Назначение и принцип действия синхронной машины


СОДЕРЖАНИЕ:

НАЗНАЧЕНИЕ И ПРИНЦИП ДЕЙСТВИЯ СИНХРОННОЙ МАШИНЫ

Назначение. Синхронные машины используют главным образом в качестве источников электрической энергии переменного тока; их устанавливают на мощных тепловых, гидравлических и атомных электростанциях, а также на передвижных электростанциях и транспортных установках (тепловозах, автомобилях, самолетах). Конструкция синхронного генератора определяется в основном типом привода. В зависимости от этого различают турбогенераторы, гидрогенераторы и дизель-генераторы. Турбогенераторы приводятся во вращение паровыми или газовыми турбинами, гидрогенераторы — гидротурбинами, дизель-генераторы — двигателями внутреннего сгорания. Синхронные машины широко используют и в качестве электродвигателей при мощности 100 кВт и выше для привода насосов, компрессоров, вентиляторов и других механизмов, работающих при постоянной частоте вращения. Для генерирования или потребления реактивной мощности с целью улучшения коэффициента мощности сети и регулирования ее напряжения применяют синхронные компенсаторы.

В электробытовых приборах (магнитофонах, проигрывателях, киноаппаратуре) и системах управления широкое применение получили различные синхронные микромашины — с постоянными магнитами, индукторные, реактивные, гистерезисные, шаговые.

В 1876 г. русский ученый П. Н. Яблочковразработал несколько образцов многофазных синхронных генераторов с электромагнитным возбуждением и электрически несвязанными фазами, предназначенных для питания созданных им дуговых электрических ламп (свечи Яблочкова). Первый трехфазный синхронный генератор изобрел известный русский электротехник М. О. Доливо-Добровольский.Этот генератор имел мощность 230 кВ • А, приводился во вращение от гидротурбины и обеспечивал электроснабжение международной электротехнической выставки в г. Франкфурте в 1891 г. по четырехпроводной электрической линии трехфазного тока.

Основная электромагнитная схема синхронных машин с тех пор оставалась неизменной, но усовершенствовалось их конструктивное выполнение и возросли электромагнитные нагрузки, что позволило значительно улучшить массогабаритные и энергетические показатели и нагрузочную способность синхронных машин. Особенно большие выгоды в этом отношении дало применение в крупных машинах водородного и водяного охлаждения.

В разработке теорий синхронных машин и совершенствовании их конструкции важная роль принадлежит советским ученым A. Е. Алексееву, А. А. Гореву, Р. А. Лютеру, М. П. Костенко, B. А. Толвинскомуи др. Синхронные генераторы большой мощности разрабатывались на основе работ А. И. Бертинова, А. И. Глебова, Д. Е. Ефремова, В. В. Романова, И. Д. Урусова, Г. М. Хуторецкогои др.

В настоящее время советской электропромышленностью для тепловых и атомных электростанций разработана и выпускается серия унифицированных турбогенераторов мощностью 63, 125, 320, 500 и 800 МВт и уникальные турбогенераторы мощностью 1000 МВт для атомных электростанций и 1200 МВт для тепловых электростанций. Для гидроэлектростанций созданы гидрогенераторы мощностью 350, 590 и 640 МВт, а также обратимые генераторы-двигатели для гидроаккумулирующих электростанций мощностью 200-300 МВт. Для высоковольтных линий электропередачи выпускаются синхронные компенсаторы мощностью до 350 MB • А. Планируется начать разработки турбогенераторов мощностью 1600—2000 МВт и гидрогенераторов мощностью 1000 МВт.

Принцип действия. Статор 1синхронной машины (рис. 6.1, а) выполнен так же, как и асинхронной: на нем расположена трехфазная (в общем случае многофазная) обмотка 3. Обмотку ротора 4,питаемую от источника постоянного тока, называют обмоткой возбуждения,так как она создает в машине магнитный поток возбуждения. Вращающуюся обмотку ротора соединяют с внешним источником постоянного тока посредством

Рис. 6.1. Электромагнитная схема синхронной машины и схема ее включения

контактных колец 5 и щеток 6 (рис. 6.1, б). При вращении ротора 2 с некоторой частотой n2 поток возбуждения пересекает проводники обмотки статора и индуцирует в ее фазах переменную ЭДС Е, изменяющуюся с частотой

Если обмотку статора подключить к какой-либо нагрузке, то проходящий по этой обмотке многофазный ток Iа создает вращающееся магнитное поле, частота вращения которого

Из (6.1) и (6.2) следует, что n1 = n2, т. е. что ротор вращается с той же частотой, что и магнитное поле статора. Поэтому рассматриваемую машину называют синхронной. Результирующий магнитный поток Фрез синхронной машины создается совместным действием МДС обмотки возбуждения и обмотки статора, и результирующее магнитное поле вращается в пространстве с той же частотой, что и ротор.

В синхронной машине обмотку, в которой индуцируется ЭДС и проходит ток нагрузки, называют обмоткой якоря, а часть машины, на которой расположена обмотка возбуждения,— индуктором. Следовательно, в приведенной машине (рис. 6.1) статор является якорем, а ротор — индуктором. Для принципа действия и теории работы машины не имеет значения — вращается якорь или индуктор, поэтому в некоторых случаях применяют синхронные машины с обращенной конструктивной схемой: обмотку якоря, к которой подключают нагрузку, располагают на роторе, а обмотку возбуждения, питаемую постоянным током, — на статоре. Такую машину называют обращенной. Обращенные машины имеют сравнительно небольшую мощность, так как у них затруднен отбор мощности от обмотки ротора.

Синхронная машина может работать автономно в качестве генератора, питающего подключенную к ней нагрузку, или параллельно с сетью, к которой присоединены другие генераторы. При работе параллельно с сетью она может отдавать или потреблять электрическую энергию, т. е. работать генератором или двигателем. При подключении обмотки статора к сети с напряжениемU и частотойf1 проходящий по обмотке ток создает, так же как в асинхронной машине, вращающееся магнитное поле, частота вращения которого определяется по (6.2). В результате взаимодействия этого поля с током Iв , проходящим по обмотке ротора, создается электромагнитный момент М, который при работе машины в двигательном режиме является вращающим, а при работе в генераторном режиме — тормозным. В рассматриваемой машине в отличие от асинхронной поток возбуждения (холостого хода) создается обмоткой постоянного тока, раположенной обычно на роторе. В установившемся режиме ротор неподвижен относительно магнитного поля и вращается с частотой вращения п1= п2 независимо от механической нагрузки на валу ротора или электрической нагрузки.

Таким образом, для установившихся режимов работы синхронной машины характерны следующие особенности:

а) ротор машины, работающей как в двигательном, так и в генераторном режимах, вращается с постоянной частотой, равной частоте вращающегося магнитного поля, т. е. п2= п1 ;

б) частота изменения ЭДС Е,индуцируемой в обмотке якоря, пропорциональна частоте вращения ротора;

в) в установившемся режиме ЭДС в обмотке возбуждения не индуцируется; МДС этой обмотки определяется только током возбуждения и не зависит от режима работы машины.

Что такое синхронный двигатель и где он используется

Синхронные электродвигатели (СД) не так распространены, как асинхронные с короткозамкнутым ротором. Но используются там, где нужен большой крутящий момент и в процессе работы будут происходить частые перегрузки. Также такой тип двигателей используются там, где нужна большая мощность, чтобы приводить в движение механизмы, благодаря высокому коэффициенту мощности и возможности улучшать коэффициент мощности сети, что существенно снизит затраты на электроэнергию и нагрузку на линии. Что такое синхронный двигатель, где он используется и какие у него плюсы минусы мы рассмотрим в этой статье.

Определение и принцип действия

Если говорить простым языком, то синхронным называют электродвигатель, у которого скорость вращения ротора (вала) совпадает со скоростью вращения магнитного поля статора.

Кратко рассмотрим принцип действия такого электродвигателя — он основан на взаимодействии вращающегося магнитного поля статора, которое обычно создаётся трёхфазным переменным током и постоянного магнитного поля ротора.

Постоянное магнитное поле ротора создаётся за счет обмотки возбуждения или постоянных магнитов. Ток в обмотках статора создаёт вращающееся магнитное поле, тогда как ротор в рабочем режиме представляет собой постоянный магнит, его полюса устремляются к противоположным полюсам магнитного поля статора. В результате ротор вращается синхронно с полем статора, что и является его основной особенностью.

Напомним, что у асинхронного электродвигателя скорость вращения МП статора и скорость вращения ротора отличаются на величину скольжения, а его механическая характеристика «горбатая» с пиком при критическом скольжении (ниже его номинальной скорости вращения).

Скорость, с которой вращается магнитное поле статора, может быть вычислена по следующему уравнению:

f – частота тока в обмотке, Гц, p – количество пар полюсов.

Соответственно по этой же формуле определяется скорость вращения вала синхронного двигателя.

Большинство электродвигателей переменного тока, используемых на производстве, выполнены без постоянных магнитов, а с обмоткой возбуждения, тогда как маломощные синхронные двигатели переменного тока выполняются с постоянными магнитами на роторе.

Ток к обмотке возбуждения подводится за счет колец и щеточного узла. В отличие от коллекторного электродвигателя, где для передачи тока вращающейся катушке используется коллектор (набор продольно расположенных пластин), на синхронном установлены кольца поперек одного из концов статора.

Источником постоянного тока возбуждения в настоящее время являются тиристорные возбудители, часто называемые «ВТЕ» (по названию одной из серий таких устройств отечественного производства). Ранее использовалась система возбуждения «генератор-двигатель», когда на одном валу с двигателем устанавливали генератор (он же возбудитель), который через резисторы подавал ток в обмотку возбуждения.

Ротор почти всех синхронных двигателей постоянного тока выполняется без обмотки возбуждения, а с постоянными магнитами, они хоть и похожи по принципу действия на СД переменного тока, но по способу подключения и управления ими очень сильно отличаются от классических трёхфазных машин.

