Несколько способов управления однофазным асинхронным двигателем


СОДЕРЖАНИЕ:

Способы запуска трехфазных асинхронных двигателей

Доброго времени суток, уважаемые читатели блога nasos-pump.ru

В рубрике «Общее» рассмотрим способы запуска трехфазных асинхронных двигателей с коротко замкнутым ротором. В настоящее время используются различные способы запуска асинхронных двигателей. При запуске двигателя должны удовлетворяться основные требования. Запуск должен происходить без применения сложных пусковых устройств. Пусковой момент должен быть достаточно большим, а пусковые токи как можно меньше. Современные электродвигатели являются энерго-эффективными двигателями и имеют более высокие пусковые токи, что заставляет уделять большее внимание их способам запуска. При подаче на двигатель напряжения питания возникает скачок тока, который называют пусковым током.

Пусковой ток обычно превышает номинальный в 5 – 7 раз, но действие его кратковременное. После того как двигатель вышел на номинальные обороты, ток падает до минимального. В соответствии с местными нормами и правилами, для снижения пусковых токов, и используются разные способы запуска асинхронных двигателей с коротко замкнутым ротором. Вместе с этим необходимо уделять внимание и стабилизации напряжения сетевого питания. Говоря о способах запуска, которые уменьшают пусковой ток, следует отметить, что период запуска не должен быть слишком долгим. Слишком продолжительные периоды запуска могут вызвать перегрев обмоток.

Прямой запуск

Самый простой и наиболее часто применяемый способ запуска асинхронных двигателей – это прямой пуск. Прямой пуск означает, что электродвигатель запускается прямым подключением к сетевому напряжению питания. Прямой пуск применяется при стабильном питании двигателя, жестко связанного с приводом, например насоса. На (Рис.1) приведена схема прямого пуска асинхронного двигателя.

Подключение двигателя в электрическую сеть происходит при помощи контактора (пускателя). Реле перегрузки необходимо для защиты двигателя в процессе эксплуатации от перегрузки по току. Двигатели малой и средней мощности обычно проектируют так, чтобы при прямом подключении обмоток статора к сетевому питанию пусковые токи, возникающие при запуске, не создавали чрезмерных электродинамических усилий и превышений температуры на двигатель, с точки зрения механической и термической прочности. Переходной процесс в момент запуска характеризуется очень быстрым затуханием свободного тока, что позволяет пренебречь этим током и учитывать только установившееся значение тока переходного процесса. На графике (Рис. 1) приведена характеристика пускового тока при прямом запуске асинхронного двигателя с коротко замкнутым ротором.

Прямой запуск от сети питания является самым простым, дешёвым и наиболее часто применяемым способом запуска. При таком запуске происходит наименьшее повышение температуры в обмотках электродвигателя во время включения по сравнению со всеми остальными способами запуска. Если нет жестких ограничений по току, то такой метод запуска является наиболее предпочтительным. В разных странах действуют различные правила и нормы по ограничению максимального пускового тока. В таких случаях, необходимо использовать другие способы запуска.

Для небольших электродвигателей пусковой момент будет составлять от 150% до 300% от номинального момента, а пусковой ток будет составлять от 300% до 700% от номинального значения или даже выше.

Запуск «звезда – треугольник»

Запуск переключением «звезда – треугольник» используется для трёхфазных индукционных электродвигателей и применяется для снижения пускового тока. Следует отметить, что запуск переключением «звезда – треугольник» возможен только в тех двигателей, у которых выведены начала и концы всех трех обмоток. Пульт для запуска «звезда – треугольник» состоит и следующих комплектующих, трех контакторов (пускателей), реле перегрузки по току и реле времени, управляющего переключением пускателей. Чтобы можно было использовать этот способ запуска, обмотки статора электродвигателя, соединенные по схеме «треугольник», должны быть рассчитаны на работу в номинальном режиме. Обычно электродвигатели рассчитаны на напряжение 400 В при соединении по схеме «треугольник» (∆) или на 690 В при соединении по схеме «звезда» (Y). Такая унифицированная схема соединения может быть также использована для пуска электродвигателя при более низком напряжении. Схема запуска переключением «звезда – треугольник» показана на (Рис. 2)

