Монтаж заземляющих устройств (монтаж заземления). Устройство заземления


СОДЕРЖАНИЕ:

Как сделать правильное заземление своими руками

В старых многоэтажках и частных домах о заземлении не задумывались — в этом не было нужды. В наше время в каждой квартире одновременно работает множество электрических приборов, подключены практически все розетки, работает холодильник, электроплита, вытяжка, заряжаются сотовые телефоны и ноутбуки, поэтому без заземления уже не обойтись.

В статье поговорим о том, как сделать заземление своими руками как в частном доме, так и в квартире.

Устройства заземления своими руками: схемы и примеры

Для примера возьмем удачный опыт устройства заземления, осуществленного на основании официально заверенного проекта, проверенного и допущенного к эксплуатации.

Для устройства заземления необходимо:

  • Аппарат и сварочная маска.
  • Две лопаты (совковая и штыковая).
  • Молоток или кувалда.
  • Стальные уголки.
  • Стальной прут.
  • Провода.
  • Электроды.
  • Труба гофрированная.
  • Клемма.

Для примера возьмем частный дом. Разметим точки на расстоянии друг от друга по 1,5 метра, забиваем 3 стальный уголка. между которыми расстояние по 1.5 метра забиваем электроды — 3 стальных, 3-х метровых уголка.

Вбиваются уголки вертикально, утапливаясь на 50% глубины вырытого рва (около 50 см. от уровня земли). Ров вырывают в форме треугольника.

Уголки привариваются к электродам, вбитым в землю, все плоскости как следует завариваются сварочным аппаратом. После этого, необходимо измерить сопротивление заземления.

Обратите внимание! Максимально допустимый уровень сопротивления — 30 Ом.

После проверки сопротивления приступаем к привариванию металлического прута к уголку заземляющего контура. Прут прокладывается к дому. После этого, его нужно поднять под фротон и подсоединить в щит.

С помощью болтов подсоединяем к корпусу щита и распределяем по электроприборам и розеткам, а в ров засыпаем выкопанную землю.

Рассмотрим еще один пример.

Для устройства данной системы понадобятся:

  • колы заземления;
  • металлические перемычки для объединения колов;
  • линии передачи от контура до щитка.

На схеме изображена самая популярная модель заземления:

Виды заземления для частного дома

Существует 6 видов систем заземления для частных домов, но наибольшей популярностью при строительстве пользуются две системы: TN-S-C и TT, причем TN-S-C является наиболее рекомендованной для индивидуальной застройки.

Устройство заземления имеет контакт с землей, а нейтраль глухозаземлена. Благодаря этому, к жильцам дома земля и нейтраль идут через единый проводник, а перед входом в дом делятся на два отдельных.

При системе TN-C-S УЗО не требуются — на ней установлены автоматы. Но у популярной системы есть и свои минусы: при повреждении провода может появиться фазное напряжение, а отключить его не представляется возможным. Поэтому у этих линий обязательно должна быть защита проводов и резервное заземление каждые 100-200 метров.

Однако, чем старее линии электропередач, тем чаще они не отвечают вышеуказанным требованиям. Особенно часто такую ситуацию можно наблюдать в деревнях. В этом случае подойдет система ТТ.

Система ТТ от TN-C-S отличается тем, что провод заземления к щиту идет не от трансформатора, а от контура заземления. ТТ-система устойчива к повреждениям на проводе, но у нее есть свой минус: обязательная установка УЗО.

Система ТТ считается запасной, ее можно использовать только в том случае, если линия электропередач не соответствует требованиям TN-S-C.

Варианты заземления (или зануления) в квартире

При современном строительстве обязательно проводится монтаж трехпроводной электросети. Но в многоэтажных домах старых построек такая система не применялась, и в данном случае придется делать не заземление, а зануление электропроводки. Поговорим о том, в чем разница между заземлением и занулением.

На схеме мы видим систему зануления:

И заземление, и зануление нужны для того, чтобы защитить жильцов от удара током при касании к приборам, на которых произошла утечка тока.

Основное различие в том, что при занулении происходит быстрое отключение тока при контакте жильца и оголенного провода или поврежденного электроприбора, а при заземлении напряжение уходит в землю.

Принцип зануления состоит в том, что корпус электроприборов соединяется с нейтральным проводом — нулем, а в результате данного соединения создается контур.

При появлении утечки тока, зануление провоцирует короткое замыкание, и предохранители на щитке отключат подачу тока к электроприборам, розеткам и проводам.

Расчет и создание заземляющего контура

Для расчета заземляющего контура необходимо точно определить его основные параметры. С помощью параметров создается схема, на основании которой подсчитывается нужное количество заземлителей, их размеры и порядок размещения.

Схема защитного заземления: r — сопротивление заземляющих устройств u — напряжение прикосновения

Для произведения расчетов потребуются нижеперечисленные данные:

  • данные об электрооборудовании, его характеристики (напряжение, размеры электродов, конфигурации электродов, тип установки и пр.);
  • данные об естественных заземлителях, показатели сопротивления, период действия заземляющей защиты и т.д.

Чаще всего, заземление рассчитывают при установке системы в однородном грунте, но современные методы позволяют рассчитывать и при установке заземления в неоднородном грунте.

Для того, чтобы произвести расчеты в однородном грунте, нужно учитывать значения сопротивления замерзающей прослойки земли в зимний период. Для того, чтобы получить точные данные, применяют особые коэффициенты, которые используются для расчета систем заземления разного типа сложности.

Если же требуется рассчитать заземлители, монтируемые в двух-трех слоях грунта, то потребуется учитывать значения сопротивления каждого слоя грунта. Расчет основывается на применении всех потенциалов, направленных на монтируемые электроды, составляющие конструкцию из заземлителей.

Нормативные регламенты ПЭУ требуют расчета по основному параметру — требуемому сопротивлению. Для электрооборудования, которое имеет напряжение до 1 кВ, рассчитывать сопротивление заземляющего контура нужно по следующей формуле:

Для того, чтобы организовать защитное заземление установок при более высоком уровне напряжения, при расчетах используются следующие параметры и стандартные величины:

  • в электрических сетях с качественно заземленной нейтралью с присущими им высокими токами на землю — 0,5 Ом;
  • для систем с изолированной нейтралью и малых токах более 1000 В — не выше 10 Ом при 250в.

В многоэтажках для защиты жителей от ударов током применяются автоматические выключатели, которые производят зануление электросети.

Схема расположения заземлителей, заглубленных до скального грунта:

В частных домах зачастую отсутствует техническая возможность монтирования автоматических приборов, отключающих дом от тока в случае поломки. Для этого и требуется устройство заземления.

Для монтажа вертикальных заземлителей можно использовать металлическую трубу с диаметром 50 мм, стальной прут толщиной 10 мм, уголок металлический длиной 50 мм. Для контура нужно взять три металлических отрезка длиной по три метра, чтобы получился равносторонний треугольник, как на схеме выше.

Элемент заземления изготавливают из металлической трубы длиной 9 м., толщиной 4 мм. После этого, контур заземления можно приварить сварочным аппаратом к проводнику, сделанному из полосовой стали. Теперь контур можно соединить с естественным заземлителем.

Контур заземления справляется с функцией защитного сопротивления, для этого достаточно подключить его к вмонтированному в землю водопроводу, изготовленному из металла, либо к металлическим трубам или любым другим металлоконструкциям.

После того, как защитный контур был установлен, вырытые траншеи и рвы нужно засыпать однородным грунтом, чистым от мелких камней и мусора.

После прочтения статьи читатель знает все о том, что такое заземление и зануление, как устанавливать заземление в квартире и частном доме и самостоятельно приступать к монтажу. Важно помнить о технике безопасности, проверять величину сопротивления после установки.

Если нет навыков работы с электроприборами и соответствующих инструментов, оптимальнее всего будет вызвать профессиональных электриков.

Заземление. Назначение. Виды. Монтаж устройств защитного заземления

Заземление — электрическое соединение предмета из проводящего материала с землей. Заземление состоит из заземлителя (проводящей части или совокупности соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду) и заземляющего проводника, соединяющего заземляемое устройство с заземлителем. Заземлитель может быть простым металлическим стержнем (чаще всего стальным, реже медным) или сложным комплексом элементов специальной формы.

Заземляющие устройства и соединение с ними (заземление или зануление) корпусов электрооборудования выполняют для обеспечения безопасности людей, обслуживающих электроустановки и пользующихся электроэнергией на производстве и в быту.

Электросети выполняют проводниками, изолированными друг от друга и от земли. Однако в сетях имеют место утечки тока через изоляцию. Электросети представляют собой протяженный конденсатор, обкладками которого являются токоведущие проводники и земля. Между проводами и землей проходит емкостный ток. Таким образом, между изолированными проводниками и землей всегда существует электрическая цепь, замкнутая через сопротивление изоляции и емкость сети.

Прикосновение не только к голым, но и к изолированным частям, находящимся под напряжением, включает человека в электрическую цепь. Ток, проходящий через тело человека, будет тем больше, чем выше напряжение сети, чем больше ее емкость и меньше сопротивление ее изоляции.

Наибольшую опасность представляют случаи повреждения изоляции токоведущих частей, при которых доступные для прикосновения металлические корпуса электрооборудования и конструкции, поддерживающие провода и кабели, оказываются под полным напряжением. На эти случаи для обеспечения безопасности людей предусматривают преднамеренное соединение с землей металлических корпусов электрооборудования, а также других металлических частей, которые могут оказаться под напряжением при нарушении изоляции токоведущих частей, с помощью заземляющих проводников и заземлителей.

Заземлители — металлические проводники, находящиеся в непосредственном соприкосновении с землей. Заземлители делят на искусственные и естественные.

Заземляющие проводники — металлические проводники, соединяющие заземляемые части электроустановки с заземлителями (рис.1).

Рисунок 1 — Защитное металлическое соединение корпусов электрооборудования в установках 380/220 В с заземленной нейтралью:

1 — заземляющие проводники; 2 — заземлитель; 3 — электродвигатель, корпус которого занулен; 4 — светильник, корпус которого занулен

Заземляющее устройство — совокупность заземлителя и заземляющих проводников.

Замыкание на землю — случайное электрическое соединение токоведущей части непосредственно с землей или с нетоковедущими электропроводящими конструкциями или предметами, неизолированными от земли.

Замыкание на корпус — случайное электрическое соединение токоведущей части с металлическими нетоковедущими частями электроустановки.

Нулевой защитный проводник — проводник, соединяющий зануляемые части с глухозаземленной нейтральной точкой обмотки источника тока или ее эквивалентом.

Магистраль заземления или зануления — соответственно заземляющий или нулевой защитный проводник с двумя или более ответвлениями.

Защитное заземление — преднамеренное электрическое соединение с

землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением.

Зануление — преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением.

Монтаж заземляющих устройств

Монтаж заземлителей. Искусственные заземлители сооружают только в случае, если естественные заземлители (железобетонные фундаменты зданий и сооружений и др.) не обеспечивают сопротивление растеканию, требуемое ПУЭ.

Углубленные заземлители, заранее заготовленные, укладывают на дно котлованов под фундаменты зданий и сооружений при производстве строительных работ. Вертикальные заземлители из угловой стали и труб погружают в грунт путем забивки или вдавливания. Вертикальные заземлители из круглой стали ввертывают в грунт или вдавливают. Для этих целей используют различного рода передвижные механизмы (копры, автоямобуры, вибраторы, гидропрессы, бурильно-крановые машины) и ручные приспособления (рис.2). Наиболее эффективен метод вдавливания.

Рисунок 2 — Погружение в грунт вертикальных заземлителей:

а — забивка в грунт с помощью копра; б — приспособление к ямобуру АБ-400 для вдавливания заземлителей в грунт;

в — приспособление к электросверлилке для ввертывания стержневых электродов в грунт; г — приспособление к бурильно-крановой машине для вдавливания стержневых электродов в грунт

Глубина заложения верха вертикальных заземлителей должна быть равна 0,6-0,7 м от уровня планировочной отметки земли и выступать от дна траншеи на 0,1-0,2 м (рис.3) для удобства приварки к ним соединительных горизонтальных полос или круглых стержней. Горизонтальные заземлители и соединительные полосы (стержни) между вертикальными заземлителями укладывают в траншеи глубиной 0,6-0,7 м от уровня планировочной отметки земли. Рытье траншей производится землеройными машинами.

Все соединения в цепях заземлителей выполняют сваркой внахлестку. Качество сварных швов проверяют осмотром, а прочность — ударом молотка массой 1 кг. Места сварки во избежание коррозии покрывают битумным лаком.

Рисунок 3 — Размещение вертикальных заземлителей в грунте:

а — не требующем специальной обработки; б — требующем специальной обработки; в — соединения заземлителей с полосовой сталью

У мест ввода заземляющих проводников в здания устанавливают опознавательные знаки заземлителя.

Расположенные в земле заземлители и заземляющие «Е»-проводники не окрашивают. Если в грунте содержатся примеси, вызывающие повышенную коррозию, применяют заземлители увеличенного сечения, оцинкованные или омедненные заземлители или осуществляют электрическую защиту от коррозии.

Горизонтальные заземлители в местах пересечения с подземными сооружениями (кабелями, трубопроводами), с железнодорожными путями и дорогами, а также в местах возможных механических повреждений защищают асбестоцементными безнапорными трубами.

По окончании монтажа заземлителей перед засыпкой траншей составляют акт освидетельствования скрытых работ.

Монтаж заземляющих и нулевых защитных проводников. Заземляющие и нулевые защитные проводники в помещениях и в наружных установках должны быть доступны для осмотра. Это требование не относится к нулевым жилам и металлическим оболочкам кабелей, трубам скрытой электропроводки, металлоконструкциям и трубам, находящимся в земле и фундаментах, а также заземляющим и нулевым защитным проводникам, проложенным в трубах и коробах и в скрытых несменяемых электропроводках.

Заземляющие проводники прокладывают горизонтально и вертикально или параллельно наклонным конструкциям зданий.

В сухих помещениях заземляющие проводники по бетонным и кирпичным основаниям могут укладываться непосредственно по основаниям с креплением полос дюбель-гвоздями, а в сырых, особо сырых помещениях и в помещениях с едкими парами прокладку проводников выполняют на подкладках или опорах (держателях) на расстоянии не менее 10 мм от основания.

