Нагрев и охлаждение электродвигателей


СОДЕРЖАНИЕ:

Охлаждение электродвигателей

Система охлаждения электродвигателя достаточно сложная. Вентилятор является не единственным средством, помогающим работать электродвигателю в номинальном режиме без скачков температурного режима.

Как происходит охлаждение электродвигателей

  • Способы охлаждения электродвигателя и характеристика цепи охлаждения описана в техническом паспорте, который прилагается к каждому электродвигателю при продаже. Каждая цепь обозначена латинскими буквами, указывающими на вид применяемого хладагента. Затем идут две цифры. Первая – обозначает устройство цепи хладагента, вторая – способы подводки энергии для его циркуляции.
  • Электродвигатель может иметь несколько цепей охлаждения. В техническом паспорте указаны характеристики всех таких цепей. В асинхронных электромоторах вентилятор охлаждения электродвигателя расположен на валу или имеет независимый привод.
  • Разные модели электродвигателей могут работать при определенной максимальной температуре окружающего воздуха. При нарушении данного режима электродвигатель вентилятора системы охлаждения может перегреться и выйти из строя, что приведет к быстрому повышению температуры электродвигателя. Дальнейшая работа электродвигателя будет невозможна.
  • Вентилятор охлаждения электродвигателя запускается одновременно с электродвигателем. При преобразовании электрической энергии в механическую неизменно происходит выделение большого количества тепловой энергии. При сильном нагреве напряжение уменьшается практически на 95%. Причем повышенная температура оказывает негативное действие на изоляцию обмотки и может привести к выходу электродвигателя из строя.
  • Тракт охлаждения электродвигателя необходимо систематически проверять. Индивидуальный вентилятор системы охлаждения электродвигателя должен иметь автоматическое включение и отключение при пуске, работе и отключении электродвигателя.

Техническая проверка системы охлаждения электродвигателя

Техническую проверку системы охлаждения электродвигателей специалисты должны проводить систематически. При использовании электромотора в условиях повышенной запыленности необходимо обеспечить подвод чистого охлаждающего воздуха. При попадании в вентилятор охлаждения электродвигателя пыли нагрев агрегата резко повышается, а коэффициент полезного действия снижается.

Нагрев и охлаждение электродвигателей

При работе любого электродвигателя часть поступающей ктему энергии затрачивается на потери, связанные с нагревом обмоток и магнитопроводов, трением в подшипниках и враща­ющихся частей о воздух. Хотя потери энергии в современных электродвигателях невелики, при их работе все же выделяется значительное количество тепла, что приводит к нагреву элек­тродвигателей. Различают постоянные и переменные потери в электрических машинах. Величина первых не зависит или мало зависит от нагрузки машины. К ним относятся потери на перемагничивание, на вихревые токи, на нагрев параллельных об­моток возбуждения и на трение (о воздух, в подшипниках, на щетках и т. п.). К переменным относят потери, пропорциональ­ные квадрату тока нагрузки. Это потери на нагрев обмотки якоря или статора), последовательных обмоток возбуждения, коллектора и т. п. На холостом ходу нагрев машин определяется постоянными потерями. По мере загрузки машины увеличиваются переменные потери и нагрев ее повышается.

Таким образом, вопросы нагрева электродвигателей имеют большое практическое значение, так как нагревом должна оп­ределяться допустимая нагрузка электродвигателя. Темпера­тура неработающей машины равна температуре окружающего воздуха. Если машина приведена в рабочее состояние и нагруз­ка на ,нее постоянна, то в каждую единицу времени в ней на­чинают выделяться определенные порции тепла. В начальный момент работы все выделенное в машине тепло почти полно­стью идет на ее нагрев, при этом повышается температура ма­шины, т. е. появляется температурный перепад τ между темпе­ратурой машины и температурой окружающей среды. При по­явлении температурного перепада машина начинает часть вы­деляющегося в ней тепла отдавать окружающей среде путем конвекции, лучеиспускания и теплопроводности.

Чем выше перепад τ, тем больше тепла машина будет отда­вать окружающей среде. Наконец, перепад достигает такого предельного значения τпр, когда все выделяемое в машине тепло станет отводиться в окружающую среду и нагрев машины прекратится, т. е. ее температура достигнет значения, предель­ного для данной нагрузки.

В случае, когда нагрузка на машину превышает допусти­мую, установившаяся температура может оказаться слишком высокой и превысит допустимую. Установившаяся температу­ра работающей машины не должна превосходить величины, оп­ределяемой теплоемкостью ее изоляции.

При включении двигателя в сеть и наличии на его валу нагрузки происходит его нагрев, зависящий от тепловых потерь ΔР, времени нагрева t, теплоемкости С и теплоотдачи двигателя А. Эти величины связаны между собой уравнением теплового баланса электродвигателя:

ΔР·dt = C·dτ + A·τ·dt, Вт·с,

где τ — превышение температуры двигателя над температурой охлаждающей среды, которую принимают, как правило, равной +40°С.

Решение этого уравнения дает зависимость изменения превышения температуры двигателя во времени. Зависимость имеет экспоненциальный характер (см. рис.):

τ = τуст(1 — e-1/Тн) + τнач e-1/Тн,

где τуст — установившееся превышение температуры, °С; τнач — начальное превышение температуры, °С; ТН — постоянная времени нагревания, Тн = С·А, с.

Дата добавления: 2015-07-15 ; просмотров: 214 | Нарушение авторских прав

Причины перегрева электродвигателя и способы их устранения

Перегрев электродвигателя – одна из самых распространенных неисправностей, последствием которой может быть выход агрегата из строя. Почему греется асинхронный электродвигатель и что необходимо сделать, чтобы этого не происходило?

Причины перегрева двигателя

Нагрев может быть спровоцирован самыми разными факторами. Чаще всего виной тому:

  • Эксплуатация в недопустимом режиме. Устройство не должно долгое время работать при повышенной нагрузке, а также подвергаться механическим воздействиям (удары, резкие толчки, вибрация) – от этого нарушается целостность.
  • Коррозия, вызванная резкими и частыми перепадами температур и повышенной влажностью. Уменьшение зазора между элементами из-за ржавчины приводит к тому, что электродвигатель не набирает обороты и греется.
  • Несоблюдение правил хранения, монтажа и транспортировки. Следует четко следовать инструкциям, приведенным в паспорте.
  • Повреждение изоляции обмотки. Оно может произойти при попадании под корпус инородных частиц или при небрежной транспортировке. Последствия бывают разные – локальные короткие замыкания, деформация вала, неравномерное вращение ротора, и как итог – перегрев.
  • Эксплуатация при повышенном или пониженном напряжении в сети. Пытаясь найти ответ на вопрос: почему греется электродвигатель 3-хфазный, проверьте проводку и состояние розеток.
  • Засорение вентиляционных каналов. Чтобы этого избежать, достаточно регулярно проводить техосмотр и чистку двигателя.
  • Постоянная слишком высокая/низкая температура в помещении, где функционирует двигатель.
  • Разрушение подшипника. Признаки данной неисправности – неподвижность или плохое прокручивание ротора при включении устройства, полное заклинивание ротора и статора и нагрев корпуса.

В большинстве случаев предотвратить нагрев обмотки электродвигателя можно, просто строго соблюдая правила эксплуатации. Иногда достаточно выключить его и оставить в состоянии покоя на некоторое время. Если же элементы уже повреждены, требуется их починка или замена.

Превентивные меры, необходимые для защиты электродвигателя от перегрева

Конечно, лучше не доводить агрегат до поломки. Для этого следует принять меры, обеспечивающие защиту электродвигателя от перегрева:

  • Не допускайте перегрузки устройства.
  • Если двигатель пока не эксплуатируется, храните его в помещении с приемлемой температурой и влажностью.
  • Периодически проверяйте состояние узлов.

Если механизм и корпус часто и сильно нагреваются, следует выявить причины этого и устранить их:

  • Заменить подшипник.
  • Перемотать обмотки.
  • Отчистить детали от ржавчины.
  • Сменить изоляцию обмоток.
  • Прочистить каналы вентиляции.

В «запущенных» случаях придется отнести агрегат в ремонтную мастерскую.

Знать причины перегрева двигателя и способы их устранения необходимо для того, чтобы, во-первых, не допускать самого перегрева, во-вторых, уметь самостоятельно определить неполадку и исправить ее, если это в ваших силах.

Допустимый нагрев электродвигателя в зависимости от класса изоляции

Новости

К нагреву склонен любой электродвигатель. Сам по себе нагрев, если он находится в установленных пределах, не страшен, а вот перегрева допускать никогда нельзя. Перегрев не вреден для металлических частей и подшипников, однако он чрезвычайно опасен для обмоток. В случае повышения температуры сверх установленного предела в них начинает разрушаться изолирующий лак, а это приводит к замыканию витков.

Чтобы не допустить перегрева гарантированно, нужно установить термодатчик и соединить его с цепью, разрывающей питание мотора при превышении допустимой температуры. Такую защитную схему можно приобрести в составе модуля для тепловой защиты электродвигателя. При этом его нужно отрегулировать на нужную температуру срабатывания. Это следует делать, согласуясь с классом изоляции электродвигателя. Таким образом, можно избежать слишком частого отключения при допустимых температурах и уберечь электродвигатель при слишком высоких температурах.

Допустимая температура нагрева для электродвигателей различных классов изоляции:

• Класс Y самый не термоустойчивый. Работает только до 90°C.
• A — до 105°C.
• E — до 120°C.
• B — до 130°C.
• F — до 155°C.
• H — до 180°C.
• C — свыше 180°C

Данные классы установлены Национальной Ассоциацией Производителей Электрооборудования (NEMA). Буквенные обозначения классов расположены не в алфавитном порядке. Это несколько затрудняет их чтение. Поэтому рекомендуется при настройке термодатчика или проверке систем защиты лишний раз уточнить индекс в спецификации.

Конструктивное устройство электродвигателей с разными температурными классами изоляции одинаковое. Разница состоит лишь в химическом составе изоляционного лака обмоток. При присвоении лаку любого класса термоустойчивости он проходит испытания при максимальной температуре в течение 20 000 часов. Гарантированный период эксплуатации электродвигателя при такой температуре является таким же. При превышении температуры на 10 С срок службы сокращается вдвое. Еще на 10 С – еще вдвое. При дальнейшем нагреве происходит необратимое повреждение лака. Такую обмотку требуется заменять.

Если температура обмоток на 10 и на 20 С ниже предельно допустимой, то это положительно сказывается на увеличении срока службы. Он составляет около 50 000 часов и более. Поэтому, во время эксплуатации электродвигателям всегда нужно обеспечивать хорошее охлаждение. Нужно учитывать, что температура является таким же опасным фактором для электродвигателей, как избыточные механические нагрузки и заклинивание.

Нагрев электродвигателей

Во время работы электродвигателя часть электриче­ской энергии преобразуется в тепловую. Это связано с потерями энергии на трение в подшипниках, на вихревые токи и перемагничивание в стали статора и ротора, а так­же в активных сопротивлениях обмоток статора и ротора. Потери энергии в обмотках статора и ротора про­порциональны квадрату величины их токов. Ток статора и ротора пропорционален
нагрузке на валу. Остальные потери в двигателе почти не зависят от нагрузки.

Схема подключения датчика температуры охлаждающей жидкости.

При неизменной нагрузке на валу в двигателе выде­ляется определенное количество теплоты в единицу вре­мени.

Повышение температуры двигателя происходит неравномерно. Вначале она возрастает быстро: почти вся теплота идет на повышение температуры, и лишь малое количество ее уходит в окружающую среду. Пе­репад температур (разница между температурой дви­гателя и температурой окружающего воздуха) пока еще невелик. Однако по мере увеличения температуры дви­гателя перепад возрастает и теплоотдача в окружающую среду увеличивается. Рост температуры двигателя за­медляется.

Схема измерения температуры элктродвигателя: а — по схеме с переключателем; б — по схеме со штепсельной вилкой.

Температура двигателя прекращает возрас­тать, когда вся вновь выделяемая теплота будет пол­ностью рассеиваться в окружающую среду. Такая темпе­ратура двигателя называется установившейся. Величина установившейся температуры двигателя за­висит от нагрузки на его валу. При большой нагрузке выделяется большое количество теплоты в единицу вре­мени, значит, выше установившаяся температура двига­теля.

После отключения двигатель охлаждается. Темпера­тура его вначале понижается быстро, так как перепад ее большой, а затем по мере уменьшения перепада — медленно.

Величина допустимой установившейся температуры двигателя обусловливается свойствами изоляции обмо­ток.

У большинства двигателей общего применения для изоляции обмотки используются эмали, синтетические пленки, пропитанные картоны, хлопчатобумажная пря­жа. Предельно допустимая температура нагрева этих материалов 105 °С. Температура обмотки двигателя при номинальной нагрузке должна быть на 20. 25 °С ниже предельно допустимой величины.

Значительно более низкая температура двигателя соответствует работе его с малой нагрузкой на валу. При этом коэффициент полезного действия двигателя и коэффициент его мощности невелики.

Режимы работы электродвигателей

Различают три основных режима работы двигателей: продолжительный, повторно-кратковременный и кратковременный.

Продол­жительным называется режим работы двигателя при по­стоянной нагрузке продолжительностью не менее, чем необходимо для достижения установившейся температу­ры при неизменной температуре окружающего воздуха.

Повторно-кратковременным называется такой режим работы, при котором кратковременная неизменная на­грузка чередуется с отключениями двигателя, причем во время нагрузки температура двигателя не достигает установившегося значения, а во время паузы двигатель не успевает охладиться до температуры окружающего воздуха.

Кратковременным называется такой режим, при котором за время нагрузки двигателя температура его не достигает установившегося значения, а за время паузы успевает охладиться до температуры окружаю­щего воздуха.

Рисунок 1. Схема нагрева и охлаждения двигателей: а — продолжительного режима работы, б — повторно-кратковременного, в — кратковременного

На рис. 1 изображены кривые нагрева и охлажде­ния двигателя и подводимые мощности Р для трех ре­жимов работы. Для продолжительного режима работы изображены три кривые нагрева и охлаждения 1, 2, 3 (рис. 1, а), соответствующие трем различным нагруз­кам на его валу. Кривая 3 соответствует наибольшей нагрузке на валу; при этом подводимая мощность P3>P2>Pi. При повторно-кратковременном режиме двигателя (рис. 1, б) температура его за время нагрузки не достигает установившейся. Температура дви­гателя повышалась бы по пунктирной кривой, если бы время нагрузки было более длительным. Продолжитель­ность включения двигателя ограничивается 15, 25, 40 и 60% времени цикла. Продолжительность одного цикла tц принимается равной 10 мин и определяется суммой времени нагрузки N и времени паузы R, т. е.

Для повторно-кратковременного режима работы вы­пускаются двигатели с продолжительностью работы ПВ 15, 25, 40 и 60%: ПВ = N : (N + R) * 100%

На рис. 1 в изображены кривые нагрева и охлаж­дения двигателя при кратковременном режиме работы. Для этого режима делаются двигатели с длитель­ностью периода неизменной номинальной нагрузки 15, 30, 60, 90 мин.

Теплоемкость двигателя — величина значительная, поэтому нагрев его до установившейся температуры может продолжаться несколько часов. Двигатель кратко­временного режима за время нагрузки не успевает на­греться до установившейся температуры, поэтому он работает с большей нагрузкой на валу и большей под­водимой мощностью, чем такой же двигатель продол­жительного режима работы. Двигатель повторно-крат­ковременного режима работы также работает с большей нагрузкой на валу, чем такой же двигатель продолжи­тельного режима работы. Чем меньше продолжитель­ность включения двигателя, тем больше допустимая нагрузка на его валу.