Пуск звезда треугольник

В момент пуска электропитание к обмоткам статора подключено по схеме «звезда» (Y) Замкнуты контакторы К1 и К3. По истечении определённого периода времени, зависящего от мощности двигателя и времени разгона, происходит переключение на режим запуска «треугольник» (∆). При этом контакты пускателя K3 размыкаются, а контакты пускателя K2 замыкаются. Управляет переключением контактов пускателей K3 и K2 реле времени. На реле выставляется время, в течение которого происходит разгон двигателя. В режиме запуска «звезда – треугольник» напряжение, подаваемое на фазы обмотки статора, уменьшается в корень из трех раз, что приводит к уменьшению фазных токов тоже в корень из трех раз, а линейных токов в 3 раза. Соединение по схеме «звезда – треугольник» дает более низкий пусковой ток, составляющий всего одну треть тока при прямом запуске. Запуск «звезда – треугольник» особенно хорошо подходят для инерционных систем, когда происходит «подхватывание» нагрузки после того, как произошел разгон двигателя.

Запуск «звезда – треугольник» также понижает и пусковой момент, приблизительно на треть. Данный метод можно использовать только для индукционных электродвигателей, которые имеют подключение к напряжению питания по схеме «треугольник». Если переключение «звезда – треугольник» происходит при недостаточном разгоне, то это может вызвать сверхток, который достигает почти такого же значения, что и ток при «прямом» запуске. За время переключения из режима «звезда» в «треугольник» двигатель очень быстро теряет скорость вращения, для ее восстановления необходим мощный импульс тока. Скачок тока может стать ещё больше, так как на время переключения двигатель остается без сетевого напряжения.

Запуск через автотрансформатор

Данный способ запуска осуществляется при помощи автотрансформатора, последовательно соединённого с электродвигателем во время запуска. Автотрансформатор понижает подаваемое на электродвигатель напряжение (приблизительно на 50–80% от номинального напряжения), чтобы произвести запуск при более низком напряжении. В зависимости от заданных параметров напряжение снижается в один или два этапа. Понижение напряжения, подаваемого на электродвигатель одновременно, приведёт к уменьшению пускового тока и вращающего пускового момента. Если в определённый момент времени к электродвигателю не подаётся питание, он не потеряет скорость вращения, как в случае с запуском «звезда – треугольник». Время переключения от пониженного напряжения к полному напряжению можно корректировать. На (Рис. 3) приведена характеристика пускового тока при запуске асинхронного двигателя с коротко замкнутым ротором при помощи автотрансформатора.

Пуск через автотрансформатор тока

Помимо уменьшения пускового момента, способ запуска через автотрансформатор имеет и недостаток. Как только электродвигатель начинает работать, он переключается на сетевое напряжение, что вызывает скачок тока. Вращающий момент зависит от напряжения подаваемого на двигатель. Значение пускового момента пропорциональны квадрату напряжения.

Плавный пуск

В устройстве «плавный пуск» используются те же IGBT транзисторы, что и в частотных преобразователях. Данные транзисторы через цепи управления, понижают начальное напряжение, поступающее на электродвигатель, что приводит к уменьшению пускового момента в электродвигателе. В процессе запуска «плавный пуск» постепенно повышает напряжение электродвигателя, что позволяет электродвигателю разогнаться до номинальной скорости вращения, не образуя большого момента и пиков тока. На (Рис. 4) приведена характеристика пускового тока при запуске асинхронного двигателя с коротко замкнутым ротором с помощью устройства «плавный пуск». Плавный запуск может использоваться также для управления торможением электродвигателя. Устройство «плавный пуск» дешевле преобразователя частоты. Использование устройства «плавного пуска» для асинхронных двигателей значительно увеличивают срок службы электродвигателя, а с ним и насоса находящегося на валу этого двигателя.

Диаграмма для плавного пуска двигателя

У «плавного пуска» существуют те же проблемы, что и у частотных преобразователей: они создают наводки (помехи) в систему электроснабжения. Данный способ также обеспечивает подачу пониженного напряжения к электродвигателю во время запуска. При плавном запуске электродвигатель включается при пониженном напряжении, которое затем увеличивается до напряжения сетевого питания. Напряжение в плавном пускателе уменьшается за счет фазового сдвига. Данный способ пуска не вызывает образования скачков тока. Время запуска и пусковой ток можно задавать.

Запуск при помощи частотного преобразователя

Частотные преобразователи предназначены не только для запуска, но и управления электродвигателем. Инвертор позволяет снизить пусковой ток, так как электродвигатель имеет жесткую зависимость между током и вращающим моментом. На (Рис. 5) приведена характеристика пускового тока при запуске асинхронного двигателя с помощью частотного преобразователя.

