода, его надежность и длительный срок работы.

Преимущества
  • Возможность более точного подбора мощности двигателя для электропривода.
  • Электрический мотор менее пожароопасен в отличие от других типов двигателей.
  • Приводы дают возможность быстрого пуска и остановки механизма, его плавного торможения.
  • Нет необходимости в специальных регуляторах питания для электродвигателя. Все процессы происходят в автоматическом режиме.
  • Приводы дают возможность подбора мотора, свойства которого лучше других моделей сочетаются с характеристиками агрегата.
  • С помощью электрического привода можно плавно регулировать обороты механизма в определенных пределах.
  • Электродвигатель может преодолеть большие и долговременные перегрузки.
  • Электропривод дает возможность получения максимальной скорости и производительности рабочего механизма.
  • Электродвигатель дает возможность экономить электричество, а при определенных условиях даже генерировать ее в сеть.
  • Полная и простая автоматизация установок и механизмов возможна только с помощью электроприводов.
  • КПД электромоторов имеет наибольший показатель по сравнения с другими моделями двигателей.
  • Моторы производят с повышенной уравновешенностью. Это дает возможность встраивания их в механизмы машин, делать менее массивным фундамент.

Инновационные электрические приводы все автоматизированы. Системы управления приводом дают возможность рационального построения технологических процессов, увеличить производительность и эффективность труда, оптимизировать качество продукции и уменьшить ее цену.

Технические требования

К любым техническим механизмам и агрегатам предъявляются определенные требования технического плана. Не стали исключением и электроприводы. Рассмотрим основные предъявляемые к ним требования.

Надежность

В соответствии с этим требованием привод должен исполнять определенные функции и заданных условиях в течение некоторого интервала времени, с расчетной вероятностью работы без возникновения неисправностей.

При невыполнении этих требований остальные свойства оказываются бесполезными. Надежность может значительно отличаться в зависимости от характера работы. В некоторых механизмах не требуется долгого времени работы, однако отказ механизма не должен иметь место. Такой пример можно найти в военной промышленности. И другой пример, где наоборот, время службы должно быть большим, а отказ устройства вполне возможен, и не приведет к серьезным последствиям.

Точность

Это требование связано с отличием показателей от заданных. Они не могут превышать допустимые величины. Электроприводы должны обеспечивать перемещение рабочего элемента на определенный угол или за некоторое время, а также поддерживать на определенном уровне скорость, ускорение или момент вращения.

Быстродействие

Это качество привода обеспечивает быструю реакцию на разные воздействия управления. Быстродействие связано с точностью.

Качество

Такая характеристика обеспечивает качество процессов перехода, исполнение определенных закономерностей их выполнения. Качественные требования создаются вследствие особенностей работы машин с электроприводами.

Энергетическая эффективность

Любые производственные процессы преобразования и передачи имеют потери энергии. Наиболее важным это качество стало в применении электроприводов механизмов, приводах значительной мощности, долгим режимом эксплуатации. Эффективность использования энергии определяется КПД.

Совместимость

Электрические приводы должны совмещаться с работой аппаратуры, в которой они применяются, с их системой снабжения электроэнергией, информационными данными, а также с рабочими элементами. Наиболее остро стоит требование совместимости электроприводов для медицинской и бытовой техники, в радиотехнике.

5 Электромеханические свойства электропривода переменного тока

4. Электромеханические свойства электропривода переменного тока

4.1. Асинхронный и синхронный электродвигатели. Принцип работы

Трехфазные асинхронные двигатели составляют основу современного электропривода. От ДПТ их отличает простота конструкции, надежность, высокие технико-экономические показатели. В настоящее время частотные преобразователи позволили сделать регулировочные свойства АД более лучшими, чем у ДПТ с НВ.

По конструкции ротора АД разделяются на двигатели и короткозамкнутым ротором (КЗР) и двигатели с фазным ротором (ФР). Наиболее простая конструкция у АД с КЗР. Ротор такого двигателя не имеет выводов, так как его обмотка выполнена в виде короткозамкнутой клетки (беличья клетка). Его обмотка выполнена в виде ряда медных или алюминиевых стержней, расположенных по периметру сердечника ротора, замкнутые в двух сторон короткозамыкающими кольцами. Простота конструкции обеспечивает им высокую надежность, простоту обслуживания и невысокую стоимость. Схема включения АД СС КЗР представлена на рис. 4.1, а.

Фазный ротор имеет трехфазную обмотку, выполненную по типу обмотки статора (рис. 4.1, б). Одни концы катушек соединены в нулевую точку («звезда»), а другие – подключены к контактным кольцам. На кольца наложены щетки, осуществляющие скользящий контакт с обмоткой ротора. При такой конструкции возможно подсоединение к обмотке ротора пускового или регулировочного реостата, позволяющего менять электрическое сопротивление в цепи ротора. Такие двигатели более сложны в изготовлении и эксплуатации, поэтому применяются только там, где применение АД с КЗР не обеспечит требованиям в приводу механизма.

Ротор АД отстаёт от вращающегося магнитного поля статора, которое создается обмоткой статора, то есть вращение происходит асинхронно. В этих условиях вращающееся поле статора индуцирует ЭДС в обмотке роторе, под действием которого в роторе протекает ток, который взаимодействует с вращающимся магнитным полем (ВМП), создавая вращающий момент двигателя. В рабочих режимах разница частот вращения статора и ротора не велика и составляет несколько процентов. При рассмотрение рабочих процессов АД обычно используют понятие скольжения

Скорость асинхронного двигателя в рабочих режимах

где синхронная частота вращения магнитного поля ; – частота питающего напряжения ; – число пар полюсов.

Рис. 4.1. Схема включения асинхронных двигателей с КЗР (а) и ФР (б)

Статор синхронного двигателя (СД) конструктивно не отличается от статора АД. Ротор СД имеет явнополюсную конструкцию, на полюсах которого расположена обмотка возбуждения. При включении обмотки к источнику постоянного тока в двигателе создается дополнительное магнитное поле. Таким образом, для работы синхронного двигателя кроме 3х-фазного переменного напряжения требуется также постоянное. Исключение составляют двигатели, возбуждаемые постоянными магнитами. Такие двигатели обладают абсолютно жесткой механической характеристикой: ротор двигателя вращается синхронно с вращающимся магнитным полем с частотой .

Рис. 4.2. Схема включения СД

В отличие от АД, синхронные не создают пускового момента, так как ротор двигателя по причине инерционности не может мгновенно разогнаться до синхронной скорости. Для пуска СД необходимо предварительно привести его во вращение до скорости, близкой к синхронной ( . С этой целью применяют асинхронный пуск, для чего на роторе двигателя располагается пусковая обмотка, конструктивно похожая на беличью клетку.

Процесс асинхронного пуска СД протекает следующим образом (рис. 4.2).

При включении обмотки статора СД в сеть СД запускается как асинхронный. При этом обмотку возбуждения замыкают на сопротивление для ограничения величины ЭДС, которая наводится в ОВ при пуске двигателя. При достижении скорости вращения близкой к номинальной, обмотку возбуждения подключают к постоянному напряжению, и двигатель втягивается в синхронизм, то есть скорость вращения двигателя становится равной синхронной скорости.

Синхронные двигатели изготавливаются на большие мощности: от сотен до тысяч киловатт. Объясняется это тем, что при меньших мощностях их применение нецелесообразно по технико-экономическим показателям.

СД обычно имеют целевое назначение, то есть каждая серия разработана для конкретных механизмов (для шаровых мельниц — СДМЗ, для привода компрессоров – СДК, для привода насосов – ВДС и др.).

Синхронные двигатели имеют перегрузочную способность .

Еще одной особенностью СД является возможность работать с величиной , более того, при перевозбуждении синхронный двигатель начинает генерировать емкостную нагрузку. Для повышении в сети используют синхронные компенсаторы, представляющие собой перевозбужденные СД специальной конструкции, работающие без нагрузки на валу.

Механические характеристики синхронного двигателя представлены на рис. 4.3 (прямая 1).

Для синхронных двигателей важное значение имеет угловая характеристика, то есть зависимость момента синхронной машины от угла . Угол — это угол между напряжением на статоре и ЭДС двигателя. При значениях, больших 90 градусов, как видно из рис. 4.4, двигатель выпадает из синхронизма, так как участок угловой характеристики при является неустойчивым.

Рис. 4.3. Механические характеристики

асинхронного и синхронного двигателей

Рис. 4.4. Угловая характеристика СД

4.2. Механические характеристики асинхронного двигателя

Для вывода уравнения механической характеристики АД можно воспользоваться упрощенной схемой замещения двигателя, приведенной на рис. 4.5. На схеме приняты следующие обозначения: — первичное фазное напряжение; — фазный ток статора; -приведенный ток ротора; и — первичное и вторичное приведенное реактивные сопротивления рассеяния; и — активное и реактивное сопротивление контура намагничивания.

Уравнение механической характеристики можно получить из выражения активной электромагнитной мощности, передаваемой через воздушный зазор ротору двигателя

Выражение для приведенного тока ротора можно найти из схемы замещения по первому закону Кирхгофа

где — индуктивное сопротивление короткого замыкания.

Тогда, подставляя (4.2) в в уравнение для момента (4.1), получим

Анализ формулы (4.3) показывает, что она имеет точки экстремума; критическое скольжение, соответствующее экстремуму, может быть определено путем дифференцирования по s и последующего приравнивания нулю этой производной:

Подставив формулу для критического скольжения в (6), можно найти выражение для критического момента

После преобразований выражение для момента (6) можно записать в форме уточнённой формулы Клосса:

Вид механической характеристики показан на рис. 4.6.

Анализ формулы (4.4) показывает, что при механическая характеристика близка к линейной зависимости , а в области больших скольжений ( ) имеет гиперболический характер: . При момент принимает максимальное значение, причем в двигательном режиме соответствующее значение критического момента меньше, чем в генераторном.

Рис. 4.5. Г-образная схема замещения АД

Каждый электрик должен знать:  Методы создания инверсии

Рис. 4.6. Механическая характеристика АД

Характерные точки МХ АД:

1) , при этом скорость двигателя равна синхронной скорости;

2) , что соответствует номинальному режиму работы двигателя;

3) — экстремум механической характеристики в двигательном режиме;

4) — пуск. В этот момент времени двигатель развивает пусковой момент;

5) – экстремум механической характеристики в генераторном режиме.

При двигатель работает в режиме торможения противовключением, при имеет место генераторный режим работы параллельно с сетью.

4.3. Влияние параметров на вид механической характеристики асинхронного двигателя. Искусственные механические характеристики

Из выражения частоты вращения асинхронного двигателя

следует, что при постоянном статическом нагрузочном моменте на валу двигателя частота вращения ротора зависит от частоты питающей сети , числа пар полюсов и величины скольжения . Кроме того в номинальных режимах работы величина ЭДС двигателя слабо отличается от величины питающего напряжения, поэтому

4.3.1. Изменение сопротивления ротора

Данный способ регулирования скорости возможен только для двигателей с фазным ротором, где имеется возможность изменения величины добавочного сопротивления ротора . При этом, как следует из выражений для критических момента и скольжения, при вариациях данного параметра будет изменяться величина скольжения, а величина критического момента остаётся неизменной. Данный способ регулирования скорости называют реостатным. Вид искусственных характеристик показан на рис. 4.7, а.

Величина критического момента при изменении сопротивления ротора остаётся неизменной, а величина критического скольжения изменяется.

При данном способе регулирования увеличивается значение пускового момента, двигатель не перегревается, однако суммарные потери возрастают, что снижает общий КПД.

Рис. 4.7. Искусственные МХ АД при (а), (б), (в)

4.3.2. Изменение напряжения на статоре

При данном способе изменяется величина первой гармоники напряжения статора двигателя . При этом, величина критического скольжения не изменяется, то есть (рис. 4.7, б). Изменяется величина критического момента, причем существенным является тот факт, что величина момента изменяется пропорционально квадрату напряжения статора. Регулирование, при котором изменяется величина называют фазовым. Изменение напряжения возможно только в сторону уменьшения, так как при увеличении напряжения при постоянстве частоты будет возрастать величина магнитного потока. Это в свою очередь приведет к существенному росту тока намагничивания, который может достигать и превосходить номинальное значение тока двигателя вследствие явления насыщения машины.

4.3.3. Изменение частоты питающей сети.

Согласно формуле, для синхронной частоты , при изменении частоты питающего напряжения на статоре будет изменяться частота вращения вращающегося магнитного поля . Из формулы (4.5) видно, что при уменьшении частоты при происходит возрастание магнитного потока, что приводит к насыщению машины и большому возрастания тока намагничивания . Поэтому изменение частоты возможно только выше номинальной. При увеличении происходит возрастание величин индуктивных сопротивлений , что в свою очередь ведет к уменьшению критических скольжения и момента (рис. 4.7, в).

Перепишем формулу для ЭДС двигателя, оставив в левой части магнитный поток

Так как число витков обмотки постоянно, становится очевидным, что для обеспечения постоянного значения магнитного потока необходимо поддерживать постоянным отношение , то есть необходимо обеспечить выполнение закона .

4.4. Тормозные режимы асинхронного двигателя.