Одной из основных характеристик электродвигателя является механическая характеристика. Она у синхронных электродвигателей приближена к прямой горизонтальной линии. Это значит, что нагрузка на валу не влияет на его обороты (пока не достигнет какой-то критической величины).

Это достигается именно благодаря возбуждению постоянным током, поэтому синхронный электродвигатель отлично поддерживает постоянные обороты при изменяющихся нагрузках, перегрузках и при просадках напряжения (до определенного предела).

Ниже вы видите условное обозначение на схеме синхронной машины.

Конструкция ротора

Как и любой другой, синхронный электродвигатель состоит из двух основных частей:

  • Статор. В нём расположены обмотки. Его еще называют якорем.
  • Ротор. На нём устанавливают постоянные магниты или обмотку возбуждения. Его также называют индуктором, из-за его предназначения — создавать магнитное поле).

Для подачи тока в обмотку возбуждения на роторе устанавливают 2 кольца (так как возбуждение постоянным током, на одно из них подают «+», а на другое «—»). Щетки закреплены на щеткодержателе.

Роторы у синхронных электродвигателей переменного тока бывают двух типов, в зависимости от назначения:

  1. Явнополюсные. Четко видны полюса (катушки). Используют при малых скоростях и большом числе полюсов.
  2. Неявнополюсные – выглядит как круглая болванка, в прорези на которой уложены провода обмоток. Используют при больших скоростях вращения (3000, 1500 об/мин) и малом числе полюсов.

Пуск синхронного двигателя

Особенностью этого вида электрических машин является то, что его нельзя просто подключить к сети и ожидать его запуска. Кроме того, что для работы СД нужен не только источник тока возбуждения, у него и достаточно сложная схема пуска.

Запуск происходит как у асинхронного двигателя, а для создания пускового момента кроме обмотки возбуждения на роторе размещают и дополнительную короткозамкнутую обмотку «беличью клетку». Её еще называют «демпфирующей» обмоткой, потому что она повышает устойчивость при резких перегрузках.

Ток возбуждения в обмотке ротора при пуске отсутствует, а когда он разгоняется до подсинхронной скорости (на 3-5% меньше синхронной), подаётся ток возбуждения, после чего он и ток статора совершает колебания, двигатель входит в синхронизм и выходит на рабочий режим.

Для ограничения пусковых токов мощных машин иногда уменьшают напряжение на зажимах обмоток статора, подключив последовательно автотрансформатор или резисторы.

Пока синхронная машина запускается в асинхронном режиме к обмотке возбуждения подключаются резисторы, сопротивление которых превышает сопротивление самой обмотки в 5 — 10 раз. Это нужно чтобы пульсирующий магнитный поток, возникающий под действием токов, наводимых в обмотке при пуске, не замедлял разгон, а также чтобы не повредить обмотки из-за индуцируемыми в ней ЭДС.

Видов таких машин очень много, выше была описана конструкция синхронного электродвигателя переменного тока с обмотками возбуждения, как самого распространенного на производстве. Есть и другие типы, такие как:

  • Синхронные двигатели с постоянными магнитами. Это различные электродвигатели, такие как PMSM – permanent magnet synchronous motor, BLDC – Brushless Direct Current и прочие. Отличия, между которыми, состоят в способе управления и форме тока (синусоидальная или трапецивиденая). Их еще называют бесколлекторными или бесщеточными двигателями. Используются в станках, радиоуправляемых моделях, электроинструменте и т.д. Они работают не напрямую от постоянного тока, а через специальный преобразователь.
  • Шаговые двигатели — синхронные бесщеточные двигатели, у которых ротор точно удерживает заданное положение, их используют для позиционирование рабочего инструмента в ЧПУ станках и для управления различными элементами автоматических систем (например, положение дроссельной заслонки в автомобиле). Состоят из статора, в этом случае на нём расположены обмотки возбуждения, и ротора, который выполнен из магнито-мягкого или магнито-твёрдого материала. Конструктивно очень похожи на предыдущие типы.
  • Реактивные.
  • Гистерезисные.
  • Реактивно-гистерезисные.

Последние три типа СД также не имеют щеток, они работают за счет особой конструкции ротора. У реактивных СД различают три их конструкции: поперечно-расслоенный ротор, ротор с явновыраженными полюсами и аксиально-расслоенный ротор. Объяснение принципа их работы достаточно сложно, и займет большой объём, поэтому мы опустим его. Такие электродвигатели на практике вы, скорее всего, встретите нечасто. В основном это маломощные машины, используемые в автоматике.

Сфера применения

Синхронные двигатели стоят дороже чем асинхронные, к тому же требуют дополнительного источника постоянного тока возбуждения – это отчасти снижает ширину области применения этого вида электрических машин. Однако, синхронные электродвигатели используют для привода механизмов, где возможны перегрузки и требуется точное поддерживание стабильных оборотов.

При этом чаще всего используются в области больших мощностей — сотен киловатт и единиц мегаватт, и, при этом, пуск и остановка происходят достаточно редко, то есть машины работают круглосуточно долгое время. Такое применение обусловлено тем, что синхронные машины работают с cosФи приближенном к 1, и могут выдавать реактивную мощность в сеть, в результате чего улучшается коэффициент мощности сети и снижается её потребление, что важно для предприятий.

Преимущества и недостатки

Если говорить простыми словами, то у любой электрической машины есть свои плюсы и минусы. У синхронного двигателя положительными сторонами является:

  1. Работа с cosФи=1, благодаря возбуждению постоянным током, соответственно они не потребляют реактивной мощности из сети.
  2. При работе, с перевозбуждением отдают реактивную мощность в сеть, улучшая коэффициент мощности сети, падение напряжения и потери в ней и повышается КМ генераторов электростанциях.
  3. Максимальный момент, развиваемый на валу СД, пропорционален U, а у АД — U² (квадратичная зависимость от напряжения). Это значит, что у СД хорошая нагрузочная способность и устойчивость работы, которые сохраняются при просадке напряжения в сети.
  4. В следствие всего этого скорость вращения стабильна при перегрузках и просадках, в пределах перегрузочной способности, особенно при повышении тока возбуждения.

Однако существенным недостатком синхронного двигателя является то, что его конструкция сложнее, чем у асинхронных с КЗ-ротором, нужен возбудитель, без которого он не сможет работать. Всё это приводит к большей стоимости по сравнению с асинхронными машинами и сложностями в обслуживании и эксплуатации.

Пожалуй, на этом достоинства и недостатки синхронных электродвигателей заканчиваются. В этой статье мы постарались кратко изложить общие сведения о синхронных электродвигателях. Если у вас есть чем дополнить материал – пишите в комментариях.

Назначение и принцип действия синхронной машины

Синхронный двигатель. Устройство синхронной машины. Работа синхронного двигателя. Сравнение синхронных и асинхронных двигателей

Синхронные машины используются в качестве источников электрической энергии (генераторов), электродвигателей и синхронных компенсаторов. Именно с помощью синхронных трехфазных генераторов вырабатывается электрическая энергия на электростанциях.

Синхронные двигатели в силу особых свойств, не получили широкого распространения. Синхронные трехфазные двигатели применяются обычно лишь в установках средней и большой мощности при редких пусках, в случаях, когда не требуется электрического регулирования скорости.

Наряду с этим, в системах управления, измерения, записи и воспроизведения звука, особенно для привода лентопротяжных и регистрирующих устройств, широко применяются синхронные микродвигатели.

Трехфазные синхронные генераторы, двигатели и синхронные компенсаторы в принципе имеют одинаковое устройство.

Устройство синхронной машины

Рис. 1 Устройство синхронной машины с неявно выраженными полюсами (а) и ротора машины с явно выраженными полюсами (б)

Неподвижная часть машины, называемая статором или якорем (рис. 1, а), состоит из стального или чугунного корпуса 1, в котором закреплен цилиндрический сердечник 2 якоря.

Для уменьшения потерь на перемагничивание и вихревые токи сердечник набирают из листов электротехнической стали. В пазах сердечника якоря уложена трехфазных обмотка 3. В подшипниковых щитах, прикрепленных с торцевых сторон к корпусу, либо в стояках, закрепленных на фундаменте, расположены подшипники, несущие вал 4 вращающейся части машины – ротора или индуктора. На валу размещен цилиндрический сердечник 7 ротора, выполняемый из сплошной стали. В пазах сердечника ротора уложена обмотка возбуждения 8, питаемая постоянным током. Для присоединения обмотки возбуждения к внешней электрической цепи на валу укрепляют два изолированных друг от друга и от вала контактных кольца 6, к которым пружинами прижимаются неподвижные щетки 5. Обмотка 8 служит для возбуждения основного магнитного поля машины. Обмотка возбуждения с сердечником ротора представляют собой по существу электромагнит. Питание обмотки возбуждения осуществляется либо от генератора постоянного тока, вал которого механически связан с валом синхронной машины, либо через вентили от источника переменного тока. Мощность, необходимая для питания обмотки возбуждения, невелика и составляет 1 ÷ 3% от мощности машины.

Каждый электрик должен знать:  Как найти неисправность и отремонтировать электрическую дрель

На рис. 1, а показана двухполюсная синхронная машина с неявно выраженными полюсами ротора. Такие машины изготовляют на скорости 3000 об/мин. Синхронные машины, предназначенные для работы с меньшими скоростями (1500, 1000, 750 об/мин и т. д.), имеют явно выраженные полюса, число которых тем больше, чем меньше скорость. На рис. 1, б показано устройство ротора четырехполюсной машины с явно выраженными полюсами. Явно выраженные полюса 1 изготовляют из отдельных стальных листов или реже массивными и закрепляют на ободе 2 ротора с помощью винтов. Отдельные части (катушки) обмотки возбуждения 3, расположенные на явно выраженных полюсах, соединены между собой так, что северные и южные полюса чередуются.