Пуск двигателя с преобразователем частоты

Преобразователи частоты остаются все еще дорогими устройствами, и также как и плавный пуск, создают дополнительные помехи в сеть электропитания.

Заключение

Задача любого из способов запуска электродвигателя заключается в том, чтобы согласовать характеристики вращающего момента электродвигателя с характеристиками механической нагрузки, при этом необходимо, чтобы пиковые токи не превышали допустимых значений. Существуют различные способы запуска асинхронных двигателей, каждый их которых имеет свои плюсы и минусы. И в заключении приведена небольшая таблица, где в краткой форме указаны преимущества и недостатки наиболее распространённых способов запуска асинхронных электродвигателей.

Способы запуска

Преимущества

Недостатки

Простой и экономичный. Безопасный запуск Самый большой пусковой момент Высокий пусковой ток

Запуск «звезда – треугольник»

Уменьшение пускового тока в три раза. Скачки тока при переключении «звезда – треугольник». Не подходит, если нагрузка без инерционная. Пониженный пусковой момент.

Запуск через автотрансформатор

Уменьшение пускового тока на U 2 . Скачки тока при переходе от пониженного напряжения к номинальному напряжению. Пониженный пусковой момент. Отсутствуют скачки тока. Небольшой гидравлический удар при запуске насоса. Уменьшение пускового тока на требуемую величину, обычно в 2-3 раза. Пониженный пусковой момент.

Запуск при помощи частотного преобразователя

Способ управления двухфазным асинхронным электродвигателем

СПОСОБ УПРАВЛЕНИЯ ДВУХФАЗНЫМ АСИНХРОННЫМ ЭЛЕКТРОДВИГАТЕЛЕМ, при котором фазы А и В обмотки статора электродвигателя подключаются в определенной последовательности к однофазному источнику питания через определенное число полупериодов питающего напряжения, отличающийся тем, что, с целью повышения точности путем исключения составляющих тормозного момента, определяют начало положительной полуволны первого периода питающего напряжения и в этот момент производят подключение одной из фаз, определяют момент перехода положительной полуволны через нуль, затем отключают электродвигатель от однофазного источника питания , определяютмомент перехода отрицательной полуволны первого периода питающего напряжения через нуль, после чего подключают другую фазу, для следующих трех полуволн напряжения питания определяют начала и моменты перехода их через нуль и осуществляют соответствующее под (Л ключение одной и другой фаз обмоток статора электродвигателя с другой полярностью по отношению к начальной, далее чередуют подключение полуволн напряжения питания в указанной последовательности .

РЕСПУБЛИК а9) (11) 1|(д) Н 02 P 1/42

Н ABTOPCHOIVIY СВИДЕТЕЛЬСТВУ

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР

ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТКРЫТИЙ (21) 3512570/24-07 (22) 17.11.82 (46) 07.09.84. Бюл. № 33 (72) Я.П. Грейвулис, Л.С. Рыбицкий, И.В. Авкштоль и Я.А. Дирба (71) Рижский ордена Трудового Красного Знамени политехнический институт (53) 621.316.717(088.8) (56) 1. Усманходжаев M.Н. Методы регулирования скорости однофазных конденсаторных асинхронных электродвигателей. М., «Энергия», 1980, с.13-18.

2. Заявка Японии ¹ 54-44083, кл, Н 02 P 3/24, 1979. (54)(57) СПОСОБ УПРАВЛЕНИЯ ДВУХФАЗНЫМ

АСИНХРОННЫМ ЭЛЕКТРОДВИГАТЕЛЕМ, при котором фазы А и В обмотки статора электродвигателя подключаются в определенной последовательности к однофазному источнику питания через определенное число полупериодов питающего напряжения, о т л и ч а ю— шийся тем, что, с целью повышения точности путем исключения составляющих тормозного момента, определяют начало положительной полуволны первого периода питающего напряжения и в этот момент производят подключение одной из фаз, определяют момент перехода положительной полуволны через нуль, затем отключают электродвигатель от однофазного источника питания, определяют момент перехода отрицательной полуволны первого периода питающего напряжения через нуль, после чего подключают другую фазу, для следующих трех полуволн напряжения питания определяют начала и моменты перехода их через нуль и осуществляют соответствующее подключение одной и другой фаз обмоток статора электродвигателя с другой полярностью по отношению к начальной, далее чередуют подключение полуволн напряжения питания в указанной последовательности.