Механические характеристики асинхронного двигателя в тормозных режимах

4.4.1. Режим рекуперативного торможения

Данный режим возникает при превышении частоты вращения ротора относительно синхронной частоты вращения магнитного поля статора ( ). В этих условиях электромагнитный момент двигателя становится отрицательным, а вырабатываемая энергия отдаётся в сеть. Практически этот режим можно получить уменьшив синхронную частоту вращения в работающем двигателе. Из формулы для частоты вращения ВМП ( ) видно, что сделать это можно двумя способами: либо изменением числа пар полюсов в обмотке статора в сторону увеличения , либо уменьшением частоты питающего напряжение . Этот режим применяют для уменьшения частоты вращения перед полной остановкой двигателя в лифтах, либо в тех случаях, когда двигатель работает на активный момент (например, в подъемно-транспортных машинах). Схема включения и механические характеристики двигателя в режиме рекуперативного торможения представлены на рис. 4.8, а, б соответственно.

4.4.2. Режим торможения противовключением

Режим получается, когда активный статический момент больше, чем пусковой либо при изменении чередования фаз на обратное, при этом частота вращения магнитного поля изменяет направление вращения на притивоположное. Данный режим позволяет получать большие моменты, благодаря чему время торможения существенно уменьшается. Если при переключении чередования фаз двигатель включить при скорости близкой к нулю, то двигатель перейдет в двигательный режим работы другого направления вращения. При таком способе торможения в двигателе возникают большие токи, поэтому данный режим применяется для двигателей с ФР и введением дополнительного сопротивления в цепь ротора для ограничения максимального тока двигателя.

Рис. 4.8. Схема включения АД (а) и

механические характеристики (б) при рекуперативном торможении

Механические характеристики. Энергетические режимы электропривода переменного тока

Для получения механической характеристики ещё более упростим модель — вынесем контур намагничивания на зажимы — рис. 4,а, как это часто делается в курсе электрических машин.

Рис. 4. Упрощенная схема замещения (а) и характеристики асинхронной машины (б)

где I 2а — активная составляющая тока ротора,

y 2 — угол между и ,

качественное представление о механической характеристике М(s) можно получить, проследив зависимость каждого из трех сомножителей от s .

Магнитный поток Ф в первом приближении в соответствии с (4) не зависит от s — рис. 4,б. Ток ротора (8) равен нулю при s = 0 и асимптотически стремится к при s ® ± Ґ — рис. 4,б. Последний сомножитель легко определить по схеме замещения:

cosy 2 близок к ± 1 при малых s и асимптотически стремится к нулю при s ® ± Ґ . Момент, как произведение трех сомножителей, равен нулю при s = 0 (w = w 0 — идеальный холостой ход), достигает положительного М к+ и отрицательного М к- максимумов — критических значений при некоторых критических значениях скольжения , а затем при s ® ± Ґ стремится к нулю за счет третьего сомножителя.

Уравнение механической характеристики получим, приравняв потери в роторной цепи, выраженные через механические и через электрические величины. Мощность, потребляемая из сети, если пренебречь потерями в R 1 , примерно равна электромагнитной мощности:

а мощность на валу определяется как

Потери в роторной цепи составят

или при выражении их через электрические величины

Подставив в последнее выражение I 2ў из (8) и найдя экстремум функции М=f(s) и соответствующие ему М к и s к , будем иметь:

На практике иногда полагают, что а = 0, т.е. пренебрегают активным сопротивлением обмоток статора. Это обычно не приводит к существенным погрешностям при Р н > 5 кВт, однако может неоправданно ухудшить модель при малых мощностях. При а = 0 выражения (10) — (12) имеют вид:

где Х к = Х 1 +Х 2 ’ — индуктивное сопротивление рассеяния машины.

В уравнении (10,а) при s к можно пренебречь первым членом в знаменателе и получить механическую характеристику на рабочем участке в виде

Как следует из рис. 4,б и выражений (10) и (10,а), жесткость механической характеристики асинхронных двигателей переменна, на рабочем участке , а при Ѕ sЅ > Ѕ s крЅ — положительна.

Асинхронный электропривод как и электропривод постоянного тока, может работать в двигательном и трех тормозных режимах с таким же, как в электроприводе постоянного тока распределением потоков энергии — рис. 5.

Рис. 5. Энергетические режимы асинхронного электропривода

Рекуперативное торможение (р.т.) осуществляется при вращении двигателя активным моментом со скоростью w > w 0 . Этот же режим будет иметь место, если при вращении ротора со скоростью w уменьшить скорость вращения поля w 0 . Роль активного момента здесь будет выполнять момент инерционных масс вращающегося ротора.

Для осуществления торможения противовключением (т. п-в) необходимо поменять местами две любые фазы статора — рис. 6. При этом меняется направление вращения поля, машина тормозится в режиме противовключения, а затем реверсируется.

Рис. 6. Реверс асинхронного двигателя

Специфическим является режим динамического торможения, которое представляет собою генераторный режим отключенного от сети переменного тока асинхронного двигателя, к статору которого подведен постоянный ток I п . Этот режим применяется в ряде случаев, когда после отключения двигателя от сети требуется его быстрая остановка без реверса.

Постоянный ток, подводимый к обмотке статора, образует неподвижное в пространстве поле. При вращении ротора в его обмотке наводится переменная ЭДС, под действием которой протекает переменный ток. Этот ток создает также неподвижное поле.

Складываясь, поля статора и ротора образуют результирующее поле, в результате взаимодействия с которым тока ротора возникает тормозной момент. Энергия, поступающая с вала двигателя, рассеивается при этом в сопротивлениях роторной цепи.

В режиме динамического торможения поле статора неподвижно скольжение записывается как

и справедливы соотношения для механической характеристики аналогичные (10,а) — (12,а):

где при соединении обмоток статора в звезду

и при соединении обмоток статора в треугольник;

Так как при ненасыщенной машине , критическое скольжение в режиме динамического торможения s к.т существенно меньше s к .

НОВОСТИ ФОРУМА
Рыцари теории эфира
01.10.2020 — 05:20: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ — Upbringing, Inlightening, Education ->
[center][Youtube]69vJGqDENq4[/Youtube][/center]
[center]14:36[/center]
Osievskii Global News
29 сент. Отправлено 05:20, 01.10.2020 г.’ target=_top>Просвещение от Вячеслава Осиевского — Карим_Хайдаров.
30.09.2020 — 12:51: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ — Upbringing, Inlightening, Education ->
[center][Ok]376309070[/Ok][/center]
[center]11:03[/center] Отправлено 12:51, 30.09.2020 г.’ target=_top>Просвещение от Дэйвида Дюка — Карим_Хайдаров.
30.09.2020 — 11:53: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ — Upbringing, Inlightening, Education ->
[center][Youtube]VVQv1EzDTtY[/Youtube][/center]
[center]10:43[/center]

интервью Раввина Борода https://cursorinfo.co.il/all-news/rav.
мой телеграмм https://t.me/peshekhonovandrei
мой твиттер https://twitter.com/Andrey54708595
мой инстаграм https://www.instagram.com/andreipeshekhonow/

[b]Мой комментарий:
Андрей спрашивает: Краснодарская синагога — это что, военный объект?
— Да, военный, потому что имеет разрешение от Росатома на манипуляции с радиоактивными веществами, а также иными веществами, опасными в отношении массового поражения. Именно это было выявлено группой краснодарцев во главе с Мариной Мелиховой.

[center][Youtube]CLegyQkMkyw[/Youtube][/center]
[center]10:22 [/center]

Доминико Риккарди: Россию ждёт страшное будущее (хотелки ЦРУ):
https://tainy.net/22686-predskazaniya-dominika-rikardi-o-budushhem-rossii-sdelannye-v-2000-godu.html

Завещание Алена Даллеса / Разработка ЦРУ (запрещено к ознакомлению Роскомнадзором = Жид-над-рус-надзором)
http://av-inf.blogspot.com/2013/12/dalles.html

[center][b]Сон разума народа России [/center]

[center][Youtube]CLegyQkMkyw[/Youtube][/center]
[center]10:22 [/center]

Доминико Риккарди: Россию ждёт страшное будущее (хотелки ЦРУ):
https://tainy.net/22686-predskazaniya-dominika-rikardi-o-budushhem-rossii-sdelannye-v-2000-godu.html

Завещание Алена Даллеса / Разработка ЦРУ (запрещено к ознакомлению Роскомнадзором = Жид-над-рус-надзором)
http://av-inf.blogspot.com/2013/12/dalles.html

[center][b]Сон разума народа России [/center]

Динамические свойства электропривода с линейной механической характеристикой при жестких механических связях

При изучении свойств механической части электропривода было установлено, что во многих практических случаях влияние упругих колебаний на движение первой массы пренебрежимо мало. Имея в виду сочетания параметров механической части, при которых это условие выполняется, принимаем в (4.5) с12=¥, ф1=f2=ф, w1=w2=w. В результате получаем

Системе уравнений (4.11) соответствует структурная схема электропривода, представленная на рис.4.7. Эта схема заслуживает детального анализа, так как отражает основные свойства большого числа конкретных электромеханических систем при с12=¥. Наиболее полно она соответствует электроприводу постоянного тока с компенсированным двигателем независимого возбуждения. В пределах рабочего участка механической характеристики она удовлетворительно описывает динамику асинхронного электропривода как при питании от источника напряжения, так и при питании от источника тока. При линеаризации механической характеристики двигателя с последовательным возбуждением данная схема позволяет анализировать свойства таких электроприводов в области малых отклонений от выбранной точки статической характеристики. В последнем случае область соответствия (4.11) объекту расширяется при возрастании насыщения магнитной цепи.

Таким образом, рассмотрение свойств электромеханической системы, описываемой (4.11), дает представления о динамических особенностях большинства промышленных разомкнутых систем электропривода, при этом отдельного рассмотрения требуют лишь свойства синхронного электропривода в связи с отличием (4.10) от (4.11).

Для анализа свойств электропривода с линейной механической характеристикой как объекта автоматического управления получим передаточную функцию системы по управляющему воздействию. В соответствии с рис.4.7

где Тм=JS/b — электромеханическая постоянная времени. Передаточная функция по возмущающему воздействию — моменту статической нагрузки Мс — имеет вид

Характеристическое уравнение системы

Корни характеристического уравнения

где m=ТMЭ — отношение постоянных времени электропривода.

Значение m является важным показателем динамических свойств электропривода, непосредственно определяющим колебательность разомкнутой электромеханической системы при жестких механических связях. Если m>4, то

Соответственно передаточная функция (4.12) может быть при таких параметрах преобразована к виду

Следовательно, при m>4 рассматриваемый электропривод для анализа может быть представлен в виде последовательного соединения двух инерционных звеньев с постоянными времени T1 и Т2 Частотные характеристики электропривода при таком сочетании параметров имеют вид, показанный на рис.4.8,a. Реакцию электропривода на скачок управляющего воздействия при нулевых начальных условиях и Мс=0 характеризуют соответствующие (4.15) переходная функция

иимпульсная (весовая) функция

Соответствующие (4.16) и (4.17) зависимости представлены на рис.4.8,б. Зависимость h(t) дает представление о законе изменения скорости электропривода w(t) при приложении к якорю двигателя постоянного тока скачка напряжения Uя или изменении частоты тока статора асинхронного двигателя f1 скачком. Из уравнения движения при М=0 следует, что весовая функция h'(t) здесь характеризует в определенном масштабе изменения электромагнитного момента двигателя M(t). Максимум момента Mmax

h’max возрастает при увеличении скачка управляющего воздействия, поэтому при использовании (4.16) и (4.17) скачок uя или f1 должен быть ограничен значением, при котором Мmах остается в пределах, допустимых по перегрузочной способности двигателя или по условиям линеаризации механической характеристики.

При m=4 характеристическое уравнение системы имеет два равных отрицательных корня: р12=-a=-1/2Тэ. В этом случае передаточная функция (4.12) преобразуется к виду

Электропривод при таком сочетании параметров обладает свойствами, аналогичными рассмотренным для m>4. В этом можно убедиться, сравнивая приведенные на рис.4.9 частотные и переходные характеристики, соответствующие (4.18), с такими же зависимостями на рис.4.8. Графики переходной h(t) и весовой h'(t) функций построены на рис.4.9,б по выражениям

При сочетаниях параметров, которым соответствуют значения m

Таким образом, электропривод с линейной механической характеристикой вследствие электромагнитной инерции представляет собой при жестких механических связях колебательное звено, показатели колебательности которого l и x зависят только от соотношения постоянных времени m=ТМЭ, а быстродействие определяется электромагнитной постоянной времени Тэ или при данном m — электромеханической постоянной времени ТM.

При работе на естественной характеристике значения Тэ лежат в пределах Тэ=0,01¸0,1с, причем для асинхронных двигателей Тэ при питании от источника напряжения меньше, чем для двигателей постоянного тока той же мощности. Электромеханическая постоянная Тм изменяется в более широких пределах, и ее удобно выразить через расчетную величину — электромеханическую постоянную времени собственно двигателя — и отношение моментов инерции электропривода JS и якоря двигателя Jдв:

Для двигателей мощностью выше 10 кВт ориентировочно Т=0,01¸0,1 с, причем обычно постоянная времени TМ.ДВ соизмерима или близка Тэ. Поэтому для электроприводов с небольшим моментом инерции механизма наиболее вероятные значения m заключены в пределах 0,5 2. Из изложенного следует, что в этих пределах резонансное усиление колебаний невелико и электропривод представляет собой колебательное звено с высоким коэффициентом демпфирования x>0,4.