Трехфазная обмотка якоря синхронных машин выполняется таким образом, что возбуждаемое ею вращающееся магнитное поле имеет всегда такое же число полюсов, как ротор.

Работа синхронного двигателя

При работе синхронной машины в качестве двигателя обмотка якоря подключается к трехфазному источнику переменного тока, в результате чего возникает вращающийся магнитный поток якоря Фя.

После разгона ротора двигателя до скорости nn его обмотка возбуждения подключается к источнику постоянного тока, и возникает магнитный поток Ф. Благодаря взаимодействию вращающегося магнитного потока Фя и проводников обмотки ротора, питаемой постоянным током (или потоков Фя и Ф) возникает вращающий момент, действующий на ротор, и он втягивается в синхронизм, т. е. начинает вращаться со скоростью n, равной скорости n вращающегося магнитного поля якоря.

При изменении нагрузки двигателя скорость вращения ротора остается постоянной (n = n), однако положение ротора относительно вращающегося магнитного потока Фя изменяется. Так, при моменте статического сопротивления Мс = 0 ротор занимает положение относительно потока Фя, показанное на рис. 2, а.

Рис. 2 Возникновение крутящего момента синхронного двигателя

Момент двигателя в этом случае М = Мс = 0. Увеличение момента сопротивления Мс приводит к такому смещению ротора относительно потока Фя, при котором возникает вращающий момент М двигателя, уравновешивающий момент Мс (рис. 2, б)

Существенной особенностью синхронного двигателя является то, что вращающий момент возникает у него в том случае, когда скорость вращения ротора n равна скорости n вращающегося магнитного поля якоря Фя. Возникновение вращающего момента при равенстве скоростей n и n у синхронного двигателя объясняется тем, что ток в его обмотке возбуждения появляется вследствие питания обмотки возбуждения от источника постоянного тока.

Скорость вращающегося магнитного поля якоря, а значит, ротора синхронного двигателя определяется по формуле

Для получения различных скоростей синхронные двигатели изготовляют с различными числами пар полюсов p.

При частоте f = 50 Гц скорости вращения синхронных двигателей будут равны 3000, 1500, 1000, 755 об/мин и т. д.

Сравнение синхронных и асинхронных двигателей

Обмотки статора обоих двигателей получают питание от сети трехфазного переменного тока. Для питания обмотки возбуждения синхронного двигателя требуется, кроме того, источник электрической энергии постоянного тока, правда, относительно небольшой мощности.

Асинхронный пуск синхронных двигателей несколько сложнее пуска асинхронных двигателей с короткозамкнутым ротором. В отношении пусковых свойств асинхронные двигатели с фазным ротором имеют весьма существенные преимущества перед синхронными двигателями.

Частота вращения синхронных двигателей остается постоянной при изменении нагрузки, тогда как у асинхронных двигателей даже при их работе на естественной характеристике она несколько изменяется.

Асинхронные двигатели дают возможность регулировать частоту вращения различными способами (изменением числа пар полюсов, измерением частоты напряжение источника питания). Синхронные двигатели относятся к двигателям с нерегулируемой частотой вращения.

Воздействуя на ток возбуждения синхронного двигателя, можно в широких пределах изменять его коэффициент мощности. Можно, в частности, заставить синхронный двигатель работать с cosφ = 1, а также с опережающим током. Последнее может быть использовано для улучшения коэффициента мощности других потребителей, питающихся от той же сети. В отличие от этого асинхронный двигатель представляет собой активно-индуктивную нагрузку и имеет всегда cosφ Другие новости по теме:

Назначение и принцип действия синхронной машины

Отличительная особенность синхронной машины заключается в том, что скорость вращения ее ротора равна скорости вращения магнитного поля статора и сохраняется постоянной независимо от нагрузки. Это достигается тем, что ротор синхронной машины представляет собой электромагнит или постоянный магнит с числом пар полюсов, равным числу пар полюсов вращающегося магнитного поля. Взаимодействие данных полюсов обеспечивает постоянную угловую скорость вращения ротора независимо от момента на валу.

Область применения синхронных машин — использование их в качестве промышленных генераторов для выработки электрической энергии на электростанциях. Применяются и в качестве двигателей, но не так широко как генераторы. Синхронные двигатели имеют постоянную частоту вращения, поэтому используются там, где нет необходимости в регулировании частоты или, где необходимо обеспечить ее постоянство. Двигатели большой мощности применяют на металлургических заводах, в шахтах и т.д. Специальные синхронные микродвигатели используются в автоматике, звукозаписи, в самопищущих приборах и других случаях. Работа синхронной машины в режиме ненагруженного двигателя соответствует работе синхронного компенсатора, который используется для увеличения коэффициента мощности электромеханических установок, компенсируя индуктивную мощность. Конструкция всех машин одинакова.

Статор (якорь) — неподвижная часть, устроен подобно статору асинхронной машины. В пазах статора располагается трехфазная распределенная обмотка. Обычно обмотку статора соединяют звездой. Сердечник статора набран из листов стали. Ротор синхронной машины представляет собой электромагнит, возбуждаемый постоянным током Iв. Создаваемый этим током магнитный поток вращается с неизменной частотой. Концы обмотки возбуждения ротора выводят к двум контактным кольцам на валу. К ним прижимаются щетки, к которым присоединяется источник питания обмотки возбуждения. Электромагнит представляет собой сердечник с обмоткой возбуждения. Мощность для питания обмотки возбуждения составляет 1-3% от всей мощности машины.

Принцип действия синхронной машины.

Синхронная машина состоит из двух основных частей:

Синхронная машина имеет две основные обмотки.

Одна обмотка подключает­ся к источнику постоянного тока. Протекающий по этой обмотке ток создает основное магнитное поле машины. Эта обмотка располагается на полюсах и называется обмот­кой возбуждения.

Иногда у машин небольшой мощ­ности обмотка возбуждения отсутствует, а магнитное поле создается постоянными магнитами.

Другая обмотка явля­ется обмоткой якоря. В ней индуктируется основная ЭДС машины. Она укладывается в пазы якоря и состоит из од­ной, двух или трех обмоток фаз. Наибольшее распростра­нение в синхронных машинах нашли трехфазные обмотки якоря.

В синхронных машинах чаще всего находит применение конструкция, при которой, обмотка якоря располагается на статоре, а обмотка возбуждения — на роторе (рис.34.1). Синхронные машины небольшой мощности иногда имеют обращенное исполнение, когда обмотка якоря располагает­ся на роторе, а обмотка возбуждения — на полюсах стато­ра (рис. 34.2). В электромагнитном отношении обе конструкции равноценны.

Рис. 34.1. Конструктивный вариант синхронной машины, при котором обмотка якоря располагается на статоре, а обмотка возбуждения – на роторе.

Рис. 34.1. Конструктивный вариант синхронной машины, при котором обмотка якоря располагается на роторе, а обмотка возбуждения – на статоре.

Однако из практических соображений более предпочтительной является первая конструкция, так как в этом случае к скользящим контактам на роторе под­водится мощность возбуждения, составляющая 0,3-3 % номинальной мощности машины.

Во втором варианте сколь­зящие контакты следовало бы рассчитывать на полную мощность машины. Для мощных машин, имеющих относи­тельно высокое напряжение и большие токи, обеспечить удовлетворительную работу таких контактов весьма затруднительно.

В дальнейшем будут рассматриваться синхронные машины, выполненные по первому (основному) конструктивному варианту.

Рассмотрим принцип действия синхронного генератора. Если через обмотку возбуждения протекает постоянный ток, то он создает постоянное во времени магнитное поле с чередующейся полярностью. При вращении полюсов и, следовательно, магнитного поля относительно проводников обмотки якоря в них индуктируются переменные ЭДС, которые, суммируясь, определяют результирующие ЭДС фаз.

Если на якоре уложены три одинаковые обмотки, маг­нитные оси которых сдвинуты в пространстве на электри­ческий угол, равный 120°, то в этих обмотках индуктируют­ся ЭДС, образующие трехфазную систему.

Частота индук­тируемых в обмотках ЭДС зависит от числа пар полюсов р и частоты вращения ротора п:

Для получения ЭДС необходимой частоты число пар полюсов и частота вращения должны находиться в опреде­ленной зависимости между собой.

Так, для получения стан­дартной частоты f1= 50 Гц при р=1нужно иметь частоту вращения n = 3000 об/мин, а при р = 24 n = 125 об/мин.

Если к трехфазной обмотке якоря синхронного генера­тора подсоединить нагрузку, то возникший ток создаст вра­щающееся магнитное поле якоря. Частота вращения этого поля относительно статора

Заменяя в этой формуле частоту ее значением из предыдущей формулы, полу­чаем

Равенство частот вращения ротора пи поля якоря n1 является характерной особенностью синхронной машины, обусловившей ее название.

При работе синхронной машины двигателем трехфазная обмотка якоря присоединяется к трехфазной сети. При этом образуется вращающееся магнитное поле с частотой вращения n1. Это поле, взаимодействуя с полем полюсов ротора, создает вращающий момент. Чтобы этот момент имел одно и то же направление, поля должны быть непо­движны относительно друг друга. Это имеет место, если ротор и, следовательно, его магнитное поле вращаются с частотой, равной n1. Поэтому в синхронном двигателе ро­тор как при холостом ходе, так и при нагрузке вращается с постоянной частотой, равной частоте вращения поля n1.

Дата добавления: 2014-12-24 ; просмотров: 1546 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Назначение и принцип действия синхронной машины

Синхронный двигатель имеет постоянную частоту вращения при разнообразных нагрузках. Часто такие приборы применяют для приводов машин, которые работают с постоянной неизменной скоростью, например, компрессоры, вентиляторы, насосы и пр.