Изобретение относится к электротехнике и может быть использовано в электроприводах, содержащих двухфазные асинхронные электродвигатели, питаемые от сети однофазного напряжения.5

Известен способ управления двухфазным асинхронным электродвигателем, согласно которому в состав питающего напряжения сначала идут только положительные полуволны, а затем отрицательные. Тем самым достигается изменение частоты входного напряже-; ний (1) .

Недостатком такого способа является невысокая точность управле- 15 ния из-за несимметрии полуволн питающего напряжения при изменении частоты сети.

Наиболее близким к изобретению по технической сущности и достигае- 20 мому результату является способ управления двухфазным асинхронным электродвигателем, согласно которому фазы А и В обмотки статора электродвигателя подключаются в определен-25 ной последовательности к однофазному источнику питания через определен. ное число полупериодов питающего напряже ния f2) .

Недостаток известного способа за- 30 ключается в невысокой точности, обусловленной временным отсчетом длительности полуволн блоком импульсов, кроме того, при изменении частоты питающего напряжения появляются З5 составляющие тормозного момента.

Целью изобретения является повышение точности путем исключения составляющих тормозного момента.

Указанная цель достигается тем, 40 что согласно способу управления двухфазным асинхронным электродвигателем, при котором фазы А и В обмотки статора электродвигателя подключаются в определенной последовательности к 45 однофазному источнику питания через определенное число полупериодов питающего напряжения, определяют начало положительной полуволны первого периода питающего напряжения и в 50 этот момент производят подключение одной из фаз, определяют момент перехода положительной полуволны через нуль, затем отключают электродвигатель от однофазного источника пита- 55 ния, определяют момент перехода отрицательной полуволны первого периода питающего напряжения через нуль, после чего подключают другую фазу электродвигателя, для следующих трех полуволн напряжения питания определяют начала и моменты перехода их через нуль и осуществляют соответствующее подключение одной и другой фаз обмоток статора электродвигателя с другой полярностью по отношению к начальной, далее чередуют подключение полуволн напряжения питания в указанной последовательности.

На фиг. 1 показан график чередования полуволн однофазного напряжения, на фиг. 2 — структурная схема силовой части устройства, реализующего способ; на фиг. 3 — схема устройства, реализующего способ управления двухфазным асинхронным электродвигателем.

Согласно предлагаемому способу (фиг. 1) определяют момент начала положительной полуволны первого периода питающего напряжения и производят подключение одной из фаз электродвигателя, а при определении момента положительной полуволны через нуль отключают электродвигатель от источника питания. После этого определяют момент перехода отрицательной полуволны через нуль и подключают другую фазу обмотки статора электродвигателя к источнику питания, сдвинутую на пространственный угол. Для следующих трех полуволн питающего напряжения определяют начала и моменты перехода их через нуль и осуществляют соответствующее подключение электродвигателя с другой полярностью по отношению к начальной. В дальнейшем чередуют подключение полуволн однофазного напряжения в указанной последовательности.

Этим самым обеспечивается создание вращающего магнитного поля без наличия фазосдвигающего конденсатора.

Частота вращающего магнитного поля составляет 16,6 Гц.

Устройство, регулирующее способ управления двухфазным асинхронным электродвигателем, содержит ключевые регуляторы 1 и 2, подключенные к об моткам 3 и 4 двухфазного двигателя.

В системе управления к входу триггера 5, фиксирующего переход питающего напряжения через нуль от отрицательных значений к положительным, и триггера 6, фиксирующего переход питающего напряжения через нуль от положитель1112515 ных значений к отрицательным, подключен выключатель 7. К выходу триггера 5 через выключатель 8 присоединен триггер 9 с памятью, к второму входу которого подсоединен выключатель 10. На выходе триггера 5 установлены элементы И 11 и 12, а на выходе триггер 6 — элементы И 13 и 14. К другим входам элементов

И 11 — 14 подключены соответственно одновибраторы 15 — 18. Элементы

И 11 — 14 соединены с формирователями 19 — 22 импульсов. Выход триггера

9 с памятью дополнительно соединен с входом формирователя 19 импульсов.

Выходы формирователей 19 и 22 импульсов подключены к ключевому регулятору 1 и одновибраторам 16 и 18, а выходы формирователей 19 и 20 импульсов — к ключевому регулятору 3 и одновибраторам 17 и 15. Одновибраторы 16 и 18 осуществляют расширение импульса более одного периода, а одновибраторы 17 и 15 — более одного полупериода.

Устройство работает следующим об,разом.