Это обстоятельство при рассмотрении электропривода с линейной механической характеристикой как объекта автоматического регулирования позволяет прибегать к упрощенному представлению передаточной функции (4.12) в виде

т. е. заменять колебательное звено двумя апериодическими с постоянной Т1=ÖTэTM. Асимптотическая ЛАЧХ, соответствующая (4.24), при W l/T1, представляет собой прямую с наклоном -40 дБ/дек (штриховая линия на рис.4.10,а). Сравнивая эту зависимость с реальными ЛАЧХ колебательного звена при различных значениях x, можно установить, что при x>0,4 расхождения незначительны. Погрешность в сторону занижения амплитуды при x>0,4 не превышает 3 дБ, что обычно допустимо.

Для многих электроприводов малой мощности m>4, при этом можно пренебречь электромагнитной инерцией, положив в (4.11)

Структурная схема, соответствующая (4.25), приведена на рис.4.11,a. Ее нетрудно преобразовать к виду рис.4.11,б, который свидетельствует о том, что при этих параметрах электропривод с линейной механической характеристикой приближенно представляет собой инерционное звено с постоянной времени ТM. Частотные характеристики электропривода, соответствующие такому представлению, показаны на рис.4.11,в, а переходная и весовая функции, определяемые соотношениями

построены на рис.4.11,г. С помощью этого рисунка можно пояснить физический смысл электромеханической постоянной времени. Электромеханическая постоянная Тм представляет собой время, за которое электропривод достиг бы установившейся скорости, двигаясь равномерно ускоренно под действием постоянного динамического момента, равного начальному значению:

Сравнивая кривые, приведенные на рис.4.11, с аналогичными кривыми на рис.4.8, которые соответствуют m>4 при учете электромагнитной инерции, можно сделать следующие выводы. При анализе переходных процессов в разомкнутой системе электропривода при m>4, как правило, можно без большой погрешности пренебрегать влиянием электромагнитной инерции и принимать Тэ»0. При синтезе замкнутых систем регулирования координат электромеханической системы малую постоянную Тэ при m>4 следует учитывать во избежание ошибок, вносимых неучетом потери запаса по фазе на частоте среза контура регулирования, обусловленной электромагнитной инерцией электромеханического преобразователя.

Электрический привод

Электрический привод (сокращённо — электропривод, ЭП) — управляемая электромеханическая система, предназначенная для преобразования электрической энергии в механическую и обратно и управления этим процессом.

Современный электропривод — совокупность множества электромашин, аппаратов и систем управления ими. Он является основным потребителем электрической энергии (до 60 %) [1] и главным источником механической энергии в промышленности.

В ГОСТ Р 50369-92 электропривод определён как электромеханическая система, состоящая из преобразователей электроэнергии, электромеханических и механических преобразователей, управляющих и информационных устройств и устройств сопряжения с внешними электрическими, механическими, управляющими и информационными системами, предназначенная для приведения в движение исполнительных органов рабочей машины и управления этим движением в целях осуществления технологического процесса [2] .

Как видно из определения, исполнительный орган в состав привода не входит. Однако авторы авторитетных учебников [1] [3] включают исполнительный орган в состав электропривода. Это противоречие объясняется тем, что при проектировании электропривода необходимо учитывать величину и характер изменения механической нагрузки на валу электродвигателя, которые определяются параметрами исполнительного органа. При невозможности реализации прямого привода электродвигатель приводит исполнительный орган в движение через кинематическую передачу. КПД, передаточное число и пульсации, вносимые кинематической передачей, также учитываются при проектировании электропривода.

Содержание

Функциональная схема [ | ]

  • Регулятор (Р) предназначен для управления процессами, протекающими в электроприводе.
  • Электрический преобразователь (ЭП) предназначен для преобразования электрической энергии сети в регулируемое напряжение постоянного или переменного тока.
  • Электромеханический преобразователь (ЭМП) — двигатель, предназначен для преобразования электрической энергии в механическую.
  • Механический преобразователь (МП) может изменять скорость вращения двигателя.
  • Упр — управляющее воздействие.
  • ИО — исполнительный орган.
  • Силовая часть или электропривод с разомкнутой системой регулирования.
  • Механическая часть.
  • Система управления электропривода [4] .

Характеристики привода [ | ]

Статические характеристики [ | ]

Под статическими характеристиками чаще всего подразумеваются электромеханическая и механическая характеристика.

Механическая характеристика [ | ]

Механическая характеристика — это зависимость угловой скорости вращения вала от электромагнитного момента M (или от момента сопротивления Mc). Механические характеристики являются очень удобным и полезным инструментом при анализе статических и динамических режимов электропривода. [1]

Электромеханическая характеристика двигателя [ | ]

Электромеханическая характеристика — это зависимость угловой скорости вращения вала ω от тока I.

Динамическая характеристика [ | ]

Динамическая характеристика электропривода — это зависимость между мгновенными значениями двух координат электропривода для одного и того же момента времени переходного режима работы.

Классификация электроприводов [ | ]

По количеству и связи исполнительных, рабочих органов:

  • Индивидуальный, в котором рабочий исполнительный орган приводится в движение одним самостоятельным двигателем, приводом.
  • Групповой, в котором один двигатель приводит в действие исполнительные органы РМ или несколько органов одной РМ.
  • Взаимосвязанный, в котором два или несколько ЭМП или ЭП электрически или механически связаны между собой с целью поддержания заданного соотношения или равенства скоростей, или нагрузок, или положения исполнительных органов РМ.
  • Многодвигательный, в котором взаимосвязанные ЭП, ЭМП обеспечивают работу сложного механизма или работу на общий вал.
  • Электрический вал, взаимосвязанный ЭП, в котором для постоянства скоростей РМ, не имеющих механических связей, используется электрическая связь двух или нескольких ЭМП.

По типу управления и задаче управления:

  • Автоматизированный ЭП, управляемый путём автоматического регулирования параметров и величин.
  • Программно-управляемый ЭП, функционирующий через посредство специализированной управляющей вычислительной машины в соответствии с заданной программой.
  • Следящий ЭП, автоматически отрабатывающий перемещение исполнительного органа РМ с заданной точностью в соответствии с произвольно меняющимся сигналом управления.
  • Позиционный ЭП, автоматически регулирующий положение исполнительного органа РМ.
  • Адаптивный ЭП, автоматически избирающий структуру или параметры устройства управления с целью установления оптимального режима работы.

По характеру движения:

  • ЭП с вращательным движением.
  • Линейный ЭП с линейными двигателями.
  • Дискретный ЭП с ЭМП, подвижные части которого в установившемся режиме находятся в состоянии дискретного движения.

По наличию и характеру передаточного устройства:

  • Редукторный ЭП с редуктором или мультипликатором.
  • Электрогидравлический с передаточным гидравлическим устройством.
  • Магнитогидродинамический ЭП с преобразованием электрической энергии в энергию движения токопроводящей жидкости.
  • Переменного тока.
  • Постоянного тока.

По степени важности выполняемых операций:

  • Главный ЭП, обеспечивающий главное движение или главную операцию (в многодвигательных ЭП).
  • Вспомогательный ЭП.
  • Привод передач.

Автоматизированные электроприводы подразделяются еще на две подгруппы — разомкнутые и замкнутые. Работа разомкнутого привода заключается в том, что все внешние возмущения (для электрических приводов самым характерным из них является момент нагрузки) оказывают влияние на выходную переменную электрического привода, как пример — на его скорость. Иными словами, разомкнутый электрический привод не изолирован от влияния внешних возмущений, все изменения которых отражаются на его рабочих показателях. В разомкнутом приводе по этой причине не может обеспечиться высокий уровень качества регулирования переменных, хотя данный привод отличается простой схемой.

Основным отличием замкнутых электрических приводов является их общее или локальное удаление воздействий внешних возмущений на управляемую переменную электрического привода. В качестве примера можно привести тот факт что, скорость таких электрических приводов может оставаться практически неизменной при возможных колебаниях момента нагрузки. В силу этого обстоятельства замкнутый привод обеспечивает более качественное управление движением исполнительных органов, хотя его схемы являются более сложными и требуют, зачастую, применения силовых преобразователей энергии.

Замкнутый электропривод [ | ]

Замкнутый электрический привод может быть построен по принципам отклонения с использованием обратных связей или компенсации внешнего возмущения.

Принцип компенсации мы можем рассмотреть на примере компенсации наиболее явно выраженного внешнего возмущения электропривода — момента нагрузки Мс при регулировании его скорости (рис.а).Основным признаком такой замкнутой структуры электрического привода является наличие цепи, по которой на вход привода вместе с задающим сигналом скорости подается сигнал UM = kMMQ, пропорциональный моменту нагрузки Мс. В результате этого управление ЭП осуществляется суммарным сигналом ошибки, который автоматически изменяется в нужную сторону при колебаниях момента нагрузки, обеспечивая с помощью системы управления поддержание скорости ЭП на заданном уровне.

Несмотря на свою высокую эффективность, электрические приводы по данной схеме выполняются крайне редко из-за отсутствия простых и надежных датчиков момента нагрузки Мс (возмущающего воздействия).В связи с данным фактом подавляющее количество замкнутых структур электроприводов используют принцип обратной связи (отклонения). Он характеризуется тем что имеет цепь обратной связи, соединяющую выход электрического привода с его входом, отсюда и пошло название замкнутых схем.

Все виды применяемых в замкнутых электрических приводах обратных связей делятся на положительные и отрицательные, жесткие и гибкие, линейные и нелинейные.

Положительной называется обратная связь, в которой сигнал направлен согласно и складывается, с управляющим сигналом, в то время как сигнал отрицательной связи направлен в противоположную сторону (знак «минус» на рис. б).Жесткая обратная связь охарактеризована тем, что данная связь действует как в установившемся режиме, так и в переходном режиме электрического привода. Сигнал гибкой обратной связи производится только в переходных режимах электропривода и используется для обеспечения требуемого им качества, как пример устойчивости движения, допустимого перерегулирования и т.д.

Линейная обратная связь охарактеризована своей пропорциональной зависимостью между управляемой координатой и сигналом обратной свﮦязﮦи, в то время как при производстве нелинейной связи эта зависимость не будет пропорциональной.

Для регулирования движения исполнительных органов эксплуатируемых машин иногда требуется изменять несколько переменных электрического привода, например ток, момент и скорость. В таком случае замкнутые приводы создаются по одной из следующих структурных схем.

Электропривод с общим усилителем [ | ]

Схема с общим усилителем представлена на рисунке справа в качестве примера, данная схема является схемой регулирования двух переменных двигателя, где Д — скорости тока I. Схема содержит в себе силовой преобразователь электроэнергии П, устройство управления УУ, механическую передачу МП и датчики тока ДТ, скорости ДС и устройство токоограничения (токовой отсечки) УТО. Данная схема обеспечивает хорошую характеристику двигателя. На интервале скорости 0 — СOj за счет действия обратной связи по току (сигнал U) обеспечивается ограничение тока и момента двигателя и характеристика имеет близкий к вертикальному участок. При скорости Со > 00j узел УТО заканчивает действие связи по току и за счет наличия обратной связи по скорости (ОСС) (сигнал U ОCC) характеристика двигателя становится жестче ,что обеспечивает регулирование скорости.

Совокупность обратных связей, число которых может быть от двух и более, в схеме с единым усилителем образует своего рода модальный регулятор, а переменные при этом называются переменными состояния электропривода. Главной задачей модального регулятора можно считать обеспечение заданного качества динамических процессов в электроприводе — быстродействия, устойчивости и степени затухания переходных процессов. Это достигается выбором видов и соответствующим исследованием коэффициентов обратных связей по переменным электрического привода. Следует отметить, что система с суммирующим усилителем относится к системам управления с так называемой параллельной коррекцией.

Электропривод с наблюдающим устройством [ | ]

В сложных системах электроприводов, имеющих, в частных случаях, разветвленные кинематические цепи с упругими элементами, множество регулируемых переменных может оказаться весьма высоким. При данном факте измерение некоторых из них имеет некоторые затруднения по тем или иным причинам. В таких случаях прибегают к использованию так называемых наблюдающих устройств (наблюдателей).

Основную часть наблюдателя формируют совокупности моделей звеньев электрического привода, выполненных на основе операционных усилителей или элементов микропроцессорной техники. Выходные сигналы (напряжения) этих моделей, параметры которых соответствуют реально существующим звеньям электропривода, отображают близкие значения переменных.

Эксплуатация с применением наблюдателя на примере регулирования угла поворота вала двигателя поясняет структурная схема на рисунке 6, на которой приняты следующие обозначения: Д — двигатель, П — преобразователь, УУ — управляющее устройство, МП — механическая передача, НУ — наблюдающее устройство.

Электрический привод применяется для управления положением исполнительного органа φио. Это достигается соответствующим регулированием угла поворота φ вала двигателя, при котором необходимо также регулирование и других переменных — тока I, момента М и скорости двигателя.

Для применения рассматриваемого принципа управления, сигнал задания угла поворота фз подается на устройство управления УУ и одновременно на вход наблюдающего устройства НУ. Наблюдающее устройство НУ вырабатывает с помощью моделей звеньев привода сигналы, пропорциональные току, моменту и скорости, и направляет их устройству управления УУ.