Проводники крепят на расстояниях: 600-1000 мм между креплениями на прямых участках, 100 мм на поворотах от вершин углов, 100 мм от мест ответвлений, 400-600 мм от уровня пола помещения и не менее 50 мм от нижней поверхности съемных перекрытий каналов. Через стены, перегородки и перекрытия заземляющие проводники прокладывают в открытых проемах или в гильзах, а при пересечении температурных швов устанавливают компенсаторы.

Соединение заземляющих проводников и присоединение их к металлическим конструкциям зданий выполняют сваркой, за исключением разъемных мест, предназначенных для измерений. Длину нахлестки для сварки проводников при соединениях принимают равной ширине полосы при прямоугольном сечении и шести диаметрам — при круглом сечении.

К корпусам машин и аппаратов заземляющие проводники присоединяют, как правило, под заземляющий болт, имеющийся на их корпусах. Машины, установленные на салазках, заземляют путем присоединения к последним заземляющего проводника.

При наличии сотрясений или вибрации принимают меры против ослабления контакта (установка контргайки, контрящих шайб и т.п.). Контактные поверхности на электрооборудовании и у заземляющих проводников в местах болтового соединения зачищают до металлического блеска и покрывают тонким слоем вазелина (рис. 4).

Рисунок 4 — Соединение и присоединение заземляющих проводников:

а — соединение сваркой полосовой стали; б — соединение сваркой круглой стали; в — присоединение к заземляющему болту круглой стали; г — присоединение к трубопроводу полосовой стали сваркой

Если на трубопроводах, используемых в качестве заземлителей, установлены задвижки, водомеры или выполнены болтовые фланцевые соединения, то в этих местах приваривают или устанавливают на хомутах обходные перемычки сечением не менее 100 мм2.

Открыто проложенные заземляющие и нулевые защитные проводники имеют отличительную окраску — по зеленому фону желтая полоса вдоль проводника. Окраске не подлежат места, предназначенные для подсоединения инвентарных переносных заземлителей.

Порядок установки переносного заземления

Переносное заземление относится к устройствам, которые обеспечивают безопасность при проведении работ в электроустановках и распределительных сетях электрического тока. Задача заземления состоит в предотвращении опасных последствий при случайной подаче напряжения в ремонтируемое устройство и для защиты от наведенного напряжения (актуально при работе на протяженных линиях). Расскажем в статье, что такое установка переносного заземления, зачем она нужна и как используется.

Устройство переносного заземления

При появлении напряжения на заземленном участке ток начинает проходить через заземления, вызывая тем самым срабатывание защиты источника напряжения или снижая потенциал заземленного участка. В основе конструкции переносного заземления лежит гибкий медный кабель большого сечения, оборудованный специальными зажимами для крепления к заземлителю и к заземляемой цепи.

Для трехфазных цепей применяется кабель с тремя концами, которые затем конструктивно объединяются в общий кабель. Зажимы для крепления к защищаемой цепи имеют изолированные рукоятки, объединенные с винтами затяжки струбцин крепления. Кроме струбцин могут использоваться пружинные клеммы, но такое заземление используется только на проводных линиях и не пригодно для заземления большинства частей электроустановок.

Струбцины могут иметь разнообразное исполнение. Главное условие – обеспечение надежного контакта с заземляемым устройством, стойкость к коррозии и удобство крепления. В местах подсоединения заземляющего троса к зажимам должны применяться меры по предотвращению переламывания жил.

На рисунке хорошо видны спиральные пружины, которые предохраняют жилы кабеля от переламывания в местах ввода в струбцины.

Диэлектрические штанги должны обладать хорошими изолирующими свойствами, быть механически прочными, не поглощать влагу. В качестве материала для изготовления применяется пропитанная водоотталкивающим составом древесина, стеклопластик, текстолит. Металлические изделия могут применяться только в качестве соединительных элементов и рабочих участков.

Для работ на воздушных линиях связи или электропередач переносные заземления комплектуются временными заземлителями, которые представляют собой стержень из черного металла диаметром 15 мм и длиной до 2-х метров. Для забивания в грунт и последующего извлечения на стержне предусмотрено крепление специального зажима и молот в виде массивной втулки, которая может передвигаться по стержню.

Разнообразные конфигурации струбцин рабочих частей переносного заземления.

Совет #1. Струбцины должны иметь затяжные винты, снабженные специальными ушками для возможности закручивания изолирующими штангами.

Для чего и где применяется переносное заземление

Переносное заземление применяется во время проведения ремонтных, профилактических или иных работах на действующих электроустановках для заземления металлических частей, которые могут оказаться под напряжением, в том числе и под наведенным. Кроме электроустановок заземлению подлежат также линии электросвязи, которые проходят вблизи линий электропередач, поскольку кроме вероятности непосредственного касания проводов, на линиях связи может возникать значительный потенциал наведенного напряжения. Читайте также статью: → «Защитное заземление».

Переносное заземлений бывает трех разновидностей:

  • Без изолирующих штанг;
  • С изолирующими штангами;
  • С изолирующими штангами с металлическими звеньями.

По области применения переносные заземления могут предназначаться для электроустановок и для воздушных линий. Основным отличием является наличие длинных штанг для удобства крепления на проводах заземлений, предназначенных для работ на воздушных линиях.

Переносное заземление с изолирующими штангами. На штангах видны предохранительные кольца черного цвета.

Также заземления различаются по количеству фаз. Могут быть одно- и трехфазными. Для работ на воздушных линиях напряжением более 200 кВ применяются только однофазные заземления, поскольку большие расстояния между проводами приводят к значительному увеличению массы конструкции. Поэтому на таких линиях для защиты каждой фазы применяется отдельное однофазное заземление.

Требования к переносному заземлению

Для изготовления заземлений используется гибкий медный кабель. Медь выбирается из условия минимального сопротивления, достаточной механической и термической прочности. Стандартами допускается применение алюминиевых переносных заземлений, но на практике они практически не встречаются, так как не обладают большой надежностью, а из-за низкой температуры плавления алюминия сечение кабеля становится неоправданно большим. Так, при одном и том же времени воздействия, допустимый ток через одинаковый кабель для алюминия в полтора раза меньше.

Трос заземления должен выполняться из голого неизолированного кабеля. В крайнем случае может использоваться кабель в прозрачной термостойкой изоляции. Такое требование вызвано тем, что под слоем изоляции невозможно определить целостность кабеля. При протекании больших токов, провода заземления сильно нагреваются, что может вызвать плавление и возгорание изоляции. Читайте также статью: → «Контур заземления: монтаж».

Металл кабеля должен выдерживать максимальные токи короткого замыкания, определяемые током и временем срабатывания защиты заземляемых устройств и линий. Места соединений должны иметь минимальное переходное сопротивление. Длина провода заземления между фазными зажимами составляет от 0.4 до 9 м, а длина спуска заземления от 2 до 15 м в зависимости от области применения заземления.

Совет #2. Все соединения жил с крепежными элементами и между собой должны производиться только механическим способом – болтовым соединением, опрессовкой или сваркой.

Пайка различными припоями строго воспрещена, поскольку припой имеет низкую температуру плавления и при прохождении больших током может расплавиться и вытечь из зоны пайки.

Крепление кабеля к струбцине при помощи метода обжима.

Изолирующие рукоятки и штанги должны иметь необходимую механическую прочность и высокие диэлектрические характеристики. На рукоятках и штангах должен присутствовать бортик или предохранительное кольцо для предотвращения соскальзывания руки в направлении зажима или струбцины.

Каждое устройство переносного заземления должно иметь прочную бирку, на которой штамповкой обозначены сечение заземления, номинальное напряжение и инвентарный номер номер. Маркировка может быть нанесена на одну из струбцин (как правило на ту, которая крепится к заземлителю).

Расчет сечения кабеля при установке

Сечение кабеля переносного заземления выбирается из расчета максимально возможного тока срабатывания защиты электроустановки или воздушной линии с учетом времени срабатывания защиты.

На практике принято использовать для защиты электроустановок с напряжение до 1000 В кабель сечением не менее 16 мм2, а свыше 1000 В — 25 мм2. Максимальное сечение троса заземления составляет 95 мм2. В случае необходимости применения заземления с большим сечением или при отсутствии нужного, то можно использовать несколько заземляющих устройств меньшего сечения, устанавливаемых параллельно. Суммарная площадь нескольких заземлителей должна быть равна или превышать требуемую.

Для определения сечения троса необходимо определить сечение элементарной жилы по ее диаметру и умножить на общее количество жил. Определять сечение кабеля непосредственным измерение его диаметра нельзя, так как из-за неплотного прилегания отдельных жил полученное значение будет сильно завышенным и не соответствовать реальному.

Методика и сроки проверки заземления

Проверку электрических и механических параметров переносных заземлений проводят только в процессе производства и во время приемо-сдаточных испытаний. Основной проверкой является измерение переходного сопротивления между кабелем и крепежными элементами, а также изолирующие и механические свойства диэлектрических материалов. Во время рабочей эксплуатации проверяются только электрические характеристики гибких изолирующих элементов бесштанговых заземлений и изолирующие штанги заземлений с металлическими звеньями. Периодичность проверки составляет 24 месяца.

Перед каждым применение производится визуальный осмотр на предмет отсутствия сплавленных, спекшихся или оборванных жил. В том случае, если оборвано более 5 % жил или на кабеле есть иные повреждения, то такое переносное заземление нельзя допускать к эксплуатации.

Совет #3. На изолирующих элементах не должно быть трещин и обгоревших участков. Слой лака на деревянных рукоятках должен быть сплошным без отслоений.

Последовательность наложения и снятия

Правила работы с переносным заземление строго регламентированы и должны строго соблюдаться всеми работниками. Правила таковы:

  • Электроустановка отключается;
  • Вывешиваются предупреждающие плакаты и принимаются остальные мероприятия по недопущению включения;
  • Переносное заземление устанавливается только после полной и тщательной проверки отсутствия напряжения на заземляемых токоведущих частях;
  • В первую очередь заземление подключается к заземляющему устройству;
  • Проверяется отсутствие напряжения;
  • Заземление подключается к токоведущим частям.

Порядок отключения переносного заземления обратный – сначала зажимы заземления снимаются с токоведущих частей и только после этого, с заземлителя. Все действия по установке и снятию заземления нужно производить в диэлектрических перчатках с использованием изолирующих штанг.

При работе на воздушных линиях заземление накладывается с обеих сторон участка, на котором производятся работы. Вне зависимости от того, на скольких проводах должны выполняться работы, заземлению подлежат все фазы ремонтируемой линии. В электроустановках заземлению подлежат все участки, к которым возможно касание или они находятся в непосредственной близости от места проведения работ. Читайте также статью: → «Для чего выполняется заземление крыши дома».

В закрытых распределительных устройствах на токоведущих шинах предусмотрены места для подключения заземления. В этих местах краска на шинах отсутствует и имеется окантовка черной краской.

Установка переносного заземления на шины питания

В некоторых случаях на шинах может быть предусмотрено наличие креплений для соединения с заземлением, оборудованных болтами или гайками с барашком для удобства работы в изолирующих перчатках.

Заземление установок производится с пола, земли или стремянок. Подниматься по конструкции заземляемого устройства до наложения заземления нельзя! В крайнем случае, на оборудовании должны быть отключены все вводы питания и проверено отсутствие напряжения.

Вопросы и ответы для новичков

Вопрос №1. Почему для переносных заземлений нельзя использовать изолированный провод?

При работе с заземлением возможны изгибы зеземляющего троса. С течением времени отдельные жилы могут переломиться, особенно в местах креплений к зажимам. Наличие изоляции не позволяет оценить состояние кабеля. При появлении напряжения на заземленной электроустановке, через заземление возможно протекание больших токов, кабель будет нагреваться и изоляция расплавится. Также возможно возгорание и задымление изоляции.

Вопрос №2. Почему определен именно такой порядок установки и снятия переносного заземления?

Если струбцина троса подключена к заземлителю, то при подключении фазных клемм заземления к элуктроустановке, даже если там есть напряжение, удара током не произойдет, так как ток будет идти по пути наименьшего сопротивления. В противном случае, если сначала подключить заземление к токоведущим частям, то на нем может присутствовать напряжение, опасное для жизни. При снятии заземления происходит то же самое. Когда клеммы снимаются с электроустановки, то, даже если там появится напряжение, то контакта с работающим уже не будет.

Вопрос №3. Как поступить, если отсутствует трехфазное переносное заземление?

Можно воспользоваться тремя однофазными заземлениями. Площадь поперечного сечения каждого из них должно быть не меньше чем у необходимого трехфазного.

Каждый электрик должен знать:  Как подключить автомат в щитке под напряжением

Монтаж и эксплуатация электрических сетей

УЧЕБНО-ОБРАЗОВАТЕЛЬНЫЙ САЙТ

Новости и информация

Одним из видов работ по сооружению воздушной линии электропередачи является монтаж заземляющего устройства. Согласно ПУЭ на опорах ВЛ должны быть выполнены заземляющие устройства, предназначенные для повторного заземления, защиты от грозовых перенапряжений, заземления электрооборудования, установленного на опорах ВЛ. Сопротивление заземляющего устройства должно быть не более 30 Ом. [Читать далее!]

Большинство несчастных случаев поражения электрическим током происходит в электроустановках до 1000 Вольт, в том числе в быту, где напряжение составляет 220 Вольт. Попасть под напряжение у себя дома человек может, как правило, либо при грубом нарушении правил безопасности, либо в результате повреждений квартирной электропроводки. Познакомиться с причинами появления некоторых видов повреждений квартирной электропроводки и оценить степень опасности этих повреждений для человека можно прочитав материал, размещенный на сайте. [Читать!]

В процессе эксплуатации на кабель оказывает негативное влияние окружающая среда. При определенных условиях это может привести к разрушению металлических элементов кабеля. Процесс разрушения металлических элементов кабеля в результате воздействия окружающей среды называют коррозией. Если Вы хотите узнть о видах и причинах коррозии силовых кабелей, а также о методах защиты, перейдите по указанной ссылке. [Перейти!]

К вопросу «Крепление проводов воздушных линий электропередачи» добавлен небольшой тест. Если Вы хотите оценить уровень своих знаний по данной теме, ответьте на несколько контрольных вопросов. [Пройти тест!]

После раскатки провода и его подъема на опору провод следует надежно закрепить. В зависимости от конструктивных особенностей воздушной линии электропередачи провода могут крепиться к закрепленным на опоре изоляторам проволочными вязками или с помощью линейной арматуры. [Читать далее!]

