Методы поиска неисправностей в электронных схемах


СОДЕРЖАНИЕ:

Поиск неисправностей в электронных схемах. Методы поиска и устранения неисправностей. А также причин неработоспособности электронных устройств

После того как вы закончили собирать ваше устройство, запаяли последний элемент в плату, не торопитесь сразу же его включать. Приготовьте мультиметр, откройте принципиальную схему и описание схемы.

Сначала нужно проверить правильность монтажа, проверить на КЗ (короткое замыкание). Если вы считаете что все элементы запаяны верно, и КЗ после прозвонки вы не обнаружили, то можно очистить дорожки от остатков канифоли, и подавать питание, но сначала стоит проверить сопротивление цепи питания, если оно подозрительно большое, и если это не оговорено в собираемой вами схеме, то не торопитесь включать схему, перепроверьте еще раз. Правильно ли собрали диодный мост, соблюдена ли полярность при запаивании конденсаторов в цепи питания и т.д.. Если собираемое вами устройство потребляет большой ток, от 1 ампера и выше это говорит о КЗ или неправильно запаянных элементах, бывают и исключения, например преобразователи напряжения кушают 2-3 ампера на холостом ходу. Можно последовательно цепи питания включить маломощный постоянный резистор на несколько ОМ, это может спасти устройство от выхода из строя. Если в схеме стоят мощные транзисторы или микросхемы, которые крепятся на радиатор, не забудьте их изолировать друг от друга. При первоначальном включении устройств соблюдайте осторожность, так как диоды и электролитические конденсаторы при неправильном включении или превышении напряжения могут взорваться. Причем конденсаторы обычно взрываются не сразу, а сначала некоторое время греются. Не оставляйте без присмотра включенные и еще не настроенные устройства.

Прежде чем приступить к поиску неисправностей, если прибор который ремонтируете вам не знаком, нужно в первую очередь получить как можно больше информации об этом устройстве, что за устройство, или что за узел (БП, усилитель, или иное устройство), и нужно достать описание и схему этого устройства. Прежде чем доставать и начинать откручивать плату, приглядитесь, нету ли ничего лишнего внутри корпуса, оторвавшегося куска, осколка и пр. Не забывайте проверять даже такие элементы схемы как выключатель или разъем питания.

Прежде чем начать ковырять плату, разрядите все конденсаторы в том числе и высоковольтные керамические, разряжать нужно резистором примерно в 100 Ом. Если вы забудете это сделать, то при случайном КЗ, или даже во время прозвонки, отпаивания радиодеталей, последствия могут быть ужасными, могут полететь еще элементы, да и сами можете пострадать. Это очень важно!

Проверку всегда начинают с питания и проверки напряжений, проверьте напряжение в сети, предохранитель, далее блок питания. Проверьте напряжения на выходе блока питания и по возможности ток на выходе. Бывает что напряжение в норме, а если подключить лампочку или резистор, напряжение резко проседает или вовсе, БП уходит в защиту. Если окажется что напряжение ниже чем нужно или его нет вовсе, то проверяем диодные мосты, далее стабилизатор напряжения – если такой стоит, транзисторы, если они в схеме имеются. Иногда даже самым простым мультиметром удается найти неисправность в схеме. Проверку и поиск неисправностей нужно всегда проводить с отключенным от устройства питанием! Обратите внимание на провода, не оторваны, не оголены ли они. Если платы между собой соединяются разъёмами или проводами, которые закрепляются в винтовых зажимах, попробуйте переподключить их. Винтовые зажимы не надежны, со временем может пропадать контакт. Попробуйте снова включить плату, внимательно следите, пощупайте транзисторы, резисторы, на нагрев.

Итак, лежит перед нами голая плата с запаянными радиодеталями, берем лупу и начинаем внешний осмотр радиоэлементов, попутно можно даже принюхиваться, и это не шутка, сгоревший радиоэлемент можно вычислить сразу. Бывает что внешним осмотром такой элемент не обнаружить. При осмотре обратите внимание на потемнение резисторов и транзисторов, если заметили такой элемент то немедленно отпаиваем его с платы и прозваниваем, если даже элемент рабочий, лучше его заменить. Бывает что транзисторы даже после того как выйдут из строя прозваниваются тестером. Прозванивать резисторы и другие радиодетали нужно выпаивая с платы.

После осмотра радиодеталей переворачиваем плату, и начинаем осмотр со стороны дорожек, нет ли перегоревших или короткого замыкания (например если вывода радиоэлементов длинные, они могут замкнуть, так что при обратной сборке аппаратуры будьте аккуратнее). Потрогайте элементы, если чувствуете что резистор пошатывается на плате, вполне возможно что пропал электрический контакт, перепаяйте его. Если на плате имеются тонкие дорожки, их следует проверить на обрыв и микротрещины.

Если устройство собрано вами, то проверьте, все ли радиодетали запаяны правильно? У разных транзисторов разная цоколевка, у диодов обозначения тоже могут различаться. Откройте справочник к каждому запаянному элементу (если на память не помните цоколевки) и начинайте проверять. К сожалению, часто бывает так, что при выходе радиоэлемента из строя, сам элемент внешне может ничем не отличаться от исправного. Если вам так и не удалось найти неисправность схемы, придется отпаивать и прозванивать все транзисторы и элементы. Вообще говоря, можно проверять цепи и не отпаивая элементы, но нужен для этого как минимум осциллограф и хороший мультиметр. Углубляться в методику и технику работы с осциллографом в этой статье я не буду. Если схема простая, неисправные элементы как правило обнаруживаются очень быстро.

Микросхемы на неисправность проверяют обычно путем замены на другую, при сборке схем советую ставить специальные панельки под микросхемы, это очень удобно, в случае если вдруг понадобится снять ее. Но если микросхема стоит без панельки, и она запаяна в плату, то советую проверить напряжение на выводах питания микросхемы, прежде чем начинать отпаивать ее.

В схемах где применен микроконтроллер, если после включении схема не подает признаков жизни, а монтаж правильный и радиодетали запаяны правильно, в первую очередь нужно попробовать перепрошить его. Если при программировании вышла ошибка или залита «левая» прошивка, такой МК работать в схеме не будет.

Если вам не хочется выпаивать с платы к примеру резистор, диод, или конденсатор, (чтобы дорожки лишний раз не греть, иначе могут отвалиться) а вы грешите как раз на него, можно параллельно ему попробовать припаять аналогичный элемент. Так можно поступить с конденсаторами, резисторами, и диодами, только помните, что если вы запараллелите два резистора, у вас общее сопротивление уменьшится в два раза, так что один вывод резистора с платы все таки придется отпаять, а с конденсаторами наоборот, при параллеливании емкость увеличиться, например если в схеме стоит конденсатор на 220мкФ, припаяйте параллельно ему 100мкФ, от этого ничего не будет, если вы включите устройство на короткое время. Как правило конденсаторы с резисторами очень редко выходят из строя. Что касается транзисторов, их обязательно нужно выпаивать, параллельно условно неработающему транзистору ставить такой же ни в коем случае нельзя.

В схемах где используются катушки или миниатюрные трансформаторы с большим количеством выводов, пусть даже с отводом от середины, нужно соблюдать начало и конец витков, если после запуска такой схемы устройство не хочет работать, поменяйте местами вывода.

Если вы считаете что нашли причину, из-за которой ваше устройство не хотело работать, и заменили этот элемент на плате, перед подачей питания проверьте плату в местах пайки на предмет КЗ. Уберите в сторону все металлические предметы, отвертки, резисторы, куски проводов и т.п. не дай бог во время подачи питания и проверки устройства под плату закатится резистор, и коротнет.

Теперь предлагаю вам решить небольшую задачку, ниже дана схема достаточно простого блока питания, я специально в этой схеме допустил ошибки и некоторые элементы нарисовал неправильно, попробуйте найти все ошибки. Представьте, что это ваше устройство, которые вы сами собрали, но после включения оно не заработало, или некоторые элементы вышли из строя.

Будьте очень внимательны, ошибок здесь много, представьте, что это реальное устройство, если вы не найдете всех ошибок, при очередном включении прибора, что то может снова выйти из строя.

Вот ты на радостях идешь к чайнику с мыслью хлопнуть кружку чая с баранкой в честь только что собранного устройства, но оно вдруг перестало работать. При этом видимых причин нет: конденсаторы целы, транзисторы вроде бы не дымятся, диоды тоже. Но при этом устройство не работает. Как быть? Можно воспользоваться вот таким простым алгоритмом поиска неисправности:

Монтажные «сопли»

«Сопли» — это небольшие капли припоя, которые создают короткое замыкание между двумя разными дорожками на печатной плате. Во время домашней сборки такие неприятные капли припоя приводят к тому, что устройство либо просто не запускается, либо работает неправильно, либо, что хуже всего, после включения тут же сгорают дорогие детали.

Чтобы не допускать таких неприятных последствий перед включением собранного прибора следует внимательно проверить печатную плату на наличие замыканий между дорожками.

Приборы для диагностики устройств

Минимальный набор приборов для наладки и ремонта радиолюбительских конструкций состоит из , мультиметра и . В некоторых случаях можно обойтись только мультиметром. Но для более удобной отладки устройств желательно все же иметь осциллограф .

Для простых устройств такого набора хватает за глаза. Что касается, к примеру, отладки различных усилителей, то для их правильной настройки желательно иметь ещё и генератор сигналов .

Правильное питание — залог успеха

Прежде, чем делать какие-либо выводы и работоспособности деталей, входящих в твою радиолюбительскую конструкцию, следует проверить правильное ли питание подаётся. Иной раз окажется, что проблема была в неверном питании. Если начинать проверку устройства с его питания, то можно сэкономить много времени на отладке, если причина была в нём.

Проверка диодов

Если в схеме есть диоды, то их следует один за одним внимательно проверить. Если они внешне целые, то следует выпаять один вывод диода и проверить его с помощью мультиметра, включенного в режим измерения сопротивления. При этом если полярность клем мультиметра совпадает с полярностью выводов диода (+ клемма к аноду, а — клемма к катоду), то мультиметр покажет приблизительно 500-600 Ом, а в обратном включении (- клемма к аноду, а + клемма к катоду) не покажет вообще ничего, будто там обрыв. Если же мультиметр показывает что-либо другое, то скорее всего диод вышел из строя и негоден.

Проверка конденсаторов и резисторов

Сгоревшие резисторы видно сразу — они чернеют. Поэтому найти сгоревший резистор достаточно легко. Что касается кондесаторов, то их проверка сложней. Во-первых, как и в случае с резисторами, надо првоести их осмотр. Если они внешне не вызывают подозрений, тогда ихследует выпаять и проверить с помощью LRC-метра. Обычно выходят из строя электролитические конденсаторы. При этом они раздуваются, когда сгорают. Другая причина их выхода из строя — время. Поэтому в старых приборах часто заменяют все электролитические конденсаторы.

Проверка транзисторов

Транзисторы проверяются аналогично диодам. Сначала проводится внешний осмотр и если он не вызывает подозрений, то транзистор проверяется с помощью мультиметра. Только клемы мультиметра включаются поочерёдно между базой-коллектором, базой-эммитером и коллектором-эммитером. Кстати, у транзисторов бывает интересная неисправность. При проверке транзистор в норме, но когда включается в схему и на неё подается питание, то через некоторое время схема перестает работать. Оказывается, что транзистор нагрелся и в нагретом состоянии ведёт себя как поломанный. Такой транзистор следует заменить.

Название: Поиск неисправностей в электрических схемах
Бенда Дитмар
Год: 2010 (во быстрые. )
Страниц: 250
Формат: DjVu
Размер: 7.18 Mб
Язык: русский (перевод с немецкого)
В книге обобщен многолетний опыт практической работы и приведены проверенные методики поиска неисправностей для различных электронных устройств. На большом количестве примеров аналоговых и цифровых блоков, программируемых контроллеров и компьютерной техники показан системный подход и специфика поиска неисправностей в электрических схемах. Рассмотрены основные правила проведения технического обслуживания, фазы поиска неисправностей, диагностика устройств, тестирование электронных компонентов.

Оглавление
Предисловие
Глава 1 . Основные правила успешного технического обслуживания
1.1. Системный подход, логика и опыт гарантируют успех
1.2. Общение с клиентом
Глава 2. Получение информации об устройствах и системах
2.1. Системный сбор информации о знакомом и неизвестном
2.2. Собирайте информацию целенаправленно
2.3. Устанавливайте характерные черты структуры
Глава 3. Систематизированный поиск неисправностей в автоматизированных устройствах
3.1. Предпосылки и последовательность успешного поиска неисправностей
3.2. Оценка фактического состояния устройства
3.3. Локализация области неисправности
3.4. Мероприятия по ремонту и вводу в эксплуатацию
Глава 4. Определение полярности и напряжения в электронных блоках и схемах
4.1. Измерение напряжения
4.2. Неисправности в электрической цепи
4.3. Точка, взятая в качестве опорного потенциала, определяет полярность и значение напряжений
4.4. Примеры определения полярности и напряжений
4.5. Упражнения для закрепления полученных знаний
Глава 5 . Системный поиск неисправностей в аналоговых схемах
5.1. Определение напряжений в схемах
5.2. Последствия возможных коротких замыканий и обрывов при различных видах связи
Соединительные связи
Отрицательные обратные связи
Положительные обратные связи
5.3. Систематизированный поиск неисправностей в аналоговых схемах
5.4. Поиск неисправностей в схемах управления и регулировки
Электропривод трехфазного тока
Стабилизатор напряжения
5.5. Поиск неисправностей в колебательных схемах
LC-генератор синусоидальных колебаний
Мостовой RC-генератор
Функциональный преобразователь
5.6. Поиск неисправностей в операционных усилителях
Поиск неисправностей в предусилителях
Оконечный усилитель
5.7. Упражнения для закрепления полученных знаний
Глава 6. Системный поиск неисправностей в импульсных и цифровых схемах
6.1. Напряжения в цифровых схемах
6.2. Воздействия возможных коротких замыканий и внутренних обрывов
6.3. Систематизированный поиск ошибок в цифровой схеме
6.4. Ошибки в цифровых интегральных схемах
6.5. Упражнения для закрепления полученных знаний
Глава 7. Поиск неисправностей в системе с компьютерными схемами
7.1. Диагностика неисправностей в схемах с тремя состояниями
7.2. Проверка статических функциональных параметров
7.3. Проверка динамических функциональных параметров
7.4. Систематизированный поиск неисправностей в компьютерной схеме
7.5. Поиск неисправностей в схемах интерфейсов
7.6. Упражнения для закрепления полученных знаний
Глава 8. Поиск неисправностей в системах на программируемых контроллерах
8.1. Проверка статических и динамических функциональных параметров
8.2. Техническое обслуживание путем диагностики с помощью устройства визуального отображения
8.3. Систематизированный поиск неисправностей в схеме программируемого контроллера
8.4. Упражнения для закрепления полученных знаний
Глава 9 . Поиск неисправностей в системе с сетевым напряжением питания
9.1. Сетевые помехи и их воздействия
9.2. Поиск неисправностей в схемах выпрямителей
9.3. Поиск неисправностей в источниках питания
9.4. Упражнения для закрепления полученных знаний
Глава 10. Поиск ошибок в системах тестирования при обслуживании и производстве
10.1. Внутрисхемное тестирование
10.2. Поиск неисправностей с помощью контактной системы тестирования
10.3. Подготовка электронных блоков к тестированию
10.4. Локализация коротких замыканий
10.5. Упражнения для закрепления полученных знаний
Приложение. Ответы к упражнениям
Предметный указатель

Количество электронных приборов с каждым годом растет с небывалой скоростью.

Так, производство электроники в Санкт-петербурге может только радовать. Однако, как бы ни было высоко ее качество, сломаться она все-таки может. Иногда поломку можно исправить и своими силами, поэтому не нужно без нужды везти технику в сервисный центр.

С чего начать

Исправление неполадок электронных приборов вещь тонкая, а чтобы научиться это делать самостоятельно, нужны некоторые знания физики, минимум школьного курса.

Вы хотя бы должны иметь понятие о том, что такое:

  • сила тока;
  • сопротивление металлов;
  • индуктивность и т.д.

Также вам надо приобрести опыт паяния радиодеталей, и научится пользоваться электрическим тестером и мультиметром. Для ремонта вы должны будете приобрести все необходимое оборудование, а также в зависимости от вида ремонтируемой техники вы должны будете разбираться в электросхемах.

Множество людей думают, что починка ПК это дело мастерских. Но даже новички могут почить компьютер дома, не имея специальных навыков при наличии минимум оборудования. Самостоятельно, при наличии паяльника, вы можете заменить конденсаторы. Но в случае потребности замены микросхем, если вы не имеете опыта и оборудования, такую поломку не желательно чинить самому.

Если электроника не включается

При подсоединении к электрической сети прибор не работает, не срабатывают никакие светодиодные сигналы или не выдается звук, причина этому сгоревший блок питания. Попробуйте включить аппарат последовательно с мощной лампой накаливания, для предотвращения короткого замыкания. Когда блок питания работает, лампа не будет гореть, а в случае короткого замыкания на блоке лампа загорится.

Потом ищем неисправность в самом блоке питания. Это может быть простой обрыв кабеля или выгорание предохранителя. В случае успеха устраняем неполадку заменой новых деталей или пайкой отломанных.

Некорректная работа

Если ваша электроника работает с перебоями, периодически выдавая проблему, причин такой работы множество. Например, когда при нагрузках на компьютер он отключается, а по истечении некоторого времени снова работает, неисправность может крыться в перегреве или повреждении контактов.

В жизни каждого домашнего мастера, умеющего держать в руках паяльник и пользоваться мультиметром, наступает момент, когда поломалась какая-то сложная электронная техника и он стоит перед выбором: сдать на ремонт в сервис или попытаться отремонтировать самостоятельно. В этой статье мы разберем приемы, которые могут помочь ему в этом.

Итак, у вас сломалась какая-либо техника, например ЖК телевизор, с чего нужно начать ремонт? Все мастера знают, что начинать ремонт надо не с измерений, или даже сходу перепаивать ту деталь, которая вызвала подозрение в чем-либо, а с внешнего осмотра. В это входит не только осмотр внешнего вида плат телевизора, сняв его крышку, на предмет подгоревших радиодеталей, вслушивание с целью услышать высокочастотный писк либо щелканье.

Включаем в сеть прибор

Для начала нужно просто включить телевизор в сеть и посмотреть: как он себя ведет после включения, реагирует ли на кнопку включения, либо моргает светодиод индикации дежурного режима, или изображение появляется на несколько секунд и пропадает, либо изображение есть, а звук отсутствует, или же наоборот. По всем этим признакам, можно получить информацию, от которой можно будет оттолкнуться при дальнейшем ремонте. Например в мигании светодиода, с определённой периодичностью, можно установить код поломки, самотестирования телевизора.

Коды ошибок ТВ по миганию LED

После того, как признаки установлены, следует поискать принципиальную схему устройства, а лучше если выпущен Service manual на устройство, документацию со схемой и перечнем деталей, на специальных сайтах посвященных ремонту электроники. Также не лишним, будет в дальнейшем, вбить в поисковик полное название модели, с кратким описанием поломки, передающим в нескольких словах, ее смысл.

Правда иногда лучше искать схему по шасси устройства, либо названию платы, например блока питания ТВ. Но как же быть, если схему все же найти не удалось, а вы не знакомы со схемотехникой данного устройства?

Блок схема ЖК ТВ

В таком случае, можно попробовать попросить помощи на специализированных , после проведения предварительной диагностики самостоятельно, с целью собрать информацию, от которой мастера, помогающие вам смогут оттолкнуться. Какие этапы включает в себя, эта предварительная диагностика? Для начала, вы должны убедиться в том, что питание поступает на плату, если устройство вообще не подает никаких признаков жизни. Может быть это покажется банальным, но не лишним будет прозвонить шнур питания на целостность, в режиме звуковой прозвонки. как пользоваться обычным мультиметром.

Тестер в режиме звуковой прозвонки

Затем в ход идет прозвонка предохранителя, в этом же режиме мультиметра. Если у нас здесь все нормально, следует померять напряжения на разъемах питания, идущих на плату управления ТВ. Обычно напряжения питания, присутствующие на контактах разъема, бывают подписаны рядом с разъемом на плате.

Разъем питания платы управления ТВ

Итак, мы замеряли и напряжение какое-либо у нас отсутствует на разъеме — это говорит о том, что схема функционирует не правильно, и нужно искать причину этого. Наиболее частой причиной поломок встречающейся в ЖК ТВ, являются банальные электролитические конденсаторы, с завышенным ESR, эквивалентным последовательным сопротивлением. Про ESR .

Таблица ESR конденсаторов

В начале статьи я писал про писк, который вы возможно услышите, так вот, его проявление, в частности и есть следствие завышенного ESR конденсаторов небольшого номинала, стоящих в цепях дежурного напряжения. Чтобы выявить такие конденсаторы требуется специальный прибор, ESR (ЭПС) метр, либо , правда в последнем случае, конденсаторы придется выпаивать для измерения. Фото своего ESR метра позволяющего измерять данный параметр без выпаивания выложил ниже.

Мой прибор ESR метр

Как быть если таких приборов нет в наличии, а подозрение пало на эти конденсаторы? Тогда нужно будет проконсультироваться на форумах по ремонту, и уточнить, в каком узле, какой части платы, следует заменить конденсаторы, на заведомо рабочие, а таковыми могут считаться только новые (!) конденсаторы из радиомагазина, потому что у бывших в употреблении этот параметр, ESR, может также зашкаливать или уже быть на грани.

Фото — вздувшийся конденсатор

То что вы могли выпаять их из устройства, которое ранее работало, в данном случае значения не имеет, так как этот параметр важен только для работы в высокочастотных цепях, соответственно ранее, в низкочастотных цепях, в другом устройстве, этот конденсатор мог прекрасно функционировать, но иметь параметр ESR сильно зашкаливающий. Сильно облегчает работу то, что конденсаторы большого номинала имеют в своей верхней части насечку, по которой в случае прихода в негодность просто вскрываются, либо образовывается припухлость, характерный признак их непригодности для любого, даже начинающего мастера.

Мультиметр в режиме Омметра

Если вы видите почерневшие резисторы, их нужно будет прозвонить мультиметром в режиме омметра. Сначала следует выбрать режим 2 МОм, если на экране будут значения отличающиеся от единицы, или превышения предела измерения, нам следует соответственно уменьшить предел измерения на мультиметре, для установления его более точного значения. Если же на экране единица, то скорее всего такой резистор находится в обрыве, и его следует заменить.

Цветовая маркировка резисторов

Если есть возможность прочитать его номинал, по , нанесенными на его корпус, хорошо, в противном случае без схемы, не обойтись. Если схема есть в наличии, то нужно посмотреть его обозначение, и установить его номинал и мощность. Если резистор прецизионный, (точный) его номинал можно набрать, путем включения двух обычных резисторов последовательно, большего и меньшего номиналов, первым мы задаем номинал грубо, последним мы подгоняем точность, при этом их общее сопротивление сложится.

Транзисторы разные на фото

Транзисторы, диоды и микросхемы: у них не всегда можно определить неисправность по внешнему виду. Потребуется измерение мультиметром в режиме звуковой прозвонки. Если сопротивление какой либо из ножек, относительно какой то другой ножки, одного прибора, равно нулю, или близко к к этому, в диапазоне от нуля до 20-30 Ом, скорее всего, такая деталь подлежит замене. Если это биполярный транзистор, нужно вызвонить в соответствии с распиновкой, его p-n переходы.

Проверка транзистора мультиметром

Чаще всего такой проверки бывает достаточно, чтобы считать транзистор рабочим. Более качественный метод . У диодов мы также вызваниваем p-n переход, в прямом направлении, должны быть цифры порядка 500-700 при измерении, в обратном направлении единица. Исключение составляют диоды Шоттки, у них меньшее падение напряжения, и при прозвонке в прямом направлении на экране будут цифры в диапазоне 150-200, в обратном также единица. , полевые транзисторы, обычным мультиметром без выпаивания так не проверить, приходится часто считать их условно рабочими, если их выводы не звонятся между собой накоротко, или в низком сопротивлении.

Мосфет в SMD и обычном корпусе

При этом следует учитывать, что у мосфетов между Стоком и Истоком стоит встроенный диод, и при прозвонке будут показания 600-1600. Но здесь есть один нюанс: в случае, если например вы прозваниваете мосфеты на материнской плате и при первом прикосновении слышите звуковой сигнал, не спешите записывать мосфет в пробитый. В его цепях стоят электролитические конденсаторы фильтра, которые в момент начала заряда, как известно, на какое-то время ведут себя, как будто цепь замкнута накоротко.

Мосфеты на материнской плате ПК

Что и показывает наш мультиметр, в режиме звуковой прозвонки, писком, первые 2-3 секунды, а затем на экране побегут увеличивающиеся цифры, и установится единица, по мере заряда конденсаторов. Кстати по этой же причине, с целью сберечь диоды диодного мостика, в импульсных блоках питания ставят термистор, ограничивающий токи заряда электролитических конденсаторов, в момент включения, через диодный мост.

Диодные сборки на схеме

Многих знакомых начинающих ремонтников, обращающихся за удаленной консультацией в Вконтакте , шокирует — им говоришь прозвони диод, они прозваниют и сразу-же говорят: он пробитый. Тут стандартно всегда начинается объяснение, что нужно либо приподнять, выпаять одну ножку диода, и повторить измерение, либо проанализировать схему и плату, на наличие параллельно подключенных деталей, в низком сопротивлении. Таковыми часто бывают вторичные обмотки импульсного трансформатора, которые как раз и подключаются параллельно выводам диодной сборки, или иначе говоря сдвоенного диода.

Параллельное и последовательное соединение резисторов

Здесь лучше всего один раз запомнить, правило подобных соединений:

  1. При последовательном соединении двух и более деталей, их общее сопротивление будет больше большего каждой, по отдельности.
  2. А при параллельном соединении, сопротивление будет меньше меньшего каждой детали. Соответственно наша обмотка трансформатора, имеющая сопротивление в лучшем случае 20-30 Ом, шунтируя, имитирует для нас “пробитую” диодную сборку.

Конечно все нюансы ремонтов, к сожалению, в одной статье раскрыть не реально. Для предварительной диагностики большинства поломок, как выяснилось, бывает достаточно обычного мультиметра, применяемого в режимах вольтметра, омметра, и звуковой прозвонки. Часто при наличии опыта, в случае простой поломки, и последующей замены деталей, на этом ремонт бывает закончен, даже без наличия схемы, проведенный так зазываемым “методом научного тыка”. Что конечно не совсем правильно, но как показывает практика, работает, и, к счастью, совсем не так как изображено на картинке выше). Всем удачных ремонтов, специально для сайта Радиосхемы — AKV.

Обсудить статью ДИАГНОСТИКА И РЕМОНТ ЭЛЕКТРОНИКИ БЕЗ СХЕМ

Поиск неисправностей в электронных схемах. Методы поиска неисправностей в электрических схемах электрооборудования кранов

Мы часто слышим выражение «поиск и устранение неисправностей» среди специалистов по радиоэлектронике. Но что это означает? Иногда процедура поиска и устранения неисправностей неверно истолковывается просто как ремонт отказавшего устройства. Однако ремонт — это лишь один из этапов гораздо более сложного процесса. Специалист, занятый поиском и устранением неисправностей, кроме всего прочего, должен уметь оценивать качество функционирования радиоэлектронной аппаратуры путем сопоставления своих теоретических знаний с реальным поведением устройства. Такая оценка должна проводиться до и после ремонта по причинам, которые станут очевидными при прочтении настоящей главы.
Понятие логического или систематического подхода к задаче поиска и устранения неисправностей является важнейшим среди знаний в области радиоэлектроники, которыми должен обладать радиолюбитель. Немало времени было потеряно на поиск неисправностей наугад. Процедура поиска неисправностей, приведенная в этой главе, разработана с целью вооружить радиолюбителя удобной и надежной методикой эффективной диагностики радиоэлектронных устройств. Если хорошо усвоить содержание и значение рассматриваемых ниже этапов процедуры поиска неисправностей, то можно научиться находить неисправности в любой радиоэлектронной аппаратуре независимо от ее уровня сложности и назначения.

Логический подход

Прежде чем перейти к подробному рассмотрению главного предмета обсуждения — поиска и устранения неисправностей, необходимо определить ту основу, которая составляет суть эффективных методов анализа неисправностей. Такой основой, весьма часто упускаемой на практике из виду, является логический подход. В соответствии с принятой в настоящее время терминологией понятие «логика» определяется следующим образом: система или принципы рассуждений, применимые к любым областям знаний или исследований. Рассматривая это определение применительно к нашему предмету обсуждения, следует выделить «принципы рассуждения». В более широком смысле принципы и правила рассуждений и есть логика.
Уровень сложности большинства современных электронных систем таков, что лица, ответственные за поддержание их в исправном состоянии, должны пройти специальную подготовку. Эти специалисты отнюдь не являются выдающимися знатоками принципов работы и методов технического обслуживания подобных устройств. В чем же тогда заключается секрет их способностей? Просто все дело в том, что их научили логически мыслить.
Изучив основы схемотехники простейших радиоэлектронных устройств, вы сможете более успешно представлять себе, как путем их объединения можно создавать системы, предназначенные для решения конкретных задач. Вооружившись полученными знаниями и логическим подходом к поиску и устранению неисправностей, можно выполнить мысленное функциональное разбиение любой радиоэлектронной (и не только радиоэлектронной) аппаратуры, а затем методично и профессионально ее испытать. Такая процедура сэкономит много ценных человеко-часов, теряемых при бессистемном поиске неисправностей.

Шесть этапов процедуры поиска и устранения неисправностей

Системный подход к поиску и устранению неисправностей в радиоэлектронной аппаратуре позволит существенно сократить время простоя аппаратуры и стоимость ремонта по сравнению с бессистемными методами технического обслуживания и ремонта. Другим не менее важным достоинством такого подхода является возможность постоянного поддержания радиоэлектронной аппаратуры в работоспособном состоянии, при котором ее рабочие характеристики соответствуют паспортным данным.

Этап 1. Выявление признаков неисправности

Первый этап предлагаемого логического подхода к анализу неисправностей заключается в выявлении признаков неисправности. Прежде чем принять решение о необходимости ремонта устройства, следует проверить, как оно функционирует — правильно или неправильно. Все радиоэлектронные устройства предназначены для выполнения одной или нескольких конкретных задач в соответствии с предъявляемыми к ним требованиями. Для этого необходимо, чтобы они постоянно функционировали определенным образом. Если отсутствуют признаки, по которым можно судить о том, что устройство работает неверно, то и поддерживать такое устройство в работоспособном состоянии невозможно. По этой причине выявление признаков неисправности составляет содержание первого этапа процедуры поиска и устранения неисправностей.
Признак неисправности — это некоторый симптом, или указатель, свидетельствующий о нарушении нормального функционирования радиоэлектронного устройства. Задача выявления признака заключается в распознавании этого симптома при его появлении. Если у вас жар или болит голова, то вы знаете, что с вашим организмом происходит что-то неладное. Когда из двигателя автомобиля слышен громкий стук, то это свидетельствует о неисправности какой-то его детали. Аналогичным образом, искажения звука являются признаком неисправности в генераторе или его вспомогательных схемах.
Нормальное и ненормальное функционирование. Поскольку признак неисправности — свидетельство того, что в работе устройства произошли нежелательные изменения, необходимо иметь некоторые показатели его нормального функционирования, служащие в качестве эталона. Сравнивая показатели текущего и нормального функционирования, можно обнаружить признак неисправности и принять решение о том, что он собой представляет.
Нормальная температура человеческого тела равна 36,6 °С. Повышение или понижение температуры относительно этого значения свидетельствует о ненормальном состоянии организма, т.е. служит признаком его «неисправности». Если температура тела равна 39 °С, то, сравнив ее с нормальным значением, можно сказать, что признак «неисправности» организма — это повышение температуры на 2,4 °С. В данном случае этот признак точно определен.
Нормальное телевизионное изображение должно быть четким и контрастным по всей поверхности экрана. Оно должно быть симметрично относительно краев экрана по вертикали и по горизонтали. Если изображение вдруг начинает «бежать» по вертикали, то это признак неисправности, поскольку такое функционирование телевизора не соответствует его нормальной работе.
При нормальном звучании радиоприемника из него слышна вполне разборчивая речь диктора. Если же голос диктора звучит так, как будто он говорит со дна бочки, то слушатель знает, что такое искажение звука есть признак неисправности.
Оценка функционирования. При штатном функционировании большинство радиоэлектронных устройств вырабатывают информацию, которую оператор может слышать или видеть. Таким образом, с помощью органов слуха, а иногда и зрения можно выявить признаки нормальной или ненормальной работы устройства. Отображение информации может быть единственным назначением устройства, или же это его вспомогательная функция, необходимая для оценки его функционирования.
Электрический сигнал, представляемый в виде звуковых колебаний, регистрируется громкоговорителем или наушниками. Визуальное отображение результатов обеспечивается выводом информации на экран электроннолучевой трубки или на измерительный прибор. Кроме того, для визуальной индикации работы устройства можно применить светоизлучающие диоды.
Отказ устройства. Отказ радиоэлектронного устройства — это простейший вид признака неисправности. Отказ устройства означает, что либо все устройство, либо его часть не работает и, следовательно, не подает признаков «жизни». Отсутствие звука у звукового генератора указывает на его полный или частичный отказ. Аналогичным образом, отсутствие развертки или изображения на экране телевизора при правильном положении всех органов управления свидетельствует о его отказе.
Ухудшение функционирования. Возможна ситуация, когда звуковая и визуальная информация присутствуют, а устройство тем не менее работает ненормально. Когда устройство функционирует, но вырабатываемая им информация не соответствует техническим требованиям на устройство, говорят, что имеет место ухудшение функционирования. Подобный недостаток следует устранить так же быстро, как и полный отказ устройства. Степень ухудшения функционирования может быть самой различной — от почти нормальной его работы до почти полного отказа.
Если вы больны, но продолжаете ходить на работу, то весьма вероятно, что ваша работоспособность на время болезни ухудшится. Конечно, вы по-прежнему будете выполнять свою работу, но уже не так хорошо, как всегда.
Знание устройства. Чтобы решить, функционирует ли радиоэлектронное устройство и насколько правильно, необходимо иметь полное представление о его нормальных рабочих характеристиках. Следует помнить, что любая радиоэлектронная схема независимо от ее уровня сложности строится из ряда более простых электронных схем. Они объединяются таким образом, чтобы обеспечить решение поставленной задачи. Следовательно, знание основ схемотехники позволит проанализировать работу любого электронного устройства.
Для получения информации, необходимой для оценки функционирования устройства, обычно используются звуковые или визуальные средства. Однако до тех пор пока эта информация не будет осмыслена с помощью знаний о работе устройства, наличие таких средств не имеет никакого смысла. Именно на
эти знания следует опираться при распознавании признаков неисправности, иначе будет потеряно много времени на всякие ненужные действия и попытки найти неисправность.

Этап 2. Углубленный анализ признака неисправности

На втором этапе более или менее явный признак следует подвергнуть более детальному анализу. Большинство радиоэлектронных устройств или систем имеют органы управления, дополнительные индикаторные приборы помимо основного или другие встроенные средства оценки функционирования аппаратуры. Как вы помните, подобные встроенные компоненты есть и в схемах, рассмотренных в предыдущей главе. Мы часто представляем себе эти средства как некие отдельные устройства, подключаемые к схеме, но не как части этой схемы. Однако это далеко не так. Все рассмотренные в предыдущей главе схемы имеют органы управления, хотя это может быть обычный выключатель питания. Другими органами управления могут быть кнопочные переключатели, переменные резисторы и т.д. Индикаторные приборы являются неотъемлемой частью каждой схемы. Сюда относятся громкоговорители, светоизлучающие диоды и т.д. Необходимо проанализировать, какие органы управления и индикаторные приборы влияют на наблюдаемый признак неисправности или могут дать дополнительную информацию, которая поможет точнее определить этот признак.
Например, если устройство должно работать в разных режимах при не нажатом и нажатом кнопочном переключателе, то может оказаться, что причина неисправности всплывет, если нажать на переключатель. Предположим, что речь идет о генераторе, на выходе которого в нормальном режиме работы отсутствует ожидаемый сигнал. В этом случае вы ничего не теряете, нажав на переключатель. Если сигнала по-прежнему нет, то следует продолжить поиск. Напротив, если при нажатом переключателе сигнал появляется, то можно предполагать, что по крайней мере в этом положении переключателя устройство функционирует, и дальнейший поиск следует сосредоточить на тех частях схемы, которые могут влиять на ее работу при не нажатом переключателе. Здесь имеется в виду не выключатель питания, а переключатель напряжения или частоты.
Неразумно хватать контрольно-измерительную аппаратуру и бросаться очертя голову на поиск неисправности, имея в своем распоряжении лишь скудную начальную информацию о признаке неисправности. Если не проанализировать сначала признак неисправности, то можно легко и быстро сбиться с пути. В результате будет потеряно много Бремени, впустую израсходована электроэнергия, не исключено также, что при этом устройство может совсем выйти из строя. Этот этап описываемого систематического подхода можно назвать этапом сбора большего количества информации.
Углубленный анализ — это процесс более подробного описания признака неисправности. Тот факт, что на экране телевизора отсутствует изображение, не несет количества информации, достаточного, чтобы правильно определить причину неисправности. Данный признак может означать, что перегорела электроннолучевая трубка, возникли неполадки в части схемы, связанной с трубкой, вывернута ручка регулировки яркости или телевизор просто не включен. Сколько будет потеряно времени, если открыть телевизор и качать в нем копаться, хотя все, что требуется, это щелкнуть выключателем, поставить ручку яркости в нужное положение или просто вставить в розетку вилку сетевого шнура!
Аналогичным образом, такой признак неисправности звуковой схемы, как фон переменного тока, может потребовать поиска неисправности в нескольких направлениях, если отсутствует более подробное описание признака. Причиной фона могут быть плохая фильтрация в источнике питания, утечка, сетевая наводка или другие внутренние и (или) внешние повреждения.
Очевидно, основная причина того, что в качестве второго этапа рассматриваемого логического подхода выбран углубленный анализ признака неисправности, заключается в том, что многие схожие признаки неисправности могут быть вызваны многочисленными и разнообразными повреждениями схемы. Для успешного поиска неисправности необходимо принять правильное решение о том. какое повреждение (или повреждения) скорее всего вызывает наблюдаемый признак неисправности.
Использование органов управления. К органам управления относятся все выведенные на лицевую панель и соединенные с внутренними компонентами переключатели и переменные компоненты, которые можно регулировать, не открывая корпус устройства. Это те органы управления, с помощью которых подается питание на схему, настраиваются или регулируются ее рабочие характеристики или задается определенный режим работы.
По самой своей сути органы управления вносят некоторые изменения в режим функционирования устройства. Эти изменения косвенным образом оказывают влияние на токи или напряжения в различных цепях схемы вследствие изменений сопротивления, индуктивности и (или) емкости соответствующих компонентов. Органы отображения информации измерительные приборы и другие устройства индикации — позволяют визуально наблюдать изменения, происходящие в схеме при использовании органов управления.
Наряду с положительными эффектами манипулирование органами управления может вызвать и нежелательные явления в работе схемы. Манипулирование органами управления в неправильном порядке или превышение максимально допустимых напряжений и токов могут привести к повреждениям, проявившимся в виде первоначального признака неисправности. Если не принять соответствующих мер предосторожности при углубленном анализе признака неисправности, то неправильное использование органов управления устройством может нанести ему еще больший вред.
Каждый электронный компонент рассчитан на максимально допустимые ток и напряжение, которые нельзя превышать во избежание его сгорания или пробоя изоляции. Ни в коем случае нельзя устанавливать органы управления в такие положения, когда эти максимально допустимые значения превышаются.
Дальнейшее уточнение признака неисправности. На первом этапе рассматриваемой процедуры (выявление признака неисправности) требовалось знать принципы работы устройства, опираясь на которые, можно было бы убедиться в наличии признака неисправности. Эти знания необходимы и на остальных этапах логической процедуры поиска и устранения неисправностей. Знание принципов работы устройства и систематический подход к поиску и устранению неисправностей одинаково важны, знакомства лишь с одним из этих вопросов для работы явно недостаточно.
Задача более углубленного анализа признаков неисправности заключается в том, чтобы получить полное представление о них, а также определить, что они означают. Углубленный анализ необходим для более детального изучения решаемой проблемы.
Неправильная установка органов управления. При неправильной установке органов управления возникает кажущийся признак неисправности. Слово «кажущийся» употреблено здесь потому, что устройство может функционировать отлично, но из-за неправильной установки органов управления состояние средств отображения информации не будет соответствовать ожидаемому. Неправильная установка может быть следствием случайного перемещения органа управления, а также неаккуратной регулировки. Достаточно обнаружить неправильную установку органов управления, чтобы уяснить причину возникновения признака неисправности. На этом поиск неисправности можно закончить, если удалось убедиться, что неправильная установка была ее единственной причиной.
Усугубление признака неисправности. Если все органы управления установлены в правильное положение, а признак неисправности тем не менее остается, то вполне вероятно, что источником этого признака является орган управления. Однако в этом случае причину неисправности следует искать в виде отказа компонента. Неисправный орган управления можно сразу же обнаружить, особенно если отказ механический. Для обнаружения «электронного» повреждения органа управления может понадобиться дополнительная информация, так как один и тот же признак неисправности может свидетельствовать и о других повреждениях электрического характера.
Следует ли считать потерянным время, затраченное на проверку органов управления, если все они установлены правильно? Конечно нет. Во-первых, на это уйдет всего несколько секунд или минут. Во-вторых, имеется весьма веская причина для проверки и манипулирования органами управления, даже если все они установлены правильно. Дело в том, что это поможет получить дополнительную информацию, которая позволит более детально определить признак неисправности и наметить дальнейшие действия по поиску неисправности.
Еще одним способом поиска повреждения является искусственное усугубление признака неисправности, если оно возможно. Анализируя происходящие при этом изменения, можно правильно оценить причину неисправности.
Регистрация информации. Процесс углубленного анализа признака неисправности нельзя считать завершенным до тех пор, пока не будут всесторонне оценены наблюдаемые его проявления. Это означает, что показания индикаторных приборов следует оценить во взаимосвязи друг с другом, а также с функционированием всего устройства. Простейший способ такой оценки заключается в регистрации получаемой информации.
Это позволит вам спокойно посидеть минутку и проанализировать информацию, прежде чем сделать вывод о местонахождении неисправности. Кроме того, в этом случае вы сможете проанализировать принципиальную схему и сравнить полученную информацию с подробным ее описанием, если это необходимо. Последнее особенно полезно для новичка, только начинающего изучать способы поиска и устранения неисправностей. И наконец, записывая все положения органов управления и соответствующие им показания измерительных и индикаторных приборов (если они имеются), можно быстро воспроизвести любую информацию и убедиться в ее правильности. Кроме того, с помощью этих записей в ходе проверки можно точно задавать желаемый режим работы схемы. Следовательно, регистрация информации позволит сэкономить время и накопить полезный опыт по поиску неисправностей.
Если регулировка органа управления не влияет на признак неисправности, то данный факт также следует отразить в своих записях. Впоследствии эта информация может оказаться такой же важной, как и сведения о влиянии органа управления на признак неисправности. Кому-нибудь эта процедура может показаться необязательной, однако она тоже вносит свой вклад в систематический метод анализа неисправностей. Это утверждение станет более очевидным, если глубже рассмотреть проверяемую схему.
Дополнительная информация о признаке неисправности, полученная путем манипулирования органами управления и измерительными приборами, поможет идентифицировать неисправную функцию на следующем этапе рассматриваемой процедуры. Кроме того, она даст возможность оценить местонахождение неисправности и позволит в конце концов локализовать неисправный компонент.
Если неисправность была найдена путем манипулирования органами управления, то задачу анализа неисправности следует считать выполненной. Опираясь на знания о работе схемы, надо выяснить, почему при манипулировании определенным органом управления явный признак неисправности исчезает. Это необходимо для того, чтобы убедиться в отсутствии других поврежденных компонентов, которые в дальнейшем могут вызвать появление аналогичной неисправности.
При манипулировании органами управления следует представлять, в какой части схемы находится данный орган управления. Необходимо регулировать лишь те из них, которые по смыслу оказывают влияние на обнаруженный признак неисправности. При манипулировании органами управления следует проявлять крайнюю осторожность, неверная их установка может вызвать дополнительные повреждения устройства. Этап 3. Составление перечня возможных неисправных функций
Результативность третьего этапа зависит от информации, собранной на двух предыдущих этапах.
Напомним, что этап I заключался в выявлении признака неисправности, т.е. в обнаружении того факта, что устройство функционирует неверно. На этапе 2 (углубленный анализ признака неисправности) с помощью органов управления и индикаторов устройства собирается как можно больше информации о характере его неисправности.