Так же следует отметить, что модели звеньев не в состоянии учесть всех реальных возмущений, воздействующих на электрический привод и электрическую машину, и нестабильности параметров ЭП, НУ выдает в управляющее устройство не точные выражения переменных, а их оценки, что обозначено на схеме звездочкой «*».

Электропривод с подчиненной системой координат [ | ]

Для увеличения точности получаемых оценок переменных состояния может применяться корректирующая обратная связь по управляемой переменной, показанная выше штриховой линией. В данном случае значение выходной управляемой переменной ф сравнивают при помощи обратной связи с ее оценкой ф* и только затем в функции ошибки (выявленного отклонения) Дф корректируют показания отдельных моделей.

Структура с подчиненным управлением координат отличается тем, что в данной структуре регулирование каждой отдельной координаты осуществляется отдельными регуляторами — тока РТ и скорости PC, которые в свою очередь совместно с соответствующими обратными связями формируют замкнутые контуры. Они встраиваются таким образом, что входным, задающим сигналом для внутреннего контура тока U является выходной сигнал внешнего по отношению к нему контура скорости. Исходя из этого, внутренний контур тока зависит от внешнего контура скорости — основной управляемой координате электрического привода.

Главное достоинство схемы изображенной на рисунке заключается в возможности эффективной настройки управления каждой переменной как в статичном, так и в динамичном режимах, в силу чего она представляет из себя в настоящее время основу применение в электроприводе. Кроме того, зависимость контура тока от контура скорости позволяет простыми методами осуществлять ограничение тока и момента, для чего достаточно ограничить на соответствующем уровне сигнал на выходе регулятора скорости (он же — сигнал задания тока)

Подбор электродвигателя [ | ]

Качество работы современного электропривода во многом определяется правильным выбором используемого электрического двигателя, что в свою очередь обеспечивает продолжительную надёжную работу электропривода и высокую эффективность технологических и производственных процессов в промышленности, на транспорте, в строительстве и других областях.

При выборе электрического двигателя для привода производственного механизма руководствуются следующими рекомендациями:

  • Исходя из технологических требований, производят выбор электрического двигателя по его техническим характеристикам (по роду тока, номинальным напряжению и мощности, частоте вращения, виду механической характеристики, продолжительности включения, перегрузочной способности, пусковым, регулировочным и тормозным свойствами др.), а также конструктивное исполнение двигателя по способу монтажа и крепления.
  • Исходя из экономических соображений, выбирают наиболее простой, экономичный и надёжный в эксплуатации двигатель, не требующий высоких эксплуатационных расходов и имеющий наименьшие габариты, массу и стоимость.
  • Исходя из условий окружающей среды, в которых будет работать двигатель, а также из требований безопасности работы во взрывоопасной среде, выбирают конструктивное исполнение двигателя по способу защиты.

Правильный выбор типа, исполнения и мощности электрического двигателя определяет не только безопасность, надёжность и экономичность работы и длительность срока службы двигателя, но и технико-экономические показатели всего электропривода в целом.

Дипломная работа: Исследование динамических характеристик электроприводов постоянного тока при различных способах возбуждения

Современные автоматизированные электроприводы представляют собой сложные динамические системы, включающие в себя различные линейные и нелинейные элементы (двигатели, генераторы, усилители, полупроводниковых и другие элементы), обеспечивающие в своем взаимодействии разнообразные статические и динамические характеристики.

Двигатели постоянного тока используются в прецизионных приводах, требующих плавного регулирования частоты вращения в широком диапазоне.

Свойства двигателя постоянного тока, так же как и генераторов, определяются способом возбуждения и схемой включения обмоток возбуждения. По способу возбуждения можно разделить двигатели постоянного тока на двигатели с электромагнитным и магнитоэлектрическим возбуждением.

Двигатели с электромагнитным возбуждением подразделяются на двигатели с параллельным, последовательным, смешанным и независимым возбуждением. Электрические машины постоянного тока обратимы, то есть, возможна их работа в качестве двигателей или генераторов.

Например, если в системе управления с использованием генератора в обратной связи отсоединить генератор от первичного двигателя и подвести напряжение к обмоткам якоря и возбуждения, то якорь начнет вращаться и машина будет работать как двигатель постоянного тока, преобразуя электрическую энергию в механическую. Двигатели независимого возбуждения наиболее полно удовлетворяют основным требованиям к исполнительным двигателям самоторможение двигателя при снятии сигнала управления, широкий диапазон регулирования частоты вращения, линейность механических и регулировочных характеристик, устойчивость работы во всем диапазоне вращения, малая мощность управления, высокое быстродействие, малые габариты и масса.

Теория регулируемого электропривода, насчитывающая уже ни один десяток, лет, постоянно совершенствуется вместе с совершенствованием конструктивных решений. Особенно интенсивное развитие она получила в последнее время благодаря усовершенствованию традиционных и созданию новых силовых управляемых полупроводниковых приборов, интегральных схем, развитию цифровых информационных технологий и разработке разнообразных систем микропроцессорного управления.

Современные компьютерные технологии, в основе которых лежат прикладные пакеты, предоставляют возможность более глубокого изучения вопросов; связанных с проектированием полупроводникового электропривода. Они позволяют качественно изменить и существенно улучшить технологию изучения, перевести ее в виртуальную действительность, осуществить в этой виртуальной лаборатории необходимые исследования с получением количественных результатов.

В настоящее время имеется обширная литература по теории электропривода. С другой стороны, имеется литература по прикладным пакетам. Однако практически отсутствуют работы, в которых теоретические вопросы регулируемого электропривода исследовались бы с привлечением компьютерных прикладных программ.

Правда, в последнее время появилось много хороших книг, посвященных прикладным техническим пакетам, но в основе их лежит сам пакет; конкретные примеры, приведенные в этих монографиях, призваны демонстрировать возможности пакета и компьютера.

Литература по силовым полупроводниковым преобразователям, предназначенным для управления электрическими машинами в системах электропривода, нуждается в постоянной корректировке, поскольку совершенствуются предмет и методы исследования. Силовые полупроводниковые преобразователи, существенно улучшая энергетику, позволяют реализовать (конечно, при современном микропроцессорном управлении) качественно новые способы регулирования электрическими машинами. При этом классические машины при управлении от полупроводникового преобразователя приобретают новые свойства и качественно новые, лучшие характеристики. Силовые полупроводниковые преобразователи позволяют также реализовать новые конструктивные и технологические решения, обладающие свойствами, недоступными классическому электроприводу.

Современный электропривод с использованием полупроводниковых узлов (далее – «полупроводниковый электропривод») состоит из трех основных отличных частей:

1.Силовая преобразовательная часть, содержащая силовой полу проводниковый преобразователь. Основная функция заключается в преобразовании электрической энергии между источником питания и электрическим двигателем.

2.Электромеханическая часть, содержащая рабочий механизм, соединенный посредством механической передачи с электрическим двигателем.

3.Информационная (управляющая) часть, служащая для управления силовым полупроводниковым преобразователем и обеспечивающая заданные свойства электроприводу.

Представим очень короткий обзор современных прикладных пакетов, которые могут быть использованы для проектирования полупроводникового электропривода.

В первую очередь следует отметить пакет MatLab с широко развитыми дополнениями (Toolboxes), из которых ToolboxSimulinkнаиболее приспособлен для анализа и синтеза различных систем.

Пакет Simulink со своими дополнениями – основной инструмент изучения различных электромеханических систем, используемый в данной монографии. Я не встретил ни одной задачи, связанной с исследованием систем электропривода, которую нельзя было бы решить в этом пакете.

Simulink предоставляет исследователю самые различные возможности, начиная от структурного (математического) представления системы и кончая генерированием кодов для программирования микропроцессора в соответствии со структурной схемой модели.

Рисунок 1. Виртуальная модель энергосистемы в пакете Simulink

вал двигатель электропривод преобразователь

Представленная на рис. 1 модель (файл psbturbine из библиотеки Powerdemos) наглядно демонстрирует уровень сложности задач, которые можно исследовать в пакете Simulink. Это модель электромеханической системы мощностью 220 МВА, состоящей из гидротурбины (блок HTG), синхронного генератора (блок. SynchronousMachine), трёхфазного трансформатора (блок Three-PhaseTransformer) и различного вида нагрузок. Система работает параллельно с энергосетью мощностью 10 000 МВА. Модель (рис. 1) позволяет исследовать переходные и установившиеся режимы гидроэлектростанции с синхронным генератором, имеющим систему управления возбуждением (блок ExcitationSystem).

Специально для решения задач проектирования электронных блоков систем электропривода в настоящее время также разработано значительное количество прикладных компьютерных пакетов.

Для исследования и проектирования хорошо зарекомендовали себя прикладные пакеты, в основе которых использовался пакет Pspice. КэтимпакетамотносятсяOrCAD9 Realise, DesighnLab, Worbench, CircuitMarkerидругие.

Для изучения и анализа несложных схем привлекательным является пакет Workbench, который по существу представляет собой виртуальную лабораторию с достаточно широкими возможностями.

Гораздо более широкими возможностями обладает пакет OrCAD9, объединивший в себе возможности анализа, синтеза, расчёта и конструирования электронных схем и обладающий к тому же очень обширной библиотекой (более 200 тыс.) электронных компонентов.

Следует остановиться еще на одном пакете. Это пакет TCAD, разработанный и достаточно широко используемый в Польше, не получил широкого распространения в мире, не очень удобен при исследовании полупроводниковых преобразователей и систем электропривода.

Одна из, основных проблем, на которую наталкивается исследователь полупроводникового электропривода, является проблема декомпозиции. Дело в том, что различные процессы в системе имеют разный масштаб времени. Например, переходные процессы в электромеханической части системы протекают в течение единиц – десятков секунд, а электромагнитные переходные процессы при переключении силовых транзисторов длятся микросекунды, Как видим, разница в длительности процессов здесь составляет девять порядков.

В настоящее время нет прикладных пакетов, которые позволили бы исследовать систему с одновременным учётом тех и других переходных процессов. Однако и те, и другие оказывают существенное влияние на характеристики системы и должны быть учтены.

Решение этой проблемы базируется на разделении (декомпозиции) системы в пространстве и во времени, с обоснованным выбором на каждом шаге определённой модели, а иногда и отдельного прикладного пакета. Задачи проектирования полупроводникового электропривода с достаточной точностью решаются в пакете MatLab, Simulink. Поэтому он и выбран в качестве средства моделирования в дипломной работе.

1. Основные понятия термины и определения

Электропривод (рис. 1.1) – это электромеханическая система, состоящая из электрической машины (ЭМ), связанной посредством механической передачи (редуктор (Р) с рабочим механизмом (РМ), силового преобразователя (СП), системы управления (СУ), блока сенсорных устройств (БСУ), которые обычно играют роль датчиков обратной связи по основным переменным состояния электропривода, вторичных источников питания (ВИП), обеспечивающих напряжение питания СУ, БСУ и входных цепей СП, и источника электрической энергии (ИЭЭ).

Рисунок 1.1. Блок-схема электропривода.

В качестве СП в дальнейшем рассматриваются лишь силовые полупроводниковые преобразователи. Они выполняют, во-первых, согласование электрических параметров источника электрической энергии (напряжение, частота) с электрическими параметрами электрической машины и, во-вторых – регулирование электрических параметров машины. Известно, что для управления скоростью вращения и моментом электрической машины необходимо регулировать электрические параметры на её входе. Система управления (СУ) предназначена для управления СП, она обычно строится на микросхемах либо микропроцессоре. На вход СУ подается сигнал задания U з и сигналы отрицательных обратных связей от БСУ. Система управления, в соответствии с заложенным в нее алгоритмом, вырабатывает сигналы управления СП, управляющего электрической машиной.

Следует оговорить некоторые особенности терминологии, касающиеся электрических машин. Электрической машиной будем называть обобщенный электромеханический преобразователь, обеспечивающий преобразование электрической энергии в механическую при работе в двигательном режиме, механической – в электрическую при работе в генераторном режиме, а также обеспечивающий преобразование электрической и механической энергии в тепловую при работе в режиме электромагнитного тормоза. В электроприводах в переходных и квазиустановившихся режимах все эти процессы преобразования имеют место. Однако, отдавая дань традиции, часто для электропривода будет использоваться термин электрический двигатель. При этом читатель должен понимать, что речь идет об электрической машине.

· по характеру движения – на вращательный электропривод и линейный электропривод;

· по направлению движения – на реверсивный электропривод, обеспечивающий вращение (движение) в обоих направлениях, и нереверсивный, обеспечивающий движение только в одном направлении;

· по электрическим параметрам электрической машины – на электропривод постоянного тока и электропривод переменного тока;

· по электрическим параметрам источника электрической энергии – на электропривод, питающийся от промышленной сети 50 Гц и электропривод, питающийся от автономного источника питания (аккумулятор, солнечная батарея, дизель-генератор и т.д.);

· по принципу действия – на электроприводы непрерывного действия, подвижные части которого в установившемся режиме находятся в состоянии непрерывного движения, и дискретный электропривод, подвижные части которого находятся в состоянии дискретного движения в установившемся режиме;

· по соотношению между числом электрических машин и рабочих механизмов – на групповой электропривод, обеспечивающий движение нескольких рабочих механизмов от одной электрической машины, и индивидуальный, обеспечивающий движение одного рабочего механизма от одной электрической машины.