Особенности синхронных двигателей:

  • Высокий коэффициент мощности cosФ=0,9
  • Возможность использования синхронных двигателей на предприятиях для увеличения общего коэффициента мощности

Высокий КПД: он больше чем у асинхронного двигателя на (0,5-3%) это достигается за счёт уменьшения потерь в меди и большого CosФ.

  • Обладает большой прочностью обусловленной увеличенным воздушным зазором.
  • Вращающий момент синхронного двигателя прямо пропорционален напряжению в первой степени. Т.е синхронный двигатель будет менее чувствителен к изменению величины напряжения сети.
  • Сложность пусковой аппаратуры и большая стоимость.

Устройство и принцип работы синхронного двигателя

В статоре синхронного двигателя имеется обмотка, которая подключается к сетям трехфазного тока. Она образует собой магнитное поле, которое вращается. Ротор у такой электроэнергетической машины, как синхронный двигатель, состоит из сердечника и обмотки возбуждения. Обмотка подключается через специальные контактные кольца к источнику (обычно это источник постоянного тока или же иногда используют выпрямленный переменный ток). Электрический ток, который протекает через обмотки возбуждения, создает намагничивающее ротор магнитное поле.

Магнитное поле статора, которое вращается, намагничивает ротор. Синхронный двигатель с постоянными магнитами имеет разное электромагнитное сопротивление по поперечной и продольной осям полюсов. Силовые линии у магнитного поля обмотки статора начнут изгибаться, потому что они будут как бы стремиться найти пути с наименьшим сопротивлением. Вследствии специфических свойств силовых магнитных линий поля, в свою очередь, такая деформация его вызовет реактивный момент. Именно поэтому ротор будет вращаться синхронно вместе с магнитным полем статора.

Виды синхронных двигателей

В основном все отличия в конструктивном исполнении такого устройства — это модификации вращающейся детали. Ротор синхронной машины может быть с явно выраженными полюсами (т.н. «явнополюсный»), и с неявно выраженными полюсами (т.н.«неявнополюсный»).

  • Явнополюсный ротор обычно имеет ярко выраженные, выступающие полюса, на которых размещаются катушки возбуждения.
  • Неявнополюсный ротор обычно представляет собой цилиндр из ферромагнитного сплава, на поверхности которого фрезеруют пазы в осевом направлении. Впоследствии именно в эти пазы укладывают обмотки возбуждения.

Устройство синхронного генератора и принцип действия

Разделы: Физика

Тип урока: Формирование новых знаний.

Цели урока:

  • Образовательная: Сформировать у студентов понятие о назначении синхронного генератора, его устройстве и принципе действия.
  • Воспитательная: Привить студентам интерес к дисциплине и навыки работы в коллективе.
  • Развивающая: Способствовать развитию самостоятельности мышления. Развивать творческую деятельность.
  • Дидактическая: Научить использовать различные дидактические материалы. Показать формы и методы управления познавательной деятельностью обучающихся на уроке.

Наглядность на уроке:

  • Плакат «Синхронный генератор»
  • Настенный стенд «Машины переменного тока»
  • Макет синхронного генератора
  • Карточки-задания (Приложение 1)
  • Тесты для закрепления материала (Приложение 2)
  • Слайды на электронном носителе

Ход урока

1. Организационный момент:

1.2. Определение отсутствующих

1.3. Проверка готовности обучающихся к уроку

1.4. Организация внимания.

2. Целеполагание и мотивация:

2.1. Постановка цели перед студентами

2.2. Ознакомление студентов с планом урока

2.3. Формирование установок на восприятие и осмысление учебной информации.

3. Актуализация ранее усвоенных знаний:

Вопросы:

3.1. Какая электрическая машина называется генератором?

Ответ: Генератором называется электрическая машина, преобразующая механическую энергию в электрическую.

3.2. На каком законе электромагнетизма основан принцип действия генераторов?

Ответ: Принцип действия генератора основан на законе электромагнитной индукции: ЭДС индуктируется в двух случаях: при движении проводника в магнитном поле и при изменении магнитного потока вокруг проводника.

3.3. Что представляет собой магнитное поле?

Ответ: Магнитным полем называется материальная среда, обнаружить которую возможно только опытным путём – внеся в это поле другое намагниченное тело или проводник с током, так как вокруг проводника с током возникает магнитное поле.

3.4. Какое электротехническое устройство называется электромагнитом и для чего оно предназначено?

Ответ: Электромагнит – это электротехническое устройство, состоящее из катушки и ферримагнитного сердечника, предназначенное для создания магнитного потока.

3.5. Особые требования, предъявляемые к электрическим машинам ПС

Ответ: К основным требованиям, предъявляемым электрическим машинам ПС относятся:

  • частота вращения находится в пределах 50–12000 об/мин;
  • широкий диапазон мощностей (от десятков Вт до десятков МВт);
  • минимальные габариты, масса, нагрузка на ось, габариты совпадающие с габаритами подвижного состава;
  • высокую надёжность работы.

3.6. Специфические условия эксплуатации электрических машин ПС.

Ответ: К специфическим особенностям работы электрических машин ПС относятся:

  • колебание температуры окружающей среды (от -50°С до + 50°С);
  • колебание влажности (95*3%);
  • запыление машин, установленных на открытом воздухе, встречным потоком воздуха;
  • конструкция машин и условия размещения её на подвижном составе должны обеспечивать удобный доступ к обслуживаемым частям.

4. Формирование новых понятий:

Конспект урока

4.1. Синхронный генератор – это машина переменного тока, преобразовывающая какой-либо вид энергии в электрическую энергию.

Генератором называется электрическая машина, преобразовывающая механическую энергию в электрическую.

4.2. Почему машина называется синхронной?

Синхронной называется бесколлекторная машина переменного тока, скорость вращения которой постоянна и определяется (при заданной частоте) числом пар полюсов: n = 60*f/p; (f = 50 Гц), где р – количество пар полюсов.

Например: двадцатиполюсный генератор должен иметь скорость п = 60*50/10 = 300 об/мин.

4.3. Применение синхронных генераторов на железнодорожном транспорте

На железнодорожном транспорте синхронные машины чаще всего применяются в качестве генераторов переменного тока на тепловозах и в рефрижераторных секциях.

4.4. Индуктирование ЭДС в синхронных генераторах

Индуктирование ЭДС в синхронных генераторах осуществляется по закону электромагнитной индукции: E = B*L*U*sin L.

Рис.1. Принцип действия синхронного генератора.

Так как принципиально безразлично, будет ли движущийся проводник пересекать магнитное поле, или, наоборот подвижное магнитное поле будет пересекать неподвижный проводник, то конструктивно синхронные генераторы могут быть изготовлены двух видов. В первом из них (рис.1.а.) магнитные полюсы можно поместить на статоре, а проводник на роторе и снимать с них при помощи колец и щёток переменный ток.

Ту часть, которая создаёт магнитное поле, называют индуктором, а ту часть машины, где располагается обмотка, в которой индуктируется ЭДС, называют якорем.

Следовательно: в первом типе генератора индуктор неподвижен, а якорь вращается. В таких генераторах скользящий контакт в цепи большой мощности создаёт значительные потери энергии, а при высоких напряжениях наличие такого контакта становится нецелесообразным. Поэтому генераторы с вращающимся якорем и неподвижными кольцами выполняют только при невысоких напряжениях (до 380/220 В) и небольших мощностях (до 15 кВт).

Наиболее широкое применение получили синхронные генераторы, в которых полюсы помещены на роторе, а якорь – на статоре (рис.1.б.).

4.5. Однофазные и трёхфазные синхронные генераторы

Из курса электротехники известно, что если вращать ротор-индуктор, то в обмотке статора будет индуктироваться переменная ЭДС (рис.2.а.), Это явление лежит в основе устройства однофазного генератора переменного тока. Обмотку статора можно также сделать много фазной, но на практике наибольшее распространение получила трёхфазная система переменного тока (рис.2.б.).

4.6. Устройство синхронного генератора

На тепловозах с передачей мощности переменно-постоянного и переменного тока в качестве тяговых используют синхронные генераторы, первичными двигателями которых служат двигатели внутреннего сгорания (дизели). Их также используют в качестве вспомогательных машин на тепловозах, электровозах и в пассажирских вагонах.

Рис.3. Устройство синхронного генератора.

Статор является неподвижной частью синхронной машины (рис.3.а.) и состоит из корпуса и сердечника, в пазах которого располагается статорная обмотка, предназначенная для индуктирования в ней ЭДС. Сердечник статора набирается из листов электротехнической стали толщиной 0,35 или 0,5 мм, в которых вырубают пазы для укладки проводников обмотки статора.

4.7. Явновыраженные и неявновыраженные полюса электромагнитов

Ротор синхронного генератора представляет собой вал, на котором укреплены сердечники полюсов в явновыраженных синхронных машинах (рис.3.б.) или набирают из листов электротехнической стали в неявновыраженных синхронных машинах (3.в.).

В высокоскоростных синхронных генераторах выполняются неявновыраженные полюса для обеспечения нужной механической прочности.

Рис.4. Явновыраженные и неявновыраженные полюса электромагнитов.

Обмотка возбуждения выполняется из медного провода прямоугольного сечения, концы которой выводятся на контактные кольца, установленные на роторе. Токосъём с контактных колец (плакат «Синхронный генератор») осуществляется с помощью щёток, установленных в щёткодержателях и прижимаемых к контактной поверхности пружинами.

В синхронных генераторах применяют два основных способа возбуждения: независимое (рис.5.а.) и самовозбуждение (рис.5.б.)

Рис.5. Независимое возбуждение и самовозбуждение машины.

При независимом возбуждении обмотка возбуждения питается от генератора постоянного тока с независимой обмоткой возбуждения, расположенного на валу ротора синхронного генератора и вращающегося вместе с ним (большой мощности).

При самовозбуждении питание обмотки возбуждения осуществляется самим синхронным генератором через выпрямитель (малой и средней мощности).