Этап 3 Составление перечня возможных неисправных функций

Предназначен для законченных устройств, содержащих несколько функциональных узлов. Предлагаемая методика позволяет путем логических умозаключений определить функциональный узел (или узлы), в котором, вероятно, содержится неисправность; для этого используется информация, полученная на этапах 1 и 2. Этот выбор осуществляется путем поиска ответа на вопрос: «Где может находиться неисправность, чтобы она могла быть источником собранной информации?»
Термин «функция» употребляется здесь для обозначения некоторой электронной операции, выполняемой определенной частью (или узлом) схемы. Часто термины «функция» (соответствующий структурному разбиению схемы) и «узел» (соответствующий физическому разбиению) являются синонимами. Функциональный узел может конструктивно совпадать с одним или несколькими физическими узлами устройства. Функциональный узел содержит все компоненты, необходимые для выполнения определенной функции. Ниже термины «функция», «узел» и «функциональный узел» используются как синонимы, хотя в некоторых устройствах одна или несколько схем, выполняющих определенную функцию, могут быть встроены в узел, выполняющий другую функцию.
У схемы нельзя спросить о ее «самочувствии», подобно тому как врач спрашивает у больного, что у него болит. Недуги схемы можно выявить, анализируя собранную информацию и используя знания о работе схемы.
Логика выбора. Для определения неисправного узла или функции требуются те же методы построения умозаключений, к которым прибегают врач, автомеханик или любой специалист по технической диагностике, когда они ищут причину болезни или неисправности. Предположим, что вас постоянно мучают головные боли и вы решили, наконец, обратиться к врачу. Если после обследования зрения, слуха и органов дыхания, измерения температуры и выслушивания сердца врач немедленно направит вас в операционную для ампутации ноги, то вы наверняка засомневаетесь в правильности его диагноза. Но вряд ли врач примет такое нелогичное решение на основании результатов своего обследования. Скорее он сделает предположение, что наиболее вероятными причинами заболевания являются плохое зрение, инфекция, занесенная в гайморову полость, или что-нибудь еще. Только приняв такое решение, врач пропишет лекарство.
Радиолюбителя, выполнившего первые два из шести этапов процедуры и решившего сразу после этого приступить к проверке или ремонту устройства с намерением устранить неисправность, хорошим специалистом по поиску и устранению неисправностей не назовешь. Сначала он должен подвергнуть анализу собранную информацию, а затем, исходя из своих знаний о принципах работы схемы, принять технически обоснованное решение о вероятной причине обнаруженных им признаков неисправностей.
Наличие миллионов клеток и множества органов в человеческом организме стало бы непреодолимым препятствием для врача, если бы при постановке диагноза ему пришлось исследовать отдельно каждый орган или клетку. Вместо этого он мысленно делит человеческий организм на функциональные узлы, каждый из которых включает взаимосвязанные органы. Затем он пытается сопоставить симптомы заболевания с нормальной работой разных функциональных узлов. Любой признак ненормальной работы дает ему ключ к пониманию причины болезни.
Признаки ненормальной работы устройства, обнаруженные на этапах 1 и 2, должны дать представление о возможном местонахождении неисправности. Сложное электронное оборудование может содержать, например, 10 тыс. схем или 70 тыс отдельных компонентов. Вероятность обнаружения дефектного компонента путем методичной проверки каждого из 70 тыс. чрезвычайно мала. Масштабы задачи можно уменьшить в семь раз, если проверять не каждую деталь, а лишь состояние выходов каждой схемы.
Однако проведение 10 тыс. проверок также является делом весьма трудоемким. Разбив 10 тыс. схем на электронные функциональные узлы (семь, десяток или два десятка), можно сократить число проверок до приемлемого уровня. Здравый смысл подсказывает, что задача отыскания неисправности может быть решена гораздо быстрее и точнее, если все схемы, входящие в устройство, разбить на меньшее число групп независимо от того, сколько на деле в устройстве схем — тысячи, сотни или единицы.

Этап 4. Локализация неисправной функции

Первые три этапа рассматриваемого систематического подхода к поиску и устранению неисправностей были связаны с изучением очевидных и не очень очевидных недостатков в работе схемы, а также с логическим выбором возможных неисправных функциональных узлов. До сих пор не требовалось никаких контрольно-измерительных приборов, кроме органов управления и устройств индикации, имеющихся в самой схеме. Для обеспечения доступа к компонентам и внутренним органам регулировки следует снять крышки с корпуса устройства. После оценки информации о признаках неисправности на основании логических умозаключений сделано предположение о наиболее вероятных местонахождениях неисправности.
Локализация неисправной функции означает выявление того функционального узла многоузлового устройства, в котором фактически содержится неисправность. Это осуществляется путем последовательной проверки каждого из потенциально неисправных функциональных узлов до обнаружения неисправного узла. Если ни в одном из попавших в список функциональных узлов неисправность не обнаружена, следует вернуться к этапу 3 и еще раз провести оценку информации о признаках неисправности, а также попытаться получить дополнительную информацию. В некоторых случаях может оказаться необходимым вернуться к этапу 2 и снова провести углубленный анализ признака неисправности. На этом этапе понадобятся знания о принципах работы схемы и опыт по поиску неисправностей. Здесь и на последующих этапах большое значение имеет использование стандартных контрольно-измерительных приборов и интерпретация полученной с их помощью информации.
Проверка предполагаемых неисправных функциональных узлов. Цель четвертого этапа — определение функционального узла радиоэлектронной схемы, содержащего выявленную неисправность. Выбор потенциально неисправного узла должен выполняться исходя из знаний о принципах работы схемы и основных понятий радиоэлектроники. В описании этапа 3 отмечалось, что для выбора потенциально неисправных функциональных узлов может существовать как одна, так и много возможностей. Число таких узлов полностью зависит от типа схемы и информации, собранной на этапах 1 и 2 процедуры поиска и устранения неисправностей.
Крайне важно при выборе первого потенциально неисправного функционального узла, подлежащего проверке, опираться на логический подход. О необходимости такого подхода уже говорилось выше. При изучении работы схемы или при отыскании неисправности следует постоянно помнить об этом подходе. Логический подход основывается на знании принципов работы схемы и понимании конкретной ситуации. Рассматриваемые факторы. Одновременное исключение нескольких функциональных узлов, как возможных источников признака неисправности будет играть важную роль при принятии решения о том, какой из потенциально неисправных функциональных узлов следует проверять первым. Для этого требуется проанализировать принципиальную схему и определить, позволят ли результаты проверки одного из потенциально неисправных узлов исключить из перечня остальные потенциально неисправимые функциональные узлы.
Другим важным фактором, влияющим на логику выбора потенциально неисправного функционального узла, подлежащего проверке первым, является доступность контрольных точек. Контрольной точкой называется специальное гнездо, расположенное в доступном месте аппаратуры, например на передней панели или шасси. Гнездо имеет электрическое соединение (непосредственно или через переключатель) с некоторой точкой схемы с важным напряжением или сигналом. Такой контрольной точкой может быть место соединения проводников или компонентов.
Факторы, которые следует принимать во внимание при выборе первой контрольной точки, перечислены ниже в порядке их значимости.
1. Функциональный узел, предоставляющий максимум информации для одновременного исключения из рассмотрения остальных потенциально неисправных узлов, перечень которых был составлен на основании информации, полученной на этапах 1-3 рассматриваемой процедуры, если, конечно, этот узел не является очевидным местом неисправности.
2. Не следует начинать проверку с тех контрольных точек, для доступа к которым придется разбирать проверяемую аппаратуру.
Результаты проверки и выводы. После того как вы научились выбирать первый подлежащий проверке потенциально неисправный узел, возникает вопрос: «Куда двигаться дальше?» Ответ на этот вопрос зависит, естественно, от результатов первого шага.
Здесь только два возможных результата — удовлетворительная или неудовлетворительная работа проверяемого узла. В последнем случае узел либо совсем не работает, либо работает с ухудшенными характеристиками. В любом случае полученный результат укажет следующую необходимую проверку.
Анализ результатов проверок. Что делать, если после проверки последнего из потенциально неисправных узлов неисправность так и не обнаружена? В этом случае либо была допущена ошибка при выполнении проверки, либо результаты проверки были неправильно истолкованы и в итоге поиск неисправности пошел по неверному пути. Вот для этого-то и важно записывать все полученные результаты. Тогда нетрудно вернуться назад и определить, где была допущена ошибка.
Дальнейшее исследование. Если проверка всех подозреваемых узлов показала, что они исправны, то следует еще раз провести оценку информации, полученной в ходе предыдущих проверок. Вопрос состоит в том, насколько далеко следует вернуться к началу данной процедуры.
Можно отбросить всю ранее собранную информацию и начать процедуру сначала, т.е. с этапа 1 (выявление признака неисправности). Однако этого делать не следует, поскольку факт наличия неисправности уже установлен. Возврат к этапу 2 (углубленный анализ системы) позволит еще раз проанализировать схему. Возврат к этапу 3 дает возможность просмотреть ранее составленный список потенциально неисправных функциональных узлов и убедиться, что ни один из таких узлов не был пропущен.
Обнаружение неисправности. Обнаружив неисправный функциональный узел, необходимо убедиться, что он действительно может быть источником выявленного признака неисправности и согласуется с информацией, полученной в процессе углубленного анализа этого признака. Для этого следует снова обратиться к принципиальной схеме.
Чтобы выявить неисправный функциональный узел, мы двигались от сбора информации о признаке неисправности к фактическому ее местонахождению. Чтобы подтвердить правильность определения неисправного функционального узла, следует пройти в обратном направлении. Здесь следует задать себе вопрос: «Какие признаки неисправности может создавать этот неисправный узел?» В этом случае знание принципов работы схемы крайне важно.

Этап 5. Локализация неисправности в схеме

На этапах 1 и 2 (выявление признака неисправности и углубленный анализ признака неисправности) всей шестиэтапной процедуры поиска неисправностей осуществляется сбор исходной диагностической информации. Эта информация, полученная с помощью органов управления исследуемого устройства, состоит из показаний контрольно-измерительных приборов или осциллограмм и может быть использована для более углубленного изучения неисправности. На этапе 3 (составление списка возможных неисправных функциональных узлов)1, исходя из собранной информации и принципов работы схемы, определяются потенциальные неисправные функциональные узлы. На этапе 4 (локализация неисправной функции) выполняются реальные проверки устройства с помощью контрольно-измерительных приборов, в результате которых определяется часть схемы, содержащая неисправность.
На этапе 5 выполняются всесторонние проверки, целью которых является локализация конкретной схемы, содержащей неисправность. Для этого сначала следует выделить внутри функционального узла группу схем, каждая из которых выполняет определенную электронную подфункцию. После локализации этой неисправной группы схем можно приступить к проверкам, которые помогут определить неисправную схему (или схемы).
Этап 5 базируется на общем для всей процедуры поиска неисправностей принципе построения умозаключений, заключающемся в непрерывном сужении области поиска местонахождения неисправности путем принятия логических решений и выполнения рациональных проверок. Такой подход сокращает количество выполняемых проверок, что не только экономит время, но сводит к минимуму вероятность ошибки.
Чтобы лучше понять метод последовательного функционального разбиения, следует обратиться к рис. 1. Первой здесь рассматривается сложная схема, предназначенная для выполнения общей функции устройства. С этим уровнем функциональной классификации связаны этапы 1 и 2 процедуры поиска неисправностей. Далее сложная схема разбивается на функциональные узлы, каждый из которых предназначен для выполнения укрупненной функции, необходимой для реализации общей функции устройства. С этим уровнем функционального разбиения связаны этапы 3 и 4. Если в схеме всего один функциональный узел, то этапы 3 и 4 можно опустить.
Следующий элемент функционального разбиения — группа схем — представляет собой удобную для анализа часть функционального узла. Схемы и каскады в группе схем выполняют подфункцию, принципиально необходимую для выполнения обшей задачи функционального узла. Основной целью этапам является определение групп схем, содержащих неисправность. После этого можно перейти на самый нижний уровень функционального разбиения аппаратуры и выделить отдельную неисправную схему.

Рис. 1. Функциональное разбиение электронной аппаратуры при поиске неисправности.

Правильный подход. Прежде чем продолжить процедуру поиска неисправности и перейти к этапу 5, необходимо остановиться и осмыслить всю полученную к этому моменту информацию, которая может помочь при выполнении следующего этапа. После завершения этапа 4 известно, что все входные воздействия на неисправный функциональный узел правильны, а один или несколько выходных сигналов неверны или вообще отсутствуют. Для получения информации, которая может указать возможные местонахождения неисправности в функциональном узле, следует проанализировать неверные выходные сигналы, обнаруженные на этапе 4. Важно помнить, что первоначальные признаки и предположения, сделанные на первых двух этапах, не следует сбрасывать со счетов только потому, что этапы 3 и 4 закончены. Эта информация будет полезна на протяжении всей процедуры поиска неисправностей и каждый раз должна анализироваться совместно с результатами очередного выполненного этапа, прежде чем перейти к следующему этапу.
На этапе 5 должно быть продолжено сужение области поиска неисправности. Каждый функциональный узел имеет свою отдельную функцию, в него могут входить две или более группы схем, каждая из которых выполняет свою подфункцию. Это означает, что входное воздействие каждой группы (подфункции) преобразуется и появляется на выходе в другом виде. Понимание преобразований, происходящих в функциональном узле, позволяет обоснованно выбрать потенциальное местонахождение неисправности в нем. Затем выполняется проверка с целью локализации неисправной группы схем. Аналогичным образом определяется местонахождение неисправной схемы в группе.
«Заключение в скобки». Важную помощь при поиске неисправности может оказать метод «заключения в скобки», позволяющий сузить область поиска неисправности до неисправной группы схем, а затем и до неисправной схемы.
После завершения проверок на этапе 4 (локализация неисправного функционального узла) и выделения неисправного узла следует прибегнуть к методу «заключения в скобки», для этого надо на принципиальной схеме поставить скобки (мысленно или с помощью карандаша) у входа (входов) с правильным сигналом и у выхода (выходов) с неверным сигналом неисправной функции. Ясно, что неисправность заключена где-то между этими скобками. Идея использования скобок состоит в следующем: после проверки части схемы, находящейся между скобками, выполняется их последовательное перемещение (на входе или на выходе), а затем осуществляется очередная проверка, чтобы определить, не находится ли неисправность в новой области, заключенной между скобками. Этот процесс продолжается до тех пор, пока между скобками не окажется неисправный компонент схемы.
Наиболее важным в этом методе является определение места в схеме, куда должны быть помещены скобки при сужении области поиска неисправности. Это решение зависит от результатов анализа схемы и предыдущих проверок, типа схемных цепей, по которым проходит сигнал, а также от доступности контрольных точек. Всякие перемещения скобок должны иметь своей целью решение задачи локализации неисправности при минимальном числе проверок.

Этап 6. Анализ отказов

Описательная и проверочная информация, полученная на этапах 1 и 2, позволила логично и обоснованно оценить вопрос выбора неисправного функционального узла. На этапе 4 выполнялись простые проверки входных и выходных сигналов. На этапе 5 проводилось более углубленное исследование схем, входящих в проверяемое устройство. Этот этап, потребовал большого объема проверок с привлечением метода заключения в скобки для конкретной схемы. Метод заключения в скобки позволяет обнаружить отказавшую схему или каскад в неисправном функциональном узле.
На последнем этапе шестиэтапной процедуры поиска неисправности — этапе анализа отказов — для выявления местонахождения неисправного компонента понадобится проверить определенные ветви неисправной схемы. Эти ветви представляют собой участки неисправной схемы, содержащие все элементы транзистора, интегральной схемы или другого активного прибора.
После выполнения этапа 6 будет получена вся необходимая информация для замены или ремонта неисправных компонентов, что позволит восстановить нормальное функционирование устройства. Этап 6 не завершается обнаружением неисправного компонента — важно выяснить и причину неисправности. Вполне возможно, что в устройстве остались другие нe выявленные неисправности и если их не устранить, оно снова выйдет из строя. Для успешного анализа отказов необходимо делать записи. Эти записи могут оказаться полезными впоследствии. Кроме того, благодаря им можно обнаружить наличие устойчиво повторяющихся неисправностей, которые могут быть вызваны ошибкой при проектировании. Лишь после успешного завершения этапа 6 можно перейти к ремонту устройства, если он необходим.
Локализация неисправных компонентов. Первый шаг при локализации неисправного компонента в схеме основывается на применении методов, использованных на предыдущих этапах. Для локализации неисправных компонентов или ветви схемы необходимо проанализировать выходной сигнал. Такие параметры выходного сигнала, как напряжение, длительность и (или) форма могут быть признаками обрывов или коротких замыканий в компонентах, а также выхода их номиналов за пределы допусков. На этом шаге решаются две задачи: сокращается до минимума количество необходимых проверок и выясняется, является ли неисправный компонент (в случае его обнаружения) единственной причиной неисправности устройства.
Второй шаг выявления неисправного компонента — это визуальный контроль компонентов и проводников в схеме. При этом часто обнаруживаются сгоревшие или поврежденные компоненты или дефектные соединения. Один из способов локализации неисправных компонентов — это сравнение напряжений на выводах интегральных схем или транзисторов с ожидаемыми значениями, полученными в результате анализа схемы. Такая проверка часто помогает локализовать неисправность вплоть до конкретной ветви схемы. С каждым выводом транзистора или ИС обычно связана отдельная ветвь схемы. Для локализации неисправности также могут оказаться полезными измерения сопротивления в тех же точках схемы. Сопротивление часто измеряется для проверки подозрительных компонентов.
Вместо подозрительного компонента следует установить годный компонент, Однако надо иметь в виду, что не выявленная неисправность в схеме может вывести из строя и этот новый компонент.
Методичные проверки. Сначала всегда следует проверять наиболее вероятные предположения. Затем, учитывая, что с точки зрения сохранности вольтметра в нем перед началом проверок устанавливается верхний предел измерений, следует сначала проверить точки схемы с максимальными уровнями напряжения. Затем надо проверить остальные элементы в порядке убывания напряжений на них.
При проверках напряжений самый главный вопрос заключается в следующем: «Насколько измеренное напряжение должно быть близко к своему номиналу?» При ответе на этот вопрос следует учитывать много факторов. Допуски на номиналы резисторов, сильно влияющие на напряжение в различных точках схемы, могут составлять 20, 10 или 5 %. В некоторых критичных схемах применяются прецизионные компоненты. Интегральные схемы имеют довольно большой разброс характеристик, и поэтому напряжения на их выводах могут также иметь разброс. Кроме того, необходимо принимать во внимание точность измерительных приборов. Большинство вольтметров обеспечивают точность измерений от 5 до 10 %, однако прецизионные вольтметры имеют большую точность.
Локализация неисправного компонента. С помощью описанных выше проверок напряжений и (или) сопротивлений определяется ветвь схемы, содержащая неисправность. Далее требуется отыскать в этой ветви неисправный компонент или компоненты.
Один из способов заключается в измерении с помощью щупа напряжения или сопротивления относительно земли в различных точках электрического соединения двух или более компонентов. В общем случае очень трудно или вообще невозможно определить на основании анализа принципиальной схемы правильные значения этих параметров (особенно напряжений). Поэтому данную процедуру следует применять только для измерения сопротивления с целью обнаружения коротких замыканий и обрывов в исследуемой ветви схемы. Если напряжения отличаются от номинальных, то следует методично проверить параметры каждого резистора, конденсатора и (или) индуктивности, входящих в эту ветвь.
Изучение собранной информации. Изучение всей собранной информации о признаке неисправности и проведенных проверках поможет отыскать остальные неисправные компоненты независимо от того, связаны ли отказы этих компонентов с выявленной ранее неисправностью или же они вызваны другими причинами (в случае нескольких неисправностей).
Чтобы определить, не содержится ли в устройстве несколько неисправностей, следует задать себе вопрос: «Какое влияние оказывает обнаруженный неисправный компонент на функционирование всей схемы?» Если выявленная неисправность может быть источником всех обнаруженных нормальных и ненормальных признаков, то логично предположить, что этот компонент является единственным неисправным компонентом в схеме. В противном случае следует мобилизовать все свои знания по электронике, а также знание конкретной схемы и определить, .какая еще неисправность (неисправности) может быть источником всех выявленных признаков.

Отыскание неисправностей в устройствах на ИС

Процедура поиска и устранения неисправностей была рассмотрена выше безотносительно к тому, на какой элементной базе реализована электронная схема. Для представленных в этой книге устройств на основе ИС поиск неисправностей будет нетрудным и не требующим много времени делом. ИС 555 содержит большое число самых различных элементов и, естественно, нет никакой необходимости проверить каждый из них (да это и невозможно). С помощью описанной выше процедуры поиска неисправностей можно быстро определить неисправную часть схемы. Если это дискретные компоненты, окружающие ИС, то надо их проверить. Если неисправна сама ИС, то ее следует заменить. Понятно, что при этом необходимо убедиться в отсутствии в схеме других неисправностей, способных вывести ИС из строя. В некоторых из предложенных в книге схем используется более одной ИС, а также дискретные транзисторы, диоды, резисторы, органы управления и индикаторы. Однако большая часть схемы все же содержится в ИС. Если рассматривать ИС как один компонент, а не как узел, содержащий много схем, то задача отыскания неисправностей в этих устройствах намного упрощается.

Р.Трейстер, «Радиолюбительские схемы на ИС типа 555»

Количество электронных приборов с каждым годом растет с небывалой скоростью.

Так, производство электроники в Санкт-петербурге может только радовать. Однако, как бы ни было высоко ее качество, сломаться она все-таки может. Иногда поломку можно исправить и своими силами, поэтому не нужно без нужды везти технику в сервисный центр.

С чего начать

Исправление неполадок электронных приборов вещь тонкая, а чтобы научиться это делать самостоятельно, нужны некоторые знания физики, минимум школьного курса.

Вы хотя бы должны иметь понятие о том, что такое:

  • сила тока;
  • сопротивление металлов;
  • индуктивность и т.д.

Также вам надо приобрести опыт паяния радиодеталей, и научится пользоваться электрическим тестером и мультиметром. Для ремонта вы должны будете приобрести все необходимое оборудование, а также в зависимости от вида ремонтируемой техники вы должны будете разбираться в электросхемах.

Множество людей думают, что починка ПК это дело мастерских. Но даже новички могут почить компьютер дома, не имея специальных навыков при наличии минимум оборудования. Самостоятельно, при наличии паяльника, вы можете заменить конденсаторы. Но в случае потребности замены микросхем, если вы не имеете опыта и оборудования, такую поломку не желательно чинить самому.

Если электроника не включается

При подсоединении к электрической сети прибор не работает, не срабатывают никакие светодиодные сигналы или не выдается звук, причина этому сгоревший блок питания. Попробуйте включить аппарат последовательно с мощной лампой накаливания, для предотвращения короткого замыкания. Когда блок питания работает, лампа не будет гореть, а в случае короткого замыкания на блоке лампа загорится.

Потом ищем неисправность в самом блоке питания. Это может быть простой обрыв кабеля или выгорание предохранителя. В случае успеха устраняем неполадку заменой новых деталей или пайкой отломанных.

Некорректная работа

Если ваша электроника работает с перебоями, периодически выдавая проблему, причин такой работы множество. Например, когда при нагрузках на компьютер он отключается, а по истечении некоторого времени снова работает, неисправность может крыться в перегреве или повреждении контактов.

В жизни каждого домашнего мастера, умеющего держать в руках паяльник и пользоваться мультиметром, наступает момент, когда поломалась какая-то сложная электронная техника и он стоит перед выбором: сдать на ремонт в сервис или попытаться отремонтировать самостоятельно. В этой статье мы разберем приемы, которые могут помочь ему в этом.

Итак, у вас сломалась какая-либо техника, например ЖК телевизор, с чего нужно начать ремонт? Все мастера знают, что начинать ремонт надо не с измерений, или даже сходу перепаивать ту деталь, которая вызвала подозрение в чем-либо, а с внешнего осмотра. В это входит не только осмотр внешнего вида плат телевизора, сняв его крышку, на предмет подгоревших радиодеталей, вслушивание с целью услышать высокочастотный писк либо щелканье.

Включаем в сеть прибор

Для начала нужно просто включить телевизор в сеть и посмотреть: как он себя ведет после включения, реагирует ли на кнопку включения, либо моргает светодиод индикации дежурного режима, или изображение появляется на несколько секунд и пропадает, либо изображение есть, а звук отсутствует, или же наоборот. По всем этим признакам, можно получить информацию, от которой можно будет оттолкнуться при дальнейшем ремонте. Например в мигании светодиода, с определённой периодичностью, можно установить код поломки, самотестирования телевизора.

Коды ошибок ТВ по миганию LED

После того, как признаки установлены, следует поискать принципиальную схему устройства, а лучше если выпущен Service manual на устройство, документацию со схемой и перечнем деталей, на специальных сайтах посвященных ремонту электроники. Также не лишним, будет в дальнейшем, вбить в поисковик полное название модели, с кратким описанием поломки, передающим в нескольких словах, ее смысл.

Правда иногда лучше искать схему по шасси устройства, либо названию платы, например блока питания ТВ. Но как же быть, если схему все же найти не удалось, а вы не знакомы со схемотехникой данного устройства?

Блок схема ЖК ТВ

В таком случае, можно попробовать попросить помощи на специализированных , после проведения предварительной диагностики самостоятельно, с целью собрать информацию, от которой мастера, помогающие вам смогут оттолкнуться. Какие этапы включает в себя, эта предварительная диагностика? Для начала, вы должны убедиться в том, что питание поступает на плату, если устройство вообще не подает никаких признаков жизни. Может быть это покажется банальным, но не лишним будет прозвонить шнур питания на целостность, в режиме звуковой прозвонки. как пользоваться обычным мультиметром.

Тестер в режиме звуковой прозвонки

Затем в ход идет прозвонка предохранителя, в этом же режиме мультиметра. Если у нас здесь все нормально, следует померять напряжения на разъемах питания, идущих на плату управления ТВ. Обычно напряжения питания, присутствующие на контактах разъема, бывают подписаны рядом с разъемом на плате.

Разъем питания платы управления ТВ

Итак, мы замеряли и напряжение какое-либо у нас отсутствует на разъеме — это говорит о том, что схема функционирует не правильно, и нужно искать причину этого. Наиболее частой причиной поломок встречающейся в ЖК ТВ, являются банальные электролитические конденсаторы, с завышенным ESR, эквивалентным последовательным сопротивлением. Про ESR .

Таблица ESR конденсаторов

В начале статьи я писал про писк, который вы возможно услышите, так вот, его проявление, в частности и есть следствие завышенного ESR конденсаторов небольшого номинала, стоящих в цепях дежурного напряжения. Чтобы выявить такие конденсаторы требуется специальный прибор, ESR (ЭПС) метр, либо , правда в последнем случае, конденсаторы придется выпаивать для измерения. Фото своего ESR метра позволяющего измерять данный параметр без выпаивания выложил ниже.

Мой прибор ESR метр

Как быть если таких приборов нет в наличии, а подозрение пало на эти конденсаторы? Тогда нужно будет проконсультироваться на форумах по ремонту, и уточнить, в каком узле, какой части платы, следует заменить конденсаторы, на заведомо рабочие, а таковыми могут считаться только новые (!) конденсаторы из радиомагазина, потому что у бывших в употреблении этот параметр, ESR, может также зашкаливать или уже быть на грани.

Фото — вздувшийся конденсатор

То что вы могли выпаять их из устройства, которое ранее работало, в данном случае значения не имеет, так как этот параметр важен только для работы в высокочастотных цепях, соответственно ранее, в низкочастотных цепях, в другом устройстве, этот конденсатор мог прекрасно функционировать, но иметь параметр ESR сильно зашкаливающий. Сильно облегчает работу то, что конденсаторы большого номинала имеют в своей верхней части насечку, по которой в случае прихода в негодность просто вскрываются, либо образовывается припухлость, характерный признак их непригодности для любого, даже начинающего мастера.

Мультиметр в режиме Омметра

Если вы видите почерневшие резисторы, их нужно будет прозвонить мультиметром в режиме омметра. Сначала следует выбрать режим 2 МОм, если на экране будут значения отличающиеся от единицы, или превышения предела измерения, нам следует соответственно уменьшить предел измерения на мультиметре, для установления его более точного значения. Если же на экране единица, то скорее всего такой резистор находится в обрыве, и его следует заменить.

Цветовая маркировка резисторов

Если есть возможность прочитать его номинал, по , нанесенными на его корпус, хорошо, в противном случае без схемы, не обойтись. Если схема есть в наличии, то нужно посмотреть его обозначение, и установить его номинал и мощность. Если резистор прецизионный, (точный) его номинал можно набрать, путем включения двух обычных резисторов последовательно, большего и меньшего номиналов, первым мы задаем номинал грубо, последним мы подгоняем точность, при этом их общее сопротивление сложится.

Транзисторы разные на фото

Транзисторы, диоды и микросхемы: у них не всегда можно определить неисправность по внешнему виду. Потребуется измерение мультиметром в режиме звуковой прозвонки. Если сопротивление какой либо из ножек, относительно какой то другой ножки, одного прибора, равно нулю, или близко к к этому, в диапазоне от нуля до 20-30 Ом, скорее всего, такая деталь подлежит замене. Если это биполярный транзистор, нужно вызвонить в соответствии с распиновкой, его p-n переходы.

Проверка транзистора мультиметром

Чаще всего такой проверки бывает достаточно, чтобы считать транзистор рабочим. Более качественный метод . У диодов мы также вызваниваем p-n переход, в прямом направлении, должны быть цифры порядка 500-700 при измерении, в обратном направлении единица. Исключение составляют диоды Шоттки, у них меньшее падение напряжения, и при прозвонке в прямом направлении на экране будут цифры в диапазоне 150-200, в обратном также единица. , полевые транзисторы, обычным мультиметром без выпаивания так не проверить, приходится часто считать их условно рабочими, если их выводы не звонятся между собой накоротко, или в низком сопротивлении.

Мосфет в SMD и обычном корпусе

При этом следует учитывать, что у мосфетов между Стоком и Истоком стоит встроенный диод, и при прозвонке будут показания 600-1600. Но здесь есть один нюанс: в случае, если например вы прозваниваете мосфеты на материнской плате и при первом прикосновении слышите звуковой сигнал, не спешите записывать мосфет в пробитый. В его цепях стоят электролитические конденсаторы фильтра, которые в момент начала заряда, как известно, на какое-то время ведут себя, как будто цепь замкнута накоротко.

Мосфеты на материнской плате ПК

Что и показывает наш мультиметр, в режиме звуковой прозвонки, писком, первые 2-3 секунды, а затем на экране побегут увеличивающиеся цифры, и установится единица, по мере заряда конденсаторов. Кстати по этой же причине, с целью сберечь диоды диодного мостика, в импульсных блоках питания ставят термистор, ограничивающий токи заряда электролитических конденсаторов, в момент включения, через диодный мост.

Диодные сборки на схеме

Многих знакомых начинающих ремонтников, обращающихся за удаленной консультацией в Вконтакте , шокирует — им говоришь прозвони диод, они прозваниют и сразу-же говорят: он пробитый. Тут стандартно всегда начинается объяснение, что нужно либо приподнять, выпаять одну ножку диода, и повторить измерение, либо проанализировать схему и плату, на наличие параллельно подключенных деталей, в низком сопротивлении. Таковыми часто бывают вторичные обмотки импульсного трансформатора, которые как раз и подключаются параллельно выводам диодной сборки, или иначе говоря сдвоенного диода.

Параллельное и последовательное соединение резисторов

Здесь лучше всего один раз запомнить, правило подобных соединений:

  1. При последовательном соединении двух и более деталей, их общее сопротивление будет больше большего каждой, по отдельности.
  2. А при параллельном соединении, сопротивление будет меньше меньшего каждой детали. Соответственно наша обмотка трансформатора, имеющая сопротивление в лучшем случае 20-30 Ом, шунтируя, имитирует для нас “пробитую” диодную сборку.

Конечно все нюансы ремонтов, к сожалению, в одной статье раскрыть не реально. Для предварительной диагностики большинства поломок, как выяснилось, бывает достаточно обычного мультиметра, применяемого в режимах вольтметра, омметра, и звуковой прозвонки. Часто при наличии опыта, в случае простой поломки, и последующей замены деталей, на этом ремонт бывает закончен, даже без наличия схемы, проведенный так зазываемым “методом научного тыка”. Что конечно не совсем правильно, но как показывает практика, работает, и, к счастью, совсем не так как изображено на картинке выше). Всем удачных ремонтов, специально для сайта Радиосхемы — AKV.

Обсудить статью ДИАГНОСТИКА И РЕМОНТ ЭЛЕКТРОНИКИ БЕЗ СХЕМ

После того как вы закончили собирать ваше устройство, запаяли последний элемент в плату, не торопитесь сразу же его включать. Приготовьте мультиметр, откройте принципиальную схему и описание схемы.

Сначала нужно проверить правильность монтажа, проверить на КЗ (короткое замыкание). Если вы считаете что все элементы запаяны верно, и КЗ после прозвонки вы не обнаружили, то можно очистить дорожки от остатков канифоли, и подавать питание, но сначала стоит проверить сопротивление цепи питания, если оно подозрительно большое, и если это не оговорено в собираемой вами схеме, то не торопитесь включать схему, перепроверьте еще раз. Правильно ли собрали диодный мост, соблюдена ли полярность при запаивании конденсаторов в цепи питания и т.д.. Если собираемое вами устройство потребляет большой ток, от 1 ампера и выше это говорит о КЗ или неправильно запаянных элементах, бывают и исключения, например преобразователи напряжения кушают 2-3 ампера на холостом ходу. Можно последовательно цепи питания включить маломощный постоянный резистор на несколько ОМ, это может спасти устройство от выхода из строя. Если в схеме стоят мощные транзисторы или микросхемы, которые крепятся на радиатор, не забудьте их изолировать друг от друга. При первоначальном включении устройств соблюдайте осторожность, так как диоды и электролитические конденсаторы при неправильном включении или превышении напряжения могут взорваться. Причем конденсаторы обычно взрываются не сразу, а сначала некоторое время греются. Не оставляйте без присмотра включенные и еще не настроенные устройства.

Прежде чем приступить к поиску неисправностей, если прибор который ремонтируете вам не знаком, нужно в первую очередь получить как можно больше информации об этом устройстве, что за устройство, или что за узел (БП, усилитель, или иное устройство), и нужно достать описание и схему этого устройства. Прежде чем доставать и начинать откручивать плату, приглядитесь, нету ли ничего лишнего внутри корпуса, оторвавшегося куска, осколка и пр. Не забывайте проверять даже такие элементы схемы как выключатель или разъем питания.

Прежде чем начать ковырять плату, разрядите все конденсаторы в том числе и высоковольтные керамические, разряжать нужно резистором примерно в 100 Ом. Если вы забудете это сделать, то при случайном КЗ, или даже во время прозвонки, отпаивания радиодеталей, последствия могут быть ужасными, могут полететь еще элементы, да и сами можете пострадать. Это очень важно!

Проверку всегда начинают с питания и проверки напряжений, проверьте напряжение в сети, предохранитель, далее блок питания. Проверьте напряжения на выходе блока питания и по возможности ток на выходе. Бывает что напряжение в норме, а если подключить лампочку или резистор, напряжение резко проседает или вовсе, БП уходит в защиту. Если окажется что напряжение ниже чем нужно или его нет вовсе, то проверяем диодные мосты, далее стабилизатор напряжения – если такой стоит, транзисторы, если они в схеме имеются. Иногда даже самым простым мультиметром удается найти неисправность в схеме. Проверку и поиск неисправностей нужно всегда проводить с отключенным от устройства питанием! Обратите внимание на провода, не оторваны, не оголены ли они. Если платы между собой соединяются разъёмами или проводами, которые закрепляются в винтовых зажимах, попробуйте переподключить их. Винтовые зажимы не надежны, со временем может пропадать контакт. Попробуйте снова включить плату, внимательно следите, пощупайте транзисторы, резисторы, на нагрев.

Итак, лежит перед нами голая плата с запаянными радиодеталями, берем лупу и начинаем внешний осмотр радиоэлементов, попутно можно даже принюхиваться, и это не шутка, сгоревший радиоэлемент можно вычислить сразу. Бывает что внешним осмотром такой элемент не обнаружить. При осмотре обратите внимание на потемнение резисторов и транзисторов, если заметили такой элемент то немедленно отпаиваем его с платы и прозваниваем, если даже элемент рабочий, лучше его заменить. Бывает что транзисторы даже после того как выйдут из строя прозваниваются тестером. Прозванивать резисторы и другие радиодетали нужно выпаивая с платы.

После осмотра радиодеталей переворачиваем плату, и начинаем осмотр со стороны дорожек, нет ли перегоревших или короткого замыкания (например если вывода радиоэлементов длинные, они могут замкнуть, так что при обратной сборке аппаратуры будьте аккуратнее). Потрогайте элементы, если чувствуете что резистор пошатывается на плате, вполне возможно что пропал электрический контакт, перепаяйте его. Если на плате имеются тонкие дорожки, их следует проверить на обрыв и микротрещины.

Если устройство собрано вами, то проверьте, все ли радиодетали запаяны правильно? У разных транзисторов разная цоколевка, у диодов обозначения тоже могут различаться. Откройте справочник к каждому запаянному элементу (если на память не помните цоколевки) и начинайте проверять. К сожалению, часто бывает так, что при выходе радиоэлемента из строя, сам элемент внешне может ничем не отличаться от исправного. Если вам так и не удалось найти неисправность схемы, придется отпаивать и прозванивать все транзисторы и элементы. Вообще говоря, можно проверять цепи и не отпаивая элементы, но нужен для этого как минимум осциллограф и хороший мультиметр. Углубляться в методику и технику работы с осциллографом в этой статье я не буду. Если схема простая, неисправные элементы как правило обнаруживаются очень быстро.

Микросхемы на неисправность проверяют обычно путем замены на другую, при сборке схем советую ставить специальные панельки под микросхемы, это очень удобно, в случае если вдруг понадобится снять ее. Но если микросхема стоит без панельки, и она запаяна в плату, то советую проверить напряжение на выводах питания микросхемы, прежде чем начинать отпаивать ее.

В схемах где применен микроконтроллер, если после включении схема не подает признаков жизни, а монтаж правильный и радиодетали запаяны правильно, в первую очередь нужно попробовать перепрошить его. Если при программировании вышла ошибка или залита «левая» прошивка, такой МК работать в схеме не будет.

Если вам не хочется выпаивать с платы к примеру резистор, диод, или конденсатор, (чтобы дорожки лишний раз не греть, иначе могут отвалиться) а вы грешите как раз на него, можно параллельно ему попробовать припаять аналогичный элемент. Так можно поступить с конденсаторами, резисторами, и диодами, только помните, что если вы запараллелите два резистора, у вас общее сопротивление уменьшится в два раза, так что один вывод резистора с платы все таки придется отпаять, а с конденсаторами наоборот, при параллеливании емкость увеличиться, например если в схеме стоит конденсатор на 220мкФ, припаяйте параллельно ему 100мкФ, от этого ничего не будет, если вы включите устройство на короткое время. Как правило конденсаторы с резисторами очень редко выходят из строя. Что касается транзисторов, их обязательно нужно выпаивать, параллельно условно неработающему транзистору ставить такой же ни в коем случае нельзя.

В схемах где используются катушки или миниатюрные трансформаторы с большим количеством выводов, пусть даже с отводом от середины, нужно соблюдать начало и конец витков, если после запуска такой схемы устройство не хочет работать, поменяйте местами вывода.

Если вы считаете что нашли причину, из-за которой ваше устройство не хотело работать, и заменили этот элемент на плате, перед подачей питания проверьте плату в местах пайки на предмет КЗ. Уберите в сторону все металлические предметы, отвертки, резисторы, куски проводов и т.п. не дай бог во время подачи питания и проверки устройства под плату закатится резистор, и коротнет.

Теперь предлагаю вам решить небольшую задачку, ниже дана схема достаточно простого блока питания, я специально в этой схеме допустил ошибки и некоторые элементы нарисовал неправильно, попробуйте найти все ошибки. Представьте, что это ваше устройство, которые вы сами собрали, но после включения оно не заработало, или некоторые элементы вышли из строя.

Будьте очень внимательны, ошибок здесь много, представьте, что это реальное устройство, если вы не найдете всех ошибок, при очередном включении прибора, что то может снова выйти из строя.

Электроника сопровождает современного человека повсеместно: на работе, дома, в автомобиле. Работая на производстве, и неважно, в какой конкретно сфере, часто приходится ремонтировать что-то электронное. Условимся это «что-то» называть «прибор». Это такой абстрактный собирательный образ. Сегодня поговорим о всевозможных премудростях ремонта, освоив которые, вы сможете починить практически любой электронный «прибор», вне зависимости от его конструкции, принципа работы и области применения.

Невелика премудрость перепаять детальку, а вот найти дефектный элемент и есть главная задача в ремонте. Начинать следует с определения типа неисправности, так как от этого зависит, с чего начинать ремонт.

Типов таких три:
1. прибор не работает вообще — не светятся индикаторы, ничто не движется, ничто не гудит, нет никаких откликов на управление;
2. не работает какая-либо часть прибора, то есть не выполняется часть его функций, но хотя проблески жизни в нём всё же видны;
3. прибор в основном работает исправно, но иногда делает так называемые сбои. Назвать такой прибор сломанным пока нельзя, но всё же что-то ему мешает работать нормально. Ремонт в этом случае как раз и заключается в поиске этой помехи. Считается, что это самый сложный ремонт.
Разберём примеры ремонта каждого из трёх типов неисправностей.

Ремонт первой категории
Начнём с самой простой — поломка первого типа, это когда прибор совсем мёртвый. Любой догадается, что начинать нужно с питания. Все приборы, живущие в своём мире машин, обязательно потребляют энергию в том или ином виде. И если прибор наш совсем не шевелится, то вероятность отсутствия этой самой энергии весьма высока. Небольшое отступление. При поиске неисправности в нашем приборе речь часто будет идти именно о «вероятности». Ремонт всегда начинается с процесса определения возможных точек влияния на неисправность прибора и оценки величины вероятности причастности каждой такой точки к данному конкретному дефекту, с последующим превращением этой вероятности в факт. При этом сделать правильную, то есть с самой высокой степенью вероятности оценку влияния какого-либо блока или узла на проблемы прибора поможет самое полное знание устройства прибора, алгоритма его работы, физических законов, на которых основана работа прибора, умение логически мыслить и, конечно же, его величество опыт. Одним из самых эффективных методов ведения ремонта является так называемый метод исключения. Из всего списка всех подозреваемых в причастности к дефекту прибора блоков и узлов, с той или иной степенью вероятности, необходимо последовательно исключать невиновных.

Начинать поиск надо соответственно с тех блоков, вероятность которых может быть виновниками этой неисправности самая высокая. Отсюда и выходит, что чем точнее определена эта самая степень вероятности, тем меньше времени будет затрачено на ремонт. В современных «приборах» внутренние узлы сильно интегрированы между собой, и связей очень много. Поэтому количество точек влияния зачастую бывает чрезвычайно велико. Но и ваш опыт растёт, и со временем вы будете выявлять «вредителя» максимум с двух-трёх попыток.

Например, есть предположение, что с высокой вероятностью виноват в болезни прибора блок «X». Тогда нужно провести ряд проверок, замеров, экспериментов, которые бы подтвердили либо опровергли это предположение. Если после таких экспериментов останутся хоть самые малые сомнения в непричастности блока к «преступному» влиянию на прибор, то исключать полностью этот блок из числа подозреваемых нельзя. Нужно искать такой способ проверки алиби подозреваемого, чтобы на все 100% быть уверенным в его невиновности. Это очень важно в методе исключения. А самый надёжный способ такой проверки подозреваемого — это замена блока на заведомо исправный.

Вернёмся всё же к нашему «больному», у которого мы предположили неисправность питания. С чего начать в этом случае? А как и во всех других случаях — с полного внешнего и внутреннего осмотра «больного». Никогда не пренебрегайте этой процедурой, даже когда уверены в том, что знаете точное местоположение поломки. Осматривайте прибор всегда полностью и очень внимательно, не торопясь. Нередко во время осмотра можно найти дефекты, не влияющие напрямую на искомую неисправность, но которые могут вызвать поломку в будущем. Ищите подгоревшие электроэлементы, вздувшиеся конденсаторы и прочие подозрительно выглядящие элементы.

Если внешний и внутренний осмотр не принёс никаких результатов, тогда берите в руки мультиметр и приступайте к работе. Надеюсь, про проверку наличия напряжения сети и про предохранители напоминать не надо. А вот о блоках питания немного поговорим. В первую очередь, проверяйте высокоэнергетические элементы блока питания (БП): выходные транзисторы, тиристоры, диоды, силовые микросхемы. Потом можно начать грешить на оставшиеся полупроводники, электролитические конденсаторы и, в последнюю очередь, на остальные пассивные электроэлементы. Вообще величина вероятности выхода из строя элемента зависит от его энергетической насыщенности. Чем большую энергию использует электроэлемент для своего функционирования, тем больше вероятность его поломки.

Если механические узлы изнашивает трение, то электрические — ток. Чем больше ток, тем больше нагрев элемента, а нагревание/остывание изнашивает любые материалы не хуже трения. Колебания температуры приводят к деформации материала электроэлементов на микроуровне из-за температурного расширения. Такие переменные температурные нагрузки и являются основной причиной так называемого эффекта усталости материала при эксплуатации электроэлементов. Это необходимо учитывать при определении очерёдности проверки элементов.

Каждый электрик должен знать:  Как определить конденсатор, если на нем нет маркировки

Не забывайте проверять БП па предмет пульсаций выходных напряжений, либо каких-то иных помех на шинах питания. Хоть и нечасто, но и такие дефекты бывают причиной неработоспособности прибора. Проверьте, доходит ли реально питание до всех потребителей. Может, из-за проблем в разъёме/кабеле/проводе эта «пища» не доходит до них? БП будет исправен, а энергии-то в блоках прибора всё одно нет.

Ещё бывает, что неисправность таится в самой нагрузке — короткое замыкание (КЗ) там штука нередкая. При этом в некоторых «экономных» БП нет защиты по току и, соответственно, нет такой индикации. Поэтому версию короткого замыкания в нагрузке тоже следует проверить.