При переходе однофазного напряжения от отрицательных значений к положительным при замкнутых выключателях 7 и 8 срабатывают триггер 5, фиксируя начало положительной полуволны, и триггер 9 с памятью. Далее срабатывает формирователь 19 импульсов, включая ключевой регулятор 1, и одновибратор 16 с расширением импульса более периода однофазного напряжения. В конце положительной по35

Таким образом, предлагаемый способ позволяет независимо от изменения частоты питающего напряжения к обмоткам фаз статора двухфазного электродвигателя прикладывать симметричное напряжение, что повышает точность путем исключения составляющих тормозного момента. луволны фазный регулятор 1 отключает обмотку 3 электродвигателя от источника питания. При переходе отрицательной полуволны первого периода через нуль срабатывает триггер 5.

Наличие сигналов от одновибратора 16 и триггера 5 приводит к включению элемента И 11 и формирователя 20 импульсов, который включает ключевой

10 регулятор 2 обмотки второй фазы статора 4.В дальнейшем подключение полуволн напряжения питания производится аналогично, т.е. фиксируются моменты перехода через нуль триггера

15 6 и осуществляется подключение полуволн ключевыми регуляторами 1 и 2, запускаемыми формирователями 21 и 22 импульсов. При этом сопоставление по длительности импульсов осущест20 вляется элементами И 13 и 14 и одновибраторами 17 и 18. В дальнейшем работа схемы управления повторяется.

Остановка двухфазного асинхронного электродвигателя осуществляется вы25 ключателем 7. Для подготовки системы управления к следующему пуску необходимо выключателем 10 триггер с памятью возвратить в исходное положение.

Тираж 666 Подписное

ВНИИПИ Государственного комитета СССР по делам изобретений и открытий

113035, Москва, Ж-35, Раушская наб., д. 4/5

Филиал ППП «Патент», r, Ужгород, ул. Проектная, 4

Составитель Е. Перемыслова

Редактор Р, Цицика Техред Т.Маточка Корректор В. Гирняк

Несколько способов пуска асинхронного двигателя

Существуют требования, которым должен отвечать запуск асинхронного двигателя. Во-первых, это отсутствие необходимости в использовании специальных устройств. Во-вторых, это сведение пусковых токов до минимума и пускового момента (далее Мпуск) до максимума. Рассмотрим способы пуска асинхронного двигателя, удовлетворяющие выдвинутым требованиям.

Прямой пуск

Подразумевает подключение намоток статора к электросети без «посредников». Подходит моторам с короткозамкнутым ротором. Это двигатели небольшой мощности, у которых при подключении напрямую к электросети статорных обмоток, образующимися пусковыми токами не вызывается перегрев, способный вывести технику из строя.

В асинхронных двигателях соотношение индуктивности обмоток к их сопротивлению (L/R) небольшое. И оно тем меньше, чем меньше мощность устройства. Поэтому во время запуска образующийся свободный ток быстро затухает, и им можно пренебречь. Брать в учет будет только ту силу тока, которая установилась в результате переходного процесса.

Ниже на рисунке (а) представлена схема магнитного пускателя, обозначенного буковой К. Технически это электромагнитный выключатель, часто применяемый при запуске электродвигателей с короткозамкнутым ротором. Он необходим для автоматического разгона по естественной механической характеристике (обозначим М) от начала запуска (точка П) до момента, когда М станет равным моменту сопротивления (Мс).

На картинке (б) представлен график зависимости пускового тока от начального момента. Исходя из него, ускорение разгона равно разности абсцисс графиков М и М(с). В таком случае, если Мпуск будет меньше Мс, то разогнаться у электродвигателя не получится. Чтобы получить оптимальное для разгона значение Мпуск для мотора с короткозамкнутым ротором используйте формулу (коэффициент скольжения s равен единице):

Отношение Мпуск к номинальному (Мном) – это величина, определяемая как кратность начального момента. Обозначается kпм. Коэффициент для двигателей с короткозамкнутым ротором входит в диапазон от 1 до 1,8 и устанавливается ГОСТом.

Пример. Если kпм=1,4, а Мном=5000 Н*м, то прямой запуск должен начинаться с Мп = 7000 Н*м.

Внимание! Нельзя превышать установленные ГОСТом нормы. Это ведет к повышению активного сопротивления на вращающемся элементе мотора.

Прямой запуск двигателя обладает преимуществами:

  • Дешевизна;
  • Простота;
  • Минимальный нагрев обмоток при запуске.
  • Величина Мпуск составляет до 300% от Мном;
  • Пусковой ток составляет до 800% от номинального (смотрите графики снизу).