Наиболее совершенным электроприводом является автоматизированный электропривод – регулируемый электропривод с автоматическим регулированием переменных состояния (момента и скорости).

Автоматизированные электроприводы делятся на:

· стабилизированный по скорости или моменту электропривод;

· программно управляемый электропривод, осуществляющий перемещение рабочего механизма в соответствии с программой, заложенной в сигнал задания;

· следящий электропривод, осуществляющий перемещение рабочего механизма в соответствии с произвольно изменяющимся входным сигналом;

· позиционный электропривод, предназначенный для регулирования положения рабочего механизма.

1.1 Приведение переменных и параметров рабочего механизма к валу исполнительного двигателя

Исполнительный двигатель электропривода связан с рабочим механизмом через механическую передачу. На рис. 1.2 представлено несколько типов механических передач.

Рисунок 1.2. Типы механических передач в электроприводе

Механическая часть электропривода в дальнейшем рассматривается в качестве «жесткой» механической модели. Это значит, что все звенья модели в процессе передачи момента не деформируются, кинематические пары не имеют люфтов и зазоров, а потери в механической передаче учитываются только её коэффициентом полезного действия.

Рисунок 1.3. Функциональная схема «жесткой» механической передачи

В этом случае динамические и статические моменты рабочего механизма могут быть пересчитаны и приведены к валу исполнительного двигателя. На рис. 1.3 представлена функциональная схема «жесткой» механической части электропривода. Уравнение движения в этом случае имеет известный вид:

– момент сопротивления нагрузки, приведенный к валу двигателя,

угловая скорость вращения вала двигателя,

– момент инерции, приведенный к валу двигателя,

М’ – собственный момент сопротивления двигателя,

МР – момент сопротивления редуктора,

МРМ – момент сопротивления рабочего механизма,

J’, JP , JPM – моменты инерции двигателя, редуктора и рабочего механизма,

– передаточное число и коэффициент полезного действия редуктора.

При этом в случае вращающегося рабочего механизма, и в случае линейно перемещающегося рабочего механизма.

Часто при расчетах моментами сопротивления двигателя и редуктора пренебрегают и учитывают только приведенный момент рабочего механизма. Как правило, нагрузочный момент является случайной величиной. Точное его определение возможно лишь при статистической обработке результатов измерений на реальном объекте. Тем не менее все разнообразие нагрузок можно систематизировать по характеру изменения момента от скорости либо от угла поворота рабочего механизма и представить в виде типовых зависимостей.

Рисунок 1.4. Типовые зависимости нагрузочного момента

Типовые зависимости МРМ = f (wРМ ) представлены на рис. 1.4.

При этом нагрузочный момент имеет тот же вид, что и момент рабочего механизма.

а) Наиболее простым видом нагрузочного момента, удобным для аналитического решения задачи выбора двигателя, является постоянный момент, не зависящий от параметров ни по значению, ни по знаку: Мн = const. Классическим примером такого вида нагрузки является подъём или спуск груза. Близок к этому момент, создаваемый в системе регулирования скорости движения лентопротяжных механизмов и намоточных устройств с постоянным натягом ленты, провода и т.п.

б) Другим видом нагрузочного момента является момент сухого трения, неизменный по значению, но приложенный навстречу направлению вращения (скорости) Мн = МH sign(wm ). В следящих системах и в станочных электроприводах подачи этот вид нагрузки является основным.

Кроме того, приводы вентилей, дросселей, клапанов в системах автоматического регулирования температуры, расхода газа и жидкости, винтов кареток некоторых станков, щеток потенциометров и т.п. устройств характеризуется прежде всего моментом сухого трения.

В общем случае момент сухого трения не остаётся постоянным, а сложным образом зависит от скорости перемещения. Кроме того, в механизмах, длительно находящихся в покое или в особых средах (например, в вакууме), наблюдается эффект залипания, при котором сопротивление начальному движению возрастает в несколько раз.

с) Моментом вязкого трения называют нагрузочный момент .

d) Зависимость нагрузочного момента от угловой скорости, например, вентилятора, центробежного насоса, гребного и воздушного винта, имеет вид, показанный на рис. 5, d. Такой нагрузочный момент описывают формулой , где n= 1,72÷ 2,5, и называют вентиляторным.

e) Часто нагрузочный момент зависит от угла поворота механизма а и его положения. Такой момент называют позиционным. Характерной нагрузкой является радиолокационная антенна, момент сопротивления которой зависит от её положения относительно направления ветра. Поэтому в некотором диапазоне углов поворота механизма позиционный момент может принимать отрицательные значения, то есть помогать двигателю вращать антенну. К этому же типу механизмов относятся приводы рулей летательных аппаратов, момент сопротивления которых зависит от угла отклонения руля в шарнире и называется шарнирным.

f) В системах автоматики, где определяющую роль играют переходные процессы (разгон, торможение), основным моментом, нагружающим двигатель, является динамический момент .Характерными динамическими нагрузками являются различного вида следящие системы (стрелково-пушечные турели, приводы копировально-фрезерных станков, приводы радиолокационных антенн и т.п.).

1.2 Основные характеристики и параметры электропривода

Различают три вида основных характеристик электропривода:

Это характеристики при установившемся режиме работы ЭП, когда скорость на выходе постоянна. В этом случае, как это следует из основного закона движения (1.1), момент, развиваемый двигателем на валу (M ), равен приведенному моменту нагрузки н ).

В качестве статических характеристик в основном рассматриваются механические характеристики – зависимость скорости на выходе от момента при различных напряжениях U з (U з выступает в качестве параметра) и регулировочные характеристики – зависимости скорости вращения от напряжения на входе при различных значениях момента нагрузки Н ыступает в качестве пара метра). На рис. 1.5 в качестве примера показаны механические регулировочные характеристики ЭП постоянного тока.

Рисунок 1.5. Типовые механическая и регулировочная
характеристики электропривода

В установившемся режиме качество электропривода характеризуется следующими параметрами:

· жесткостью механической характеристики ( );

· коэффициентом передачи (усиления) ( ) регулировочной характеристики. Заметим, что жесткость и коэффициент передачи могут быть постоянными в линейных системах и изменяться от точки к точке в нелинейных системах;

· диапазоном регулирования по скорости на выходе электропривода ( при МН = const).

Энергетические характеристики электропривода

К энергетическим характеристикам электропривода относятся рабочие характеристики, то есть зависимости тока, активной, реактивной и полной мощности, потребляемой от источника питания, от мощности на выходе электропривода (от мощности нагрузки): I1 , P1 , Q, S = f(P2 ).

Эти характеристики определяют к.п.д. ( ) и коэффициент мощности ( ) электропривода. К энергетическим характеристикам также относятся зависимости средних, действующих и амплитудных токов через полупроводниковые элементы преобразователя от момента, скорости и мощности на выходе электропривода.

Наличие силового полупроводникового преобразователя, включенного между источником питания и двигателем, вносит определенную специфику, которую необходимо учитывать при анализе энергетических характеристик электропривода. Рассмотрим эту специфику.

1.При управлении от силового полупроводникового преобразователя обмотки электродвигателя запитываются импульсным напряжением. При этом токи в обмотках также пульсируют. Импульсный характер напряжения и пульсация тока вызывают дополнительные потери в двигателе, которые необходимо учитывать при анализе энергетических характеристик.

2.Силовые элементы преобразователя (диоды, тиристоры, транзисторы) не являются идеальными ключами. Поэтому в режимах, когда они проводят ток (для транзисторов это режим насыщения), на них рассеивается определенная мощность. Эта мощность, которую называют квазистатической, зависит от среднего и эффективного (действующего) тока и от параметров полупроводникового прибора в режиме протекания прямого тока. На рис. 1.5 в качестве примера приведена характеристика диода для прямого тока и показаны его два основных параметра: Uo – остаточное напряжение на диоде врежиме протекания прямого тока и – динамическое сопротивление диода в режиме прямого тока. Квазистатические потери в диоде определяются из выражения:

где I ср , I – средний и эффективный ток через диод.

Аналогично определяются квазистатические потери в тиристоре и транзисторе.

Квазистатические потери в силовом полупроводниковом преобразователе зависят, прежде всего, от мощности на выходе, но, кроме того, они существенно зависят от алгоритма управления преобразователем, от структуры замкнутого электропривода и от его параметров. Все эти обстоятельства необходимо учитывать при анализе энергетических характеристик. Такой учет возможен только в том случае, когда квазистатические потери рассчитываются после синтеза электропривода.

3. Кроме квазистатических потерь в полупроводниковых элементах преобразователя при переключениях выделяются значительные потери, которые называют динамическими.

При включении транзистора диод закрывается не сразу, и некоторое время ток протекает в практически короткозамкнутой цепи. Качественные кривые тока транзистора и напряжения на транзисторе в процессе коммутации показаны на рис. 1.7. Мощность, выделяемая в транзисторе в период коммутации, являясь произведением напряжения на ток, может оказаться значительной. Аналогичная картина наблюдается и при выключении транзистора.

Динамические потери в полупроводниковых элементах силовых преобразователей зависят от частоты переключения и от параметров самих приборов. В современных электроприводах переменного тока, например, где частота переключений составляет десятки (от пяти до пятидесяти килогерц), динамические потери могут в два-три раза превысить потери квазистатические. Таким образом, при анализе энергетических характеристик необходимо учитывать динамические потери в силовом преобразователе.

4. Включение полупроводникового преобразователя между источником питания и двигателем обуславливает влияние преобразователя на источник. Если источником питания является сеть переменного тока, то это влияние проявляется в искажении формы потребляемого тока, то есть в появлении гармоник в потребляемом токе. Эти гармоники существенно влияют на питающую сеть, приводя ко многим нежелательным последствиям. Поэтому при анализе энергетических характеристик электропривода необходимо исследование гармонического состава потребляемого тока.

Четыре перечисленные особенности, влияющие на энергетические характеристики электропривода, необходимо учитывать при анализе и проектировании.

В качестве динамических характеристик обычно рассматриваются зависимости изменения скорости от времени на выходе ЭП при скачкообразном изменении входного задающего сигнала (характеристики по управлению) и при скачкообразном изменении момента нагрузки (характеристика по возмущению). На рис. 1.8 в качестве примера показана динамическая характеристика ЭП по управлению. В качестве параметра в динамических режимах рассматривается электромеханическая постоянная времени – это время, в течение которого ЭП разгоняется от неподвижного состояния до скорости идеального холостого хода под действием неизменного момента, равного моменту короткого замыкания (пускового момента). В этом случае, интегрируя основное уравнение движения, получим:

В динамическом режиме качество электропривода характеризуется следующими параметрами (см. рис. 1.8):

· временем первого согласования t — 1 ;

· временем переходного процесса tp .

Рисунок 1.8. Параметры переходного процесса в электроприводе

2. Силовые полупроводниковые преобразователи

2.1 Транзисторные преобразователи

Полупроводниковые преобразователи в электроприводах постоянного и переменного тока должны характеризоваться следующими основными свойствами:

· двусторонней проводимостью энергии между источником питания и исполнительным двигателем, являющимся нагрузкой преобразователя, для обеспечения его работы во всех квадрантах механической характеристики;

· малым и не зависящим от тока выходным сопротивлением для получения механических характеристик, близких к естественным, и, в конечном счете, для получения хороших статических и динамических характеристик электропривода в целом;

· жесткой внешней характеристикой и малой инерционностью, высоким КПД, достаточной перегрузочной способностью для обеспечения необходимых форсировок в переходных режимах работы привода;

· высокой помехозащищённостью и надежностью; малой массой и габаритами; отсутствием влияния на сеть.

Основным назначением полупроводникового преобразователя является регулирование скорости исполнительного двигателя электропривода. В электроприводах постоянного тока это достигается регулированием напряжения на выходе преобразователя. В приводах переменного тока необходимо регулировать напряжение и частоту на выходе преобразователя по определенному закону.

Перечисленным основным требованиям в наибольшей степени удовлетворяют транзисторные преобразователи, работающие в режиме переключения и питающиеся от источника постоянного напряжения. Такие преобразователи в электроприводах постоянного тока получили название широтно-импульсных (ШИП).

Принципы построения силовых транзисторных ключей

Силовой транзисторный ключ (СТК), является тем элементом преобразователя, который управляет процессами преобразования энергии. Специфика протекания этих процессов требует более детального рассмотрения принципов работы СТК и его элементной базы для обеспечения надёжности электропривода в целом. Рассмотрим классическую схему одного плеча преобразователя. На рис. 2.1 представлена схема такого плеча и показаны электромагнитные процессы, протекающие в нем при включении и выключении транзистора. Классическая теория динамических процессов выделяет четыре коммутационных интервала при работе плеча на активно-индуктивную нагрузку, два при включении транзистора и два при выключении. При включении транзистора выделяются этап восстановления диода в фазе высокой обратной проводимости (t1 на рис. 2.1) и этап установления стационарного состояния силового высоковольтного транзистора (t2 на рис. 2.1). На первом из отмеченных этапов по цепи «транзистор-диод» протекает значительный ток, который может превысить номинальный в несколько раз. При этом напряжение на транзисторе остается равным напряжению питания. Этот этап является наиболее опасным для транзистора. На втором этапе ток уменьшается до номинального при одновременном уменьшении напряжения на транзисторе. При выключении транзистора выделяются этап рассасывания неосновных носителей заряда в коллекторе силового высоковольтного транзистора (t3 на рис. 2.1) и этап спада тока коллектора силового транзистора и включения диода (t4 на рис. 2.1). На всех отмеченных интервалах коммутации в транзисторе и диоде выделяется значительная мощность. Эту мощность, которая определяет динамические потери в преобразователе, необходимо уметь определять для того, чтобы иметь возможность уверенно судить о надежности работы последнего.