Теперь поломка второго типа. Хотя здесь также всё следует начинать всё с того же внешне-внутреннего осмотра, тут таится гораздо большее разнообразие аспектов, па которые следует обратить внимание. — Самое главное — успеть запомнить (записать) всю картину состояния звуковой, световой, цифровой индикации прибора, кодов ошибок на мониторе, дисплее, положение аварийных сигнализаторов, флажков, блинкеров на момент аварии. Причём обязательно до того, как произойдёт её сброс, квитирование, отключение питания! Это очень важно! Упустить какую-нибудь важную информацию — значит непременно увеличить время, затраченное на ремонт. Осмотрите всю имеющуюся индикацию — и аварийную, и рабочую, и запомните все показания. Откройте шкафы управления и запомните (запишите) состояние внутренней индикации при её наличии. Пошатайте платы, установленные на материнке, в корпусе прибора шлейфы, блоки. Может, неисправность исчезнет. И обязательно прочистите радиаторы охлаждения.

Иногда имеет смысл проверить напряжение на каком-нибудь подозрительном индикаторе, особенно если им является лампа накаливания. Внимательно прочтите показания монитора (дисплея), при его наличии. Расшифруйте коды ошибок. Посмотрите таблицы входных и выходных сигналов на момент аварии, запишите их состояние. Если прибор обладает функцией записи происходящих с ним процессов, не забудьте прочесть и проанализировать такой журнал событий.

Не стесняйтесь — понюхайте прибор. Нет ли характерного запаха горелой изоляции? Особое внимание уделите изделиям из карболита и других реактивных пластмасс. Нечасто, но бывает, что их пробивает, и пробой этот порою очень плохо видно, особенно если изолятор чёрного цвета. Из-за своих реактивных свойств эти пластмассы не коробит при сильном нагреве, что также затрудняет обнаружение пробитой изоляции.

Посмотрите, нет ли потемневшей изоляции обмоток реле, пускателей, электродвигателей. Нет ли потемневших резисторов и изменивших нормальный цвет и форму других электрорадиоэлементов.

Нет ли вздувшихся или «стрельнувших» конденсаторов.

Проверьте, нет ли в приборе воды, грязи, посторонних предметов.

Посмотрите, нет ли перекоса разъёма, или блок/плата не до конца вставлены в своё место. Попробуйте вынуть и заново вставить их.

Возможно, какой-либо переключатель на приборе стоит в не соответствующем положении. Заела кнопка, либо подвижные контакты у переключателя стали в промежуточном, не зафиксированном положении. Возможно пропал контакт в каком-нибудь тумблере, переключателе, потенциометре. Потрогайте их все (при обесточенном приборе), пошевелите, повключайте. Лишним это не будет.

Проверьте на предмет заклинивания механические части исполнительных органов — проверните роторы электродвигателей, шаговых двигателей. Подвигайте по необходимости другие механизмы. Сравните прилагаемое при этом усилие с другими такими же рабочими устройствами, если конечно есть такая возможность.

Осмотрите внутренности прибора в работающем состоянии — возможно увидите сильное искрение в контактах реле, пускателей, переключателей, что будет свидетельствовать о чрезмерно высокой величине тока в этой цепи. А это уже хорошая зацепка для поиска неисправности. Часто виной такой поломки бывает дефект какого-либо датчика. Эти посредники между внешним миром и прибором, которому они служат, обычно вынесены далеко за порубежье самого корпуса прибора. И при этом работают они обычно в более агрессивной среде, чем внутренне части прибора, которые так или иначе, но защищены от внешнего воздействия. Поэтому все датчики требуют повышенного внимания к себе. Проверьте их работоспособность и не поленитесь почистить от загрязнения. Концевые выключатели, различные блокирующие контакты и прочие датчики с гальваническими контактами — являются подозреваемыми с высоким приоритетом. Да и вообще любой «сухой контакт» т.е. не пропаянный, должен стать элементом пристального внимания.

И ещё момент — если прибор прослужил уже немало времени, то следует обратить внимание на элементы, наиболее подверженные какому-либо износу или изменению своих параметров с течением времени. Например: механические узлы и детали; элементы, подвергающиеся во время работы повышенному нагреву или иному агрессивному воздействию; электролитические конденсаторы, некоторые виды которых склонны терять ёмкость со временем из-за высыхания электролита; все контактные соединения; органы управления прибором.

Практически все виды «сухих» контактов с течением времени теряют свою надёжность. Особое внимание следует уделить контактам с серебряным покрытием. Если прибор долгое время проработал без технического обслуживания, рекомендую перед тем, как приступать к углублённому поиску неисправности, сделать профилактику контактам — осветлить их обычным ластиком и протереть спиртом. Внимание! Никогда не пользуйся абразивными шкурками для чистки посеребрённых и позолоченных контактов. Это верная смерть разъёму. Покрытие серебром или золотом делается всегда очень тонким слоем, и стереть абразивом его до меди очень легко. Полезно провести процедуру самоочистки контактов розеточной части разъёма, на профессиональном сленге «мамы»: соедините-разъедините разъём несколько раз, от трения пружинящие контакты немного очищаются. Ещё советую, работая с любыми контактными соединениями, не трогать их руками — масляные пятна от пальцев негативно влияют на надёжность электрического контакта. Чистота залог надёжной работы контакта.

Первейшее дело — проверить срабатывание какой-либо блокировки, защиты в начале ремонта. (В любой нормальной технической документации на прибор есть глава с подробным описанием применяемых в нём блокировок.)

После осмотра и проверки питания прикиньте навскидку — что наиболее вероятно сломалось в приборе, и проверьте эти версии. Сразу в дебри прибора не стоит лезть. Сначала проверьте всю периферию, особенно исправность исполнительных органов — возможно сломался не сам прибор, а какой-либо механизм, управляемый им. Вообще рекомендуется изучить, пусть и не до тонкостей, весь производственный процесс, участником которого является подопечный прибор. Когда очевидные версии исчерпаны — вот тогда садитесь за свой рабочий стол, заваривайте чайку, раскладывайте схемы и прочую документацию на прибор и «рожайте» новые идеи. Думайте, что ещё могло вызвать эту болезнь прибора.

Через некоторое время у вас должно «родиться» определённое количество новых версий. Тут рекомендую не спешить бежать проверять их. Сядьте где-нибудь в спокойной обстановке и подумайте над этими версиями па предмет величины вероятности каждой из них. Тренируйте себя в деле оценки таких вероятностей, а когда накопится опыт в подобной селекции — станете делать ремонт гораздо быстрее.

Самый результативный и надёжный способ проверки подозреваемого блока, узла прибора на работоспособность, как уже говорилось, это замена его на заведомо исправный. Не забывайте при этом внимательно проверять блоки на предмет их полной идентичности. Если будете подключать тестируемый блок к работающему исправно прибору, то по возможности подстрахуйтесь — проверьте блок на предмет завышенных выходных напряжений, короткое замыкание по питанию и в силовой части, и прочие возможные неисправности, которые могут вывести из строя рабочий прибор. Бывает и обратное: подключаешь донорскую рабочую плату в сломанный прибор, проверяешь, что хотел, а когда её возвращаешь назад — она оказывается уже неработоспособной. Такое бывает нечасто, но всё же имейте в виду этот момент.

Если таким образом удалось найти неисправный блок, то дальше локализовать поиск неисправности до конкретного электроэлемента поможет так называемый «сигнатурный анализ». Так называют метод, при котором ремонтник проводит интеллектуальный анализ всех сигналов, коими «живёт» испытуемый узел. Подключите исследуемый блок, узел, плату к прибору с помощью специальных удлинителей-переходников (такие обычно поставляются в комплекте с прибором), чтобы был свободный доступ ко всем электроэлементам. Разложите рядом схему, измерительные приборы и включите питание. Теперь сверьте сигналы в контрольных точках на плате с напряжениями, осциллограммами на схеме (в документации). Если схема и документация не блещут такими подробностями, тут уж напрягайте мозги. Хорошие знания по схемотехнике здесь будут весьма кстати.

Если появились какие-то сомнения, то можно «повесить» на переходник исправную образцовую плату с рабочего прибора и сравнить сигналы. Сверьте со схемой (с документацией) все возможные сигналы, напряжения, осциллограммы. Если найдено отклонение какого-либо сигнала от нормы, не спешите делать вывод о неисправности именно этого электроэлемента. Он может быть не причиной, а всего лишь следствием другого нештатного сигнала, который вынудил этот элемент выдать ложный сигнал. Во время ремонта старайтесь сужать круг поиска, максимально локализовать неисправность. Работая с подозреваемым узлом/блоком, придумывайте такие испытания и измерения для него, которые бы исключили (или подтвердили) причастность этого узла/блока к данной неисправности наверняка! Семь раз подумайте, когда исключаете блок из числа неблагонадёжных. Все сомнения в этом деле должны быть развеяны явными уликами.

Эксперименты делайте всегда осмысленно, метод «научного тыка» не наш метод. Дескать, дай-ка я вот этот провод сюда ткну и посмотрю, что будет. Никогда не уподобляйтесь таким «ремонтёрам». Последствия всякого эксперимента обязательно должны быть продуманы и нести полезную информацию. Бессмысленные же эксперименты — пустая трата времени, и к тому же ещё поломать можно что- нибудь. Развивайте в себе способность логически мыслить, стремитесь видеть чёткие причинно-следственные связи в работе устройства. Даже в работе сломанного прибора есть своя логика, всему есть объяснение. Сможете понять и объяснить нестандартное поведение прибора — найдёте его дефект. В деле ремонта очень важно самым чётким образом представлять себе алгоритм работы прибора. Если у вас есть пробелы в этой области, читайте документацию, спрашивайте всех, кто хоть что-то знает об интересующем вопросе. И не бойтесь спрашивать, вопреки распространённому мнению, это не убавляет авторитет в глазах коллег, а наоборот, умные люди всегда это оценят положительно. Помнить наизусть схему прибора абсолютно ненужно, для этого бумагу придумали. А вот алгоритм его работы надо знать «назубок». И вот вы «трясёте» прибор уже который день. Изучили его так, что кажется дальше некуда. И уже неоднократно пытали все подозреваемые блоки/узлы. Испробованы даже казалось бы самые фантастические варианты, а неисправность так и не найдена. Вы уже начинаете понемногу нервничать, может даже паниковать. Поздравляю! Вы достигли апогея в данном ремонте. И тут поможет только… отдых! Вы просто устали, нужно отвлечься от работы. У вас, как говорят опытные люди, «глаз замылился». Так что бросайте работу и полностью отключите своё внимание от подопечного прибора. Можно заняться другой работой, или вовсе ничем не заниматься. Но о приборе нужно забыть. А вот когда отдохнёте, то сами почувствуете желание продолжить битву. И как часто бывает, после такого перерыва вы вдруг увидите такое простое решение проблемы, что удивитесь несказанно!

А вот с неисправностью третьего типа всё гораздо сложнее. Так как сбои в работе прибора носят обычно случайный характер, то для того чтобы поймать момент проявления сбоя, времени часто требуется очень много. Особенности внешнего осмотра в этом случае заключаются совмещении поиска возможной причины сбоя с проведением профилактических работ. Вот для ориентира перечень некоторых возможных причин появления сбоев.

Плохой контакт (в первую очередь!). Почистите разъёмы все сразу во всём приборе и внимательно осматривайте при этом контакты.

Перегрев (как и переохлаждение) всего прибора, вызванный повышенной (пониженной) температурой окружающей среды, либо вызванный длительной работой с высокой нагрузкой.

Пыль на платах, узлах, блоках.

Загрязнение радиаторов охлаждения. Перегрев полупроводниковых элементов, которые они охлаждают, тоже может быть причиной сбоев.

Помехи в сети питания. Если фильтр питания отсутствует или вышел из строя, либо его фильтрующих свойств недостаточно для данных условий эксплуатации прибора, то сбои в его работе будут нередкими гостями. Попробуйте связать сбои с включением какой-либо нагрузки в той же электросети, от которой питается прибор, и тем самым найти виновника помехи. Возможно именно в соседнем приборе неисправен сетевой фильтр, либо ещё какая другая неисправность в нём, а не в ремонтируемом приборе. По возможности запитайте прибор на некоторое время от бесперебойника с хорошим встроенным сетевым фильтром. Сбои пропадут — ищите проблему в сети.

И здесь, как и в предыдущем случае, самым эффективным способом ремонта является метод замены блоков на заведомо исправные. Меняя блоки и узлы между одинаковыми приборами, внимательно следите за их полной идентичностью. Обратите внимание на наличие персональных настроек в них — различные потенциометры, настроенные контуры индуктивности, переключатели, джемперы, перемычки, программные вставки, ПЗУ с различными версиями прошивок. Если они имеются, то решение о замене принимайте, обдумав все возможные проблемы, которые могут возникнуть в связи с опасностью нарушения работы блока/узла и прибора в целом, из-за разницы в таких настройках. Если всё же имеется острая необходимость в такой замене, то делайте перенастройку блоков с обязательной записью предыдущего состояния — пригодится при возврате.

Бывает так, что заменены все составляющие прибор платы, блоки, узлы, а дефект остался. Значит, логично предположить, что неисправность засела в оставшейся периферии в жгутах проводов, внутри какого-либо разъёма проводок оторвался, может быть дефект кросс-платы. Иногда виноват бывает замятый контакт разъёма, например в боксе для плат. При работе с микропроцессорными системами иногда помогает многократный прогон тестовых программ. Их можно закольцевать или настроить на большое количество циклов. Причём лучше, если они будут именно специализированные тестовые, а не рабочие. Эти программы умеют фиксировать сбой и всю сопутствующую ему информацию. Если умеете, сами напишите такую тестовую программу, с ориентацией на конкретный сбой.

Бывает, что периодичность проявления сбоя имеет некую закономерность. Если сбой можно связать по времени с исполнением какого-либо конкретного процесса в приборе, тогда вам повезло. Это очень хорошая зацепка для анализа. Поэтому всегда внимательно наблюдайте за сбоями прибора, замечайте все обстоятельства, при которых они проявляются, и старайтесь связать их с исполнением какой-либо функции прибора. Длительное наблюдение за сбоящим прибором в этом случае может дать ключ к разгадке тайны сбоя. Если найти зависимость появления сбоя от, например, перегрева, повышения/ понижения напряжения питания, от вибрационного воздействия, это даст некоторое представление о характере неисправности. А дальше — «ищущий да обрящет».

Способ контрольной замены почти всегда приносит положительные результаты. Но в найденном таким образом блоке может быть множество микросхем и других элементов. А значит, есть возможность восстановить работу блока заменой лишь одной, недорогой детальки. Как в этом случае локализовать поиск дальше? Тут тоже не всё потеряно, существуют несколько интересных приёмов. Сигнатурным анализом поймать сбой практически нереально. Поэтому попробуем использовать некоторые нестандартные методы. Нужно спровоцировать блок на сбой при определённом локальном воздействии на пего и при этом надо, чтобы момент проявления сбоя можно было привязать к конкретной детали блока. Вешайте блок на переходник/удлинитель и начинайте его мучить. Если подозреваете в плате микротрещину, можно попробовать закрепить плату на каком-нибудь жёстком основании и деформировать только малые части её площади (углы, края) и гнуть их в разных плоскостях. И наблюдайте при этом за работой прибора — ловите сбой. Можно попробовать постучать ручкой отвёртки по частям платы. Определились с участком платы — берите линзу и внимательно высматривайте трещинку. Нечасто, но иногда всё-таки удаётся обнаружить дефект, и, кстати, при этом далеко не всегда виновной оказывается микротрещина. Гораздо чаще находятся дефекты пайки. Поэтому рекомендуется не только гнуть саму плату, но и шевелить все её электроэлементы, внимательно наблюдая за их паяным соединением. Если подозрительных элементов немного, можно просто сразу все пропаять, чтобы в будущем больше не было проблем с этим блоком.

А вот если в причине сбоя подозревается какой-либо полупроводниковый элемент платы, найти его будет непросто. Но и тут тоже можно словчить, есть такой несколько радикальный способ спровоцировать сбой: в рабочем состоянии нагревайте паяльником по очереди каждый электроэлемент и следите за поведением прибора. К металлическим частям электроэлементов паяльник нужно прикладывать через тонкую пластинку слюды. Греть примерно градусов до 100-120, хотя иногда и больше требуется. При этом, конечно, есть определённая доля вероятности дополнительно испортить какой-ни- будь «невинный» элемент на плате, но стоит ли рисковать в этом случае, это уже решать вам. Можно попробовать наоборот, охлаждать льдинкой. Тоже не часто, но всё же можно и таким способом попробовать, как у нас говорят, — «выковырять клопа». Если уж сильно припекло, и при наличии возможности, конечно, то меняйте все подряд полупроводники на плате. Очерёдность замены — по нисходящей эиергоиасыщеипости. Меняйте блоками по нескольку штук, периодически проверяя работоспособность блока на отсутствие сбоев. Попробуйте хорошенько пропаять все подряд электроэлементы на плате, иногда только уже одна эта процедура возвращает прибор к здоровой жизни. Вообще с неисправностью такого типа никогда нельзя гарантировать полное выздоровление прибора. Часто бывает так, что вы во время поиска неисправности шевельнули случайно какой-то элемент, у которого был слабый контакт. При этом неисправность исчезла, но скорее всего этот контакт опять себя проявит со временем. Ремонт редко проявляющегося сбоя — занятие неблагодарное, времени и усилий требует много, а гарантии, что прибор будет обязательно отремонтирован, нет никакой. Поэтому многие мастера часто отказываются браться за ремонт таких капризных приборов, и, честно говоря, я их за это не виню.

Способы поиска неисправностей. Программа поиска неисправностей

Поиск неисправного элемента занимает треть времени ремонта. Поскольку количество элементов в объектах средств автоматизации велико, то прямой перебор элементов для оценки их состояния невозможен. При выполнении работ по поиску, устранению неисправностей необходимо придерживаться определенных правил. Технология поиска может быть разбита на основные операции, указанные на рисунке 3.1.

Рисунок 3.1 – Технология поиска отказов (неисправностей)

Процесс поиска неисправностей сводится к проведению различных проверок и принятию решения о дальнейшем развитии поиска на основе результатов проверки.

Процесс поиска неисправностей имеет две стадии: выбор последовательности проверки элементов; выбор способа проведения отдельных операций проверки.

Поиск может проводиться по заранее определенной последовательности проверок или ход каждой последующей проверки определяется результатом предыдущей. В зависимости от этого различают следующие методы проверок:

последовательных поэлементных;

— последовательных групповых;

Комбинационных.

Выбор последовательности проверок зависти от конструкции изделий, и может изменяться в процессе накопления информации по надежности и трудоемкости проверки элементов.

3.2.1 Метод последовательных поэлементных проверок заключается в том, что элементы изделий при поиске неисправности проверяются поодиночке в определенной, заранее установленной последовательности. Если очередной проверяемый элемент оказался исправным, то переходят к проверке следующего элемента. При обнаружении неисправного элемента поиск прекращается, и элемент заменяется (ремонтируется). Затем объект проверяется на работоспособность. Если при этом объект (система) не функционирует нормально, то приступают к дальнейшей проверке. Причем проверка начинается с той позиции, на которой был обнаружен неисправный элемент. При обнаружении второго неисправного элемента он также заменяется или ремонтируется (восстанавливается), и объект вновь проверяется на работоспособность. И так до тех пор, пока объект или система не будут функционировать нормально.

ПРИМЕР Простейшим примером использования такого метода может служить поиск неисправности в системе автоматического регулирования одного из параметров технологического процесса. Сначала проверяется регулирующий орган, затем исполнительный механизм, затем усилитель и т.д. Таким образом, устанавливается объект, неисправность которого послужила причиной нарушения нормального функционирования САР (рисунок 3.2).

Рисунок 3.2 – Структурная схема системы автоматического регулирования типа “Кристалл”

При обнаружении, например, неисправности в исполнительном механизме, рассматривается поэлементная структура этого устройства (рисунок 3.3).

Рисунок 3.3 – Структурная схема исполнительного механизма

Здесь можно установить следующую последовательность проверки элементов: 1-2-3-4-5-6-7-8. наиболее уязвимыми из них могут оказаться элементы 1,2,4,7 и 8. Поэтому при использовании поэлементного метода проверки возможны два способа очередности контроля элементов.

При поиске неисправности в устройстве, сначала устанавливается объект, неисправность которого послужила причиной нарушения нормального функционирования устройства. Затем рассматривается поэлементная структура неисправного объекта устройства.

При использовании поэлементного метода проверки возможны два способа очередности контроля элементов.

1) Если в изделии используются элементы, длительность проверки которых примерно одинакова, то проверку надо начинать с элементов, обладающих наименьшей надежностью.

2) Если надежность элементов данного изделия примерно одинакова, то целесообразно начинать проверку с элемента, для проверки которого требуется наименьшее время.

Для успешного использования этих правил необходимо знать не только функциональные и принципиальные схемы объектов и систем, но иметь четкое представление о надежности их элементов.

Недостаток метода – сравнительно большое количество проверок. Объясняется это тем, что в этом методе при поиске не используются функциональные связи элементов, хотя это делает метод универсальным, т.к. он не зависит от функциональной схемы системы.

3.2.2 Метод последовательных групповых проверок состоит в том, что все элементы объекта с учетом их функциональных связей разбиваются на отдельные группы и контролируется исправность каждой группы в целом. Последовательность проведения проверок определяется результатом предыдущей проверки. По мере проведения проверок численность подлежащих проверке элементов уменьшается. На последнем этапе контроля в группе должен быть один элемент.

ПРИМЕР проведения поиска неисправности по такому методу приведен в функциональной схеме системы на рисунке 3.4 одной из видов САУ.

Рисунок 3.4 – Пример структурной схемы САУ

Схема разбивается на группы I-VIII. Затем структура разбивается на две подгруппы и т.д. При этом последовательность проверок будет следующая:

а) Контролируется сигнал в точке 4. Если он нормальный, то переходят к точке 6, т.к. при этом предполагается, что неисправный элемент находится в группе V, VI, VII, VIII. Если сигнал в точке 4 не соответствует норме, то проверяется сигнал в точке 2, т.к. неисправен один из элементов I, II, III, IV. Если сигнал в точке 2 в норме, то элементы I, II исправны, и следует проверять точку 3. При этом выявляется, какой из элементов III или IV неисправен.

б) Если при контроле точек 4 и 6 сигнал соответствует требуемым параметрам, то контролируется точка 5, в результате чего определяется неисправный элемент V или VIII.

При таком методе поиска неисправностей необходимо знать параметры сигналов в контрольных точках.

Если в объекте (системе) будет несколько неисправностей, то схема поиска неисправностей не изменится. Двигаясь по одной из ветвей структуры, неизбежно приходят к одному из неисправных элементов. После устранения этой неисправности (восстановления элемента) проверяется работоспособность объекта. При наличии неисправности процесс поиска продолжается, что должно привести ко второму неисправному элементу и т.д.

Такой метод еще называется методом средней точки. Однако, в общем случае число, на которое разбивается структурная схема объекта (системы), может быть и не равна двум. Разбивать систему нужно, учитывая функциональные связи отдельных элементов и надежность их работы.

При групповом методе проверок различают проверки “с исключением” и “без исключения”.

Проверка “с исключением” состоит в том, что заключение о работоспособности одной из групп элементов делается на основании проверки других групп. Например, имеем три группы элементов. По результатам проверки установили исправность групп 1 и 2. Не делая проверок, заключаем, что неисправный элемент находится в 3-й группе.

При проверках “без исключения” контролируется работоспособность всех групп. На конечном этапе всегда проводится проверка “без исключения”, что устраняет возможность ошибки.

Достоинство последовательности проверок – значительное сокращение времени поиска неисправности.

Этот метод требует знания функциональных связей отдельных элементов и их надежности.

3.2.3Сущность комбинационного метода проверок заключается в одновременном измерении нескольких параметров. По результатам измерений всех параметров делается заключение о неисправном элементе.

Для удобства пользования таким методом составляют таблицы состояния контролируемых параметров. В качестве элементов в этом случае следует выбирать блок, узел, последовательную неразветвленную группу каскадов.

В первом вертикальном столбце таблицы указывают элементы структурной схемы, а в первой строке – их параметры. Таблицу заполняют по стрелкам в соответствии со следующими правилами.

Поочередно предполагается неисправность только в данном элементе. Данная неисправность приводит к выводу соответствующих параметров за пределы допусков. Против этих параметров в таблице ставится «0». Если же заданная неисправность не влияет на какой-то параметр, то против этого параметра ставится «1».

ПРИМЕР В структурной схеме (рисунок 3.5) измеряем параметры А, В, С, Д.

Полагаем, что элемент 1 неисправен. Тогда, очевидно, что все параметры А, В, С и Д выйдут за пределы допусков. Против этих параметров в таблице 3.2 ставится «0», т.е. первая строка таблицы будет состоять из одних нулей. Затем предполагаем, что неисправен элемент 2, при этом параметры А, В и С будут не соответствовать нормам, а параметр Д будет в норме. Во вторую строку следует записать «0001». Таким образом, перебирают все элементы и анализируют состояние параметров. Одинаковые строки (7 и 8 таблицы 3.2) говорят о не различении данной системой параметров неисправностей элементов 7 и 8. В этом случае элементы объединяются в один или вводят дополнительный параметр для их различения.

Рисунок 3.5 – К использованию комбинационного метода проверок.

Таблица 3.2 – График состояний

Элементы Параметры
А В С Д

Для обнаружения неисправного элемента с помощью такой таблицы, поступают следующим образом. Оператор записывает значения параметров в виде числа, состоящего из нулей и единиц, по указанному правилу. Для определения неисправного элемента сравнивают полученное число с числами в строках таблицы. С какой строкой таблицы совпадают результаты измерения параметров, тот элемент и неисправен. Если результат измерения параметров (числа) не совпадает ни с одной строкой таблицы, неисправны несколько элементов.

Достоинство этого метода – относительно малое время поиска неисправности, однако реализация его трудна.

3.2.4 Последовательность процесса поиска неисправностей носит название программы поиска. Определенная последовательность проверок, обеспечивающая минимальное значение математического ожидания времени проверок, просчитывается с помощью создания математической модели процесса поиска отказавшего элемента.

Объект, в котором появилась неисправность, состоит из n элементов. Отказы элементов независимы. При отказе любого из элементов отказывает объект. Для контроля исправности элемента имеется возможность подать на вход контрольный сигнал и проверить на выходе реакцию на этот сигнал. Известны интенсивности отказов элементов q и потребное время τ на проверку их исправности. Определяют последовательность проверок элементов, обеспечивающих наименьшее время поиска неисправности.

Оптимальная последовательность должна обладать следующим свойством

где τ – среднее время проверки исправного элемента;

q – условная вероятность отказа элемента.

Если время контроля исправности всех элементов равны, то оптимальная последовательность принимает вид

Т.е. контроль исправности элемента следует производить в порядке убывания условной вероятности отказов элементов.

Последовательность (3.2) можно записать в более удобном виде

Среднее время поиска неисправностей по программе вычисляют по формуле

где τИЗ.i – время, расходуемое на измерения при отказе i-го элемента.

где τR – время, расходуемое на измерения в точке R схемы;

ri – число измерений по программе для выявления отказа i-го элемента.

Порядок построения программ можно рассмотреть на примерах.

Пример 3.1

Рисунок 3.6 – Структурная схема изделия А.

Имеется схема, представленная на рисунке 3.6. Интенсивности отказов элементов: λ1=0,1 ч -1 ; λ2=0,2 ч -1 ; λ3=0,2 ч -1 ; λ4=0,5 ч -1 . Время измерения в точках схемы: τ1=5 мин.; τ2=8 мин.; τ3=12 мин.; τ4=18 мин. Требуется составить оптимальную схему программы поиска неисправности при условии, что один из элементов изделия А отказал.

Определяются условные вероятности отказов. Для метода последовательных поэлементных проверок условные вероятности отказов q по значению соответствуют λ. Тогда q1=0,1; q2=0,2; q3=0,2; q4=0,5. Определяют частные: τ1/q1=50; τ2/q2=40; τ3/q3=60; τ4/q4=36;

Согласно (3.1) первое измерение необходимо производить на выходе четвертого (IV) элемента. Если сигнал нужного вида на выходе элемента IV, то следует продолжать поиск и очередные измерения производить на выходе второго (II) элемента и т.д.

Для аналитического представления процесса поиска неисправности, как правило, применяют его графическое изображение в виде программы поиска неисправностей. Условное обозначение элемента производят в виде прямоугольника, а измерение в виде круга внутри с номерами элемента, за которым производится измерение. Тогда программа поиска неисправности будет представлена ветвящейся схемой, состоящей из кружков с двумя выходами, обозначающих результат измерения (есть нужный сигнал или нет – “да” или ”нет”) и оканчивающейся прямоугольниками, обозначающими неисправный элемент.

Программа поиска для примера 3.1 приведена на рисунке 3.7.

Рисунок 3.7 – Программа поиска неисправностей в изделии А

Среднее время поиска неисправностей по программе вычисляется по формуле (3.6). Тогда:

Пример 3.2.

Имеется схема, представленная на рисунке 3.8. Интенсивности отказов элементов: λ1=0,56*10 -4 ч -1 ; λ2=0,48*10 -4 ч -1 ; λ3=0,26*10 -4 ч -1 ; λ4=0,2*10 -4 ч -1 ; λ5=0,32*10 -4 ч -1 ; λ6=0,18*10 -4 ч -1 . Время измерения во всех точках одинаково и составляет 2 мин. Требуется составить оптимальную программу поиска неисправности при условии, что один из элементов отказал.

Рисунок 3.8 – Структурная схема изделия Б

Для сокращения времени поиска неисправности используется метод последовательной погрупповой проверки, т.е. измерение реакции на контрольный сигнал производится в точке схемы, которая делит предполагаемую неисправную схему по вероятности (интенсивности) пополам.

Отсюда условная вероятность отказов соответствует значению интенсивности с коэффициентом 0,5 (половинной величине).

Схема состоит из последовательно соединенных элементов. Можно использовать один контрольный сигнал, подаваемый на вход первого элемента. В этом случае первое измерение необходимо производить после второго элемента, ибо q1+;q2=0,52, ближе всего к делению схемы по вероятности пополам. Если нужного сигнала нет после второго элемента, то делается вывод о неисправности первого или второго элемента и измерение производится после первого элемента. Если после второго элемента есть нужный сигнал, то делается вывод о неисправности правой части схемы, которая по вероятности лучше всего делится пополам в точке измерения после четвертого элемента и т.д.

Программа поиска неисправности в этой схеме приведена на рисунке 3.9.

Рисунок 3.9 – Программа поиска неисправностей в изделии Б.

Среднее время поиска неисправности по программе:

3.2.5 При поиске неисправностей, кроме выбора метода и программы поиска неисправности объекта (системы), необходимо выбрать методику (способы) проверки исправности отдельных элементов. Наиболее распространенные способы проверок исправности элементов:

— контрольные переключения и регулировки;

— изоляция блока или каскада, узла;

Внешний осмотр обычно подразумевает использование зрения и слуха. Они позволяют контролировать состояние монтажа СА, кабелей, отдельных элементов, печатных плат и т.п., а также проверять работу ряда агрегатов, реже на слух.

Преимущество этого вида проверок в простоте.

Недостаток – возможности определения неисправного элемента ограничены. Неисправность может быть определена только при явно выраженных внешних признаках: изменение цвета элемента под воздействием температуры, искрения, появление дыма и запаха от горения изоляции проводов и т.д. Такие признаки возникают редко. Кроме того, на практике часто встречаются взаимозависимые отказы, поэтому даже если внешним осмотром обнаружен неисправный элемент, необходимо провести дополнительные проверки для выявления истинных причин отказа (например, при выходе из строя предохранителя, перегоревшую нить которого видно “на глаз”).

Способ контрольных переключений и регулировок требует оценки внешних признаков неисправностей путем анализа схем и использованием органов переключения, регулировок, текущего контроля (сигнальные лампочки, встроенные приборы, автоматы защиты и т.п.). При этом определяется неисправный узел, блок или тракт схемы объекта (системы), т.е. совокупность элементов, выполняющих определенную функцию объекта (преобразовательный, индикаторный блоки, блок защиты или коммутации, передающий тракт и т.д.).

Достоинство способа в быстроте и простоте проверки предположения о состоянии участков схемы объекта.

Недостаток – ограниченность, т.к. позволяет определить участки, а не конкретное место повреждения.

Способ промежуточных измеренийявляется наиболее распространенным и основным для электрических и электронных устройств. Параметры системы, блока, узла или элемента определяются с помощью ручной портативной или автоматизированной встроенной контрольно – измерительной аппаратуры (КИА) или специальных измерительных устройств, систем автоматического контроля.

При этом измеряются режимы питания, параметры линий связи, проводятся измерения в контрольных точках. Быстроту отыскания неисправности в немалой мере обеспечивает умение обслуживающего персонала грамотно проводить измерения. Полученные значения параметров сравнивают с их значениями из технической документации, с таблицами режимов данного изделия.

Способ замены заключается в том, что вместо подозреваемого в неисправности элемента (узла, блока и т.п.) устанавливают аналогичный заведомо исправный элемент. После замены проверяют объект (систему) на функционирование. Если при этом параметры системы лежат в пределах нормы, то делается вывод о том, что замененный элемент неисправен. Преимущество данного способа – простота. Но на практике этот способ имеет ограничения, во-первых, из-за отсутствия запасных элементов, во-вторых, из-за необходимости проведения регулировок вследствие недостаточной взаимозаменяемости.

Зависимые отказы могут привести к выходу их строя вновь установленного элемента, поэтому этот вид проверки используют, когда подозреваемый элемент легко съемный и недорогой.

Способ сравнения – режим неисправного участка (узла, блока) объекта или системы сравнивается с режимом однотипного участка исправного объекта. Достоинство способа в отсутствии необходимости знаний абсолютных значений, измеряемых величин и параметров. В то же время этот способ позволяет определять довольно сложные неисправности. Недостаток способа – необходимость запасного (стендового) комплекта оборудования и, как следствие, возможность применения этого способа только в условиях лаборатории.

При способе характерных неисправностей отказ отыскивается на основании известных характерных признаков. Такие неисправности и их признаки представляются в виде таблиц в инструкции по эксплуатации СА.

Таблицы характерных неисправностей обладают рядом недостатков, из которых наиболее существенны следующие:

— таблицы не обеспечивают однозначной связи между признаками отказа и возможными неисправностями: к одному признаку привязываются несколько различных неисправностей и обычно без каких-либо указаний на особенности их появления;

— в таблицах часто отсутствует указания о проведении испытаний, направленных на уточнение причины отказов. Отдельный внешний признак не может указать на конкретную причину отказа, а для ее отыскания необходимо логическое сопоставление целого ряда внешних признаков, включая показания устройств контроля и результаты испытаний;

— действия по поиску отказа, рекомендуемые таблицами, не содержат причинно-следственных связей и не распределяются в порядке их следования, в то время как реальный поиск представляет собой четкую последовательность различных проверок (испытаний).

Тест-сигналы широко применяются в различных вычислительных машинах, в счетно-решающих устройствах. При этой проверке на вход контролируемого устройства подается сигнал с определенными характеристиками. Анализ выходного сигнала позволяет определять место неисправного элемента.

Изоляция блока (узла, участка, каскада) обоснована тем, что в ряде случаев блок или каскад связан большим числом функциональных связей с другими частями объекта. При отказе такого блока трудно определить, где возникла неисправность – в самом блоке или в функционально связанных с ним частях изделия. Отсоединение некоторых функциональных связей позволяет иногда локализовать местонахождение неисправного элемента.

Каждый из рассмотренных частных способов поиска неисправностей имеет существенные ограничения, поэтому в практике ремонта КИП и СА обычно применяют совместно несколько частных способов. Такое совмещение способов позволяет сократить общее время поиска и тем самым способствует его успеху.

Дата добавления: 2020-01-29 ; просмотров: 9797 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Как в электронной схеме найти неисправность. Поиск и устранение неисправностей

Повреждение в электросхемах кранов

Электрооборудование башенного крана состоит из большого числа , электрических аппаратов и приборов, связанных между собой электропроводкой, длина которой достигает нескольких тысяч метров. В процессе работы крана могут возникать повреждения в электрических схемах. Эти повреждения могут быть вызваны выходом из строя элементов машин и аппаратов, обрывом электропроводки и повреждением изоляции.

Методы устранения неисправностей в электрических схемах кранов

Неисправности устраняют в два этапа. Сначала ищут неисправный участок схемы, а затем восстанавливают его. Наиболее сложный первый этап. Умение выявить место неисправности в наиболее короткий срок и с наименьшими затратами труда имеет очень важное значение, так как позволяет значительно сократить простои крана. Восстановление поврежденного участка обычно сводится к замене неисправного элемента (контакта, провода) или соединению оборванной электропроводки.

Неисправности электрических схем можно разделить на четыре группы: обрыв электрической цепи; ; замыкание на корпус (пробой изоляции); возникновение обходной цепи при замыкании между собой проводов. Все эти неисправности могут иметь различные внешние проявления в зависимости от особенностей крана. Поэтому при устранении неисправности следует тщательно проанализировать работу схемы во всех режимах, выявить отклонения в работе отдельных механизмов крана и только после этого приступить к поиску повреждений в той части схемы, которая может вызвать эти отклонения.

Нельзя дать методику, пригодную для поисков любого случая неисправности, поскольку даже одинаковые схемы привода для разных механизмов крана имеют свои особенности. Однако некоторые общие правила могут быть использованы при анализе любой крановой электросхемы.

В первую очередь определяют, в какой цепи — силовой или управления — возникла неисправность.

Рассмотрим пример неисправности электрической схемы привода механизма поворота крана С-981А. Неисправность заключается в том, что механизм поворота не включается в направлении Влево. Все остальные механизмы, в том числе и механизм поворота в направлении Вправо, работают.

Если при пробном включении рукоятки командоконтроллера в первое положение Влево не включается К2 (рис 1, а), неисправность следует искать в цепи управления, т. е. этого пускателя (цепь: провод 27, контакт В1-3 пускателя К2 и перемычки между главными контактами пускателя К2 и пускателя К1.

Рис. 1. Поиск места неисправности в электрической схеме привода поворота крана С-981А;

А — принципиальная электрическая схема привода поворота крана; б — монтажная электрическая схема реверсивного магнитного пускателя; /, //, ///, IV — последовательность включения вольтметра при проверке цепи

Место обрыва можно определить, проверяя цепь с помощью вольтметра или контрольной лампы, которые включают, как показано на рисунке. Первое включение служит для контроля работы самого вольтметра (контрольной лампы). Допустим, что при подключении вольтметра к клемме 31 он показывает напряжение (лампа горит), а при подключении к клемме 51 не показывает. Следовательно, обрыв находится между этими клеммами. На рисунке видно, что в этот участок входит конечный выключатель ВК2 и провода, соединяющие его с клеммами шкафа управления.

Пользуясь этим способом для выявления места обрыва цепи необходимо строго соблюдать : работать в диэлектрических перчатках и галошах или, стоя на изолирующей подставке, не прикасаться к контактам и оголенным проводникам.

При использовании для проверки контрольной лампы принимают меры против включения магнитного пускателя К2 и механизма поворота крана. Для этого закрепляют якорь магнитного пускателя в положении Выключено. Лампа в холодном состоянии имеет небольшое сопротивление (в несколько раз меньшее, чем уторящей лампы) и при подключении ее к клемме 31 образуется замкнутая цепь (провод 27, контрольная лампа, катушка К2, провод 28), что вызывает срабатывание пускателя К2. При пользовании вольтметром пускатель не может включиться, так как обмотка вольтметра имеет большое сопротивление.

Проверяя цепь для определения места обрыва, следует помнить, что у многих кранов часть цепи работает на переменном токе, а часть — на постоянном. При проверке клеммы вольтметра (лампы) подключают к источнику постоянного тока, а при проверке цепи переменного тока — к фазе переменного тока. Во время работы следует обязательно пользоваться электрическими схемами, так как ошибочное включение лампы в фазу переменного тока при проверке цепи, работающей на постоянном токе, может привести к повреждению выпрямительных устройств.

При поиске места замыкания на корпус (пробоя изоляции) участок (с предполагаемым пробоем) отсоединяют от источника тока, а вольтметр (лампу) подключают к источнику тока и проверяемому участку. В нормальном состоянии отсоединенный участок изолирован от металлоконструкции крана и вольтметр (лампа) ничего не покажет. При пробое вольтметр показывает напряжение, а лампа горит. Последовательно отсоединяя отдельные части проверяемого участка цепи, можно найти поврежденное место.

Если, например, в катушке К2 (см. рис. 1) пробило изоляцию, то при отключении катушки от привода 28 и присоединении вольтметра к клеммам 27 и 51 (контакт В1-3 командоконтроллера разомкнут) вольтметр покажет напряжение.

Значительно эффективней и безопасней производить проверку цепи с помощью омметра или пробника. Пробник состоит из милливольтметра с пределом измерения 0-75 мВ, последовательно соединенного с резистором R = 40 — 60 Ом и батарейкой 4,5 В от карманного фонарика. Выводы пробника А и В служат для подключения к клеммам проверяемой цепи. Методика поиска места неисправности аналогична описанной выше, но кран отключают от внешней сети, так как у омметра и пробника имеются свои источники тока.

При использовании омметра или пробника полностью исключается возможность поражения током, кроме того, с их помощью можно обнаружить место короткого замыкания в проводах.

Цепи управления (цепи защиты) у кранов различных типов выполнены по общему принципу, отличаются они только количеством последовательно включенных аппаратов и имеют общие признаки неисправности. Любую цепь защиты можно условно разделить на три участка: участок с нулевыми контактами контроллеров и кнопкой включения линейного контактора; участок, блокирующий нулевые контакты контроллеров и кнопку при включении контактора и замыкании его блок-контактов (цепь блокировки); общий участок, в который включены аварийные выключатели, контакты максимальных реле и .

Внешним признаком обрыва цепи каждого участка служит определенный характер работы линейного контактора. При обрыве цепи на первом участке линейный контактор не включается, когда нажимают кнопку, но включается, когда поворачивают вручную подвижную часть контактора до замыкания блок-контактов. При пробном включении контактора -вручную необходимо принять следующие меры безопасности: все контроллеры установить в нулевое положение; поворачивать подвижную часть контактора либо с помощью монтерского инструмента с изолированными ручками, либо в диэлектрических перчатках.

Если цепь оборвана на втором участке, линейный контактор включается при нажатии кнопки, но отпадает, когда кнопка возвращается в нормальное положение.

Когда цепь оборвана на третьем участке, линейный не включается ни от кнопки, ни при переводе его во включенное положение вручную.

Из разнообразных остановимся на наиболее распространенных.

Короткое замыкание в обмотке ротора. Признак неисправности: включение происходит рывком, обороты двигателя не зависят от позиции контроллера. Для проверки отсоединяют ротор двигателя от пускорегулирующего сопротивления. Если при включении статора двигатель будет работать, обмотка ротора закорочена.

Короткое замыкание в обмотке статора. Признак неисправности: двигатель при включении не вращается, срабатывает максимальная защита.

Обрыв одной из фаз статора при соединении двигателя звездой. Признаки неисправности: двигатель не создает вращающего момента и, следовательно, механизм не проворачивается. Чтобы обнаружить неисправность, двигатель отсоединяют от сети и каждую фазу в отдельности проверяют контрольной лампой. Для проверки используют низкое напряжение (12 В). Если обрыва нет, лампа будет гореть полным накалом, а при проверке фазы, имеющей обрыв, лампа гореть не будет.

Обрыв в цепи одной фазы ротора. Признак неисправности: двигатель вращается с половинной скоростью и сильно гудит. При обрыве фазы статора или ротора у грузовой и стреловой лебедок возможно падение груза (стрелы) независимо от направления включения контроллера.

Вот ты на радостях идешь к чайнику с мыслью хлопнуть кружку чая с баранкой в честь только что собранного устройства, но оно вдруг перестало работать. При этом видимых причин нет: конденсаторы целы, транзисторы вроде бы не дымятся, диоды тоже. Но при этом устройство не работает. Как быть? Можно воспользоваться вот таким простым алгоритмом поиска неисправности:

Монтажные «сопли»

«Сопли» — это небольшие капли припоя, которые создают короткое замыкание между двумя разными дорожками на печатной плате. Во время домашней сборки такие неприятные капли припоя приводят к тому, что устройство либо просто не запускается, либо работает неправильно, либо, что хуже всего, после включения тут же сгорают дорогие детали.

Чтобы не допускать таких неприятных последствий перед включением собранного прибора следует внимательно проверить печатную плату на наличие замыканий между дорожками.

Приборы для диагностики устройств

Минимальный набор приборов для наладки и ремонта радиолюбительских конструкций состоит из , мультиметра и . В некоторых случаях можно обойтись только мультиметром. Но для более удобной отладки устройств желательно все же иметь осциллограф .

Для простых устройств такого набора хватает за глаза. Что касается, к примеру, отладки различных усилителей, то для их правильной настройки желательно иметь ещё и генератор сигналов .

Правильное питание — залог успеха

Прежде, чем делать какие-либо выводы и работоспособности деталей, входящих в твою радиолюбительскую конструкцию, следует проверить правильное ли питание подаётся. Иной раз окажется, что проблема была в неверном питании. Если начинать проверку устройства с его питания, то можно сэкономить много времени на отладке, если причина была в нём.

Проверка диодов

Если в схеме есть диоды, то их следует один за одним внимательно проверить. Если они внешне целые, то следует выпаять один вывод диода и проверить его с помощью мультиметра, включенного в режим измерения сопротивления. При этом если полярность клем мультиметра совпадает с полярностью выводов диода (+ клемма к аноду, а — клемма к катоду), то мультиметр покажет приблизительно 500-600 Ом, а в обратном включении (- клемма к аноду, а + клемма к катоду) не покажет вообще ничего, будто там обрыв. Если же мультиметр показывает что-либо другое, то скорее всего диод вышел из строя и негоден.