Одним из этапов строительства воздушной линии электропередачи является разбивка котлованов под опоры. До начала рытья котлованов под опоры определяют и отмечают на трассе воздушной линии места, где требуется разрабатывать грунт под котлованы, а также основные разбивочные оси: ось воздушной линии и оси траверс опор. Разбивку котлованов проводят теодолитом, стальной мерной лентой или стальной рулеткой. Разметку на трассе выполняют пикетными знаками, в качестве которых чаще всего используют деревянные колышки. [Читать далее!]

Добавил новый материал об изоляции воздушных линий электропередачи. Если Вы хотите познакомиться с типами изоляции ВЛ, узнать об их достоинствах и недостатках, перейдите по указанной ссылке. [Перейти!]

Добавлена лабораторная работа по анализу опасности поражения человека электрическим током. Данная лабораторная работа является виртуальной, для проведения опытов применяется не реальная лабораторная установка, а программно-аппаратные средства позволяющие моделировать лабораторные условия. [Перейти!]

Добавлен вопрос «Особенности тушения пожара в электроустановках». Здесь Вы узнаете о причинах возникновения пожара в электроустановках, об основных горючих веществах и материалах, познакомитесь с правилами тушения пожаров в электроустановках, а также с правилами применения огнетушителей. [Прочитать!]

К первичным средствам пожаротушения относятся огнетушители, бочки с водой, ведра, ящики с песком, ломы, топоры, лопаты и т.п. Если Вы хотите больше узнать об огнетушителях, познакомиться с тебованиями к их размещению и перезарядке, перейдите по ссылке и прочитайте материал. [Прочитать!]

Добавлен новый матереал по теме «Организационно-технические мероприятия по обеспечению пожарной безопасности». [Прочитать!]

При отсутствии у пострадавшего от действия электрического тока пульса, для поддержания жизнедеятельности организма (для восстановления кровообращения) необходимо одновременно с искусственным дыханием проводить наружный массаж сердца. Если Вы хотите познакомиться с правилами проведения непрямого массажа сердца, перейдите по ссылке. [Перейти!]

В раздел «Охрана труда в электроэнергетике» добавил вопрос «Правила проведения искусственного дыхания». Если Вы хотите познакомиться с данным материалом, перейдите по ссылке. [Перейти!]

При поражении электрическим током необходимо как можно скорее освободить пострадавшего от действия тока, так как от продолжительности этого действия зависит тяжесть электротравмы. При этом оказывающему помощь следует иметь в виду, что прикасаться к человеку, находящемуся под действием электрического тока без применения надлежащих мер предосторожности опасно для жизни. Если Вы хотите познакомиться с правилами освобождения пострадавшего от действия электрического тока перейдите по указанной ссылке. [Перейти!]

В раздел «Охрана труда в электроэнергетике» добавил вопрос «Первая помощь пострадавшим от электрического тока». Здесь Вы узнаете о порядке проведения комплекса мероприятий, направленных на восстановление или сохранение жизни и здоровья пострадавшего от действия электрического тока. [Перейти!]

В раздел «Охрана труда в электроэнергетике» добавил вопрос «Плакаты и знаки безопасности». Приводится информация о том, какие существуют знаки и плакаты безопасности и для чего они применяются. В конце вопроса приведен небольшой тест для проверки своих знаний. [Перейти!]

Добавлена информация о периодичности испытаний средств защиты применяемых в электроустановках, а также небольшой тест для проверки своих знаний по данной теме. [Перейти!]

К вопросу «Защитное зануление в электроустановках» добавлен небольшой тест. Если Вы хотите оценить уровень своих знаний, ответьте на несколько контрольных вопросов. [Пройти тест!]

Одним из подготовительных этапов работ, предшествующих строительству воздушных линий электропередачи, является разбивка трассы линии. Разбивкой трассы ВЛ называют работы по определению направления линии и мест установки опор, выполняемые в соответствии с проектом. Если Вы хотите узнать о данном виде работ, перейдите по ссылке. [Перейти!]

При работе в электроустановках человек подвергается опасности поражения электрическим током. Для обеспечения безопасности работы, помимо защитных мер, таких как, заземление, автоматическое отключение питания, уравнивание и выравнивание потенциалов и др., также применяют специальные электротехнические изделия, называемые электрозащитными средствами. В отличие от защитных мер, которые являются частью электроустановки, защитные средства работник приносит на рабочее место и использует только во время выполнения работ. Если Вы хотите узнать об электротехнических защитных средствах подробнее, перейдите по ссылке. [Перейти!]

В раздел «Охрана труда в электроэнергетике» добавил статью «Выравнивание и уравнивания потенциалов». Выравнивание и уравнивание потенциалов – защитные меры, применяемые в электроустановках для обеспечение безопасности. Если Вы хотите узнать о них, перейдите по ссылке и прочитайте статью. [Перейти!]

Добавил на сайт несколько книг, которые возможно будут Вам полезны.

  1. Арбузов Р.С. Современные методы диагностики воздушных линий электропередачи. – Новосибирск: Наука, 2009. – 136 с.
  2. Пястолов А.А. и др. Эксплуатация и ремонт электроустановок. – М.: «Колос», 1976. – 304 с.

Данные книги Вы можете скачать/просмотреть в разделе ЛИТЕРАТУРА, авторизовавшись на сайте.

В раздел ГАЛЕРЕЯ добавлен новый фотоальбом «Схемы расположения проводов на опорах ЛЭП». [Просмореть фото!]

Защитное электрическое разделение цепей – отделение одной электрической цепи от других цепей в электроустановках напряжением до 1 кВ с помощью: двойной изоляции; основной изоляции и защитного экрана; усиленной изоляции. [Подробнее!]

К вопросу «Защитное заземление в электроустановках» добавлен небольшой тест. Если Вы хотите оценить уровень своих знаний, ответьте на несколько контрольных вопросов. [Пройти тест!]

Существует три основных схемы взаимного расположения проводов на опорах воздушных линий электропередачи: горизонтальное, вертикальное и смешанное. Каждая схема имеет свои преимущества и недостатки, а также область применения. Если Вы хотите узнать более подробно о расположении проводов на опорах воздушных линий, перейдите по указанной здесь ссылке [Подробнее!]

К вопросу «Типы систем заземления» добавлен небольшой тест. Если Вы хотите оценить уровень своих знаний, ответьте на несколько контрольных вопросов. [Пройти тест!]

Устройство защитного отключения (УЗО) – это быстродействующая защита, реагирующая на изменение какого-либо параметра электрической цепи, информирующего о появлении опасности поражения электрическим током и отключающая электроустановку. [Подробнее!]

Для того, чтобы Вы могли проверить свои знания по теме «Технические мероприятия, обеспечивающие безопасность работ в электроустановках» добавлен небольшой тест. [Пройти тест!]

Поздравляю всех работников энергетической промышленности, охватывающей выработку, передачу и сбыт потребителям электрической и тепловой энергии с профессиональным праздником!

К вопросу «Организационные мероприятия, обеспечивающие безопасность работ в электроустановках» добавил сегодня небольшой тест. Если Вы хотите оценить уровень своих знаний, ответьте на несколько контрольных вопросов. [Пройти тест!]

Защитное зануление – преднамеренное соединение открытых проводящих частей с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с заземленной точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности. [Подробнее!]

К вопросу «Группы по электробезопасности электротехнического персонала» добавлен небольшой тест. Если Вы хотите оценить уровень своих знаний, ответьте на несколько контрольных вопросов. [Пройти тест!]

Еще одной защитной мерой, применяемой в электроустановках для обеспечения безопасности, является автоматическое размыкание цепи одного или нескольких фазных проводников (и, если требуется, нулевого рабочего проводника). По теме «Охрана труда в электроэнергетике» добавлен новый вопрос «Защитное автоматическое отключение питания». [Перейти!]

К вопросу «Требования к работающим в электроустановках» добавлен небольшой тест. Если Вы хотите оценить уровень своих знаний, ответьте на несколько контрольных вопросов. [Пройти тест!]

По теме «Охрана труда в электроэнергетике» добавлен новый вопрос «Защитное заземление в электроустановках». [Перейти!]

К вопросу «Факторы, влияющие на исход поражения электрическим током» добавлен небольшой тест. Если Вы хотите оценить уровень своих знаний, ответьте на несколько контрольных вопросов. [Пройти тест!]

По теме «Охрана труда в электроэнергетике» добавлен новый вопрос «Типы систем заземления электроустановок». [Перейти!]

По теме «Охрана труда в электроэнергетике» добавлен новый вопрос «Защитные меры электробезопасности применяемые в электроустановках». [Перейти!]

Для самопроверки знаний полученных по вопросу «Воздействие электрического тока на организм человека» добавлен небольшой тест. [Пройти тест!]

Добавил несколько видеороликов о строительстве воздушных линий электропередачи. В видео демонстрируются этапы выполнения работ по монтажу основных элементов ЛЭП. [Смотреть видео!]

По теме «Охрана труда в электроэнергетике» добавлен новый вопрос «Технические мероприятия, обеспечивающие безопасность работ в электроустановках». [Перейти!]

Добавил новое видеоролик о строительстве воздушной линии электропередачи на современных опорах из многогранных гнутых стоек. В видео демонстрируются основные этапы работ. [Смотреть видео!]

По теме «Охрана труда в электроэнергетике» добавлен новый вопрос «Организационные мероприятия, обеспечивающие безопасность работ в электроустановках». [Перейти!]

В вопрос «Опоры воздушных линий электропередачи» добавлен видеоролик, в котором демонстрируется концевая опора воздушной линий электропередачи напряжением 220 кВ. [Смотреть видео!]

По теме «Охрана труда в электроэнергетике» добавлен новый вопрос «Порядок и условия производства работ в электроустановках». [Перейти!]

В статье «Соединение и присоединение силовых кабелей» добавлен новый видеоролик, в котором показано соединение кабелей с разным типом изоляции с помощью заливной муфты. [Перейти!]

По теме «Охрана труда в электроэнергетике» добавлен новый вопрос «Группы по электробезопасности электротехнического (электротехнологического) персонала». [Перейти!]

Добавил видеоролик, в котором демонстрируется один из современных типов опор воздушных линий электропередачи — металлические опоры из многогранных гнутых стоек. В видео показана конструкция, рассказывается о преимуществах опор данного типа. Если Вы хотите посмотреть видеоролик, перейдите по указанной ссылке. [Смотреть видео!]

По теме «Охрана труда в электроэнергетике» добавлен новый вопрос «Требования к работающим в электроустановках». [Перейти!]

По теме «Охрана труда в электроэнергетике» добавлен новый вопрос «Молниезащита зданий и сооружений». [Перейти!]

По теме «Охрана труда в электроэнергетике» добавлен новый вопрос «Классификация помещений по степени опасности поражения электрическим током». В конце вопроса есть небольшой тест, в котором можно проверить насколько хорошо Вы изучили представленный материал. [Перейти!]

По теме «Охрана труда в электроэнергетике» добавлен новый вопрос «Анализ опасности прикосновения к токоведущим частям». Рассмотрено прикосновение человека к фазе некоторых типов трехфазных сетей (четырехпроводной с глухозаземленной нейтралью и трехпроводной с изолированной нейтралью) в нормальном и аварийном режиме их работы. Для успешного освоения данного материала Вы должны иметь начальные знания теоретических основ электротехники. [Перейти!]

В разделе сайта ТЕОРИЯ создал новую тему «Охрана труда в электроэнергетике». В данной теме будут кратко рассмотрены общие организационные вопросы охраны труда, промышленная санитария, пожарная безопасность. Основное внимание будет уделяться вопросам электробезопасности, а именно, анализу опасности электрических сетей, правилам работы в электроустановках, защитным мерам и средствам электробезопасности, правилам оказания первой помощи пострадавшим от действия электрического тока и т.д. [Перейти!]

К наиболее распространенным дефектам железобетонных опор, возникающим в процессе эксплуатации, относятся: появление трещин (продольных и поперечных) в бетоне, появление пятен, щелей, раковин, отклонение опоры от вертикального положения, а также дефекты заделки опоры в грунт. Если Вы хотите больше узнать о ремонте железобетонных опор, перейдите по указанной здесь ссылке [Перейти!]

Одним из наиболее важных и сложных этапов строительства воздушных линий электропередачи является установка (монтаж) опор. Существует большое разнообразие методов производства указанного вида работ. Если Вы хотите познакомиться со способами монтажа опор воздушных линий электропередачи, перейдите по указанной здесь ссылке [Перейти!]

Прокладка кабелей в земле с обустройством траншей является одним из наиболее распространённых способов монтажа кабельных линий. В ряде случаев по экономическим или техническим причинам данный способ не рационален или вовсе невозможен. В таком случае можно использовать один из методов так называемой бестраншейной прокладки кабелей в земле. Если Вы хотите познакомиться с методами бестраншейной прокладки кабелей, перейдите по указанной здесь ссылке [Читать далее!]

Добавил на сайт несколько книг, которые возможно будут Вам полезны. Некоторые из них достаточно старые, но, тем не менее, познавательны.

  1. Белоцерковец В.В. Справочник по монтажу электроустановок промышленных предприятий (Кн.1). – М.: «Энергоиздат», 1982. – 296 с.
  2. Белоцерковец В.В. Справочник по монтажу электроустановок промышленных предприятий (Кн.2). – М.: «Энергоиздат», 1982. – 400 с.
  3. Боричев И.Е. Справочник по электроустановкам промышленных предприятий. Том второй: Монтаж электроустановок. – «Энергия», 1964. – 1008 с.
  4. Сибикин Ю. Д. Безопасность труда при монтаже, обслуживании и ремонте электрооборудования предприятий: справочник / Ю. Д. Сибикин. – М.: КНОРУС, 2020. – 288 с.
  5. Филипов А.С. Ремонт и монтаж кабельных линий. Часть 1. – Мн.: Техноперспектива, 2005. – 375 с.
  6. Шубаков К.В. Монтаж типовых городских трансформаторных подстанций. – Мн.: РИВШ, 2008. – 84с.

Данный материал Вы можете скачать/просмотреть в разделе ЛИТЕРАТУРА, авторизовавшись на сайте.