Для большинства машин (компрессоры, вентилято­ры, картофелечистки и др.) применяются асинхрон­ные двигатели общего применения продолжительного режима работы. Для подъемников, кранов, кассовых аппаратов применяются двигатели повторно-кратковре­менного режима работы. Двигатели кратковременного режима работы используются для машин, применяёмых во время ремонтных работ, например электрических талей и кранов.

Нагрев и охлаждение электродвигателей

[0001] Варианты выполнения раскрытого в настоящем документе изобретения относятся к охлаждению электродвигателя.

[0002] В электродвигателях, используемых в различных отраслях промышленности, таких как бурение, насосная эксплуатация, повышение давления в трубопроводе и т.д., как правило, требуется большой крутящий момент. Чтобы достичь требуемого большого крутящего момента для указанных устройств, электродвигатель состоит из статора и ротора, имеющих достаточно большие размеры, для выработки большой индукционной электромагнитной силы, чтобы достичь требуемого крутящего момента. При работе электродвигателя данные элементы большого размеры вырабатывают значительное количество тепла. Например, тепло может вырабатываться за счет электромагнитной индукции между статором и ротором. В другом примере, тепло может вырабатываться за счет трения в результате вращения ротора при работе электродвигателя. Электродвигатель может охлаждаться различными способами для рассеивания тепла, вырабатываемого во время работы.

[0003] В одном примере система внешнего охлаждения может быть соединена с электродвигателем для обеспечения охлаждения. Система внешнего охлаждения содержит вентиляторы или воздуходувки, приводимые в действие от внешнего источника питания для принудительной подачи воздуха на внешнюю часть электродвигателя. В том случае, когда внутренние элементы (например, статор и ротор) электродвигателя герметично закрыты от внешней среды, эффективность охлаждения может быть снижена, по сравнению с открытым расположением двигателя, так как принудительная подача воздуха, обеспечиваемая системой внешнего охлаждения, не достигает внутренних элементов электродвигателя. Соответственно, функционирование герметичного электродвигателя может быть ограниченным, чтобы предотвратить перегрев внутренних элементов.


[0004] В том случае, когда внутренние элементы электродвигателя подвергаются воздействию внешней среды, эффективность охлаждения может быть увеличена, по сравнению с герметичным электродвигателем, так как принудительная подача воздуха, обеспечиваемая системой внешнего охлаждения, достигает внутренних элементов электродвигателя. Однако электродвигатель такого типа более подвержен воздействию других условий окружающей среды (например, повышенной влажности, попаданию пыли), которые могут привести к ухудшению качества работы электродвигателя.

[0005] В любом случае система внешнего охлаждения создает шум, уровень которого выше уровня шума при работе электродвигателя. Такие уровни шума могут быть нежелательными для операторов, обслуживающих электродвигатель. Кроме того, поскольку электропитание системы внешнего охлаждения обеспечивается от внешнего источника питания, при работе система внешнего охлаждения потребляет больше энергии, чем необходимо для работы электродвигателя.

[0006] Для охлаждения электродвигателя предусмотрены различные способы и устройства. В одном варианте выполнения корпус электродвигателя содержит наружную оболочку, внутреннюю оболочку и канал для охлаждающей жидкости, расположенный между внутренней оболочкой корпуса и наружной оболочкой корпуса. Внутренняя оболочка корпуса имеет первое отверстие, обеспечивающее возможность прохода воздуха из воздушного канала в роторе электродвигателя между внутренней оболочкой корпуса и наружной оболочкой корпуса, через канал для охлаждающей жидкости.

[0007] При размещении канала для охлаждающей жидкости между оболочками корпуса, воздух может проходить из воздушного канала между внутренними элементами электродвигателя через канал для охлаждающей жидкости, при этом теплота может передаваться от воздуха, проходящего через внутреннюю часть электродвигателя, к охлаждающей жидкости, протекающей через канал для охлаждающей жидкости, и далее из канала для охлаждающей жидкости к внешней среде, когда охлаждающая жидкость выходит из канала для охлаждающей жидкости. Таким образом, внутренние элементы электродвигателя могут охлаждаться.

[0008] Кроме того, в некоторых вариантах выполнения электродвигатель содержит вентилятор, направляющий воздух через воздушный канал. Вентилятор увеличивает скорость потока воздуха через канал для охлаждающей жидкости для повышения эффективности охлаждения электродвигателя. В одном примере вентилятор функционально связан с ротором, в результате чего вентилятор направляет воздух при вращении ротора. Так как вентилятор функционально связан с ротором, при работе электродвигателя вентилятор работает без дополнительного потребления энергии от внешнего источника питания. Таким образом, снижается потребление энергии для охлаждения электродвигателя по сравнению с устройством, в котором для охлаждения электродвигателя используется система внешнего охлаждения, питание которой обеспечивается от внешнего источника питания.

[0009] Следует понимать, что приведенное выше краткое описание предназначено для выбора, в упрощенной форме, концепций, дополнительно описанных в подробном описании. Оно не предназначено для идентификации ключевых или основных признаков заявленного объекта изобретения, объем которого определяется исключительно формулой изобретения, которая следует за подробным описанием. Кроме того, заявленный объект изобретения не ограничивается только теми вариантами выполнения, которые решают любые недостатки, приведенные выше или в любой части данного описания.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0010] Настоящее изобретение будет более понятно из приведенного ниже описания неограничивающих вариантов выполнения, со ссылкой на прилагаемые чертежи, на которых:

[0011] На Фиг. 1 показан поперечный разрез одного из вариантов выполнения электродвигателя, выполненного в соответствии с настоящим описанием.

[0012] На Фиг. 2 показан частичный вид в продольном разрезе электродвигателя, перпендикулярного виду в поперечном разрезе, приведенному на Фиг. 1.

[0013] На Фиг. 3 показан частичный вид в разрезе корпуса электродвигателя, выполненного в соответствии с настоящим описанием.

[0014] На Фиг. 4 показан вариант выполнения способа охлаждения электродвигателя.

[0015] Настоящее описание относится к различным вариантам выполнения систем и способов охлаждения электродвигателя. В частности, настоящее описание относится к охлаждению внутренних элементов электродвигателя с использованием жидкостного охлаждения в сочетании с воздушным охлаждением. На Фиг. 1 показан вид в поперечном разрезе одного из вариантов выполнения электродвигателя 100 в соответствии с настоящим описанием. Электродвигатель 100 может использоваться в различных отраслях промышленности, таких как бурение, насосная эксплуатация и т.п. В некоторых устройствах электродвигатель 100 может быть неподвижным или по меньшей мере неподвижным при работе. Например, электродвигатель 100 может быть закреплен относительно одной привязки, например, закреплен относительно опоры или платформы. В указанном примере при работе электродвигатель 100 находится в неподвижном положении на опоре. Но если электродвигатель 100 не работает, опора может перемещаться для изменения положения электродвигателя 100. В другом примере электродвигатель 100 может быть закреплен относительно двух привязок, например, закреплен относительно опоры, при этом опора закреплена территориально. В данном примере электродвигатель 100 находится в неподвижном положении как при работе, так и когда не работает. В некоторых устройствах электродвигатель 100 может быть закреплен относительно опоры, при этом опора может перемещаться при работе электродвигателя 100.

[0016] Как правило, электродвигатель 100 работает на воздухе и не погружен в воду. Таким образом, электродвигатель 100 не может проходить через воду для обеспечения охлаждения. Вместо этого, к электродвигателю 100 для охлаждения подводится вода или другая охлаждающая жидкость. В одном конкретном примере электродвигатель 100 установлен на буровой платформе и обеспечивает крутящий момент для осуществления бурения. Буровая платформа может размещаться поверх или вблизи морской воды, например, на поверхности океана или на береговой линии, при этом в электродвигатель 100 для охлаждения подается соленая вода.

[0017] Следует понимать, что электродвигатель 100 может иметь различные соответствующие формы, не отступая от объема настоящего изобретения. В показанном варианте выполнения электродвигатель 100 содержит ротор 102 и статор 104, который окружает ротор 102. Электродвигатель 100 может приводиться в действие с помощью переменного тока. В частности, электродвигатель может представлять собой асинхронный двигатель, в котором ток подводится к статору 104 для образования вращающегося магнитного поля, которое передается на ротор 102 с помощью электромагнитной индукции, что приводит к вращению ротора 102, обеспечивая выходной крутящий момент электродвигателя 100.

[0018] Электродвигатель 100 содержит корпус 106, в котором расположены ротор 102 и статор 104. В показанном варианте выполнения корпус 106 имеет цилиндрическую форму, однако понятно, что корпус может иметь различные соответствующие формы, не отступая от объема настоящего изобретения. Корпус 106 содержит наружную оболочку 108 и внутреннюю оболочку 110. Наружная оболочка 108 корпуса отделена от внутренней оболочки корпуса с помощью множества стягивающих стержней 112. В одном конкретном примере для отделения наружной оболочки 108 корпуса от внутренней оболочки 110 корпуса восемнадцать стягивающих стержней разнесены по всему корпусу 106. В некоторых вариантах выполнения наружная оболочка 108 корпуса и внутренняя оболочка 110 корпуса имеют различную толщину (например, различную радиальную толщину).

[0019] В некоторых вариантах выполнения наружная оболочка 108 корпуса окружает ротор 102 и статор 104 и герметично закрывает внутреннюю часть электродвигателя 100 от внешней среды. Иными словами, внутренние элементы и каналы электродвигателя 100 не подвергаются воздействию внешней среды и факторов, связанных с окружающей средой, например, влажности окружающей среды или т.п. Следует понимать, что ротор 102 может выходить за пределы наружной оболочки 108 корпуса для обеспечения выходного крутящего момента, при этом наружная оболочка 108 корпуса может обеспечивать герметизацию ротора 102 для защиты внутренних элементов электродвигателя 100 от воздействия внешней окружающей среды.

[0020] Промежуток между наружной оболочкой 108 корпуса и внутренней оболочкой 110 корпуса обеспечивает возможность размещения конструкции 114, которая ограничивает канал 116 для охлаждающей жидкости, между внутренней оболочкой 110 корпуса и наружной оболочкой 108 корпуса. Канал 116 имеет впускное отверстие 118 для охлаждающей жидкости, выполненное с возможностью приема охлаждающей жидкости из внешней среды, и выпускное отверстие 120 для охлаждающей жидкости для выпуска охлаждающей жидкости из канала 116 во внешнюю среду. Охлаждающая жидкость, которая подается во впускное отверстие 118, проходит через канал 116 и выпускается из выпускного отверстия 120 для охлаждения электродвигателя 100. При этом тепло может передаваться от внутренних элементов (например, от статора, ротора) электродвигателя 100 к охлаждающей жидкости, которая протекает через канал 116 и выпускается из канала 116 для охлаждения электродвигателя 100.

[0021] В показанном варианте выполнения канал 116 окружает внутреннюю оболочку 110 корпуса и проходит на некоторую длину внутренней оболочки 110 корпуса. Конструкция 114, которая ограничивает канал 116, соединена с внутренней оболочкой 110 корпуса. Кроме того, канал 116 и конструкция 114 не заполняют пространство, разделяющее наружную оболочку 108 корпуса и внутреннюю оболочку 110 корпуса. Предпочтительно, конструкция 114 и наружная оболочка 108 корпуса ограничивают воздушный канал 122, обеспечивающий перемещение воздуха через канал 116. В некоторых вариантах выполнения конструкция 114, ограничивающая канал 116, может быть соединена с наружной оболочкой 108 корпуса, при этом воздушный канал 122 может быть ограничен конструкцией 114 и внутренней оболочкой 110.

[0022] Воздушный канал 122 проточно соединен с одним или несколькими воздушными каналами 124 в роторе 102. В показанном варианте выполнения ротором ограничено несколько воздушных каналов. Иначе говоря, воздушный канал 124 может быть размещен внутри или возле ротора. Воздух поступает из воздушного канала 124 в роторе 102 в воздушный канал 122, расположенный между внутренней оболочкой 110 корпуса и наружной оболочкой 108 корпуса, через канал 116, для передачи тепла от ротора 102 и статора 104 к охлаждающей жидкости, проходящей через канал 116. Таким образом, для охлаждения электродвигателя 100 применяется сочетание жидкостного охлаждения и воздушного охлаждения.

[0023] В одном варианте выполнения вентилятор 126 функционально соединен с ротором 102. Вентилятор 126 выполнен с возможностью подачи воздуха через воздушный канал 124 при вращении ротора 102 для того, чтобы увеличить поток воздуха через канал 116, для повышения эффективности охлаждения электродвигателя 100. Поскольку вентилятор 126 функционально соединен с ротором 102, при работе электродвигателя 100 вентилятор 126 может вращаться без отдельного источника питания. Таким образом, вентилятор 126 может обеспечивать воздушное охлаждение без необходимости подключения внешнего источника питания для работы вентилятора 126. При этом вентилятор 126 не обязательно должен быть соединен с ротором 102. В некоторых вариантах выполнения вентилятор 126 действует от отдельного источника питания.

[0024] На Фиг. 2 показан частичный вид электродвигателя 100 в продольном разрезе, перпендикулярный показанному на Фиг. 1 виду в поперечном разрезе. В частности, на чертеже показан детальный вид канала 116 для охлаждающей жидкости и пути потока воздуха в электродвигателе 100. В одном примере канал 116 спирально охватывает внутреннюю оболочку 110 корпуса. Иными словами, конструкция 114, ограничивающая канал 116, образует спиральную форму, которая обматывается вокруг внутренней оболочки 110 корпуса. Конструкция 114, ограничивающая канал 116, соединена с внутренней оболочкой 110 корпуса для обеспечения прохода воздуха между каналом 116 и наружной оболочкой 110 корпуса для охлаждения электродвигателя 100. Кроме того, тепло, выделяемое при электромагнитной индукции в статоре 104, может передаваться через внутреннюю оболочку 110 корпуса непосредственно в канал для охлаждающей жидкости, а не передаваться с воздухом, проходящим через канал для охлаждающей жидкости.

[0025] Следует понимать, что конструкция 114 может ограничивать соответствующее количество витков, которые охватывают внутреннюю оболочку 110 корпуса, не отступая от объема настоящего изобретения. В некоторых вариантах выполнения конструкция 114 ограничивает несколько отстоящих друг от друга витков. В некоторых вариантах выполнения конструкция 114 ограничивает несколько витков, которые не отстоят друг от друга, но соединены друг с другом или касаются друг друга. Следует понимать, что витки могут иметь различные формы, не отступая от объема настоящего изобретения. Например, каждый виток из указанных нескольких витков может быть круглым. В другом примере каждый виток из указанных нескольких витков может быть квадратным. Форма конструкции 114 может зависеть от стоимости изготовления, эффективности охлаждения (например, от площади поверхности для контакта с потоком воздуха, скорости потока охлаждающей жидкости) и т.д. В некоторых вариантах выполнения для увеличения коэффициента теплопередачи к конструкции 114, ограничивающей канал для охлаждающей жидкости, могут быть приварены ребра. В вариантах выполнения конструкция 114 может состоять из сплава или иметь иную трубчатую конструкцию, со спиральной или иной намоткой.