Проверка конденсаторов и резисторов

Сгоревшие резисторы видно сразу — они чернеют. Поэтому найти сгоревший резистор достаточно легко. Что касается кондесаторов, то их проверка сложней. Во-первых, как и в случае с резисторами, надо првоести их осмотр. Если они внешне не вызывают подозрений, тогда ихследует выпаять и проверить с помощью LRC-метра. Обычно выходят из строя электролитические конденсаторы. При этом они раздуваются, когда сгорают. Другая причина их выхода из строя — время. Поэтому в старых приборах часто заменяют все электролитические конденсаторы.

Проверка транзисторов

Транзисторы проверяются аналогично диодам. Сначала проводится внешний осмотр и если он не вызывает подозрений, то транзистор проверяется с помощью мультиметра. Только клемы мультиметра включаются поочерёдно между базой-коллектором, базой-эммитером и коллектором-эммитером. Кстати, у транзисторов бывает интересная неисправность. При проверке транзистор в норме, но когда включается в схему и на неё подается питание, то через некоторое время схема перестает работать. Оказывается, что транзистор нагрелся и в нагретом состоянии ведёт себя как поломанный. Такой транзистор следует заменить.

После того как вы закончили собирать ваше устройство, запаяли последний элемент в плату, не торопитесь сразу же его включать. Приготовьте мультиметр, откройте принципиальную схему и описание схемы.

Сначала нужно проверить правильность монтажа, проверить на КЗ (короткое замыкание). Если вы считаете что все элементы запаяны верно, и КЗ после прозвонки вы не обнаружили, то можно очистить дорожки от остатков канифоли, и подавать питание, но сначала стоит проверить сопротивление цепи питания, если оно подозрительно большое, и если это не оговорено в собираемой вами схеме, то не торопитесь включать схему, перепроверьте еще раз. Правильно ли собрали диодный мост, соблюдена ли полярность при запаивании конденсаторов в цепи питания и т.д.. Если собираемое вами устройство потребляет большой ток, от 1 ампера и выше это говорит о КЗ или неправильно запаянных элементах, бывают и исключения, например преобразователи напряжения кушают 2-3 ампера на холостом ходу. Можно последовательно цепи питания включить маломощный постоянный резистор на несколько ОМ, это может спасти устройство от выхода из строя. Если в схеме стоят мощные транзисторы или микросхемы, которые крепятся на радиатор, не забудьте их изолировать друг от друга. При первоначальном включении устройств соблюдайте осторожность, так как диоды и электролитические конденсаторы при неправильном включении или превышении напряжения могут взорваться. Причем конденсаторы обычно взрываются не сразу, а сначала некоторое время греются. Не оставляйте без присмотра включенные и еще не настроенные устройства.

Прежде чем приступить к поиску неисправностей, если прибор который ремонтируете вам не знаком, нужно в первую очередь получить как можно больше информации об этом устройстве, что за устройство, или что за узел (БП, усилитель, или иное устройство), и нужно достать описание и схему этого устройства. Прежде чем доставать и начинать откручивать плату, приглядитесь, нету ли ничего лишнего внутри корпуса, оторвавшегося куска, осколка и пр. Не забывайте проверять даже такие элементы схемы как выключатель или разъем питания.

Прежде чем начать ковырять плату, разрядите все конденсаторы в том числе и высоковольтные керамические, разряжать нужно резистором примерно в 100 Ом. Если вы забудете это сделать, то при случайном КЗ, или даже во время прозвонки, отпаивания радиодеталей, последствия могут быть ужасными, могут полететь еще элементы, да и сами можете пострадать. Это очень важно!

Проверку всегда начинают с питания и проверки напряжений, проверьте напряжение в сети, предохранитель, далее блок питания. Проверьте напряжения на выходе блока питания и по возможности ток на выходе. Бывает что напряжение в норме, а если подключить лампочку или резистор, напряжение резко проседает или вовсе, БП уходит в защиту. Если окажется что напряжение ниже чем нужно или его нет вовсе, то проверяем диодные мосты, далее стабилизатор напряжения – если такой стоит, транзисторы, если они в схеме имеются. Иногда даже самым простым мультиметром удается найти неисправность в схеме. Проверку и поиск неисправностей нужно всегда проводить с отключенным от устройства питанием! Обратите внимание на провода, не оторваны, не оголены ли они. Если платы между собой соединяются разъёмами или проводами, которые закрепляются в винтовых зажимах, попробуйте переподключить их. Винтовые зажимы не надежны, со временем может пропадать контакт. Попробуйте снова включить плату, внимательно следите, пощупайте транзисторы, резисторы, на нагрев.

Итак, лежит перед нами голая плата с запаянными радиодеталями, берем лупу и начинаем внешний осмотр радиоэлементов, попутно можно даже принюхиваться, и это не шутка, сгоревший радиоэлемент можно вычислить сразу. Бывает что внешним осмотром такой элемент не обнаружить. При осмотре обратите внимание на потемнение резисторов и транзисторов, если заметили такой элемент то немедленно отпаиваем его с платы и прозваниваем, если даже элемент рабочий, лучше его заменить. Бывает что транзисторы даже после того как выйдут из строя прозваниваются тестером. Прозванивать резисторы и другие радиодетали нужно выпаивая с платы.

После осмотра радиодеталей переворачиваем плату, и начинаем осмотр со стороны дорожек, нет ли перегоревших или короткого замыкания (например если вывода радиоэлементов длинные, они могут замкнуть, так что при обратной сборке аппаратуры будьте аккуратнее). Потрогайте элементы, если чувствуете что резистор пошатывается на плате, вполне возможно что пропал электрический контакт, перепаяйте его. Если на плате имеются тонкие дорожки, их следует проверить на обрыв и микротрещины.

Если устройство собрано вами, то проверьте, все ли радиодетали запаяны правильно? У разных транзисторов разная цоколевка, у диодов обозначения тоже могут различаться. Откройте справочник к каждому запаянному элементу (если на память не помните цоколевки) и начинайте проверять. К сожалению, часто бывает так, что при выходе радиоэлемента из строя, сам элемент внешне может ничем не отличаться от исправного. Если вам так и не удалось найти неисправность схемы, придется отпаивать и прозванивать все транзисторы и элементы. Вообще говоря, можно проверять цепи и не отпаивая элементы, но нужен для этого как минимум осциллограф и хороший мультиметр. Углубляться в методику и технику работы с осциллографом в этой статье я не буду. Если схема простая, неисправные элементы как правило обнаруживаются очень быстро.

Микросхемы на неисправность проверяют обычно путем замены на другую, при сборке схем советую ставить специальные панельки под микросхемы, это очень удобно, в случае если вдруг понадобится снять ее. Но если микросхема стоит без панельки, и она запаяна в плату, то советую проверить напряжение на выводах питания микросхемы, прежде чем начинать отпаивать ее.

В схемах где применен микроконтроллер, если после включении схема не подает признаков жизни, а монтаж правильный и радиодетали запаяны правильно, в первую очередь нужно попробовать перепрошить его. Если при программировании вышла ошибка или залита «левая» прошивка, такой МК работать в схеме не будет.

Если вам не хочется выпаивать с платы к примеру резистор, диод, или конденсатор, (чтобы дорожки лишний раз не греть, иначе могут отвалиться) а вы грешите как раз на него, можно параллельно ему попробовать припаять аналогичный элемент. Так можно поступить с конденсаторами, резисторами, и диодами, только помните, что если вы запараллелите два резистора, у вас общее сопротивление уменьшится в два раза, так что один вывод резистора с платы все таки придется отпаять, а с конденсаторами наоборот, при параллеливании емкость увеличиться, например если в схеме стоит конденсатор на 220мкФ, припаяйте параллельно ему 100мкФ, от этого ничего не будет, если вы включите устройство на короткое время. Как правило конденсаторы с резисторами очень редко выходят из строя. Что касается транзисторов, их обязательно нужно выпаивать, параллельно условно неработающему транзистору ставить такой же ни в коем случае нельзя.

В схемах где используются катушки или миниатюрные трансформаторы с большим количеством выводов, пусть даже с отводом от середины, нужно соблюдать начало и конец витков, если после запуска такой схемы устройство не хочет работать, поменяйте местами вывода.

Если вы считаете что нашли причину, из-за которой ваше устройство не хотело работать, и заменили этот элемент на плате, перед подачей питания проверьте плату в местах пайки на предмет КЗ. Уберите в сторону все металлические предметы, отвертки, резисторы, куски проводов и т.п. не дай бог во время подачи питания и проверки устройства под плату закатится резистор, и коротнет.

Теперь предлагаю вам решить небольшую задачку, ниже дана схема достаточно простого блока питания, я специально в этой схеме допустил ошибки и некоторые элементы нарисовал неправильно, попробуйте найти все ошибки. Представьте, что это ваше устройство, которые вы сами собрали, но после включения оно не заработало, или некоторые элементы вышли из строя.

Будьте очень внимательны, ошибок здесь много, представьте, что это реальное устройство, если вы не найдете всех ошибок, при очередном включении прибора, что то может снова выйти из строя.

Сегодня ни одно производство не обходится без электроники и каких-либо электронных установок. К сожалению, периодически приходится обращаться к специалистам за помощью в их ремонте. Но цена на ремонт электроники в основном довольно кусачие. Если у вас есть знания в области электроники то можно попробовать отремонтировать сломанную электронику самостоятельно, для этого нужно знать как осуществляется поиск неисправностей. Существует несколько правил и премудростей, благодаря которым можно самостоятельно осуществить ремонт электроники любой сложности и области использования. Конечно прежде чем начинать поиск неисправности вам нужно как проверять ту или иную делать.

Диагностика прибора

Поврежденную деталь в электроприборе перепаять не так уж и сложно, гораздо сложнее правильно и точно обнаружить место поломки. Существует три типа обнаружения неисправностей электроники. От правильной диагностики зависит порядок выполнения дальнейших работ.

  • К первому типу можно отнести неработающие приборы, которые не издают каких-либо звуков, не светятся индикаторы, которые никак не реагируют на управление.
  • Ко второму типу относятся приборы, в которых неисправна какая-то одна часть. Такой прибор не выполняет какие-то функции, но «признаки жизни» все-таки подает.
  • Приборы, которые относятся к третьему типу сломанными полностью назвать нельзя. Они в рабочем состоянии, но иногда их работа может давать сбои. Именно для приборов третьего типа наиболее важен этап диагностики. Считается, что подобную электронику починить сложнее, чем неработающую полностью.

Ремонт приборов поломкой первого типа

В том случае, если прибор не работает полностью, его починку необходимо начинать с питания. Так как у любой электронный аппарат потребляет энергию, то вероятность поломки его питания очень высока. Самым надежным методом обнаружения неисправности, можно назвать метод исключения.

Из списка возможных проблем необходимо по мере диагностики исключать неправильные варианты. В первую очередь необходимо тщательно осмотреть внешний вид прибора. Это необходимо делать даже при уверенности, что причина неисправности находится внутри. Ведь при таком осмотре можно найти дефекты, в будущем могут вывести из строя прибор.

В том случае, если осмотр не принес никаких результатов, на помощь приходит мультиметр. При помощи этого прибора осуществляется поиск неисправностей на плате, диодах, тиристорах, входных транзисторах и силовых микросхемах. Если причина неисправности все еще остается ненайденной проверить следует также электролитические конденсаторы и все остальные полупроводники. В последнюю очередь проверяют пассивные электроэлементы.

Для механических приборов характерно изнашивание элементов трения, а для электроники – ток. Чем больше элемент потребляет энергии, тем быстрее он нагревается, что приводит к быстрому его изнашиванию. Чем чаще элемент нагревается и остывает, тем быстрее деформируется материал, из которого он изготовлен. Частые перепады температуры приводят к так называемому эффекту усталости в период использования электрооборудования.

Не стоит забывать, что блок питания необходимо еще проверять на наличие помех, образующихся на шинах питания и перепады входящих пульсаций. Не редко причиной неработоспособности становится короткое замыкание.

Ремонт приборов с поломкой второго типа

Начинать ремонт приборов второго типа необходимо также с внешнего осмотра. Но в отличие от первого типа, необходимо постараться запомнить состояние световой, цветовой и цифровой индикации агрегата, запомнить код ошибки на дисплее. Далее следует продолжить поиск неисправности на плате. Проблема иногда исчезает, если почистить радиаторы охлаждения, немного пошевелить шлейфы, плату, блоки питания. Полезно иногда проверить напряжение и на лампе накаливания.

Определить проблему можно и по запаху. Необходимо понюхать прибор. Наличие запаха горелой изоляции может выдавать проблему. Особое внимание следует уделить элементам из реактивных пластмасс. Необходимо обратить внимание на переключатели. Их положение может не соответствовать. Так же следует проверить состояние конденсаторов. Возможно среди них есть вздувшиеся или взорвавшиеся. Следует помнить, что внутри прибора не должно быть мусора, пыли или воды.

В том случае, если электроприбор находится в эксплуатации достаточно давно, то причиной поломки может заключаться в износе каких-либо механических элементов или изменения их формы из-за процесса трения.

После тщательного осмотра внешнего вида прибора второго типа можно приступать к диагностике. Не стоит лесть сразу в самые дебри. Следует хорошо исследовать периферические элементы. И только, после этого можно продолжать поиск неисправностей на плате.

Ремонт приборов с поломкой третьего типа

Самой сложной считается диагностика неисправностей приборов третьего типа, так как большинство возникающих дефектов носят случайный характер. Подобный ремонт также не исключает этапа осмотра внешнего вида прибора. Подобная процедура, в этом случае, носит еще и профилактический характер. Наиболее частыми причинами возникновения неполадок может быть:
В первую очередь плохой контакт.

Длительные нагрузки повышение температуры окружающей среды могут привести к перегреву всего прибора.
Сбои может создавать и слой пыли на блоках, платах и узлах.
Грязные радиаторы охлаждения способствуют перегреву полупроводниковых элементов.
Помехи сети питания прибора.

Проверка электронных компонентов с использованием мультиметра это довольно простая задача. Для ее выполнения нужен обычный мультиметр китайского производства, покупка которого не представляет проблемы, важно только избегать самых дешевых, откровенно некачественных моделей.

Аналоговые приборы со стрелочным указателем до сих пор способны выполнять такие задачи, но более удобны в применении цифровые мультиметры , в которых выбор режима осуществляется при помощи переключателей, а результаты измерения отображаются на электронном дисплее.

Внешний вид аналоговых и цифровых мультиметров:

Сейчас чаще всего используются цифровые мультиметры, так как у них меньший процент погрешности, их легче использовать и данные выводятся сразу на дисплей прибора.

Шкала цифровых мультиметров больше, имеются удобные дополнительные функции – температурный датчик, частотомер, проверка конденсатора, и др.

Проверка транзистора

Если не вдаваться в технические подробности, то транзисторы бывают полевые и биполярные

Биполярный транзистор представляет собой два встречных диода, поэтому проверка выполняется по принципу «база-эмиттер» и «база-коллектор». Ток может идти только в одном направлении, в другом его быть не должно. Не нужно проверять переход «эмиттер-коллектор». Если на базе нет напряжения, но ток все же проходит, прибор неисправен.

Для проверки полевого транзистора N-канального типа, нужно присоединить черный (отрицательный) щуп к выводу стока. К выводу истока транзистора присоединяется красный (положительный) щуп. В таком случае транзистор закрыт, мультиметр высвечивает падение напряжения примерно 450 мВ на внутреннем диоде, и бесконечное сопротивление на обратном. Теперь нужно присоединить красный щуп к затвору, после чего вернуть на вывод истока. Черный щуп при этом остается присоединен к выводу стока. Показав на мультиметре 280 мВ, транзистор открылся от прикосновения. Не отсоединяя красный щуп, дотронемся черным щупом к затвору. Полевой транзистор закроется, а на дисплее мультиметра увидим падение напряжения. Транзистор исправен, что и показали данные манипуляции. Диагностика Р-канального транзистора выполняется аналогично, но щупы меняют местами.

Проверка диода

Сейчас выпускается несколько основных типов диодов (стабилитрон, варикап, тиристор, симистор, свето- и фотодиоды), каждый из них используется для определенных целей. Для проверки на диоде замеряется сопротивление с плюсом на аноде (должно быть от нескольких десятков до нескольких сотен Ом), затем с плюсом на катоде – должна быть бесконечность. Если показатели другие – прибор неисправен.

Проверка резисторов

Как можно понять из картинки, резисторы тоже бывают разные:

На всех резисторах производителями указывается номинальное сопротивление. Его мы и замеряем. Допускается 5% погрешности значения сопротивления, если погрешность больше – прибор лучше не использовать. Если резистор почернел, его тоже лучше не использовать, даже если сопротивление в пределах нормы.

Проверка конденсаторов

Сначала осматриваем конденсатор. Если на нем нет никакие трещин и вздутий, нужно попытаться (осторожно!) покрутить выводы конденсатора. Если получается прокрутить или даже вообще вытащить – конденсатор сломан. Если внешне все нормально, проверяем мультиметром сопротивление, показания должны быть равны бесконечности.

Катушка индуктивности

В катушках поломки могут быть разные. Поэтому сначала исключаем механическую неисправность. Если внешне повреждений нет, измеряем сопротивление, подключая мультиметр к параллельным выводам. Оно должно быть близким к нулю. Если номинальное значение превышено, возможно, поломка произошла внутри катушки. Можно попытаться перемотать катушку, но проще поменять.

Микросхема

Микросхему мультиметром проверять не имеет смысла – в них десятки и сотни транзисторов, резисторов и диодов. На микросхеме не должно быть механических повреждений, пятен от ржавчины и перегрева. Если внешне все в порядке, микросхема скорее всего повреждена внутри, починить ее не удастся. Однако можно проверить выходы микросхемы на напряжение. Слишком низкое сопротивление выходов питания (относительно общего) свидетельствует о коротком замыкании. Если хотя бы один из выходов неисправен, скорее всего схему уже не вернуть в строй.

Первый запуск устройства и поиск неисправностей

После того как вы закончили собирать ваше устройство, запаяли последний элемент в плату, не торопитесь сразу же его включать. Приготовьте мультиметр, откройте принципиальную схему и описание схемы.

Сначала нужно проверить правильность монтажа, проверить на КЗ (короткое замыкание). Если вы считаете что все элементы запаяны верно, и КЗ после прозвонки вы не обнаружили, то можно очистить дорожки от остатков канифоли, и подавать питание, но сначала стоит проверить сопротивление цепи питания, если оно подозрительно большое, и если это не оговорено в собираемой вами схеме, то не торопитесь включать схему, перепроверьте еще раз. Правильно ли собрали диодный мост, соблюдена ли полярность при запаивании конденсаторов в цепи питания и т.д.. Если собираемое вами устройство потребляет большой ток, от 1 ампера и выше это говорит о КЗ или неправильно запаянных элементах, бывают и исключения, например преобразователи напряжения кушают 2-3 ампера на холостом ходу. Можно последовательно цепи питания включить маломощный постоянный резистор на несколько ОМ, это может спасти устройство от выхода из строя. Если в схеме стоят мощные транзисторы или микросхемы, которые крепятся на радиатор, не забудьте их изолировать друг от друга. При первоначальном включении устройств соблюдайте осторожность, так как диоды и электролитические конденсаторы при неправильном включении или превышении напряжения могут взорваться. Причем конденсаторы обычно взрываются не сразу, а сначала некоторое время греются. Не оставляйте без присмотра включенные и еще не настроенные устройства.

Поиск неисправностей

Наверное каждый радиолюбитель сталкивался с тем случаем, когда после подачи питания собранное устройство не хочет работать, или работает с перебоями, не так, как должно. Если ошибок в монтаже вы исключаете, то можете читать дальше, но если дорожки для платы вы рисовали самостоятельно, то бегом проверять печатную плату!

Прежде чем приступить к поиску неисправностей, если прибор который ремонтируете вам не знаком, нужно в первую очередь получить как можно больше информации об этом устройстве, что за устройство, или что за узел (БП, усилитель, или иное устройство), и нужно достать описание и схему этого устройства. Прежде чем доставать и начинать откручивать плату, приглядитесь, нету ли ничего лишнего внутри корпуса, оторвавшегося куска, осколка и пр. Не забывайте проверять даже такие элементы схемы как выключатель или разъем питания.

Прежде чем начать ковырять плату, разрядите все конденсаторы в том числе и высоковольтные керамические, разряжать нужно резистором примерно в 100 Ом. Если вы забудете это сделать, то при случайном КЗ, или даже во время прозвонки, отпаивания радиодеталей, последствия могут быть ужасными, могут полететь еще элементы, да и сами можете пострадать. Это очень важно!

Проверку всегда начинают с питания и проверки напряжений, проверьте напряжение в сети, предохранитель, далее блок питания. Проверьте напряжения на выходе блока питания и по возможности ток на выходе. Бывает что напряжение в норме, а если подключить лампочку или резистор, напряжение резко проседает или вовсе, БП уходит в защиту. Если окажется что напряжение ниже чем нужно или его нет вовсе, то проверяем диодные мосты, далее стабилизатор напряжения – если такой стоит, транзисторы, если они в схеме имеются. Иногда даже самым простым мультиметром удается найти неисправность в схеме. Проверку и поиск неисправностей нужно всегда проводить с отключенным от устройства питанием! Обратите внимание на провода, не оторваны, не оголены ли они. Если платы между собой соединяются разъёмами или проводами, которые закрепляются в винтовых зажимах, попробуйте переподключить их. Винтовые зажимы не надежны, со временем может пропадать контакт. Попробуйте снова включить плату, внимательно следите, пощупайте транзисторы, резисторы, на нагрев.

Итак, лежит перед нами голая плата с запаянными радиодеталями, берем лупу и начинаем внешний осмотр радиоэлементов, попутно можно даже принюхиваться, и это не шутка, сгоревший радиоэлемент можно вычислить сразу. Бывает что внешним осмотром такой элемент не обнаружить. При осмотре обратите внимание на потемнение резисторов и транзисторов, если заметили такой элемент то немедленно отпаиваем его с платы и прозваниваем, если даже элемент рабочий, лучше его заменить. Бывает что транзисторы даже после того как выйдут из строя прозваниваются тестером. Прозванивать резисторы и другие радиодетали нужно выпаивая с платы.

После осмотра радиодеталей переворачиваем плату, и начинаем осмотр со стороны дорожек, нет ли перегоревших или короткого замыкания (например если вывода радиоэлементов длинные, они могут замкнуть, так что при обратной сборке аппаратуры будьте аккуратнее). Потрогайте элементы, если чувствуете что резистор пошатывается на плате, вполне возможно что пропал электрический контакт, перепаяйте его. Если на плате имеются тонкие дорожки, их следует проверить на обрыв и микротрещины.

Если устройство собрано вами, то проверьте, все ли радиодетали запаяны правильно? У разных транзисторов разная цоколевка, у диодов обозначения тоже могут различаться. Откройте справочник к каждому запаянному элементу (если на память не помните цоколевки) и начинайте проверять. К сожалению, часто бывает так, что при выходе радиоэлемента из строя, сам элемент внешне может ничем не отличаться от исправного. Если вам так и не удалось найти неисправность схемы, придется отпаивать и прозванивать все транзисторы и элементы. Вообще говоря, можно проверять цепи и не отпаивая элементы, но нужен для этого как минимум осциллограф и хороший мультиметр. Углубляться в методику и технику работы с осциллографом в этой статье я не буду. Если схема простая, неисправные элементы как правило обнаруживаются очень быстро.

Микросхемы на неисправность проверяют обычно путем замены на другую, при сборке схем советую ставить специальные панельки под микросхемы, это очень удобно, в случае если вдруг понадобится снять ее. Но если микросхема стоит без панельки, и она запаяна в плату, то советую проверить напряжение на выводах питания микросхемы, прежде чем начинать отпаивать ее.

В схемах где применен микроконтроллер, если после включении схема не подает признаков жизни, а монтаж правильный и радиодетали запаяны правильно, в первую очередь нужно попробовать перепрошить его. Если при программировании вышла ошибка или залита «левая» прошивка, такой МК работать в схеме не будет.

Если вам не хочется выпаивать с платы к примеру резистор, диод, или конденсатор, (чтобы дорожки лишний раз не греть, иначе могут отвалиться) а вы грешите как раз на него, можно параллельно ему попробовать припаять аналогичный элемент. Так можно поступить с конденсаторами, резисторами, и диодами, только помните, что если вы запараллелите два резистора, у вас общее сопротивление уменьшится в два раза, так что один вывод резистора с платы все таки придется отпаять, а с конденсаторами наоборот, при параллеливании емкость увеличиться, например если в схеме стоит конденсатор на 220мкФ, припаяйте параллельно ему 100мкФ, от этого ничего не будет, если вы включите устройство на короткое время. Как правило конденсаторы с резисторами очень редко выходят из строя. Что касается транзисторов, их обязательно нужно выпаивать, параллельно условно неработающему транзистору ставить такой же ни в коем случае нельзя.

В схемах где используются катушки или миниатюрные трансформаторы с большим количеством выводов, пусть даже с отводом от середины, нужно соблюдать начало и конец витков, если после запуска такой схемы устройство не хочет работать, поменяйте местами вывода.

Если вы считаете что нашли причину, из-за которой ваше устройство не хотело работать, и заменили этот элемент на плате, перед подачей питания проверьте плату в местах пайки на предмет КЗ. Уберите в сторону все металлические предметы, отвертки, резисторы, куски проводов и т.п. не дай бог во время подачи питания и проверки устройства под плату закатится резистор, и коротнет.

Задача

Теперь предлагаю вам решить небольшую задачку, ниже дана схема достаточно простого блока питания, я специально в этой схеме допустил ошибки и некоторые элементы нарисовал неправильно, попробуйте найти все ошибки. Представьте, что это ваше устройство, которые вы сами собрали, но после включения оно не заработало, или некоторые элементы вышли из строя.

Будьте очень внимательны, ошибок здесь много, представьте, что это реальное устройство, если вы не найдете всех ошибок, при очередном включении прибора, что то может снова выйти из строя.

Онлайн журнал электрика

Статьи по электроремонту и электромонтажу

Методы поиска неисправностей в электрических схемах электрооборудования кранов

Повреждение в электросхемах кранов

Электрическое оборудование башенного крана состоит из огромного числа
электродвигателей, электронных аппаратов и устройств, связанных меж собой
проводкой, длина которой добивается нескольких тыщ метров. В процессе
работы крана могут появляться повреждения в электронных схемах. Эти повреждения
могут быть вызваны выходом из строя частей машин и аппаратов, обрывом
проводки и повреждением изоляции.

Способы устранения дефектов в электронных схемах кранов

Неисправности электронной схемы избавляют в два шага. Поначалу отыскивают
неисправный участок схемы, а потом восстанавливают его. Более непростой 1-ый
шаг. Умение выявить место неисправности в более маленький срок и с
меньшими затратами труда имеет очень принципиальное значение, потому что позволяет
существенно уменьшить простои крана. Восстановление покоробленного участка обычно
сводится к подмене неисправного элемента (контакта, катушки, провода) либо
соединению оборванной проводки.

Неисправности электронных схем можно поделить на четыре группы: обрыв
электронной цепи; куцее замыкание в цепи; замыкание на корпус (пробой
изоляции); появление обходной цепи при замыкании меж собой проводов.
Все эти неисправности могут иметь разные наружные проявления в зависимости
от особенностей электронной схемы крана. Потому при устранении неисправности
следует кропотливо проанализировать работу схемы во всевозможных режимах, выявить
отличия в работе отдельных устройств крана и только после чего приступить к
поиску повреждений в той части схемы, которая может вызвать эти отличия.

Нельзя дать методику, применимую для поисков хоть какого варианта неисправности,
так как даже однообразные схемы привода для различных устройств крана имеют свои
особенности. Но некие общие правила могут быть применены при анализе
хоть какой крановой электросхемы.

Сначала определяют, в какой цепи — силовой либо управления — появилась
неисправность.

Пример поиска неисправности в электронной схеме крана

Разглядим пример неисправности электронной схемы привода
механизма поворота крана С-981А. Неисправность состоит в том, что механизм
поворота не врубается в направлении На лево. Все другие механизмы, в том числе
и механизм поворота в направлении На право, работают.

Если при пробном включении ручки командоконтроллера в 1-ое положение
На лево не врубается магнитный пускатель К2 (рис 1, а), неисправность следует
находить в цепи управления, т. е. в цепи катушки этого пускателя (цепь: провод 27,
контакт В1-3 пускателя К2 и перемычки меж главными контактами пускателя К2 и
пускателя К1.

а — принципная электронная схема привода поворота крана;
б — монтажная электронная схема реверсивного магнитного пускателя; /, //,
///,, IV — последовательность включения вольтметра при проверке цепи

Место обрыва можно найти, проверяя цепь при помощи вольтметра либо
контрольной лампы, которые включают, как показано на рисунке. 1-ое
включение служит для контроля работы самого вольтметра (контрольной лампы).
Допустим, что при подключении вольтметра к клемме 31 он указывает напряжение
(лампа пылает), а при подключении к клемме 51 не указывает. Как следует, обрыв
находится меж этими клеммами. На рисунке видно, что в этот участок заходит
конечный выключатель ВК2 и провода, соединяющие его с клеммами шкафа
управления.

Пользуясь этим методом для выявления места обрыва цепи нужно строго
соблюдать правила электробезопасности: работать в диэлектрических перчатках и
галошах либо, стоя на изолирующей подставке, не дотрагиваться к контактам и
обнаженным проводникам.

При использовании для проверки контрольной лампы
принимают конструктивные меры против включения магнитного пускателя К2 и механизма поворота
крана. Для этого закрепляют якорь магнитного пускателя в положении Выключено.
Лампа в прохладном состоянии имеет маленькое сопротивление (в пару раз
наименьшее, чем уторящей лампы) и при подключении ее к клемме 31 появляется
замкнутая цепь (провод 27, контрольная лампа, катушка К2, провод 28), что
вызывает срабатывание пускателя К2. При использовании вольтметром пускатель не
может включиться, потому что обмотка вольтметра имеет огромное сопротивление.

Проверяя цепь для определения места обрыва, следует держать в голове, что у многих
кранов часть цепи работает на переменном токе, а часть — на неизменном. При проверке цепи неизменного тока клеммы
вольтметра (лампы) подключают к источнику неизменного тока, а при проверке цепи
переменного тока — к фазе переменного тока. Во время работы следует непременно
воспользоваться электронными схемами, потому что неверное включение лампы в фазу
переменного тока при проверке цепи, работающей на неизменном токе, может
привести к повреждению выпрямительных устройств.

При поиске места замыкания на корпус (пробоя изоляции) участок (с
предполагаемым пробоем) отсоединяют от источника тока, а вольтметр (лампу)
подключают к источнику тока и проверяемому участку. В обычном состоянии
отсоединенный участок изолирован от металлоконструкции крана и вольтметр (лампа)
ничего не покажет. При пробое вольтметр указывает напряжение, а лампа пылает.
Поочередно отсоединяя отдельные части проверяемого участка цепи, можно
отыскать поврежденное место.

Если, к примеру, в катушке К2 (см. рис. 1) пробило изоляцию, то при выключении
катушки от привода 28 и присоединении вольтметра к клеммам 27 и 51 (контакт В1-3
командоконтроллера разомкнут) вольтметр покажет напряжение.

Существенно эффективней и безопасней создавать проверку цепи при помощи
омметра либо пробника. Пробник состоит из милливольтметра с пределом измерения
0—75 мВ, поочередно соединенного с резистором R = 40 — 60 Ом и батарейкой 4,5
В от карманного фонарика. Выводы пробника А и В служат для подключения к клеммам
проверяемой цепи. Методика поиска места неисправности подобна описанной чуть повыше,
но кран отключают от наружной сети, потому что у омметра и пробника имеются свои
источники тока.

При использовании омметра либо пробника стопроцентно исключается возможность
поражения током, не считая того, с помощью их можно найти место недлинного
замыкания в проводах.

Цепи управления линейным контактором (цепи защиты) у кранов разных типов
выполнены по общему принципу, отличаются они только количеством поочередно
включенных аппаратов и имеют общие признаки неисправности. Всякую цепь защиты
можно условно поделить на три участка: участок с нулевыми контактами
контроллеров и кнопкой включения линейного контактора; участок, блокирующий
нулевые контакты контроллеров и кнопку при включении контактора и замыкании его
блок-контактов (цепь блокировки); общий участок, в который включены аварийные
выключатели, контакты наибольших реле и катушка линейного контактора.

Наружным признаком обрыва цепи каждого участка служит определенный нрав
работы линейного контактора. При обрыве цепи на первом участке линейный
контактор не врубается, когда жмут кнопку, но врубается, когда
поворачивают вручную подвижную часть контактора до замыкания блок-контактов. При
пробном включении контактора -вручную нужно принять последующие меры
безопасности: все контроллеры установить в нулевое положение; поворачивать
подвижную часть контактора или при помощи монтерского инструмента с
изолированными ручками, или в диэлектрических перчатках.

Если цепь оборвана на втором участке, линейный контактор врубается при
нажатии кнопки, но отпадает, когда кнопка ворачивается в обычное
положение.

Когда цепь оборвана на 3-ем участке, линейный контактор не врубается ни
от кнопки, ни при переводе его во включенное положение вручную.

Из различных обстоятельств неисправности
электродвигателей остановимся на более всераспространенных.

Куцее замыкание в обмотке ротора. Признак неисправности: включение
мотора происходит скачком, обороты мотора не зависят от позиции
контроллера. Для проверки отсоединяют ротор мотора от пускорегулирующего
сопротивления. Если при включении статора движок будет работать, обмотка
ротора закорочена.

Куцее замыкание в обмотке статора. Признак неисправности: движок при
включении не крутится, срабатывает наибольшая защита.

Обрыв одной из фаз статора при соединении мотора звездой. Признаки
неисправности: движок не делает крутящего момента и, как следует,
механизм не проворачивается. Чтоб найти неисправность, движок
отсоединяют от сети и каждую фазу в отдельности инспектируют контрольной лампой.
Для проверки употребляют низкое напряжение (12 В). Если обрыва нет, лампа будет
пылать полным накалом, а при проверке фазы, имеющей обрыв, лампа пылать не
будет.

Обрыв в цепи одной фазы ротора. Признак неисправности: движок крутится с
половинной скоростью и очень гудит. При обрыве фазы статора либо ротора у
мотора грузовой и стреловой лебедок может быть падение груза (стрелы)
независимо от направления включения контроллера.

Поиск и устранение неисправностей. Поиск неисправностей в электронных схемах

Повреждение в электросхемах кранов

Электрооборудование башенного крана состоит из большого числа , электрических аппаратов и приборов, связанных между собой электропроводкой, длина которой достигает нескольких тысяч метров. В процессе работы крана могут возникать повреждения в электрических схемах. Эти повреждения могут быть вызваны выходом из строя элементов машин и аппаратов, обрывом электропроводки и повреждением изоляции.

Методы устранения неисправностей в электрических схемах кранов

Неисправности устраняют в два этапа. Сначала ищут неисправный участок схемы, а затем восстанавливают его. Наиболее сложный первый этап. Умение выявить место неисправности в наиболее короткий срок и с наименьшими затратами труда имеет очень важное значение, так как позволяет значительно сократить простои крана. Восстановление поврежденного участка обычно сводится к замене неисправного элемента (контакта, провода) или соединению оборванной электропроводки.

Неисправности электрических схем можно разделить на четыре группы: обрыв электрической цепи; ; замыкание на корпус (пробой изоляции); возникновение обходной цепи при замыкании между собой проводов. Все эти неисправности могут иметь различные внешние проявления в зависимости от особенностей крана. Поэтому при устранении неисправности следует тщательно проанализировать работу схемы во всех режимах, выявить отклонения в работе отдельных механизмов крана и только после этого приступить к поиску повреждений в той части схемы, которая может вызвать эти отклонения.

Нельзя дать методику, пригодную для поисков любого случая неисправности, поскольку даже одинаковые схемы привода для разных механизмов крана имеют свои особенности. Однако некоторые общие правила могут быть использованы при анализе любой крановой электросхемы.

В первую очередь определяют, в какой цепи — силовой или управления — возникла неисправность.

Рассмотрим пример неисправности электрической схемы привода механизма поворота крана С-981А. Неисправность заключается в том, что механизм поворота не включается в направлении Влево. Все остальные механизмы, в том числе и механизм поворота в направлении Вправо, работают.

Если при пробном включении рукоятки командоконтроллера в первое положение Влево не включается К2 (рис 1, а), неисправность следует искать в цепи управления, т. е. этого пускателя (цепь: провод 27, контакт В1-3 пускателя К2 и перемычки между главными контактами пускателя К2 и пускателя К1.

Рис. 1. Поиск места неисправности в электрической схеме привода поворота крана С-981А;

А — принципиальная электрическая схема привода поворота крана; б — монтажная электрическая схема реверсивного магнитного пускателя; /, //, ///, IV — последовательность включения вольтметра при проверке цепи

Место обрыва можно определить, проверяя цепь с помощью вольтметра или контрольной лампы, которые включают, как показано на рисунке. Первое включение служит для контроля работы самого вольтметра (контрольной лампы). Допустим, что при подключении вольтметра к клемме 31 он показывает напряжение (лампа горит), а при подключении к клемме 51 не показывает. Следовательно, обрыв находится между этими клеммами. На рисунке видно, что в этот участок входит конечный выключатель ВК2 и провода, соединяющие его с клеммами шкафа управления.

Пользуясь этим способом для выявления места обрыва цепи необходимо строго соблюдать : работать в диэлектрических перчатках и галошах или, стоя на изолирующей подставке, не прикасаться к контактам и оголенным проводникам.

При использовании для проверки контрольной лампы принимают меры против включения магнитного пускателя К2 и механизма поворота крана. Для этого закрепляют якорь магнитного пускателя в положении Выключено. Лампа в холодном состоянии имеет небольшое сопротивление (в несколько раз меньшее, чем уторящей лампы) и при подключении ее к клемме 31 образуется замкнутая цепь (провод 27, контрольная лампа, катушка К2, провод 28), что вызывает срабатывание пускателя К2. При пользовании вольтметром пускатель не может включиться, так как обмотка вольтметра имеет большое сопротивление.

Проверяя цепь для определения места обрыва, следует помнить, что у многих кранов часть цепи работает на переменном токе, а часть — на постоянном. При проверке клеммы вольтметра (лампы) подключают к источнику постоянного тока, а при проверке цепи переменного тока — к фазе переменного тока. Во время работы следует обязательно пользоваться электрическими схемами, так как ошибочное включение лампы в фазу переменного тока при проверке цепи, работающей на постоянном токе, может привести к повреждению выпрямительных устройств.

При поиске места замыкания на корпус (пробоя изоляции) участок (с предполагаемым пробоем) отсоединяют от источника тока, а вольтметр (лампу) подключают к источнику тока и проверяемому участку. В нормальном состоянии отсоединенный участок изолирован от металлоконструкции крана и вольтметр (лампа) ничего не покажет. При пробое вольтметр показывает напряжение, а лампа горит. Последовательно отсоединяя отдельные части проверяемого участка цепи, можно найти поврежденное место.

Если, например, в катушке К2 (см. рис. 1) пробило изоляцию, то при отключении катушки от привода 28 и присоединении вольтметра к клеммам 27 и 51 (контакт В1-3 командоконтроллера разомкнут) вольтметр покажет напряжение.

Значительно эффективней и безопасней производить проверку цепи с помощью омметра или пробника. Пробник состоит из милливольтметра с пределом измерения 0-75 мВ, последовательно соединенного с резистором R = 40 — 60 Ом и батарейкой 4,5 В от карманного фонарика. Выводы пробника А и В служат для подключения к клеммам проверяемой цепи. Методика поиска места неисправности аналогична описанной выше, но кран отключают от внешней сети, так как у омметра и пробника имеются свои источники тока.

При использовании омметра или пробника полностью исключается возможность поражения током, кроме того, с их помощью можно обнаружить место короткого замыкания в проводах.

Цепи управления (цепи защиты) у кранов различных типов выполнены по общему принципу, отличаются они только количеством последовательно включенных аппаратов и имеют общие признаки неисправности. Любую цепь защиты можно условно разделить на три участка: участок с нулевыми контактами контроллеров и кнопкой включения линейного контактора; участок, блокирующий нулевые контакты контроллеров и кнопку при включении контактора и замыкании его блок-контактов (цепь блокировки); общий участок, в который включены аварийные выключатели, контакты максимальных реле и .

Внешним признаком обрыва цепи каждого участка служит определенный характер работы линейного контактора. При обрыве цепи на первом участке линейный контактор не включается, когда нажимают кнопку, но включается, когда поворачивают вручную подвижную часть контактора до замыкания блок-контактов. При пробном включении контактора -вручную необходимо принять следующие меры безопасности: все контроллеры установить в нулевое положение; поворачивать подвижную часть контактора либо с помощью монтерского инструмента с изолированными ручками, либо в диэлектрических перчатках.

Если цепь оборвана на втором участке, линейный контактор включается при нажатии кнопки, но отпадает, когда кнопка возвращается в нормальное положение.

Когда цепь оборвана на третьем участке, линейный не включается ни от кнопки, ни при переводе его во включенное положение вручную.

Из разнообразных остановимся на наиболее распространенных.

Короткое замыкание в обмотке ротора. Признак неисправности: включение происходит рывком, обороты двигателя не зависят от позиции контроллера. Для проверки отсоединяют ротор двигателя от пускорегулирующего сопротивления. Если при включении статора двигатель будет работать, обмотка ротора закорочена.

Короткое замыкание в обмотке статора. Признак неисправности: двигатель при включении не вращается, срабатывает максимальная защита.

Обрыв одной из фаз статора при соединении двигателя звездой. Признаки неисправности: двигатель не создает вращающего момента и, следовательно, механизм не проворачивается. Чтобы обнаружить неисправность, двигатель отсоединяют от сети и каждую фазу в отдельности проверяют контрольной лампой. Для проверки используют низкое напряжение (12 В). Если обрыва нет, лампа будет гореть полным накалом, а при проверке фазы, имеющей обрыв, лампа гореть не будет.

Обрыв в цепи одной фазы ротора. Признак неисправности: двигатель вращается с половинной скоростью и сильно гудит. При обрыве фазы статора или ротора у грузовой и стреловой лебедок возможно падение груза (стрелы) независимо от направления включения контроллера.

Виды неисправностей аппаратуры . Неисправность РЭА проявляется в виде искажения выходной информа­ции или ее отсутствии при наличии входного сигнала. Источником неисправности могут быть один или несколько элементов, а также внешние воздействия и факторы — пыль, влага, и т. д. Каждый элемент РЭА оказывает влияние на формирование выходных параметров. Зави­симость между состояниями элементов РЭА и выходными параметрами носит неоднозначный характер. Большинство элементов влияет сразу на не­сколько параметров, а сами параметры могут зависеть от многих элементов.

Работу РЭА можно оценивать различными показателями:

Физическим состоянием элементов (оценивается внешним осмотром);

Качеством выдаваемой информации;

Формой и значением напряжений в различных точках (оцениваются по показаниям измерительных приборов).

Начинать поиск неисправностей необходимо с обнаружения сущест­венных противоречий в этих показателях. На определении этих противоре­чий основаны все методы поиска неисправностей. Следует иметь в виду, что ремонт РЭА может быть неоправданным, если аппаратура:

Морально устарела, для нее не выпускают запасные детали, а установка нетиповых деталей требует значительных затрат времени, дора­ботки конструкции и пр.;

Физически устарела, в ней заметно проявляются процессы старе­ния материалов, снижение диэлектрических показателей изолирующих мате­риалов, старение паек, высыхание оксидных конденсаторов и пр.;

Имела механические повреждения в результате удара, падения или подвергалась химическим воздействиям (попадание морской воды внутрь корпуса и др.).

Классификация дефектов РЭА . От характера дефектов во многом за­висят особенности их поиска. В первую очередь необходимо выяснить, имеется ли вообще неисправность, а не ошибка установки устройств регули­ровки, переключателей и т. п. Важно определить, к какому типу относится данный дефект.

Дефекты в РЭА, можно классифицировать по самым различным при­знакам, при этом разделение будет достаточно условным, так как сами признаки не могут иметь четких границ, а одна и та же неисправность может иметь сразу несколько признаков.

По сложности обнаружения различают дефекты: простые, когда дефект очевиден и легко устраним; несложные, когда дефект легко отыски­вается, однако устранение его затруднено; сложные, когда дефект непросто отыскать, но легко устра­нить (плохая пайка, контакт нарушается лишь с прогревом изде­лия); очень сложные, когда дефект трудно отыскать и устранить (случайные ме­жэлектродные замыкания).

По особенностям проявления различают дефекты: постоян­но проявляющиеся; непостоянные (время от времени без явных причин); проявляющиеся или пропадающие в процессе прогрева, при механических или других воздействиях; самоустраняющиеся.

По внешнему проявлению различают дефекты, связанные с отсутствием какого-либо параметра РЭА; с несоответствием какого-либо па­раметра норме; с появлением на выходе нежелательных сигналов.

По причинам возникновения дефекты бывают случайные или детерминированные, т. е. вполне определенные, которые можно было преду­смотреть. К детерминированным дефектам относятся:

Недостатки конструкции, заложенные при разработке: малона­дежные элементы; элементы, эксплуатирующиеся в режимах, близких к предельно допустимым; конструктивные решения, не обеспечивающие надежность контактных соединений, и т.п.

Нарушение технологической дисциплины при изготовлении РЭА (непропаи, качество монтажа и т. п.);

Нарушение условий эксплуатации: попадание внутрь РЭА влаги, пыли, насекомых, посторонних предметов; механические повреждения и т.п.