4.8. Принцип действия синхронного генератора

При помощи первичного двигателя ротор-индуктор вращается. Магнитное поле находится на роторе и вращается вместе с ним, поэтому скорость вращения ротора равна скорости вращения магнитного поля – отсюда название синхронная машина.

Рис.6. Генераторный режим работы синхронной машины.

При вращении ротора магнитный поток полюсов пересекает статорную обмотку и наводит в ней ЭДС по закону электромагнитной индукции: E = 4,44*f*w*kw*Ф, где:

f – частота переменного тока, Гц; w – количество витков; kw – обмоточный коэффициент; Ф – магнитный поток.

Частота индуктированной ЭДС (напряжения, тока) синхронного генератора: f = p*n/60, где:

р – число пар полюсов; п – скорость вращения ротора, об/мин.

Заменив: E = 4,44*(п*р/60)*w*kw и, определив: 4,44*(р/60)*w*kw относится к конструкции машины и создаёт конструктивный коэффициент: C = 4.44*(р/60)*w*kw.

Тогда: Е = СЕ*п*Ф.

Таким образом, как и у любого генератора, основанного на законе электромагнитной индукции, индуктированная ЭДС пропорциональна магнитному потоку машины и скорости вращения ротора.

4.9. Обратимость синхронного генератора

Синхронные машины применяются также в качестве электрического двигателя, особенно в установках большой мощности (свыше 50 кВт)

Рис.7. Двигательный режим работы синхронной машины.

Для работы синхронной машины в режиме двигателя обмотку статора подключают к трёхфазной сети, а обмотку ротора к источнику постоянного тока. В результате взаимодействия вращающегося магнитного поля машины с постоянным током обмотки возбуждения, возникает вращающий момент М, который увлекает его со скоростью магнитного поля.

4.10. Условия включения синхронного генератора в сеть

Для включения генератора в сеть необходимо:

  • одинаковое чередование фаз в сети и генераторе;
  • равенство напряжения сети и ЭДС генератора;
  • равенство частот ЭДС генератора и напряжения сети;
  • включать генератор в тот момент, когда ЭДС генератора в каждой фазе направлена встречно напряжению сети.

Невыполнение этих условий ведёт к тому, что в момент включения генератора в сеть возникают токи, которые могут оказаться большими и вывести генератор из строя.

5. Закрепление полученных знаний:

5.1. Контрольные вопросы:

– Какая электрическая машина называется генератором?

Ответ: Генератором называется машина, преобразовывающая механическую энергию в электрическую.

– Почему машина называется синхронной?

Ответ: Магнитное поле находится на роторе и вращается вместе с ним, поэтому скорость вращения магнитного поля равна скорости вращения ротора – из-за этого и название синхронная.

– По какому закону осуществляется индуктирование ЭДС в якоре машины?

Ответ: По закону электромагнитной индукции – ЭДС индуктируется в двух случаях: при движении проводника в магнитном поле или при изменении магнитного поля вокруг проводника.

– Какие два основных способов возбуждения Вы знаете?

Ответ: независимое возбуждение и самовозбуждение.

– Какая зависимость между р и п в синхронных генераторах при заявленной частоте переменного тока?

Ответ: Обратнопропорциональная зависимость: чем больше, тем меньше.

5.2. Работа с карточками-заданиями: (Приложение 1)

№1: Число пар полюсов синхронного генератора 4. Определить частоту вращения магнитного поля статора, если частота генерируемого тока 50 Гц.

f = 50 Гц; n = f*60/p = 50*60/4 = 750 об/мин.

№2: Какое количество полюсов должно быть у синхронного генератора с частотой ЭДС 50 Гц, если ротор его вращается с частотой 500 об/мин.

n = 500 об/мин; р = f*60/n = 50*60/500 = 6 пар.

№3: Генератор переменного тока имеет 10 пар полюсов и его ротор вращается с частотой 1200 об/мин. Сколько раз в секунду ток меняет своё направление?

n = 1200 об/мин; f/2 = p*n/60*2 = 10*1200/60*2 = 100 раз;

№4: Найти ЭДС, индуктируемую в одной фазе статора генератора переменного тока, если количество витков 24; обмоточный коэффициент 0,9; частота ЭДС 50 Гц, а магнитный поток 0,05 Вб.

kw = 0,9; Ф = 0,05 Вб; Е = 4,44*f*kw*w*Ф = 4.44*50*0,9*0,05 = 10 В.

№5: Выбрать необходимое число витков обмотки шестиполюсного синхронного генератора, ротор которого вращается с частотой 1000 об/мин, чтобы ЭДС на его выводах была 220 В, если магнитный поток, создаваемый обмоткой возбуждения ротора, равен 0,05 Вб, а обмоточный коэффициент статорной обмотки 0,92.

N = 6 полюсов; Ф = 0,05 Вб; Е = 4,44*f*w*kw*Ф;

n = 1000 об/мин; kw = 0,92; f = p*n/60 = (6/2)*1000/60 = 50Гц;

Определить: w = ? w = E/4,44*f*kw*Ф = 220/4,44*50*0,92*0,05 = 22 в.

5.3. Работа с тестами: (Приложение 2)

Вопрос

Ответ

1. Почему синхронный генератор называется синхронным?

  1. Скорость вращения ротора больше скорости вращения магнитного поля;
  2. Скорость вращения ротора равна скорости вращения магнитного поля;
  3. Скорость вращения ротора меньше скорости вращения магнитного поля.

2. Определить скорость двенадцатиполюсного синхронного генератора при частоте 50 Гц.

  1. 50 об/мин;
  2. 100 об/мин;
  3. 500 об/мин.

3. В каком генераторе, при заданной частоте, наибольшая скорость вращения?

  1. с явновыраженными полюсами;
  2. с неявновыраженными полюсами;
  3. в бесполюсном.

4. Можно ли трёхфазную обмотку синхронного генератора большой мощности расположить на роторе?

  1. можно;
  2. нельзя;
  3. можно, но нецелесообразно.

5. Четырёхполюсный ротор синхронного генератора вращается со скоростью 3000 об/мин. Определить частоту переменной ЭДС.

  1. 50 Гц;
  2. 100 Гц;
  3. 150 Гц.

Вопрос

1

2

3

4

5

Ответ

6. Рефлексия, задание на дом:

6.1. Подведение итогов урока, определение меры участия всех студентов и каждого в отдельности, оценка их работы.

6.2. Мотивирование домашнего задания.

6.3. Краткий инструктаж по выполнению домашнего задания.

6.4. Вопросы к студентам по восприятию урока.

Список используемой литературы:

  1. В.А. Поляков «Электротехника»; Учебное пособие; М. «Просвещение»; 1982, 239 с.
  2. А.Е. Зорохович, В.К. Калинин «Электротехника с основами промышленной электроники»; Учебное пособие для СПО, училищ; М. «Высшая школа»; 1975, 432 с. с ил.
  3. А.С. Касаткин «Основы электротехники»; Учебное пособие для СПО, училищ; М. «Высшая школа»; 1986, 287 с.; ил.
  4. В.Е. Китаев «Электротехника с основами промышленной электроники»; Учебное пособие для СПО, училищ; М. «Высшая школа»; 1980, 254 с.; ил.
  5. И.А. Данилов «Общая электротехника»; Программированное учебное пособие для неэлектротехнических специальностей техникумов. М., «Высшая школа»; 1977, 416 с., с ил.
  6. А.В. Грищенко, В.В.Стрекопытов «Электрические машины и преобразователи подвижного состава»; Учебное пособие для студентов СПО. М., Издательский центр «Академия», 2005. – 320 с.
  7. П.Н. Новиков, В.Я. Кауфман «Задачник по электротехнике с основами промышленной электроники»; Учебное пособие для СПО. М., «Высшая школа»; 1985. – 232 с., с ил.

К работе прилагаются рисунки.

Назначение и принцип действия синхронной машины

Бесколлекторные двухобмоточные электрические машины, в которой одна обмотка запитана от электрической сети переменного тока с неизменяемым значением частоты, а другая подключена к источнику возбуждения постоянного тока, с одинаковыми скоростями вращения ротора машины и ее магнитного поля. Главная область применения – преобразование механической энергии в электроэнергию.

Устройство и принцип действия синхронных машин

Разновидности синхронных машин

Существует несколько разновидностей подобных машин, это:

Гидрогенератор – его ротор отличается наличием явновыращенных полюсов и используется при производстве электрической энергии, работает на низких оборотах.

Турбогенератор – отличается неявнополюсной конструкцией генератора, работает при помощи турбин различного типа скорость отличается большим количеством оборотов вала в минуту, может достигать до 6000 об/мин.

Компенсатор – он вырабатывает реактивную мощность, не несет нагрузку, используется в целях повышения качества электрической энергии, за счет улучшенного коэффициента мощности, служит для стабилизации напряжения.

Асинхронизированная машина двойного питания – в ней производится подключение роторной и статорной обмоток от источника токов с разной частотой, происходит создание несинхронного режима работы. Отличается устойчивым режимом работы, служит преобразователем фазных токов, применяется для решения узкоспециализированных задач.

Двухполюсный ударный генератор – работа заключается в использовании режима короткого замыкания, действует кратковременно в течение долей секунды, выполняет задачу для испытания аппаратуры высокого напряжения.

Синхронные двигатели – подразделяются на ряд моделей, предназначенных для выполнения различных целей, это: шаговые модели, безредукторные, индукторные, гистерезисные, а также бесконтактные двигатели.

Общий принцип, положенный в основу конструкции синхронной машины

По соответствию основному исполнению, статор считается якорем машины и имеет многофазную обмотку, чаще всего, рассчитанную на три фазы. Он выступает в качестве индуктора, обмотка ротора (возбуждения) служит для создания потока магнитной индукции возбуждения, ее питание осуществляется при использовании контактных колец, через щеточный механизм, от источника (якоря возбудителя). Конструктивное исполнение машины, прежде всего, зависит от необходимой частоты вращения, главным образом это сказывается на конструктивных особенностях ротора, он бывает двух основных видов, это явнополюсный и неявнополюсный типы.