Подтверждение вышесказанному представлено на рис. 2.2, где на примере показаны потери в транзисторе трехфазного инвертора с ШИМ при включении и выключении. В качестве транзисторов инвертора были использованы IGBT транзисторы типа HGTG24N60D1D, напряжение питания инвертора U=600 V, выходная мощность инвертора равнялась 50 кВт.

Рисунок 2.1. Динамические процессы переключения СТК

Рисунок 2.2. Динамические потери в транзисторе СТК

Кроме необходимости расчета мощности динамических потерь имеется еще ряд факторов, которые необходимо принимать во внимание при проектировании преобразователя.

Технология изготовления силовых транзисторов до сих пор требует применения специальных мер для обеспечения надёжной работы СТК. При этом обычно приходится решать задачи, связанные как с уменьшением статических и динамических потерь в СТК, так и обеспечением области безопасной работы (ОБР) силового транзистора.

При построении высоковольтных СТК основным требованием является обеспечение траектории переключения силового транзистора в области безопасной работы. Известно, что основной причиной выхода из строя транзистора является вторичный пробой (ВП), возникающий при включении и выключении СТК.

Типовая ОБР силового транзистора (СТ), построенная в логарифмическом масштабе, изображена на рис. 2.3. Эта ОБР имеет четыре границы, каждая из которых соответствует предельным параметрам СТ.

Рисунок 2.3. Область безопасной работы силового транзистора

Граница 1 соответствует максимальному току коллектора в режиме насыщения. Пробой транзистора на границах 1 и 2 соответствует электрическим режимам, при которых температура структуры транзистора достигает предельно допустимого значения.

Граница 3 ОБР соответствует наступлению в приборе вторичного пробоя (ВП). Под ВП подразумевается локальный саморазогрев структуры, приводящий к проплавлению перехода транзистора.

Области локального саморазогрева получили название «горячих пятен».

При ВП однородное распределение тока через транзистор сменяется неоднородным. При этом возникает положительная обратная связь, при которой увеличение локальной плотности тока вызывает увеличение температуры в этой области, которая в свою очередь вызывает ещё большее увеличение плотности тока и т.д. На рис. 2.4 в качестве примера приведены области безопасной работы реальных транзисторов фирм Fuji и Toshiba.

Рисунок 2.4. Реальные ОБР транзисторов

Для надёжной защиты СТК при переключении в процессе работы необходимо либо как-то определять предпробойное состояние силового транзистора и принимать меры к его защите, либо заведомо управлять транзистором так, чтобы он не выходил из ОБР.

Конечно, более предпочтителен первый способ обеспечения надёжности СТК, но здесь возникают две сложности. Во-первых, ВП развивается достаточно быстро и защита должна быть достаточно быстродействующей. Во-вторых, довольно сложно зарегистрировать предпробойное состояние транзистора и принять своевременные меры к его предотвращению. Этот способ возможно реализовать лишь для процесса включения СТК, основываясь на деформации входных вольт-амперных характеристик.

С точки зрения простоты схемной реализации наиболее удобным оказывается критерий, позволяющий определить границу ОБР по резкому возрастанию тока коллектора. В этом случае СТК включается на 1–2 мкс, по истечении которых определяется ток через силовой транзистор. Если этот ток превышает критическое значение, то поступает команда на выключение силового транзистора, если нет – силовой транзистор остаётся включённым.

Время развития ВП при изотермическом процессе шнурования тока (в процессе выключения) составляет несколько десятков наносекунд, поэтому практически отсутствует схемная возможность выявить предпробойное состояние и принять меры к его предотвращению.

Для обеспечения надёжной работы силового транзистора при запирании в настоящее время используются в основном три разомкнутых способа управления.

Первый сводится к автоматической регулировке управляющего тока с обеспечением заданной начальной форсировки и последующим отслеживанием малой глубины насыщения выходного транзистора

Этот способ наиболее просто реализуется цепью нелинейной диодной обратной связи, охватывающей управляющий транзистор (рис. 2.5 а).

Рисунок 2.5. Схемы защиты силового транзистора

Второй способ, обеспечивающий форсированное выключение силового транзистора, эффективно реализуется в каскадной схеме соединений высоковольтного и низковольтного транзисторов (рис. 2.5 б)

При этом низковольтный транзистор включен в цепь эмиттера высоковольтного транзистора.

На рис. 2.6 приведена схема, в которой реализуются оба рассмотренных способа. Эту схему можно считать самой надёжной с точки зрения обеспечения ОБР, однако, лишний транзистор в силовой цепи, особенно при больших токах, делает её малопривлекательной для проектировщиков.

Рисунок 2.6. Универсальная схема защиты силового транзистора

Наконец, третий способ обеспечения надёжной защиты СТК при запирании сводится к использованию цепей формирования траектории выключения.

Примеры выполнения цепей формирования траектории (снаберов) для силовой транзисторной стойки приведены на рис. 2.7. Здесь же приведены траектории переключения силовых транзисторов.

Рисунок 2.7. Демпфирующие цепи СТК

Простая RC-цепочка (рис. 2.7 а) обычно не устраивает проектировщиков, т. к. допускает значительное превышение напряжения на коллекторе транзистора в процессе запирания.

Типовым решением является схема, приведённая на рис. 2.7 б.

Здесь эффективное ограничение коллекторного напряжения СТК в начальный период запирания обеспечивается диодом, шунтирующим разрядное сопротивление.

Ограничение коллекторного напряжения при запирании обеспечивается за счёт выбора достаточно большой ёмкости демпфирующего конденсатора.

Этот конденсатор заряжается после запирания силового транзистора до полного напряжения источника питания, а при следующем включении СТК полностью разряжается через разрядное сопротивление. Последнее обстоятельство обуславливает достаточно большие потери в демпфирующих цепях. Избежать их можно, применив схему (рис. 2.7в), где конденсатор всегда находится под напряжением питания и стабилизирует напряжение на коллекторе, срезая коммутационный выброс при выключении СТК. Это повышает надежность, но не исключает полностью возможность возникновения ВП.

Наиболее эффективной является демпфирующая цепочка по схеме рис. 2.7 г. Здесь емкость С1 выбирается достаточно малой, т. к. она формирует фронт выключения СТК, а емкость С2 выбирается достаточно большой. В результате ограничиваются одновременно пик коллекторного напряжения, потери в СТК и потери в демпфирующих цепях.

Выбор демпфирующей цепочки зависит от условий работ СТК.

Для эффективной работы демпфирующих цепей необходимо определённое время, в течение которого конденсатор разряжается через СТК, подготавливая условия для последующего его выключения. Отмеченное требование часто не удаётся реализовать при ШИМ СТК, а именно такая модуляция используется при управлении транзисторным силовым преобразователем в системах электропривода. Поэтому применение демпфирующих цепей может оказаться нерезультативным и следует обратиться к рассмотренным выше способам управления СТК.

Некоторые модификации демпфирующих цепей СТК представлены на рис. 2.8.

Рисунок 2.8. Схемы формирования траектории СТК

На рис. 2.8а разрядный ток демпфирующего конденсатора С1 используется для начальной форсировки тока базы СТК VT2. Это позволит уменьшить время включения СТ и потери при включении.

В схеме рис. 2.8б реализуется форсированное включение СТК за счёт разряда конденсатора по цепи C1-R1-VT1-VT2 и поддержание малой глубины насыщения СТ VT2 за счёт цепи VD1, VT1.

2.2 Транзисторные преобразователи для управления двигателями постоянного тока

Принципы построения и управления

Как уже отмечалось, в этом случае используется широтно-импульсный преобразователь. Упрощённая принципиальная схема ШИП представлена на рис. 2.9. Она содержит четыре транзисторных ключа ТК1-ТК4. В диагональ моста, образованного транзисторными ключами, включена нагрузка. Нагрузкой в приводах постоянного тока является двигатель постоянного тока. В электроприводах двигатель постоянного тока управляется, как правило, по цепи якоря, поскольку только при таком управлении могут быть получены требуемые качественные показатели привода. Питание ШИП осуществляется от источника постоянного тока, шунтированного конденсатором.

Наиболее простой способ управления ШИП по цепи якоря – симметричный. При симметричном способе управления в состоянии переключения находятся все четыре транзисторных ключа моста, а напряжение на выходе ШИП представляет собой знакопеременные импульсы, длительность которых регулируется входным сигналом. В ШИП с симметричным управлением среднее напряжение Uh на выходе ШИП равно нулю, когда относительная продолжительность включения у = 0,5. Временные диаграммы ШИП при симметричном способе управления приведены на рис. 2.9. Симметричный способ управления обычно используется в маломощных приводах постоянного тока.

Рисунок 2.9. Транзисторный ШИП

Его преимуществом является простота реализации и отсутствие зоны нечувствительности в регулировочной характеристике. Недостатком ШИП с симметричным управлением является двухполярное напряжение на нагрузке и, в связи с этим, повышенные пульсации тока в якоре исполнительного двигателя.

Стремление исключить этот недостаток привело к разработке способов, обеспечивающих однополярное напряжение на выходе ШИП. Простейшим из них является несимметричный.

Рисунок 2.10. Способы управления СТК ШИП

Несимметричное управление представлено на рис. 2.10а. В этом случае переключаются транзисторные ключи фазной группы ТКЗ и ТК4 (ключи ТК1 и ТК2 при противоположной полярности входного сигнала), транзисторный ключ ТК1 постоянно открыт и насыщен, а ключ ТК2 постоянно закрыт. Транзисторные ключи ТКЗ и ТК4 переключаются в противофазе, обеспечивая протекание тока якоря от противо-эдс двигателя. При этом на выходе ШИП формируются однополярные импульсы и среднее напряжение на выходе равно нулю, когда относительная продолжительность включения одного из нижних по схеме рис. 2.9 транзисторов Уо = 0.

Недостатком рассмотренного способа управления является то, что верхние по схеме транзисторные ключи (ТК1, ТКЗ) по току загружены больше, чем нижние. Этот недостаток устранён при поочерёдном управлении, временные диаграммы которого изображены на рис. 2.10б.

Здесь при любом знаке входного сигнала в состоянии переключения находятся все четыре транзисторных ключа моста, при этом частота переключения каждого из них в два раза меньше частоты напряжения на выходе. Управляющие напряжения транзисторных ключей одной фазы моста ТК1, ТК2 и ТКЗ, ТК4 постоянно находятся в противофазе; при этом ключи переключаются через период выходного напряжения Т. Этим достигаются одинаковые условия работы полупроводниковых приборов в мостовой схеме.

При некотором знаке входного сигнала управляющие импульсы ul, u4 длительностью t = (1+у) Т подаются на диагонально расположенные транзисторные ключи (рис. 2.10) со сдвигом на полпериода, а управляющие импульсы u2, u3 длительностью t = (l-y) T, также со сдвигом на полпериода, подаются на транзисторы противоположной диагонали (ТК2, ТКЗ). В этом случае на интервале нагрузка подключена к источнику питания с помощью диагонально расположенных ключей, а на интервале (1-у) Т нагрузка закорочена с помощью верхних или нижних транзисторных ключей. При изменении знака входного сигнала порядок управления диагональными ключами изменяется на противоположный. При поочерёдном управлении на нагрузке формируются однополярные импульсы длительностью T, пропорциональной сигналу на входе.

Обобщенная функциональная схема управления транзисторным ШИП изображена на рис. 2.11. Она содержит генератор (Г), генератор пилообразного напряжения (ГПН), схему сравнения (СС), распределитель импульсов (РИ) и усилители (У). Как правило, между усилителями сигнала управления и распределителем включены элементы гальванической развязки (оптотранзисторы). Диаграммы на рис. 2.11 поясняют принцип работы схемы управления ШИП.

Рисунок 2.11. Функциональная схема управления ШИП

3. Математическое описание, передаточные функции и структурные схемы двигателей постоянного тока

3.1 Двигатель постоянного тока с независимым возбуждением

На рис. 3.1 схематически показан двигатель постоянного тока с независимым возбуждением. Уравнения, которыми описываются электромагнитные и электромеханические процессы в этом двигателе, имеют вид:

Приведем уравнения (3.1) к безразмерному виду, приняв в качестве базовых единиц номинальные значения переменных двигателя:

Электропривод – переменного или постоянного тока?

Ежегодный темп роста продаж регулируемых электроприводов составляет, примерно, 6 %, в то время как темп роста приводов переменного тока — 8 %, а объем рынка приводов постоянного тока остается более или менее стабильным. Данная статья предназначена для конечных пользователей, OEM-производителей, системных интеграторов и прочих инженерно-технических работников, использующих приводную технику, чтобы в общих чертах обрисовать преимущества выбора для различных прикладных задач одного из двух основных типов регулируемого электропривода – постоянного или переменного тока.

Какое приводное решение выбрать — DC или AC?