Неквалифицированное вмешательство в конструкцию РЭА: впаяны транзисторы другого типа, установлены дефектные элементы и пр.

Любой дефект, проявляющийся в РЭА, нарушает ее нормальную рабо­ту. Однако дефекты неравноценны, поэтому целесообразно установить по­следовательность их поиска и устранения, исходя из значимости.

Способы поиска неисправностей. Можно выделить три уровня поиска неисправностей и ремонта изделий: плата, ИС и схема в целом. На уровне плат заменяют подозрительную ПП. На уровне ИС опреде­ляют и заменяют дефектную ИС или компонент. На уровне схемы опреде­ляют точную причину неисправности. Проще всего заменить всю дефектную плату. Труднее всего точно найти и заменить де­фектную ИС.

Каждый электрик должен знать:  Маломощный инвертор со степенью защиты IP66

Как правило, тщательный анализ симптомов позволяет определить возможную причину неисправности в одной или двух платах. Несмотря на дороговизну замены плат, для сокращения времени ре­монта во многих случаях пользуются этим способом.

Обычно неис­правность возникает только в одной ИС или поддерживающих компонентах. Наиболее сложным при ремонте оказывается поиск дефектной ИС или ком­понента. При тщательном изучении симптома (признака) неисправности опре­деляется подозрительная ИС. Каждая ИС выполняет конкретные функции. Эти функции могут быть простыми или сложными, но все они важны для работы изделия. Печатная плата с десятками ИС чрезвычайно сложна, но только из-за большого числа схем. Разобраться в каждой ИС не составляет труда. К счастью нет необходимости разбираться с работой элементов внутри ИС или БИС. Даже если определено, что не работает какой-либо разряд регистра, заключенного в БИС, то все равно необходимо заменить целиком всю БИС. Поэтому необходимо знать, какие сигналы должны по­ступать на входы ИС, что с ними происходит в ИС, и какие сигналы в ре­зультате работы должны появиться на выходе.

Все ИС на ПП расположены в определенном порядке. Для обслужива­ния на уровне ИС необходима диаграмма, показывающая неисправность, которая возникает при выходе той или иной ИС из строя. При неисправно­сти появляется симптом, и диаграмма показывает, какая ИС соответствует данному симптому. Когда из диаграммы известны подозрительные ИС, не­обходимо найти дефектную ИС.

Типичный поиск неисправности сложных систем происходит следующим образом. По определенной программе вы­полняются диагностические тесты микросхем с инициа­лизацией различных регистров ИС. Процессор заставляет дефектную ИС выполнять несложные действия. Если ИС не проходит тест, устанавливается флажок, и на экране появляется сообщение о неисправности. Для более полного понимания сути неисправности дополнительную информацию можно получить из блок-схемы изделия. Она позволяет перейти от чисто механического ремонта к логическому анализу неисправ­ности и выявить истинную причину отказа.

Схема размещения, блок-схема и принципиальная схема по­казывают одни и те же ИС. Схема размещения сообщает физическое располо­жение микросхем. Ее можно использовать для быстрых проверок. Блок-схема прида­ет смысл схеме размещения. Принципи­альные схемы детализирует блок-схему. Эти три схемы содержат всю необхо­димую информацию по обслуживанию. С их помощью можно поставить диаг­ноз, найти подозрительную ИС и провести измерения на ее контактах.

Ремонт и отладка плат . При ремонте электронного оборудования необходимо руково­дствоваться следующими принципами.

1. Любые действия, связанные с ремонтом электронного оборудова­ния, предваряются отключением питания.

2. Выводы о неисправностях должны делаться после того, как установлено, что все элементы коммутации и разъемы подключены пра­вильно и имеют контакт, а кабели не имеют обрывов.

3. Поскольку большинство электронных модулей построены на комплементарной МОП-технологии, критичных к стати­ческому пробою, перед доступом к узлам электроники следует снять с тела статический заряд, коснувшись технологического корпуса. Проводить рабо­ты по монтажу следует с установленным на руку браслетом съема статиче­ского электричества. Монтажные и наладочные работы не проводить в помещениях с полами, конденсирующими статический заряд, или увлажнять рабочее помещение.

4. В силу разрушительного действия переходных процессов временная задержка между отключением и последующим включе­нием питания должна составлять не менее 30 с.

5. При ремонте не следует обрывать нагрузку. Это создает повышенную мощность рассеивания на выходном активном элементе либо искажает картину снимаемых параметров.

Иллюзию неработающего источника часто создает чрезмерная нагруз­ка. Если возможно, следует посекционно отключать потребители (последовательное изъятие карт из слотов, с отключением блока питания). Замеры питающего на­пряжения лучше проводить на самих ИС или после переходных разъемов.

Для установки БИС используют панельки (chip sockets), установка и изъятие БИС из которых может проводиться специальными подъемниками — экстракторами. Техника выпаивания DIP-корпусов заключается в выкусывании ножек с последующим выпаиванием. Локальный перегрев монтажа паяльником в 30 Вт и выше может приводить к расслоению и обрывам дорожек, перегревам соседних элементов. В большинстве случаев удобен па­яльник 18 Вт с теплоотводом либо с газовым нагревателем. Нельзя пере­гревать элементы, но и не допускать «холодных» паек, проявляющих себя по истечении определенного времени. При работе со сквозным монтажом для одновременного прогрева всех ножек ИС и транзисторов применяют специальные насадки на паяльники.

При ремонте рекомендуется пользоваться сигнатурными логическими ана­лизаторами и интерфейсными тестерами. Существуют универсальные и специализированные приборы сервисного оборудования для ремонтных фирм с широким диапазоном функционального применения, позволяющие измерять параметры линий и модулей, скорость обмена и соотношение сиг­нал — помеха, проверять структуру форматов информационных сообщений. Сигнатурные анализаторы располагают собственной системой команд, кон­троллером и не­большой памятью. Подключают данные приборы либо через последовательный интерфейс (RS-232), либо через парал­лельный (IEEE-488, шина интер­фейса общего назначения). Один из вариантов диагностирования изделий — подключение ПК, обеспечивающего функции анализатора неисправностей в системе.

Приборы могут стыковаться с различными платами с помощью набора сты­ковочных элементов (драйверов-сенсоров), а также подключаться непо­средственно к элементам на плате с помощью группы клипсов и активных щупов. Для правильной настройки на конкретную плату электроники ис­пользуют базу данных, в которой находятся электрические и конструктивные параметры, топология, система питания и другие сведе­ния. Программные средст­ва являются разработками фирм-изготовителей тестеров.

Применяются также логические пульсаторы — устройства, предназначенные для формиро­вания импульсов различной длительности, которые вводятся в проверяемую схему, и логические щупы (пробники) устройства, предназначенные для ин­дикации логических уровней ИС. Кроме индикации единиц и нулей требуется индикация серий импульсов. Настройка на уровни и часто­ту следования проводится индивидуально для каждого типа плат.

Общие положения. При обнаружении и устранении неисправностей на электропоезде локомотивные бригады должны руководствоваться Правилами техники безопасности при эксплуатации моторвагонного подвижного состава, а также инструкциями и приказами МПС и дороги, связанными с техникой безопасности и безопасностью движения поездов.

Как показывает статистика, порчи электропоездов в пути следования остаются еще на высоком уровне. Более половины всех неисправностей происходит по вине ремонтных бригад, определенный процент неисправностей возникает из-за неправильной эксплуатации электропоездов локомотивными бригадами. По видам оборудования неисправности электропоездов распределяются в следующем процентном отношении: механическое оборудование — 47, электроаппараты к электрические цепи — 26, тяговые двигатели — 17 и вспомогательные машины — 10.

Наибольшее число порч механического оборудования происходит из-за повреждения ходовых частей электропоезда: бандажей колесных пар, резино-кордовых муфт, редуктора, букс колесных пар, заземляющего устройства, автосцепного оборудования и авторегуляторов.

Отклонение технологических параметров от нормативных во время изготовления, монтажа и сборки оборудования, а также во время его ремонта приводит зачастую к неисправностям в процессе эксплуатации.

Для улучшения технического состояния электропоездов, уменьшения порч в пути следования необходимо совершенствовать организацию ремонта и техническое обслуживание электропоездов, проводить техническую учебу среди ремонтных и локомотивных бригад.

Ремонтный персонал при заводских и подъемочных ремонтах должен подбирать тяговые двигатели по характеристикам. Это способствует более равномерному распределению нагрузок между параллельными группами тяговых двигателей и тем самым создает условия безбоксовочной работы моторных вагонов, увеличивая мощность электропоезда. Характеристики тяговых двигателей оказывают особое влияние на работу электропоезда ЭР2Р при рекуперативном торможении. Процесс рекуперации проходит хорошо там, где все четыре моторных вагона в поезде работают синхронно.

На электропоездах необходимо подбирать колесно-моторные блоки не только на каждом моторном вагоне, но и между моторными вагонами всего поезда, стремясь к тому, чтобы тяговые усилия каждого моторного вагона по возможности были одинаковыми и не было перегрузки отдельных моторных вагонов поезда.

Расхождение токов тяговых двигателей зависит от сопротивления обмоток магнитопровода и совпадения магнитных характеристик, подбора шунтирующих резисторов, который должен производиться в зависимости от сопротивления индуктивных шунтов и обмоток возбуждения двигателей, от совпадения диаметров бандажей колесных пар. Расхождение в характеристиках тяговых двигателей необходимо компенсировать подбором диаметров бандажей колесных пар. К двигателям, у которых скоростные характеристики выше, надо подбирать колесные пары с меньшим диаметром и, наоборот, колесные пары с большим диаметром ставить в комплекте с двигателями менее быстроходными.

Механическое оборудование. Повреждение механического оборудования в пути следования, как правило, приводит к значительным задержкам поездов и может вызвать серьезные последствия с точки зрения безопасности движения. Очень важно своевременно обнаружить неисправность механического оборудования, и большая ответственность за это лежит на локомотивных бригадах, которые ежесуточно производят технический осмотр электропоезда. Кроме, этого, локомотивная бригада перед заступлением на смену обязана встречать электропоезд и методом просмотра и прослушивания его ходовых частей обнаруживать возможные неисправности в механическом оборудовании.

Во время движения помощник машиниста должен проходить по вагонам электропоезда и по характерным стукам также определять неисправности редуктора, тягового двигателя, резино-кордовой муфты, автосцепного устройства, рычажно-тормозной передачи и особенно колесных пар, на которых могут

образовываться ползуны. Ползуны (выбоины) на поверхности катания колесных пар или заклинивание колесных пар могут появиться из-за неправильного управления тормозами в пути следования, неисправности тормозных приборов и рычажно-тормозной передачи, разрушения опорных подшипников редуктора, подшипников малой шестерни, роликовых буксовых подшипников, якорных подшипников тяговых двигателей или других неисправностей, поломки зубьев тяговой передачи.

Если в пути следования помощник машиниста на слух определяет, что на каком-либо из вагонов есть ползун (выбоина) на колесной паре (по силе удара опытный помощник машиниста может примерно определить и размер ползуна), локомотивная бригада принимает решение: довести поезд до конечной станции или сделать остановку на станции для осмотра колесной пары. Если машинист по сигнальной лампе РБ или реакции поезда обнаружит заклинивание колесной пары, он должен немедленно остановить поезд, проинструктировать помощника машиниста об осмотре поезда и соблюдении правил техники безопасности, а затем высадить его со стороны, где нет движения. Затем машинист приводит поезд в движение со скоростью 3-5 км/ч и наблюдает в зеркало обратного вида за сигналами, подаваемыми помощником.

Обнаружив заклиненную колесную пару, помощник машиниста подает сигнал остановки. Машинист, остановив поезд, соблюдая правила техники безопасности и безопасности движения, осматривает колесную пару и определяет причину заклинивания. Если такой причиной является неисправность тормозных приборов, машинист отключает неисправные приборы, выпускает сжатый воздух из запасного резервуара данного вагона. При неисправности рычажно-тормозной передачи он распускает ее с помощью авторегулятора, вращая его против часовой стрелки, предварительно нажав на фиксатор. В случае заклинивания колесной пары моторного вагона из-за неисправности тягового двигателя (разрушение подшипников, излома вала якоря и др.) необходимо отсоединить упругую муфту. Если на поверхности катания колесных пар появился ползун (выбоина) глубиной менее 0,7 мм, машинист может продолжить движение с установленной скоростью. В зимнее время при очень низких температурах скорость движения необходимо снижать. При глубине ползуна от 0,7 до 1,5 мм разрешается движение поезда со скоростью не более 25 км/ч, при температуре ниже -30 °С — не более 15 км/ч. При глубине ползуна более 1,5 мм порядок следования поезда определяется управлением дороги.

При заклинивании колесных пар, связанном с разрушением подшипников редуктора или подшипников малой шестерни, изломом зубьев тяговой передачи или разрушением буксовых подшипников, когда вращение колесной пары невозможно, локомотивной бригаде необходимо попробовать расклинить колесную пару методом кратковременного движения поезда вперед и назад. Если это не помогает, то машинист определяет возможность движения поезда с заклиненной колесной парой. При движении такого вагона необходимо освободить его от пассажиров. На неисправном вагоне остается помощник машиниста, который через люк должен наблюдать за колесной парой. Поезд в этом случае может следовать только до ближайшей станции со скоростью не более 5 км/ч. На станции неисправный вагон необходимо отцепить.

Глубину ползуна колесной пары определяют абсолютным шаблоном путем сравнения замеров в средней части ползуна и в другом месте по этой же линии, где нет ползуна. При отсутствии абсолютного шаблона глубину ползуна допускается определять по его длине:

Длина ползуна, мм. 50 60 75 85 100

Глубина ползуна, мм. 0,7 1,0 1,5 2,0 3,0

Электрическое оборудование. Неисправности в электрических цепях электропоездов чаще всего возникают при неквалифицированном уходе за электрическими машинами и аппаратами или неправильной их эксплуатации, а также в результате низкого качества ремонта и изготовления отдельных деталей и узлов. В этих случаях неисправности проявляются в начальный период эксплуатации электропоезда, после ремонта или изготовления.

Чаще всего нормальная работа электрических цепей электропоезда нарушается в результате следующих причин: короткое замыкание, вызванное пробоем или перекрытием изоляции; излом токоведущих частей или потеря контакта в соединениях; ослабление крепления проводов и, как следствие, замыкание проводов или отгорание их; обрыв проводов или потеря контакта в месте соединения; понижение напряжения источников питания (аккумуляторной батареи или генератора управления); нарушение коммутации электрических машин; постороннее питание проводов.

Многие нарушения работы цепей и неисправности аппаратов обнаруживает машинист или помощник машиниста без каких-либо специальных приборов по сигнальным лампам, поведению электропоезда (медленный разгон, большие толчки, оттяжки и др.), по наличию следов разрушений, искрению, запаху горелой изоляции и т. д.

При возникновении неисправности на линии машинист должен уметь правильно оценить обстановку и применить быстрейший способ ликвидации неисправности с минимальным временем стоянки на перегоне, не допуская сбоя графика движения.

В большинстве случаев для отыскания повреждения проверяют действие оборудования электропоезда из кабины управления с одновременным анализом условий и признаков, при которых появилась неисправность. После этого, соблюдая правила безопасности, осматривают наиболее уязвимые места электрической цепи (предохранители, места подключения проводов, блок-контакты и т. п.), а также производят пробные включения аппаратов. Если при внешнем осмотре не удается обнаружить неисправность, электрическую цепь «прозва-нивают».

Определение места к. з. Повреждение ищут (при наличии времени) в пункте оборота или в основном депо путем осмотра оборудования, «прозвонки» его цепей или измерения сопротивления изоляции мегаомметром. Если неисправный участок цепи не влияет на работу всего поезда, то его отключают.

Определение места обрыва в цепи. Сначала проверяют предохранитель, защищающий данную цепь, затем блок-контакты аппаратов. Обрыв самих проводов случается довольно редко, и в основном это происходит в местах подключения их к аппаратам и машинам. Проверку целостности проводов цепей управления осуществляют мегаомметром или омметром.

Определение неисправностей по сигнальным лампам. Во время ведения поезда машинист должен внимательно следить за показаниями сигнальных ламп на пульте управления. При хорошем знании схем и принципов взаимодействия аппаратов по сигнальным лампам можно определить большинство неисправностей.

Электропоезда работают по системе многих единиц, при этом неполадки в работе моторного вагона, как правило, не вызывают сбоя графика движения. Но при эксплуатации электропоездов могут возникнуть такие неисправности, при которых теряется управление поездом из головного вагона. Это приводит к большим задержкам, а иногда к полному сбою графика движения. Рассмотрим некоторые из таких неисправностей.

При переводе главной рукоятки контроллера машиниста в любое из поездных положений поезд в движение не приводится. Для того чтобы быстро и точно определить характер неисправности, надо воспользоваться показаниями сиг-

нальной лампы ЛК (рис. 238), которая в этом случае может не гореть, гореть, загораться и гаснуть.

Рассмотрим первый случай, когда лампа ЛК не горит. Это означает, что на провода контроллера машиниста не подается напряжение. Причинами могут быть: перегорание предохранителя Пр8 на 45 А; отсутствие контакта в кнопках Возврат БВ и РП, в блок-контакте РПТ, в блок-контакте контактора К4, который находится на реверсивном валу, контакторе контроллера машиниста (провод 4А); обрыв подводящих проводов. Работающие вспомогательные машины свидетельствуют о том, что цепь от провода 15 до предохранителя Пр8 исправна. Для определения целостности предохранителя Пр8 нужно кнопкой ВУ отключить БВ, а затем снова включить его. Если БВ повторно включается, значит, предохранитель цел.

Проверяют надежность контакта реле РПТ, контактора К4 и провода 4 контроллера машиниста. Если в этих точках неисправность не обнаружена, дальнейшее ее отыскание нецелесообразно, так как для вскрытия пульта и прозвонки проводов требуется много времени. Для выхода из создавшейся ситуации машинист может действовать двумя способами: поставить перемычку от провода 15 тормозного переключателя на шину КВ. В этом случае предохранитель Пр9 надо усилить, увеличив калиброванную вставку до 45 А, поставить перемычку с провода 15 на провод 2 на соединительной планке; собрать аварийную схему в хвостовом вагоне, блокируя контроллер машиниста,

Рис. 238. Принципиальная схема цепей контроллера машиниста и электропневматического тормоза электропоезда ЭР2 до № 1028

т. е. подать напряжение на головной контроллер. Необходимо помнить, что цепь при этом соберется только при постановке главной рукоятки контроллера в головном вагоне в первое положение (в маневровом положении цепь не соберется, так как на контроллер машиниста головного вагона напряжение поступает по проводу 10 (рис. 239 и 240), а провод 2 от контроллера хвостового вагона напряжения не получит, так как разомкнут блок-контакт КБ).

Напряжение на контроллер машиниста головного вагона при этом поступает по цепи: провод 15, ВУ, провод 22 головного вагона, провод 22 хвостового вагона, кнопка Возврат БВ и РП, блок-контакт РПТ, шина КВ хвостового вагона, блок-контакты в проводах 10, 4, блок-контакт КБ, провод 2А, блокировка ключа ЭПК, провод 2 моторного вагона и далее согласно схеме моторного вагона.

Рассмотрим второй случай, когда лампа ЛК загорается и не гаснет, т. е. силовая цепь не собирается. Причинами этого могут быть отсутствие контакта

Рис. 239. Схема блокирования контроллера машиниста (КМ) хвостового вагона ЭР2 до № 1028 при отсутствии питания на КМ головного вагона (а) и обрыве проводов и отсутствии контакта в блокировках КМ (б)

Рис. 240. Схема цепей контроллера машиниста и реверсора электропоезда ЭР2 с № 1028

в блок-контакте КБ; отсутствие контакта в ключе ЭПК или обрыв провода 2 между головным и следующим вагоном; отсутствие контакта в блок-контакте контроллера машиниста (провод 9).

Прежде всего необходимо убедиться, что тормозная магистраль заряжена до установленного давления и БВ восстановлены. Негорящая лампа БВ еще не говорит о том, что БВ включился, так как лампа может перегореть.

Проверяют состояние контактов блок-контактов КБ и в проводе 9. Если они исправны, на рейке зажимов в «радиорубке» ставят перемычку между проводами 2 и 10 или между проводами 1 и 2,

Переводом главной рукоятки контроллера машиниста в первое или второе положение проверяют наличие контакта в ЭПК. Если и в этом случае не удается привести поезд в движение, дальнейшее отыскание неисправности нецелесообразно. Необходимо собрать аварийную схему, блокируя контроллер машиниста в хвостовом вагоне, как и в предыдущем случае.


Цепь тока (при обрыве провода 2) следующая: провод 15 (см. рис. 197, 198 и 199) головного вагона, выключатель управления ВУ, предохранитель Пр8, кнопка Возврат БВ и РП, провод КВ, блок-контакт РПТ, блок-контакт в проводе 4А, блок-контакт КБ, блок-контакт реверсивного провода 11, провод 12 хвостового вагона, провод 2А, блокировка ключа ЭПК и далее провод 2 на моторные вагоны. Линейные контакторы при этом должны включиться.

При обрыве проводов 1,3 я 10 напряжение на них подается через контроллер хвостового вагона, провод 22, предохранитель Пр8, кнопку Возврат БВ и РП, контакт РТ.

Для сбора аварийной схемы методом блокирования контроллера машиниста в хвостовом вагоне поезда необходимо: перекрыть кран на трубопроводе клапана безопасности; развернуть реверсивный барабан в положение Назад; перевести главную рукоятку контроллера машиниста из нулевого положения в одно из поездных положений (лучше во второе), убедившись в том, что при освобождении рукоятки разомкнулся блок-контакт КБ: перекрыть кран на трубопроводе тормозной магистрали, ведущей к ЭГТК, и вынуть ключ ЭПК.

Для быстрейшего освобождения перегона возможен и такой вариант: поставить перемычку с /5-го провода на провод 2 сначала головного вагона, а затем моторного или провод 9 соединить с проводом 30 на головном и моторном вагонах. Если поезд придет в движение, то отсутствует контакт в проводе 2 или 9.

Рассмотрим третий случай, когда лампа ЛК загорается и гаснет, а поезд в движение не приходит. Причиной этого является отсутствие напряжения на

проводе // из-за плохого блок-контакта реверсивного барабана или обрыв провода // между головным и следующим вагонами. При таких неисправностях необходимо проверить движение поезда назад. Если оно возможно, то неисправна цепь провода //.

Другой причиной может быть подача напряжения на провод 7, по которому напряжение поступает на вентиль возврата БВ и тем самым обеспечивается непрерывное поступление сжатого воздуха в цилиндр БВ. При этом силовые контакты замкнуться не могут, хотя сигнальная лампа БВ при этом не горит, контакты БВ не замкнуты и силовая цепь отключена.

Убедиться в том, что провод 7 получил постороннее, питание, можно, нажав на кнопку Возврат БВ и РП и отключив кнопку ВУ. Если вспомогательные машины будут продолжать работать до тех пор, пока кнопка Возврат БВ и РП нажата, то провод 7 получает постороннее питание. Наличие напряжения на проводе 7 можно также проверить контрольной лампой. Если провод 7 получил постороннее питание на линии, где нет времени устранить неисправность, рекомендуется принять следующие меры.

В середине поезда выключить соответствующее маждувагонное соединение и после этого определить, где происходит подпитка — в головной или хвостовой части поезда. Проверить это можно контрольной лампой на рейках зажимов двух соседних вагонов, где разъединено междувагонное соединение.

Если постороннее питание оказалось в хвостовой части поезда, то, не включая междувагонное соединение, поезд можно довести до станции или пункта оборота при помощи моторных вагонов, оставшихся в головной части.

Если под напряжением окажется провод 7 головной части поезда, то необходимо из головки междувагонного соединения вывернуть палец провода 7 или отсоединить провод 7 на рейках зажимов данного вагона, опять включить междувагонное соединение, из задней кабины включить БВ и вести поезд при помощи моторных вагонов, оставшихся в хвостовой части поезда.

При наличии времени методом поочередного разъединения междувагонных соединений контрольной лампой можно определить точное место постороннего питания.

На электропоездах ЭР2, начиная с№ 1028, произошли некоторые изменения схем головных вагонов. Поэтому описанные выше случаи приемлемы для этих поездов с учетом соответствующих поправок: вместо контакта КБ в проводе 2А включен блок-контакт РКБ (рис. 240); если лампа ЛК горит и не гаснет, неисправность может быть в контактах РКБ и КБ (возможен также обрыв катушки РКБ); в цепях тормозного переключателя установлен предохранитель Пр15. При. обрыве провода 2 или отсутствии контакта в ключе ЭПК на головном вагоне аварийную схему на хвостовом вагоне можно собрать следующим образом: ключ ЭПК поставить в рабочее положение; повернуть реверсивный барабан в положение Назад.

При отсутствии контакта в кнопке Возврат БВ и РП, блок-контакте реверсивного вала, предохранителе Пр8, в контакте провода 9 блокирование контроллера машиниста в хвостовом вагоне обязательно. При этом аварийную схему собирают так: ключ ЭПК ставят в рабочее положение; поворачивают реверсивный барабан в положение Назад; рукоятку контроллера машиниста устанавливают в первое или второе положение.

Если нарушен контакт РКБ, то при собранной аварийной схеме в хвостовом вагоне поезд в движение не придет, так как блок-контакт РКБ в хвостовом вагоне останется разомкнутым. В этом случае надо восстановить контакт реле РКБ, а если произошел обрыв проводов этой цепи, поставить перемычку между проводами 4А и 2А на контроллере машиниста.

Рассмотрим случаи определения неисправностей по показаниям сигнальной лампы реле напряжения (РН). Лампа белого цвета загорается в случаях опускания или поломки одного из токоприемников, при снятии или резком пони-

Рис. 24 Г. Порядок действий машиниста при аварийном снятии напряжения с контактной сети

жении напряжения в контактной сети, при перегорании высоковольтного предохранителя или резисторов в цепи катушки реле напряжения.

Очень важно быстро установить, где произошло к. з. — на контактной сети, другом электропоезде (электровозе) или на одном из моторных вагонов электропоезда, который ведет машинист. С этой целью на дорогах устанавливается порядок дейст- «

вия локомотивной бригады и энергодиспетчера при.снятии напряжения. Например, на Московской дороге разработана Инструкция о порядке действий локомотивных бригад и энергодиспетчеров при аварийных снятиях напряжения в контактной сети. Согласно этой Инструкции при отсутствии напряжения в контактной сети машинист через 1 мин снимает нагрузку, по истечении 2 мин опускает токоприемники, не позднее 4 мин с момента снятия напряжения останавливает поезд с учетом профиля пути вблизи мест расположения телефонной связи.

Локомотивная бригада должна учитывать, что с момента снятия напряжения с контактной сети в течение 4 мин диспетчер должен опробовать контактную сеть. С 4 до 10 мин машинисту дается возможность поочередного поднятия токоприемников для выявления неисправности на электропоезде. Схематично действие локомотивной бригады при снятии напряжения показано на рис. 241.

Локомотивная бригада должна наблюдать за состоянием крышевого и подвагонного оборудования в период поочередного подъема и опускания токоприемников. Примерную зону повреждения можно установить по запаху горелой изоляции, по искрению, появлению дыма от изоляции, по видимому разрушению деталей. В случаях когда со снятием напряжения срабатывает защита на электропоезде, локомотивная бригада по отключению защиты ориентировочно может установить место повреждения. Однако очень часто снятие напряжения с контактной сети происходит сразу после подъема токоприемника или же в пути следования без срабатывания защиты на электропоезде, в этом случае можно предполагать, что к. з. произошло в токоведущих частях крышевого оборудования до БВ и высоковольтного предохранителя, а именно в изоляторах токоприемника, индуктивном,или емкостном фильтрах, в грозовых разрядниках, в стойке БВ или к. з. в кабелях. Возможно также разрушение высоковольтного предохранителя на 30 А и закорачивание на корпус ящика с высоковольтным предохранителем. Это, как правило, происходит при нека-либрованных вставках. В этих случаях особую опасность представляет пережог контактного провода при стоянке электропоезда.

В отдельных случаях локомотивной бригаде приходится использовать другие методы проверки участков цепей, сопоставлять признаки неисправности.

Примеры. Рассмотрим значения установившегося тока к. з. в трех точках силовой цепи тяговых двигателей, а затем сопоставим внешние признаки, указывающие примерное место к. з. 1. Пробой изолятора иидуктивиого фильтра иа крыше моторного вагона (рис. 242). Ток короткого замыкания в этом случае

/н.8=и/(/гКс + /г„.з. + /?кф + *Р + «и) = ^/(0,17 + 0^4-^0,009 + 0,046 + 0,023)==.

3000/0,389 = 7690 А,

0,170 Ом — сопротивление контактных проводов на участке от электропоезда до тяговой подстанции;

0,14 Ом — переходное сопротивление в месте короткого замыкания (пробитого изолятора, кузова вагона, рам тележек и ходовых частей моторного вагона);

/>кф ж 0,009 Ом — сопротивление катушки индуктивного фильтра; /?р да 0,046 Ом — сопротивление рельсовой цепи;

/?п да 0,023 Ом — сопротивление преобразовательных агрегатов на тяговой подстанции.

2. Пробой стойки мостового контактора на 6-й позиции вала контроллера машиниста. Контактор 5 реостатного контроллера включен.

Принимаем сопротивления #кс, &к.а., Якф, Яр, #п такими же, как и в первом случае, сопротивление секции Яь -= 1,47 Ом, а сопротивление обмоток якоря и дополнительных полюсов / и // тяговых двигателей Я, п — 0,342 Ом. Тогда ток короткого замыкания

/кз 3000″(0.17 4- 0,14 + 0,009 + 0,046 -4- 0,023 4- 1,47 \- 0,342) -= 3000 2,2 да да 1363 А.

Необходимо учесть, что э. д. с. в обмотках якорей двигателей / и // отсутствуют, так как исчез магнитный поток в главных полюсах.

3. Пробой изоляции кронштейна плюсового щеткодержателя двигателя IV при введенных секциях резисторов, маневровом положении рукоятки контроллера машиниста и последовательном соединении тяговых двигателей.

Сопротивление резисторов составляет #общ = 17,66 Ом. Сопротивление обмоток якоря и дополнительных полюсов /, //, /// тяговых двигателей Я[И1П = 0,513 Ом. Тогда ток короткого замыкания

/ка = 3000/(0,17 + 0,14 + 0,009 + 0,046 + 0,023 -[- 0,513 4- 17,66) = 3000/18,56 да да 160 А.

Сопротивления в местах короткого замыкания рельсовой цени и на подстанции во всех трех случаях взяты одинаковыми для удобства подсчета. Сопротивление проводов и аппаратов моторного вагона не учитываем, так как оно сравнительно мало.

Во всех трех случаях короткого замыкания будут разные признаки. В первом случае к. з. обязательно будет сопровождаться исчезновением напряжения в контактной сети, искрением на крыше, прекращением работы всех вспомогательных машин. Загорится сигнальная лампа РН на пульте управления, стрелка вольтметра покажет нуль. Однако сигнальные лампы защитных аппаратов электропоезда будут указывать на исправное состояние цепей и машин.

Во втором случае отключаются БВ и реле перегрузки РП1, напряжение с контактной сети при этом может и не сниматься, вспомогательные машины будут работать. Иногда возможно и исчезновение напряжения в контактной сети.

В третьем случае при маневровом или других положениях рукоятки контроллера машиниста возможно срабатывание БВ на моторном вагоне через дифференциальное реле. Напряжение с контактной сети сниматься не будет.

Итак, внешними признаками короткого замыкания на электропоезде может служить срабатывание защиты, изменение показаний сигнальных ламп и приборов, а также отключение вспомогательных машин. Если, например, снятие напряжения происходит после включения выключателя управления, то наи-

Рис. 242. Схема прохождения токов при возникновении короткого замыкания в трех точках силовой цепи моторного вагона

более вероятно короткое замыкание в междувагонном соединении, цепях отопления, высоковольтных контакторах вспомогательных машин. Снятие напряжения после восстановления БВ указывает на короткое замыкание в силовой цепи за быстродействующим выключателем.

Локомотивной бригаде необходимо помнить, что загорание сигнальной лампы РН еще не говорит о снятии напряжения с контактной сети, необходимо обращать внимание на вольтметр пульта управления или попробовать включить контроллер машиниста, чтобы убедиться, что напряжение в контактной сети отсутствует.

По сигнальной лампе РБ можно определить; боксование колесных пар на любом из моторных вагонов; разрушение тягового привода между колесной парой и тяговым двигателем; заклинивание одной из колесных пар; сгорание одного из резисторов реле боксования; неправильное соединение выводов одного из тяговых двигателей; возникновение генераторного режима.

Загорание лампы РБ сразу после включения контроллера и погасание после установки контроллера в нулевое положение может свидетельствовать о перегорании резисторов в цепи катушки РБ. Вагон, на котором сгорел резистор реле РБ или неправильно соединены выводы тягового двигателя, отыскивают поочередным отключением РУМ на моторных вагонах.

Генераторный режим тяговых двигателей. В результате пробоя изоляции один или несколько тяговых двигателей начинают работать генераторами, подавая напряжение на остальные соединенные с ними двигатели. Генераторный режим опасен для тяговых двигателей чрезмерно большим током, который разрушает ламели коллекторных пластин. При генераторном режиме машинист может ощущать незначительное подтормаживание поезда с легким подергиванием состава, под колесами видно искрение, а на загрязненных мазутом рельсах — дым. При осмотре колесных пар по кругу катания наблюдаются небольшие ползуны глубиной 0,2-0,4 мм. Генераторный режим возникает чаще всего при пробое изоляции /// тягового двигателя, но он возможен также при заедании электропневматического контактора П1-2 во включенном состоянии, замыкании силовых проводов тяговых двигателей ///, IV или замыкании пусковых резисторов.

Во всех перечисленных случаях генераторного режима не будет, если реверсоры на моторных вагонах будут развернуты в направлении движения поезда. Поэтому необходимо следить за разворотом реверсоров при смене кабины машиниста. Необходимо учитывать, что выключением разъединителей цепей управления неисправного моторного вагона разрывается цепь проводов 11 и 12, с помощью которых подается питание для разворота вала реверсора. Поэтому при неисправности моторного вагона лучше выключить пакетный выключатель БВ вместо РУМ. Для исключения горения ламп БВ и ЛК необходимо подложить изоляцию под блок-контакты 60-60А я 61-61А в РУМ моторного вагона.

Возникновение генераторного режима вследствие повреждения /// тягового двигателя поясняется рис. 243 и 244. В нормальном режиме при движении поезда Вперед (см. рис. 243) ток проходит по цепи: обмотка якоря /// двигателя в направлении ЯЗ к ЯЯЗ и IV тягового двигателя от Я4 к ЯЯ4, контактор реверсора В5, обмотки возбуждения /// и IV тяговых двигателей соответственно от КЗ к К КЗ и от К4 к КК4, контактор реверсора В7 и далее «земля».

При генераторном режиме (см. рис. 244) реверсивный барабан развернут в противоположную сторону, т. е. в направлении Назад и замкнуты силовые контакторы В6, В8, ток при этом пойдет от /// тягового двигателя через силовой контактор реверсора В8, обмотки возбуждения /// и IV тяговых двигателей от КЗ к ККЗ и от К4 к КК4, через контактор реверсора В6, обмотки якоря IV н III тяговых двигателей в обратном направлении от ЯЯ4 к Я4 и к ЯЯЗ, т. е. направление тока в обмотках возбуждения осталось-прежним, а в обмотке

Рис. 243. Прохождение тока нормального режима при движении поезда вперед

якоря изменилось на противоположное. Противоположное направление токов в обмотке якоря IV тягового двигателя соответствует движению вагона Назад, следовательно, IV тяговый двигатель будет стремиться вращаться в сторону, противоположную движению поезда. Неисправность одного из тяговых двигателей приведет к повреждению другого, спаренного с ним, и появлению ползунов на поверхности катания бандажей колесных пар.

Некоторые неиспразности на вагонах электропоезда ЭР2. При неисправностях на головном вагоне в электрических цепях регулятора напряжения, аккумуляторной батареи, генератора управления или преобразователя, при неисправности междувагонного соединения или контактора МК2 (рис. 245) на моторном вагоне и в других случаях потери питания электрических цепей из головного вагона машинист переводит эти цепи на питание от промежуточной секции или хвостового вагона.

Если на моторном вагоне перегорел предохранитель Пр 10, напряжение на провод 20 можно подать по проводу 22 через предохранитель Нр13, провод 22В, контакт выключателя управления моторного вагона, провод 15В, контактор ПРУ. Если перегорел предохранитель Пр13, питание катушки ПРУ данного вагона осуществляется по цепи: провод 15, предохранитель ПрЮ, провод 15В, контакт выключателя управления, провод 22В, катушка ПРУ, провод 30. _

Если на поезде вышел из строя генератор управления головного вагона, то собирают временную схему питания цепей управления от батареи и генера-

Рис. 244. Прохождение генераторного тока при повреждении III тягового двигателя (движение вагона вперед, реверсор развернут на вагоне назад)

Рис. 245-. Объединенная схема цепей управления вспомогательными машинами электропоезда ЭР2

тора ближайшего моторного вагона. С этой целью на моторном вагоне Л1 4 включают пакетный выключатель Управление, при этом замыкается цепь питания поездного провода 22 от секционного провода 15.

Предохранители ПрЮ и Пр13, рассчитанные на ток 15 А, заменяют предохранители на 35 А. При неисправности генератора управления на промежуточном вагоне происходит глубокий разряд аккумуляторной батареи. Для предотвращения этого на моторном вагоне, относящемся к данной секции, включают пакетный выключатель Управление. В результате аккумуляторная батарея будет подзаряжаться по поездному проводу 22 от генератора управления головного вагона. Если повреждена аккумуляторная батарея промежуточного вагона, то для возбуждения вспомогательных машин данной секции необходимо включить пакетный выключатель Управление на моторном вагоне. Но для того чтобы управление вспомогательными машинами осуществлялось из кабины машиниста, необходимо вынуть предохранитель ПрЮ. При повреждении батареи или ее глубоком разряде на одной из секций для облегчения возбуждения вспомогательных машин на поврежденной секции выключают рубильник аккумуляторной батареи.

При нарушении контактов РСБ в междувагонных соединениях включение силового контактора МК2 моторного вагона можно обеспечить с помощью перемычки на соединительной рейке реостатного контроллера между проводами 20Ж и 20Г.

Другие возможные неисправности, их признаки, возможные причины и способы устранения приведены ниже.

1. На всем поезде не восстанавливаются БВ.

Сигнальная лампа БВ на пульте управления не гаснет. Перегорел предохранитель Пр8, нарушен контакт в кнопке Возврат БВ и РП (см. рис. 239). Устранить неисправности. В крайнем случае восстановить БВ из хвостового вагона или кратковременно подать напряжение с. провода 15 на провод 7.

2. На одном из моторных вагонов не восстанавливается БВ.

При восстановлении БВ сигнальная лампа БВ на пульте управления гаснет и снова загорается. Не получает питание провод 15 неисправной секции, не включен рубильник аккумуляторной батареи либо перегорел ее предохранитель Пр1 или Пр2 (см. рис. 245), перегорели предохранители моторного вагона ПрЮ и Пр13, нарушен блок-контакт ДР в цепи проводов 20А и 20Б из-за подгорания контактов вследствие неисправности конденсаторов С2 и СЗ. При пробое этих конденсаторов перегорает предохранитель ПрЗ. Возможно ослабление пружины ДР, которая удерживает якорь в среднем положении. Перекос или загрязнение механизма возврата БВ (на якоре скопилось много пыли).

Отыскать и устранить неисправности.. Временный выход из положения: попробовать включить пакетный выключатель Управление на неисправном вагоне и восстановить БВ.

3. На одном из вагонов не включаются контакторы JIK1 и JIK2.

В рабочем положении контроллера машиниста горит лампа JIK. Проверить и зачистить блок-контакты БВ, РН, АВУ, РК1. Проверить давление в тормозной магистрали. Если неисправность возникла во время движения поезда, необходимо включить кнопку Ручной пуск и перевести вал РК на 1-ю позицию. В пункте оборота проверить контакты на РУМ, в цепи провода 2 — блок-контакт 2-2А, в цепи провода 9 — блок-контакт 9-9А и блок-контакт 22-22А. При неисправности блок-контакта в АВУ временно его зашунтировать. Проверить работу КСП и надежность блок-контактов РК-2-18 и РК1 в цепи 9Б-9А. Попробовать вручную замкнуть мостовой контактор, если после этого замкнется Л К, то неисправность в блок-контакте РК1. Попробовать включить контактор ЛК, нажимая на грибо.к вентиля. Этим проверить наличие сжатого воздуха и отсутствие механических заеданий в приводе.

4. На одном из моторных вагонов срабатывают БВ и РП, буксуют колесные пары (на чистых рельсах).

По амперметру наблюдается бросок тока до 260-300 А. Неисправно реле ускорения (якорь РУ заскочил за регулирующий болт и др.). Устранить неисправность.

5. На одном из моторных вагонов при автоматическом пуске срабатывают БВ и РП.

Реле ускорения не контролирует нормальный ток уставки, так как работает без подъемной катушки. Необходимо проверить надежность контактов на РУМ провода 22, целостность подъемной катушки РУ, надежность контакта ПВ1. Временно можно следовать, применив ручной пуск.

Замедленное выключение мостового контактора или неправильное положение блокировочных контакторов П1-2, вследствие чего переходные контакторы и мостовой остаются замкнуты одновременно. При таком положении реостатный контроллер доходит до 16-й позиции, на которой в силовой цепи создается контур короткого замыкания (см. рис. 171). В этом случае ток короткого замыкания пройдет по цепи: токоприемник, индуктивно-емкостный фильтр, главный разъединитель Б В, ЛК1-2, РП, переходный контактор Я/, контакторы реостатного контроллера 8 и 10, мостовой контактор, контакторы реостатного контроллера 9 и 7, переходный контактор П-2 и далее через счетчик на «землю». В пути следования можно пользоваться ручным пуском или отключить неисправный моторный вагон. В пун к 1 с оборота устранить неисправность, отрегулировать блок-контакт 11Ж-9 и добиться четкой работы мостового контактора.

6. При поднятых токоприемниках электропоезда не работают вспомогательные машины.

Горит лампа БВ. На всех моторных вагонах перегорели предохранители ПрЮ и Пр13. Отсутствует напряжение на проводе 22 в выключателе управления ВУ, отсутствует контакт в низковольтном междувагонном соединении между головным и моторным вагонами. Признаки обрыва провода 22 следующие: при нажатии кнопки Возврат БВ и РП сигнальная лампа гаснет и загорается вновь; при проверке наличия напряжения на проводе 22 в кабине машиниста контрольная лампа будет гореть, в моторном вагоне лампа не горит, отсутствует напряжение на проводе 22. Для устранения неисправности заменить перегоревшие плавкие вставки; включить ручку управления в моторном вагоне, усилив предохранители ПрЮ и Пр13 до 45 А; место обрыва провода 22 обойти, используя свободный провод, сделать это можно в пункте оборота. Временно включить выключатель управления в хвостовой кабине поезда.

7. При постановке реверсивной рукоятки в положение Вперед, а главной рукоятки контроллера машиниста в положение М электропоезд движется назад, при этом наблюдается «звонковая» работа контакторов батареи.

Постороннее питание провода 12 в головной части поезда или провода И в хвостовой части поезда.

При наличии времени, разъединив междувагонные соединения или отсоединив провода от реек с зажимами, отыскать вагон, на котором осуществляется постороннее питание, при этом на прицепных вагонах осмотреть реле ПРА. При отсутствии времени опустить все токоприемники электропоезда, затем поочередно поднять на двух или трех моторных вагонах токоприемники, подложить изоляцию на РУМ под блок-контакт 12-12А провода 12. В пути следования эту операцию можно продолжить на других вагонах. При этом необходимо обращать внимание, как расположены моторные вагоны. Если токоприемники в передней части вагона, изоляцию подкладывают под провод 12, если в задней части вагона, то изоляцию подкладывают на РУМ под блок-контакт в проводах 11-11А.

8. При постановке реверсивной рукоятки в положение Вперед, а главной рукоятки контроллера в положение М:

1) поезд медленно набирает скорость, везет один или несколько вагонов;

2) движение поезда вперед не происходит, один или несколько вагонов двигаются назад. Происходит «звонковая» работа контакторов батареи.

Сигнализация Л К работает нормально, т. е. лампа Л К загорается и гаснет.

Одновременно подается напряжение на провода 11 и 12 вследствие их замыкания или постороннего питания. При включенном контроллере убедиться в наличии напряжения на указанных проводах.

Отыскать неисправный вагон методом, указанным выше, и устранить неисправность.

При отсутствии времени подложить изоляцию на РУМ под провод 12 на моторных вагонах, стоящих токоприемником вперед по направлению движения, и под провод //на моторных вагонах, стоящих в поезде токоприемниками назад.

9. При постановке главной рукоятки КМ в первое положение электропоезд продолжает движение в маневровом режиме. Скорость поезда не развивается более 40 км/ч. Причинами неисправности могут быть: отсутствие блок-контакта КЗ в контроллере машиниста (Кб на электропоездах до № 1028); обрыв провода 10 между головным и моторным вагонами, потеря контакта в междувагонных соединениях провода 10. Необходимо поставить перемычку с провода 2 на провод 10 на головном или моторном вагоне. В хвосте поезда поставить перемычку с провода 2 на провод 10 или заблокировать контроллер в хвостовом вагоне.

0. При включении ВУ или главной рукоятки контроллера машиниста в одно из рабочих положений перегорает низковольтный предохранитель П8 (В У) в головном вагоне.