[0026] Канал 116 имеет впускное отверстие 118 для охлаждающей жидкости, выполненное с возможностью приема охлаждающей жидкости из внешней среды, и выпускное отверстие 120 для охлаждающей жидкости, выполненное с возможностью выпуска охлаждающей жидкости из канала для охлаждающей жидкости во внешнюю среду. Впускное отверстие 118 и выпускное отверстие 120 выходят за пределы корпуса 106 для взаимодействия с другими элементами для охлаждающей жидкости (например, со шлангами для охлаждающей жидкости). Охлаждающая жидкость подается через канал 116 для передачи тепла от внутренних элементов электродвигателя 100 к внешней среде, не подвергая внутренние элементы воздействию внешней среды. В показанном варианте выполнения впускное отверстие 118 и выпускное отверстие 120 для охлаждающей жидкости расположены на противоположных концах корпуса 106, при этом между впускным отверстием 118 и выпускным отверстием 120 установлены указанные несколько витков. Следует понимать, что впускное отверстие для охлаждающей жидкости и выпускное отверстие для охлаждающей жидкости могут быть расположены в различных соответствующих местах на корпусе, не отступая от объема настоящего изобретения.

[0027] Для некоторых применений электродвигатель 100 неподвижен и работает на воздухе, а не погружен в воду. Таким образом, электродвигатель 100 не может быть пропущен через воду для обеспечения его охлаждения. Вместо этого, для охлаждения электродвигателя 100 подводится вода или другая охлаждающая жидкость. В одном конкретном примере выполнения электродвигатель 100 размещен поверх или вблизи морской воды, например, на поверхности океана или на береговой линии, при этом в качестве охлаждающей жидкости в электродвигатель 100 подается соленая вода. Таким образом, в некоторых вариантах выполнения конструкция 114, ограничивающая канал для охлаждающей жидкости, содержит медно-никелевый сплав, а охлаждающая жидкость содержит соленую воду, которая подается во впускное отверстие 118 для охлаждающей жидкости. Медно-никелевый сплав обеспечивает возможность снижения скорости коррозийного разрушения соленой водой конструкции 114 и продлевает срок службы электродвигателя 100. В других вариантах выполнения сплав представляет собой металлический состав, кроме медно-никелевого, устойчивый к коррозии под воздействием соленой воды (например, нержавеющая сталь, некоторые соединения алюминия), в сопоставлении с другими возможными материалами. В других вариантах выполнения конструкция, ограничивающая канал для охлаждающей жидкости, является неметаллической (например, полимерной) или частично неметаллической (например, из полимерного сплава с покрытием).

[0028] Внутренняя оболочка 110 корпуса содержит первое отверстие 128, обеспечивающее возможность прохождения воздуха из воздушного канала 124 в роторе 102 между внутренней оболочкой 110 и наружной оболочкой 108 корпуса, через канал 116 для охлаждающей жидкости. В частности, первое отверстие 128, расположенное во внутренней оболочке 110 корпуса, проточно соединяет воздушный канал 124 в роторе 102 с воздушным каналом 122, расположенным между внутренней оболочкой 110 и наружной оболочкой 108. Кроме того, внутренняя оболочка 110 имеет второе отверстие 130, обеспечивающее возможность прохождения воздуха из канала 116 в воздушный канал 124. В частности, второе отверстие 130 во внутренней оболочке 110 корпуса проточно соединяет воздушный канал 122, расположенный между внутренней оболочкой 110 корпуса и наружной оболочкой 108 корпуса, с воздушным каналом 124 в роторе 102. Первое отверстие 128 расположено на первой стороне внутренней оболочки 110 корпуса, второе отверстие 130 расположено на второй стороне внутренней оболочки 110 корпуса, противоположной первой стороне. Противоположно расположенные отверстия создают контур воздушного охлаждения, в котором горячий воздух циркулирует из воздушного канала 124 в роторе 102, через первое отверстие 128 к воздушному каналу 122. Воздух в воздушном канале 122 перемещается через канал 116 и переносит тепло от воздуха к охлаждающей жидкости. Далее, охлажденный воздух движется из воздушного канала 122 через второе отверстие 130 к воздушному каналу 124 в роторе 102 для завершения контура воздушного охлаждения.

[0029] В некоторых вариантах выполнения наружная оболочка 110 корпуса герметично закрывает воздушный канал 122 и воздушный канал 124 от внешней среды. Иначе говоря, внутренние элементы электродвигателя 100 герметично закрыты от внешней среды. С помощью канала 116 и воздушных каналов 122 и 124 может осуществляться достаточное охлаждение внутренних элементов электродвигателя, не подвергая внутренние элементы воздействию внешней среды и сопутствующих внешних условий, которые могут сокращать срок службы электродвигателя.

[0030] Вентилятор 126 выполнен с возможностью подачи воздуха по воздушному каналу 124 для циркуляции воздуха по воздушному каналу 122 и через канал 116 для охлаждающей жидкости. Вентилятор 126 функционально связан с ротором 102 для нагнетания воздуха при вращении ротора 102. Иначе говоря, когда при работе электродвигателя 100 ротор 102 вращается, вентилятор 126 также вращается для нагнетания воздуха. В некоторых вариантах выполнения, когда ротор 102 не вращается, вентилятор 126 также не вращается и не нагнетает воздух. Следует понимать, что в некоторых вариантах выполнения вентилятор не соединен с ротором и вращается независимо от вращения ротора.

[0031] В некоторых вариантах выполнения вентилятор 126 функционально соединен с источником питания 132, при этом вентилятор 126 приводится в действие с помощью энергии от источника 132 питания, когда ротор 102 вращается с малой скоростью или не вращается. В некоторых вариантах выполнения источник 132 питания соединен с контроллером 134. Контроллером 134 может представлять собой микрокомпьютер, содержащий микропроцессорное устройство, порты ввода/вывода, электронный компьютер с электронным машиночитаемым носителем информации для выполняемых программ и способов, описанных в данном документе, например, микросхему постоянного запоминающего устройства в конкретном примере, оперативное запоминающее устройство и шину данных. Контроллер 134 соединен с одним или несколькими датчиками 136, передающими показания одного или нескольких рабочих параметров электродвигателя 100 контроллеру 134. Контроллер соединен с одним или несколькими исполнительными механизмами 138, при этом контроллер 134 выполнен с возможностью приведения в действие одного или нескольких исполнительных механизмов 138 с учетом рабочих параметров на основе сигналов, полученных от указанного одного или нескольких датчиков 136.

[0032] В одном примере контроллер 134 выполнен с возможностью вращения вентилятора 126 с использованием энергии от источника 132 питания, с учетом рабочих параметров, для охлаждения электродвигателя 100. Примеры рабочих параметров включают внутреннюю температуру электродвигателя, температуру окружающей среды и т.д. В некоторых случаях контроллер 134 управляет вентилятором 126, использующим энергию от источника 132 питания, если ротор 102 не вращается, для обеспечения охлаждения при неработающем электродвигателе 100. В одном примере датчик 136 содержит датчик температуры, при этом контроллер 134 выполнен с возможностью управления вентилятором 126, использующим энергию от источника 132 питания, если ротор 102 не вращается, при этом показатели температуры, полученные от датчика температуры больше порогового значения температуры. В другом примере исполнительный механизм 138 представляет собой насос для подачи охлаждающей жидкости, выполненный с возможностью перекачки охлаждающей жидкости через канал 116, при этом контроллер 134 выполнен с возможностью управления насосом для охлаждающей жидкости, когда показатели температуры, полученные отдатчика температуры больше порогового значения температуры.

[0033] На Фиг. 3 показан частичный вид в разрезе корпуса электродвигателя, выполненного в соответствии с одним вариантом выполнения настоящего изобретения. В этом варианте выполнения канал 116 для охлаждающей жидкости спирально окружает внутреннюю оболочку 110 корпуса 106. Воздушный канал 122 расположен между наружной оболочкой 108 корпуса и внутренней оболочкой 110 корпуса и между каналом 116. В показанном варианте выполнения охлаждающая жидкость проходит через канал 116 в первом направлении, при этом воздух, проходящий по воздушному каналу 122 и через канал 116, движется во втором направлении, которое отличается от первого направления. В частности, второе направление по существу, перпендикулярно первому направлению. Благодаря выполнению канала 116 и воздушного канала 122 имеющими разные направления потока, теплообмен между воздухом и охлаждающей жидкостью может быть увеличен, по сравнению с размещением, при котором жидкости движутся в одном направлении.

[0034] На Фиг. 4 показан вариант выполнения способа 400 охлаждения электродвигателя. В одном примере способ выполнен с использованием электродвигателя 100, показанного на Фиг. 1-3. В одном примере способ выполнен с использованием контроллера 134, показанного на Фиг. 2. На этапе 402 в способе 400 определяют, работает ли электродвигатель. При работе электродвигателя происходит вращение ротора для обеспечения выходного крутящего момента. Если электродвигатель работает, то способ 400 переходит к этапу 404. В противном случае, способ 400 переходит к этапу 408.

[0035] На этапе 404 способ 400 включает нагнетание охлаждающей жидкости через канал для охлаждающей жидкости, расположенный между наружной оболочкой корпуса и внутренней оболочкой корпуса электродвигателя. Охлаждающую жидкость подают через канал для вывода тепла от внутренних элементов электродвигателя во внешнюю среду для охлаждения электродвигателя. В одном примере для нагнетания жидкости через канал для охлаждающей жидкости при работающем электродвигателе можно управлять насосом для охлаждающей жидкости.

[0036] На этапе 406 способ 400 включает этап нагнетания воздуха через воздушный канал в роторе электродвигателя, через отверстие во внутренней оболочке корпуса и через канал для охлаждающей жидкости, для охлаждения электродвигателя. В одном примере вентилятор выполнен с возможностью нагнетания воздуха через воздушный канал. В некоторых вариантах выполнения вентилятор функционально соединен с ротором для нагнетания воздуха при вращении ротора. При вращении ротора наряду с электромагнитной индукцией, благодаря трению, образуется тепло. При нагнетании воздуха из внутренней части электродвигателя (ротора) через канал для охлаждающей жидкости, тепло, образованное ротором, может передаваться охлаждающей жидкости путем циркуляции воздуха по внутренней части электродвигателя. Соответственно, для охлаждения электродвигателя может использоваться воздушное охлаждение в сочетании с жидкостным охлаждением.

[0037] При неработающем электродвигателе процесс охлаждения может осуществляться с учетом одного или нескольких рабочих параметров электродвигателя. Например, на этапе 408 способ 400 включает определение, превышают ли рабочие параметры свои пороговые значения. В одном примере рабочим параметром является внутренняя температура электродвигателя. Если внутренняя температура электродвигателя превышает пороговую температуру, то тогда способ 400 переходит к этапу 410. В противном случае, способ 400 возвращается к выполнению других процессов.

[0038] На этапе 410 для нагнетания воздуха по воздушному каналу для охлаждения электродвигателя способ 400 включает вращение вентилятора, использующего энергию от источника питания при неработающем электродвигателе. В некоторых вариантах выполнения способ может включать нагнетание охлаждающей жидкости через канал для охлаждающей жидкости, если электродвигатель не работает и температура выше пороговой температуры. В некоторых вариантах выполнения вентилятор может нагнетать воздух и/или охлаждающая жидкость может нагнетаться до тех пор, пока электродвигатель не будет охлажден до температуры, которая ниже пороговой температуры, или будет охлаждаться в течение заданного периода времени. В некоторых случаях остаточное тепло в электродвигателе может быть высоким даже при неработающем электродвигателе. Для охлаждения электродвигателя до требуемой температуры вентилятор может использовать энергию от источника питания при неработающем электродвигателе.

[0039] В вариантах выполнения канал для охлаждающей жидкости расположен, по меньшей мере частично, на другом участке, нежели между внутренней оболочкой корпуса и наружной оболочкой корпуса. Например, канал для охлаждающей жидкости может быть размещен только в направлении радиально внутрь от внутренней оболочки корпуса, или канал для охлаждающей жидкости может быть размещен внутри внутренней оболочки корпуса, или же внутренняя оболочка корпуса может ограничивать канал для охлаждающей жидкости. Таким образом, еще один вариант выполнения относится к электродвигателю. Электродвигатель содержит статор и ротор, при этом между статором и ротором предусмотрен воздушный канал. Электродвигатель дополнительно содержит корпус, содержащий наружную оболочку и внутреннюю оболочку, и канал для охлаждающей жидкости, расположенный, по меньшей мере частично, в пределах электродвигателя, ограниченного наружной оболочкой корпуса. (То есть, наружная оболочка корпуса ограничивает внутреннюю часть, частично или полностью вмещающую статор, ротор, внутреннюю оболочку корпуса и т.д., при этом канал для охлаждающей жидкости, по меньшей мере частично расположен в пределах указанной внутренней части.) Внутренняя оболочка корпуса имеет первое отверстие, которое обеспечивает возможность прохождения воздуха из воздушного канала между внутренней оболочкой корпуса и наружной оболочкой корпуса, через канал для охлаждающей жидкости.

[0040] В другом варианте выполнения электродвигатель содержит корпус с наружной оболочкой и внутренней оболочкой, расположенной в пределах наружной оболочки корпуса. Например, внутренняя оболочка корпуса может иметь концентрическое расположение относительно наружной оболочки корпуса. Электродвигатель дополнительно содержит статор, расположенный, по меньшей мере частично, в пределах внутренней оболочки корпуса, и ротор, функционально связанный со статором. Электродвигатель дополнительно содержит конструкцию, ограничивающую канал для охлаждающей жидкости; причем конструкция расположена в пределах наружной оболочки корпуса. Примеры выполнения возможных конструкций описаны выше. Наружная оболочка корпуса и внутренняя оболочка корпуса ограничивают воздушный канал, проточно соединяющий пространство между и/или вокруг статора и ротора с наружной частью конструкции. Это, при работающем электродвигателе, обеспечивает передачу тепла от воздуха, нагретого ротором и статором, к охлаждающей жидкости в канале для охлаждающей жидкости. (Электродвигатель может иметь дополнительные характеристики, как описано в данном документе.)

[0041] В другом варианте выполнения канал для охлаждающей жидкости не соединен проточно с воздушным каналом, то есть воздух в воздушном канале не смешивается в двигателе с охлаждающей жидкостью в канале для охлаждающей жидкости. В другом варианте выполнения конструкция, ограничивающая канал для охлаждающей жидкости, содержит конструкцию впускного отверстия, ограничивающую участок впускного отверстия для охлаждающей жидкости, и конструкцию выпускного отверстия, ограничивающую участок выпускного отверстия для охлаждающей жидкости. Впускное и выпускное отверстие проходят снаружи двигателя, обеспечивая поступление более холодной охлаждающей жидкости в канал для охлаждающей жидкости снаружи к двигателю, и поступление более теплой охлаждающей жидкости (например, нагретой за счет получения тепла из воздуха в двигателе) из канала для охлаждающей жидкости на внешнюю часть двигателя. В другом варианте выполнения конструкция, ограничивающая канал для охлаждающей жидкости, проходит по всей или по части осевой длины внутренней оболочки корпуса и/или статора/ротора. В другом варианте выполнения конструкция, ограничивающая канал для охлаждающей жидкости, является концентрической с ротором/статором, то есть, ротор/статор расположен соосно во внутренней части, ограниченной конструкцией. Например, как отмечалось выше, конструкция может спирально обматываться по периферии вокруг ротора/статора.