Даже с перечисленными недостатками прямой запуск остается наиболее предпочтительным для асинхронных электродвигателей с короткозамкнутым ротором, т.к. обеспечивает высокие энергетические показатели.

Пуск с понижением напряжения

Подходит для запуска электродвигателя высокой мощности, но так же оптимален для аналогов средней, если напряжение в рабочей сети не позволяем разогнать мотор с помощью прямого пуска.

Для понижения напряжения существует три способа:

  1. Переключение намоток статора с треугольника (нормальная схема) на звезду (пусковая схема). Запуск начинается со звезды, а при достижении номинальной частоты происходит переключение на треугольник. При этом напряжение, питающее фазы статорных обмоток, падает в 1,73 раз. Это позволяет уменьшиться во столько же раз фазным токам, а линейные сокращаются втрое.
  2. Запуск с добавочным сопротивлением, приводящим к падению вольтажа на статорной обмотке (рисунок а). На момент пуска в электроцепь включают реакторы или резисторы (реактивное и активное сопротивление соответственно).
  3. Пуск с подключением через трансформатор понижающего типа с несколькими автоматически переключаемыми ступенями (рисунок б).

Главное преимущество – возможность разгона двигателя почти при том же напряжении, которое необходимо для нормальной работы. К недостаткам относится лишь падение Мп и Ммакс (максимальный момент). Эти величины прямо пропорционально зависят от напряжения: чем меньше Вольт, тем меньше моменты. Поэтому с нагрузкой мотор не запустится.

Соединение ротора с реостатом во время включения

Метод подходит для включения в работы моторов с фазным ротором. Если роторная цепь включает в себя реостат, то активное сопротивление повышается. При этом точка К на рисунке а ниже перемещается ближе к О и обозначается К`. Это не приводит к уменьшению Ммакс, зато обеспечивает повышение Мпуск. Вместе с этим критическое скольжение увеличивается, и зависимость момента от s смещается к зоне больших скольжений. Число же оборотов смещается в зону меньших вращательных частот (рисунки б и в).

Обычно реостат, используемый для пуска мотора, имеет от 3 до 6 ступеней (смотрите рисунок а ниже). Пусковое сопротивление плавно уменьшается, что обеспечивается большой Мпуск. Изначально мотор приводится в ход по четвертой характеристике, проиллюстрированной на рисунке б. Она соответствует сопротивлению запускающего реостата и обеспечивает максимальную пусковую мощность.

Вращающий момент (Мвр) уменьшается с ростом оборотов. При некотором минимальном значении необходимо отключить часть реостата, чтобы Мвр возрос снова до максимального (смотрите третью характеристику). Но обороты растут, поэтому Мвр снова уменьшается. Тогда отключается еще одна часть реостата, и начинается работа по второй характеристике. Когда реостат двигателя с фазным ротором отключают вовсе, пусковой процесс завершается. Мотор продолжает работу по характеристике 1.

Запуск в ход таким методом характеризуется изменением Мвр от максимального до минимального значения. Сопротивление в данном случае уменьшается ступенчато по ломаной кривой линии (выделена жирным на графике). Выключение частей реостата осуществляется автоматически или вручную.

Преимущество запуска электродвигателя с фазным ротором с использованием реостата заключается в возможности включать его при Мпуск, близком к Ммакс. Пусковые токи при этом минимальны. Изменение силы тока проиллюстрировано на рисунке в.

Недостатков хватает. Во-первых, это сложность включения. Во-вторых, это необходимость использования совсем не дешевых моторов с фазным ротором. Характер работы хуже, чем у аналогов с короткозамкнутым ротором при мощности одинакового значения – это третий минус. Это объясняет, почему электродвигатели с фазным ротором используют преимущественно в случае возникновения сложностей с запуском других двигателей.

Запуск в ход однофазного мотора

Для включения в работу асинхронного двигателя с питанием от однофазной сети используют вспомогательную намотку. Она должна лежать перпендикулярно относительно рабочей статорной намотки. Но для создания вращающегося магнитного поля необходимо соблюдение еще одного условия. Это сдвиг по фазе тока, протекающего по вспомогательной намотке, относительного тока, возникающего в рабочей обмотке.

Для обеспечения сдвига фаз в момент подключения к однофазной сети в электроцепь вспомогательной обмотки включают специальный элемент. Это может быть резистор, конденсатор или дроссель. Но распространенными элементами являются только первые два.

После разгона мотора до значения частоты, равной установившейся, дополнительную намотку выключают. Это можно сделать вручную или автоматически. В начале двигатель работает по двухфазной, а после установления частоты – по однофазной характеристике.