Конструктивные особенности явнополюсного ротора

В первом случае, ротор имеет два или более явно выраженных полюса. Стержни (катушки), крепятся в пазах посредством использования клиньев из немагнитного изоляционного материала.

Стержни исполняют функцию обмоток возбуждения. Сердечник изготавливается из электротехнической стали. В полюсных наконечниках располагаются стержни обмотки предназначенной для пуска, они выполняются из латуни, для которой характерно высокое удельное сопротивление.

Аналогичная обмотка, «беличья клетка», которая имеет в своей конструкции катушки из меди, используется для устройства генераторов, она выполняет демпфирующую роль и выступает успокоителем, потому как способствует снижению неустойчивости ротора, появляющейся во время переходного режима.

Прекращение колебаний происходит после возникновения вихревых токов, появляющихся при замыканиях, в роторе с полюсами значительного веса.

Неявнополюсный ротор применяется для конструкций синхронных агрегатов большой мощности. Они отличаются высокими скоростными характеристиками. Число оборотов вала может достигать предела порядка 3000 об/мин.

Этот параметр обусловливает невозможность использования явнополюсного ротора в высокоскоростных машинах, в связи с трудностью крепления полюсов и обмоток возбуждения, при небольшом количестве пар полюсов.

Магнитопровод ротора изготовлен как единое целое с валом машины и выполняется из единой поковки. Набор его производится из прочной легированной стали, в пазах осуществляется формирование обмотки из медных с серебряной присадкой проводников, это делается для повышенной термической стойкости.

Возбуждение синхронной машины

Для питания обмотки возбуждения предусмотрено наличие возбудителя, в его качестве выступает генератор постоянного тока, якорь которого сопряжен с валом машины, посредством использования механического устройства.

По способу возбуждения синхронные машины подразделяются на два типа:

Возбуждение независимого вида.

При независимом возбуждении схема подразумевает наличие подвозбудителя, который питает: обмотку главного возбудителя, реостат для регулировки, устройства управления, регуляторы напряжения и т. д. Кроме этого способа, возбуждение может осуществляться от генератора, выполняющего вспомогательную функцию, он приводится в работу от двигателя синхронного или асинхронного типа.

Для самовозбуждения, питание обмотки происходит через выпрямитель, работающий на полупроводниках или ионного типа.

Для турбо- и гидрогенераторов используют тиристорные устройства возбуждения. Ток возбуждения регулируется в автоматическом режиме, при помощи регулятора возбуждения, для машин малой мощности характерно использование регулировочных реостатов, они включены в цепь обмотки возбуждения.

Принцип работы

Вращающийся с определенной частотой, создаваемый ротором, поток возбуждения пересекает витки статорной обмотки, он совершает индуцирование в фазах с переменной ЭДС, изменяемой с частотой, определяемой по формуле:

f1=pn2/60

При присоединении статора к нагрузке, ток в обмотке, создает магнитное поле, вращающееся со скоростью одинаковой со скоростью вращения ротора. Магнитодвижущая сила обмоток возбуждения и статорной обмотки, и результирующие вращающегося магнитного поля, создают результирующий магнитный поток.

Синхронные машины высокой мощности – конструктивные особенности

Ввиду использования значительной величины мощности, синхронная установка подвергается значительному механическому воздействию, а также электромагнитной нагрузке, вследствие чего происходит существенный нагрев различных частей машин, для чего необходимо выполнить интенсивное охлаждение машины. Чтобы сохранить определенные габаритные размеры, для получения необходимого значения мощности, выполняют машины с различными особенностями, диктующими подразделение машин на несколько типов, это: турбогенераторы, гидрогенераторы, дизель-генераторы, синхронные компенсаторы, синхронные двигатели.

Турбогенераторы

Конструкция машины исполнена с горизонтальной осью и работает за счет использования турбины, ротор обязательно неявнополюсного исполнения. Скорость вращения вала отличается максимально возможным числом оборотов вращения, и составляет 3000 об/мин.

За счет того, что в машине всего два полюса ее конструктивная часть отличается уменьшенными габаритами и весом. При использовании такого агрегата на АЭС применяют машины с количеством оборотов вала 1500 об/мин, с 4 полюсами, диаметр ротора меньше длины его активной части. Система, используемая для охлаждения, применяет поверхностный и косвенный принудительный обдув, иногда применяют косвенное водородное или водяное и масляное охлаждение.

Гидрогенераторы

Функционирование гидрогенератора осуществляется при использовании гидравлической турбины, обладающей невысоким количеством оборотов вала от 50 до 500 об/мин. Ротор явнополюсного исполнения, отличается наличием большого числа пар полюсов. Его диаметр для некоторых типов гидрогенераторов может доходить до 16 м. тогда как длина составляет всего 1,75 м. Его мощность достигает 640 МВ*А.

Вал может располагаться вертикально. Гидрогенератор и турбина объединены одним валом ротора также на нем может быть установлен возбудитель, подвозбудитель, и синхронный генератор, который осуществляет питание электрических двигателей, предназначенных для регулировки турбины. Главное усилие в машине приходится на опорный подшипник, он способен выдержать вес роторов всего оборудования, динамические усилия и давление воды, приложенное к турбинным лопастям. Система охлаждения в устройствах этого типа выполняется с помощью омывания капсулы, в которую заключены, объединенные одним валом, элементы синхронного агрегата.

Синхронный компенсатор

Машина генерирует реактивную мощность, и работает в двигательном режиме холостого хода, использующего активную сетевую нагрузку. Конструкция явнополюсного исполнения, обычно присутствует до восьми пар полюсов. Ротор изготовлен облегченным, так как на валу отсутствует какая-либо нагрузка. Часто используется герметизированная конструкция машины, без вывода наружу вала компенсатора, система охлаждения работает за счет использования водорода, закаченного при большом давлении, внутрь.

Дизель-генератор

Машина имеет в своей конструкции явнополюсный ротор, и подразумевает горизонтальную установку вала. Особенность – использование одного опорного подшипника, в качестве второй опоры используется подшипник вала генератора. На едином с ними валу установлен возбудитель.

Назначение и принцип действия синхронной машины

Назначение. Синхронные машины используют главным образом в качестве источников электрической энергии переменного тока; их устанавливают на мощных тепловых, гидравлических и атомных электростанциях, а также на передвижных электростанциях и транспортных установках (тепловозах, автомобилях, самолетах). Конструкция синхронного генератора определяется в основном типом привода. В зависимости от этого различают турбогенераторы, гидрогенераторы и дизель-генераторы. Турбогенераторы приводятся во вращение паровыми или газовыми турбинами, гидрогенераторы — гидротурбинами, дизель-генераторы — двигателями внутреннего сгорания. Синхронные машины широко используют и в качестве электродвигателей при мощности 100 кВт и выше для привода насосов, компрессоров, вентиляторов и других механизмов, работающих при постоянной частоте вращения. Для генерирования или потребления реактивной мощности с целью улучшения коэффициента мощности сети и регулирования ее напряжения применяют синхронные компенсаторы.

В электробытовых приборах (магнитофонах, проигрывателях, киноаппаратуре) и системах управления широкое применение получили различные синхронные микромашины — с постоянными магнитами, индукторные, реактивные, гистерезисные, шаговые.

В 1876 г. русский ученый П. Н. Яблочков разработал несколько образцов многофазных синхронных генераторов с электромагнитным возбуждением и электрически несвязанными фазами, предназначенных для питания созданных им дуговых электрических ламп (свечи Яблочкова). Первый трехфазный синхронный генератор изобрел известный русский электротехник М. О. Доливо-Добровольский. Этот генератор имел мощность 230 кВ • А, приводился во вращение от гидротурбины и обеспечивал электроснабжение международной электротехнической выставки в г. Франкфурте в 1891 г. по четырехпроводной электрической линии трехфазного тока.

Основная электромагнитная схема синхронных машин с тех пор оставалась неизменной, но усовершенствовалось их конструктивное выполнение и возросли электромагнитные нагрузки, что позволило значительно улучшить массогабаритные и энергетические показатели и нагрузочную способность синхронных машин. Особенно большие выгоды в этом отношении дало применение в крупных машинах водородного и водяного охлаждения.

В разработке теорий синхронных машин и совершенствовании их конструкции важная роль принадлежит советским ученым A. Е. Алексееву, А. А. Гореву, Р. А. Лютеру, М. П. Костенко, B. А. Толвинскому и др. Синхронные генераторы большой мощности разрабатывались на основе работ А. И. Бертинова, А. И. Глебова, Д. Е. Ефремова, В. В. Романова, И. Д. Урусова, Г. М. Хуторецкого и др.

В настоящее время советской электропромышленностью для тепловых и атомных электростанций разработана и выпускается серия унифицированных турбогенераторов мощностью 63, 125, 320, 500 и 800 МВт и уникальные турбогенераторы мощностью 1000 МВт для атомных электростанций и 1200 МВт для тепловых электростанций. Для гидроэлектростанций созданы гидрогенераторы мощностью 350, 590 и 640 МВт, а также обратимые генераторы-двигатели для гидроаккумулирующих электростанций мощностью 200-300 МВт. Для высоковольтных линий электропередачи выпускаются синхронные компенсаторы мощностью до 350 MB • А. Планируется начать разработки турбогенераторов мощностью 1600—2000 МВт и гидрогенераторов мощностью 1000 МВт.