[0042] В этом описании для раскрытия изобретения используются примеры, включая лучший вариант выполнения, чтобы обеспечить возможность специалисту в данной области техники осуществить изобретение, в том числе изготавливать и применять какие-либо устройства или системы и выполнять любые включенные способы. Патентоспособный объем изобретения определяется формулой изобретения и может включать другие примеры, которые будут очевидны специалисту в данной области. Эти другие примеры предназначены быть в пределах объема формулы изобретения, если они имеют конструктивные элементы, которые не отличаются от буквального изложения формулы изобретения, или если они содержат аналогичные конструктивные элементы с несущественными отличиями от буквального изложения формулы изобретения.

Рабочая температура асинхронного двигателя

Эксплуатация и ремонт электродвигателей

Для правильной эксплуатации электродвигателя необходимо своевременно выполнять техническое обслуживание, контролировать его работу, выявлять и устранять неисправности.

Часто причиной выхода электродвигателя из строя является перегрев обмоток за счет увеличения рабочего тока, поэтому при его эксплуатации необходимо проверять температуру нагрева. Нагрев статора у двигателя средней мощности можно проверить наощупь. На двигателях большой мощности для контроля температуры устанавливают термометры. Допустимая температура нагрева электродвигателя определяется классом изоляции. Так, обмотки статора электродвигателей серии А в защищенном исполнении, а также в закрытом обдуваемом исполнении 3-5-го габаритов имеют изоляцию класса А. Предельная температура для таких обмоток 95оС.

Обмотки двигателей серии А2 выполнены проводом с изоляцией класса Е, допустимая температура которой 120оС. В двигателях большой мощности серии А закрытого исполнения принята изоляция класса В с допустимой температурой 130оС.

Температура на поверхности двигателей в установившемся режиме на 15-20оС ниже температуры обмоток. Повышение температуры двигателей вызвано увеличением тока в обмотках статора по сравнению с номинальной. Поэтому для контроля за работой двигателей мощностью 40 кВт и выше устанавливаются амперметры. Причиной перегрева электродвигателей может быть и ухудшение условий охлаждения — двигатель загрязнен, укрыт кожухом или неисправен вентилятор.

Перед включением в работу любого электродвигателя его необходимо осмотреть, проверить пускорегулирующее устройство, наличие заземления. Если электродвигатель находится в ремонте или не работал более 20 суток, необходимо проверить сопротивление изоляции, наличие масла в подшипниках, состояние приводимого механизма.

Перегрузка электродвигателей по току выводит их из строя, так как увеличение тока в обмотке вызывает квадратичное повышение температуры. Следовательно, длительная перегрузка электродвигателя может привести к порче изоляции обмоток.

Перегрузка электродвигателя может быть определена изменением потребляемого тока. Но и при нормальной загрузке рабочей машины обмотка статора будет перегружаться по току при следующих условиях: неправильно соединена обмотка статора, т.е. при требуемом соединении ее «в треугольник» она соединена «в звезду». В этом случае электродвигатель на холостом ходу может развивать нормальную скорость, а при увеличении нагрузки до номинальной будет останавливаться; при пониженном напряжении в сети потребляемый электродвигателем ток возрастает и скорость вращения ротора снижается; плохой контакт в цепи статора во время работы двигателя может привести к потере одной из фаз, тогда в двух других фазах ток значительно возрастает; при повреждении механизма замыкания обмотки ротора у электродвигателя с фазным ротором двигатель будет работать с введенным сопротивлением и не разовьет номинальную скорость; повышенное напряжение в сети; затвердевшая, загрязненная смазка, излишнее трение уплотнений о вал, перекос вала, отсутствие смазки, поломки шариков — все это будет вызывать в какой-то мере уменьшение скорости вращения ротора.

Особое внимание необходимо обращать на величину напряжения в питающей сети. При снижении напряжения сети на 10% загрузку электродвигателя необходимо уменьшить на 20%, так как момент электродвигателя пропорционален квадрату напряжения. Для надежной работы электродвигателя напряжение на его зажимах должно быть не менее 80% номинального.

Для нормальной работы двигателя его подшипники необходимо содержать в чистоте. Чтобы в них не попала пыль и грязь, крышки подшипников должны быть плотно закрыты. После удаления отработанной смазки подшипники промывают керосином и продувают сжатым воздухом.

Смазка для роликовых и шариковых подшипников подбирается в зависимости от быстроходности двигателя. Перед применением ее надо пропустить через специальный мазевый фильтр.

В подшипники качения смазка добавляется с помощью специальных приспособлений небольшими порциями. Очень плотно набивать смазку нельзя, так как это может вызвать повышенный нагрев подшипников.

Коллекторы двигателей постоянного тока должны содержаться в чистоте, так как металлическая угольная пыль является токопроводящей и вызывает искрение на коллекторах. Поверхность коллектора должна быть хорошо отполирована, не иметь царапин, нагара. При вращении коллектора не должно быть биения.

При работе двигателя постоянного тока коллекторные пластины изнашиваются значительно быстрее, чем слюдяные прокладки между ними. В результате слюда выступает над поверхностью коллектора, что вызывает искрение.

Контактные кольца необходимо содержать в чистоте, так как их загрязнение вызывает искрение щеток. Кольца периодически надо протирать чистой сухой, неволокнистой тряпкой, ее можно смочить денатуратом.

Щетки, находящиеся в нормальном состоянии, не искрят и имеют гладкую вертикальную поверхность. При этом они должны иметь нормальное нажатие. Давление щеток проверяется с помощью динамометра и не должно превышать 150-200 г/см2 (15-20 кПа). Проверка нажатия щеток производится при остановленном двигателе. При срабатывании щеток до 4 мм или плохом креплении в щеткодержателях их нужно заменить новыми.

Новые щетки должны пришлифовываться к коллектору и кольцам. Шлифовка производится стеклянной бумагой, которая подкладывается рабочей стороной к щеткам.

При эксплуатации электродвигателей особое внимание должно быть уделено изоляции обмоток, так как ее повреждение ведет к выходу двигателя из строя. В процессе эксплуатации с обмоток продувкой и обтиранием слегка промасленной тряпкой необходимо удалить пыль и грязь.

Перед установкой электродвигателя необходимо убедиться в отсутствии замыкания обмоток между собой. и на корпус двигателя, можно произвести измерение сопротивления изоляции. Сопротивление изоляции считается нормальным при величине 0,5 МОм и выше. Оно измеряется с помощью мегомметра. Для этого один его конец соединяют с выводом обмотки, а второй поочередно с выводами других обмоток и корпусом двигателя. Затем вращая ручку мегомметра, по шкале определяют величину сопротивления изоляции. При величине сопротивления изоляции ниже 0,5 МОм двигатель необходимо просушить.

Для определения сопротивления обмоток двигателя пользуются омметрами или авометрами.

Капитальный ремонт электродвигателей необходимо производить на специализированных предприятиях.

При проведении текущего ремонта производится разборка электродвигателя и последующая частичная замена деталей пришедших в негодность. Рассмотрим порядок разборки и сборки асинхронного электродвигателя.

С вала электродвигателя с помощью винтового съемника необходимо снять шкив или полумуфту. Затем отверните болты, крепящие кожух вентилятора, и снимите кожух. При помощи винтового съемника отверните стопорный винт и снимите вентилятор. Если необходимо этим же съемником снимите подшипники с вала двигателя. Отвернув крепящие болты и гайки, снимите крышки подшипников. Выверните болты, крепящие подшипниковые щиты, снимите щиты легкими ударами молотка через деревянную прокладку. Для предупреждения повреждения стали и обмоток, в воздушный зазор поместите картонную прокладку, на которую опустите ротор.

Сборку электродвигателя производят в обратном порядке. После сборки электродвигатель необходимо опробовать. Проверните ротор рукой за шкив. Если сборка проведена правильно, то он должен легко вращаться. Установите двигатель на место, подключите к сети и проверьте его работу на холостом ходу. Затем соедините его с валом станка и снова проверьте.

Рассмотрим некоторые характерные неисправности асинхронных двигателей их выявление и устранение.

Двигатель не запускается, если отсутствует напряжение в сети, отключен автомат или перегорели предохранители. Наличие напряжения в сети можно проверить с помощью вольтметра переменного тока со шкалой до 500 В или низковольтным индикатором. Включите автомат или замените перегоревшие предохранители. Если перегорает один предохранитель, электродвигатель будет издавать характерное гудение.

Обрыв одной из фаз обмотки статора можно обнаружить при помощи мегомметра, предварительно освободив все концы обмоток двигателя. Если обнаружен обрыв внутри фазы обмотки двигатель необходимо отправить в ремонт.

Снижение напряжения на зажимах двигателя при его запуске допускается до 30% от номинального. Оно вызывается потерями в сети, малой мощностью трансформатора или его перегрузкой.

При снижении напряжения на зажимах электродвигателя произведите замену питающего трансформатора или увеличьте сечение проводов подводящей линии.

Отсутствие контакта питающей сети в одной из обмоток статора — выпадение фазы — приводит к увеличению тока в его обмотках и снижению числа оборотов. Если двигатель оставить работать на двух обмотках, он сгорит.

Кроме перечисленных выше электрических неисправностей в электродвигателях могут быть неисправности механического характера. Причиной чрезмерного нагрева подшипников может быть неправильная сборка подшипников, плохая центровка двигателя, загрязнение подшипников или большой износ шариков и роликов.

ДВИГАТЕЛИ ЗАКРЫТОГО ОБДУВАЕМОГО ИСПОЛНЕНИЯ

Самые читаемые

При эксплуатации электродвигателей в них по разным причинам возникают неисправности, которые могут привести к перерывам в работе станков и других производственных механизмов. Для того чтобы такие перерывы возможно меньше сказывались на выполнении предприятием производственных планов, необходимо уметь быстро найти причину неисправности и устранить ее.

Необходимость в быстрейшем устранении повреждений обусловливается также и тем, что работа электродвигателя, имеющего небольшое повреждение, может привести к развитию повреждения и необходимости более сложного ремонта.

Чтобы определить объем ремонта асинхронного электродвигателя . необходимо выявить характер его неисправностей. Неисправности асинхронного двигателя разделяют на внешние и внутренние.

К внешним неисправностям относятся:

  • обрыв одного или нескольких проводов, соединяющих асинхронный двигатель с сетью, или неправильное соединение;
  • перегорание плавкой вставки предохранителя;
  • неисправности аппаратуры пуска или управления, пониженное или повышенное напряжение питающей сети;
  • перегрузка асинхронного двигателя;
  • плохая вентиляция.

Внутренние неисправности асинхронного двигателя могут быть механическими и электрическими.

Механические повреждения:

  • нарушение работы подшипников;
  • деформация или поломка вала ротора (якоря);
  • разбалтывание пальцев щеткодержателей;
  • образование глубоких выработок («дорожек») на поверхности коллектора и контактных колец;
  • ослабление крепления полюсов или сердечника статора к станине; обрыв или сползание проволочных бандажей роторов (якорей);
  • трещины и подшипниковых щитах или в станине и др.


Электрические повреждения:

  • межвитковые замыкания;
  • обрывы в обмотках;
  • пробой изоляции на корпус;
  • старение изоляции;
  • распайка соединений обмотки с коллектором;
  • неправильная полярность полюсов;
  • неправильные соединения в катушках и др.

Наиболее распространенные неисправности асинхронных электродвигателей :

  1. Перегрузка или перегрев статора электродвигателя — 31%.
  2. Межвитковое замыкание — 15%.
  3. Повреждения подшипников — 12%.
  4. Повреждение обмоток статора или изоляции — 11%.
  5. Неравномерный воздушный зазор между статором и ротором — 9%.
  6. Работа электродвигателя на двух фазах — 8%.
  7. Обрыв или ослабление крепления стержней в беличьей клетке — 5%.
  8. Ослабление крепления обмоток статора — 4%. 9. Дисбаланс ротора электродвигателя — 3%. 1
  9. Несоосность валов — 2%.

Ниже приведено краткое описание некоторых неисправностей в электродвигателях, возможные причины их возникновения.

Двигатель при пуске не вращается или скорость его вращения ненормальная. Причинами указанной неисправности могут быть механические и электрические неполадки.

К электрическим неполадкам относятся: внутренние обрывы в обмотке статора или ротора, обрыв в питающей сети, нарушения нормальных соединений в пусковой аппаратуре. При обрыве обмотки статора в нем не будет создаваться вращающееся магнитное поле, а при обрыве в двух фазах ротора в обмотке последнего не будет тока, взаимодействующего с вращающимся полем статора, и двигатель не сможет работать. Если обрыв обмотки произошел во время работы двигателя, он может продолжать работать с номинальным вращающим моментом, но скорость вращения сильно понизится, а сила тока настолько увеличится, что при отсутствии максимальной защиты может перегореть обмотка статора или ротора.

В случае соединения обмоток двигателя в треугольник и обрыва одной из его фаз двигатель начнет вращаться, так как его обмотки окажутся соединенными в открытый треугольник, при котором образуется вращающееся магнитное поле, сила тока в фазах будет неравномерной, а скорость вращения — ниже номинальной. При этой неисправности ток в одной из фаз в случае номинальной нагрузки двигателя будет в 1,73 раза больше, чем в двух других. Когда у двигателя выведены все шесть концов его обмоток, обрыв в фазах определяют мегаомметром. Обмотку разъединяют и измеряют сопротивление каждой фазы.

Скорость вращения двигателя при полной нагрузке ниже номинальной может быть из-за пониженного напряжения сети, плохих контактов в обмотке ротора, а также из-за большого сопротивления в цепи ротора у двигателя с фазным ротором. При большом сопротивлении в цепи ротора возрастает скольжение двигателя и уменьшается скорость его вращения.

Сопротивление в цепи ротора увеличивают плохие контакты в щеточном устройстве ротора, пусковом реостате, соединениях обмотки с контактными кольцами, пайках лобовых частей обмотки, а также недостаточное сечение кабелей и проводов между контактными кольцами и пусковым реостатом.

Плохие контакты в обмотке ротора можно выявить, если в статор двигателя подать напряжение, равное 20—25% номинального. Заторможенный ротор медленно поворачивают вручную и проверяют силу тока во всех трех фазах статора. Если ротор исправен, то при всех его положениях сила тока в статоре одинакова, а при обрыве или плохом контакте будет изменяться в зависимости от положения ротора.

Плохие контакты в пайках лобовых частей обмотки фазного ротора определяют методом падения напряжения. Метод основан на увеличении падения напряжения в местах недоброкачественной пайки. При этом замеряют величины падения напряжения во всех местах соединений, после чего результаты измерений сравнивают. Пайки считаются удовлетворительными, если падение напряжения в них превышает падение напряжения в пайках с минимальными показателями не более чем на 10%.

У роторов с глубокими пазами может также происходить разрыв стержней из-за механических перенапряжений материала. Разрыв стержней в пазовой части короткозамкнутого ротора определяют следующим образом. Ротор выдвигают из статора и в зазор между ними забивают несколько деревянных клиньев, чтобы ротор не мог повернуться. К статору подводят пониженное напряжение не более 0,25 Uном. На каждый паз выступающей части ротора поочередно накладывают стальную пластину, которая должна перекрывать два зубца ротора. Если стержни целые, пластина будет притягиваться к ротору и дребезжать. При наличии разрыва притяжение и дребезжание пластины исчезают.

Двигатель вращается при разомкнутой цепи фазного ротора. Причина неисправности — короткое замыкание в обмотке ротора. При включении двигатель медленно вращается, а его обмотки сильно нагреваются, так как в замкнутых накоротко витках вращающимся полем статора наводится ток большой величины. Короткие замыкания возникают между хомутиками лобовых частей, а также между стержнями при пробое или ослаблении изоляции в обмотке ротора.