Поезд теряет управление. Наличие короткого замыкания в одном из поездных проводов 1-5, 10-12 и наличие «земли» в проводе 9 или 30. При отыскании неисправности необходимо определить, в каком положении рукоятки контроллера происходит перегорание предохранителя ВУ. Рассмотрим три варианта:

1) предохранитель перегорает после включения ВУ, рукоятка контроллера машиниста находится в нулевом положении. Это означает, что короткое замыкание произошло в проводе К4. При наличии времени отыскать к. з. и устранить неисправность. При отсутствии времени подложить изоляцию под контакт К4 в головном вагоне и соединить временной перемычкой на рейке с зажимами провода 2 и 22;

2) предохранитель перегорает после постановки реверсивной рукоятки в положение Вперед или Назад. Главная рукоятка находится в нулевом положении. Это означает, что к. з. в плюсовой шине главного вала контроллера машиниста в кулачковых контактах К4, 5-9. Отыскать место к. з. и устранить неисправность. При отсутствии времени сделать то же, что и в варианте 1;

3) предохранитель перегорает после постановки рукоятки главного вала контроллера в одно их рабочих положений.

Осмотреть контроллер машиниста. К. з. вероятно из-за непосредственного касания контактов КМ (выпадания валика или ослабления). При обнаружении неисправности устранить. Если в контроллере к. з. не обнаружено, необходимо определить, при каком положении рукоятки контроллера перегорает предохранитель Пр8. Если это происходит при втором, третьем или четвертом положении, следовать до конечного пункта, поставив рукоятку контроллера в первое положение.

При к. з. в проводах 2 или 11 необходимо их разъединить в коробке зажимов радиорубки головного вагона и подать напряжение в радиорубке хвостовой кабины с проводов 15, 16 на провод 2 или 12. Необходимо учитывать, что в случае к. з. в хвостовых вагонах предохранитель ПрЗ может и не перегорать, но при включении контроллера будет гореть лампа Л К. Это говорит о том, что в электропоезде некоторые вагоны не везут. В этом случае можно разъединить

междувагонное соединение в середине поезда и осуществлять движение на исправной головной части поезда. В пункте оборота отыскать неисправный вагон, отсоединить провод с двух сторон и использовать вместо него один из свободных проводов.

11. При включении контроллера машиниста один из моторных вагонов не везет.

Сигнализация работает нормально. Сигнальная лампа ЛК загорелась и погасла. В поезде ощущаются толчки или оттяжки. После разгона поезда на автоматическом режиме включить кнопку Ручной пуск и поставить главную рукоятку контроллера в положение 2 А, а затем ЗЛ. При этом на пульте управления загорится сигнальная лампа ЛК, это говорит о том, что на одном из моторных вагонов не включился мостовой контактор. На стоянке необходимо зачистить блок-контакты 11Б-11Д, ЛК1-2, 11Ж-9А, П1-2, проверить крепление проводов к зажимам.

12. При отправлении с конечного пункта после смены кабины один из моторных вагонов не везет.

Горит сигнальная лампа ЛК. В поезде ощущаются толчки или оттяжки. Один из реверсоров нечетко зафиксировался в положении Вперед или Назад и соответствующий блок-контакт 11А-11Б или 12А-12Б не включился. На остановочном пункте затормозить электропоезд, реверсивную рукоятку перевести в положение Назад, главную рукоятку кратковременно поставить в положение М, после чего вновь развернуть реверсоры в положение Вперед.

13. При постановке главной рукоятки КМ в положение М срабатывают Б В и РП на одном из моторных вагонов.

Сигнальные лампы БВ и РП на пульте управления загораются при включении КМ. После восстановления БВ и РП при включении КМ вновь срабатывает защита. Причины: короткое замыкание в цепи пусковых резисторов; в одном из тяговых двигателей (замыкание проводов на корпус, пробой кронштейна или изоляторов, междувитковое замыкание обмоток дополнительных полюсов или якоря, пробой или замыкание проводов в соединительной коробке); пробой стоек линейных или мостовых контакторов, одного из индуктивных шунтов на корпус, чаще всего первого, так как он находится под напряжением 3 кВ. Неисправный вагон необходимо отключить (см. с. 156), по прибытии в пункт оборота осмотреть указанное оборудование, определить причину и по возможности устранить неисправность. Например, при пробое индуктивного шунта необходимо отсоединить один из концов провода 213 (215) со стороны реверсора или реостатного контроллера и снять провод 30 с контактора III1-2, как показано на рис. 246. После этого указанный вагон можно эксплуатировать без ослабления возбуждения.

14. При постановке главной рукоятки КМ в третье положение срабатывает БВ и РП на одном из моторных вагонов.

На пульте управления загораются сигнальные лампы Б В и РП. Причины: короткое замыкание в III или IV тяговом двигателе, междувитковое замыкание индуктивного шунта; межэлементное замыкание пусковых резисторов, медленное отключение мостового контактора.

Временно подложить изоляцию под контакт провода 3 в РУМ на неисправном вагоне.

По прибытии в пункт оборота осмотреть указанное оборудование неисправного вагона, определить причину и по возможности устранить неисправность.

15. При большой скорости движения срабатывает- БВ и РП.

Иногда возможно кратковременное загорание лампы РБ. Причины: неудовлетворительное состояние двигателей (неисправные подшипники, сильное биение, выработка коллектора, плохой токосъем на коллекторе или межламельное замыкание), большая разница в скоростных характеристиках тяговых двигателей, по прибытии в депо сделать запись в книгу ремонта, так как на линии устранить невозможно.

16. Самопроизвольное вращение валов РК на всех моторных вагонах поезда.

Сигнальная лампа ЛК периодически загорается и гаснет. Аварийное замыкание одного из контактов РК. Вести поезд можно, применяя ручной пуск. Устранить замыкание контактов.

17. Самопроизвольное вращение вала РК на одном из моторных вагонов при первом и третьем положениях рукоятки КМ.

Сигнальная лампа Л К периодически загорается и гаснет. Нарушение блок-контакта контакторов М и П1-2 в цепи проводов 9Б-9А. Устранить неисправности блок-контактов М и П1-2.

18. Самопроизвольное опускание токоприемников на всех вагонах.

На одном из моторных вагонов открыта лестница или высоковольтный шкаф, произошло замыкание блокировки лестницы или высоковольтного шкафа и подается питание на провод опускания токоприемника.

19. На всем электропоезде не работают вспомогательные машины.

При загорании сигнальной лампы РН на пульте управления и нулевом положении стрелки вольтметра возможно снятие напряжения с контактной сети. Локомотивная бригада действует согласно Инструкции о снятии напряжения.

20. Не работают вспомогательные машины на одной секции.

Горит сигнальная лампа РН на пульте управления. Сгорел высоковольтный предохранитель вспомогательных машин. (При включенном контроллере горит лампа ЛК. При перегорании предохранителя на головном вагоне стрелка вольтметра будет находиться на нуле.) Заменить предохранитель ВП. Временно для обеспечения работы тяговых двигателей на неисправной секции включить выключатель Проверка схемы в цепи проводов 2В-2Г и тем самым деблокировать контакт РН.

21. После кратковременного снятия напряжения с контактной сети и повторной его подачи отключается РПД.

Одновременное включение делителя напряжения и двигателя компрессора из-за того, что контакт КБ1 или КБ2 в проводах 27А-27Б не успел отключиться. Восстановить реле перегрузки РПД.

22. Поезд в движение не приводится.

Заменить перегоревшие плавкие вставки предохранителей Пр13.

23. При включении рубильника аккумуляторной батареи перегорают предохранители Пр2 и ПрЗ.

Неисправен полупроводниковый вентиль ДБ (происходит запуск генератора в режиме двигателя). Вынуть предохранитель генератора управления Пр1 и после замены перегоревших предохранителей вновь включить рубильник батареи. Если предохранители не перегорели, то неисправен вентиль ДБ. Если предохранители Пр2 и ПрЗ снова перегорают, то произошло короткое замыкание в проводе 15 данной секции. Подложить изоляцию под контактор Г или отключить полупроводниковый вентиль ДБ от проводов 15, на моторном вагоне головной секции вынуть предохранитель ПрЮ и усилить предохранитель Пр13, включить ВУ указанного вагона. В кабине хвостового вагона включить также выключатель управления (питание контроллера будет осуществляться по проводу 22 через контакт РБЛ и предохранитель Пр8).

На электропоездах ЭР2 до № 1028 для управления автоматическими дверями и прожектором необходимо поставить перемычку с провода 16Б на провода за предохранителями Пр19 и Пр20, предварительно вынув эти предохранители. На электропоездах с. № 1028 перемычку необходимо ставить с. провода 22 ВУ на провод 15ДП, предварительно вынув предохранитель Пр15. Для управления токоприемниками в пути следования, если возникнет необходимость в их опускании, можно поставить также перемычку на провод 15Х. Выключатель управления в головной кабине при такой неисправности не включают,

24. При работающем делителе напряжения отсутствует напряжение на зажимах провода 16.

Перегорел предохранитель Пр1. Возможно размагничивание обмотки возбуждения генератора управления. Заменить предохранитель Пр1. Подачей напряжения на правую или среднюю щетку регулятора напряжения восстановить нормальную работу обмотки возбуждения генератора.

25. Генератор управления дает завышенное напряжение.

Уменьшился зазор между подвижным и неподвижным контактами регулятора напряжения. Сгорел один из двух резисторов, соединенных параллельно в проводах Р93-Р96 (или оба). Сгорел резистор в проводах Р97-Р92.

Сгорел резистор в проводах Р94-Р95. Заменить резисторы.

27. На электропоезде при поднятых токоприемниках не работают вспомогательные машины.

Сигнальные лампы на пульте управления не горят. Возможно перегорание низковольтных предохранителей Пр2 и ПрЗ (на 60 А) аккумуляторной батареи головного вагона, нарушилась целостность цепи аккумуляторной батареи головного вагона или отсутствует контакт в зажимах батарейного рубильника.

Целостность цепи аккумуляторной батареи можно проверить включением выключателя освещения служебного помещения в радиорубке. Если лампа в служебном помещении будет гореть, то цепь аккумуляторной батареи исправна.

Предохранители Пр2 и ПрЗ могут перегореть из-за нарушения электрической цепи головного вагона. Для определения провода, где происходит короткое замыкание, необходимо проверить, в какой период перегорают предохранители.

Если при включении прожектора или автоматических дверей предохранители не перегорают, то провод 15 исправен. Если предохранители Пр2 и ПрЗ перегорают после включения ВУ, то короткое замыкание в проводе 22. Если при включении выключателя служебного помещения лампа не горит и отсутствует напряжение на контактах выключателя, необходимо проверить целостность цепи аккумуляторной батареи на нижних контактах контакторов батареи КБ1 и КБ2 методом попеременного включения их вручную так, чтобы замыкались верхние контакты КБ. Появление напряжения говорит о том, что нарушена цепь одной из последовательно-параллельных групп. Если данная проверка не дает результата, необходимо открыть ящик аккумуляторной батареи и проверить целостность и крепление перемычки средней (последовательной) группы.

Неисправности в электрических цепях электропневматического тормоза.

Эти неисправности можно обнаружить контрольными лампами, а также в процессе торможения, при опробовании тормозов в пункте отправления или в пути следования, при проверке их на эффективность действия. Часто неисправности

возникают из-за неудовлетворительного состояния контактной поверхности сегментов, крепления и нажатия блок-контактов.

Неисправности сегментного контроллера крана машиниста чаще всего заключаются в отсутствии контакта между пальцами и сегментами из-за недостаточного нажатия блок-контактов или подгара сегментов. Неисправность устанавливают по отсутствию напряжения на отпускном или тормозном проводе. Такие же неисправности могут быть и в тормозном переключателе. Возможно также перегорание предохранителя Пр9, рассчитанного на ток 6 А. Для тормозного переключателя характерными неисправностями являются обрыв катушки или подводящих проводов, нарушение контакта в тормозном переключателе хвостового вагона.

При постановке тормозного переключателя в головном вагоне в положение 1 может прийти в действие электропневматический тормоз. Причинами такой неисправности могут быть замыкание сегментов в контроллере крана машиниста головной кабины управления, замыкание подводящих проводов, пробой конденсаторного блока СЗ-С4.

Если при переводе ручки крана машиниста в положение II (электрическая перекрыша) перегорает предохранитель Пр9, то произошло замыкание поездного провода 49 с минусовым проводом 43 или 30. Для определения провода, с которым имеется замыкание, тормозной переключатель хвостового вагона устанавливают в нейтральное положение П. Если после этого предохранитель Пр9 не перегорает, то поездной провод 49 замкнут с минусовым проводом 43.

Отыскать замкнувшиеся друг с другом провода можно несколькими способами. Отыскание замыкания между проводами 49 и 43 можно осуществлять прозвоночной лампой с контроллера крана машиниста. Для этого тормозной переключатель устанавливают в положение I, а контроллер крана машиниста переводят в положение П. При разъединенных междувагонных соединениях прежде всего определяют, в какой части поезда произошло замыкание. Лампу для прозвонки соединяют с зажимами проводов 49 и 30, затем соединяют и разъединяют междувагонные соединения. Если лампа не горит после их соединения, то перегорел предохранитель Пр9.

При отыскании аварийного соединения проводов 43 и 49 можно применить способ обнаружения перегоревшего предохранителя Пр9 по сигнальным лампам К и О пульта управления. Для этого необходимо в радиорубке на рейках зажимов соединить перемычкой провода 30 и 43. После присоединения неисправного вагона предохранитель Пр9 перегорит, а лампы К и О погаснут.

Если после постановки ручки крана машиниста головного вагона в положение II или III происходит полное служебное торможение, то причиной этого может быть замыкание друг с другом отпускного и тормозного сегментов в контроллере крана машиниста (см. рис. 224).

При обрыве тормозного провода 47 место обрыва тормозного провода можно обойти, но для этого необходимо предварительно принудительно замкнуть якорь блок-реле БР или на блок-контакт поставить перемычку.

Электротормоз будет работать нормально, но без контроля обрыва других проводов. В случае обрыва провода 45 можно обойти место обрыва так же, как и при обрыве провода 47. Замкнуть блок-контакты реле БР в радиорубках головного и хвостового вагонов.

Питание провода 45 будет осуществляться от провода 47 через замкнутый блок-контакт 45-47 блок-реле БР.

Некоторые неисправности электропневматического тормоза электропоезда ЭР2, начиная с № 1028, приведены в табл. 9.

Продолжение габл. 9

Признак неисправности. ее возможные причины и способы устранения

па Т не горит, реле РКО в хвостовом вагоне не срабатывает

При торможении происходит резкая оттяжка хвостовой части поезда с последующим уравновешиванием тормозных сил, причем при всех положениях ручки крана машиниста ни одна сигнальная лампа контроля тормозных проводов не горит

за местом обрыва провода 49, отпускают тормоза. В поезде возникают значительные реакции, тормозной эффект резко уменьшается. При продолжительной выдержке ручки крана машиниста в тормозном положении у вагонов, находящихся за местом обрыва, срабатывает пневматический тормоз. Место обрыва отыскивается так же, как и при обрыве провода 47

Произошел обрыв провода 43 (см. рис. 224). До места обрыва будет действовать пневматический тормоз, за местом обрыва — электропневматический тормоз. Из-за того что в хвостовой части поезда тормоза будут приходить в действие быстрее, чем в головной, появятся резкие оттяжки. Для отыскания места обрыва провода 43 используют тот же метод, что и при обрыве провода 47

Электроника сопровождает современного человека повсеместно: на работе, дома, в автомобиле. Работая на производстве, и неважно, в какой конкретно сфере, часто приходится ремонтировать что-то электронное. Условимся это «что-то» называть «прибор». Это такой абстрактный собирательный образ. Сегодня поговорим о всевозможных премудростях ремонта, освоив которые, вы сможете починить практически любой электронный «прибор», вне зависимости от его конструкции, принципа работы и области применения.

Невелика премудрость перепаять детальку, а вот найти дефектный элемент и есть главная задача в ремонте. Начинать следует с определения типа неисправности, так как от этого зависит, с чего начинать ремонт.

Типов таких три:
1. прибор не работает вообще — не светятся индикаторы, ничто не движется, ничто не гудит, нет никаких откликов на управление;
2. не работает какая-либо часть прибора, то есть не выполняется часть его функций, но хотя проблески жизни в нём всё же видны;
3. прибор в основном работает исправно, но иногда делает так называемые сбои. Назвать такой прибор сломанным пока нельзя, но всё же что-то ему мешает работать нормально. Ремонт в этом случае как раз и заключается в поиске этой помехи. Считается, что это самый сложный ремонт.
Разберём примеры ремонта каждого из трёх типов неисправностей.

Ремонт первой категории
Начнём с самой простой — поломка первого типа, это когда прибор совсем мёртвый. Любой догадается, что начинать нужно с питания. Все приборы, живущие в своём мире машин, обязательно потребляют энергию в том или ином виде. И если прибор наш совсем не шевелится, то вероятность отсутствия этой самой энергии весьма высока. Небольшое отступление. При поиске неисправности в нашем приборе речь часто будет идти именно о «вероятности». Ремонт всегда начинается с процесса определения возможных точек влияния на неисправность прибора и оценки величины вероятности причастности каждой такой точки к данному конкретному дефекту, с последующим превращением этой вероятности в факт. При этом сделать правильную, то есть с самой высокой степенью вероятности оценку влияния какого-либо блока или узла на проблемы прибора поможет самое полное знание устройства прибора, алгоритма его работы, физических законов, на которых основана работа прибора, умение логически мыслить и, конечно же, его величество опыт. Одним из самых эффективных методов ведения ремонта является так называемый метод исключения. Из всего списка всех подозреваемых в причастности к дефекту прибора блоков и узлов, с той или иной степенью вероятности, необходимо последовательно исключать невиновных.

Начинать поиск надо соответственно с тех блоков, вероятность которых может быть виновниками этой неисправности самая высокая. Отсюда и выходит, что чем точнее определена эта самая степень вероятности, тем меньше времени будет затрачено на ремонт. В современных «приборах» внутренние узлы сильно интегрированы между собой, и связей очень много. Поэтому количество точек влияния зачастую бывает чрезвычайно велико. Но и ваш опыт растёт, и со временем вы будете выявлять «вредителя» максимум с двух-трёх попыток.

Например, есть предположение, что с высокой вероятностью виноват в болезни прибора блок «X». Тогда нужно провести ряд проверок, замеров, экспериментов, которые бы подтвердили либо опровергли это предположение. Если после таких экспериментов останутся хоть самые малые сомнения в непричастности блока к «преступному» влиянию на прибор, то исключать полностью этот блок из числа подозреваемых нельзя. Нужно искать такой способ проверки алиби подозреваемого, чтобы на все 100% быть уверенным в его невиновности. Это очень важно в методе исключения. А самый надёжный способ такой проверки подозреваемого — это замена блока на заведомо исправный.

Вернёмся всё же к нашему «больному», у которого мы предположили неисправность питания. С чего начать в этом случае? А как и во всех других случаях — с полного внешнего и внутреннего осмотра «больного». Никогда не пренебрегайте этой процедурой, даже когда уверены в том, что знаете точное местоположение поломки. Осматривайте прибор всегда полностью и очень внимательно, не торопясь. Нередко во время осмотра можно найти дефекты, не влияющие напрямую на искомую неисправность, но которые могут вызвать поломку в будущем. Ищите подгоревшие электроэлементы, вздувшиеся конденсаторы и прочие подозрительно выглядящие элементы.

Если внешний и внутренний осмотр не принёс никаких результатов, тогда берите в руки мультиметр и приступайте к работе. Надеюсь, про проверку наличия напряжения сети и про предохранители напоминать не надо. А вот о блоках питания немного поговорим. В первую очередь, проверяйте высокоэнергетические элементы блока питания (БП): выходные транзисторы, тиристоры, диоды, силовые микросхемы. Потом можно начать грешить на оставшиеся полупроводники, электролитические конденсаторы и, в последнюю очередь, на остальные пассивные электроэлементы. Вообще величина вероятности выхода из строя элемента зависит от его энергетической насыщенности. Чем большую энергию использует электроэлемент для своего функционирования, тем больше вероятность его поломки.

Если механические узлы изнашивает трение, то электрические — ток. Чем больше ток, тем больше нагрев элемента, а нагревание/остывание изнашивает любые материалы не хуже трения. Колебания температуры приводят к деформации материала электроэлементов на микроуровне из-за температурного расширения. Такие переменные температурные нагрузки и являются основной причиной так называемого эффекта усталости материала при эксплуатации электроэлементов. Это необходимо учитывать при определении очерёдности проверки элементов.

Не забывайте проверять БП па предмет пульсаций выходных напряжений, либо каких-то иных помех на шинах питания. Хоть и нечасто, но и такие дефекты бывают причиной неработоспособности прибора. Проверьте, доходит ли реально питание до всех потребителей. Может, из-за проблем в разъёме/кабеле/проводе эта «пища» не доходит до них? БП будет исправен, а энергии-то в блоках прибора всё одно нет.

Ещё бывает, что неисправность таится в самой нагрузке — короткое замыкание (КЗ) там штука нередкая. При этом в некоторых «экономных» БП нет защиты по току и, соответственно, нет такой индикации. Поэтому версию короткого замыкания в нагрузке тоже следует проверить.

Теперь поломка второго типа. Хотя здесь также всё следует начинать всё с того же внешне-внутреннего осмотра, тут таится гораздо большее разнообразие аспектов, па которые следует обратить внимание. — Самое главное — успеть запомнить (записать) всю картину состояния звуковой, световой, цифровой индикации прибора, кодов ошибок на мониторе, дисплее, положение аварийных сигнализаторов, флажков, блинкеров на момент аварии. Причём обязательно до того, как произойдёт её сброс, квитирование, отключение питания! Это очень важно! Упустить какую-нибудь важную информацию — значит непременно увеличить время, затраченное на ремонт. Осмотрите всю имеющуюся индикацию — и аварийную, и рабочую, и запомните все показания. Откройте шкафы управления и запомните (запишите) состояние внутренней индикации при её наличии. Пошатайте платы, установленные на материнке, в корпусе прибора шлейфы, блоки. Может, неисправность исчезнет. И обязательно прочистите радиаторы охлаждения.

Иногда имеет смысл проверить напряжение на каком-нибудь подозрительном индикаторе, особенно если им является лампа накаливания. Внимательно прочтите показания монитора (дисплея), при его наличии. Расшифруйте коды ошибок. Посмотрите таблицы входных и выходных сигналов на момент аварии, запишите их состояние. Если прибор обладает функцией записи происходящих с ним процессов, не забудьте прочесть и проанализировать такой журнал событий.

Не стесняйтесь — понюхайте прибор. Нет ли характерного запаха горелой изоляции? Особое внимание уделите изделиям из карболита и других реактивных пластмасс. Нечасто, но бывает, что их пробивает, и пробой этот порою очень плохо видно, особенно если изолятор чёрного цвета. Из-за своих реактивных свойств эти пластмассы не коробит при сильном нагреве, что также затрудняет обнаружение пробитой изоляции.

Посмотрите, нет ли потемневшей изоляции обмоток реле, пускателей, электродвигателей. Нет ли потемневших резисторов и изменивших нормальный цвет и форму других электрорадиоэлементов.

Нет ли вздувшихся или «стрельнувших» конденсаторов.

Проверьте, нет ли в приборе воды, грязи, посторонних предметов.

Посмотрите, нет ли перекоса разъёма, или блок/плата не до конца вставлены в своё место. Попробуйте вынуть и заново вставить их.

Возможно, какой-либо переключатель на приборе стоит в не соответствующем положении. Заела кнопка, либо подвижные контакты у переключателя стали в промежуточном, не зафиксированном положении. Возможно пропал контакт в каком-нибудь тумблере, переключателе, потенциометре. Потрогайте их все (при обесточенном приборе), пошевелите, повключайте. Лишним это не будет.

Проверьте на предмет заклинивания механические части исполнительных органов — проверните роторы электродвигателей, шаговых двигателей. Подвигайте по необходимости другие механизмы. Сравните прилагаемое при этом усилие с другими такими же рабочими устройствами, если конечно есть такая возможность.

Осмотрите внутренности прибора в работающем состоянии — возможно увидите сильное искрение в контактах реле, пускателей, переключателей, что будет свидетельствовать о чрезмерно высокой величине тока в этой цепи. А это уже хорошая зацепка для поиска неисправности. Часто виной такой поломки бывает дефект какого-либо датчика. Эти посредники между внешним миром и прибором, которому они служат, обычно вынесены далеко за порубежье самого корпуса прибора. И при этом работают они обычно в более агрессивной среде, чем внутренне части прибора, которые так или иначе, но защищены от внешнего воздействия. Поэтому все датчики требуют повышенного внимания к себе. Проверьте их работоспособность и не поленитесь почистить от загрязнения. Концевые выключатели, различные блокирующие контакты и прочие датчики с гальваническими контактами — являются подозреваемыми с высоким приоритетом. Да и вообще любой «сухой контакт» т.е. не пропаянный, должен стать элементом пристального внимания.

И ещё момент — если прибор прослужил уже немало времени, то следует обратить внимание на элементы, наиболее подверженные какому-либо износу или изменению своих параметров с течением времени. Например: механические узлы и детали; элементы, подвергающиеся во время работы повышенному нагреву или иному агрессивному воздействию; электролитические конденсаторы, некоторые виды которых склонны терять ёмкость со временем из-за высыхания электролита; все контактные соединения; органы управления прибором.

Практически все виды «сухих» контактов с течением времени теряют свою надёжность. Особое внимание следует уделить контактам с серебряным покрытием. Если прибор долгое время проработал без технического обслуживания, рекомендую перед тем, как приступать к углублённому поиску неисправности, сделать профилактику контактам — осветлить их обычным ластиком и протереть спиртом. Внимание! Никогда не пользуйся абразивными шкурками для чистки посеребрённых и позолоченных контактов. Это верная смерть разъёму. Покрытие серебром или золотом делается всегда очень тонким слоем, и стереть абразивом его до меди очень легко. Полезно провести процедуру самоочистки контактов розеточной части разъёма, на профессиональном сленге «мамы»: соедините-разъедините разъём несколько раз, от трения пружинящие контакты немного очищаются. Ещё советую, работая с любыми контактными соединениями, не трогать их руками — масляные пятна от пальцев негативно влияют на надёжность электрического контакта. Чистота залог надёжной работы контакта.

Первейшее дело — проверить срабатывание какой-либо блокировки, защиты в начале ремонта. (В любой нормальной технической документации на прибор есть глава с подробным описанием применяемых в нём блокировок.)

После осмотра и проверки питания прикиньте навскидку — что наиболее вероятно сломалось в приборе, и проверьте эти версии. Сразу в дебри прибора не стоит лезть. Сначала проверьте всю периферию, особенно исправность исполнительных органов — возможно сломался не сам прибор, а какой-либо механизм, управляемый им. Вообще рекомендуется изучить, пусть и не до тонкостей, весь производственный процесс, участником которого является подопечный прибор. Когда очевидные версии исчерпаны — вот тогда садитесь за свой рабочий стол, заваривайте чайку, раскладывайте схемы и прочую документацию на прибор и «рожайте» новые идеи. Думайте, что ещё могло вызвать эту болезнь прибора.

Через некоторое время у вас должно «родиться» определённое количество новых версий. Тут рекомендую не спешить бежать проверять их. Сядьте где-нибудь в спокойной обстановке и подумайте над этими версиями па предмет величины вероятности каждой из них. Тренируйте себя в деле оценки таких вероятностей, а когда накопится опыт в подобной селекции — станете делать ремонт гораздо быстрее.

Самый результативный и надёжный способ проверки подозреваемого блока, узла прибора на работоспособность, как уже говорилось, это замена его на заведомо исправный. Не забывайте при этом внимательно проверять блоки на предмет их полной идентичности. Если будете подключать тестируемый блок к работающему исправно прибору, то по возможности подстрахуйтесь — проверьте блок на предмет завышенных выходных напряжений, короткое замыкание по питанию и в силовой части, и прочие возможные неисправности, которые могут вывести из строя рабочий прибор. Бывает и обратное: подключаешь донорскую рабочую плату в сломанный прибор, проверяешь, что хотел, а когда её возвращаешь назад — она оказывается уже неработоспособной. Такое бывает нечасто, но всё же имейте в виду этот момент.

Если таким образом удалось найти неисправный блок, то дальше локализовать поиск неисправности до конкретного электроэлемента поможет так называемый «сигнатурный анализ». Так называют метод, при котором ремонтник проводит интеллектуальный анализ всех сигналов, коими «живёт» испытуемый узел. Подключите исследуемый блок, узел, плату к прибору с помощью специальных удлинителей-переходников (такие обычно поставляются в комплекте с прибором), чтобы был свободный доступ ко всем электроэлементам. Разложите рядом схему, измерительные приборы и включите питание. Теперь сверьте сигналы в контрольных точках на плате с напряжениями, осциллограммами на схеме (в документации). Если схема и документация не блещут такими подробностями, тут уж напрягайте мозги. Хорошие знания по схемотехнике здесь будут весьма кстати.

Если появились какие-то сомнения, то можно «повесить» на переходник исправную образцовую плату с рабочего прибора и сравнить сигналы. Сверьте со схемой (с документацией) все возможные сигналы, напряжения, осциллограммы. Если найдено отклонение какого-либо сигнала от нормы, не спешите делать вывод о неисправности именно этого электроэлемента. Он может быть не причиной, а всего лишь следствием другого нештатного сигнала, который вынудил этот элемент выдать ложный сигнал. Во время ремонта старайтесь сужать круг поиска, максимально локализовать неисправность. Работая с подозреваемым узлом/блоком, придумывайте такие испытания и измерения для него, которые бы исключили (или подтвердили) причастность этого узла/блока к данной неисправности наверняка! Семь раз подумайте, когда исключаете блок из числа неблагонадёжных. Все сомнения в этом деле должны быть развеяны явными уликами.

Эксперименты делайте всегда осмысленно, метод «научного тыка» не наш метод. Дескать, дай-ка я вот этот провод сюда ткну и посмотрю, что будет. Никогда не уподобляйтесь таким «ремонтёрам». Последствия всякого эксперимента обязательно должны быть продуманы и нести полезную информацию. Бессмысленные же эксперименты — пустая трата времени, и к тому же ещё поломать можно что- нибудь. Развивайте в себе способность логически мыслить, стремитесь видеть чёткие причинно-следственные связи в работе устройства. Даже в работе сломанного прибора есть своя логика, всему есть объяснение. Сможете понять и объяснить нестандартное поведение прибора — найдёте его дефект. В деле ремонта очень важно самым чётким образом представлять себе алгоритм работы прибора. Если у вас есть пробелы в этой области, читайте документацию, спрашивайте всех, кто хоть что-то знает об интересующем вопросе. И не бойтесь спрашивать, вопреки распространённому мнению, это не убавляет авторитет в глазах коллег, а наоборот, умные люди всегда это оценят положительно. Помнить наизусть схему прибора абсолютно ненужно, для этого бумагу придумали. А вот алгоритм его работы надо знать «назубок». И вот вы «трясёте» прибор уже который день. Изучили его так, что кажется дальше некуда. И уже неоднократно пытали все подозреваемые блоки/узлы. Испробованы даже казалось бы самые фантастические варианты, а неисправность так и не найдена. Вы уже начинаете понемногу нервничать, может даже паниковать. Поздравляю! Вы достигли апогея в данном ремонте. И тут поможет только… отдых! Вы просто устали, нужно отвлечься от работы. У вас, как говорят опытные люди, «глаз замылился». Так что бросайте работу и полностью отключите своё внимание от подопечного прибора. Можно заняться другой работой, или вовсе ничем не заниматься. Но о приборе нужно забыть. А вот когда отдохнёте, то сами почувствуете желание продолжить битву. И как часто бывает, после такого перерыва вы вдруг увидите такое простое решение проблемы, что удивитесь несказанно!

А вот с неисправностью третьего типа всё гораздо сложнее. Так как сбои в работе прибора носят обычно случайный характер, то для того чтобы поймать момент проявления сбоя, времени часто требуется очень много. Особенности внешнего осмотра в этом случае заключаются совмещении поиска возможной причины сбоя с проведением профилактических работ. Вот для ориентира перечень некоторых возможных причин появления сбоев.

Плохой контакт (в первую очередь!). Почистите разъёмы все сразу во всём приборе и внимательно осматривайте при этом контакты.

Перегрев (как и переохлаждение) всего прибора, вызванный повышенной (пониженной) температурой окружающей среды, либо вызванный длительной работой с высокой нагрузкой.

Пыль на платах, узлах, блоках.

Загрязнение радиаторов охлаждения. Перегрев полупроводниковых элементов, которые они охлаждают, тоже может быть причиной сбоев.

Помехи в сети питания. Если фильтр питания отсутствует или вышел из строя, либо его фильтрующих свойств недостаточно для данных условий эксплуатации прибора, то сбои в его работе будут нередкими гостями. Попробуйте связать сбои с включением какой-либо нагрузки в той же электросети, от которой питается прибор, и тем самым найти виновника помехи. Возможно именно в соседнем приборе неисправен сетевой фильтр, либо ещё какая другая неисправность в нём, а не в ремонтируемом приборе. По возможности запитайте прибор на некоторое время от бесперебойника с хорошим встроенным сетевым фильтром. Сбои пропадут — ищите проблему в сети.

И здесь, как и в предыдущем случае, самым эффективным способом ремонта является метод замены блоков на заведомо исправные. Меняя блоки и узлы между одинаковыми приборами, внимательно следите за их полной идентичностью. Обратите внимание на наличие персональных настроек в них — различные потенциометры, настроенные контуры индуктивности, переключатели, джемперы, перемычки, программные вставки, ПЗУ с различными версиями прошивок. Если они имеются, то решение о замене принимайте, обдумав все возможные проблемы, которые могут возникнуть в связи с опасностью нарушения работы блока/узла и прибора в целом, из-за разницы в таких настройках. Если всё же имеется острая необходимость в такой замене, то делайте перенастройку блоков с обязательной записью предыдущего состояния — пригодится при возврате.

Бывает так, что заменены все составляющие прибор платы, блоки, узлы, а дефект остался. Значит, логично предположить, что неисправность засела в оставшейся периферии в жгутах проводов, внутри какого-либо разъёма проводок оторвался, может быть дефект кросс-платы. Иногда виноват бывает замятый контакт разъёма, например в боксе для плат. При работе с микропроцессорными системами иногда помогает многократный прогон тестовых программ. Их можно закольцевать или настроить на большое количество циклов. Причём лучше, если они будут именно специализированные тестовые, а не рабочие. Эти программы умеют фиксировать сбой и всю сопутствующую ему информацию. Если умеете, сами напишите такую тестовую программу, с ориентацией на конкретный сбой.

Бывает, что периодичность проявления сбоя имеет некую закономерность. Если сбой можно связать по времени с исполнением какого-либо конкретного процесса в приборе, тогда вам повезло. Это очень хорошая зацепка для анализа. Поэтому всегда внимательно наблюдайте за сбоями прибора, замечайте все обстоятельства, при которых они проявляются, и старайтесь связать их с исполнением какой-либо функции прибора. Длительное наблюдение за сбоящим прибором в этом случае может дать ключ к разгадке тайны сбоя. Если найти зависимость появления сбоя от, например, перегрева, повышения/ понижения напряжения питания, от вибрационного воздействия, это даст некоторое представление о характере неисправности. А дальше — «ищущий да обрящет».

Способ контрольной замены почти всегда приносит положительные результаты. Но в найденном таким образом блоке может быть множество микросхем и других элементов. А значит, есть возможность восстановить работу блока заменой лишь одной, недорогой детальки. Как в этом случае локализовать поиск дальше? Тут тоже не всё потеряно, существуют несколько интересных приёмов. Сигнатурным анализом поймать сбой практически нереально. Поэтому попробуем использовать некоторые нестандартные методы. Нужно спровоцировать блок на сбой при определённом локальном воздействии на пего и при этом надо, чтобы момент проявления сбоя можно было привязать к конкретной детали блока. Вешайте блок на переходник/удлинитель и начинайте его мучить. Если подозреваете в плате микротрещину, можно попробовать закрепить плату на каком-нибудь жёстком основании и деформировать только малые части её площади (углы, края) и гнуть их в разных плоскостях. И наблюдайте при этом за работой прибора — ловите сбой. Можно попробовать постучать ручкой отвёртки по частям платы. Определились с участком платы — берите линзу и внимательно высматривайте трещинку. Нечасто, но иногда всё-таки удаётся обнаружить дефект, и, кстати, при этом далеко не всегда виновной оказывается микротрещина. Гораздо чаще находятся дефекты пайки. Поэтому рекомендуется не только гнуть саму плату, но и шевелить все её электроэлементы, внимательно наблюдая за их паяным соединением. Если подозрительных элементов немного, можно просто сразу все пропаять, чтобы в будущем больше не было проблем с этим блоком.

А вот если в причине сбоя подозревается какой-либо полупроводниковый элемент платы, найти его будет непросто. Но и тут тоже можно словчить, есть такой несколько радикальный способ спровоцировать сбой: в рабочем состоянии нагревайте паяльником по очереди каждый электроэлемент и следите за поведением прибора. К металлическим частям электроэлементов паяльник нужно прикладывать через тонкую пластинку слюды. Греть примерно градусов до 100-120, хотя иногда и больше требуется. При этом, конечно, есть определённая доля вероятности дополнительно испортить какой-ни- будь «невинный» элемент на плате, но стоит ли рисковать в этом случае, это уже решать вам. Можно попробовать наоборот, охлаждать льдинкой. Тоже не часто, но всё же можно и таким способом попробовать, как у нас говорят, — «выковырять клопа». Если уж сильно припекло, и при наличии возможности, конечно, то меняйте все подряд полупроводники на плате. Очерёдность замены — по нисходящей эиергоиасыщеипости. Меняйте блоками по нескольку штук, периодически проверяя работоспособность блока на отсутствие сбоев. Попробуйте хорошенько пропаять все подряд электроэлементы на плате, иногда только уже одна эта процедура возвращает прибор к здоровой жизни. Вообще с неисправностью такого типа никогда нельзя гарантировать полное выздоровление прибора. Часто бывает так, что вы во время поиска неисправности шевельнули случайно какой-то элемент, у которого был слабый контакт. При этом неисправность исчезла, но скорее всего этот контакт опять себя проявит со временем. Ремонт редко проявляющегося сбоя — занятие неблагодарное, времени и усилий требует много, а гарантии, что прибор будет обязательно отремонтирован, нет никакой. Поэтому многие мастера часто отказываются браться за ремонт таких капризных приборов, и, честно говоря, я их за это не виню.

ПРАВИЛА ВНУТРЕННЕГО РАСПОРЯДКА

И ТЕХНИКИ БЕЗОПАСНОСТИ ПРИ ВЫПОЛНЕНИИ

При работе в лаборатории электротехники и электроники во избежание несчастных случаев, а также преждевременного выхо­да из строя приборов и электрооборудования студент при выпол­нении лабораторных работ должен строго выполнять следующие правила внутреннего распорядка и техники безопасности:

1. Приступая в лаборатории к работе, студент должен ознако­миться с правилами внутреннего распорядка и техники безопас­ности.

2. Следует пользоваться инструментом с изолированными ручками и иметь для индивидуальной защиты диэлектрический коврик.

3. Запрещается проверять наличие напряжения в сети с помощью отверток, пинцетов и других слесарных инструментов.

4. Аппараты, в которых шасси может находиться под напряжением, должны под­ключаться к сети через разделительный трансформатор; к каждому трансформатору может подключаться только один аппарат.

5. Проверка и пайка монтажа, подключение измерительных приборов, осмотр для выявления мест обрывов и другие работы должны производиться при отключен­ном от сети аппарате.

6. При замене предохранителей в сетевых аппаратах и деталей необходимо отсое­динить аппарат от сети и снять заряд с конденсаторов фильтра.

7. Электролитические конденсаторы подвержены взрыву, поэтому при ремонте аппарат следует устанавливать таким образом, чтобы избежать возможных травм.

8. Запрещается ремонтировать аппарат, включенный в сеть в сырых помещениях, имеющих земляные, цементные или токопроводящие полы.

9. Ремонтное место должно иметь хорошее местное освещение и рубильник, позво­ляющий отключать местное и общее освещение в аварийных случаях и после оконча­ния работы.

10. Студенты обязаны не только строго выполнять эти прави­ла, но и требовать неуклонного выполнения их от своих товари­щей.

11. После ознакомления с правилами внутреннего распорядка, инструктажа по технике безопасности студент должен распи­саться в соответствующем журнале.

12. При работе в лаборатории категорически запрещается при­носить с собой вещи и предметы, загромождающие рабочие мес­та, способствующие созданию условий, могущих привести к на­
рушению правил техники безопасности.

13. В лаборатории запрещается громко разговаривать, поки­дать рабочие места и переходить от одного стенда к другому.

Приступая к работе в лаборатории, студенческая группа делится на бригады, которые затем распределяются по лабора­торным стендам.

14. Лабораторная работа, пропущенная студентом, выполняет­ся по разрешению деканата и особому расписанию.

15. Сборку электрической цепи производят соединительными проводами при выключенном напряжении питания в строгом со­ответствии со схемой, представленной в лабораторном практику­ме, обеспечивая при этом надежность электрических контактов всех разъемных соединений.

16. Приступая к сборке электрической цепи, необходимо убе­диться в том, что к стенду не подано напряжение.

17. При сборке электрической цепи необходимо следить затем, чтобы соединительные провода не перегибались и не скру­чивались петлями. Приборы и электрооборудование расставляются так, чтобы было удобно ими пользоваться.

2 . ЭТАПЫ РЕМОНТА БЫТОВОЙ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ

В процессе эксплуатации бытовой РЭА могут воз­никать различные неисправности. Отыскание этих не­исправностей является

наиболее трудоемкой операцией ремонта. При этом невозможно описать каждую неис­правность аппарата в инструкции по ремонту, правила и методы их поиска. Существуют общие правила и ме­тоды ремонта, которые необходимо знать. Для кон­кретных типовбытовых РЭА в инструкции по ремонту приводятся наиболее характерные неисправности, ме­тодики их выявленияи устранения, специфические особенности ремонта. Поэтому для успешного прове­дения ремонтатребуются хорошие знания, умения, на­выки и мастерство радиомехаников.

Все неисправности бытовой РЭА можно разделить на механическиеиэлектрические. Механические неисправности возникают в механических узлах бытовой РЭА (например, в лентопротяжных механиз­мах магнитофонов, видеомагнитофонов и т. д.) или в результате механических воздействий на аппарат. Не­обходимо помнить, что механическим узлам необходи­мы периодическая чистка и смазывание, продлевающие срок службы аппаратов, уменьшающие вероятность механических неисправностей.

Электрические неисправности возни­кают в электрических цепях. Их можно условно разде­лить на следующие группы:

*неисправности, вызванные дефектами электрическо­го монтажа;

* неисправности, вызванные дефектами в цепях коммутации (пере­ключатели, соединители, предохранители и т. д.);

*неисправности, вызванные выходом из строя радиоэлементов (кон­денсаторы, транзисторы, микросхемы и т. д.);

* неисправности, вызванные изменениями параметров радиоэлемен­тов в процессе эксплуатации (иногда в пределах допустимой нор­мы).

Технология ремонта бытовой РЭА включает несколько этапов. Рас­смотрим эти этапы и их краткие характеристики.

1. Анализ неисправности. В этот этап входят: выявление причин, вызвавшие исправность (при возможности); устранение внеш­них проявлений неисправности; анализ принципиальной схемы аппарата с целью выявления участка поиска неисправности (узла, блока, модуля и т. д.); выбор метода или методов поиска неисправности; определение ми­нимально необходимой КИА.

2. Выявление неисправности. На этом этапе по выбранной методике производится поиск неисправностей, осуществляются необхо­димые измерения с помощью КИА. При получении отрицательного ре­зультата метод поиска неисправностей изменяется или в процессе поиска используются другие методы.

3. Устранение неисправности. Производится замена неис­правного элемента с соблюдением требований монтажа и демонтажа.

4. Проверка после ремонта, подстройка (при необхо­димости) параметров аппарата. Прежде всего, необходимо проверить от­ремонтированный аппарат, в особенности измерив, те параметры, на кото­рые влиял неисправный элемент (транзистор, микросхема, модуль и т. д.).
При необходимости следует провести подстройку в аппарате, потому что многие однотипные радиоэлементы имеют большой разброс параметров.

5. Электропрогон. Это проверка отремонтированного аппарата под напряжением. Во время прогона могут быть выявлены скрытые де­фекты, которые не были обнаружены в ходе ремонта или возникли вслед­ствие неверных действий радиомеханика.

МЕТОДЫ ПОИСКА НЕИСПРАВНОСТЕЙ В БЫТОВОЙ РЭА

Поиск неисправности при ремонте бытовой РЭА может осуществлять­ся различными методами и приводит к положительному результату, но радиомеханик должен уметь выбрать оптимальный. Выбор метода (мето­дов) зависит от многих факторов: характера неисправности; наличия в распоряжении радиомеханика различной КИА, сменных узлов (блоков, модулей); стадии поиска неисправности и т. д.

*Рассмотрим различные методы поиска неисправностей

*Метод внешних проявлений. Этот метод основан на том что по внешним признакам работы бытового аппарата можно сде­лать предположение о неисправном узле (иногда элементе). Его це­лесообразно применять на первой стадии поиска неисправности в
комплексе с другими методами.