При отрицательных температурах изоляция, оболочки и покровы кабелей теряют эластичность и могут быть легко повреждены. В холодное время года размотка, переноска и прокладка разных типов кабеля допускаются только тогда, когда температура воздуха в течение 24 ч до начала прокладки не снижалась ниже допустимой для данной марки кабеля температуры.

Если Вы хотите познакомиться с особенностями прокладки кабельных линий при отрицательных температурах, перейдите по указанной здесь ссылке [Читать далее!]

Чтобы раньше обнаружить неисправности, представляющие угрозу для нормальной эксплуатации ВЛ, а также предупредить развитие возникших неисправностей, воздушные линии систематически осматривают электромонтеры и инженерно-технический персонал. Осмотры бывают периодические и внеочередные, осмотры с земли и так называемые верховые осмотры. Производятся осмотры пешком, а также с использованием транспортных средств, в том числе самолетов и вертолетов. [Читать далее!]

При вводе силовых трансформаторов в эксплуатацию, после их капитального ремонта, а также периодически в процессе эксплуатации проводят испытание характеристик трансформаторного масла. Для этого из трансформатора берется некоторый объем масла. Если Вы хотите познакомиться с технологией отбора проб масла из силовых трансформаторов, перейдите по указанной ссылке. [Перейти!]

В настоящее время при строительстве ЛЭП, особенно в западных электросетевых компаниях, часто применяется технология опрессовки линейной арматуры с помощью энергии взрыва. Если Вы хотите узнать больше о данном методе монтажа, перейдите по указанной ссылке. [Перейти!]

Кабель представляет собой сложное электротехническое изделие, имеющее большое количество элементов (токопроводящие жилы, изоляцию, оболочку, экраны, защитные покровы и т.д.). Предлагаю рассмотреть их конструкцию и назначение. [Читать далее!]

Одним из видов линий электропередачи являются кабельные линии. Наряду с воздушными линиями электропередачи, электрические сети, выполненные кабельными линиями, получили самое широкое применение. Если Вы хотите узнать о преимуществах кабельных линий перед воздушными, о их недостатках, познакомиться с областью применения, перейдите по указанной здесь ссылке. [Перейти!]

Добавлена практическая работа «Определение оптимального режима работы трансформаторов». Цель данной работы — освоить методику определения числа и коэффициента загрузки трансформаторов подстанции, при которых общие потери мощности в трансформаторах будут минимальными. Данная работа является расчетно-практической и ориентирована, прежде всего, на студентов и учащихся электротехнических специальностей. Для успешного освоения приведенного здесь материала у Вас должны быть начальные знания по электротехнике или теории электрических машин. [Перейти!]

Добавил новый материал по теме «Монтаж и эксплуатация силовых трансформаторов» — эксплуатация трансформаторного масла. [Перейти!]

Добавил новый материал по теме «Монтаж и эксплуатация силовых трансформаторов» — ремонт силовых трансформаторов. [Перейти!]

Добавил новый материал по теме «Монтаж и эксплуатация силовых трансформаторов» — режимы работы трансформаторов. [Перейти!]

Добавил новый материал по теме «Монтаж и эксплуатация силовых трансформаторов» — осмотр силовых трансформаторов. [Перейти!]

Добавил новый материал по теме «Монтаж и эксплуатация силовых трансформаторов» — нормативные документы по эксплуатации силовых трансформаторов. [Перейти!]

Добавил новый материал по теме «Монтаж и эксплуатация силовых трансформаторов» — виды сушки силовых трансформаторов. [Перейти!]

Добавил новый материал по теме «Монтаж и эксплуатация силовых трансформаторов» — методы сушки силовых трансформаторов. [Перейти!]

Добавил новый материал по теме «Монтаж и эксплуатация силовых трансформаторов» — ввод трансформатора в эксплуатацию. [Перейти!]

Добавил новый материал по теме «Монтаж и эксплуатация силовых трансформаторов» — заливка силового трансформатора маслом. [Перейти!]

Добавил новый материал по теме «Монтаж и эксплуатация силовых трансформаторов» — особенности установки силового трансформатора в процессе монтажа. [Перейти!]

Добавил новый материал по теме «Монтаж и эксплуатация силовых трансформаторов» — сборка силового трансформатора. [Перейти!]

Добавил новый материал по теме «Монтаж и эксплуатация силовых трансформаторов» — подготовка к монтажу силового трансформатора. [Перейти!]

Добавил новый материал по теме «Монтаж и эксплуатация силовых трансформаторов» — правила ревизии и хранения силового трансформатора. [Перейти!]

Добавил новый материал по теме «Монтаж и эксплуатация силовых трансформаторов» — правила разгрузки силового трансформатора. [Перейти!]

Добавил новый материал по теме «Монтаж и эксплуатация силовых трансформаторов» — правила транспортировки силовых трансформаторов к месту монтажа. [Перейти!]

Добавил новый материал по теме «Монтаж и эксплуатация силовых трансформаторов»: нормативные документы по монтажу силовых трансформаторов; подготовительные работы по монтажу трансформаторов (предмонтажные работы). [Перейти!]

В разделе ТЕОРИЯ решил создать новую тему «Монтаж и эксплуатация силовых трансформаторов». В ближайшее время буду готовить и размещать учебный материал по данной теме. Сегодня добавил следующие вопросы: общие сведения о силовых трансформаторах, габариты трансформаторов и условное обозначение трансформаторов. [Перейти на страницу с данным материалом!]

Конструкции опор воздушных линий электропередачи весьма разнообразны и зависят от материала, из которого изготавливается опора (металлическая, железобетонная, деревянная, стеклопластиковая), назначения опоры (промежуточная, угловая, транспозиционная, переходная и т.д.), от местных условий на трассе линии (населенная местность или ненаселенная, горные условия, участки с болотными или слабыми грунтами и т.п.), напряжения линии, количества цепей (одноцепная, двухцепная, многоцепная) и т.д.

Если Вы хотите познакомиться с основными элементами конструкции опор перейдите по ссылке. [Перейти на страницу с данным материалом!]

Одним из мероприятий по поиску места повреждений силовых кабелей является прожиг изоляции. Прожиг изоляции кабеля позволяет снизить переходное сопротивление в месте повреждения до необходимого уровня (несколько десятков ом). Для прожига кабеля применяются специальные установки. Сегодня я добавил на сайт видеоролик о работе поисково-прожигающей установке УПП-1510 и инструкцию по ее эксплуатации. [Перейти на страницу с данным материалом!]

Добавил материал, в котором рассказывается о правилах нанесения на опоры постоянных знаков, плакатов, информационных табличек и т.п. Если Вы хотите познакомиться с данным материалом перейдите по ссылке. [Перейти!]

Сложность восстановления электроснабжения потребителей в сельской местности обусловлена невысокой степенью оснащенности сельских сетей коммутационными аппаратами и средствами автоматики. Если на питающих подстанциях 35/10 кВ отсутствуют устройства обнаружения или выделения повреждений – применяется последовательная методика отыскания поврежденного участка ВЛ 10 кВ. В этом случае восстановление электроснабжения потребителей при повреждении ВЛ 10 кВ выполняется силами оперативно-выездных бригад (ОВБ) и ремонтного персонала (по мере необходимости). [Подробнее!]

Добавил видеоролик в котором демонстрируется один из способов раскатки высоковольтного кабеля в траншее. [Смотреть видео!]

Добавил на сайт новый материал о траншейной прокладке кабелей в земле. Рассмотрены область применения данного способа, его достоинства и недостатки, общие требования к организации работ, а также основные этапы выполнения. [Читать!]

Одним из видов линий электропередачи являются кабельные линии. Наряду с воздушными линиями электропередачи, электрические сети, выполненные кабельными линиями, получили самое широкое применение. [Читать далее!]

Добавил на сайт несколько книг и нормативных документов, которые возможно будут Вам полезны.

  1. Дементьев В.С. Как определить место повреждения в силовом кабеле. – М.: Энергия, 1980. – 72 с.
  2. Шалыт Г.М. Определение мест повреждения в электрических сетях. – М.: Энергоиздат, 1982. – 312 с.
  3. ТКП 45-1.03-40-2006. Безопасность труда в строительстве. Общие требования.
  4. ТКП 45-1.03-44-2006. Безопасность труда в строительстве. Строительное производство.
  5. СНиП 12-03-2001. Безопасность труда в строительстве. Общие требования.
  6. СНиП 12-04-2002. Безопасность труда в строительстве. Строительное производство.

Данный материал Вы можете скачать/просмотреть в разделе ЛИТЕРАТУРА, авторизовавшись на сайте (зайдя под своим логином и паролем).

Воздушной линией электропередачи называется устройство для передачи и распределения электрической энергии по проводам, расположенным на открытом воздухе и прикрепленным к опорным конструкциям с помощью изоляторов и арматуры. Воздушные линии различают по ряду критериев.

Добавил на сайт материал в котором приведена общая классификация воздушных линий электропередачи. [Прочитать!]

Применение опор из композитных материалов при сооружении воздушных линий является последним достижением в электромонтажном производстве. Опоры из композитных материалов в настоящее время применяются в основном для организации сетей наружного освещения. Добавил на сайт видео, в котором показана сеть освещения автомобильной трассы М1, выполненная с применением опор из композитных материалов. [Перейти на страницу с видео!]

В раздел ПРАКТИКУМ добавил учебный материал о методах определения места повреждения кабелей.

Вы изучите основные виды и причины повреждения кабелей, познакомитесь с методами определения места повреждения, правилами и порядком проведения работ. [Читать далее!]

При вводе воздушной линии в эксплуатацию и периодически в процессе эксплуатации на трассе линии проводятся измерения ширины просеки, высоты деревьев и кустарников под проводами, расстояний от элементов воздушных линий до стволов деревьев и их кроны. Измерения проводятся в соответствии с СТП 09110.20.366-08, ПУЭ и Правилами охраны электрических сетей. [Читать далее!]

Для лучшего усвоения теоретического материала, рекомендуется после изучение какой-либо темы отвечать на несколько контрольных вопросов. Для этих целей я создал несколько контрольных тестов по первой теме теоретического раздела «Организация электромонтажных работ». Добавлены тесты по следующим вопросам:

  1. Общие сведения об организации электромонтажных работ. [Пройти тест!]
  2. Подготовка производства электромонтажных работ. [Пройти тест!]
  3. Организация производства электромонтажных работ. [Пройти тест!]
  4. Индустриализация и механизация электромонтажных работ. [Пройти тест!]

В раздел ПРАКТИКУМ добавил учебный материал о технологии замены штыревых изоляторов на воздушной линии 10 кВ. Вы сможете ознакомиться с правилами организации работ на воздушных линиях 10 кВ; узнаете какие инструменты, приспособления, защитные средства и другой инвентарь применяются при выполнении работ по замене дефектных штыревых изоляторов на ВЛ 10 кВ; изучите технологию раскрепления опор 0,4-10 кВ, а также технологию замены дефектных штыревых изоляторов. [Читать!]

Добавил в раздел ПРАКТИКУМ описание еще одного способа соединения жил проводов и кабелей электропроводки — с помощью колпачковых соединительных зажимов. [Читать!]

Соединение и ответвление проводов и жил кабелей электропроводки выполняют различными способами, кратко описанными в разделе ТЕОРИЯ. Одним из таких способов является применение клеммных зажимов. Клеммная колодка (клеммный зажим) — это электроустановочное изделие, предназначенное для соединения проводов, которое представляет собой пару (или больше) металлических контактов с узлами крепления к ним проводов, размещенными в диэлектрическом корпусе. [Читать далее!]

Помимо типовых конструкций опор воздушных линий электропередачи на практике можно встретить и уникальные опоры. В России, относительно недавно, были установлены несколько таких опор. [Смотреть видео!]

В раздел ГАЛЕРЕЯ добавил фотоальбом, в котором демонстрируются опоры воздушных линий электропередачи различного назначения. [Смотреть.]


Развитие жилищно-бытового и дорожного строительства, реконструкция подземного и дорожного хозяйства существующих городов при одновременно большой доступности и уязвимости линий электропередачи создает постоянную угрозу и возможность их повреждения при производстве работ. Если распределительные устройства, электросети распределительных пунктов и трансформаторных подстанций размещены в закрытых помещениях, заперты и доступны лишь узкому кругу лиц, а работа в них регламентируется правилами, то трассы воздушных и кабельных линий доступны многим организациям, проводящим различные виды работ. При эксплуатации электрических сетей должны строго соблюдаться правила охраны электрических сетей и контролироваться их выполнение. [Читать о правилах работы в охранной зоне электрических сетей.]

Добавил несколько нормативных документов, которые я надеюсь будут полезны посетителям сайта в процессе обучения или трудовой деятельности. Напоминаю, что данный материал находятся в разделе ЛИТЕРАТУРА и доступен для скачивания только зарегистрированным на сайте пользователям.

СТП 09110.05.830-08. Нормы времени на ремонт основного и вспомогательного энергетического оборудования. Ремонт и техническое обслуживание воздушных линий электропередачи и трансформаторных подстанций напряжением 0,38-10 кВ.

СТП 09110.20.186-09. Железобетонные опоры для воздушных линий электропередачи напряжением 0,4 кВ с самонесущими изолированными проводами марки СИП-4и. Технические требования.

СТП 09110.20.262-08. Устройство вводов ЛЭП 220/380 В в производственные, административные и жилые здания. Технические требования.

СТП 09110.20.521-07. Инструкция по диспетчерскому управлению ремонтами и испытаниями оборудования ОЭС Республики Беларусь.

СТП 09110.35.521-07. Инструкция по эксплуатации устройств релейной защиты, электроавтоматики и вторичной коммутации.

СТП 09110.47.104-11. Методические рекомендации по автоматизации распределительных электрических сетей 0,4-10(6) кВ Белорусской энергосистемы.

СТП 09110.47.202-06. Методические рекомендации по монтажу и эксплуатации кабелей с изоляцией из сшитого полиэтилена на напряжение 6, 10 кВ.

СТП 09110.47.203-07. Методические указания по выполнению заземления на электрических станциях и подстанциях напряжением 35-750 кВ.

РД 34.20.664-90. Типовые технологические карты по техническому обслуживанию и капитальному ремонту воздушных линий электропередачи 35-220 кВ на деревянных опорах.