Это повреждение определяют тщательным внешним осмотром и измерением сопротивления изоляции обмотки ротора. Если при осмотре не удается обнаружить повреждение, то его определяют по неравномерному нагреву обмотки ротора на ощупь, для чего ротор затормаживают, а к статору подводят пониженное напряжение.

Равномерный нагрев всего двигателя выше допустимой нормы может получиться в результате длительной перегрузки и ухудшения условий охлаждения. Повышенный нагрев вызывает преждевременный износ изоляции обмоток.

Местный нагрев обмотки статора, который обычно сопровождается сильным гудением, уменьшением скорости вращения двигателя и неравномерными токами в его фазах, а также запахом перегретой изоляции. Эта неисправность может возникнуть в результате неправильного соединения между собой катушек в одной из фаз, замыкания обмотки на корпус в двух местах, замыкания между двумя фазами, короткого замыкания между витками в одной из фаз обмотки статора.

При замыканиях в обмотках двигателя вращающимся магнитным полем в короткозамкнутом контуре будет наводиться э. д. с, которая создаст ток большой величины, зависящий от сопротивления замкнутого контура. Поврежденная обмотка может быть найдена по величине измеренного сопротивления, при этом поврежденная фаза будет иметь меньшее сопротивление, чем исправные. Сопротивление измеряют мостом или методом амперметра — вольтметра. Поврежденную фазу можно также определить методом измерения тока в фазах, если к двигателю подвести пониженное напряжение.

При соединении обмоток в звезду ток в поврежденной фазе будет больше, чем в других. Если обмотки соединены в треугольник, линейный ток в двух проводах, к которым присоединена поврежденная фаза, будет больше, чем в третьем проводе. При определении указанного повреждения у двигателя с короткозамкнутым ротором последний может быть заторможенным или вращаться, а у двигателей с фазным ротором обмотка ротора может быть разомкнута. Поврежденные катушки определяют по падению напряжения на их концах: на поврежденных катушках падение напряжения будет меньше, чем на исправных.

Местный нагрев активной стали статора происходит из-за выгорания и оплавления стали при коротких замыканиях в обмотке статора, а также при замыкании листов стали вследствие задевания ротора о статор во время работы двигателя или вследствие разрушения изоляции между отдельными листами стали. Признаками задевания ротора о статор являются дым, искры и запах гари; активная сталь в местах задевания приобретает вид полированной поверхности; появляется гудение, сопровождающееся вибрацией двигателя. Причиной задевания служит нарушение нормального зазора между ротором и статором в результате износа подшипников, неправильной их установки, большого изгиб вала, деформации стали статора или ротора, одностороннего притяжения ротора к статору из-за витковых замыканий в обмотке статора, сильной вибрации ро-тора, который определяют щупом.

Ненормальный шум в двигателе. Нормально работающий двигатель издает равномерное гудение, которое характерно для всех машин переменного тока. Возрастание гудения и появление в двигателе ненормальных шумов могут явиться следствием ослабления запрессовки активной стали, пакеты которой будут периодически сжиматься и ослабляться под воздействием магнитного потока. Для устранения дефекта необходимо перепрессовать пакеты стали. Сильное гудение и шумы в машине могут быть также результатом неравномерности зазора между ротором и статором.

Повреждения изоляции обмоток могут произойти от длительного перегрева двигателя, увлажнения и загрязнения обмоток, попадания на них металлической пыли, стружек, а также в результате естественного старения изоляции. Повреждения изоляции могут вызвать замыкания между фазами и витками отдельных катушек обмоток, а также замыкание обмоток на корпус двигателя.

Увлажнение обмоток происходит в случае длительных перерывов в работе двигателя, при непосредственном попадании в него воды или пара в результате хранения двигателя в сыром неотапливаемом помещении и т. д. Металлическая пыль, попавшая внутрь машины, создает токопроводящие мостики, которые постепенно могут вызвать замыкания между фазами обмоток и на корпус. Необходимо строго соблюдать сроки осмотров и планово-предупредительных ремонтов двигателей.

Сопротивление изоляции обмоток двигателя напряжением до 1000 в не нормируется, изоляция считается удовлетворительной при сопротивлении 1000 ом на 1 в номинального напряжения, но не менее 0,5 Мом при рабочей температуре обмоток. Замыкание обмотки на корпус двигателя обнаруживают мегаомметром, а место замыкания — способом «прожигания» обмотки или методом питания ее постоянным током.

Способ «прожигания» заключается в том, что один конец поврежденной фазы обмотки присоединяют к сети, а другой — к корпусу. При прохождении тока в месте замыкания обмотки на корпус образуется «прожог», появляются дым и запах горелой изоляции.

Двигатель не идет в ход в результате перегорания предохранителей в обмотке якоря, обрыва обмотки сопротивления в пусковом реостате или нарушения контакта в подводящих проводах. Обрыв обмотки сопротивления в пусковом реостате обнаруживают контрольной лампой или мегомметром.

Заводы-изготовители электродвигателей в своих инструкциях по эксплуатации обычно приводят перечень основных неисправностей, которые могут иметь место при работе электродвигателя, и дают рекомендации по их устранению.

Общая информация по электродвигателям

Электродвигатель является ключевым звеном в механизме, обеспечивая его работоспособность. От того, какие характеристики предлагает двигатель, так будут действовать и все устройство в целом. Электродвигатели охватывают все сферы человеческой деятельности, в первую очередь, широко востребованы в промышленности.

Синхронный электродвигатель представляет собой устройство переменного тока. Частота вращения магнитного поля, которое создает якорь, равна частоте вращения ротора.

Асинхронный электродвигатель представляет собой устройство, работающее за счет переменного тока, преобразуя электрическую энергию в механическую. В этом устройстве частота вращения ротора не равна частоте вращения магнитного поля. Бесперебойная и надежная работа асинхронного двигателя обеспечивается соблюдением необходимых условий: высота над уровнем моря, на которой работает двигатель, не должна превышать 1000 м; температура окружающей среды варьируется от -40 до +40 С; относительная влажность воздуха не должна превышать 90% (при температуре +25 С), запыленность воздуха для закрытых двигателей менее 10 мг/м3, 2 мг/м3 — для защищенных.

Для нестандартных условий производятся двигатели особого исполнения.

Взрывозащищенные асинхронные электродвигатели исключают возможность взрыва за счет заключения элементов двигателя, напрямую взаимодействующих с электричеством, в взрывонепроницаемую оболочку. Такая оболочка выдерживает давление взрыва внутри, не давая ему выйти в окружающую среду.

Общая схема маркировки электродвигателей

1. Обозначение серии:

АИР, А, 4А, 5А, АД, 7AVER — общепромышленные электродвигатели с привязкой мощностей по ГОСТ 51689-2000

АИС, 6А, IMM, RA, AIS — общепромышленные электродвигатели с привязкой мощностей по евростандарту DIN (CENELEC)

АИМ, АИМЛ, ВА, АВ, ВАО2, 1ВАО, 3В — взрывозащищенные электродвигатели

АИУ, ВРП, АВР, 3АВР, ВР — взрывозащищенные рудничные электродвигатели

А4, ДАЗО4, АОМ, ДАВ, АО4 — высоковольтные электродвигатели

2. Признак модификации:

М- модернизированный электродвигатель (например: АДМ 63А2У3)

К- электродвигатель с фазным ротором (например: 5 АНК 280А6)

Х- электродвигатель с алюминиевой станиной (например: 5АМХ 180М2У3)

Е- однофазный электродвигатель 220В (например: АИРЕ 80С2У3)

2 (3000 об/мин), 4 (1500 об/мин), 6 (1000 об/мин), 8 (750 об/мин), 10 (600 об/мин), 12 (500 об/мин)

4/2, 6/4, 8/6, 12/4, 12/6, 6/4/2, 8/6/4 и т.д. — многоскоростные электродвигатели

6. Признак конструктивной модификации:

Б — электродвигатель со встроенным датчиком температурной защиты обмотки

Б1 — электродвигатель с датчиком температурной защиты обмотки и подшипниковых узлов

Б2 — электродвигатель с датчиком температурной защиты обмотки и подогревателем

Е — электродвигатель со встроенным электромагнитным тормозом (например: АИР80А2Е У3)

Е2 — электродвигатель со встроенным тормозом и ручкой расторможения

П — электродвигатель с повышенной точностью по установочным размерам

Ж — электтродвигатель для привода моноблочных насосов (например: АИР80А2Ж У2)

Н — малошумный электродвигатель (например: 5АН180S4/16Н ЛБУХЛ4)

Л — электродвигатель для привода лифтов (например: 5АН180S4/16НЛ БУХЛ4)

С — электродвигатель для привода нефтяных станков-качалок (например: АИР180S4С НУ1)

Тр — электродвигатель для осевых вентиляторов в системах охлаждения трансформаторов

Р3 — электродвигатель для мотор-редукторов

7. Климатическое исполнение (ГОСТ 15150-69)

У — для макроклиматического района с умеренным климатом

УХЛ — для макроклиматических районов с умеренным и холодным климатом

ХЛ — для макроклиматического района с холодным климатом

Т — для макроклиматических районов как с сухим, так и с влажным тропическим климатом

М — для макроклиматического района района с умеренно-холодным морским климатом

О — для всех макроклиматических районов на суше, кроме очень холодного (общеклиматическое исполнение)

В — для всех макроклиматических районов на суше и на море, кроме очень холодного (всеклиматическое исполнение)

8. Категории размещения (ГОСТ 15150-69)

1- для эксплуатации на открытом воздухе

2- для эксплуатации под навесом, в палатках, кузовных прицепах

3 — для эксплуатации в помещениях без регулируемых климатических условий

4 — для эксплуатации в помещениях с искусственно регулируемыми климатическими условиями

5 — для эксплуатации в помещениях с повышенной влажностью

Нагрев и охлаждение электродвигателей

Мелкосерийное литье изделий из пластика на термопластавтоматах
Узнать цену!

Глава восьмая НАГРЕВАНИЕ И ОХЛАЖДЕНИЕ ЭЛЕКТРИЧЕСКИХ МАШИН

§ 8-1. Теплопередача в электрических машинах

Потери энергии вызывают выделение тепла и нагревание частей электрической машины. Передача тепла от более нагретых частей машины к менее нагретым и в окружающую среду происходит путем теплопроводности, лучеиспускания и конвекции,

Теплопередача путем теплопроводности в электрических ма шинах происходит главным образом внутри твердых тел (медь, сталь, изоляция), в то время как в газах (воздух, водород) и жидкостях (масло, вода) главное значение имеет передача тепла конвекцией.

Если площадь каждой из двух параллельных поверхностей (например, медь обмотки и стенка паза машины) равна 5 и температуры #! и Ь2 на каждой поверхности постоянны, то через среду между этими поверхностями (в данном случае через изоляцию) в единицу времени передается количество тепла

Здесь б — расстояние между поверхностями, а Хпр— коэффициент теплопроводности промежуточной среды, численно равный количеству тепла, передаваемого в единицу времени через единицу площади при разности температур в 1° С и расстоянии между поверхностями, равном единице длины.


Теплопроводность металлов достаточно велика; например, для меди кпр = 385 вт/(град -м), а для электротехнической стали А-пр = = 20 -f- 45 вт/(град-м). Теплопроводность электроизоляционных материалов, наоборот, мала; например, для изоляции класса А кпр = 0,10 -f- 0,13 вт!(град -м), а для изоляции класса В А,пр = = 0,15 ч- 0,20 вт/(град -м). Вследствие этого перепады температуры в изоляции обмоток электрических машин получаются значительными, что затрудняет охлаждение обмоток и ограничивает величину линейной нагрузки и плотности тока.

Для машин с изоляцией класса А характерны следующие величины: толщина пазовой изоляции б = 0,5 мм = 5-10

4 м, тепловой поток на 1 м 2 поверхности изоляции Q — 2500 вт. Если принять Хир — 0,125 вт/(град -м), то при этих условиях, согласно выражению (8-1), перепад температуры в изоляции

В высоковольтных машинах переменного тока толщина изоляции составляет несколько миллиметров, а виз = 20 ч- 25 й С.

Теплопередача лучеиспусканием. Для абсолютно черного тела действителен закон Стефана—Больцмана:

где qa4 — количество тепла, излучаемое с единицы поверхности тела в единицу времени; алЧ — коэффициент лучеиспускания;

®ы и Ьга — абсолютные температуры излучающей поверхности и окружающей среды.

Согласно опытным данным, для абсолютно черного тела алч = = 5,65 •\0

8 вт/(град 1 -м 2 ). Для неабсолютно черных тел, например для чугунных и стальных поверхностей, лакированной изоляции, адч уменьшается на 3—10%.

Выражение (8-2) для практических целей можно преобразовать. Имеем

Для электрических машин #la = 273 + ®г и $ = 273 + % изменяются в небольших пределах, и поэтому второй множитель в правой части (8-3) изменяется относительно мало. Первый же множитель Ф® = в представляет собой превышение температуры тела над температурой окружающей среды. Поэтому формулу (8-2) можно записать в следующем виде:

где КДЧ — преобразованный коэффициент лучеиспускания, равный количеству тепла, излучаемого в единицу времени с единицы поверхности при превышении температуры на 1° С. Для электрических машин в среднем Я,лч = 6 вт/(град -м 2 ).

Полное количество тепла, излучаемое с поверхности S в единицу времени:

Теплопередача при естественной конвекции. Частицы жидкости или газа, соприкасающиеся с нагретым телом, нагреваются, становятся легче и вследствие этого поднимаются кверху, уступая свое место другим, еще не нагретым частицам, которые в свою очередь, нагреваясь, поднимаются кверху и т. д. Это явление будем называть естественной конвекцией в отличие от искусственной конвекции, которая создается искусственно, например путем обдува охлаждаемой поверхности воз-Духом при помощи вентилятора.

Рассмотрим сначала естественную конвекцию.

Количество тепла, отводимого конвекцией в единицу времени с единицы поверхности, определяется по формуле, аналогичной (8-4), и равно

а с поверхности площадью 5

Здесь Хкв — коэффициент теплоотдачи конвекцией, равный количеству тепла, отводимого в единицу времени с единицы поверхности при превышении температуры на 1°С, и в — превышение температуры охлаждаемой поверхности над температурой охлаждающей среды.

Величина Я,кв зависит от размеров и формы охлаждаемой поверхности, ее положения и т. д. Для электрических машин в случае воздушной кбнвекции можно в среднем принять Хкв = 8 em (град -м 2 ). Теплопередача конвекцией в трансформаторном масле (обмотки трансформатора) осуществляется в 15—20 раз интенсивнее, чем в воздухе.

Согласно формулам (8-5) и (8-7), количество тепла, отдаваемого с поверхности путем излучения и конвекции,

причем для воздуха в среднем Ялк = 14 вт1(град’М г ).

Соотношения (8-5), (8-7) и (8-8) используются для расчета превышения температуры в условиях, когда искусственная конвекция отсутствует, например при необдуваемой поверхности бака трансформатора.

В электрических машинах условия рассеяния тепла лучеиспусканием и конвекцией для различных поверхностей различны. В современных вентилируемых машинах отвод тепла путем искусственной конвекции настолько преобладает над отводом тепла лучеиспусканием, что последний обычно не учитывают.