Силовые статические преобразователи на базе микропроцессоров, применяемые как в приводах переменного, так и постоянного тока, в настоящее время достигли очень высокого технического уровня, который (в допустимых технологических пределах) в большинстве приложений позволяет использовать электропривод переменного тока, там где раньше применялся привод постоянного тока. Однако, традиционный привод постоянного тока (1-но и 4-х квадрантный) продолжает играть важную роль, особенно в тех приложениях, где нужно обеспечить высокодинамичные режимы с постоянным моментом вращения, жесткими требованиями по перегрузочной способности в широком диапазоне скоростей и рекуперацию энергии обратно в сеть.

Главные критерии выбора

Первое, что должен сделать пользователь, это объективно оценить варианты, предлагаемые на рынке регулируемых приводов, технически соответствующие требованиям прикладной задачи/процесса. Главными критериями этой оценки должны быть:
1. Совокупная стоимость закупки регулируемого привода и требуемого дополнительного оборудования
2. Текущие эксплуатационные расходы:

  • обслуживание;
  • производственные издержки, КПД, и т.д;
  • требуемая площадь размещения.

3. Технологические и инновационные аспекты:

  • динамический отклик, время разгона; 4-х квадрантные операции; аварийный стоп, и т.д.
  • массо-габаритные характеристики.

4. Эксплуатационная надежность, пригодность приводов:

  • соответствие международным требованиям и стандартам IEC, ГОСТ Р, EN, CE-EMC; CSA, UL, и т.д.;
  • условия окружающей среды; степень защиты корпуса; ремонт «по-месту»

5. Воздействие на внешнюю среду:

  • искажение сетевого напряжения
  • ЭМС

6. Требуемое пространство для преобразователя и двигателя
7. Отвод тепла

Сравнение основных характеристик приводов постоянного и переменного тока в промышленном применении

Сравнение проводится между 6-пульсными 3-фазными тиристорными приводами постоянного тока с независимым возбуждением [далее называемыми ППТ] и 3-фазными электроприводами переменного тока на базе преобразователя частоты с широтно-импульсной модуляцией и асинхронного двигателя [далее называемыми ЧРП – частотно регулируемый привод], в следующих типовых категориях:
ППТ — P = 11 kW . 5200 kW; U = 200 V . 1190 V
ЧРП — P = 0.75 kW . 2000 kW; U = 380 V . 690 V

Привод постоянного тока

Частотно-регулируемый привод

В первом приближении существенных отличий между этими приводами не так и много; однако, при более детальном рассмотрении, выявляются характерные особенности приводов и различие физических принципов функционирования. Дале в статье раскрываются аспекты отличия приводов по следующим пунктам:

  • характеристики двигателей, как электромеханических преобразователей
  • характеристики преобразователей электрической энергии
  • 4-х квадрантные приводы
  • влияние на внешнюю среду
  • модернизация приводов постоянного тока

Различия между двигателями постоянного и переменного тока

Большинство пользователей имеют такое общее представление об электродвигателях: «Двигатели постоянного тока сложные, требующие частого обслуживания, что делает их эксплуатацию дорогой; к тому же они имеют низкую степень защиты. Двигатели переменного тока (асинхронные двигатели) просты и надежны, не нуждаются в обслуживании, имеют более низкую цену, и кроме того более высокую степень защиты». Такая классификация может быть верной для многих простых применений; те не менее этот общий вердикт желательно подвергнуть более тщательному рассмотрению!

Механическая характеристика приводов постоянного тока

Обычно используемая независимая вентиляция (прим. в 85 % регулируемых приводов до 250 kW) гарантирует хороший отвод тепла от ротора двигателя постоянного тока во всем диапазоне скоростей.

Типичные применения, требующие обеспечение постоянного момента в широком диапазоне скоростей: волочильные станы, поршневые компрессоры, подъемные механизмы, канатные дороги, экструдеры, .

Механическая характеристика частотно-регулируемых приводов

Обычно используемая самовентиляция (прим. в 90 % регулируемых приводов до 250 kW) в стандартных асинхронных двигателях не является эффективной во всем диапазоне скоростей. На низких скоростях отвод тепла фактически не возможен.

Типичные применения с пониженным моментом на низкой скорости, соответствующие характеристике на рис. 4: насосы, вентиляторы, и др. с квадратичной зависимостью нагрузки от скорости .

Характеристики отношения мощности и скорости в режиме S1 двигателей постоянного и переменного тока:

(1) В отличии от стандартного асинхронного двигателя с фиксированной базовой (номинальной) частотой вращения (синхронные скорости 3000/1500/1000/. об/мин на 50 Гц), двигатель постоянного тока может быть спроектирован с базовой частота вращения в диапазоне примерно от 300 до 4000 об/мин для каждой рабочей точки.
(2) В зависимости от типоразмера двигатели постоянного тока (как скомпенсированные, так и не скомпенсированные) могут иметь область работы с ослаблением поля 1 : 3 или 1 : 5 .
(3) Ограничение мощности связано с максимальным моментом асинхронного двигателя, уменьшающимся обратно квадрату скорости (1/n2).
(4) Ограничение мощности связано с уменьшением коммутационной способности коллекторного двигателя постоянного тока.

Сравнение рабочих характеристик двигателей показывает, что двигатель постоянного тока выгоднее асинхронного при продолжительной работе на низких скоростях и для широкого диапазона скоростей при постоянной мощности. Перегрузочная способность в кратковременном режиме зависит не только от параметров двигателя, но в большой степени от характеристик преобразователя частоты / тиристорного преобразователя.
Чем шире диапазон скоростей, в котором двигатель может выдать максимальную мощность, тем он лучше может быть адаптирован к процессам, требующим обеспечения постоянного момента во всем диапазоне скоростей.
Типичное применение: намоточные устройства.

• Типоразмеры, моменты инерции и время разгона:
Основные технические различия двигателей постоянного и переменного тока, методы формирования магнитного потока и рассеивание потерь мощности также обуславливают различные размеры (высоту оси вращения вала H) и момент инерции ротора (Jrotor), при одном и том же номинальном моменте вращения двигателя.
Двигатели постоянного тока имеют значительно меньшую высоту оси вращения H и массу ротора, чем асинхронные двигатели, и следовательно обладаю более низким моментом инерции ротора Jrotor, что является существенным преимуществом в высокодинамичных применениях, таких как испытательные стенды, летучие ножницы, и реверсивные приводы, так как это влияет на время разгона и динамический отклик двигателя в 4-х квадрантных приложениях (в двигательных и тормозных режимах).

• Широкий диапазон скоростей при постоянной мощности (работа с ослаблением поля или диапазон регулировки возбуждения):
Для специализированных приводных приложений, как привод намотчика и размотчика, испытательный стенд, лебедка и т.д., требуется очень широкий диапазон скоростей при постоянной мощности. В этом случае, традиционный режим работы с ослаблением поля двигателя постоянного тока с независимым возбуждением является особенно экономически эффективным. Это означает: широкий диапазон скоростей, при котором двигатель может выдавать максимальную мощность (длина горизонтальной линии характеристики на рис.5 от nG до n1), требуется меньший запас по мощности двигателя Pmax(motor) / Pmax(load).

• Обслуживание двигателя:
В настоящее время, в зависимости от сложности приложения, ресурс щеток двигателя постоянного тока составляет, примерно, 7000 . 12000 часов, благодаря современному коллекторному узлу, углеродистым щеткам и оптимизированному полю возбуждения. В зависимости от механических условий эксплуатации, интервал замены смазки в двигателях постоянного/переменного тока может быть соизмерим, а зачастую и меньше, чем ресурс щеток коллекторного двигателя.

• Степень защиты двигателя:
Исторически сложилось так, что начиная с 20-х годов, двигатели постоянного тока разрабатывались в основном для регулируемых приводов, что обусловило применение в них внутренней форсированной независимой вентиляции (прим. в 85 % двигателей до 250 kW). Стандартные асинхронные двигатели активно начали применяться в 70-х/80-х годах и в большинстве своем (прим. 90 % до 250 kW) производились с поверхностной самовентиляцией, так как частотно-регулируемые приводы тогда не были широко распространены. Фактически все асинхронные двигатели мощностью, прим. до 1400 kW имеют степень защиты IP 54, как стандарт, благодаря их простой и прочной конструкции. Для эксплуатации в зонах с повышенной опасностью, практически исключительно используются взрывозащищенные асинхронные двигатели. Асинхронный двигатель отыграл для себя ведущую позицию и доказал свою эффективность в тех секторах промышленности, которые характеризуются агрессивными условиями окружающей среды, высокой степенью загрязненности и запыленности.

• Масса и место для установки двигателя:
Более низкие масса и габариты двигателей постоянного тока (стандартная степень защиты IP 23) по сравнению с асинхронными двигателями (стандартная степень защиты IP 54) особенно важны для приложений, где двигатель должен перемещаться вместе с грузом (напр., для крупных подъемных, мостовых кранов), или в системах, где важно компактное размещение (буровые установки, подъемники для горнолыжных трасс, морские применения, печатные машины, и т.д.).

Различия между тиристорными преобразователями постоянного тока и преобразователями частоты

• Коммутация и преобразование электрической энергии:

Структурная схема 1-квадрантного привода постоянного тока

Переход тока от одного тиристора к другому начинается с пускового импульса, и после этого продолжается в линейно взаимосвязанном режиме. Это значит, что напряжение между коммутируемыми фазами сети поляризуется таким образом, что ток вновь открываемого тиристора увеличивается, и запирает предшествующий тиристор, снижая его ток до ноля. Коммутация тиристоров производится естественным путем (напряжением сети) при переходе тока через ноль и запирание тиристоров происходит без каких-либо проблем даже при значительной перегрузке. Поэтому тиристоры могут выбираться не по пиковому току, а по среднедействующему номинальному току нагрузки.

Структурная схема преобразователя частоты

Хотя входной выпрямительный мост преобразователя частоты работает подобно приводу постоянного тока, однако выпрямленный им ток должен быть преобразован обратно в 3-х фазный переменный с помощью инвертора. Так как у постоянного тока нет никаких переходов через ноль, то переключающие элементы (IGBT транзисторы) должны прерывать полный ток нагрузки. Когда IGBT транзистор закрывается, ток проходит через обратный диод на противоположный полюс напряжения постоянного тока. Переключение происходит без контроля напряжения, но оно возможно в любое время независимо от формы сетевого напряжения.

Результат:
Коммутация в преобразователях частоты происходит с большой частотой и в выходном напряжении появляется высокочастотная составляющая, и могут возникнуть проблемы с электромагнитной совместимостью.
В преобразователях постоянного тока есть только один контур преобразования энергии (AC → DC). В преобразователях частоты два контура преобразования энергии (AC → DC и DC → AC), т.е. потери мощности удваиваются по сравнению с приводами постоянного тока.
Потери мощности, полученные эмпирическим путем следующие: ППТ — 0.8 % . 1.5 % от номинальной мощности; ЧРП — 2 % . 3.5 % от номинальной мощности.
Место, требуемое для размещения шкафа преобразователя мощностью от 100 kW: ППТ — 100 %, ЧРП — 130 % . 300 %. Это преимущество приводов постоянного тока обуславливает уменьшение размера и стоимости электрошкафа и системы охлаждения.

• Выходные токи преобразователей переменного и постоянного тока; шум двигателя; нагрузка на изоляцию обмоток, электромагнитная совместимость (ЭМС):

• Ток двигателя / шум:
Напряжение, подаваемое на двигатель, состоит из сегментов от синусоидального сетевого напряжения. Ток двигателя является постоянным с наложенной переменной составляющей от мостового выпрямителя, поэтому проблем излучения шума в приводе постоянного тока не стоит.

• Пульсации момента вращения двигателя:
Пульсирующий момент (foscill = 6 x fline = 300 Гц или 360 Гц), появляющийся в результате пульсаций тока, накладывается на основной момент и по частоте значительно превышает механические резонансные частоты. По этой причине не будет никаких проблем для таких приложений, как намотчики/размотчики и др.

• Напряжение на двигателе/изоляция обмоток:
Максимальное напряжение, которое подается на клеммы двигателя постоянного тока эквивалентно пиковому значению сетевого напряжения (UN • √2 ).

• ЭМС:
По упомянутым выше причинам инсталляционные затраты, требуемые для уменьшения электромагнитной эмиссии (для обеспечения требований по ЭМС) являются сравнительно небольшими в приводах постоянного тока.

• Ток двигателя / шум:
Излучение шума в частотно-регулируемых приводах сильно зависит от выбранной тактовой частоты в каждом конкретном случае.

• Относительные гармонические составляющие в моменте вращения двигателя:
Пульсирующий вращающий момент, в результате гармонических составляющих тока и напряжения (отклонение от идеального синуса) по амплитуде и частоте очень зависит от рабочей точки и принципа функционирования преобразователя частоты. Вероятность индуцированных колебаний в приводной системе (двигатель, муфта сцепления, трансмиссия, механические компоненты, и т.д.) соответственно больше.

• Напряжение на двигателе/изоляция обмоток:
Выходной сигнал инвертора с ШИМ на IGBT транзисторах содержит крутые фронты напряжения, которые в случае длинного моторного кабеля (> 10 м) могут привести к 2-кратным пиковым перенапряжениям на двигателе. В результате этого увеличивается воздействие на изоляцию обмоток двигателя, что может привести к её старению и пробою. Эту ситуацию можно исправить, применив двигатель с повышенным классом изоляции, или поставив на выходе преобразователя частоты, дроссель.