*Метод внешнего осмотра (анализа монтажа). С его помо­щью можно обнаружить дефекты монтажа, неисправный радиоэле­мент по изменению внешнего вида (цвета, формы, размеров и т. д.).
При этом могут быть выявлены и связанные с данной неисправно­стью дефекты (например, причина, вызвавшая сгорание резистора).
Этот метод очень эффективен, и его целесообразно применять в двух случаях: на ранних стадиях поиска неисправностей, особенности аппарат работает в аварийном режиме (например, когда из ап­парата идет дым); на более поздних этапах, когда область поиска

неисправностей определена другим методом.

*Метод измерений. При данном методе производят измерения параметров сигнала (значение напряжения, форма, длительность ит. д.) и электрических цепей (режимы работы активных элементов по постоянному току, сопротивления и т. д.) для сравнения резуль­татов с заданными параметрами (например, на принципиальных схемах). Его можно применять на ранней стадии поиска неисправ­ностей для определения области их нахождения (покаскадная про­верка прохождения сигнала) или на более поздних стадиях для ус­тановления неисправного элемента, если область нахождения неис­правности определена другими методами. Этот метод требует от радиомеханика умений, навыков работы с КИА.

*Метод замены. Суть метода заключается в замене проверяемо­го узла (радиоэлемента) на исправный. Его целесообразно приме­нять на средних стадиях поиска неисправностей для сужения най­денной другими методами области поиска или на поздних этапах для установления дефектного радиоэлемента. Этот метод особенно эффективен в сочетании с другими методами (например, измере­ний), когда дефект проявляется только под напряжением или пе­риодически пропадает.

*Метод исключения. Суть метода состоит в исключении (по возможности) из работы отдельных узлов аппарата или вспомога­тельных элементов схемы. Его можно применять на начальной ста­дии поиска для определения неисправного узла (например, при са­мовозбуждении в радиоаппарате), а также на заключительной ста­дии для установления неисправного вспомогательного элемента. К вспомогательным элементам относятся те, которые, не формируя параметры аппарата, улучшают их (цепи коррекции АЧХ, защиты
по току и напряжению и т. д.).

* Метод воздействия. Метод заключается в воздействии ра­диомехаником на различные участки схемы с целью выявления ре­акций аппарата. Основными требованиями к воздействию являются: простота реализации, оперативность и быстродействие, знание ре­акции аппарата на воздействия, безопасность, исключение возмож­ности внесения дополнительных дефектов. Такими воздействиями могут быть: изменение положения регуляторов и переключателей, замыкание выводов у некоторых радиоэлементов и т. д. Этот метод может применяться на разных стадиях поиска неисправностей.

*Метод простукивания. Этот метод используют, когда при механических воздействиях на радиоаппарат изменяются его вы­ходные параметры. Причинами подобных явлений могут быть: на­рушение механических контактов из-за загрязнения; снижение уп­ругости, деформации контактов (переключатели, соединители ит. д.); нарушение внутренних соединений радиоэлементов; дефекты монтажа (микрозамыкания, микротрещины) и т. д. Метод простуки­вания можно разделить на этап реагирования аппарата на механиче­ские воздействия и этап поиска неисправного элемента. К механи­ческим воздействиям относятся: простукивание, нажатие, изгиб пе­чатных плат, радиоэлементов.

*Метод теплового удара. Данный метод применяют, если дефект обнаруживается после длительной работы аппарата. Его суть состоит в том, чтобы нагреть радиоэлемент (особенно многовывод­ной) принудительным способом, например с помощью электропа­яльника, через теплопроводящий изолирующий материал (слюда). Это ускоряет проявление неисправности и указывает на неисправный радиоэлемент. Электропаяльник должен быть рассчитан на на­пряжение питания до 40 В, нагревание радиоэлемента производят при выключенном радиоаппарате.

*Метод электропрогона. Этот метод применяют при пропа­дающих дефектах, как правило, в комплексе с другими методами. Электропрогон, как было отмечено выше, осуществляют также по­сле замены радиоэлементов (время прогона — 4 ч) и после настройки радиоаппарата (время прогона -2 ч) под постоянным контролем ра­диомеханика

1. Общие правила техники безопасности.

2. Методы поиска неисправностей при ремонте радиоаппаратуры и порядок их применения.

ЛАБОРАТОРНАЯ РАБОТА 2 ,3.

1. Устройство ЛПМ в различных видах магнитофонов, их кинематическая схема .

АВТОМИР

Количество электронных приборов с каждым годом растет с небывалой скоростью.

Так, производство электроники в Санкт-петербурге может только радовать. Однако, как бы ни было высоко ее качество, сломаться она все-таки может. Иногда поломку можно исправить и своими силами, поэтому не нужно без нужды везти технику в сервисный центр.

С чего начать

Исправление неполадок электронных приборов вещь тонкая, а чтобы научиться это делать самостоятельно, нужны некоторые знания физики, минимум школьного курса.

Вы хотя бы должны иметь понятие о том, что такое:

  • сила тока;
  • сопротивление металлов;
  • индуктивность и т.д.

Также вам надо приобрести опыт паяния радиодеталей, и научится пользоваться электрическим тестером и мультиметром. Для ремонта вы должны будете приобрести все необходимое оборудование, а также в зависимости от вида ремонтируемой техники вы должны будете разбираться в электросхемах.

Множество людей думают, что починка ПК это дело мастерских. Но даже новички могут почить компьютер дома, не имея специальных навыков при наличии минимум оборудования. Самостоятельно, при наличии паяльника, вы можете заменить конденсаторы. Но в случае потребности замены микросхем, если вы не имеете опыта и оборудования, такую поломку не желательно чинить самому.

Если электроника не включается

При подсоединении к электрической сети прибор не работает, не срабатывают никакие светодиодные сигналы или не выдается звук, причина этому сгоревший блок питания. Попробуйте включить аппарат последовательно с мощной лампой накаливания, для предотвращения короткого замыкания. Когда блок питания работает, лампа не будет гореть, а в случае короткого замыкания на блоке лампа загорится.

Потом ищем неисправность в самом блоке питания. Это может быть простой обрыв кабеля или выгорание предохранителя. В случае успеха устраняем неполадку заменой новых деталей или пайкой отломанных.

Некорректная работа

Если ваша электроника работает с перебоями, периодически выдавая проблему, причин такой работы множество. Например, когда при нагрузках на компьютер он отключается, а по истечении некоторого времени снова работает, неисправность может крыться в перегреве или повреждении контактов.

Каждый электрик должен знать:  Организация технического обслуживания электрохозяйства предприятий

Существуют два метода тестирования для диагностики неисправности электронной системы, устройства или печатной платы: функциональный контроль и внутрисхемный контроль. Функциональный контроль обеспе­чивает проверку работы тестируемого модуля, а внутрисхемный контроль состоит в проверке отдельных элементов этого модуля с целью выяснения их номиналов, полярности включения и т. п. Обычно оба этих метода при­меняются последовательно. С разработкой аппаратуры автоматического контроля появилась возможность очень быстрого внутрисхемного кон­троля с индивидуальной проверкой каждого элемента печатной платы, включая транзисторы, логические элементы и счетчики. Функциональ­ный контроль также перешел на новый качественный уровень благодаря применению методов компьютерной обработки данных и компьютерного контроля. Что же касается самих принципов поиска неисправностей, то они совершенно одинаковы, независимо от того, осуществляется ли про­верка вручную или автоматически.

Поиск неисправности должен проводиться в определенной логической последовательности, цель которой — выяснить причину неисправности и затем устранить ее. Число проводимых операций следует сводить к минимуму, избегая необязательных или бессмысленных проверок. Пре­жде чем проверять неисправную схему, нужно тщательно осмотреть ее для возможного обнаружения явных дефектов: перегоревших элементов, разрывов проводников на печатной плате и т. п. Этому следует уделять не более двух-трех минут, с приобретением опыта такой визуальный кон­троль будет выполняться интуитивно. Если осмотр ничего не дал, можно перейти к процедуре поиска неисправности.

В первую очередь выполняется функциональный тест: проверяется работа платы и делается попытка определить неисправный блок и по­дозреваемый неисправный элемент. Прежде чем заменять неисправный элемент, нужно провести внутрисхемное измерение параметров этого эле­мента, для того чтобы убедиться в его неисправности.

Функциональные тесты можно разбить на два класса, или серии. Тесты серии 1 , называемые динамическими тестами, применяются к законченному электронному устройству для выделения неисправного каскада или блока. Когда найден конкретный блок, с которым связана неисправность, применяются тесты серии 2, или статические тесты, для определения одного или двух, возможно, неисправных элементов (резисторов, конден­саторов и т. п.).

Это первый набор тестов, выполняемых при поиске неисправности в элек­тронном устройстве. Поиск неисправности должен вестись в направлении от выхода устройства к его входу по методу деления пополам. Суть этого метода заключается в следующем. Сначала вся схема устройства де­лится на две секции: входную и выходную. На вход выходной секции подается сигнал, аналогичный сигналу, который в нормальных условиях действует в точке разбиения. Если при этом на выходе получается нор­мальный сигнал, значит, неисправность должна находиться во входной секции. Эта входная секция делится на две подсекции, и повторяется предыдущая процедура. И так до тех пор, пока неисправность не будет локализована в наименьшем функционально отличимом каскаде, напри­мер в выходном каскаде, видеоусилителе или усилителе ПЧ, делителе частоты, дешифраторе или отдельном логическом элементе.

Пример 1. Радиоприемник (рис. 38.1)

Самым подходящим первым делением схемы радиоприемника является деление на ЗЧ-секпию и ПЧ/РЧ-секцию. Сначала проверяется ЗЧ-секция: на ее вход (регулятор громкости) подается сигнал с частотой 1 кГц через разделительный конденсатор (10-50 мкФ). Слабый или искаженный сигнал, а также его полное отсутствие указывают на неисправность ЗЧ-секции. Делим теперь эту секцию на две подсекции: выходной каскад и предусилитель. Каждая подсекция прове­ряется, начиная с выхода. Если же ЗЧ-секция исправна, то из громкоговорителя должен быть слышен чистый тональный сигнал (1 кГц). В этом случае неис­правность нужно искать внутри ПЧ/РЧ-секции.

Очень быстро убедиться в исправности или неисправности ЗЧ-секции мож­но с помощью так называемого «отверточного» теста. Прикоснитесь концом отвертки к входным зажимам ЗЧ-секции (предварительно установив регулятор громкости на максимальную громкость). Если эта секция исправна, будет отче­тливо слышно гудение громкоговорителя.

Если установлено, что неисправность находится внутри ПЧ/РЧ-секции, сле­дует разделить ее на две подсекции: ПЧ-секцию и РЧ-секцию. Сначала прове­ряется ПЧ-секция: на ее вход, т. е. на базу транзистора первого УПЧ подается амплитудно-модулированный (AM) сигнал с частотой 470 кГц 1 через раздели­тельный конденсатор емкостью 0,01-0,1 мкФ. Для ЧМ-приемников требуется частотно-модулированный (ЧМ) тестовый сигнал с частотой 10,7 МГц. Если ПЧ-секция исправна, в громкоговорителе будет прослушиваться чистый тональный сигнал (400-600 Гц). В противном случае следует продолжить процедуру разбиения ПЧ-секции, пока не будет найден неисправный каскад, например УПЧ или детектор.

Если неисправность находится внутри РЧ-секции, то эта секция по возмож­ности разбивается на две подсекции и проверяется следующим образом. АМ-сигнал с частотой 1000 кГц подается на вход каскада через разделительный конденсатор емкостью 0,01-0,1 мкФ. Приемник настраивается на прием радио­сигнала с частотой 1000 кГц, или длиной волны 300 м в средневолновом диапа­зоне. В случае ЧМ-приемника, естественно, требуется тестовый сигнал другой частоты.

Можно воспользоваться и альтернативным методом проверки — методом покаскадной проверки прохождения сигнала. Радиоприемник включается и на­страивается на какую-либо станцию. Затем, начиная от выхода устройства, с по­мощью осциллографа проверяется наличие или отсутствие сигнала в контроль­ных точках, а также соответствие его формы и амплитуды требуемым критериям для исправной системы. При поиске неисправности в каком-либо другом элек­тронном устройстве на вход этого устройства подается номинальный сигнал.

Рассмотренные принципы динамических тестов можно применить к любому электронному устройству при условии правильного разбиения системы и подбора параметров тестовых сигналов.

Пример 2. Цифровой делитель частоты и дисплей (рис. 38.2)

Как видно из рисунка, первый тест выполняется в точке, где схема делится при­близительно на две равные части. Для изменения логического состояния сигна­ла на входе блока 4 применяется генератор импульсов. Светоизлучающий диод (СИД) на выходе должен изменять свое состояние, если фиксатор, усилитель и СИД исправны. Далее поиск неисправности следует продолжить в делителях, предшествующих блоку 4. Повторяется та же самая процедура с использовани­ем генератора импульсов, пока не будет определен неисправный делитель. Если СИД не изменяет свое состояние в первом тесте, то неисправность находится в блоках 4, 5 или 6. Тогда сигнал генератора импульсов следует подавать на вход усилителя и т. д.

Принципы статических тестов

Эта серия тестов применяется для определения дефектного элемента в каскаде, неисправность которого установлена на предыдущем этапе про­верок.

1. Начать с проверки статических режимов. Использовать вольтметр с чувствительностью не ниже 20 кОм/В.

2. Измерять только напряжение. Если требуется определить величину тока, вычислить его, измерив, падение напряжения на резисторе из­вестного номинала.

3. Если измерения на постоянном токе не выявили причину неисправно­сти, то тогда и только тогда перейти к динамическому тестированию неисправного каскада.

Проведение тестирования однокаскадного усилителя (рис. 38.3)

Обычно номинальные значения постоянных напряжений в контрольных точках каскада известны. Если нет, их всегда можно оценить с прие­млемой точностью. Сравнив реальные измеренные напряжения с их но­минальными значениями, можно найти дефектный элемент. В первую очередь определяется статический режим транзистора. Здесь возможны три варианта.

1. Транзистор находится в состоянии отсечки, не вырабатывая никакого выходного сигнала, или в состоянии, близком к отсечке («уходит» в область отсечки в динамическом режиме).

2. Транзистор находится в состоянии насыщения, вырабатывая слабый искаженный выходной сигнал, или в состоянии, близком к насыщению («уходит» в область насыщения в динамическом режиме).

$11.Транзистор в нормальном статическом режиме.

Рис. 38.3. Номинальные напряжения:

Рис. 38.4. Обрыв резистора R 3 , транзистор

находится в состоянии отсечки: V e = 0,3 В,

После того как установлен реальный режим работы транзистора, вы­ясняется причина отсечки или насыщения. Если транзистор работает в нормальном статическом режиме, неисправность связана с прохождением переменного сигнала (такая неисправность будет обсуждаться позже).

Режим отсечки транзистора, т. е. прекращение протекания тока, имеет место, когда а) переход база-эмиттер транзистора имеет нулевое напря­жение смещения или б) разрывается путь протекания тока, а именно: при обрыве (перегорании) резистора R 3 или резистора R 4 или когда не­исправен сам транзистор. Обычно, когда транзистор находится в состо­янии отсечки, напряжение на коллекторе равно напряжению источника питания V CC . Однако при обрыве резистора R 3 коллектор «плавает» и теоретически должен иметь потенциал базы. Если подключить вольт­метр для измерения напряжения на коллекторе, переход база-коллектор попадает в условия прямого смещения, как видно из рис. 38.4. По це­пи «резистор R 1 переход база-коллектор — вольтметр» потечет ток, и вольметр покажет небольшую величину напряжения. Это показание полностью связано с внутренним сопротивлением вольтметра.

Аналогично, когда отсечка вызвана обрывом резистора R 4 , «плавает» эмиттер транзистора, который теоретически должен иметь потенциал ба­зы. Если подключить вольтметр для измерения напряжения на эмиттере, образуется цепь протекания тока с прямым смещением перехода база-эмиттер. В результате вольтметр покажет напряжение, немного большее номинального напряжения на эмиттере (рис. 38.5).

В табл. 38.1 подытоживаются рассмотренные выше неисправности.

Рис. 38.5. Обрыв резистора R 4 , транзистор

находится в состоянии отсечки:

V e = 1,25 В, V b = 1,74 В, V c = 10 В.

Рис. 38.6. Короткое замыкание пе­рехода

база-эмиттер, транзистор на­ходится в

состоянии отсечки: V e = 0,48 В, V b = 0,48 В, V c = 10 В.

Отметим, что термин «высокое V BE » означает превышение нормального напряжения прямого смещения эмиттерного перехода на 0,1 – 0,2 В.

Неисправность транзистора также создает условия отсечки. Напря­жения в контрольных точках зависят в этом случае от природы неис­правности и номиналов элементов схемы. Например, короткое замыкание эмиттерного перехода (рис. 38.6) приводит к отсечке тока транзистора и параллельному соединению резисторов R 2 и R 4 . В результате потенци­ал базы и эмиттера уменьшается до величины, определяемой делителем напряжения R 1 R 2 || R 4 .

Таблица 38.1. Условия отсечки

Подведём итог

Цель написания данной статьи — показать начинающим электротехникам, что знание не только интересно, но и в наше нелегкое в финансовом плане время, может помочь радиолюбителям и электронщикам, сэкономить часть средств на самостоятельном ремонте. А в перспективе, по мере прокачивания своего уровня — регулярно подрабатывать в этой сфере. Это сейчас становится особенно актуально, так как люди теперь все чаще обращаются за ремонтом, а не просто выбрасывают старую и покупают новую бытовую технику, как раньше. Всем удачных ремонтов! AKV.

Часто возникает ситуация, когда из-за вышедшей из строя маленькой незначительной детали перестает работать бытовой прибор. Поэтому, ответ на вопрос, как прозванивать плату мультиметром, хотели бы знать многие начинающие радиолюбители. Главное в этом деле быстро обнаружить причину поломки.

Перед выполнением инструментальной проверки, необходимо осмотреть плату на наличие поломок. Электрическая схема платы должна быть без повреждений мостиков, детали не должны быть распухшими и черными. Приведем правила проверки некоторых элементов, в том числе и материнской платы.

Проверка отдельных деталей

Разберем несколько деталей, при поломке которых выходит из строя схема, а вместе с этим и все оборудование.

Резистор

На различных платах данную деталь применяют довольно часто. И так же часто при их поломке происходит сбой в работе прибора. Резисторы несложно проверить на работоспособность мультиметром. Для этого необходимо провести измерение сопротивления. При значении, стремящемся к бесконечности, деталь следует заменить. Неисправность детали можно определить визуально. Как правило, они чернеют из-за перегрева. При изменении номинала более 5%, резистор требует замены.

Проверка диода на неисправность не займет много времени. Включаем мультиметр на замер сопротивления. Красный щуп на анод детали, черный на катод – показание на шкале должно быть от 10 до 100 Ом. Переставляем , теперь минус (черный щуп) на аноде – показание, стремящееся к бесконечности. Эти величины говорят об исправности диода.

Катушка индуктивности

Плата редко выходит из строя по вине этой детали. Как правило, поломка случается по двум причинам:

  • витковое короткое замыкание;
  • обрыв цепи.

Проверив значение сопротивления катушки мультиметром, при значении менее бесконечности – цепь не оборвана. Чаще всего, сопротивление индуктивности имеет значение в несколько десятков омов.

Определить витковое замыкание немного труднее. Для этого прибор переводим в сектор измерения напряжения цепи. Необходимо определить величину напряжения самоиндукции. На обмотку подаем небольшой по напряжению ток (чаще всего используют крону), замыкаем ее с лампочкой. Лампочка моргнула – замыкания нет.

Шлейф

В этом случае следует прозванивать контакты входа на плату и на самом шлейфе. Заводим щуп мультиметра в один из контактов и начинаем прозвон. Если идет звуковой сигнал, значит, эти контакты исправны. При неисправности одно из отверстий не найдет себе «пару». Если же один из контактов прозвонится сразу с несколькими – значит, пришло время менять шлейф, поскольку на старом короткое замыкание.

Микросхема

Выпускается большое разнообразие этих деталей. Замерить и определить неисправность микросхемы с помощью мультиметра достаточно тяжело, наиболее часто используют тестеры pci. Мультиметр не позволяет провести замер, потому что в одной маленькой детали находится несколько десятков транзисторов и других радиоэлементов. А в некоторых новейших разработках сконцентрированы миллиарды компонент.

Определить проблему можно только при визуальном осмотре (повреждения корпуса, изменение цвета, отломанные выводы, сильный нагрев). Если деталь повреждена, ее необходимо заменить. Нередко при поломке микросхемы, компьютер и другие приборы перестают работать, поэтому поиск поломки следует начинать именно с обследования микросхемы.

Тестер материнских плат – это оптимальный вариант определения поломки отдельной детали и узла. Подключив POST карту к материнке и запустив режим тестирования, получаем на экране прибора сведения об узле поломки. Выполнить обследование тестером pci сможет даже новичок, не имеющий особых навыков.

Стабилизаторы

Ответ на этот вопрос, как проверить стабилитрон, знает каждый радиотехник. Для этого переводим мультиметр в положение замера диода. Затем касаемся щупами выходов детали, снимаем показания. Меняем местами щупы и выполняем замер и записываем цифры на экране.

При одном значении порядка 500 Ом, а во втором замере значение сопротивления стремится к бесконечности – эта деталь исправна и годится для дальнейшего использования . На неисправной — величина при двух измерениях будет равна бесконечности – при внутреннем обрыве. При величине сопротивления до 500-сот Ом – произошел полупробой.

Но чаще всего на микросхеме материнской платы сгорают мосты – северный и южный. Это стабилизаторы питания схемы, от которых поступает напряжение на материнку. Определяют эту «неприятность» достаточно легко. Включаем блок питания на компьютере, и подносим руку к материнской плате. В месте поражения она будет сильно нагреваться. Одной из причин такой поломки может быть полевой транзистор моста. Затем проводим прозвонку на их выводах и при необходимости заменяем неисправную деталь. Сопротивление на исправном участке должно быть не более 600 Ом.

Методом обнаружения нагревающего устройства, определяют короткое замыкание (КЗ) на некоторых деталях платы. При подаче питания и обнаружения участка нагрева, кисточкой смазываем место нагрева. По испарению спирта определяется деталь с КЗ.

После того как вы закончили собирать ваше устройство, запаяли последний элемент в плату, не торопитесь сразу же его включать. Приготовьте мультиметр, откройте принципиальную схему и описание схемы.

Сначала нужно проверить правильность монтажа, проверить на КЗ (короткое замыкание). Если вы считаете что все элементы запаяны верно, и КЗ после прозвонки вы не обнаружили, то можно очистить дорожки от остатков канифоли, и подавать питание, но сначала стоит проверить сопротивление цепи питания, если оно подозрительно большое, и если это не оговорено в собираемой вами схеме, то не торопитесь включать схему, перепроверьте еще раз. Правильно ли собрали диодный мост, соблюдена ли полярность при запаивании конденсаторов в цепи питания и т.д.. Если собираемое вами устройство потребляет большой ток, от 1 ампера и выше это говорит о КЗ или неправильно запаянных элементах, бывают и исключения, например преобразователи напряжения кушают 2-3 ампера на холостом ходу. Можно последовательно цепи питания включить маломощный постоянный резистор на несколько ОМ, это может спасти устройство от выхода из строя. Если в схеме стоят мощные транзисторы или микросхемы, которые крепятся на радиатор, не забудьте их изолировать друг от друга. При первоначальном включении устройств соблюдайте осторожность, так как диоды и электролитические конденсаторы при неправильном включении или превышении напряжения могут взорваться. Причем конденсаторы обычно взрываются не сразу, а сначала некоторое время греются. Не оставляйте без присмотра включенные и еще не настроенные устройства.

Прежде чем приступить к поиску неисправностей, если прибор который ремонтируете вам не знаком, нужно в первую очередь получить как можно больше информации об этом устройстве, что за устройство, или что за узел (БП, усилитель, или иное устройство), и нужно достать описание и схему этого устройства. Прежде чем доставать и начинать откручивать плату, приглядитесь, нету ли ничего лишнего внутри корпуса, оторвавшегося куска, осколка и пр. Не забывайте проверять даже такие элементы схемы как выключатель или разъем питания.

Прежде чем начать ковырять плату, разрядите все конденсаторы в том числе и высоковольтные керамические, разряжать нужно резистором примерно в 100 Ом. Если вы забудете это сделать, то при случайном КЗ, или даже во время прозвонки, отпаивания радиодеталей, последствия могут быть ужасными, могут полететь еще элементы, да и сами можете пострадать. Это очень важно!

Проверку всегда начинают с питания и проверки напряжений, проверьте напряжение в сети, предохранитель, далее блок питания. Проверьте напряжения на выходе блока питания и по возможности ток на выходе. Бывает что напряжение в норме, а если подключить лампочку или резистор, напряжение резко проседает или вовсе, БП уходит в защиту. Если окажется что напряжение ниже чем нужно или его нет вовсе, то проверяем диодные мосты, далее стабилизатор напряжения – если такой стоит, транзисторы, если они в схеме имеются. Иногда даже самым простым мультиметром удается найти неисправность в схеме. Проверку и поиск неисправностей нужно всегда проводить с отключенным от устройства питанием! Обратите внимание на провода, не оторваны, не оголены ли они. Если платы между собой соединяются разъёмами или проводами, которые закрепляются в винтовых зажимах, попробуйте переподключить их. Винтовые зажимы не надежны, со временем может пропадать контакт. Попробуйте снова включить плату, внимательно следите, пощупайте транзисторы, резисторы, на нагрев.

Итак, лежит перед нами голая плата с запаянными радиодеталями, берем лупу и начинаем внешний осмотр радиоэлементов, попутно можно даже принюхиваться, и это не шутка, сгоревший радиоэлемент можно вычислить сразу. Бывает что внешним осмотром такой элемент не обнаружить. При осмотре обратите внимание на потемнение резисторов и транзисторов, если заметили такой элемент то немедленно отпаиваем его с платы и прозваниваем, если даже элемент рабочий, лучше его заменить. Бывает что транзисторы даже после того как выйдут из строя прозваниваются тестером. Прозванивать резисторы и другие радиодетали нужно выпаивая с платы.

После осмотра радиодеталей переворачиваем плату, и начинаем осмотр со стороны дорожек, нет ли перегоревших или короткого замыкания (например если вывода радиоэлементов длинные, они могут замкнуть, так что при обратной сборке аппаратуры будьте аккуратнее). Потрогайте элементы, если чувствуете что резистор пошатывается на плате, вполне возможно что пропал электрический контакт, перепаяйте его. Если на плате имеются тонкие дорожки, их следует проверить на обрыв и микротрещины.

Если устройство собрано вами, то проверьте, все ли радиодетали запаяны правильно? У разных транзисторов разная цоколевка, у диодов обозначения тоже могут различаться. Откройте справочник к каждому запаянному элементу (если на память не помните цоколевки) и начинайте проверять. К сожалению, часто бывает так, что при выходе радиоэлемента из строя, сам элемент внешне может ничем не отличаться от исправного. Если вам так и не удалось найти неисправность схемы, придется отпаивать и прозванивать все транзисторы и элементы. Вообще говоря, можно проверять цепи и не отпаивая элементы, но нужен для этого как минимум осциллограф и хороший мультиметр. Углубляться в методику и технику работы с осциллографом в этой статье я не буду. Если схема простая, неисправные элементы как правило обнаруживаются очень быстро.

Микросхемы на неисправность проверяют обычно путем замены на другую, при сборке схем советую ставить специальные панельки под микросхемы, это очень удобно, в случае если вдруг понадобится снять ее. Но если микросхема стоит без панельки, и она запаяна в плату, то советую проверить напряжение на выводах питания микросхемы, прежде чем начинать отпаивать ее.

В схемах где применен микроконтроллер, если после включении схема не подает признаков жизни, а монтаж правильный и радиодетали запаяны правильно, в первую очередь нужно попробовать перепрошить его. Если при программировании вышла ошибка или залита «левая» прошивка, такой МК работать в схеме не будет.

Если вам не хочется выпаивать с платы к примеру резистор, диод, или конденсатор, (чтобы дорожки лишний раз не греть, иначе могут отвалиться) а вы грешите как раз на него, можно параллельно ему попробовать припаять аналогичный элемент. Так можно поступить с конденсаторами, резисторами, и диодами, только помните, что если вы запараллелите два резистора, у вас общее сопротивление уменьшится в два раза, так что один вывод резистора с платы все таки придется отпаять, а с конденсаторами наоборот, при параллеливании емкость увеличиться, например если в схеме стоит конденсатор на 220мкФ, припаяйте параллельно ему 100мкФ, от этого ничего не будет, если вы включите устройство на короткое время. Как правило конденсаторы с резисторами очень редко выходят из строя. Что касается транзисторов, их обязательно нужно выпаивать, параллельно условно неработающему транзистору ставить такой же ни в коем случае нельзя.

В схемах где используются катушки или миниатюрные трансформаторы с большим количеством выводов, пусть даже с отводом от середины, нужно соблюдать начало и конец витков, если после запуска такой схемы устройство не хочет работать, поменяйте местами вывода.

Если вы считаете что нашли причину, из-за которой ваше устройство не хотело работать, и заменили этот элемент на плате, перед подачей питания проверьте плату в местах пайки на предмет КЗ. Уберите в сторону все металлические предметы, отвертки, резисторы, куски проводов и т.п. не дай бог во время подачи питания и проверки устройства под плату закатится резистор, и коротнет.

Теперь предлагаю вам решить небольшую задачку, ниже дана схема достаточно простого блока питания, я специально в этой схеме допустил ошибки и некоторые элементы нарисовал неправильно, попробуйте найти все ошибки. Представьте, что это ваше устройство, которые вы сами собрали, но после включения оно не заработало, или некоторые элементы вышли из строя.

Будьте очень внимательны, ошибок здесь много, представьте, что это реальное устройство, если вы не найдете всех ошибок, при очередном включении прибора, что то может снова выйти из строя.

Методы поиска неисправностей в электронных схемах

Методы отыскания неисправностей.

Ремонт включает работы, связанные с заменой компонентов, ремонтом узлов, блоков, деталей, устранением замыканий, восстановлением и настройкой аппарата. Отыскание неисправностей — наиболее трудоемкая операция ремонта и требует хороших знаний, навыков и мастерства.

Технология ремонта складывается из четырех этапов выявления неисправности, определения ее характера, устранения неисправности, проверки после ремонта. Найти неисправность — значит, найти отказавший, вышедший из строя элемент, узел, модуль, блок, каскад. Все неисправности проигрывателя компакт-дисков можно подразделить на механические и электрические. Механические неисправности возникают в механических узлах например, сервосистема позиционирования лазерного звукоснимателя, устройство загрузки дископриемника и т.д Электрические неисправности возникают в электрических цепях и проявляются в виде изменения сопротивления, разрыва цепи, короткого замыкания и т.д. в транзисторах, микросхемах, резисторах, конденсаторах, трансформаторах и др. Способы поиска неисправностей.

Внешний осмотр позволяет выявить большинство механических неисправностей, а также и некоторые электрические. Внешним осмотром можно проверить качество сборки и монтажа.

При проверке качества сборки вручную проверяют механическое крепление отдельных узлов. Внешним осмотром проверяют также качество электрического монтажа выявляют целостность соединительных проводников, отсутствие затеков припоя, которые могут привести к коротким замыканиям между отдельными участками схемы, обнаруживают провода с нарушенной изоляцией, проверяют качество пайки, а также наличие всех элементов согласно схеме. Внешним осмотром контролируют соответствие номиналов компонентов, выявляют дефекты отдельных элементов обрыв выводов, обугливание поверхности резисторов, механические повреждения керамических конденсаторов и др Внешний осмотр производят, как правило, при отключенном питании. При этом необходимо следить, чтобы в монтаж не попали случайные предметы, которые при включении аппарата могут вызвать короткое замыкание.

Внешним осмотром можно выявить неисправность переменных резисторов по плавности хода оси, подстроечных конденсаторов и т.д. Во включенном состоянии можно определить перегрев трансформаторов, электролитических конденсаторов, корпусов транзисторов и ИС. О наличии неисправностей в схеме аппарата могут свидетельствовать запахи от перегрева компонентов, изменение тона звуковых колебаний, вызываемых работой трансформаторов и других узлов схемы, которые вообще не слышны во время работы или имеют характерный тон звучания например, слабый гул с частотой сети 50 Гц у силовых трансформаторов. Иногда во время внешнего осмотра возникают сомнения в исправности компонентов.

В таком случае необходимо выпаять элемент и проверить его исправность более тщательно. Способ промежуточных измерений заключается в последовательной проверке прохождения сигнала от блока к блоку от каскада к каскаду до обнаружения неисправного участка.

Данный способ применяется, например, в усилителе, состоящим из нескольких каскадов, когда на выходе усилителя вследствие неисправности в каком-то каскаде отсутствует сигнал. Для выявления этого каскада на вход усилителя от генератора подают проверочный сигнал и осциллографом просматривают осциллограммы на выходах отдельных каскадов.

На выходе неисправного сигнал отсутствует. Способ исключения состоит в последовательном исключении исправных каскадов, узлов и блоков в ходе отыскания неисправностей. Так, если в радиоприемнике отсутствует звуковой сигнал на выходе, то неисправность может быть как в высокочастотной, так и низкочастотной частях. Если подать на вход усилителя звуковой частоты проверочный сигнал и при этом на выходе будет слышен сигнал, то усилитель исправен, его можно исключить из дальнейшего поиска неисправности и перейти к проверке высокочастотной части приемника.

Способ замены отдельных неисправных элементов, узлов или блоков на исправные широко используют при проверке и ремонте. Например, заменив блок, модуль на заведомо исправный, можно убедиться в неисправности замененного. Способ сравнения заключается в сравнении параметров неисправного аппарата с параметрами исправного того же типа или марки.

Поиск неисправности осуществляют по определенному правилу алгоритму, позволяющему максимально сократить время поиска. Пример принципиальной электрической схемы СВЧ печи Рис.13 Рис.14 Рис.15

Эта тема принадлежит разделу:

Ремонт и обслуживание СВЧ печей

При традиционных способах нагрева и сушки конвективном, радиационным и контактном нагрев объекта происходит по поверхности. Если теплопроводность объекта низка, что имеет место у диэлектриков, то… Все это в конечном счете может привести к выходу объекта из строя. Сверхвысокочастотным называется нагрев объекта…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Существуют два метода тестирования для диагностики неисправности электронной системы, устройства или печатной платы: функциональный контроль и внутрисхемный контроль. Функциональный контроль обеспе­чивает проверку работы тестируемого модуля, а внутрисхемный контроль состоит в проверке отдельных элементов этого модуля с целью выяснения их номиналов, полярности включения и т. п. Обычно оба этих метода при­меняются последовательно. С разработкой аппаратуры автоматического контроля появилась возможность очень быстрого внутрисхемного кон­троля с индивидуальной проверкой каждого элемента печатной платы, включая транзисторы, логические элементы и счетчики. Функциональ­ный контроль также перешел на новый качественный уровень благодаря применению методов компьютерной обработки данных и компьютерного контроля. Что же касается самих принципов поиска неисправностей, то они совершенно одинаковы, независимо от того, осуществляется ли про­верка вручную или автоматически.

Поиск неисправности должен проводиться в определенной логической последовательности, цель которой — выяснить причину неисправности и затем устранить ее. Число проводимых операций следует сводить к минимуму, избегая необязательных или бессмысленных проверок. Пре­жде чем проверять неисправную схему, нужно тщательно осмотреть ее для возможного обнаружения явных дефектов: перегоревших элементов, разрывов проводников на печатной плате и т. п. Этому следует уделять не более двух-трех минут, с приобретением опыта такой визуальный кон­троль будет выполняться интуитивно. Если осмотр ничего не дал, можно перейти к процедуре поиска неисправности.

В первую очередь выполняется функциональный тест: проверяется работа платы и делается попытка определить неисправный блок и по­дозреваемый неисправный элемент. Прежде чем заменять неисправный элемент, нужно провести внутрисхемное измерение параметров этого эле­мента, для того чтобы убедиться в его неисправности.

Функциональные тесты можно разбить на два класса, или серии. Тесты серии 1 , называемые динамическими тестами, применяются к законченному электронному устройству для выделения неисправного каскада или блока. Когда найден конкретный блок, с которым связана неисправность, применяются тесты серии 2, или статические тесты, для определения одного или двух, возможно, неисправных элементов (резисторов, конден­саторов и т. п.).

Это первый набор тестов, выполняемых при поиске неисправности в элек­тронном устройстве. Поиск неисправности должен вестись в направлении от выхода устройства к его входу по методу деления пополам. Суть этого метода заключается в следующем. Сначала вся схема устройства де­лится на две секции: входную и выходную. На вход выходной секции подается сигнал, аналогичный сигналу, который в нормальных условиях действует в точке разбиения. Если при этом на выходе получается нор­мальный сигнал, значит, неисправность должна находиться во входной секции. Эта входная секция делится на две подсекции, и повторяется предыдущая процедура. И так до тех пор, пока неисправность не будет локализована в наименьшем функционально отличимом каскаде, напри­мер в выходном каскаде, видеоусилителе или усилителе ПЧ, делителе частоты, дешифраторе или отдельном логическом элементе.

Пример 1. Радиоприемник (рис. 38.1)

Самым подходящим первым делением схемы радиоприемника является деление на ЗЧ-секпию и ПЧ/РЧ-секцию. Сначала проверяется ЗЧ-секция: на ее вход (регулятор громкости) подается сигнал с частотой 1 кГц через разделительный конденсатор (10-50 мкФ). Слабый или искаженный сигнал, а также его полное отсутствие указывают на неисправность ЗЧ-секции. Делим теперь эту секцию на две подсекции: выходной каскад и предусилитель. Каждая подсекция прове­ряется, начиная с выхода. Если же ЗЧ-секция исправна, то из громкоговорителя должен быть слышен чистый тональный сигнал (1 кГц). В этом случае неис­правность нужно искать внутри ПЧ/РЧ-секции.

Очень быстро убедиться в исправности или неисправности ЗЧ-секции мож­но с помощью так называемого «отверточного» теста. Прикоснитесь концом отвертки к входным зажимам ЗЧ-секции (предварительно установив регулятор громкости на максимальную громкость). Если эта секция исправна, будет отче­тливо слышно гудение громкоговорителя.

Если установлено, что неисправность находится внутри ПЧ/РЧ-секции, сле­дует разделить ее на две подсекции: ПЧ-секцию и РЧ-секцию. Сначала прове­ряется ПЧ-секция: на ее вход, т. е. на базу транзистора первого УПЧ подается амплитудно-модулированный (AM) сигнал с частотой 470 кГц 1 через раздели­тельный конденсатор емкостью 0,01-0,1 мкФ. Для ЧМ-приемников требуется частотно-модулированный (ЧМ) тестовый сигнал с частотой 10,7 МГц. Если ПЧ-секция исправна, в громкоговорителе будет прослушиваться чистый тональный сигнал (400-600 Гц). В противном случае следует продолжить процедуру разбиения ПЧ-секции, пока не будет найден неисправный каскад, например УПЧ или детектор.

Если неисправность находится внутри РЧ-секции, то эта секция по возмож­ности разбивается на две подсекции и проверяется следующим образом. АМ-сигнал с частотой 1000 кГц подается на вход каскада через разделительный конденсатор емкостью 0,01-0,1 мкФ. Приемник настраивается на прием радио­сигнала с частотой 1000 кГц, или длиной волны 300 м в средневолновом диапа­зоне. В случае ЧМ-приемника, естественно, требуется тестовый сигнал другой частоты.

Можно воспользоваться и альтернативным методом проверки — методом покаскадной проверки прохождения сигнала. Радиоприемник включается и на­страивается на какую-либо станцию. Затем, начиная от выхода устройства, с по­мощью осциллографа проверяется наличие или отсутствие сигнала в контроль­ных точках, а также соответствие его формы и амплитуды требуемым критериям для исправной системы. При поиске неисправности в каком-либо другом элек­тронном устройстве на вход этого устройства подается номинальный сигнал.

Рассмотренные принципы динамических тестов можно применить к любому электронному устройству при условии правильного разбиения системы и подбора параметров тестовых сигналов.

Пример 2. Цифровой делитель частоты и дисплей (рис. 38.2)

Как видно из рисунка, первый тест выполняется в точке, где схема делится при­близительно на две равные части. Для изменения логического состояния сигна­ла на входе блока 4 применяется генератор импульсов. Светоизлучающий диод (СИД) на выходе должен изменять свое состояние, если фиксатор, усилитель и СИД исправны. Далее поиск неисправности следует продолжить в делителях, предшествующих блоку 4. Повторяется та же самая процедура с использовани­ем генератора импульсов, пока не будет определен неисправный делитель. Если СИД не изменяет свое состояние в первом тесте, то неисправность находится в блоках 4, 5 или 6. Тогда сигнал генератора импульсов следует подавать на вход усилителя и т. д.

Принципы статических тестов

Эта серия тестов применяется для определения дефектного элемента в каскаде, неисправность которого установлена на предыдущем этапе про­верок.

1. Начать с проверки статических режимов. Использовать вольтметр с чувствительностью не ниже 20 кОм/В.

2. Измерять только напряжение. Если требуется определить величину тока, вычислить его, измерив, падение напряжения на резисторе из­вестного номинала.

3. Если измерения на постоянном токе не выявили причину неисправно­сти, то тогда и только тогда перейти к динамическому тестированию неисправного каскада.

Проведение тестирования однокаскадного усилителя (рис. 38.3)

Обычно номинальные значения постоянных напряжений в контрольных точках каскада известны. Если нет, их всегда можно оценить с прие­млемой точностью. Сравнив реальные измеренные напряжения с их но­минальными значениями, можно найти дефектный элемент. В первую очередь определяется статический режим транзистора. Здесь возможны три варианта.

1. Транзистор находится в состоянии отсечки, не вырабатывая никакого выходного сигнала, или в состоянии, близком к отсечке («уходит» в область отсечки в динамическом режиме).

2. Транзистор находится в состоянии насыщения, вырабатывая слабый искаженный выходной сигнал, или в состоянии, близком к насыщению («уходит» в область насыщения в динамическом режиме).

$11.Транзистор в нормальном статическом режиме.

Рис. 38.3. Номинальные напряжения:

Рис. 38.4. Обрыв резистора R 3 , транзистор

находится в состоянии отсечки: V e = 0,3 В,

После того как установлен реальный режим работы транзистора, вы­ясняется причина отсечки или насыщения. Если транзистор работает в нормальном статическом режиме, неисправность связана с прохождением переменного сигнала (такая неисправность будет обсуждаться позже).

Режим отсечки транзистора, т. е. прекращение протекания тока, имеет место, когда а) переход база-эмиттер транзистора имеет нулевое напря­жение смещения или б) разрывается путь протекания тока, а именно: при обрыве (перегорании) резистора R 3 или резистора R 4 или когда не­исправен сам транзистор. Обычно, когда транзистор находится в состо­янии отсечки, напряжение на коллекторе равно напряжению источника питания V CC . Однако при обрыве резистора R 3 коллектор «плавает» и теоретически должен иметь потенциал базы. Если подключить вольт­метр для измерения напряжения на коллекторе, переход база-коллектор попадает в условия прямого смещения, как видно из рис. 38.4. По це­пи «резистор R 1 переход база-коллектор — вольтметр» потечет ток, и вольметр покажет небольшую величину напряжения. Это показание полностью связано с внутренним сопротивлением вольтметра.

Аналогично, когда отсечка вызвана обрывом резистора R 4 , «плавает» эмиттер транзистора, который теоретически должен иметь потенциал ба­зы. Если подключить вольтметр для измерения напряжения на эмиттере, образуется цепь протекания тока с прямым смещением перехода база-эмиттер. В результате вольтметр покажет напряжение, немного большее номинального напряжения на эмиттере (рис. 38.5).

В табл. 38.1 подытоживаются рассмотренные выше неисправности.

Рис. 38.5. Обрыв резистора R 4 , транзистор

находится в состоянии отсечки:

V e = 1,25 В, V b = 1,74 В, V c = 10 В.

Рис. 38.6. Короткое замыкание пе­рехода

база-эмиттер, транзистор на­ходится в

состоянии отсечки: V e = 0,48 В, V b = 0,48 В, V c = 10 В.

Отметим, что термин «высокое V BE » означает превышение нормального напряжения прямого смещения эмиттерного перехода на 0,1 – 0,2 В.

Неисправность транзистора также создает условия отсечки. Напря­жения в контрольных точках зависят в этом случае от природы неис­правности и номиналов элементов схемы. Например, короткое замыкание эмиттерного перехода (рис. 38.6) приводит к отсечке тока транзистора и параллельному соединению резисторов R 2 и R 4 . В результате потенци­ал базы и эмиттера уменьшается до величины, определяемой делителем напряжения R 1 R 2 || R 4 .

Как определить неисправность в электронной схеме. Самостоятельный ремонт электроники

После того как вы закончили собирать ваше устройство, запаяли последний элемент в плату, не торопитесь сразу же его включать. Приготовьте мультиметр, откройте принципиальную схему и описание схемы.

Сначала нужно проверить правильность монтажа, проверить на КЗ (короткое замыкание). Если вы считаете что все элементы запаяны верно, и КЗ после прозвонки вы не обнаружили, то можно очистить дорожки от остатков канифоли, и подавать питание, но сначала стоит проверить сопротивление цепи питания, если оно подозрительно большое, и если это не оговорено в собираемой вами схеме, то не торопитесь включать схему, перепроверьте еще раз. Правильно ли собрали диодный мост, соблюдена ли полярность при запаивании конденсаторов в цепи питания и т.д.. Если собираемое вами устройство потребляет большой ток, от 1 ампера и выше это говорит о КЗ или неправильно запаянных элементах, бывают и исключения, например преобразователи напряжения кушают 2-3 ампера на холостом ходу. Можно последовательно цепи питания включить маломощный постоянный резистор на несколько ОМ, это может спасти устройство от выхода из строя. Если в схеме стоят мощные транзисторы или микросхемы, которые крепятся на радиатор, не забудьте их изолировать друг от друга. При первоначальном включении устройств соблюдайте осторожность, так как диоды и электролитические конденсаторы при неправильном включении или превышении напряжения могут взорваться. Причем конденсаторы обычно взрываются не сразу, а сначала некоторое время греются. Не оставляйте без присмотра включенные и еще не настроенные устройства.