Теплопередача при искусственной конвекции. Для более интен сивного отвода тепла обычно применяют обдув внутренних, а иногда и внешних поверхностей электрических машин воздухом.

Усиление теплоотдачи при искусственной конвекции происходит в разной степени в зависимости от равномерности обдува, формы обдуваемых поверхностей и т. д. Исследование данного вопроса усложняется конструктивным многообразием электрических машин и их частей, а также сложностью аэродинамических явлений во внутренних полостях и каналах машины.

Опыты показывают, что для коэффициента теплоотдачи в рассматриваемом случае можно использовать следующую приближенную эмпирическую формулу:

где ^кв — коэффициент теплоотдачи с обдуваемой поверхности; к’кв — то же при естественной конвекции; v — скорость движения воздуха относительно охлаждаемой поверхности, м/сек; Св — эмпирический коэффициент, зависящий от степени равномерности обдува поверхности.

Если, например, v = 25 м/сек и Св = 1,3, то теплоотдача, согласно формуле (8-10), увеличивается в 7,5 раза и для воздуха равна ккя = 8-7,5 = 60 em/(град-м 2 ).

§ 8-2. Нагревание и охлаждение идеального однородного твердого тела

Уравнение нагревания. Хотя электрическая машина имеет сложное устройство, в основу анализа процесса ее нагревания может быть положена теория нагревания идеального однородного твердого тела, под которым здесь понимается тело, обладающее равномерным рассеянием тепла со всей поверхности и бесконечно большой теплопроводностью, вследствие чего все точки тела имеют одинаковую температуру. Составим дифференциальное уравнение нагревания такого тела, для чего рассмотрим его тепловой баланс.

Пусть в единицу времени в теле выделяется количество тепла Q. Тогда за бесконечно малый промежуток времени количество выделяемого тепла будет равно Q dt. Это тепло частично аккумулируется в теле при повышении температуры и частично отдается во внешнюю среду.

Если за время dt температура тела повысилась на d®, то количество аккумулируемого за это время тепла равно GcdQ, где G — масса тела и с — его удельная теплоемкость.

Пусть в рассматриваемом бесконечно малом интервале времени превышение температуры тела над температурой окружающей среды равно в. Тогда количество тепла, отдаваемого в окружающее пространство за время dt вследствие лучеиспускания, конвекции и ‘еплопроводности, будет равно SkQdt, где 5 — площадь тела и ^ — коэффициент теплоотдачи с поверхности.

На основе закона сохранения энергии

Прежде чем приступить к решению уравнения нагревания (8-11), несколько преобразуем его.

Установившееся превышение температуры и постоянная времени нагревания. После истечения достаточно длительного времени (теоретически при / = оо) температура тела достигает установившегося значения. Тогда = 0 и в = 9^. Подставив эти значения в выражение (8-11), получим

Установившееся превышение температуры 9CT тем больше, чем больше выделяется тепла и чем хуже условия отдачи тепла, т. е. чем меньше SX.

Разделим обе части выражения (8-11) на SK, используем равенство (8-12) и обозначим

Тогда вместо (8-11) получим

Размерность всех членов (8-14) должна быть одинакова: температура, умноженная на время. Поэтому Т имеет размерность времени, что можно установить также по формуле (8-13). Величина Т называется постоянной времени нагревания тела, согласно формуле (8-13), она тем больше, чем больше теплоемкость тела Ос и чем меньше интенсивность отдачи тепла, т. е. чем меньше SX.

Если определить из равенства (8-12) SX и подставить в (8-13), то получим еще одно выражение для Т:

Числитель этого выражения равен количеству тепла, накопленному в теле при достижении 6 = воо.

Следовательно, в соответствии с выражением (8-15) постоянная времени нагревания Т равна времени, в течение которого тело достигло бы установившегося значения 9^, если бы отсутствовала передача тепла в окружающую среду и все выделяемое тепло накапливалось в теле.

Решение уравнения нагревания. В уравнении (8-14) можно разделить переменные и привести его к виду

чему соответствует экспоненциальная кривая нагревания, изображенная на рис. 8-1, а. При малых t, когда и в мало, теплоотдача в окружающее пространство также мала, большая часть тепла накапливается в теле и температура его растет быстро, как это видно из рис. 8-1, а. Затем с ростом в теплоотдача увеличивается и рост температуры тела замедляется. При t = оо, согласно равенству (8-19), в = всо.

На рис. 8-1, а указаны значения 9, достигаемые через интервалы времени Т, 27\ 37 и 47\ Из этого рисунка видно, что тело достигает практически установившегося превышения температуры через интервал времени t = 47\

Охлаждение тела. Если тело имеет некоторое начальное превышение температуры 0О Ф 0, но Q = 0 и, следовательно, в соответствии с выражением (8-12) воо = 0, то происходит охлаждение тела от в = в Д° ® = ®» = 0.

Подставив в (8-18) вга = 0, получим уравнение охлаждения тела

Экспоненциальная кривая охлаждения тела согласно уравнению (8-20) представлена на рис. 8-1, б. Сначала, когда в и соответственно также теплоотдача велики, охлаждение идет быстро, а по мере уменьшения в охлаждение замедляется. При / = оо будет в = 0.

Общий случай нагревания тела, описываемый уравнением (8-18), на основании формул (8-19) и (8-20) можно рассматривать как

Рие. 8-1. Кривые нагревания (а) и охлаждения (б) идеального однородного твердого тела

наложение двух режимов: 1) нагревания тела от начального превышения температуры в = 0 до в = в^ и 2) охлаждения тела от 9 = ©о до в = 0. На рис. 8-2 кривая 3 представляет собой кривую нагревания, построенную по уравнению (8-18). Эту кривую можно получить путем сложения ординат кривых 1 я 2, соответствующих уравнениям (8-19) и (8-20).

Графический способ определения Т. Найдем величину подкаса- тельной бв (рис. 8-1, а), отсекаемой на асимптоте в — в^ касательной к кривой 0 = / (t). Из рис. 8-1, а следует, что

Подставив tg а из (8-22) в (8-21), получим

Таким образом, подкасательная к любой точке кривой нагревания или охлаждения равна постоянной времени нагревания Т. Этим свойством кривых в = / (t) можно воспользоваться для графического определения Т, если имеется кривая 6 — / (t), снятая, например, опытным путем. На рис. 8-1, б и 8-2 показан способ определения Т при построении касательной к начальной точке кривой.

Заключительные замечания. Выше была изложена теория нагревания идеального однородного твердого тела. В действительности электрическая машина не представляет собой такого тела, так как она состоит из разных частей, обладающих конечной теплопроводностью, причем теплопроводность электрической изоляции достаточно мала. Поэтому отдельные части машины (обмотка, сердечники и др.) имеют различные температуры. В связи с этим более правильно былобы рассматривать электрическую машину

как совокупность нескольких однородных тел, между которыми существует теплообмен. В действительных условиях величина Т также не вполне постоянна, так как коэффициенты теплоотдачи зависят в определенной мере от температуры. Кроме того, воздух или другой охлаждающий агент при протекании по вентиляционным каналам нагревается, и поэтому температура охлаждающей среды для различных участков охлаждаемой поверхности имеет различные значения.

Таким образом, кривые нагревания и охлаждения не являются, строго говоря, экспоненциальными. Однако в большинстве практических случаев мы не делаем существенных ошибок, считая их экспоненциальными, т. е. применяя изложенную выше теорию нагревания идеального однородного тела.

§ 8-3. Основные номинальные режимы работы электрических машин и допустимые превышения температуры

Основные номинальные режимы работы. Режимы работы электрических машин в условиях эксплуатации весьма разнообразны. Машины могут работать с полной нагрузкой в течение длительного ьремени (как, например, генераторы на электрических станциях,

Рис. 8-2 Общий случай нагревания идеального однородного твердого тела

электродвигатели насосных установок и т. д.) и в продолжение относительно короткого промежутка времени (некоторые крановые двигатели и т. д.). В современных автоматизированных промышленных и других установках электрические машины весьма часто имеют циклический режим работы. В очень многих случаях электрические машины работают с переменной нагрузкой.

При различных режимах работы электрические машины нагреваются неодинаково. С точки зрения наиболее рационального использования материалов целесообразно, чтобы нагрев частей электрической машины в реальных условиях ее эксплуатации был близок к допустимому по государственным стандартам. Для этого каждую электрическую машину следовало бы проектировать и изготовлять с учетом конкретных условий и режимов ее работы в эксплуатации. Однако на практике это неосуществимо, так как даже при предположении, что условия работы каждой электрической машины можно предвидеть, в этом случае нельзя организовать массовое или серийное производство однотипных электрических машин и они были бы дорогими. Поэтому, согласно ГОСТ 183—66, электрические машины изготовляются для трех основных номинальных режимов работы.

Продолжительны _м номинальным режимом работы электрической машины называется режим работы при неизменной номинальной нагрузке, продолжающейся столько времени, что превышения температуры всех частей электрической машины при неизменной температуре охлаждающей среды достигают практически установившихся значений.

Кратковременным номинальным режимом-работы электрической машины называется режим -работы, при котором периоды неизменной номинальной нагрузки при неизменной температуре охлаждающей среды чередуются с периодами отключения машины: при этом периоды нагрузки не настолько длительны, чтобы превышения температуры всех частей электрической машины могли достигнуть практически установившихся значений, а периоды остановки электрической машины настолько длительны, что все части ее приходят в практически холодное состояние.

Согласно ГОСТ 183—66, машины с кратковременным режимом работы изготовляются с длительностью рабочего периода 15, 30, 60 и 90 мин.

Повторно-кратковременным номинальным режимом работы электрической машины называется режим работы, при котором кратковременные периоды неизменной номинальной нагрузки (рабочие периоды) при неизменной температуре охлаждающей среды чередуются с кратковременными периодами отключения машины (паузами), причем как рабочие периоды, так

и паузы не настолько длительны, чтобы превышения температуры отдельных частей электрической машины могли достигнуть установившихся значений.

Повторно-кратковременный номинальный режим работы характеризуется огносительной продолжительностью включения (ПВ), г. е. отношением продолжительности рабочего периода к продолжительности ци»кла (суммарной продолжительности рабочего периода и паузы).

ГОСТ 183—66 предусматривает изготовление машин с повторно-кратковременным режимом работы с продолжительностью включения (ПВ) 15, 25, 40 и 60%.

Кроме перечисленных трех основных номинальных режимов работы, в ГОСТ 183—66 имеются в виду еще четыре дополнительных номинальных режима работы, при которых нагрузка имеет циклический характер.

Большинство электрических машин изготовляется для продолжительного режима работы.

Допустимые превышения температуры частей электрических машин. С целью обеспечения нормальных сроков службы электрических машин температуры отдельных частей машины, и в особенности температура изоляций обмоток, должны быть ограничены.

В § В-4 были указаны предельно допустимые температуры работы ■©до,, для различных классов изоляции. Однако рабочая температура изоляции и отдельных частей машины # зависит не только от нагрузки машины, но и от температуры окружающей или охлаждающей среды Фо. От нагрузки машины зависит только превышение температуры в отдельных ее частей. Между перечисленными величинами существует зависимость

По изложенным причинам ГОСТ 183—66 и стандарты на отдельные типы машин нормируют предельно допустимые превышения температуры Одоп и одновременно фиксируют значение максимально допустимой температуры окружающей среды # = 40° С.

Способы определения превышений температур обмоток не гарантируют получения их максимальных значений, а метод сопротивления позволяет установить только среднее превышение температуры обмотки. Поэтому в стандартах в зависимости от способа измерения температуры и конструкции обмотки устанавливаются значения 6Д0п, которые на 5—15° С меньше $жоп— «во-

Наиболее надежные результаты дает метод сопротивления и

‘стод заложенных термодетекторов. Последние представляют собой

гермометры сопротивления или термопары, заложенные между

катушками в пазах и в других частях машины при ее изготовлении.

Термометры сопротивления изготовляются из тонкой медной проволоки, и температура определяется по изменению ее сопротивления. Для указанных методов измерения стандарты устанавливают при до = 40° С в большинстве случаев допустимые превышения температуры: 60° С — для класса изоляции А, 70° С — для класса Е, 80° С — для класса В, 100° С — для класса F, 125° С — для класса Н. Если температура окружающей среды больше или меньше 40° С, то стандарты разрешают определенные изменения допустимых превышений температуры. Допустимые кратковременные перегрузки электрических машин также нормируются стандартами.

§ 8-4. Нагревание электрических машин при различных режимах работы

Нагревание при продолжительном режиме работы происходит по кривой рис. 8-1, а или 8-2. При этом должно быть воо sg @доп для данного класса изоляции.

При проектировании электрических машин производятся также тепловые расчеты с целью установления превышений температуры отдельных частей машины. Тепловой расчет для продолжительного режима работы является основным! так как он лежит в основе расчетов превышений температур при кратковременном и повторно-кратковременном режимах работы.


Тепловые расчеты электрических машин достаточно сложны и рассматриваются подробнее в курсах проектирования электрических машин. Здесь укажем только ход расчета для продолжительного режима работы, когда превышения температуры достигают установившихся значений.

Величины потерь в определенных частях машины известны из электрического расчета машины. Из конструктивной схемы устанавливаются направления тепловых потоков и количество тепла, отдаваемое с охлаждаемых поверхностей. Затем определяются скорости воздуха или другой охлаждающей среды у отдельных охлаждаемых поверхностей и вычисляются: 1) по формуле (8-1) перепад температуры в изоляции обмоток ©из = ^ — Ф2; 2) по этой же формуле (8-1) перепад температуры в сердечнике на участке от обмотки до охлаждаемой поверхности вс; 3) по формуле (8-8) превышение температуры охлаждаемой поверхности над температурой охлаждающей среды © = @п . Кроме того, при движении газов и жидкостей по каналам необходимо учесть средний подогрев самой охлаждающей среды А6ОХЛ.

Превышение температуры обмотки над температурой поступающей в машину охлаждающей среды ©об выражается суммой

Величина 0о6 не должна превышать допустимого значения по ГОСТ 183—66 и др.

Скорости охлаждающей среды у тех или иных поверхностей, а также величины соответствующих коэффициентов теплоотдачи удается установить лишь приблизительно ввиду сложности аэродинамических явлений и картины распределения тепловых потоков в машине. Поэтому тепловые расчеты дают достаточно точные результаты лишь при наличии достаточных экспериментальных данных.

Нагревание при кратковременном режиме работы. Чтобы опре делить превышение температуры различных частей машины 6кр при кратковременном режиме работы, сначала находят по способу, указанному выше, превышение температуры воо в случае, если бы машина работала при заданной мощности продолжительно, а также устанавливают постоянные времени нагревания Т. Зная продолжительность кратковременного режима tKp, можно вычислить достигаемые при этом режиме превышения температуры по формуле (8-19):

раз больше, чем при продолжительном режиме работы. Во столько же раз могут быть больше допустимые значения потерь в машине. Поэтому при данных габаритах машин и расходе материалов мощности машин с кратковременным режимом работы больше мощностей машин с продолжительным режимом работы.

Нагревание при повторно-кратковременном режиме работы. Предположим, что машина начинает работу в режиме повторно-кратковременной нагрузки с холодного состояния. Пусть время рабочего периода равно t?, а время паузы t.

Нагревание машины в первый рабочий период идет по участку 0

1 кривой нагревания / (рис. 8-3), которая может быть начерчена, если известны постоянная времени нагревания Тв и установившееся превышение температуры во, при работе в продолжительном режиме с данной мощностью.