Применение сопротивления при пуске

Метод применим для асинхронных двигателей, подключаемых к однофазной сети, и имеющих первичную дополнительную обмотку с короткозамкнутым ротором. Так называют мотор с расщепленной фазой, электроцепь которого имеет высокое активное сопротивление.

Чтобы пустить в ход двигатель, питаемый от однофазной сети, необходим пусковой резистор, соединяемый последовательно с дополнительной намоткой. Тогда сдвиг фаз составляет 30 градусов. Этого хватает для разгона. Ниже представлена схема, согласно которой достигается омический сдвиг фаз.

Вместо резистора можно применить дополнительную обмотку высокого сопротивления, но низкой индуктивности. В этом случае намотка имеет мало витков, которые выполняются из провода меньшего сечения в отличие от того, что используется для рабочей намотки.

В России с конвейера выходят моторы, подключаемые к однофазной сети, оснащенные резистором для сдвига фаз. Их мощность варьируется в диапазоне 18-600 Вт. Двигатели рассчитаны для сетей с напряжением 127, 220 или 380 Вольт и переменным током с частотой 50 Гц.

Использование конденсатора

Метод отличается от предыдущего тем, что мотор с расщепленной фазой при подключении к однофазной линии, имеет высокое сопротивление только в момент запуска.

Для обеспечения наибольшего значения Мпуск необходимо круговое и вращающееся магнитное поле. Для этого токи в рабочей и дополнительной обмотках смещают на 90 градусов. Такое смещение может обеспечить только конденсатор. Его использование помогает достичь хорошей пусковой характеристики асинхронного двигателя, питающегося от однофазной электросети.

Выбор способа пуска асинхронного электродвигателя зависит от того, к какой сети он включается: к однофазной или трехфазной. Влияет также мощность мотора и его конструкция.

Пуск и реверс асинхронных двигателей

При включении асинхронного двигателя в сеть трёхфазного переменного тока, пусковой ток IП = (5÷7)Iном. Такое увеличение тока достигается за счет большой частоты вращающегося магнитного поля статора при неподвижном роторе, имеющим скольжение S = 1. Большая частота магнитного поля статора индуктирует большую ЭДС в цепи ротора, которая создает большой пусковой ток ротора. При увеличении частоты вращения ротора уменьшается скольжение, падает ЭДС и ток в цепи ротора.

Прямой пуск асинхронного двигателя допустим, если мощность двигателя меньше мощности источника питания. Если мощности двигателя и питающей сети соизмеримы, то необходимо использовать средства для уменьшения пускового тока.

Двигатель с фазным ротором (рис.6.11) снабжается трёхфазным пусковым реостатом ПР, который, при пуске двигателя, подключается в цепь ротора. При этом сопротивление фаз ротора увеличивается на величину сопротивлений пускового реостата, подключенных к каждой фазе ротора. При достижении двигателем достаточной частоты вращения пусковой реостат выводится, и ротор становится короткозамкнутым.

Рис.7.11. Электрическая схема пуска асинхронного двигателя с помощью пускового реостата

На рис.6.12 изображены механические характеристики пуска асинхронного двигателя с фазным ротором с помощью пускового реостата.

Рис.6.12. Механические характеристики пуска асинхронного двигателя с фазным ротором с помощью пускового реостата

Пуск двигателя начинается с точки 1 с пусковым моментом Мп и происходит по характеристике 1 – 2 при полностью введённом сопротивлении реостата. Как

только двигатель наберёт обороты (точка 2), уменьшают сопротивление реостата и двигатель переходит в режим, соответствующий второй характеристике (точка 3). При этом частота вращения двигателя увеличивается по характеристике 3 – 4. Далее опять уменьшается сопротивление пускового реостата до его закорачивания, частота вращения двигателя переходит на характеристику 5 – 6 и двигатель преобретает номинальную частоту вращения при номинальном моменте вращения.

Пуск в ход асинхронных двигателей с короткозамкнутым ротором осуществляется непосредственным включением в сеть с использованием средств уменьшения пускового тока.

На рис.6.13 изображена схема пуска асинхронного двигателя с помощью реактора. Трёхфазный реактор имеет элементы с реактивными сопротивлениями в каждой фазе. Реактор включается только в момент пуска двигателя, при этом рубильник S2 выключается, а рубильник S1 включает двигатель в сеть.

Пусковой ток при этом плавно возрастает до значения IП = 2Iном, двигатель увеличивает обороты. При достижении номинальных оборотов рубильник S2 включается.