Главной задачей персонала электрических сетей является содержание оборудования в состоянии эксплуатационной готовности. Наиболее частым видом повреждения в электросетях является замыкание одной из фаз на землю, которое составляет до 80% всех повреждений. Эти замыкания возникают вследствие пробоя изоляции или обрыва проводов воздушной линии. Работа электрической сети с замыканием на землю допускается в течении определенного времени, но является крайне нежелательной. В этом режиме повышается напряжение двух неповрежденных фаз, что увеличивает вероятность перекрытия изоляции этих фаз и отключение воздушной линии. Эксплуатационный персонал обязан отыскать и устранить повреждение в кратчайший срок. [Читать об отыскании замыкания на землю на воздушных линиях 6-35 кВ.]

Каждый электрик должен знать:  Что такое кибернетика

Создан раздел ГАЛЕРЕЯ в котором размещен дополнительный фотоматериал по тематике сайта. За время работы у меня накопилось много фотоматериалов, которые в полном объеме включать в краткий курс лекций или использовать в разделе ПРАКТИКУМ я не вижу необходимости. Однако познакомить посетителей сайта с указанным материалом мне хотелось бы. Для этого я решил создать раздел ГАЛЕРЕЯ.

На данный момент в указанном разделе имеются следующие фотоальбомы:

  1. Типы опор ВЛ. Показаны различные типы конструкций опор воздушных линий электропередачи, часто встречающиеся на практике.
  2. Уникальные опоры ВЛ. Показаны уникальные или очень редкие типы опор воздушных линий электропередачи.
  3. Проекты опор ВЛ. Показаны проектные решения опор воздушных линий электропередачи.
  4. Шуховские опоры. Показаны фото единственной в мире гиперболической Шуховской опоры воздушной линии электропередачи.
  5. Высоковольтный романтизм. В данном альбоме собраны высокохудожественные фото высоковольтных линий электропередачи.

Добавил на сайт несколько учебников из библиотеки электромонтера. Книги хоть и морально устаревшие, но часть материала актуальна и сейчас, кроме того написаны они простым и понятным языком. Напоминаю, что учебники находятся в разделе ЛИТЕРАТУРА и доступны для скачивания только зарегистрированным на сайте пользователям.

Список добавленных книг:

Анастасиев П.И., Фролов Ю.А. Воздушные линии до 1000 В. – М-Л.: Госэнергоиздат, 1963. – 88 с.

Виноградов Д.Е. Монтаж опор линий электропередачи 110-500 кВ. – М.: «Энергия», 1971. – 96 с.

Григорьев Ю.Е. Ремонт линий электропередачи с изолирующих устройств. – М.: «Энергия», 1969. – 56 с.

Каетанович М.М. Как работают провода, изоляторы и арматура линий электропередачи. – М-Л.: Госэнергоиздат, 1962. – 64 с.

Потапов М.А. Монтаж гибких шин распределительных устройств. – М.: Энергия, 1977. – 80с.

Трифонов А.Н. Особенности организации электромонтажных работ на высоте. – М.: Энергоиздат, 1982. – 88 с.

Одним из современных типов опор являются опоры, выполненные из композитных (стеклопластиковых) стоек. В последнее время они находят широкое применение, особенно, для организации сетей наружного освещения, чему способствует ряд их преимуществ по сравнению с традиционными типами опор. Одним из таких преимуществ является высокий уровень так называемой пассивной безопасности композитных опор.

Добавил на сайт несколько видеороликов в которых демонстрируется краш-тест композитных опор. [Смотреть!]

Добавил материал описывающий основные этапы монтажа распределительного шинопровода. [Читать!]

Соединение и ответвление проводов и жил кабелей электропроводки выполняют различными способами, кратко описанными в разделе ТЕОРИЯ. Одним из таких способов является применение зажимов различного типа (винтового, пружинного, типа «орешек», типа «колпачок» и т.д.). Наиболее просто и быстро соединение и ответвление проводов можно выполнить зажимами типа Scotchlok. Особенность их применения в том, что не требуется удалять изоляцию жилы перед соединением проводов. [Читать далее!]

Для соединения и присоединения кабелей применяются специальные электротехнические изделия — кабельные муфты. В настоящее время наибольшее распространение получили термоусаживаемые муфты, гораздо реже используются заливные муфты. Общие сведения о данных типах муфт представлены в разделе ТЕОРИЯ, технология монтажа – рассматривается в разделе ПРАКТИКУМ.

Еще одним типом кабельных муфт являются так называемые муфты холодной усадки, которые пока не получили широкого распространения. Основой муфты являются эластичные, выполненные из силиконовой резины и отформованные специальным образом компоненты, которые находятся в предварительно растянутом состоянии на специальном каркасе из свитого в спираль пластикового шнура. При монтаже каркас удаляется, и компоненты муфты сжимаются до первоначального состояния, плотно усаживаясь на кабель и обеспечивая качественную электрическую изоляцию и надёжную герметизацию места соединения. [Читать далее!]

В раздел ПРАКТИКУМ добавил материал об особенностях технологии раскатки проводов воздушных линий «под тяжением». Метод раскатки проводов и грозозащитных тросов «под тяжением» появился в середине 20 века и активно применяется в настоящее время западными электросетевыми компаниями. При раскатке под тяжением, на опоры поднимают вспомогательный легкий канат (трос-лидер) и затем с его помощью раскатывают по роликам провода в натянутом состоянии, не опуская их на землю. [Читать далее!]

Добавил несколько видеороликов, в которых показана технология монтажа заливных кабельных муфт методом заливки компаунда самотоком. Показан монтаж соединительной муфты 92-AV на гибкий кабель марки КГЭ, а также монтаж соединительной муфты 91-NA. [Перейти на страницу с видео!]

Применение опор из композитных материалов при сооружении воздушных линий является последним достижением в электромонтажном производстве. Если Вы хотите больше узнать о композитных опорах, области их применеия и опыте эксплуатации, достоинствах и недостатках, а также об особенностях монтажа &#8211 изучите данный материал. [Читать!]

Одним из основных элементов воздушных линий электропередач напряжением 0,4-10 кВ являются штыревые изоляторы. Монтаж штыревых изоляторов является одним из этапов работ по сооружению ВЛ требующий определенных навыков и умений. Данный вид работ выполняют следующим образом. [Читать далее!]

Добавил новый материал о монтаже тросовых электропроводок.

Тросовыми называют электропроводки, выполненные специальными проводами с встроенным в них стальным несущим тросом, а также проводки, выполненные установочными изолированными проводами или кабелями, в которых проводники, изолирующие и поддерживающие их опоры и конструкции подвешены свободно или закреплены жестко на отдельных поперечных или продольных стальных несущих тросах. [Читать далее!]

Добавил новый материал об опорах воздушных линий электропередачи.

Опоры являются одним из главных конструктивных элементов линий электропередач, отвечающим за крепление и подвеску электрических проводов на определённом уровне. Узнайте больше о различных видах опор, области их применения, конструкции, достоинствах и недостатках, маркировке и т.д., прочитав данный материал. [Читать!]

Если вы никогда не видели П-образные опоры, то посмотрите видео на котором показан участок трассы ВЛ 750 кВ выполненный промежуточными П-образными опорами. [Перейти на страницу с видео!]

Добавил видеоролик в котором показан участок трассы ВЛ 500 кВ при переходе через автомобильную дорогу. Переход выполнен трехстоечной опорой. [Перейти на страницу с видео!]

Добавил видеоролик о монтаже гирлянды изоляторов ВЛ 500 кВ с помощью вертолета. [Перейти на страницу с видео!]

Добавил видеоролик в котором показана ВЛ выполненная в габаритах 1150 кВ. В настоящее время линия работает на напряжении 500 кВ. [Перейти на страницу с видео!]

В раздел ПРАКТИКУМ добавил информацию о технологии работ по соединению проводов воздушных линий электропередач методом опрессовки в соединительном зажиме типа САС. [Перейти!]

Введение

Непрерывное развитие народного хозяйства страны обуславливает высокие темпы роста объемов электромонтажных работ по сооружению новых, расширению, техническому перевооружению, реконструкции и техническому обслуживанию действующих электроустановок. В связи с этим непрерывно повышаются требования к инженерным кадрам, работающим в области монтажа и эксплуатации электроустановок. Изучение курса «Монтаж и эксплуатация электрических сетей», будет способствовать подготовке высококвалифицированных специалистов.

Предметом изучения дисциплины являются современные приемы монтажа и методики выполнения работ по техническому обслуживанию электрических сетей. В плане подготовки инженера-энергетика дисциплина является важным звеном и отражением требования квалификационной характеристики.

Целью изучения дисциплины является формирование общих теоретических знаний и овладение организационными и техническими вопросами монтажа и эксплуатации электрических сетей.

Задачей изучения дисциплины является ознакомление с организационными и практическими вопросами монтажных и пусконаладочных работ, работ по ремонту, испытанию и техническому обслуживанию, научной организации труда электротехнических элементов электроэнергетических систем.

Будущий специалист должен знать основы выполнения монтажных работ и работ по техническому обслуживанию и эксплуатации воздушных и кабельных линиях электропередачи. Он должен уметь использовать нормативные документы (Правила устройства электроустановок, Межотраслевые правила по охране труда при работе в электроустановках, Правила технической эксплуатации электрических станций и сетей и т.п.) при организации выполнения электромонтажных работ по сооружению, ремонту, испытанию и техническому обслуживанию электротехнических элементов электроэнергетических систем.

Монтаж заземляющих устройств подстанции и РУ

Заземление подстанции и РУ включает в себя монтаж шин заземления внутри подстанции и наружного заземляющего контура.

Заземляющий проводник внутри подстанции прокладывается на высоте 40…60 см. Крепеж осуществляется через 60…100 см и на поворотах. Трансформатор заземляется гибкой перемычкой из троса. По окончании работ составляют акт скрытых работ и наносят выполненное ЗУ на план-схему.

Предохранители на 6, 10 кВ заземляют через фланцы опорных изоляторов к раме, на которой установлены. Раму присоединяют шпилькой к контуру заземления.

Разрядники заземляют через чугунное основание.

При монтаже измерительных трансформаторов заземляют корпус и нулевую точку обмотки медным проводом.

Реакторы при горизонтальном расположении фаз заземляют соединением к заземляющим болтами. При вертикальном расположении заземляют только опорные изоляторы.

В силовом трансформаторе с изолированной нейтралью заземляют кожух, обе направляющие, нейтраль обмотки низкого напряжения при глухом заземлении и пробивной предохранитель обмотки низкого напряжения. Также заземляют камеры сборных КРУ и КСО, КТП. Места расположения переносного заземления не окрашивают.

Монтаж изоляторов. До начала монтажа изоляторы тщательно осматривают, проверяют прочность армировки, состояние фарфора, выявляют отсутствие отбитых краев и сколов. Поверхность изоляторов очищают. Опорные изоляторы устанавливают сначала в крайних точках линии шин, после натягивают шнур, а по нему устанавливают остальные. Оси всех стоящих в ряду изоляторов не должны отклоняться в сторону более чем на 5 мм.

Монтаж шин включает правку, резку, гнутье, монтаж контактных соединений. Проводят в мастерских или монтажных участках при отсутствии монтажных камер. Крепление шинодержателя или шины винтом к металлической головке изолятора выполняют так, чтобы конец крепежного винта не упирался в фарфоровую часть изолятора.

В однополосных шинах, укрепляемых на головках изоляторов, делают овальные вырезы для компенсации длины при нагреве. Угол ошиновки также является компенсатором, поэтому при присоединении шин к выводам агрегата делают специальные изгибы (если они отсутствуют). При больших сечениях полос ставят компенсаторы.

Контактные соединения при монтаже современных подстанций и РУ выполняют преимущественно электросваркой. Иногда используют болты и сжимы. Болтовые соединения применяют только для однородных шин. Болтовое соединение алюминиевых и стальных жил недопустимо. Шины окрашивают.

Дата добавления: 2014-12-04 ; просмотров: 1236 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Введение

Курсовая работа — это завершающий этап в изучении дисциплин «Монтаж электрооборудования», направленная на закрепление и систематизацию полученных студентом знаний, на развитие навыков самостоятельной работы и является формой контроля качества освоения основной профессиональной образовательной программы, разработанной на основании государственных требований к минимуму содержания.

В курсовой работе рассмотрен вопрос монтажа заземляющих устройств и произведен расчет заземляющего расчета электроустановок. Он включает в себя определение расчетного замыкания на землю и сопротивление заземляющего устройства, расчетного сопротивления грунта, выбора электродов и расчета их сопротивлений, уточнения числа вертикальных электродов и размещение их на плане.

Курсовая работа состоит из объяснительной записки и графической части.

Все текстовые и графические материалы выполняются в строгом соответствии с требованиями Единой системы конструкторской документации (ЕСКД), изложенных в ГОСТах.

Монтаж заземляющих устройств

Монтаж заземляющих устройств состоит из следующих операций: установки заземлителей; прокладки заземляющих проводников; соединения заземляющих проводников друг с другом; присоединения заземляющих проводников к заземлителям и электрооборудованию.

Вертикальные заземлители из угловой стали и отбракованных труб погружают в грунт забивкой или вдавливанием, а из круглой стали ввертывают в грунт или вдавливают. Эти работы выполняют с помощью механизмов и приспособлений, например копра (забивка в грунт), приспособления к сверлилке (ввертывание в грунт стержневых электродов), механизма ПЗД-12 (ввертывание в грунт электродов заземления).

Глубина заложения верха вертикальных заземлителей должна быть 0,5—0,6 м от уровня планировочной отметки земли и выступать от дна траншеи на 0,1—0,2 м. Расстояние между электродами 2,5—3 м. Горизонтальные заземлители и соединительные полосы между вертикальными заземлителями укладывают в траншеи глубиной 0,6—0,7 м от уровня планировочной отметки земли.

Все соединения в цепях заземлителей выполняют сваркой внахлестку, и места сварки покрывают битумом во избежание коррозии.

Траншею роют обычно шириной 500 и глубиной 700 мм. Устройство внешнего заземляющего контура и прокладку внутренней заземляющей сети производят по рабочим чертежам проекта электроустановки.

В местах пересечения заземляющих проводников с кабелями, трубопроводами, железнодорожными путями, а также в других местах, где возможны механические повреждения, проводники защищают трубами, угловой сталью и т. п.

У мест вводов подземной заземляющей проводки в здание на стены наносят опознавательные знаки с указанием расстояния до заземляющих проводников. Вводы в здание заземляющих проводников выполняют не менее чем в двух местах.