Затем наступает пауза, и машина начинает охлаждаться. Охлаждение идет по участку Г2′ кривой // (рис. 8-3). Эта кривая может быть также начерчена, если известны вет и постоянная времени охлаждения Тохл. Если условия вентиляции во время паузы такие же, как и в рабочем периоде, то Г0Хл = Тп. Если же, например, ро время паузы машина стоит и не вентилируется, то Гохл > Тп. Охлаждение после первого периода работы идет по такому участку кривой //, начало которого соответствует значению в, достигнутому в конце этого периода работы. Перенеся участок /’ — 2′ кривой // параллельно самому себе в положение /—2, получим

участок кривой —/—2 изменения в за время первого цикла работы.

Во время второго периода работы нагревание идет па тому участку кривой /, начало которого соответствует значению в, достигнутому в конце первой паузы в работе.

Подобным образом можно построить зубчатую кривую /// нагревания машины при повторно-кратковременном режиме работы. Она состоит из участков кривых / и //, смещенных параллельно самим себе на соответствующие интер-

Рис. 8-3. Построение кривой нагревания при повторно-кратковременном режиме работы

валы времени работы tp и пауз t, помеченные в нижней части рис. 8-3.

Спустя некоторое время температурный режим повторно-кратковременной работы практически устанавливается и общий подъем кривой /// прекращается. Превышение температуры машины при этом колеблется в пределах от вмакс до 9МИН (рис. 8-3). Значение 0макс не должно превышать значения 0ДОП для данного класса изоляции.

Как видно из рис. 8-3, вмакс

§ 8-5. Охлаждение электрических машин

Конструктивные формы исполнения электрических машин. Для

предотвращения чрезмерного нагрева электрических машин необходимо обеспечить надлежащие условия отвода выделяющегося в машинах тепла. С ростом мощности электрических машин условия отвода тепла утяжеляются (см. § 4-3), и поэтому в крупных машинах необходимо применять более интенсивные способы охлаждения.

Способы охлаждения в свою очередь зависят от конструктивных форм исполнения электрических машин, из которых здесь укажем лишь наиболее типичные.

Открытые электрические машины не имеют специальных приспособлений для предохранения от случайного прикосновения к вращающимся и токоведущим частям, а также для предотвращения попадания внутрь машины посторонних предметов. Такие машины находят применение только в машинных залах и лабораториях. Защищенные электрические машины имеют указанные приспособления и применяются в закрытых помещениях. Брызгозащищенные машины дополнительно защищены от попадания внутрь машины капель влаги, падающих под углом до 45° к вертикали. В этих машинах на все отверстия, расположенные в их верхних частях, устанавливаются глухие крышки и жалюзи, которые могут иметь прорези, прикрытые козырьками. Машины с таким исполнением весьма распространены и могут быть использованы также на открытом воздухе.

В закрытых электрических машинах внутреннее пространство совершенно отделено от внешней среды. Они применяются в пыльных помещениях, а также на открытом воздухе. Дальнейшим развитием закрытых машин являются взрывозащищенные (взрыво-безопасные) и герметические машины. Первые из них используются для работы во взрывоопасных шахтах и на химических предприятиях, когда требуется, чтобы искрение или взрыв внутри машины не приводили к взрыву или воспламенению газов во внешней среде. Герметические машины выполняются с особе плотным соединением поверхностей разъема, так чте вни могут работать даже под водой.

Способы охлаждения электрических машин. По способу охлаждения различаются:

1) машины с естественным охлаждением, в которых нет никаких специальных приспособлений для охлаждения;

2) машины с внутренней самовентиляцией, охлаждение которых происходит с помощью вентиляторов или других вентиляционных устройств, укрепленных на вращающихся частях вентилируемой машины и осуществляющих вентиляцию внутренних полостей машины (открытые и защищенные машины);

3) машины с наружной самовентиляцией, в которых путем самовентиляции охлаждается внешняя поверхность машины, а

внутренние части машины закрыты для доступа внешнего воздуха (закрытые машины);

Рис. 8-4. Аксиальная система вентиляции машины постоянного

4) машины с независимым охлаждением, в которые охлаждающая газообразная или жидкая среда подается с помощью отдельного вентилятора, компрессора или насоса, имеющего собственный привод.

Особенности разных способов охлаждения иллюстрируются ниже на примере машин постоян-л [ j г///?/////*, |=Ш J-i ного тока, но и охлаждение ма-

\ Е5Е J шин пе Р еменного тока осущест-

И I I ЧбьщяА l=iCL Г вляется подобным же образом.

Машины с естественным охлаждением, в настоящее время строятся лишь на мощности порядка нескольких десятков ватт. В некоторых случаях естественное охлаждение применяется также для закрытых машин мощностью до нескольких сотен ватт, но в этом случае для усиления отдачи тепла поверхность охлаждения увеличивают путем изготовления корпуса машины с ребрами.

Машины с внутренней самовентиляцией имеют наибольшее распространение. При этом различают аксиальную (рис, 8-4) и

Рис. 8-5. Радиальная система вентиляции машины постоянного тока

радиальную (рис. 8-5) системы вентиляции. В первом случае передача тепла воздуху происходит при его движении вдоль охлаждаемых поверхностей в аксиальном направлении, а во втором — в радиальном направлении.

В машинах постоянного тока при аксиальной вентиляции поток воздуха движется между полюсами и вдоль внешней поверхности якоря, а при Da > 200 мм также по выполняемым в этом случае аксиальным каналам между якорем и валом или по аксиальным

Рис. 8-6. Машина постоянного тока с наружной самовентиляцией

/ — внутренний вентилятор (мешалка), 2 — наружный вентилятор 3 — кожух вентилятора

вентиляционным каналам в сердечнике якоря. Потоки воздуха омывают также коллектор. Воздух поступает в машину с одного ее конца и выбрасывается с другого.

Воздух при движении вдоль охлаждаемых частей машины подогревается, и, следовательно, нагрев машины при аксиальной вентиляции будет в аксиальном направлении неравномерным. Поэтому аксиальная вентиляция применяется обычно при активной длине машины до 200—250 мм.

При радиальной системе вентиляции сердечник якоря имеет радиальные каналы (см. § 1-2 и рис. 1-9) с ветреницами. При вращении якоря ветреницы действуют подобно лопастям вентилятора, и поэтому установка на валу особых вентиляторов иногда оказывается излишней. Воздух при этой системе вентиляции поступает внутрь машины с торцов и выбрасывается по бокам станины или через отверстия в ней.

Машины с наружной самовентиляцией — это машины закрытой конструкции, у- которых на валу установлен наружный вентилятор, обдувающий наружную поверхность станины (рис. 8-6). При

этом для увеличения поверхности охлаждения наружная поверхность станины часто снабжается продольными ребрами. Часто машина имеет также внутренний вентилятор или вентиляционные крылышки для создания более интенсивного движения воздуха внутри машины и усиления теплообмена между внутренними частями машины и станиной (рис. 8-6).

Машины с независимой вентиляцией. Обычно такие машины тоже охлаждаются воздухом, который подается в машину с помощью отдельного вентилятора (рис. 8-7). Такую вентиляцию называют также принудительной. Иногда вентилятор со своим приводным двигателем устанавливается на корпусе вентилируемой машины.

В рассматриваемом случае система вентиляции может быть как аксиальной, так и радиальной. Применяется этот способ вентиляции обычно тогда, когда скорость вращения машины регулируется в широких пределах, так как в этом случае при самовентиляции (с вентилятором на валу машины) нельзя обеспечить необходимого расхода воздуха при низкой скорости вращения. Всасывающая и нагнетательная вентиляция. В схемах рис. 8-4 и 8-7 вентилятор находится в конце вентиляционного тракта машины и через него проходит воздух, подогретый внутри машины. Такая вентиляция называется всасывающей. Если вентилятор установлен в начале вентиляционного тракта машины, то через него проходит холодный воздух, при этом воздух нагнетается в машину, и вентиляция называется нагнетательной. К. п. д. вентилятора не равен единице, и в вентиляторе происходит дополнительный нагрев воздуха, который в ряде случаев может составить заметную величину (3—8 °С). Поэтому при нагнетательной вентиляции в машину подается уже несколько подогретый воздух. Условия охлаждения при этом ухудшаются и для достижения такого же эффекта, как и при всасывающей вентиляции, расход воздуха необходимо увеличить на 15—20%, что вызывает увеличение вентиляционных потерь на 50—70%. По этим причи-

Рис. 8-7. Машина постоянного тока с независимой вентиляцией

нам следует предпочитать всасывающую вентиляцию, если она не вызывает усложнения конструкции машины. Однако всасывающей вентиляции также присущи некоторые недостатки. Например, в схеме рис. 8-4 внутрь машины засасывается пыль с коллектора.

Протяжная и замкнутая вентиляция. Как самовентиляция, так и независимая вентиляция могут быть двух родов: протяжная и замкнутая.

При протяжной вентиляции охлаждающий воздух поступает в машину из окружающего внешнего пространства и после прохождения через машину возвращается в атмосферу (рис. 8-4 и 8-7). Недостаток такой вентиляции заключается в том, что на внутренних поверхностях машины накапливаются пыль и грязь, которые всегда содержатся в воздухе. Это вызывает ухудшение условий охлаждения машины и может быть причиной аварии. Применение фильтров на входе воздуха в машину нерационально, так как их нужно часто очищать и они увеличивают сопротивление движению воздуха. При несвоевременной очистке фильтра условия охлаждения резко ухудшаются. Необходимо иметь в виду, что через самые крупные машины каждый час проходит несколько сотен тонн воздуха, и поэтому даже при незначительном процентном содержании пыли ее абсолютное количество довольно-таки велико.

Для машин малой мощности возникающие затруднения решаются проще. При сильно загрязненной атмосфере можно использовать закрытые машины, охлаждаемые с наружной поверхности. При умеренном содержании пыли в воздухе можно применять машины защищенной конструкции, продувать их регулярно сжатым воздухом и для периодических чисток разбирать машину один-два раза в год.

Применительно к крупным машинам эти меры непригодны. Такие машины невозможно охлаждать с наружной поверхности, так как эта поверхность возрастает пропорционально квадрату линейных размеров, а потери в машине — пропорционально кубу линейных размеров. Разборка и сборка крупной машины, ее чистка являются весьма трудоемкими и дорогими операциями. Поэтому в крупных машинах переменного тока, а в ряде случаев также в крупных машинах постоянного тока применяется замкнутая система вентиляции (рис. 8-8). При такой вентиляции воздух циркулирует по замкнутому циклу; проходит через машину М, воздухо-

Рис. 8-8. Замкнутая система вентиляции

охладители О, вентилятор В и снова попадает в машину. Возможно использование как нагнетательной (рис. 8-8, а), так и всасывающей вентиляции (рис. 8-8, б).

Водородное охлаждение. Водород является более эффективным охлаждающим агентом, чем воздух. По сравнению с воздухом у водорода при атмосферном давлении теплопроводность больше в 7,1 раза и средний коэффициент теплоотдачи при одной и той же скорости больше в 1,7 раза, а при одинаковом весовом расходе — в 11,8 раза. Благодаря этому для достижения такой же эффективности охлаждения, как и воздухом, требуются меньшие весовые расходы водорода, а вентиляционные потери, которые в крупных быстроходных машинах составляют большую часть суммарных потерь, снижаются почти в десять раз. При водородном охлаждении срок службы изоляции увеличивается, так как исключаются окислительные процессы и образование вредных азотистых соединений при коронных разрядах. Поэтому водород находит широкое распространение для охлаждения быстроходных машин переменного тока мощностью 25 000 кет и выше.

При водородном охлаждении применяется замкнутая система вентиляции и во избежание образования взрывчатой смеси давление в системе поддерживается несколько выше атмосферного (1,05 атм). В ряде случаев для усиления интенсивности охлаждения давление водорода в системе охлаждения увеличивается до 3—5 атм. При этом необходимо иметь надежные уплотнения, чтобы не допустить значительной утечки водорода из машины.

Непосредственное, или внутреннее, охлаждение обмоток. Для электрических машин мощностью 300—500 тыс. кет и больше замкнутая система вентиляции с водородным охлаждением также оказывается недостаточной. Поэтому в таких машинах обмотка изготовляется из полых проводников и применяется внутреннее охлаждение этих проводников водородом при давлении до нескольких атмосфер или водой. Можно также использовать вместо водорода или воды трансформаторное масло. Однако теплопроводность и коэффициент теплоотдачи воды значительно больше, чем у трансформаторного масла. Поэтому масло используется реже.

Так как подвод воды в обмотку вращающегося ротора связан с определенным усложнением конструкции, то применяется также смешанное внутреннее охлаждение: обмотки ротора охлаждаются водородом, а обмотки статора — водой. Водород подается в обмотки при помощи компрессоров или особых газозаборников, установленных на вращающемся роторе. Для подачи воды применяются насосы.

Рассмотренные системы непосредственного охлаждения во всех случаях выполняются замкнутыми, с циркуляцией одной и той же

массы охлаждающего агента и с охлаждением его в предназначенных для этой цели охладителях.

При непосредственном охлаждении обмоток перепады температуры в изоляции исключаются и можно резко увеличить плотность тока.

При водяном охлаждении мощность машины ограничивается в основном уже не условиями нагрева, а другими техническими и экономическими показателями.

Расход охлаждающей среды (ж 3 ), необходимый для отвода тепла из машины, равен

где р — отводимые потери, вт; с — удельная объемная теплоемкость охлаждающей среды, дж1(град-м 3 ); вв = Фг — #х — превышение температуры выходящей из машины нагретой охлаждающей среды ■&,. над температурой поступающей в машину охлаждающей среды #х, ° С.

Для воздуха с = 1100 джЦград-м 3 ). Величина вв в зависимости от системы вентиляции, конструкции машины и ее мощности изменяется в пределах 12—30° С. Таким образом, на 1 кет потерь необходимое количество воздуха

или ПО -н 270 м ъ 1ч.

Для водорода при атмосферном давлении также с — = 1100 джЦград -м 3 ), и поэтому объемный расход водорода такой же, как и в случае воздушного охлаждения. Удельная объемная теплоемкость водорода изменяется пропорционально давлению, и поэтому при повышенном давлении водорода его объемный расход соответственно уменьшается. Однако весовой расход водорода не зависит от давления и будет в 14,4 раза меньше весового расхода воздуха.

Для воды с = 3500-1100 дж/(град -ж 3 ), а для трансформаторного масла с = 1400-1100 дж/(град -м 3 ). Соответственно при прочих равных условиях объемный расход воды в 3500 раз меньше, чем воз-Духа. Это позволяет уменьшить скорости течения воды и сечения каналов.

Более подробно способы охлаждения электрических машин и вопросы их расчета рассматриваются в курсах проектирования и конструкции электрических машин [17—23].