Принцип действия. Статор 1 синхронной машины (рис. 6.1, а) выполнен так же, как и асинхронной: на нем расположена трехфазная (в общем случае многофазная) обмотка 3. Обмотку ротора 4,питаемую от источника постоянного тока, называют обмоткой возбуждения, так как она создает в машине магнитный поток возбуждения. Вращающуюся обмотку ротора соединяют с внешним источником постоянного тока посредством

Рис. 6.1. Электромагнитная схема синхронной машины и схема ее включения

контактных колец 5 и щеток 6 (рис. 6.1, б). При вращении ротора 2 с некоторой частотой n 2 поток возбуждения пересекает проводники обмотки статора и индуцирует в ее фазах переменную ЭДС Е, изменяющуюся с частотой

Если обмотку статора подключить к какой-либо нагрузке, то проходящий по этой обмотке многофазный ток I а создает вращающееся магнитное поле, частота вращения которого

Из (6.1) и (6.2) следует, что n 1 = n 2 , т. е. что ротор вращается с той же частотой, что и магнитное поле статора. Поэтому рассматриваемую машину называют синхронной. Результирующий магнитный поток Ф рез синхронной машины создается совместным действием МДС обмотки возбуждения и обмотки статора, и результирующее магнитное поле вращается в пространстве с той же частотой, что и ротор.

В синхронной машине обмотку, в которой индуцируется ЭДС и проходит ток нагрузки, называют обмоткой якоря, а часть машины, на которой расположена обмотка возбуждения,— индуктором. Следовательно, в приведенной машине (рис. 6.1) статор является якорем, а ротор — индуктором. Для принципа действия и теории работы машины не имеет значения — вращается якорь или индуктор, поэтому в некоторых случаях применяют синхронные машины с обращенной конструктивной схемой: обмотку якоря, к которой подключают нагрузку, располагают на роторе, а обмотку возбуждения, питаемую постоянным током, — на статоре. Такую машину называют обращенной. Обращенные машины имеют сравнительно небольшую мощность, так как у них затруднен отбор мощности от обмотки ротора.

Синхронная машина может работать автономно в качестве генератора, питающего подключенную к ней нагрузку, или параллельно с сетью, к которой присоединены другие генераторы. При работе параллельно с сетью она может отдавать или потреблять электрическую энергию, т. е. работать генератором или двигателем. При подключении обмотки статора к сети с напряжением U и частотой f 1 проходящий по обмотке ток создает, так же как в асинхронной машине, вращающееся магнитное поле, частота вращения которого определяется по (6.2). В результате взаимодействия этого поля с током I в , проходящим по обмотке ротора, создается электромагнитный момент М, который при работе машины в двигательном режиме является вращающим, а при работе в генераторном режиме — тормозным. В рассматриваемой машине в отличие от асинхронной поток возбуждения (холостого хода) создается обмоткой постоянного тока, раположенной обычно на роторе. В установившемся режиме ротор неподвижен относительно магнитного поля и вращается с частотой вращения п 1 = п 2 независимо от механической нагрузки на валу ротора или электрической нагрузки.

Таким образом, для установившихся режимов работы синхронной машины характерны следующие особенности:

а) ротор машины, работающей как в двигательном, так и в генераторном режимах, вращается с постоянной частотой, равной частоте вращающегося магнитного поля, т. е. п 2 = п 1 ;

б) частота изменения ЭДС Е, индуцируемой в обмотке якоря, пропорциональна частоте вращения ротора;

в) в установившемся режиме ЭДС в обмотке возбуждения не индуцируется; МДС этой обмотки определяется только током возбуждения и не зависит от режима работы машины.

Синхронные машины

Использование синхронных машин в качестве источников электрической энергии переменного тока. Конструктивная схема синхронной машины с неподвижным и вращающимся якорем. Внешние и регулировочные характеристики синхронного генератора при разных нагрузках.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 23.07.2015
Размер файла 403,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. НАЗНАЧЕНИЕ И ПРИНЦИП ДЕЙСТВИЯ СИНХРОННОЙ МАШИНЫ

Синхронные машины используют главным образом в качестве источников электрической энергии переменного тока; их устанавливают на мощных тепловых, гидравлических и атомных электростанциях, а также на передвижных электростанциях и транспортных установках (тепловозах, автомобилях, самолетах). Синхронные машины широко используют и в качестве электродвигателей при мощности 100 кВт и выше для привода насосов, компрессоров, вентиляторов и других механизмов, работающих при постоянной частоте вращения.

В электробытовых приборах (магнитофонах, проигрывателях, киноаппаратуре) и системах управления широко применяются различные синхронные микромашины—с постоянными магнитами, индукторные, реактивные, гистерезисные, шаговые.

Рис. 10-1 Электромагнитная схема синхронной машины (а) и схема ее включения (б)

Принцип действия. Статор 1 синхронной машины (рис.10-1,а) выполнен так же, как и асинхронной: на нем расположена трехфазная (в общем случае многофазная) обмотка 3. Обмотку ротора 4, питаемую от источника постоянного тока, называют обмоткой возбуждения, так как она создает в машине магнитный поток возбуждения. Вращающуюся обмотку ротора соединяют с внешним источником постоянного тока посредством контактных колец 5 и щеток 6 (рис.10-1,б). При вращении ротора 2 с некоторой частотой п2 поток возбуждения пересекает проводники обмотки статора и индуцирует в ее фазах переменную ЭДС Е, изменяющуюся с частотой

Если обмотку статора подключить к какой-либо нагрузке, то проходящий по этой обмотке многофазный ток 1а создает вращающееся магнитное поле, частота вращения которого

Из (10-1) и (10-2) следует, что п1=п2, т.е. что ротор вращается с той же частотой, что и магнитное поле статора. Поэтому рассматриваемую машину называют синхронной. Результирующий магнитный поток Фрез синхронной машины создается совместным действием МДС обмотки возбуждения и обмотки статора, и результирующее магнитное поле вращается в пространстве с той же частотой, что и ротор.

В синхронной машине обмотку, в которой индуцируется ЭДС и проходит ток нагрузки, называют обмоткой якоря, а часть машины, на которой расположена обмотка возбуждения, — индуктором. Следовательно, в приведенной машине (рис.10-1) статор является якорем, а ротор — индуктором. Для принципа действия и теории работы машины не имеет значения — вращается якорь или индуктор, поэтому в некоторых случаях применяют синхронные машины с обращенной конструктивной схемой. Такую машину называют обращенной. Обращенные машины имеют сравнительно небольшую мощность.

При подключении обмотки статора к сети с напряжением U и частотой I1 проходящий по обмотке ток создает вращающееся магнитное поле, частота вращения которого определяется по (10-2). В результате взаимодействия этого поля с током Iв, проходящим по обмотке ротора, создается электромагнитный момент М, который при работе машины в двигательном режиме является вращающим, а при работе в генераторном режиме — тормозным. В рассматриваемой машине в отличие от асинхронной поток возбуждения (холостого хода) создается обмоткой постоянного тока, расположенной обычно на роторе. В установившемся режиме ротор неподвижен относительно магнитного поля и вращается с частотой вращения п1=п2 независимо от механической нагрузки на валу ротора или электрической нагрузки.

Таким образом, для установившихся режимов работы синхронной машины характерны следующие особенности:

а) ротор машины, работающей как в двигательном, так и в генераторном режимах, вращается с постоянной частотой, равной частоте вращающегося магнитного поля, т. е. п2 = п1;

б) частота изменения ЭДС E, индуцируемой в обмотке якоря, пропорциональна частоте вращения poтopa;

в) в установившемся режиме ЭДС в обмотке возбуждения не индyциpyeтcя; МДС этой обмотки определяется только током возбуждения и не зависит от режима работы машины.

2. УСТРОЙСТВО СИНХРОННОЙ МАШИНЫ

Синхронные машины выполняют с неподвижным или вращающимся якорем. Машины большой мощности для удобства отвода электрической энергии со статора или подвода ее выполняют с неподвижным якорем (рис.10-2,а). Поскольку мощность возбуждения невелика по сравнению с мощностью, снимаемой с якоря (0,3..2%), подвод постоянного тока к обмотке возбуждения с помощью двух колец не вызывает особых затруднений. Синхронные машины небольшой мощности выполняют как с неподвижным, так и с вращающимся якорем. В обращенной синхронной машине с вращающимся якорем и неподвижным индуктором (рис.10-2,б) нагрузка подключается к обмотке посредством трех колец.

Рис. 10-2 Конструктивная схема синхронной машины с неподвижным (а) и вращающимся (б) якорем: 1 — якорь; 2 —обмотка якоря; 3 — полюсы индуктора; 4 — обмотка возбуждения

Питание обмотки возбуждения. В зависимости от способа питания обмотки возбуждения различают системы независимого возбуждения и самовозбуждения.

При независимом возбуждении в качестве источника для питания обмотки возбуждения служит генератор постоянного тока (возбудитель), установленный на валу ротора синхронной машины (рис.10-3,а), либо отдельный вспомогательный генератор, приводимый во вращение синхронным или асинхронным двигателем. При самовозбуждении обмотка возбуждения питается от обмотки якоря через управляемый или неуправляемый выпрямитель — обычно полупроводниковый (рис.10-3,б). Мощность, необходимая для возбуждения, сравнительно невелика и составляет 0,3. 3% от мощности синхронной машины.

Рис. 10-3 Схемы возбуждения синхронной машины: 1 — обмотка якоря; 2 — ротор генератора; 3 — обмотка возбуждения; 4 — кольца; 5 — щетки; 6 — регулятор напряжения; 7—возбудитель; 8 — выпрямитель; 9—обмотка якоря возбудителя; 10 — ротор возбудителя; 11 — обмотка возбуждения возбудителя; 12 — подвозбудитель; 13 — обмотка возбуждения подвозбудителя

В мощных генераторах кроме возбудителя обычно применяют подвозбудителъ — небольшой генератор постоянного тока, служащий для возбуждения основного возбудителя. Основным возбудителем в этом случае может служить синхронный генератор совместно с полупроводниковым выпрямителем. Регулирование тока возбуждения Iв осуществляется автоматически специальными регуляторами возбуждения, однако в машинах небольшой мощности применяется регулировка и вручную реостатом, включенным в цепь обмотки возбуждения.