После монтажа заземлителей составляют акт на скрытые работы и на чертежах указывают привязки заземляющих устройств к стационарным ориентирам. Проложенные в земле заземлители и заземляющие проводники не окрашивают, так как окраска привела бы к повышению сопротивления. Траншеи засыпают грунтом, не содержащим камней и строительного мусора, и трамбуют. Заземляющие магистральные проводники прокладывают по стенам на расстоянии 5—10 мм от поверхностей на высоте 400—600 мм от уровня пола. Расстояние между точками крепления 600—1000 мм. В сухих помещениях и при отсутствии химически активной среды допускается прокладка заземляющих проводников вплотную к стене.

В каналах эти проводники должны прокладываться на расстоянии не менее 50 мм от съемного покрытия. Заземляющие полосы к стенам крепят дюбелями, которые пристреливают строительно-монтажным пистолетом либо непосредственно к стене, либо через промежуточные детали (рисунок 1). Так же широко применяют закладные детали, к которым приваривают полосы заземления.

Рисунок 1 — Крепление заземляющих проводников дюбелями с помощью строительно-монтажного пистолета (а — непосредственно к кирпичному или бетонному основанию, б — с прокладкой) и промежуточные детали для крепления прямоугольных (в) и круглых (г) заземляющих проводников.

В сырых и особо сырых помещениях и в помещениях с едкими парами заземляющие проводники приваривают к опорам, закрепленным дюбелями-гвоздями. Для создания зазора между заземляющим проводником и основанием в сырых помещениях и помещениях с агрессивной средой используют штампованный держатель из полосовой стали шириной 25—30 и толщиной 4 мм, а также кронштейн для прокладки круглых заземляющих проводников 12—19 мм.

Заземляющие проводники прокладывают открыто. Они должны быть доступны для наблюдения, за исключением труб электропроводки, оболочек кабелей и некоторых других естественных проводников. Проходы заземляющих проводников сквозь стены и перекрытия осуществляются через открытые отверстия, стальные трубы или обоймы. В местах пересечения температурных швов здания устанавливают компенсаторы.

Соединение заземляющих проводников из круглой стали и присоединение к заземлителям осуществляют сваркой. Длина нахлестки при сварке должна быть равна двойной ширине полосы для прямоугольных полос или шести диаметрам для круглой стали. К трубопроводам заземляющие проводники присоединяют хомутами. При наличии на трубах задвижек или болтовых фланцевых соединений выполняют обходные перемычки (рисунок 2, а — е).

Части электроустановок, подлежащие заземлению, присоединяют к заземляющим магистралям отдельными ответвлениями. Стальные заземляющие проводники присоединяют к металлоконструкциям сваркой, к оборудованию — под заземляющий болт или, где возможно, сваркой. Заземляющие проводники присоединяют к металлическим оболочкам кабелей медными проводниками с креплением проволочным бандажом и пайкой.

Рисунок 2 — Примеры соединения заземляющего проводника с трубопроводом хомутом (а), обходной перемычкой, установленной на задвижке (б), заземлителей с полосовой сталью (в), металлоконструкций перемычкой (г) и заземляющих проводников, проходящих через пол и стену (д).

Места присоединений под болт предварительно зачищают стальной щеткой до блеска. Вместо зачистки удобно применять царапающие заземляющие шайбы.

В наружных установках, а также в сырых помещениях с едкими парами или газами места болтовых присоединений защищают смазкой (рекомендуется морская АМС), во внутренних установках покрывают нейтральным вазелином или глифталевым лаком.

Монтаж заземления распределительных устройств.

Каждая подстанция и распределительное устройство должны иметь надежное, т. е. с небольшим сопротивлением (не более 4 Ом) заземление.

Сопротивление заземляющего устройства зависит: от проводимости почвы (во влажной почве меньше, чем в сухой) ; количества и взаимного расположения заземлителей; типа элементов, на которых выполнено заземляющее устройство (трубы, угловая сталь, стержни, полосы), и глубины их заложения.

Вокруг подстанции обычно делают общий заземляющий контур, к которому приваривают заземляющие проводники внутренней части подстанции. Отдельные элементы электрооборудования присоединяют к заземляющим проводникам параллельно, а не последовательно, иначе при обрыве заземляющего проводника часть оборудования может оказаться незаземленной.

В распределительных устройствах заземляют все элементы электрооборудования и металлические конструкции: фланцы опорных и проходных изоляторов, фланцы линейных выводов, баки трансформаторов и выключателей, опорные конструкции, цоколи или плиты предохранителей, резисторов и других аппаратов.

Электрооборудование, установленное на изолирующих опорах, заземляют присоединением ответвления от магистрали заземления к заземляющему или крепящему болту аппарата или изолятора. При этом контактную поверхность зачищают до блеска и смазывают тонким слоем вазелина.

При установке изоляторов и аппаратов на стальном основании ответвление заземления приваривают к стальной конструкции (основанию). Отдельно заземлять оборудование не требуется, необходимо только создать надежный контакт между оборудованием и конструкцией, зачистив до металлического блеска и смазав вазелином контактные поверхности.

При монтаже разъединителей заземляют раму, плиту привода и опорного подшипника, корпус сигнальных контактов. Если разъединители и приводы смонтированы на металлических конструкциях, заземляющие проводники приваривают к ним. Места установки изоляторов на металлических конструкциях зачищают до блеска и смазывают техническим вазелином.

Предохранители на б—10 кВ заземляют присоединением заземляющего проводника к фланцам опорных изоляторов, раме или металлической конструкции, на которой предохранители установлены.

Разрядники надежно заземляют через чугунное основание (цоколь) или выходной зажим счетчика срабатывания, присоединяя заземляющий проводник к заземляющему болту основания каждой фазы непосредственно или через счетчик срабатывания.

При монтаже измерительных трансформаторов заземляют бак (цоколь) трансформатора напряжения или корпус (цоколь) трансформатора тока. Кроме того, заземляют нулевую точку обмотки ВН трансформатора напряжения, присоединяя медный гибкий провод к заземляющему болту на корпусе трансформатора. Нулевую точку или фазный провод обмотки НН также крепят к заземляющему болту или заземляют на сборке зажимов. Закороченный (неиспользованный) зажим обмотки присоединяют к заземляющему болту трансформатора тока медным проводом.

Реакторы при горизонтальном расположении фаз заземляют присоединением заземляющих проводов к заземляющим болтам изоляторов, а при вертикальном расположении фаз — присоединением только к опорным изоляторам нижней фазы. Заземляющие провода не должны образовывать вокруг реакторов замкнутых контуров во избежание их перегрева.

Заземления отдельных аппаратов распределительных устройств показаны на рис. 3, а, б, в.

Высоковольтные выключатели и приводы к ним заземляют присоединением заземляющего проводника к заземляющему болту на крышке бака или раме выключателя, а также на корпусе привода. При установке выключателя или привода на стальной конструкции заземляющий проводник приваривают к ней.

Заземляемыми элементами силового трансформатора являются кожух, обе направляющие, нейтраль обмотки НН при глухом заземлении и пробивной предохранитель обмотки НН с изолированной нейтралью. Заземляющий проводник присоединяют к заземляющему болту на баке или корпусе трансформатора непосредственно или через гибкую вставку при необходимости выкатки трансформатора. Пробивной предохранитель заземляют через установочную скобу на баке трансформатора.

Рисунок 3 — Заземления отдельных аппаратов РУ: а — разъединителя, б — реактора, в — маломасляного выключателя.

Металлические части щитов и пультов, изолированные от частей, находящихся под напряжением, соединяют с заземляющими проводниками. Фундаментную раму приваривают к магистрали заземления не менее чем в двух точках. Каждую панель присоединяют к каркасу в двух- трех точках. Так же заземляют камеры сборных распределительных устройств КРУ и КСО, комплектные трансформаторные подстанции КТП и т. д. Кроме того, заземляющий проводник приваривают к рамам дверей и сетчатых ограждений.

Для присоединения временных переносных заземлений при ремонтных работах на заземляющих шинах устанавливают планки или барашки, зачищенные до металлического блеска и смазанные вазелином. Места для наложения переносного заземления на шинах РУ оставляют неокрашенными.

Монтаж заземления: порядок установки оборудования

Действующее законодательство Российской Федерации, а также нормы ПУЭ, СНиП и различные ГОСТы предполагают, что конструкции, находящиеся под напряжением, должны быть изолированы для предотвращения непроизвольного прикосновения к ним человека, а открытые проводящие части не должны проводить ток, так как в обратном случае появляется угроза удара током. А исход ситуации контакта человека с оголенным проводником под напряжением может быть разным, но в любом случае это малоприятно, а в отдельных ситуациях может привести к летальному исходу. Исходя из этого, во всех сооружениях промышленного или жилого назначения при существовании риска удара электрическим током, должно быть оборудовано соответствующее устройство заземления. Ведь, как известно, именно земля имеет свойство поглощать электрический ток.

Заземлитель находится в электрическом контакте с грунтом. В качестве заземляющих проводников могут выступать любые металлические предметы, помещаемые в грунт.

Если защита требуется электроустановкам, имеющим различное назначение и напряжение, но территориально близким друг к другу, то в таком случае применяется одно заземляющее устройство на двоих.

Чтобы обеспечить дополнительную безопасность, при работе, используют переносное заземление.

Порядок работ при монтаже

Установка состоит из следующих операций:

  1. Перед тем как начать работу необходимо в обязательном порядке проверить отсутствие напряжения!
  2. Выкапывается траншея необходимой формы.
  3. В траншею, используя кувалду, вбиваются штыри, уголки или другие предметы, служащие заземлителем.
  4. Далее они скрепляются друг с другом полосой заземления, которая является проводником, для этого используем сварку.
  5. Окончание полосы выводится на близкое расстояние к электрощитку, к полосе заземления крепится болт, который будет использоваться для подключения проводника.
  6. Измеряется сопротивление полученного устройства.
  7. Засыпаем канаву.
  8. Наконец, соединяем с шиной РЕ, которая заранее должна быть установлена в щитке, все корпуса электроприборов.
  9. Швы лучше покрасить для повышения износостойкости и препятствия коррозии.

Такой метод имеет явные положительные стороны: это незамысловатость выполнения и доступность материалов. В то же время, потребуется применять много грубой рабочей силы; необходимо иметь навыки сварки и сварочный аппарат; требуется большая площадь; также невозможно провести данные операции в каменистом грунте.

Порядок проведения монтажа модульным методом

Одним из самых популярных методов становится модульно-штыревой. Из главных плюсов этой разновидности хочется назвать практичность, по причине того, что он не требует большой площади. Так же следует отметить легкость установки: весь процесс может выполнить один человек.

Модульный заземлитель является системой, представляющую скрепленные между собой стальные трубы длиной 150 см, покрытые снаружи слоем меди.

Эффективность обеспечивается большой глубиной, на которую вбивается заземлитель.

Монтаж проводится в два этапа:

  • штыри вбиваются в землю друг за другом при помощи отбойного молотка;
  • заземляющий проводник подключается к электрощитку.

Если процесс производится внутри здания, то все действия необходимо выполнять на уровне пола. А если вне здания, то предварительно необходимо выкопать небольшую канаву, глубиной полметра, в которую уложить проводник и протянуть до щитка.

Заземление трансформаторной подстанции

Как известно, ТП служат для получения и преобразования напряжения, а так же для распределения электроэнергии в электросистеме. Ввиду этого, не подлежит обсуждение тот факт, чтообеспечение безопасности ТП становится архиважный задачей.

При проектировании монтажа всех ТП должны быть предусмотрены наружный контур заземления и внутренний.

Шины необходимо провести по всем стенам, а после этого соединить с шинами во всех соседних помещениях. Данные действия необходимы, ввиду необходимости обезопасить все без исключения металлических части ТП, даже не являющиеся токопроводящими.

В процессе монтажа можно условно выделить следующие этапы:

  • Первый этап – разметка трассы для прокладки заземления.
  • Второй — подготовка. Перфоратором проделываются отверстия для установки шин сквозь стены и прочие монтажные отверстия. В них устанавливаются металлические гильзы, необходимого диаметра.
  • Третий этап – непосредственно монтаж заземления. Провода закрепляются по периметру при помощи дюбелей. Сами провода соединяются непосредственно с заземляемыми конструкциями, при помощи сварки или болтов.

Важно понимать, что в сухих, имеющих благоприятную среду зданиях прокладывать проводники разрешается прямо по стенам конструкции. Но в сырых помещениях защитные провода необходимо уложить на небольшом расстоянии от стен (от 1 см).

Заземление линий электропередач на столбах

Заземление столбов должно производиться исключительно только совместно с молниезащитой, основным элементом которой является подвеска грозозащитного троса.

В ситуации с ЛЭП монтаж заземляющих устройств производится именно для оттока в грунт импульсных токов, которые возникают при прямолинейном ударе молнии в столбы или молниезащиту, а также для снижения напряжения на изоляции линии.

Подытоживая все вышесказанное, можно сказать, что важность защиты электрооборудования сложно переоценить. Этот метод защиты от поражения электрическим током используется повсеместно: в жилых помещениях и частных постройках, в сооружениях промышленного назначения.

Заземление – сложный и трудоемкий процесс, требующий специального профессионального образования. Неспециалисту произвести самостоятельно данные работы будет довольно сложно. Нужно принимать во внимание необходимость производства множества сложных расчетов, а также различных факторов, например, промерзание грунта зимой или взаимное экранирование электродов, которые могут повлиять на качество проделанной работы.

МОНТАЖ ЗАЗЕМЛЕНИЯ ЭЛЕКТРОУСТАНОВОК

Защитное заземление применяется с целью обеспечения электробезопасности и выполняется при помощи заземляющего устройства, основными элементами которого являются: и с к усст ве н н ы й или естественный заземлитель, магистраль заземления (c6opная заземляющая шина) и заземляющие проводники.

Конструкция и параметры защитного заземления электроустановок должны отвечать требованиям ПУЭ.

Заземлители.В качестве заземлителей рекомендуется использовать естественные заземлители — находящиеся в соприкосновении с землей электропроводящие части коммуникаций, зданий, сооружений и др. такие заземлители по сопротивлению растекания и токовым нагрузку не соответствуют требованиям ПУЭ, то должны применяться искусствнные заземлители — специально помещаемые в землю металлические электроды. Для электродов применяют круглую, прямоугольную угловую сталь, не имеющую окраски, с размерами не менее приведенных ниже: d=10 мм круглых неоцинкованных заземлителей, d=6мм оцинкованных; 48 мм 2 прямоугольных заземлителей, 4 мм — толщин прямоугольных заземлителей и полок угловой стали.

