Начинающим электрикам

Начинающим электрикам

В зависимости от назначения, от предполагаемых режимов и условий работы, от типа питания и т. д., все электродвигатели можно классифицировать по нескольким параметрам: по принципу получения рабочего момента, по способу работы, по роду тока питания, по способу управления фазами, по типу возбуждения и т. д. Давайте же рассмотрим классификацию электродвигателей более подробно.

Вращающий момент в электродвигателях может быть получен одним из двух способов: по принципу магнитного гистерезиса либо чисто магнитоэлектрически. Гистерезисный двигатель получает вращающий момент посредством явления гистерезиса во время перемагничивания магнитно-твердого ротора, в то время как у магнитоэлектрического двигателя вращающий момент является результатом взаимодействия явных магнитных полюсов ротора и статора. Магнитоэлектрические двигатели по праву составляют сегодня львиную долю всего обилия электродвигателей .

Термины «емкостная нагрузка» и «индуктивная нагрузка», применительно к цепям переменного тока, подразумевают определенный характер взаимодействия потребителя с источником переменного напряжения.

Грубо это можно проиллюстрировать следующим примером: подключив к розетке полностью разряженный конденсатор, в первый момент времени мы будем наблюдать практически короткое замыкание, тогда как подключив к той же самой розетке катушку индуктивности, в первый момент времени ток через такую нагрузку окажется почти нулевым. Так происходит потому, что катушка и конденсатор взаимодействуют с переменным током принципиально по разному, в чем и заключается ключевое различие между индуктивной и емкостной нагрузками. Говоря о емкостной нагрузке, имеют ввиду, что она ведет себя в цепи переменного тока подобно конденсатору. Это значит, что синусоидальный переменный ток будет периодически перезаряжать .

Пакетные выключатели используют для коммутации электрических цепей. При этом они могут использоваться как в цепях постоянного, так и переменного тока, напряжением в 220, 380 В. Однако люди часто путают и по старинке называют «пакетниками» автоматические выключатели, что в корне не верно. Поэтому давайте разбираться что такое и для чего нужны пакетные выключатели, а также чем они отличаются от автоматических выключателей?

Каждый электрик должен знать:  Проверка трансформатора инструкция по проверке

Пакетным выключателем называют коммутационный прибор для включения и выключения электрических цепей, собственно для тех же целей, что и рубильники. Такое название он получил из-за того, что состоит из однотипных элементов (пакетов), собранных на одной оси и закрепленных шпильками. Таким образом на производстве из одинаковых деталей можно собрать коммутационный аппарат с любым количеством полюсов (контактных групп). Для них характерно поворотное движение устройство рукояти .

Для электромонтёра коммутационная аппаратура является одним из основных устройств, с которыми приходится работать. Автоматические выключатели несут как коммутационную, так и защитную роль. Ни один современный электрощит не обходится без автоматов. В этой статье мы рассмотрим, как устроен и работает автоматический выключатель.

Автоматический выключатель — это коммутационный прибор, предназначенный для защиты кабелей от критических значений токов. Это нужно для того, чтобы избежать повреждений токопроводящих жил проводов и кабелей в случае межфазных замыканий и замыканий на землю. Основная задача автоматического выключателя — защитить кабельную линию от последствий протекания токов короткого замыкания. Основными характеристиками автоматических выключателей являются: номинальный ток (вставить ряд токов), напряжение коммутации, время токовая характеристика .

Один из вариантов многофазной системы электроснабжения — трехфазная система переменного тока. В ней действуют три гармонические ЭДС одной частоты, создаваемые одним общим источником напряжения. Данные ЭДС сдвинуты по отношению друг к другу во времени (по фазе) на один и тот же фазовый угол, равный 120 градусов или 2*пи/3 радиан.

Каждый электрик должен знать:  Ariston LI 42 - ошибка при сливе воды в начале выполнения программы

Первым изобретателем шестипроводной трехфазной системы был Никола Тесла, однако немалый вклад в ее развитие внес и российский физик-изобретатель Михаил Осипович Доливо-Добровольский, предложивший использовать всего три или четыре провода, что дало значительные преимущества, и было наглядно продемонстрировано в экспериментах с асинхронными электродвигателями . В трехфазной системе переменного тока каждая синусоидальная ЭДС находится в собственной фазе, участвуя в непрерывном периодическом процессе электризации сети, поэтому данные ЭДС иногда именуют просто «фазами» .

Превратить ток в напряжение или напряжение в ток невозможно, поскольку это — принципиально разные явления. Напряжение измеряется на концах проводника или источника ЭДС, тогда как ток представляет собой движущийся через поперечное сечение проводника электрический заряд. Напряжение или ток можно лишь преобразовать в напряжение или ток другой величины, в этом случае говорят о преобразовании электрической энергии (мощности).

Если в процессе преобразования электрической энергии напряжение понижается, то ток при этом повышается, а если напряжение повышается — значит понижается ток. Количество энергии на входе и на выходе будет приблизительно одинаковым (минус, конечно, потери в процессе преобразования) в соответствии с законом сохранения энергии. Так происходит потому, что электрическая энергия A — это изначально потенциальная энергия электрического заряда .

Под тепловым действием электрического тока понимают выделение тепловой энергии в процессе прохождения тока по проводнику. Когда через проводник проходит ток, образующие ток свободные электроны сталкиваются с ионами и атомами проводника, нагревая его.

Каждый электрик должен знать:  Выбивало дифавтомат, заменил на автомат, все равно выбивает

Выделяемое при этом количество теплоты можно определить с помощью закона Джоуля-Ленца, который формулируется так: количество теплоты, выделяемое при прохождении электрического тока через проводник, равно произведению квадрата тока, сопротивления данного проводника и времени прохождения тока через проводник. Приняв ток в амперах, сопротивление в омах, а время в секундах, получим количество теплоты в джоулях. А учитывая что произведение тока на сопротивление — есть напряжение, а произведение напряжения на ток — мощность, в результате оказывается, что количество выделенной теплоты в данном случае равно количеству электрической энергии, переданной данному проводнику .

Не всегда есть возможность найти структурированную актуальную информацию. В связи с этим, в 2020-м году издательство «Наука и Техника» (СПБ) выпустило 3 книги для электриков. «Электрика для любознательных». Автор — Бартош А.И. «Современная электросеть. Практикум электрика». Книга + видеокурс на DVD. Автор — Штерн М.И. «Современная электросеть. Новые технические решения». Книга + видеокурс на DVD. Автор — Штерн М.И.

Первая книга «Электрика для любознательных» ориентирована школьников, студентов и других людей, которые захотели познакомиться с миром электричества для общего развития или стать электриком в будущем. Книга разделена на две основные части — теория и практика. Теоретическая часть краткая, в неё включены основные понятия об электричестве и электрических цепях, законы и сведения об электротехнике в целом, в общем, необходимый минимум знаний для электрика .

Добавить комментарий