В современных синхронных генераторах применяют так называемую бесщеточную систему возбуждения (рис.10-3, в). При этом в качестве возбудителя используют синхронный генератор, у которого обмотка якоря расположена на роторе, а выпрямитель укреплен непосредственно на валу. Обмотка возбуждения возбудителя получает питание от подвозбудителя, снабженного регулятором напряжения.

При самовозбуждении ротор синхронной машины может вращаться синхронно с магнитным полем статора (синхронное возбуждение) или асинхронно с ним (асинхронное возбуждение).

3. МАГНИТНОЕ ПОЛЕ

При нагрузке обмотки якоря синхронной машины током она создает собственное магнитное поле, которое называется полем реакции якоря.

Реакция якоря синхронной машины оказывает весьма значительное влияние на характеристики и поведение синхронной машины как при установившихся, так и при переходных режимах работы.

Продольная и поперечная реакции якоря. Рассмотрим действие реакции якоря двухполюсной машины, работающей в режиме генератора, при установившемся режиме. На рис.10-4 каждая фаза обмотки изображена в виде одного витка с полным шагом (A-X, B-Y, C-Z), буквами N, S указана полярность поля возбуждения, а магнитные линии этого поля не показаны.

Рис. 10-4 Поперечная (а), продольная размагничивающая (б) и продольная намагничивающая (в) реакция якоря синхронной машины

Когда угол сдвига фаз ш между током якоря и ЭДС, индуктируемой в обмотке якоря током или полем возбуждения, равен нулю (рис. 10-4,а), ротор вращается с угловой скоростью

и при положении ротора, изображенном на рис.10-4,а, ЭДС фазы А максимальна. Так как ш=0, то ток этой фазы также максимален и

Направления токов ia, ib, ic нетрудно установить по правилу правой руки, и они указаны на рисунке крестиками и точками. При этих направлениях токов магнитные линии поля реакции якоря направлены, как показано на рис.10-4,а, поперек оси d. следовательно, поток реакции якоря Фа действует по поперечной оси. Такой характер поля реакции якоря при ш=0 сохраняется при любом положении вращающегося ротора, так как ротор и поле реакции якоря вращаются синхронно.

Следовательно, при ш=0 реакция якоря синхронной машины является чисто поперечной.

Поперечная реакция якоря вызывает искажение кривой поля в воздушном зазоре, как и в машинах постоянного тока, и вращающееся поле поперечной реакции индуктирует ЭДС в обмотке якоря.

Если ток отстает от ЭДС на ш=90 , то максимум тока в фазе А наступает по сравнению с предыдущем случаем, на четверть периода позднее, когда ротор повернется по часовой стрелке (рис. 10-4, б). Здесь токи фаз имеют такие же значения, как и на рис. 10-4, а, вследствие чего и ориентация магнитного потока якоря в пространстве является такой же.

Следовательно, при отстающем токе и ш=90 реакция якоря действует по продольной оси и является по отношению к полю возбуждения чисто размагничивающей (продольная размагничивающая реакция якоря).

Если ток опережает ЭДС на ш=-90 , то максимум тока в фазе А наступает по сравнению со случаем на рис.10-4, а на четверть периода раньше и в этот момент времени ротор занимает по сравнению с первым случаем положение, повернутое на 90 0 против направления вращения (рис.10-4,в). Токи фаз имеют такие же значения, как и ранее.

Следовательно, при опережающем токе и ш=-90 реакция якоря также действует по продольной оси, но является по отношению к полю возбуждения чисто намагничивающей, т.е. она увеличивает поток по продольной оси машины (продольная намагничивающая реакция якоря).

В связи с изменением результирующего сопротивления воздушного зазора при различных режимах синхронной машины при анализе ее работы используют так называемый метод двух реакций. Согласно этому методу, МДС якоря Fa в общем случае представляют в виде суммы двух составляющих—продольной Faq = Fasinш и поперечной Faq = Facosш, причем В соответствии с принятым методом ток якоря Iа, создающий МДС Fa, также представляют в виде двух составляющих — продольной Id и поперечной Iq

4. СИНХРОННЫЙ ГЕНЕРАТОР. ВНЕШНИЕ И РЕГУЛИРОВОЧНЫЕ ХАРАКТЕРИСТИКИ

Основными характеристиками, определяющими свойства синхронного генератора, являются внешние и регулировочные.

Внешние характеристики. Зависимости напряжения U от тока нагрузки 1а при неизменных токе возбуждения Iв, угле и частоте fх (постоянной частоте вращения ротора п2) называют внешними характеристиками генератора.

Рис. 10-5 Внешние характеристики синхронного генератора при различных видах нагрузки

На рис.10-5,а изображены внешние характеристики генератора при различных видах нагрузки, полученные при одинаковом для всех характеристик UHOM. Однако для этого требуется устанавливать различные токи возбуждения, вследствие чего генератор будет иметь различные ЭДС (напряжения при холостом ходе). Если устанавливать одинаковое напряжение при холостом ходе U0 = E0 (рис.10-5,б), то при номинальном токе напряжения Uном будут различными. При U=0 (короткое замыкание) все характеристики пересекаются в одной точке, соответствующей значению тока Iк.

При переходе от режима холостого хода к режиму номинальной нагрузки изменение напряжения (%) характеризуется величиной

Обычно генераторы работают с cos ц = 0,9. 0,85 при отстающем токе. В этом случае Дu = 25. 35%.

Регулировочные характеристики. Зависимости тока возбуждения Iв от тока нагрузки 1a при неизменных напряжении U, угле ц и частоте fx называют регулировочными характеристиками (рис.10-6). Они показывают, как надо изменять ток возбуждения генератора, чтобы поддерживать его напряжение неизменным при изменении тока нагрузки. Очевидно, что с возрастанием нагрузки при ц>0 необходимо увеличивать ток возбуждения, а при ц 1, и тогда ОКЗ = п1) при изменении внешнего вращающего или тормозного момента Мвн, приложенного к ее валу. Статическая устойчивость обеспечивается только при углах и 0, и неустойчиво, если dM/dи 0,5, обратное поле перемещается относительно статора в сторону, противоположную направлению вращения ротора; при п2 = 0,5п1 это поле неподвижно относительно статора; при n2>0,5 (т. е. при s 0 . Далее, при отключении обмотки 1-1 ротор повернется против часовой стрелки еще на 15 0 (рис. 10-10, в) и т.д.

Уменьшение шага двигателя достигается увеличением числа полюсов или путем размещения на общем валу нескольких пар статоров и роторов, повернутых относительно друг друга на соответствующий угол. Вместо сосредоточенных обмоток (рис. 10-10) можно применять также распределенные обмотки. Существует целый ряд разновидностей шаговых двигателей вращательного (с шагом до 180 0 , до 1 0 и менее) и поступательного движения. Предельная частота следования импульсов, при которой возможен пуск и остановка двигателя без потери шага и которая называется также приемистостью, составляет от 10 до 10000Гц.

Размещено на Allbest.ru

Подобные документы

Электромагнитная и электрическая схема синхронных машин. Конструкция явнополюсного ротора. Характеристика синхронного генератора, синхронное индуктивное сопротивление. Угловые характеристики и регулирование реактивной мощности, реактивный момент.

презентация [3,8 M], добавлен 09.11.2013

Простота устройства, большая надежность и низкая стоимость асинхронных двигателей. Принцип действия асинхронной машины и режимы ее работы. Получения вращающегося магнитного поля. Устройство синхронной машины, холостой ход синхронного генератора.

презентация [443,8 K], добавлен 12.01.2010

Принцип действия и структура синхронных машин, основные элементы и их взаимодействие, сферы и особенности применения. Устройство и методика использования машин постоянного тока, их разновидности, оценка Э.д.с., электромагнитного момента этого типа машин.

учебное пособие [7,3 M], добавлен 23.12.2009

Конструкция и принцип действия машины постоянного тока. Характеристики генератора независимого возбуждения. Внешняя характеристика генератора параллельного возбуждения. Принцип обратимости машин постоянного тока. Электромагнитная обмотка якоря в машине.

презентация [4,1 M], добавлен 03.12.2015

Изучение строения источников тока — источников электрической энергии, в которых действуют сторонние силы по разделению электрических зарядов. Обзор таких источников тока, как гальванические элементы, аккумуляторы, машины постоянного тока, термоэлементы.

презентация [274,8 K], добавлен 09.06.2010

Требования по технике безопасности. Трехфазная цепь при соединении потребителей по схемам «звезда» и «треугольник». Однофазного счетчика электрической энергии. Опыт холостого хода трансформатора, короткого замыкания. Работа люминесцентной лампы.

методичка [721,6 K], добавлен 16.05.2010

Принцип работы машины постоянного тока. Статистические характеристики и режимы работы двигателя независимого возбуждения. Способы регулирования скорости двигателя. Расчет параметров электрической машины. Структурная схема замещения силовой цепи.

курсовая работа [438,8 K], добавлен 13.01.2011

Исследование назначения машин переменного тока, их места в системе энергоснабжения. Анализ принципа действия трансформатора. Характеристика его работы в режиме холостого хода и короткого замыкания. Оценка качества работы магнитной системы трансформатора.

презентация [254,5 K], добавлен 21.10.2013

Системы возбуждения синхронных генераторов. Изменение величины выпрямленного напряжения. Системы автоматического регулирования возбуждения синхронных генераторов. Изменение тока возбуждения синхронного генератора. Активное сопротивление обмотки.

контрольная работа [651,7 K], добавлен 19.08.2014

Свойства и характеристики синхронного генератора. Потеря энергии при преобразовании в синхронном генераторе механической энергии в электрическую. Устойчивость и увеличение перегрузочной способности генератора. Особенности параллельной работы генератора.

реферат [206,4 K], добавлен 14.10.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.

Добавить комментарий