Sanya-SphinX › Блог › Система охлаждения двигателя

Назначение и классификация систем охлаждения
Температура газов в цилиндрах работающего двигателя достигает 1800-2000 градусов. Только часть выделенного при этом тепла преобразуется в полезную работу. Оставшаяся часть отводится в окружающую среду системой охлаждения, системой смазки и наружными поверхностями двигателя.
Чрезмерное повышение температуры двигателя приводит к выгоранию смазки, нарушению нормальных зазоров между его деталями следствием чего является резкое возрастание их износа. Возникает опасность заедания и заклинивания. Перегрев двигателя вызывает уменьшение коэффициента наполнения цилиндров, а в бензиновых двигателях еще и детонационное сгорание рабочей смеси.
Большое снижение температуры работающего двигателя также нежелательно. В переохлажденном двигателе мощность снижается из-за потерь тепла; вязкость смазки увеличивается, что повышает трение; часть горючей смеси конденсируется, смывая смазку со стенок цилиндра, повышая тем самым износ деталей. В результате образования серных и сернистых соединений стенки цилиндров подвергаются коррозии.
Система охлаждения предназначена для поддержания наивыгоднейшего теплового режима. Системы охлаждения подразделяются на воздушные и жидкостные. Воздушные в настоящее время на автомобилях встречаются крайне редко. Системы жидкостного охлаждения могут быть открытыми и закрытыми. Открытые системы – системы, сообщающиеся с окружающей средой через пароотводную трубку. Закрытые системы разобщены от окружающей среды, а поэтому давление охлаждающей жидкости в них выше. Как известно, чем выше давление, тем выше температура закипания жидкости. Поэтому закрытые системы допускают нагрев ОЖ до более высоких температур (до 110-120 градусов).

По способу циркуляции жидкости системы охлаждения могут быть:
— принудительными, в которых циркуляция обеспечивается насосом, расположенным на двигателе;
— термосифонными, в которых циркуляция жидкости происходит за счет разницы плотности жидкости, нагретой деталями двигателя и охлажденной в радиаторе. Во время работы двигателя жидкость в рубашке охлаждения нагревается и поднимается в верхнюю ее часть, откуда через патрубок поступает в верхний бачок радиатора. В радиаторе жидкость отдает теплоту воздуху, плотность ее повышается, она опускается вниз и через нижний бачок вновь возвращается в систему охлаждения.
— комбинированными, в которых наиболее нагретые детали (головки блоков цилиндров) охлаждаются принудительно, а блоки цилиндров – по термосифонному принципу.

Устройство системы охлаждения

Наибольшее распространение в автомобильных ДВС получили закрытые жидкостные системы с принудительной циркуляцией охлаждающей жидкости (ОЖ).

В период пуска двигателя для уменьшения износа необходимо быстрее прогреть его до рабочей температуры и при дальнейшей эксплуатации поддерживать эту температуру. Для ускорения прогрева двигателя и поддержания оптимальной его температуры служит термостат.

Основные неисправности системы охлаждения

Внешними признаками неисправностей системы охлаждения является перегрев или переохлаждение двигателя. Перегрев двигателя возможен в результате следующих причин: недостаточное количество ОЖ, слабое натяжение или обрыв ремня насоса ОЖ, невключение муфты или электродвигателя вентилятора, заедание термостата в закрытом положении, отложение большого количества накипи, сильное загрязнение наружной поверхности радиатора, неисправность выпускного (парового) клапана пробки радиатора или расширительного бачка, неисправность насоса ОЖ.
Заедание термостата в закрытом положении прекращает циркуляцию жидкости через радиатор. В этом случае двигатель перегревается, а радиатор остается холодным. Недостаточное количество ОЖ возможно в случае ее утечки или выкипания. Если уровень ОЖ понизился в результате выкипания – следует долить дистиллированной воды, если жидкость вытекла – доливается антифриз. Открывать пробку радиатора или расширительного бачка можно только когда ОЖ достаточно остынет (10-15 минут после остановки двигателя). В противном случае находящаяся под давлением ОЖ может выплеснуться и причинить ожоги. Вытекание жидкости происходит через неплотности в соединениях патрубков, трещин в радиаторе, расширительном бачке и рубашке охлаждения, при повреждении сальника насоса ОЖ, пробки радиатора или повреждении прокладки головки блока цилиндров. При эксплуатации автомобиля необходимо следить не только за уровнем, но и за состоянием антифриза. Если его цвет становится рыже-бурым, значит, детали системы уже коррозируют. Такой антифриз подлежит немедленной замене.
Переохлаждение двигателя может происходить из-за заедания термостата в открытом положении, а также при отсутствии утеплительных чехлов в зимнее время. Если закрытая система охлаждения негерметична, то повышенное давление в ней не создается и двигатель не прогревается до рабочей температуры. А раз двигатель не прогревается, ЭБУ постоянно обогащает смесь. Таким образом, негерметичная система охлаждения увеличивает расход топлива. Систематическая работа двигателя на обогащенной смеси приводит к разжижению масла, увеличению нагарообразования, быстрому выходу из строя каталитического нейтрализатора.

Если у вас в дороге возникла неисправность, в результате которой уровень охлаждающей жидкости упал ниже допустимого, не расстраивайтесь. Долить можно любой антифриз или воду. Система охлаждения от этого хуже работать не станет. Кстати, не все современные автолюбители знают, что воду нужно заливать мягкую – она не образует накипи. Самая мягкая вода достается нам с неба в виде дождя или снега. А грунтовые воды из родников, колодцев и артезианских скважин категорически не рекомендуются для доливки в систему охлаждения – они образуют очень много накипи. Смягчить воду можно кипячением в течение 20-30 минут с последующим отстаиванием и фильтрованием. Жесткость воды в бытовых условиях легко оценить по пенообразованию при намыливании рук мылом: в мягкой воде пена устойчивая, а в жесткой пена быстро гаснет, и на руках остается сальный осадок. Как только экстренная ситуация, вынудившая вас долить «не ту» жидкость, минует, «коктейль» нужно слить, систему охлаждения промыть и залить «правильный» антифриз.
Выбор начинаем с бренда – известный вас не подведет. Далее находим обозначение класса антифриза. Вот здесь чаще всего возникают затруднения. Попробуем прояснить ситуацию. Основой любого антифриза является водный раствор этиленгликоля, который не расширяется при замерзании и не образует твердой сплошной массы. Но этиленгликоль коррозионно агрессивен к металлам. Для защиты деталей системы охлаждения от коррозии применяется три вида присадок: на основе силикатов, на основе солей органических кислот и смешанные (гибридные) добавки к антифризам. Первый рецепт – самый древний. Яркий пример – наш «Тосол», который лукавая реклама иногда позиционирует как антифриз, идеально подходящий для отечественных автомобилей. Выпадение силикатов в осадок приводит к закупориванию тонких трубок радиатора. Поэтому этот вариант покупки даже не рассматриваем. В англоязычном варианте такие антифризы называются: Conventional coolants, IAT (Inorganic Acid Technology) или Тraditional coolants.
Гибридные антифризы включают соли карбоновых кислот и небольшое количество силикатов или фосфатов. И хотя этот рецепт тоже свое отживает, но в течение трех лет эксплуатации обеспечивает достаточно приличную защиту от коррозии. Маркируются они: Нybrid coolants, HOAT (Hybrid Organic Acid Technology) или TL 774-C (G-11).
Более современные – карбоксилатные антифризы. В их составе отсутствуют неорганические присадки. Срок их службы – не менее 5 лет. Обозначаются надписями или символами: Carboxilate coolants, OAT (Organic Acid Technology, TL 774-F (G12+).
Несколько лет назад (в 2008 году) появился еще один вид антифриза, который в английском варианте обозначают Lobrid coolants, SOAT coolants или TL 774-G (G 12++). По составу они аналогичны карбоксилатным, но в них присутствует небольшое количество силикатов. Считается, что такой антифриз можно безболезненно смешивать с любым другим классом охлаждающих жидкостей.
Некоторые производители указывают на этикетке состав присадок, что также позволяет идентифицировать тип антифриза. Отсутствие аминов, боратов, нитритов, силикатов и фосфатов говорит о том, что антифриз – карбоксилатный. Гибридные также не должны содержать ничего из этого списка, кроме силикатов, но их количество не должно превышать 500 мг/л.
Хорошим признаком, подтверждающим несомненное качество антифриза, является надпись об одобрении автопроизводителей с номерами допусков. Такие допуска выдаются только после длительных испытаний жидкости на автомобилях указанной марки. Правдивость надписи на этикетке можно легко проверить, зайдя на официальный сайт автопроизводителя.
А вот заявления типа «Соответствует спецификациям…» или «Отвечает требованиям…» — не более, чем обещания изготовителя антифриза, но не гарантия качества. Особенно это касается маркировок G11, G12+, G12++. Она введена концерном WV только для одобренных им жидкостей. Но так как у нас такие обозначения получили большое распространение, то некоторые производители указывают их на этикетках, не имея на это полного права. То есть, антифриз может оказаться и хорошим, а может и не очень – рулетка. Больше доверия в таких случаях заслуживают известные марки, о чем уже упоминалось выше.
Надпись «Совместим со всеми…» лишь подтверждает то, о чем говорилось в начале статьи. Если по каким-то параметрам антифриз не подходит вашему двигателю, то его можно безболезненно использовать только для доливки.
Антифриз может продаваться в виде концентрата или уже готовым для заливки. Что выбрать – зависит от климата той местности, где вы проживаете, и вашего желания возиться с машиной. Например, если зимы теплые, к чему заливать 40 – градусный состав? Лучше купить концентрат и разбавить его дистиллированной водой до нужной консистенции (пропорции для разных температур указаны на этикетке).
И последнее – цвет антифриза. Это свойство не играет абсолютно никакой роли. Сама по себе жидкость бесцветна и производитель при желании может раскрасить ее во все цвета радуги. А устойчивое заблуждение, что G11, G12+ или G12++ можно идентифицировать по одному лишь цвету, исходит от непрофессиональных реализаторов.

Почему греется электродвигатель

Почему повышается температура электродвигателя до критических значений, угрожающих его работоспособности?

Все мы знаем, что механическое движение в электроустройствах разного назначения обеспечивается электродвигателем. Но при длительной работе в режиме повышенных нагрузок они начинают греться, что может привести к перегреву и поломке устройства. Поэтому, перед его эксплуатацией необходимо очень внимательно прочитать инструкцию.
Нередко приходится ремонтировать электроприборы и производить замену в них электродвигателя. Некоторые умельцы создают собственные электромеханические устройства, в состав которых входит электродвигатель. При монтаже системы водоснабжения также используются насосы, движущей силой, в которых есть электромоторы. Во время эксплуатации, при замене и установке мотора важно знать, почему происходит его нагревание, как подобрать такое устройство, чтобы увеличить период использования электроприбора в целом и снизить риск его поломки.

Итак, почему греется электродвигатель и как не допустить его перегрева?

Относиться к проблеме нагрева двигателя нужно с особым вниманием, ведь изоляция его обмотки имеет слабое сопротивление повышенным температурам. Зачастую нормой является температура, в пределах 90-95 ºС. Существуют электромоторы обмотка, в которых рассчитана на максимальную температуру в 130 ºС.
Но в любом случае, во время эксплуатации могут возникать аварийные перегрузки или технологические неисправности, которые приводят к нагреву, являющемуся причиной выхода из строя изоляции. После чего зачастую происходит короткое замыкание. В результате, для восстановления работоспособности устройства, потребуется дорогостоящий ремонт двигателя или его полная замена. Менее затратным будет выяснить причину нагрева электромотора и устранить ее, нежели покупать новый двигатель или заказывать его перемотку.

Зачастую причиной перегрева двигателя является:
— неисправность линий электропередач;
— повышенные рабочие нагрузки;
— износ щеток электромотора;
— перекос вала;
— плохая смазка и повышенный износ подшипников;
— выход из строя или малоэффективная работа охлаждающего двигатель устройства (вентилятора).

Выяснить причину нагрева мотора можно, если включить его без нагрузки. Но предварительно необходимо изучить паспорт этого прибора, в котором отражена информация о максимальной нагрузке.

В том случае, если она больше фактической, нужно вначале снизить объемы выполняемых агрегатом работ.
О неправильности технологического монтажа свидетельствует идеальная работа двигателя без нагрузки. Но если он без нагрузки греется, то причины кроются внутри этого агрегата.

Многие из них, устранить не составит труда, например, если причиной повышения температуры есть неработающий вентилятор охлаждения. Он может быть плохо смазан или забит пылью, и чтобы восстановить нормальный режим его работы требуется всего лишь смазать или очистить от пыли вентилятор.
Независимо от того, что послужило причиной повышения температуры электромотора, эту неисправность необходимо устранить и как можно скорее. Так как дальнейшая эксплуатация двигателя может привести к более серьезным проблемам, его эксплуатационный ресурс снизится в несколько раз.
Чаще всего проблема повышенной температуры электродвигателя решается путем смазки подшипника, стабилизации напряжения в электросети, которая питает тот или иной силовой агрегат, удаление грязи и пыли с поверхностей обмотки. В том случае если не получается произвести выравнивание напряжения в сети необходимо уменьшить нагрузку на мотор. При этом нормально функционировать он будет при напряжении, которое меньше номинального не более чем на 20 %. Устранение более сложных причин нагрева осуществляется путем чистки или замены щеток, перемотки двигателя.

В случае если на повышение температуры двигателя влияет нагрев подшипника, то необходимо в первую очередь осуществить его чистку, убедиться в том, что крышки подшипника плотно закрыты. Если подшипник открылся в результате сильной вибрации то, скорее всего в него попала грязь и пыль. Чистка детали производится путем ее промывки керосином, после чего необходимо произвести продув сжатым воздухом.

В завершение восстановления нормальной работоспособности подшипника производится его наполнение чистой смазкой, характеристики которой соответствуют скорости работы электромотора. Добавлять ее нужно небольшими порциями с использованием специальных приспособлений. При этом важно не переборщить с количеством смазки, иначе скольжение будет затруднено, и мотор будет по-прежнему испытывать нагрузку.
Кроме этого, причиной нагрева мотора может быть проблема с питающим напряжением. Это может быть либо повышенное, либо пониженное напряжение, пропадание или перекос фаз. При такой ситуации, мотор работает в ненормальных условиях, что влечет за собой изменение его электрических характеристик, увеличение тока в обмотках. Поэтому необходимо взять тестер и проверить напряжение в сети, наличие фаз, равномерность напряжения тока на каждой из них. Определенные расхождения могут быть, но если их величина большая, то нужно искать и устранять причину.

В любом случае если было замечено, что температура электродвигателя повышена, а она должна быть меньше 125 градусов по Цельсию, то необходимо выяснять причины. Нужно посмотреть может, увеличилась механическая нагрузка на вале двигателя.

Может, происходит затирание подшипников внутри электромотора. А может двигатель без смазки и работает на сухую. Проверить, не замкнули ли провода в обмотке. Возможно, произошел перекос фаз или напряжение не соответствует норме.

Позволяют ли мощности двигателя работать в этом устройстве. В любом случае если имеет место перегрев мотора, то должна присутствовать одна из вышеперечисленных причин. При этом важно ее своевременно установить и побыстрее устранить, не подвергая двигатель повышенным нагрузкам продолжительный период времени.

Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Каждый электрик должен знать:  Лучшие стабилизаторы напряжения для дома - рейтинг 2020 года
Добавить комментарий
Читайте также:

  1. IV. Отношение АК к нагреванию
  2. АППАРАТУРА ДЛЯ НАГРЕВАНИЯ И ТЕРМОСТАТИРОВАНИЯ
  3. Арматура воздухонагревателей и режимы его работы
  4. Влияние видов термической обработки на структуру и свойства сварных соединений. Способы нагрева и оборудование для термической обработки.
  5. ВЫБОР МОЩНОСТИ ЭЛЕКТРОДВИГАТЕЛЕЙ
  6. Выбор типа линий и сечения проводов (жил) по нагреву
  7. ГИБКИЙ ЭЛЕКТРОНАГРЕВАТЕЛЬ