Прежде чем приступить к поиску неисправностей, если прибор который ремонтируете вам не знаком, нужно в первую очередь получить как можно больше информации об этом устройстве, что за устройство, или что за узел (БП, усилитель, или иное устройство), и нужно достать описание и схему этого устройства. Прежде чем доставать и начинать откручивать плату, приглядитесь, нету ли ничего лишнего внутри корпуса, оторвавшегося куска, осколка и пр. Не забывайте проверять даже такие элементы схемы как выключатель или разъем питания.

Прежде чем начать ковырять плату, разрядите все конденсаторы в том числе и высоковольтные керамические, разряжать нужно резистором примерно в 100 Ом. Если вы забудете это сделать, то при случайном КЗ, или даже во время прозвонки, отпаивания радиодеталей, последствия могут быть ужасными, могут полететь еще элементы, да и сами можете пострадать. Это очень важно!

Проверку всегда начинают с питания и проверки напряжений, проверьте напряжение в сети, предохранитель, далее блок питания. Проверьте напряжения на выходе блока питания и по возможности ток на выходе. Бывает что напряжение в норме, а если подключить лампочку или резистор, напряжение резко проседает или вовсе, БП уходит в защиту. Если окажется что напряжение ниже чем нужно или его нет вовсе, то проверяем диодные мосты, далее стабилизатор напряжения – если такой стоит, транзисторы, если они в схеме имеются. Иногда даже самым простым мультиметром удается найти неисправность в схеме. Проверку и поиск неисправностей нужно всегда проводить с отключенным от устройства питанием! Обратите внимание на провода, не оторваны, не оголены ли они. Если платы между собой соединяются разъёмами или проводами, которые закрепляются в винтовых зажимах, попробуйте переподключить их. Винтовые зажимы не надежны, со временем может пропадать контакт. Попробуйте снова включить плату, внимательно следите, пощупайте транзисторы, резисторы, на нагрев.

Итак, лежит перед нами голая плата с запаянными радиодеталями, берем лупу и начинаем внешний осмотр радиоэлементов, попутно можно даже принюхиваться, и это не шутка, сгоревший радиоэлемент можно вычислить сразу. Бывает что внешним осмотром такой элемент не обнаружить. При осмотре обратите внимание на потемнение резисторов и транзисторов, если заметили такой элемент то немедленно отпаиваем его с платы и прозваниваем, если даже элемент рабочий, лучше его заменить. Бывает что транзисторы даже после того как выйдут из строя прозваниваются тестером. Прозванивать резисторы и другие радиодетали нужно выпаивая с платы.

После осмотра радиодеталей переворачиваем плату, и начинаем осмотр со стороны дорожек, нет ли перегоревших или короткого замыкания (например если вывода радиоэлементов длинные, они могут замкнуть, так что при обратной сборке аппаратуры будьте аккуратнее). Потрогайте элементы, если чувствуете что резистор пошатывается на плате, вполне возможно что пропал электрический контакт, перепаяйте его. Если на плате имеются тонкие дорожки, их следует проверить на обрыв и микротрещины.

Если устройство собрано вами, то проверьте, все ли радиодетали запаяны правильно? У разных транзисторов разная цоколевка, у диодов обозначения тоже могут различаться. Откройте справочник к каждому запаянному элементу (если на память не помните цоколевки) и начинайте проверять. К сожалению, часто бывает так, что при выходе радиоэлемента из строя, сам элемент внешне может ничем не отличаться от исправного. Если вам так и не удалось найти неисправность схемы, придется отпаивать и прозванивать все транзисторы и элементы. Вообще говоря, можно проверять цепи и не отпаивая элементы, но нужен для этого как минимум осциллограф и хороший мультиметр. Углубляться в методику и технику работы с осциллографом в этой статье я не буду. Если схема простая, неисправные элементы как правило обнаруживаются очень быстро.

Микросхемы на неисправность проверяют обычно путем замены на другую, при сборке схем советую ставить специальные панельки под микросхемы, это очень удобно, в случае если вдруг понадобится снять ее. Но если микросхема стоит без панельки, и она запаяна в плату, то советую проверить напряжение на выводах питания микросхемы, прежде чем начинать отпаивать ее.

В схемах где применен микроконтроллер, если после включении схема не подает признаков жизни, а монтаж правильный и радиодетали запаяны правильно, в первую очередь нужно попробовать перепрошить его. Если при программировании вышла ошибка или залита «левая» прошивка, такой МК работать в схеме не будет.

Если вам не хочется выпаивать с платы к примеру резистор, диод, или конденсатор, (чтобы дорожки лишний раз не греть, иначе могут отвалиться) а вы грешите как раз на него, можно параллельно ему попробовать припаять аналогичный элемент. Так можно поступить с конденсаторами, резисторами, и диодами, только помните, что если вы запараллелите два резистора, у вас общее сопротивление уменьшится в два раза, так что один вывод резистора с платы все таки придется отпаять, а с конденсаторами наоборот, при параллеливании емкость увеличиться, например если в схеме стоит конденсатор на 220мкФ, припаяйте параллельно ему 100мкФ, от этого ничего не будет, если вы включите устройство на короткое время. Как правило конденсаторы с резисторами очень редко выходят из строя. Что касается транзисторов, их обязательно нужно выпаивать, параллельно условно неработающему транзистору ставить такой же ни в коем случае нельзя.

В схемах где используются катушки или миниатюрные трансформаторы с большим количеством выводов, пусть даже с отводом от середины, нужно соблюдать начало и конец витков, если после запуска такой схемы устройство не хочет работать, поменяйте местами вывода.

Если вы считаете что нашли причину, из-за которой ваше устройство не хотело работать, и заменили этот элемент на плате, перед подачей питания проверьте плату в местах пайки на предмет КЗ. Уберите в сторону все металлические предметы, отвертки, резисторы, куски проводов и т.п. не дай бог во время подачи питания и проверки устройства под плату закатится резистор, и коротнет.

Теперь предлагаю вам решить небольшую задачку, ниже дана схема достаточно простого блока питания, я специально в этой схеме допустил ошибки и некоторые элементы нарисовал неправильно, попробуйте найти все ошибки. Представьте, что это ваше устройство, которые вы сами собрали, но после включения оно не заработало, или некоторые элементы вышли из строя.

Будьте очень внимательны, ошибок здесь много, представьте, что это реальное устройство, если вы не найдете всех ошибок, при очередном включении прибора, что то может снова выйти из строя.

Р аздел Мастерская составлен для начинающих радиолюбителей , которые хотят не только собирать и мастерить самоделки, но и самостоятельно производить ремонт бытовой электроники.

З десь Вы найдёте статьи по ремонту, начиная с таких аппаратов как CD/MP3-проигрыватели и заканчивая бытовыми компактными люминесцентными лампами. Узнаете, как правильно разобрать/собрать CD деку автомобильного проигрывателя и как восстановить работоспособность портативной звуковой колонки. Также рассматриваются основные моменты ремонта и приводятся качественные фотографии для наглядности.

Н а страницах этого раздела найдётся информация о том, как отремонтировать DVD – плеер и музыкальный центр. Рассказано о таких типичных неисправностях современных цветных телевизоров, как, например, появление цветных пятен на экране кинескопа. Есть статьи и о современной портативной технике – MP3 плеерах, переносных звуковых колонках и малогабаритных LCD-телевизорах.

Д ля более полного освоения информации приводятся качественные фотографии ремонтируемых аппаратов и их узлов. В некоторых случаях приводятся принципиальные схемы, фотографии радиодеталей и их цоколёвка. Вся предоставленная информация основывается исключительно на личном опыте ремонта бытовой электроники.

Для перехода на интересующую статью кликните ссылку или миниатюрную картинку-иконку, расположенную рядом с кратким описанием материала.

Ремонт телевизионной техники

В телевизорах Erisson распространена неисправность транзистора 2SB764 в цепях кадровой развёртки. Однако неисправность проявляется повторно даже после замены неисправного транзистора на новый. Причина неисправности — «баг», ошибка при проектировании аппарата. В статье подробно рассмотрен пример устранения данного дефекта при ремонте телевизоров Erisson моделей 1401 и 2102.

В статье рассмотрен ремонт переносного LCD-телевизора Prology HDTV-909S. Неисправность — телевизор не включается. В процессе ремонта портативного телевизора был заменён отечественным аналогом транзистор 2SA2039, что никак не сказалось на работоспособности LCD-телевизора Prology.

Ремонт аппаратуры с лазерным оптическим приводом

Главная часть любого дискового устройства — лазерный привод. Немного знаний о ремонте и устранении причин сбоев этих устройств не помешает, особенно начинающим радиомеханикам!

Основные неисправности DVD плееров и методы их устранения (No disk и Error). Наиболее уязвимые детали DVD плееров — лазерный считыватель, привод шпинделя, драйвер и главный процессор. Рекомендации по ремонту и замене неисправных деталей и узлов DVD проигрывателей.

Как быстро заменить оптический лазерный блок в DVD? Простая пошаговая методика избавит начинающих радиомехаников от кропотливой работы по разборке DVD-привода и замены в нем лазера.

При ремонте автомобильных CD/MP3-проигрывателей иногда необходимо произвести чистку линзы оптического лазерного блока, заменить двигатель шпинделя в CD-приводе. Как правильно и быстро разобрать/собрать CD-привод? В статье рассмотрена пошаговая методика разборки CD-привода, для наглядности приводится много фотографий.

Переносной CD/MP3-проигрыватель плохо воспроизводит запись с диска? Узнайте о том, как устранить сбой в CD/MP3-проигрывателе при воспроизведении записи с диска. Пример из реальной практики ремонта, плюс несколько советов о том, как устранить неисправность переносного CD/MP3-проигрывателя.

Ремонт звуковоспроизводящей аппаратуры

С данной статьи мы начнём знакомство с устройством, схемотехникой, а также «комплектухой» автомобильного усилителя. Несмотря на кажущиеся различия, все автомобильные усилители имеют схожую конструкцию и схемотехнику. Материал, изложенный в статье, поможет начинающим радиомеханикам разобраться в устройстве любого автоусилителя.

В этой статье рассказывается об устройстве и ремонте акустической системы SVEN IHOO MT5.1R. Информация будет интересна всем тем, кто интересуется самостоятельным ремонтом звукоусилительной аппаратуры. Пример реальной неисправности и методики ремонта. Прилагается архив с принципиальной схемой аппарата.

Несмотря на всю сложность схемотехники современных музыкальных центров неисправности их довольно типичны. Показана практика ремонта на примере устранения неисправности музыкального центра Samsung MAX-VS720 — хриплый и тихий звук. Узнай сейчас!

Простой ремонт плеера Xcube. Наиболее распространённые неисправности миниатюрных MP-3 плееров, это механические поломки, связанные с интенсивной эксплуатацией этих популярных устройств.

В последнее время широкое распространение получили переносные акустические системы, по английской терминологии — Portable Speakers (Портативные громкоговорители). Особенно востребованы портативные акустические системы в молодёжной среде. Переносные акустические системы имеют малые габариты, хорошее качество звуковоспроизведения, автономное питание. Какова «электронная начинка» этих устройств?

В практике ремонта нередки случаи, когда ремонт прибора невозможен по причине невозможности замены какого-либо электронного компонента. В таких случаях приходится искать наиболее подходящую замену неисправной детали. В статье рассмотрен ремонт портативной акустической системы. Вместо неисправной микросхемы PAM8403 была довольно успешно встроена микросхема TDA2822.

По статистике неисправностей автомагнитол на первом месте поломки связаные с цепями питания этих приборов. Рассмотрен простой ремонт магнитолы Mystery MCD-795MPU — выгорание защитного предохранителя, магнитола не включается. Данная методика ремонта пригодится при ремонте любых автомагнитол, как кассетных, так и дисковых. Читайте прямо сейчас!

Ремонт различной бытовой радиоэлектроники

В этой статье рассказывается об устройстве и ремонте электрического чайника-термоса. Подробно рассмотрена конструкция и назначение конкретных деталей и электронных узлов.

В данной статье рассматривается принципиальная схема термопота. Подробно рассмотрены основные электрические узлы, а также электронные компоненты, которые применяются в термопотах разных фирм. Информация будет непременно полезна всем тем, кто хочет самостоятельно починить неисправный чайник-термос.

Взамен обычных бытовых ламп накаливания приходят компактные энергосберегающие лампы, которые можно установить в стандартный цоколь Е27(Е14). Несмотря на то, что энергосберегающие лампы долговечнее обычных ламп накаливания, они также выходят из строя. Стоимость энергосберегающих ламп довольно высока и их ремонт оправдан хотя бы в личных целях. Особенно, если учесть тот факт, что в большинстве случаев сама лампа исправна, а из строя выходит высокочастотный преобразователь, который несложно починить.

SMD монтаж — один из самых сложных в плане ремонта, особенно при отсутствии спецоборудования. Проблему замены smd компонентов каждый радиомеханик решает для себя сам, вот один из примеров.

Электробезопасность при обслуживании и ремонте радиоэлектронной аппаратуры

При ремонте электроустановок, электронных приборов и электропроводки необходимо соблюдать простые правила электробезопасности. В статье кратко описаны некоторые приёмы и правила, которые используют радиолюбители и электрики в повседневной практике.

Электрооборудование транспортных средств

Данная статья посвящена электрике и электрооборудованию рядового китайского скутера. Рассказывается практически обо всех элементах электрической схемы скутера, их назначении и особенностях. Информация будет интересна всем владельцам китайских скутеров, которые не знакомы с электрооборудованием скутера, но желают узнать об этом больше.

Неисправность реле-регулятора скутера приводит к нежелательным последствиям: выгорают лампы освещения, выходит из строя аккумуляторная батарея, со временем заряд аккумулятора снижается и приходится заводить скутер кикстартером. Проверить реле-регулятор на скутере можно с помощью мультиметра. О том, как это сделать читайте здесь.

Ремонт источников питания

Вторая часть является продолжением первой части и в ней разбирается состав и работа схемы управления и контроля сварочного инвертора.

Схемотехнике блоков питания ПК посвящены 5 частей. В каждой из них рассказывается об одном из электронных узлов импульсного блока питания (ИБП). Приводятся принципиальные схемы, а также рассказывается о схемотехнических решениях, применяемых в конкретной схеме и возможных неисправностях.

Перед тем как лечить больного, ему надо поставить диагноз, то есть провести диагностику. В радиоэлектронике под этим понимается выявление характера (вида) неисправности по ее признакам. Но часто у одного и того же дефекта могут быть разные причины. Именно поэтому бывает сложно отремонтировать неизвестное ранее устройство без понимания принципов работы входящих узлов и их взаимодействия в системе. Ведь неисправность одного элемента может проявляться в виде симптомов в других, связанных с ним узлах.

Большинство неисправностей в радиоаппаратуре — это когда нет какого-то нужного сигнала. Что связано может быть с тем, что данный сигнал не формируется, либо с обрывом цепи по пути его прохождения, либо с ее замыканием, произошедшем в результате пробоя элементов схемы.

Существует много специальных измерительных приборов и приспособлений, помогающих быстро выявить неисправность. Но любой специалист, профессионально занимающийся ремонтом радиоаппаратуры, вам скажет, что в большинстве случаев достаточно всего трех составляющих: головы, паяльника и какого-нибудь тестера. С этим утверждением сложно спорить, и, скорее всего, все это у вас уже есть. К данному набору не помешает еще иметь «золотые руки» (умение аккуратно выполнять точную работу), так как современные компоненты часто имеют малые размеры.

Так же, как и при решении любой другой технической задачи, существует много способов ремонта. Но оптимальными, то есть теми, которые позволяют быстро найти причину, может быть только один или два из них. Здесь предлагается перечень универсальных «рецептов» (в виде советов и рекомендаций), которые позволят вам быстро ответить на вечные вопросы: «Кто виноват?» и «Что делать?», а также разобраться, почему возникла неисправность. Если не задумываться о последнем, то после замены неисправных компонентов дефект может снова повториться, испортив вам настроение дополнительными финансовыми расходами. Не зря появилась шутка: ремонт — это замена одних неисправностейдругими.

Тут следует отметить, что ремонт промышленного изделия или же ремонт (отладка) своей собранной конструкции хотя во многом похожи, но имеют и некоторые отличия. Промышленное изделие раньше уже было правильно собрано и работало, т. е. не имеет ошибок в монтаже. Неисправность же в своей конструкции может быть вызвана ошибкой в монтаже (неправильно установлен диод, транзистор или соединительный провод отвалился, неудачно установлен режим по постоянному току — тепловой перегрев, и др.). Наиболее частой причиной повреждения элементов своей схемы является неправильная полярность подачи питающего напряжения, что случается по неопытности или неаккуратности.

В радиоаппаратуре промышленного изготовления причинами возникновения неисправностей могутбыть:

о нарушение правил эксплуатации. Предварительно следует обязательно познакомиться с рекомендациями изготовителя по подключению устройства. Сетевые розетки, от которых поступает питание, должны обеспечивать надежный контакт с вилкой. Искрение в месте соединения не только создает помехи, но может вывести из строя импульсный источник питания. Причиной неисправности может стать даже кратковременное действие в сети мощных помех (выбросов напряжения), вызванных грозовыми разрядами. Высоковольтные выбросы напряжения в сети могуттакже появиться за счетдействия противо-ЭДС, возникающей при коммутации мощных потребителей электроэнергии (сварочных аппаратов, электромоторов и др.); о некачественное изготовление, что часто проявляется в плохой («холодной») пайке или разных нарушениях технологического процесса. Иногда причиной могут быть использование производителем дефектных элементов или их замена на аналоги без учета надежности или тепловых режимов; о естественное старение компонентов, ведь все они имеют свой ресурс, причем разный у разных типов деталей. К тому же ресурс зависит от теплового режима работы (повышенная окружающая температура его сокращает). Поэтому такие дефекты начинают проявляться через продолжительное время эксплуатации. Причем у некоторых элементов процесс старения идет более интенсивно, даже если устройство не используется (например, у полярных конденсаторов — они лидируют по интенсивности отказов);

о необычные воздействия, например таракан, забравшись в телевизор, может стать причиной попадания высокого напряжения на низковольтные цепи или же перекрыть собой оптический датчик подачи бумаги в факсе или принтере (почему-то они очень любят сильные магнитные поля и лезут туда, куда их никто не просит). Для насекомых все это тоже плохо кончается, но аппарат уже не работает. Некоторые виды голодных муравьев тоже способны на многое. Неравнодушны к технике и многие домашние животные — они жуют кабели и пульты дистанционного управления. Случайное падение радиоаппаратуры тоже может привести к серьезным дефектам (трещинам на печатных платах и др.);

о неграмотные действия. Человек, не обладающий соответствующими знаниями, но полезший ремонтировать сложное изделие, способен нанести гораздо больший вред и сильно осложнить поиск неисправности. Например, даже такая простая операция, как замена сгоревшего штатного предохранителя перемычкой из толстого провода или гвоздя («жучком»), может привести к выгоранию, кроме дополнительных элементов схемы, еще и проводников печатной платы.

По статистике, при ремонте радиоаппаратуры большая часть времени уходит именно на определение места и выяснение причины неисправности и только 10% непосредственно на устранение дефекта (замену элементов или восстановление соединений). Но это при условии, что у вас уже есть некоторый опыт и все необходимые компоненты под руками.

Можно рассказать подробно, как отремонтировать конкретное устройство (этой теме посвящено немало толстых специализированных книг), но такие знания очень быстро устаревают. Ведь в наше время примерно каждые 6 месяцев происходит появление новых технологий и самих изделий, выполненных на их основе. Такая быстрая смена моделей — необходимое условие выживания фирм в условиях жесткой конкурентной борьбы. Поэтому здесь мы рассмотрим универсальные алгоритмы ремонта радиоаппаратуры любой сложности, которые подойдут для большинства случаев. Оче- редностьдействий приведена в порядке, которого желательно (но не обязательно) придерживаться. Но прежде чем приступать к ремонту, вы должны уметь оценить качество работы радиоаппаратуры, сравнив свои теоретические знания с реальным поведением устройства.

Всякий ремонт начинается с внешнего осмотра изделия и проверки его работоспособности. Нужно убедиться, что на устройство подается номинальное питание. Тестером можно проверить предохранители и кабель питания, а также наличие нужного уровня питающего напряжения (в сетевой розетке или от автономного источника).

Если же устройство включается, но работа отличается от штатной, следует постараться выявить все признаки проявления неисправности для последующего анализа возможной причины. Для сложных устройств, все наблюдения лучше записать на бумаге, что поможет в дальнейшем (бумага — старинное проверенное средство от склероза).

Первый метод ремонта можно назвать последовательным логическим поиском.

1. Отключаем устройство (обязательно вытащив вилку из сети) и вскрываем его так, чтобы стали хорошо видны плата с компонентами и весь монтаж. Если внутри есть пыль, то ее предварительно надо удалить при помощи мягкой кисточки и пылесоса. Проводится внешний осмотр элементов и узлов схемы, для чего потребуется хорошее освещение (могут очень пригодиться лупа и монтажные увеличительные очки). Внимательный осмотр позволяет довольно быстро выявитьдо 10…30% видов неисправностей. Обращать внимание следует в первую очередь на:

о темные следы, вздутие или нарушения в покрытии элемеНтов из-за перегрева (резисторов, конденсаторов, транзисторов идр.);

о грещины и сколы на компонентах (например, у конденсаторов и транзисторов являются признаком внутреннего пробоя);

о след вытекания или разбрызгивания электролита у полярных конденсаторов (такие конденсаторы относятся к категории самых ненадежных и нередко со временем именно они являются причиной неисправности); о отсутствие трещин на плате и целостность печатных проводников;

о надежность крепления элементов (может быть нарушена при эксплуатации вусловиях вибраций); о однородность паек. При некотором опыте иногда «холодную» пайку в соединении можно обнаружить при помощи лупы по цвету или растрескиванию припоя вокруг вывода (кольцевые трещины припоя). Такой дефект чаще всего бывает около установленных на плату разъемов, переключателей, выводов силовых импульсных трансформаторов (сетевого или строчного в телевизоре). Элементы схемы, которые сильно греются (например, линейные стабилизаторы в игровых приставках), при некачественной пайке могут сами выпаиваться и болтаться, из-за чего периодически нарушается контакт; о посторонние запахи внутри корпуса устройства являются признаком пробоя изоляции в индуктивных элементах или конденсаторах (опытные специалисты уже по запаху могут определить вид неисправности).

2. Подозрительные цепи и элементы можно попробовать проверить прямо на плате — «прозвонить» тестером (или омметром). При этом в первую очередь следует обратить внимание на целостность предохранителей и отсутствие внутренних коротких замыканий (пробоя) в силовых элементах: мощныхдиодах, транзисторных ключах, тиристорах, симисторах, конденсаторах большой емкости (многие силовые элементы легко обнаружить по теплоотводу, к которому они крепятся). Подгоревший резистор может существенно изменить свой номинал, что нарушит работу ближайших узлов.

Как можно проверить отдельные элементы, вы знаете из предыдущей статьи. Для чего все их необязательно выпаивать из платы, это неудобно и требует много времени. К тому же демонтаж иногда создает дополнительные проблемы: проводники могут отслоиться или выводы сломаться.

3. Независимо от того, удалось или нет выявить неисправные элементы, придется воспользоваться имеющейся документацией на устройство: электрической принципиальной схемой и техническим описанием. Последнее на промышленные изделия удается найти далеко не всегда, но попытаться стоит.

В технической документации можно найти описание вспомогательных режимов работы, специально предназначенных помочь в настройке и проверке радиоаппаратуры. Например, некоторые телевизоры через сервисное меню позволяют включать тестовые изображения, облегчающие проверку правильности сведения лучей и чистоты цвета. Многие устройства, выпускаемые фирмой Panasonic, в случае неисправности по результатам самодиагностики выводят код ошибки.

Несмотря на то, что многие современные радиотехнические устройства (телевизоры, компьютеры, автомобильные контроллеры и др.) имеют встроенные системы автоматической диагностики, которые хотя и могут помочь в поиске неисправности, но никогда не укажут конкретное место и причины ее появления. Тут все равно думать самостоятельно придется.

Если схему на абсолютно новое устройство найти не удастся, то документацию на основные микросхемы получить вполне возможно. Большинство производителей компонентов самую необходимую техническую информацию оперативно выкладывают в виде PDF-файлов на своих сайтах. Найти фирму-изготовитель помогает логотип, который стоит на элементе.

Информацию, которая может помочь (описания, схемы и конкретный опыт ремонта, которым делятся специалисты), можно найти в Интернете на русскоязычных сайтах. Их очень много, здесь приведем самые крупные:

http://www.telemaster.ru — советы по ремонту отечественной и импортной радиоаппаратуры;

http://www.tacxema.narod.ru — телефонные схемы отечественных и импортных аппаратов, включая радиотелефоны, АОНы;

http://rv6llh.rsuh.ru/rv6llh.htm — сайт посвящен ремонту мониторов;

alekssam — много полезной информации по ремонту.

Даже самое сложное устройство состоит из более простых типовых схем, чтобы понягь их работу, от вас потребуются знания основ схемотехники. Наданном этапе важно проанализировать ра- богу и составить перечень узлов, которые могут являться причиной неисправности на пути прохождения сигнала, и продумать план действий для последовательной проверки.

4. Теперь можно включить устройство и осмотреть его в работе — оно не должно издавать никаких посторонних звуков. Например, в импульсном источнике питания: тикающий звук говорит о срабатывании защиты, свист — о нарушении режима работы, возможно вызванном его нагрузкой (в телевизоре или мониторе — каскадом строчной развертки).

Воспользуемся приборами для измерения режимов работы элементов (вольтметром) и контроля пути прохождения сигналов (пробником, осциллографом, генератором), что позволит получить дополнительную информацию, необходимую для анализа. Проверяем не все подряд (на это не хватит никакого времени), а только те функциональные узлы, которые могут являться причиной неисправности на пути прохождения сигнала (тут необходимо понимание работы схемы).

Но начинать любые измерения лучше с проверки всех внутренних питающих напряжений и их соответствия номинальным (с учетом допуска). Например, для повреждения цифровых микросхем из серии 155 достаточно увеличения на них питающего напряжения в течение продолжительного времени до уровня 5,7 В — такое может произойти при неисправности стабилизатора напряжения питания.

Второй метод ремонта — замена узлов на заведомо исправные. Профессиональные ремонтники для ускорения локализации места неисправности в сложных устройствах иногда используют метод последовательной замены узлов на заведомо исправные (например, можно поменять импульсный трансформатор, источник питания или одну из плат, если есть подозрения именно на них). Найденный таким образом неисправный узел исследуется уже более тщательно на специально изготовленном для этого стенде, а после ремонта возвращается на свое собственное место. Измерительный стенд должен иметь все эквивалентные нагрузки (импульсные источники питания без нагрузки включать вообще нельзя) и позволяет проводить поиск неисправности в более комфортных и безопасных условиях.

Третий метод ремонта — изменение температуры компонентов. Он используется, когдадефект исчезающий, т. е. проявляется через продолжительный период работы устройства или случайно (непредсказуемо), время от времени. Чаще всего причиной такого бывают внутренние дефекты микросхем, электролитических конденсаторов, плохие пайки или некачественные разъемные соединения. В этом случае выявитьдефектные элементы из огромного их количества позволяет местный выборочный нагрев. Для нагрева применяется малогабаритный фен (нагрев элемента осуществляется подачей горячего воздуха). В крайнем случае иногда используют отключенный от питания горячий паяльник, которым можно коснуться металлического корпуса конденсатора.

Для того чтобы сразу видеть реакцию (поймать дефект), все это выполняется при работающей радиоаппаратуре, поэтому требует особой аккуратности и внимательности, чтобы не коснуться высоковольтных цепей или случайно не замкнуть цепи, находящиеся под напряжением.

Местный прогрев горячим воздухом участков многослойной платы позволяет выявить плохой контакт в металлизированных переходных отверстиях. Иногда помогает устранить дефект профилактическая пропайка монтажа, в первую очередь разъемов и силовых элементов. Визуально обнаружить некачественную пайку удается далеко не всегда — как показывает опыт, своим глазам верить в этом нельзя.

Следует отметить, что для отлова дефекта можно использовать не только местный нагрев элементов, но и наоборот — местное охлаждение, для чего специально выпускаются газовые баллончики с охладителем, но это более дорогой путь.

В заключение отметим, что, если неисправный элемент обнаружен, это не значит, что устройство после его замены будет долго нормально работать, — надо постараться выяснить и устранить причины, вызвавшие отказ.

1. Кизлюк А. И. Справочник по устройству и ремонту телефонных аппаратов зарубежного и отечественного производства. — M.: Библион. 1997, с. 148.

2. Шелестов И. П. Радиолюбителям: полезные схемы. Книга 5. — M.: СОЛОН-Пресс, 2003, с. 183-184.

Д. Томел, Н. Уидмер “Поиск неисправностей в электронике” НТ-Пресс, 2007 год, 416 стр., перевод с английского О. Махарадзе (15,0 мб. djvu)

В книге приводится информация по теоретическим основам и практическим приемам поиска неисправностей и технического обслуживания электронных устройств. Авторы касаются базовых технологий поиска неисправностей применимых к большинству устройств электронной техники. Приводятся примеры с подробными описаниями возникающих проблем и их решением, демонстрирующие практическое применение излагаемого материала.

Данная методика продемонстрирована на конкретных образцах промышленной, медицинской и бытовой электроники теле, радио и микропроцессорной техники. По своему содержанию и структуре изложения, книгу можно отнести к учебно-методическому руководству, имеющему целью, как теоретическое обучение так и практическое применение при обслуживании электроники. Книга заинтересует радиолюбителей, инженеров и техников электронщиков.
ISBN 978-5-407-001163-7

Глава 1. Принципы сервисного обслуживания 17
Анализ решения проблем 17
19
Методы поиска неисправностей 22
Тестирование основных элементов 26
Полупроводниковые элементы 32
Интегральные микросхемы 44
Электронные лампы 48
Конденсаторы сверхбольшой емкости 50
Катушки индуктивности 51
Вопросы для самоконтроля 52
Вопросы и проблемы 56

Глава 2. Контрольно-измерительные приборы для электронных устройств 58
Общий обзор 58
Мультиметр, ампервольтомметр, мультиметр на полевых транзисторах, цифровые универсальные измерительные приборы 59
Осциллограф 60
Специальное контрольно-измерительное оборудование 63
Использование тестовых пробников 73
Вопросы для самоконтроля 74
Вопросы и проблемы 75

Глава 3. Сервисное обслуживание двигателей и генераторов 77
Основные сведения 77
Типы двигателей 79
Двигатели с расщепленными фазами 80
Конденсаторные двигатели 81
Оглавление
Двигатели с расщепленными полюсами 83
Двигатели репульсионного типа 85
Двигатели постоянного тока 85
Универсальные электродвигатели 87
Многополюсные двигатели 87
Синхронные двигатели 88
Редукторные двигатели 88
Шаговый двигатель 89
Специальные двигатели и их применение 91
Типы генераторов 91
Ремонт двигателей 92
Ремонт генераторов 104
Профилактическое техническое обслуживание 107
Вопросы для самоконтроля 109
Вопросы и проблемы 112

Глава 4. Сервисное обслуживание промышленных устройств управления 113
Основные сведения 114
Типы устройств управления 116
Устройства защиты от перегрузки 117
Ручные пускатели 119
Магнитные пускатели 120
Реверсивные магнитные пускатели 122
Контакторы осветительных приборов 123
Кнопочные выключатели и пульты 124
Концевые выключатели 1 24
Барабанные переключатели 125
Таймеры 126
Электронные приводы 127
Программируемые контроллеры 127
Датчики 128
Ремонт и тестирование 129
Профилактическое техническое обслуживание 135
Вопросы для самоконтроля 136
Вопросы и проблемы 140

Глава 5. Сервисное обслуживание электропроводки бытового и промышленного назначения 142
Основные сведения 142
Ремонт цепей электропроводки 149
Ремонт систем освещения 155
Ремонт распределенных систем телевидения 156
Профилактическое техническое обслуживание 160
Вопросы для самоконтроля 161
Вопросы и проблемы 164

Глава 6. Сервисное обслуживание радио- и телевизионной аппаратуры 165
Основные сведения об амплитудной модуляции 165
Основные сведения о частотной модуляции 167
Основные сведения о частотном разделении каналов 169
Основные сведения о телевизионных передатчиках и приемниках 176
Сервисное обслуживание радиоаппаратуры 180
Магнитофоны 184
Проигрыватели лазерных дисков 184
Сервисное обслуживание черно-белого телевизора 188
Бледное изображение и слабый звук 189
Хорошее изображение, слабый звук 191
Бледное изображение при нормальном звуке 191
Отсутствие изображения при нормальном звуке 191
Звук нормальный, но нет растрового изображения 192
Звук нормальный, но нет синхронизации изображения 194
Звук нормальный, но имеет место сбой строк и уменьшенная ширина изображения 195
Звук нормальный, но изображение смещается по вертикали и складывается,
высота изображения уменьшена 195
Нормальное изображение, слабый звук 197
Телевизор не подает признаков жизни 197
Сервисное обслуживание цветного телевизора 197
Отсутствие цвета 200
Слабый или тусклый цвет 201
Доминирующий цвет на экране 201
Сигнал выключения канала цветности 201
Цветные полосы 201
Другие проблемы цвета 201
Сведение лучей 202
Настройка чистоты цвета 202
Статическое сведение 202
Динамическое сведение 202
Техническое обслуживание телевизионных приемников последних моделей 203
Руководства по обслуживанию 207
Компоненты для поверхностного монтажа 210
Профилактическое техническое обслуживание 210
Вопросы для самоконтроля 211
Вопросы и проблемы 216

Глава 7. Сервисное обслуживание цифровых схем 218
Основные сведения 218
Двоичная система счисления 219
Логические функции 219
Логика И 219
Логика ИЛИ 221
Логика НЕ 222
Схемы И-НЕ и ИЛИ-НЕ 222
Исключающее ИЛИ 224
Серии цифровых логических приборов 225
ТТЛ 226
КМОП 231
ЭСЛ 234
ПЛИС 234
Корпуса и идентификация ИМС 236
Природа неисправностей 237
Обрыв 237
Короткое замыкание 238
Неисправные периферийные компоненты 240
Потенциальные причины неисправностей 240
242
Поиск и локализация неисправностей 243
Методы тестирования и специализированное оборудование 246
Логические пробники 246
Логический импульсный генератор 247
Ручное тестовое оборудование 248
Осциллографы 249
Логические анализаторы 251
Методы поиска неисправностей логических устройств 252
Ремонт 256
Извлечение ИМС 256
Монтаж ИМС 261
Вопросы для самоконтроля 262
Вопросы и проблемы 266
Глава 8. Сервисное обслуживание последовательных
цифровых схем 268
Системы счисления 268
Комбинационные логические приборы 270
Дешифраторы 270
Шифраторы 274
Логические устройства с памятью 275
Асинхронные ИБ-триггеры 276
Синхронные триггеры 277
Счетчики 279
Регистры сдвига 281
Сервисное обслуживание триггерных схем 284
Формы цифровых сигналов 285
Пример сервисного обслуживания последовательной цифровой схемы 286
Ремонт сложных электронных цифровых схем 294
Профилактическое техническое обслуживание 296
Вопросы для самоконтроля 297
Вопросы и проблемы 299
В помощь радиолюбителю. Поиск неисправностей в электронике.

Глава 9. Сервисное обслуживание микропроцессорных систем 301
Принципы работы микрокомпьютеров 302
Центральный процессор 302
Память 302
Устройства ввода/вывода 306
Шины и логические устройства с тремя состояниями 306
Инструкции и машинный код 308
Машинные циклы и синхронизация 309
Персональные компьютеры 311
Аппаратное обеспечение персонального компьютера 31 2
Сервисное обслуживание персональных компьютеров 314
Сервисное обслуживание систем с микропроцессорами 317
Сервисное обслуживание при разработке 322
Профилактическое техническое обслуживание 324
Вопросы для самоконтроля 325
Вопросы и проблемы 328

Глава 10. Сервисное обслуживание биомедицинского оборудования 329
Принципы биомедицины 329
Требования безопасности 330
Сервисное обслуживание диагностического оборудования 335
Электрокардиографы 337
Электроэнцефалографы 343
Электромиографы 345
Самописцы 345
Рентгеновские установки 346
Компьютерный томограф 352
Магнитно-резонансные системы 353
Ультразвуковое диагностическое оборудование 356
Лабораторные инструменты 361
Газовый анализатор артериальной крови 361
Сервисное обслуживание терапевтического оборудования 365
Диализ почек 366
Инфузионные насосы 370
Дефибрилляторы 373
Приборы электрохирургии 376
Ультразвуковые терапевтические приборы 378
Аппарат для диатермии 382
Оглавление
Профилактическое техническое обслуживание 382
Вопросы для самоконтроля 383
Вопросы и проблемы 387
В помощь радиолюбителю. Поиск неисправностей в электронике.

Приложения
Приложение 1. Руководство по сервисному обслуживанию в двигателях 388
Приложение 2. Руководство по сервисному обслуживанию блоков управления электродвигателями 390
Приложение 3. Руководство по сервисному обслуживанию радио- и стереоаппаратуре 393
Приложение 4. Руководство по сервисному обслуживанию магнитофонов 394
Приложение 5. Руководство по сервисному обслуживанию в блоках управления электродвигателями 395
Приложение 6. Руководство по сервисному обслуживанию телевизоров 396
Приложение 7. Общее руководство по сервисному обслуживанию 398
Приложение 8. Руководство по сервисному обслуживанию в приемной аппаратуреТВ/ЧМ 399
Приложение 9. Руководство по сервисному обслуживанию микрокомпьютеров 400
Приложение 10. Руководство по сервисному обслуживанию генераторов 402
Приложение 1 1. Руководство по сервисному обслуживанию биомедицинского оборудования 403
Приложение 12. Руководство по тестированию ионисторов 404
Предметный указатель 407

Скачать техническую литературу бесплатно 15,0 мб. djvu

Оглавление
Предисловие
Введение
Глава 1. Принципы сервисного обслуживания
Анализ решения проблем
Неисправности схем
Методы поиска неисправностей
Тестирование основных элементов
Полупроводниковые элементы
Интегральные микросхемы
Электронные лампы
Конденсаторы сверхбольшой емкости
Катушки индуктивности
Вопросы для самоконтроля
Вопросы и проблемы
Глава 2. Контрольно-измерительные приборы
для электронных устройств
Общий обзор
Мультиметр, ампервольтомметр, мультиметр на полевых транзисторах, цифровые универсальные измерительные приборы
Осциллограф
Специальное контрольно-измерительное оборудование
Использование тестовых пробников
Вопросы для самоконтроля
Вопросы и проблемы
Глава 3. Сервисное обслуживание двигателей и генераторов
Основные сведения
Типы двигателей
Двигатели с расщепленными фазами
Конденсаторные двигатели
Двигатели с расщепленными полюсами
Двигатели репульсионного типа
Двигатели постоянного тока
Универсальные электродвигатели
Многополюсные двигатели
Синхронные двигатели
Редукторные двигатели
Шаговый двигатель
Специальные двигатели и их применение
Типы генераторов
Ремонт двигателей
Ремонт генераторов
Вопросы для самоконтроля
Вопросы и проблемы
Глава 4. Сервисное обслуживание промышленных устройств управления
Основные сведения
Типы устройств управления
Устройства защиты от перегрузки
Ручные пускатели
Магнитные пускатели
Реверсивные магнитные пускатели
Контакторы осветительных приборов
Кнопочные выключатели и пульты
Концевые выключатели
Барабанные переключатели
Таймеры
Электронные приводы
Программируемые контроллеры
Датчики
Ремонт и тестирование
Профилактическое техническое обслуживание
Вопросы для самоконтроля
Вопросы и проблемы
Глава 5. Сервисное обслуживание электропроводки бытового и промышленного назначения
Основные сведения
Ремонт цепей электропроводки
Ремонт систем освещения
Ремонт распределенных систем телевидения
Профилактическое техническое обслуживание
Вопросы для самоконтроля
Вопросы и проблемы
Глава 6. Сервисное обслуживание радио-
и телевизионной аппаратуры
Основные сведения об амплитудной модуляции
Основные сведения о частотной модуляции
Основные сведения о частотном разделении каналов
Основные сведения о телевизионных передатчиках и приемниках
Сервисное обслуживание радиоаппаратуры
Магнитофоны
Проигрыватели лазерных дисков
Сервисное обслуживание черно-белого телевизора
Бледное изображение и слабый звук
Хорошее изображение, слабый звук
Бледное изображение при нормальном звуке
Отсутствие изображения при нормальном звуке
Звук нормальный, но нет растрового изображения
Звук нормальный, но нет синхронизации изображения
Звук нормальный, но имеет место сбой строк и уменьшенная
ширина изображения
Звук нормальный, но изображение смещается по вертикали и складывается, высота изображения уменьшена
Нормальное изображение, слабый звук
Телевизор не подает признаков жизни
Сервисное обслуживание цветного телевизора
Отсутствие цвета
Слабый или тусклый цвет
Доминирующий цвет на экране
Сигнал выключения канала цветности
Цветные полосы
Другие проблемы цвета
Сведение лучей
Настройка чистоты цвета
Статическое сведение
Динамическое сведение
Техническое обслуживание телевизионных приемников последних моделей
Руководства по обслуживанию
Компоненты для поверхностного монтажа
Профилактическое техническое обслуживание
Вопросы для самоконтроля
Вопросы и проблемы
Глава 7. Сервисное обслуживание цифровых схем
Основные сведения
Двоичная система счисления
Логические функции
Логика И
Логика ИЛИ
Логика НЕ
Схемы И-НЕ и ИЛИ-НЕ
Исключающее ИЛИ
Серии цифровых логических приборов
ТТЛ
КМОП
ЭСЛ
ПЛИС
Корпуса и идентификация ИМС
Природа неисправностей
Обрыв
Короткое замыкание
Неисправные периферийные компоненты
Потенциальные причины неисправностей
Чтение цифровых схем
Поиск и локализация неисправностей
Методы тестирования и специализированное оборудование
Логические пробники
Логический импульсный генератор
Ручное тестовое оборудование
Осциллографы
Логические анализаторы
Методы поиска неисправностей логических устройств
Ремонт
Извлечение ИМС
Монтаж ИМС
Вопросы для самоконтроля
Вопросы и проблемы
Глава 8. Сервисное обслуживание последовательных цифровых схем
Системы счисления
Комбинационные логические приборы
Дешифраторы
Шифраторы
Логические устройства с памятью
Асинхронные RS-триггеры
Синхронные триггеры
Счетчики
Регистры сдвига
Сервисное обслуживание триггерных схем
Формы цифровых сигналов
Пример сервисного обслуживания последовательной цифровой схемы
Ремонт сложных электронных цифровых схем
Профилактическое техническое обслуживание
Вопросы для самоконтроля
Вопросы и проблемы
Глава 9. Сервисное обслуживание микропроцессорных систем
Принципы работы микрокомпьютеров
Центральный процессор
Память
Устройства ввода/вывода
Шины и логические устройства с тремя состояниями
Инструкции и машинный код
Машинные циклы и синхронизация
Персональные компьютеры
Аппаратное обеспечение персонального компьютера
Сервисное обслуживание персональных компьютеров
Сервисное обслуживание систем с микропроцессорами
Сервисное обслуживание при разработке
Профилактическое техническое обслуживание
Вопросы для самоконтроля
Вопросы и проблемы
Глава 10. Сервисное обслуживание
биомедицинского оборудования
Принципы биомедицины
Требования безопасности
Сервисное обслуживание диагностического оборудования
Электрокардиографы
Электроэнцефалографы
Электромиографы
Самописцы
Рентгеновские установки
Компьютерный томограф
Магнитно-резонансные системы
Ультразвуковое диагностическое оборудование
Лабораторные инструменты
Газовый анализатор артериальной крови
Сервисное обслуживание терапевтического оборудования
Диализ почек
Инфузионные насосы
Дефибрилляторы
Приборы электрохирургии
Ультразвуковые терапевтические приборы
Аппарат для диатермии
Профилактическое техническое обслуживание
Вопросы для самоконтроля
Вопросы и проблемы
Приложения
Приложение 1. Руководство по сервисному обслуживанию в двигателях
Приложение 2. Руководство по сервисному обслуживанию блоков управления электродвигателями
Приложение 3. Руководство по сервисному обслуживанию радио- и стереоаппаратуре
Приложение 4. Руководство по сервисному обслуживанию магнитофонов
Приложение 5. Руководство по сервисному обслуживанию в блоках управления электродвигателями
Приложение 6. Руководство по сервисному обслуживанию телевизоров
Приложение 7. Общее руководство по сервисному обслуживанию
Приложение 8. Руководство по сервисному обслуживанию в приемной аппаратуре ТВ/ЧМ
Приложение 9. Руководство по сервисному обслуживанию микрокомпьютеров
Приложение 10. Руководство по сервисному обслуживанию генераторов
Приложение 11. Руководство по сервисному обслуживанию биомедицинского оборудования
Приложение 12. Руководство по тестированию ионисторов
Предметный указатель

Добавить комментарий