Магистраль заземления должна быть связана не менее, чем двумя проводниками с заземлителями, размещенными в разных местах.

Размещать заземлители в местах, где возможно подсушивание земли по действием тепла трубопроводов, не разрешается. Сооружения

заземлителей могут быть вертикальными, углубленными или горизонтальными. При устройстве углубленных заземлителей электроды закладывают на дно котлована после установки опалубки с максимально возможным удалением от фундамента. Для вертикальных заземлителей в качестве электродов применяют круглые стержни длиной 4,5—5 м или угловую сталь длиной 2,5—3 м. Заземлители вворачивают с помощью буров или ручных приспособлений с приводом или забивают в дно котлована или траншеи глубиной 0,7—0,8 м непосредственно после окончания рытья. Погружение вертикальных электродов возможно также с копров, вибраторами, гидропрессами и т. п. После погружения верхний конец заземлителя должен выступать над дном на 0,1—0,2 м.

В горизонтальных заземлителях электроды прокладывают по дну траншей глубиной 0,7—0,8 м. Они выполняются из круглой или по­лосовой стали как самостоятельно, так и для связи между собой вертикальных заземлителей.

Изготовление конструкции для заземляющих устройств (электродов, полос, магистралей заземления, крепежных и соединительных деталей), их сварка в транспортабельные узлы должны выполняться в мастерских монтажных организаций. Соединение частей заземлителя между собой, а также заземлителей с заземляющими проводниками должно выпол­няться сваркой. Длина нахлестки для прямоугольных проводников должна быть не менее ее ширины, а для круглых — не менее шести диаметров. Траншеи с заземлителями должны заполняться однородным грунтом, не содержащим щебня и строительного мусора, с последующей утрамбовкой грунта. Перед засыпкой траншей проверяют качество монтажа и составляют акт освидетельствования скрытых работ.

Каждый электрик должен знать:  Источник бесперебойного питания для вашего компьютера

Заземляющие проводники.В сетях с заземленной нейтралью в качестве нулевых защитных и заземляющих проводников используют нулевые рабочие проводники (исключения составляют переносные при­емники однофазного и постоянного тока), а также специально пре­дусмотренные или естественные проводники (металлические конструк­ции зданий, арматура железобетонных строительных конструкций и фундамента, металлические конструкции производственного назначения, стальные трубы электропроводок, алюминиевые оболочки кабеля и др.). При этом должна быть обеспечена непрерывность электрической цепи на всем протяжении использования. В сетях с изолированной нейтралью во всех случаях должны применяться специальные заземляющие про­водники. Допускается выполнение соединения болтами, если обеспечи­ваются меры против ослабления и коррозии контактных соединений. В помещениях сухих, без агрессивной среды, заземляющие и нуле­вые защитные проводники допускается прокладывать непосредственно по стенам, а во влажных, сырых с агрессивной средой — на расстоянии не менее 10 мм от стен на специальных опорах для крепления. Рас­стояния между креплениями должны быть, мм: 1000 — на прямых участ­ках, 100 — на поворотах и от мест ответвления; 400—600 — от уровня пола помещения.

Магистрали заземления или зануления и ответвления от них, а также их соединение должны быть доступны для осмотра.

В местах прохода через стены и перекрытия проводники прокладывают в открытых проемах, металличесеих трубах и др.

В этих местах они не должны иметь соединений или ответвлений.

Каждая часть электроустановки должна быть присоединена к ма­гистрали заземления при помощи отдельного ответвления. Под один болт (зажим) на магистрали заземления допускается присоединять только один проводник электрооборудования и не более двух заземля­ющих проводников кабельных линий. Места болтовых соединений должны иметь покрытия для защиты их от влияния агрессивной среды. Оборудование с частым демонтажом или установленное на движущихся частях, подверженное частым сотрясениям или вибрации, должно за­земляться гибкими проводниками.

Не нашли, что искали? Воспользуйтесь поиском:

Монтаж заземления – порядок работ и принцип действия защиты

Заземлитель — важнейший элемент системы электроснабжения, от надлежащего функционирования которого зависит безопасность людей.

Сегодня наряду с традиционными применяются новые виды, работающие с гораздо большей эффективностью.

Об этом, а также о том, как производится монтаж заземления, пойдет речь в данной статье.

Принцип действия защиты

Действие заземления основано на способности грунта поглощать электрический заряд.

Для передачи заряда в грунт заглубляется заземлитель — металлическая конструкция, состоящая из соединенных полосой электродов.

В качестве электродов может использоваться любой металлопрокат: трубы, полоса, уголки и даже сетка.

К заземлителю посредством шин и проводов подсоединяются заземляемые части оборудования и сети.

Защитное заземление предназначено для защиты людей и оборудования от напряжений и токов, могущих появиться в результате какой-нибудь поломки. Различают три его разновидности:

  1. Заземление молниезащиты: молния — мощнейший электрический разряд, который стремится пройти путь от тучи к земле по пути наименьшего сопротивления. У зданий, металлических конструкций и деревьев электрическое сопротивление гораздо ниже, чем у воздуха, поэтому вблизи земли молния устремляется именно к таким объектам. Чтобы отвести разряд от здания, рядом с ним устанавливают более высокую металлическую мачту — молниеприемник, подключенный к заземлителю.
  2. Заземление системы защиты от импульсного перенапряжения (ЗИП): электромагнитное поле от мощной электроустановки, ЛЭП или молниевого разряда может вызвать концентрацию заряда на расположенном поблизости участке сети, например, коммуникационной. Преодолев критическое значение, этот заряд может вызвать пробой в подключенном к сети электронном оборудовании с последующим выходом его из строя. Для сброса заряда параллельно с оборудованием устанавливают газоразрядник, пробиваемый меньшим напряжением, чем защищаемое электронное устройство. Газоразрядник подключается к заземлителю.
  3. Заземление в электросети: эта разновидность заземления является самой распространенной. К заземлителю подключаются корпус и другие части электрооборудования, которые могут оказаться под напряжением при нарушении изоляции токоведущих частей и к которым может прикоснуться пользователь. Если в результате поломки произойдет замыкание фазы на такой элемент и пользователь коснется его, то удар током получится ослабленным из-за того, что значительная часть заряда стечет через заземлитель в грунт. А если прибор будет подключен через УЗО, то электротравмы вообще удастся избежать, поскольку это устройство отключит электропитание сразу после замыкания фазы на заземленный элемент.

Принцип действия системы заземления

Особенности монтажа

При монтаже электроды целесообразно погружать как можно глубже в грунт. Это объясняется двумя причинами:

  • на глубине грунт является более влажным, поэтому проводит ток лучше;
  • глубокий грунт не промерзает зимой, поэтому его сопротивление остается низким, тогда как у промерзающего поверхностного грунта сопротивление резко увеличивается.

Если площадь поверхности одного электрода является недостаточной (необходимую площадь определяют специальным расчетом), их вбивают несколько и затем соединяют шиной. Такие заземлители называют распределенными. При их монтаже нужно учитывать эффект затенения, который состоит в том, что электроды мешают друг другу отдавать заряд.

К примеру, для нескольких вертикальных электродов с длиной порядка 3 м существует зависимость:

  • если их расположить друг от друга на расстоянии, равном длине, то есть в пределах 3 м, то эффективность их составит 60% от максимально возможной;
  • при размещении на расстоянии вдвое большем длины (порядка 6 м) эффективность увеличивается до 75%;
  • при размещении на расстоянии, в 10 раз превышающем длину (около 30 м), эффективность становится максимальной — 100%.

Поэтому на практике электроды размещают поблизости, а эффект затенения компенсируют увеличением суммарной площади поверхности (достигается увеличением размеров электродов или их количества).

Сегодня применяют заземляющие электроды трех видов:

  • традиционные;
  • модульные;
  • электролитические.

Посмотрим, как устанавливается каждая разновидность.

Как сделать заземление на даче: заземление с металлическими деталями своими руками

Строительство частного дома или загородной дачи всегда сопряжено с большим объемом электротехнических работ. В этом диапазоне задач, наряду с подводкой электропитания к дому, установке распределительного и защитного оборудования, прокладке внутренних линий, не меньшую значимость имеет и грамотно спланированная и исполненная система заземления. К сожалению, при проведении « самостроя » неопытные хозяева про этот момент достаточно часто забывают или же даже намеренно его игнорируют, пытаясь достичь какой-то ложной экономии денежных средств и трудозатрат.

Как сделать заземление на даче

А между тем система заземления имеет чрезвычайную важность – она способна предупредить многие неприятности, которые могут привести к весьма печальным или даже трагическим последствиям. Согласно существующим правилам, специалисты электросетей не произведут подключение дома к линии электропередач, если этой системы в доме нет или же она не отвечает необходимым требованиям. И владельцу, так или иначе, придется решать вопрос, как сделать заземление на даче.

В современных домах городской застройки контур заземления обязательно предусматривается еще на стадии проектирования здания и его внутренних коммуникаций. Хозяину частного жилья этот вопрос придется решать самому – приглашать специалистов или постараться все сделать своими руками. Пугаться не надо – все это является вполне выполнимой задачей.

Для чего необходим контур заземления

Для того чтобы понять важность заземления, достаточно базовых понятий из школьного курса физики.

Подавляющее большинство частных домов запитываются от однофазной сети переменного тока 220 вольт . Электрическая цепь, необходимая для работы всех приборов или установок обеспечивается наличием двух проводников – собственно, фазой и нулевым проводом.

Типовые схемы проводки однофазной электросети

Конструкция всех электрических приборов, инструментов , бытовой и иной техники предусматривает элементы изоляции и защитные приспособления, которые должны предотвратить попадание напряжения на токопроводящие корпуса или кожухи. Тем не менее , вероятность такого явления никогда не исключается – изоляция может быть пробита разрядом, прогореть от ненадежных , искрящих контактов в соединениях проводов, могут выйти из строя элементы схемы и т.п . В этом случае фазное напряжение может попасть на корпус прибора, прикосновение к которому становится чрезвычайно опасным для человека.

Особую опасность представляют ситуации, если рядом с таким неисправным прибором находятся металлические предметы, имеющие так называемое естественное заземление – стояки отопления, водопроводные или газовые трубы, открытые элементы армирования строительных конструкций и т.п . При малейшем касании к ним цепь может замкнуться, и смертельно опасный ток пройдет через тело человека в сторону меньшего потенциала. Не менее опасны подобные ситуации и в том случае, если человек стоит босой или в мокрой обуви на влажном полу или земле – тоже есть все предпосылки к замыканию цепи переменного тока от корпуса прибора.

Одно из выраженных свойств электрического тока в том, что он обязательно выберет проводник с минимальным сопротивлением. Значит, необходимо заранее создать линию с минимальным сопротивлением и нулевым потенциалом, по которой в случае пробоя на корпус напряжение будет безопасно отводиться.

Сопротивление человеческого тела – величина непостоянная, зависящая и от индивидуальных особенностей, и даже от временного состояния человека. В электротехнической практике эту величину обычно принимают за 1000 Ом (1 кОм ). Стало быть, сопротивление заземляющего контура должно быть многократно ниже. Существует сложная система расчетов , но обычно оперируют величинами в 30 Ом для бытовой электросети частного дома и 10 Ом в том случае, если заземление используется еще и в качестве защиты от молнии.

УЗО будет корректно работать только при наличии заземляющего контура

Могут возразить, что все проблемы вполне решаемы установкой специальных защитных устройств (УЗО). Но для корректной работы УЗО заземление также является необходимостью. При появлении даже малейшей утечки тока цепь практически мгновенно замкнется и устройство сработает, отключив опасный участок домашней электросети.

Некоторые хозяева пребывают в предубеждении, что для заземления достаточно использовать трубы водопровода или отопления. Это – чрезвычайно опасно и абсолютно ненадежно . Во-первых , гарантировать эффективный отвод напряжения невозможно – трубы могут быть сильно окислены и не иметь достаточно хорошего контакта с землей , а кроме того , на них нередко бывают пластиковые участки. Не исключается и поражение током при при косновении к ним в случае пробоя электропитания на корпус, причем такой опасности могут быть подвержены в том числе и соседи.

Вилка и розетка с заземляющим контактом

Большинство современных электроприборов сразу оснащаются кабелем питания с трехконтактной вилкой. Соответствующие розетки должны устанавливаться и при проведении работ по монтажу проводки в доме. (Некоторые электроприборы старых моделей имеют вместо этого контактную клемму на корпусе для подключения заземления).

Цветовая маркировка проводов однофазного кабеля

Есть строго определённая цветовая « распиновка » проводов : синий провод однозначно является «нулевым», фаза может иметь различную расцветку, от белой до черной , а заземляющий – всегда желто-зеленый .

И вот, зная это, некоторые «мудрые» хозяева, желая сэкономить на обновлении проводки и организации полноценного заземления, просто делают в розетках перемычки между нулевым контактом и заземляющим. Однако, этим они не решают проблемы, а, скорее, усугубляют ее . При определенных условиях, например, при перегорании или плохом контакте рабочего нуля в каком-то участке цепи, или при случайной перефазовке , на корпусе приборов появится фазный потенциал, причем это может случиться в самом неожиданном месте дома. Опасность поражения током возрастает в такой ситуации многократно.

Заземление — это надежная защита от многих неприятностей

Вывод из всего сказанного – заземление является обязательным конструктивным элементом домашней электрической сети. Оно выполняет сразу функций:

  • Эффективный отвод утечки напряжения с токопроводящих деталей, прикосновение к которым может вызвать поражение током.
  • Выравнивание потенциало в в сех объектов в доме, например, заземленных приборов и труб отопления, водопровода, подачи газа.
  • Обеспечение корректной работы всех установленных систем и устройств безопасности – плавких предохранителей, автоматов или УЗО.
  • Немаловажное значение имеет заземление и в предотвращении накопления на корпусах бытовых приборах статического заряда.
  • Особую важность приобретает оно для современной электроники, особенно – вычислительной техники. Например, работа импульсных блоков питания компьютеров очень часто сопровождается наведением напряжения на корпуса системных блоков. Любой разряд может привести к выходу из строя электронных элементов, сбоям в работе, потере информации.

Теперь, когда важность системы заземления разъяснена, можно перейти к вопросу, как ее сделать условиях частного дома самостоятельно.