• ЭМС:
Электромагнитная эмиссия в частотно-регулируемых приводах, особенно связанная с длинным кабелем, может потребовать применение дополнительных мер и оборудования.

• Влияние на напряжение сети:
Линейные токи приводов постоянного тока с 6-пульсным тиристорным мостом будут всегда содержать кроме основной гармоники еще 5-ю, 7-ю, 11-ю и 13-ю гармоники в соответственном процентном отношении: 22 %, 14 %, 9 %, 7.6 %. В случае работы нескольких приводов постоянного тока, подключенных у одному источнику сетевого напряжения, они немного уравновесят друг друга за счет различной фазовой последовательности, и общее искажение сетевого напряжения будет снижено. В преобразователях частоты переключение IGBT транзисторов практически не создает низкочастотных гармонических искажений, но существенными являются высокочастотные составляющие.

• Реактивная мощность:
Оба типа приводов (ППТ и ЧПП) потребляют реактивную мощность из сети. Её размер не значителен в частотно-регулируемых приводах, а в приводах постоянного тока более значителен и зависит от частоты вращения двигателя. Предпочтение в этом вопросе имеют частотные приводы.

Значения, полученные эмпирическим путем для приводов постоянного тока:
1-кварантные приложения — cos ≈ 0. 0.9
4-квадрантные приложения — cos ≈ 0. 0.85

Значения, полученные эмпирическим путем для частотно-регулируемых приводов:
1-кварантные приложения (с диодным входным мостом) — cos ≈ 0.99
4-квадрантные приложения (с тиристорным входным мостом и рекуперацией в сеть) — cos ≈ 0.9

Модернизация существующих приводов постоянного тока.

Когда возникает вопрос о том, стоит ли модернизировать существующий привод постоянного тока или дешевле его полностью заменить на электропривод переменного тока, надо подойти к этому вопросу взвешенно и рассмотреть все аргументы и «за» и «против».

В основном доступно несколько уровней модернизации:

  • Полная замена привода постоянного тока (преобразователя и двигателя) на новый современный привод постоянного тока.
  • Замена только преобразователя, если двигатель в хорошем состоянии.
  • Замена одного из модулей преобразователя на новый.
  • Замена аналоговой управляющей электроники на цифровую без изменения силовой части (рекомендуется только на мощностях более 1 МВт).
  • Полная замена всей приводной системы на частотно-регулируемый привод.

Отвечая на вопрос, о том какой подход выбрать в каждом конкретном случае, важно оценить ряд критериев:

  • Может ли появиться потребность в изменении привода в будущем (изменяться тип или характер нагрузки, условия эксплуатации, и т.д.)?
  • В каком состоянии находятся индивидуальные компоненты системы (надежность, возраст, эксплуатационные затраты)?
  • До принятия решения о замене привода постоянного тока на ЧРП учтите следующие пункты:
  • Издержки на прокладку новых кабелей.
  • Место для размещения преобразователя частоты.
  • Потребуется ли замена коммутационной аппаратуры?
  • Возможность и сложность механического монтажа нового двигателя
  • Продолжительность всех работ по замене приводов. 15 kW → ППТ менее дорогие

Заключение

Основным недостатком аналогового привода постоянного тока является низкая помехоустойчивость, сложность в настройке и нестабильность параметров. В качестве датчика обратной связи по скорости применяется тахогенератор, имеющий те же недостатки, что и коллекторный двигатель. Для реверсивных приводов после тахогенератора приходится устанавливать диодный мост, что ограничивает диапазон регулирования на малых скоростях из-за пропадания обратной связи. В случае синхронизации механизмов с различными приводами в режиме «ведущий – ведомый» частотный преобразователь намного предпочтительней, т.к. в качестве датчика скорости применяются цифровые датчики типа энкодера, резольвера или sin/cos преобразователи, что позволяет строить системы с электрическими валами. Наличие дополнительных устройств (опций) частотных преобразователей позволяют наращивать функции последних: увеличивать число входов выходов, использовать современные шины и протоколы обмена, применять привод в устройствах позиционирования, следить за температурным режимом двигателя и привода, использовать привод в режиме виртуального кулачка (переменная скорость вращения за один оборот вала) и многое другое.

Современные микроконтроллеры, управляющие частотным преобразователем, позволяют обрабатывать данные за период в несколько десятков микросекунд, (десять лет назад это время составляло 200 мС), что позволило расширить диапазон регулирования с обратной связью до 1:1000 с точностью поддержания скорости 0,2 оборота во всем диапазоне, что приближает частотные приводы к сервоприводам.

Однако, учитывая устойчивый рост рынка регулируемых приводов, ожидается, что объем рынка приводов постоянного тока останется более или менее устойчивым в течение некоторого периода. Это представление подтверждено последними исследованиями рынка.

Сравнение двух типов приводных систем, сделанное в данном обзоре, показывает, что вопрос о том, является ли правильным выбор привода постоянного или переменного тока, целиком зависит от конкретного применения.

  • Должен быть обеспечен режим работы в 4-х квадрантах с рекуперацией?
  • Предполагается продолжительная работа на низкой скорости?
  • Требуется меньшее выделение тепла преобразователем?
  • Предполагаются частые динамичные разгоны и торможения?
  • Требуется широкий диапазон скоростей при постоянной мощности (>1:1.5)?
  • Устраивает степень защиты двигателя

Электрический привод

Электрический привод (сокращённо — электропривод, ЭП) — управляемая электромеханическая система, предназначенная для преобразования электрической энергии в механическую и обратно и управления этим процессом.

Современный электропривод — совокупность множества электромашин, аппаратов и систем управления ими. Он является основным потребителем электрической энергии (до 60 %) [1] и главным источником механической энергии в промышленности.

В ГОСТ Р 50369-92 электропривод определён как электромеханическая система, состоящая из преобразователей электроэнергии, электромеханических и механических преобразователей, управляющих и информационных устройств и устройств сопряжения с внешними электрическими, механическими, управляющими и информационными системами, предназначенная для приведения в движение исполнительных органов рабочей машины и управления этим движением в целях осуществления технологического процесса [2] .

Как видно из определения, исполнительный орган в состав привода не входит. Однако авторы авторитетных учебников [1] [3] включают исполнительный орган в состав электропривода. Это противоречие объясняется тем, что при проектировании электропривода необходимо учитывать величину и характер изменения механической нагрузки на валу электродвигателя, которые определяются параметрами исполнительного органа. При невозможности реализации прямого привода электродвигатель приводит исполнительный орган в движение через кинематическую передачу. КПД, передаточное число и пульсации, вносимые кинематической передачей, также учитываются при проектировании электропривода.

Содержание

Функциональная схема

  • Регулятор (Р) предназначен для управления процессами, протекающими в электроприводе.
  • Электрический преобразователь (ЭП) предназначен для преобразования электрической энергии сети в регулируемое напряжение постоянного или переменного тока.
  • Электромеханический преобразователь (ЭМП) — двигатель, предназначен для преобразования электрической энергии в механическую.
  • Механический преобразователь (МП) может изменять скорость вращения двигателя.
  • Упр — управляющее воздействие.
  • ИО — исполнительный орган.
  • Силовая часть или электропривод с разомкнутой системой регулирования.
  • Механическая часть.
  • Система управления электропривода [4] .

Характеристики привода

Статические характеристики

Под статическими характеристиками чаще всего подразумеваются электромеханическая и механическая характеристика.

Механическая характеристика

Механическая характеристика — это зависимость угловой скорости вращения вала от электромагнитного момента M (или от момента сопротивления Mc). Механические характеристики являются очень удобным и полезным инструментом при анализе статических и динамических режимов электропривода. [1]

Электромеханическая характеристика двигателя

Электромеханическая характеристика — это зависимость угловой скорости вращения вала ω от тока I.

Динамическая характеристика

Динамическая характеристика электропривода — это зависимость между мгновенными значениями двух координат электропривода для одного и того же момента времени переходного режима работы.

Классификация электроприводов

По количеству и связи исполнительных, рабочих органов:

  • Индивидуальный, в котором рабочий исполнительный орган приводится в движение одним самостоятельным двигателем, приводом.
  • Групповой, в котором один двигатель приводит в действие исполнительные органы РМ или несколько органов одной РМ.
  • Взаимосвязанный, в котором два или несколько ЭМП или ЭП электрически или механически связаны между собой с целью поддержания заданного соотношения или равенства скоростей, или нагрузок, или положения исполнительных органов РМ.
  • Многодвигательный, в котором взаимосвязанные ЭП, ЭМП обеспечивают работу сложного механизма или работу на общий вал.
  • Электрический вал, взаимосвязанный ЭП, в котором для постоянства скоростей РМ, не имеющих механических связей, используется электрическая связь двух или нескольких ЭМП.

По типу управления и задаче управления:

  • Автоматизированный ЭП, управляемый путём автоматического регулирования параметров и величин.
  • Программно-управляемый ЭП, функционирующий через посредство специализированной управляющей вычислительной машины в соответствии с заданной программой.
  • Следящий ЭП, автоматически отрабатывающий перемещение исполнительного органа РМ с заданной точностью в соответствии с произвольно меняющимся сигналом управления.
  • Позиционный ЭП, автоматически регулирующий положение исполнительного органа РМ.
  • Адаптивный ЭП, автоматически избирающий структуру или параметры устройства управления с целью установления оптимального режима работы.

По характеру движения:

  • ЭП с вращательным движением.
  • Линейный ЭП с линейными двигателями.
  • Дискретный ЭП с ЭМП, подвижные части которого в установившемся режиме находятся в состоянии дискретного движения.

По наличию и характеру передаточного устройства:

  • Редукторный ЭП с редуктором или мультипликатором.
  • Электрогидравлический с передаточным гидравлическим устройством.
  • Магнитогидродинамический ЭП с преобразованием электрической энергии в энергию движения токопроводящей жидкости.
  • Переменного тока.
  • Постоянного тока.

По степени важности выполняемых операций:

  • Главный ЭП, обеспечивающий главное движение или главную операцию (в многодвигательных ЭП).
  • Вспомогательный ЭП.
  • Привод передач.

Подбор электродвигателя

Качество работы современного электропривода во многом определяется правильным выбором используемого электрического двигателя, что в свою очередь обеспечивает продолжительную надёжную работу электропривода и высокую эффективность технологических и производственных процессов в промышленности, на транспорте, в строительстве и других областях.

При выборе электрического двигателя для привода производственного механизма руководствуются следующими рекомендациями:

  • Исходя из технологических требований, производят выбор электрического двигателя по его техническим характеристикам (по роду тока, номинальным напряжению и мощности, частоте вращения, виду механической характеристики, продолжительности включения, перегрузочной способности, пусковым, регулировочным и тормозным свойствами др.), а также конструктивное исполнение двигателя по способу монтажа и крепления.
  • Исходя из экономических соображений, выбирают наиболее простой, экономичный и надёжный в эксплуатации двигатель, не требующий высоких эксплуатационных расходов и имеющий наименьшие габариты, массу и стоимость.
  • Исходя из условий окружающей среды, в которых будет работать двигатель, а также из требований безопасности работы во взрывоопасной среде, выбирают конструктивное исполнение двигателя по способу защиты.

Правильный выбор типа, исполнения и мощности электрического двигателя определяет не только безопасность, надёжность и экономичность работы и длительность срока службы двигателя, но и технико-экономические показатели всего электропривода в целом.

См. также

Примечания

  1. 123Ильинский Н. Ф. Основы электропривода: Учебное пособие для вузов. — 2-е изд., перераб. и доп. — М. : Издательство МЭИ, 2003. — С. 220. — ISBN 5-7046-0874-4.
  2. ↑ Электроприводы. Термины и определения.-М.- Издательство стандартов. −1993 [1]
  3. Онищенко Г.Б. Электрический привод. — М. : Академия, 2003.
  4. Анучин А.С. Системы управления электроприводов. — Москва: Издательский дом МЭИ, 2015. — 373 с. — ISBN 978-5-383-00918-5.

Литература

  • Соколовский Г. Г. Электроприводы переменного тока с частотным регулированием. — М. : «Академия», 2006. — ISBN 5-7695-2306-9.
  • Москаленко, В.В. Электрический привод. — 2-е изд. — М. : Академия, 2007. — ISBN 978-5-7695-2998-6.
  • Зимин Е. Н. и др. Электроприводы постоянного тока с вентильными преобразователями. Ленинград, Издательство «Энергоиздат», Ленинградское отделение, 1982
  • Чиликин М. Г., Сандлер А. С. Общий курс электропривода. — 6-е изд. — М. : Энергоиздат, 1981. — 576 с.

Ссылки

Что такое Wiki.sc Вики является главным информационным ресурсом в интернете. Она открыта для любого пользователя. Вики это библиотека, которая является общественной и многоязычной.

Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License.

Добавить комментарий
Название: Исследование динамических характеристик электроприводов постоянного тока при различных способах возбуждения
Раздел: Рефераты по физике
Тип: дипломная работа Добавлен 01:27:22 29 апреля 2011 Похожие работы
Просмотров: 12047 Комментариев: 15 Оценило: 3 человек Средний балл: 4.7 Оценка: неизвестно Скачать