Цены на защитную автоматику

Какими бывают системы заземления в частных домах

Итак, грамотно исполненная система заземления должна обеспечивать надежный контакт с нулевым потенциалом земли и с минимально возможным сопротивлением созданного контура. Однако, гру нт — гр унт у рознь – разные его типы серьезно отличаются друг от друга удельным сопротивлением:

Тип грунта удельное сопротивление грунта (Ом × м)
Песок (при уровне грунтовых вод ниже 5 м) 1000
Песок (при уровне грунтовых вод выше 5 м) 500
Плодородная почва (чернозем) 200
Влажная супесь 150
Полутвердый или лесовидный суглинок 100
Меловой слой или полутвердая глина 60
Графитовыен сланцы, глинистый мергель 50
Суглинок пластичный 30
Пластичная глина или торф 20
Подземные водоносные слои от 5 до 50

Очевидно, что те слои, которые обладают наименьшим удельным сопротивлением, располагаются, как правило, на значительной глубине. Но и при заглублении электрода получаемых результатов может быть недостаточно. Проблема эта решается несколькими способами – от увеличения глубины установки штыревых электродов, до увеличения их числа, расстояния между ними или общей площади контакта с грунтом. На практике чаще всего применяются несколько основных схем:

Возможные схемы заземления в частном доме

  • Схема «а» — установка заглубленного металлического замкнутого контура по периметру дома. Как вариант – неглубоко забитые штыри, соединённые по кольцу шиной.

В дачном строительстве применяется она нечасто из-за большого объема земляных работ или в связи с особенностями расположения построек на участке.

  • Схема «б», пожалуй, самая популярная у владельцев загородного жилья. Три или больше умеренно заглубленных штыревых электрода, связанных одной шиной – такую конструкцию несложно выполнить самостоятельно даже на ограниченном пространстве.
  • На схеме «в» показано заземление с одним электродом, установленным на большую глубину. Иногда подобную систему устраивают даже в подвале здания. Схема удобная, но не всегда исполнимая – ее практически невозможно реализовать на каменистых грунтах. Кроме того, для такой системы заземления нужно использовать специальные электроды – речь о ней пойдет чуть ниже.
  • Схема «г» — достаточно удобная, но лишь в том случае, если она была продумана еще на стадии проектирования дома, а выполнена во время заливки фундамента. Воплощать ее в жизнь на готовом здании будет крайне нерентабельно.

Итак, проще всего реализовать с минимальными затратами схемы «б» или, по возможности , «в».

Заземление с использованием самодельных металлических деталей

Чтобы сделать систему заземления такого типа , потребуются металлические профили, сварочный аппарат, инструменты для земляных работ, кувалда. В ряде случаев, при сложных плотных грунтах, может понадобится ручной бур.

Схематично эта система выглядит подобным образом:

Наиболее часто применяемая схема заземления частного дома

Место расположения заглубленных электродов выбирается с тем расчетом , чтобы было максимально удобно подвести заземляющую шину к распределительному щитку. Оптимальное расстояние от дома – 3 — 6 метров. Допустимые пределы – не ближе одного метра и не далее десяти.

Размеры, указанные на схеме, отнюдь не являются какой-то догмой. Так, сторона треугольника может быть и до трех метров в длину, а глубина забивки штыря может быть несколько меньшей — 2,0 ÷ 2, 5 м . Количество электродов тоже может меняться – если гру нт пл отный и на большую глубину забить штыри не удается , можно увеличить их количество.

Здравый совет – заранее обратиться в местную службу энергоснабжения за получением рекомендаций по выполнению заземляющего контура. У этих специалистов наверняка есть продуманные и опробованные в данном регионе схемы. Кроме того, они смогут помочь просчитать размеры и исходя из планируемой нагрузки домашней электросети – это тоже имеет значение.

Металлический прокат, который может быть использован для заглубляемых электродов

Что может послужить электродами? Для этих целей чаще всего используют стальной уголок с полкой 50 × 50 мм и толщиной не менее 4 ÷ 5 мм. Могут применяться трубы, лучше – оцинкованные с толщиной стенок не менее 3,5 мм. Можно взять стальную полосу с площадью поперечного сечения порядка 48 мм² (12 × 4), но ее сложнее вбить вертикально в грунт. Если решено использовать стальной прут, то то же лучше брать оцинкованный, диаметром не менее 10 мм.

Чтобы связать штыри в один контур, используют полосу 40 × 4 мм или катанку 12 – 14 мм. Этот же материал подойдёт для прокладки шины заземления к точке ввода ее внутрь дома.

  • Итак, первоначально на выбранном месте делается разметка.

Котлован и траншея для контура заземления

  • Затем целесообразно отрыть небольшой котлован намеченной формы на глубину до 1 метра. Минимальная глубина – 0, 5 м . Одновременно роется траншея на ту же глубину – по ней от контура к цоколю дома пойдет шина заземления.

Можно не рыть котлован, а ограничиться выкапыванием траншей

  • Задачу можно несколько упростить, выкапывая не сплошной котлован, а лишь траншеи по периметру создаваемого контура. Главное, чтобы их ширина позволяла свободно проводить забивку электродов и сварочные работы.

Края уголков нужно обрезать и заточить,, чтобы они легче входили в грунт

  • Готовятся электроды нужной длины. Край, которыми они будут вбиваться в землю, необходимо заострить шлифмашинкой , обрезав его под углом. Металл должен быть чистым, неокрашенным.

Электроды последовательно забиваются в землю на нужную глубину

  • В намеченных местах электроды вбиваются в землю с помощью кувалды или электромолота . Их заглубляют так, чтобы в котловане (траншее) они выступали над уровнем поверхности примерно на 200 мм.

Электроды с помощью сварки соединяются стальной полосой

  • После того, как все электроды забиты, из связывают общей шиной (горизонтальным заземлителем) из металлической полосы 40 × 4 мм. Здесь применима только сварка, хотя можно встретить рекомендации обойтись болтовым соединением. Нет, чтобы обеспечить надежное и долговечное заземление эту обвязку обязательно приваривают – резьбовой контакт, размещенный под землей , быстро окислится, сопротивление контура резко возрастет .

Шина приваривается к контуру и проводится до цоколя здания

  • Теперь можно проложить шину из той же полосы к фундаменту дома. Шина приваривается в одному из забитых электродов и укладывается в траншею затем она заходит на цоколь здания.
  • Шина крепится к цоколю. На рисунке не показано, но целесообразно перед точкой крепления предусмотреть небольшой изгиб, так называемый «компенсационный горб» , чтобы компенсировать линейные расширения металла при перепадах температур. На конце полосы приваривается болт с резьбой М10. К нему будет крепиться медная клемма с проводом заземления, который уйдет на распределительный щиток.

Клеммный переход на провод заземления

  • Для прохождения провода через стену или через цоколь сверлится отверстие и в него вставляется пластиковая гильза. Провод используется медный, сечением 16 или 25 мм² (этот параметр лучше заранее уточнить у специалистов). Гайку и шайбы для соединения тоже лучше использовать медные.

В данном случае шина заземления из арматуры заведена внутрь помещения

  • Иногда поступают и иначе – к шине приваривают длинную стальную шпильку, так чтобы она проходила насквозь через стенку дома, также через гильзу. В этом случае клеммная часть окажется в помещении и меньше будет подвержена окислению под действием повышенной влажности воздуха.

Бронзовая распределительная пластина для подключения проводов заземления

  • Заземляющий провод заводится к электрическому распределительному щитку. Для дальнейшей «раздачи» лучше всего применять специальную пластину из электротехнической бронзы – к ней будут крепится все провода заземления, уходящие к точкам потребления.

По окончании монтажа необходимо произвести проверку работоспособности ситемы

Не следует торопиться сразу же засыпать смонтированный контур грунтом.

— Рекомендуется, во-первых, запечатлеть его на фотографии с привязкой к окружающим стационарным наземным объектам – это может потребоваться для внесения изменений в проектную документацию, а также для проведения контрольно-проверочных мероприятий в будущем.

— Во-вторых, необходимо проверить сопротивление получившегося контура. Для этих целей лучше пригласить специалистов энергоснабжающей организации, тем более что их вызов, так или иначе, будет необходим для получения разрешительных документов.

Если результаты проверки показывают, что сопротивление велико, необходимо будет добавить еще один или даже несколько вертикальных электродов. Иногда перед проверкой идут и на хитрости, обильно поливая места около заколоченных в грунт уголков насыщенным раствором обычной поваренной соли. Это безусловно, улучшит показатели, однако, не стоит забывать и о том, что соль активизирует коррозию металла.

Обычная поваренная соль существенно снижает сопротивление контура, но, увы, активизирует коррозию металла

Кстати, если забить уголки не получается, то прибегают к бурению скважин на нужную глубину. После установки электродов их с максимально возможной плотностью заполняют глиняным грунтом, в который также перемешивают с солью.

После того как работоспособность контура заземления проверена, необходимо обработать сварные швы антикоррозийным составом. Это же можно проделать и с шиной, идущей к зданию. Затем, после высыхания мастики, котлован и траншеи засыпаются грунтом. Он должен быть однородным, не замусоренным и без щебеночных включений. Затем место засыпки тщательно утрамбовывается.

Видео: монтаж заземляющего контура с применением металлического уголка

Использование готовых заводских комплектов

Весьма удобны для организации заземления на даче готовые комплекты заводского изготовления. Они представляют собой набор штырей с соединительными муфтами, позволяющими наращивать глубину погружения в грунт по мере забивки.

Система заземления с одним штырем

Эта система заземления предусматривает монтаж одного штыревого электрода, но на большую глубину, от 6 и даже до 15 метров.

В комплект обычно входят:

  • Штыри стальные длиной 1500 мм с оцинкованной или омеднённой поверхностью, или же сделанные из нержавеющей стали. Диаме тр шт ырей может в разных комплектах отличаться – от 14 до 18 мм.

Комплект штанг для сборки заземляющего электрода

  • Для их соединения они оснащаются резьбовыми муфтами, а для удобства проходки через грунт в компле кт вх одит стальной наконечник.

Соединительная резьбовая муфта и наконечник для упрощения забивки

В некоторых комплектах муфты являются не резьбовыми, а запрессовочными . В этом случае один конец заземляющего штыря сужен с помощью ковки и имеет ребристую поверхность. При ударном воздействии происходит прочное соединение и достигается надежный электрический контакт между стержнями.

Штыри могут иметь и запрессовочную муфту

  • Для передачи ударного воздействия предусматривается специальная насадка (нагель) из высокопрочной стали, которая не будет деформироваться от воздействия молота.

Нагель — насадка, которая будет передавать ударное усилие от молота

  • В некоторых комплектах предусмотрено наличие специального переходника, который позволяет использовать в качестве забивного инструмента мощный перфоратор.

Забивание электрода с помощью перфоратора

Для установки такой системы заземления также целесообразно вырыть небольшой котлован глубиной до метра и такой же в диаметре, хотя некоторые предпочитают даже наружное размещение.

Наращивание электрода по мере забивки в грунт

Штыри последовательно вбиваются с наращиванием на нужную глубину.

Затем на оставленный на поверхности участок (порядка 200 мм) надевается латунный контактный зажим.

В такой контактный зажим могут быть вставлены или металлическая шина, или провод заземления

В него вставляется или токопроводящая шина из металлической полосы, или же сразу кабель заземления сечением 25 кв. мм. Для соединения со стальной полосой предусмотрена специальная прокладка, которая не даёт возможности для электрохимического контакта между мелью стержня и сталью (цинком). В дальнейшем шина или кабель заводятся в дом и подключаются к распределительному щитку точно так же, как это было описано выше.

Видео: забивка штыревых электродов вручную

Цены на комплектующие для молниезащиты и заземления

Какой тип покрытия стержней выбрать – оцинкованный или омедненный?

  • С точки зрения экономичности, оцинковка с тонким слоем (от 5 до 30 мкм) выгоднее. Эти штыри не боятся механических повреждений при монтаже, даже оставленные глубокие царапины не влияют на степень защищенности железа. Тем не менее , цинк является довольно активным металлом, и, защищая железо, окисляется сам. Со временем, когда весь слой цинка прореагировал, железо остается без защиты и быстро «съедается» коррозией. Срок службы подобных элементов обычно не превышает 15 лет. А делать цинковое покрытие более толстым – это стоит немалых денег.

Сравнительный тест: оцинкованный (слева) и омедненный (справа) электрод после 10 лет эксплуатации в условиях агрессивной среды кислого грунта

  • Медь же, наоборот, не вступая в реакции, защищает закрываемое ею железо, которое более активно с точки зрения химии. Такие электроды могут без ущерба эффективности служить очень долго, например, производитель гарантирует их сохранность в суглинистой почве вплоть до 100 лет. Но при монтаже следует проявлять осторожность – в местах повреждения слоя омеднения наверняка возникнет участок коррозии. Чтобы снизить вероятность этого, слой омеднения делают достаточно толстым, до 200 мкм, поэтому такие штыри значительно дороже обычных оцинкованных.

Каковы общие достоинства такого комплекта системы заземления с одним глубоко размещённым электродом:

  • Монтаж не представляет особой сложности. Не требуется объемных земляных работ, не нужен сварочный аппарат – все производится обычным инструментом, который есть в каждом доме.
  • Система очень компактна, ее можно разместить на крошечном «пятачке» или даже в подвале дома.
  • Если используется омедненные электроды, то срок службы такого заземления будет исчисляться несколькими десятками лет.
  • Благодаря хорошему контакту с грунтом достигается минимальное электрическое сопротивление. Кроме того, на эффективность системы практически не влияют сезонные условия. На уровень промерзания грунта приходится не более 10% длины электрода, и зимние температуры никак не могут отрицательно сказаться на проводимости.

Есть, конечно, и свои недостатки:

  • Такой тип заземления не может быть реализован на каменистых грунтах – скорее всего, забить электроды на требуемую глубину не удастся.
  • Возможно, кого-то отпугнет и цена комплекта. Однако это – вопро с с порный, так как качественный металлический прокат для обычной схемы заземления тоже стоит недешево . Если еще присовокупить длительность эксплуатации, простоту и быстроту монтажа, отсутствие необходимости в специализированном инструменте, то, вполне возможно, такой подход к решению проблемы заземления может показаться даже более перспективным с точки зрения экономичности.
Добавить комментарий