На рис.6.14 изображена схема автотрансформаторного пуска асинхронного двигателя.

Рис.6.13. Схема пуска асинхронного двигателя с помощью реактора.

Рис.6.14. Схема автотрансформаторного пуска асинхронного двигателя.

В момент пуска двигателя включается рубильник S1 и постепенно увеличивают напряжение на двигателе, используя трехфазный автотрансформатор АТ. После того как ротор двигателя раскрутится, через автотрансформатор АТ подают полное напряжение сети и включают рубильник S2.

На рис.6.15 изображена схема асинхронного двигателя с переключением со звезды на треугольник.

Пуск со звезды на треугольник осуществляется в случае, когда при пуске двигателя его нагрузка не превышает 40% номинальной мощности двигателя, кроме того, подобное переключение требует, чтобы напряжение на фазной обмотке соответствовало линейному напряжению сети.

Рис.6.15. Схема асинхронного двигателя с переключением со звезды на треугольник

Это значит, что если линейное напряжение сети 380В, двигатель подключают в сеть звездой, а, если линейное напряжение сети 220В, то двигатель следует подключать треугольником. В первом и во втором случае на обмотку фаз подается напряжение 220В.

При пуске двигателя рубильником S1 подключют сеть, а переключатель S2 устанавливается в положение “Пуск”. Пусковой ток при этом уменьшается в три раза. Двигатель набирает обороты и при номинальных оборотах переключатель S2 устанавливается в положение “Работа”.

На рис.6.16 изображена блок-схема устройства симисторного пуска асинхронного двигателя.

Рис.6.16. Блок-схема устройства симисторного пуска асинхронного двигателя

Симисторы включаются в каждую фазу сетевого напряжения и используют положительный и отрицательный полупериоды переменного тока. Открытие симисторов осуществляется с блока управления БУ путем подачи электрических

ипульсов тока на управляющие электроды. При снятии напряжения с управляющих электродов, двигатель отключается от сети. Смещая по фазе угол импульса тока управления можно изменять сопротивление симисторов или напряжение на двигателе, а, следовательно, и вращающий момент, чем осуществлять плавный пуск двигателя.

На рис.6.17 изображена схема пуска однофазного асинхронного двигателя, имеющего две статорные обмотки, магнитные оси которых располагаются под углом в 90°.

Рис.6.17. Пуск однофазного асинхронного двигателя

Такие машины имеют небольшую мощность до (1÷2) киловатт, их особенность отсутствие пускового момента Мп. Для запуска двигателя необходимы пусковые устройства, к которым можно отнести элементы, имеющие реактивные сопротивления, например конденсатор или катушку индуктивности. На схеме таким пусковым устройством является конденсатор С, который, при пуске двигателя, включается ключом S2 в положение “Пуск”. При достижении двигателем номинальных оборотов конденсатор выключается (положение “Работа”).

На рис.6.18 изображена схема пуска трёхфазного асинхронного двигателя от однофазной сети. При пуске двигателя ключ S2 замыкается на конденсатор С. При достижении двигателем номинальных оборотов, ключ S2 размыкается.

Реверсом называют изменение направления вращения электрической машины.

Направление вращения асинхронного двигателя зависит от порядка следования фаз питающего напряжения.

Рис.6.18. Схема пуска трёхфазного асинхронного двигателя от однофазной сети

На рис.6.19 изображены векторные диаграммы прямого и обратного следования фаз статорных обмоток, соединенных звездой, а также указаны направления вращения электрической машины.

Рис.6.19. Векторные диаграммы прямого и обратного следования фаз

питающего напряжения, поясняющие реверс асинхронного двигателя

Существует несколько способов управления пуском, реверсом и остановкой асинхронных двигателей.

На рис.6.20 изображены схемы управления асинхронным двигателем с помощью переключателя S и магнитного пускателя МП. Реверс и остановка двигателя при управлении магнитным пускателем осуществляется кнопками “Вперед”, ”Назад” и ”Стоп”, управляющими контакторами В и Н, которые имеют силовые контакты и контакты цепи управления, осуществляющих блокировку одновременного включения контакторов.

Рис.6.20. Схемы управления асинхронным двигателем с помощью переключателя и магнитного пускателя

Асинхронные двигатели большой мощности останавливают электроторможением методами противовоключения и рекуперации. При торможении противовключением производится переключение двух фаз статора, изменяется направление вращения магнитного поля статора, скольжение становится больше единицы, и ротор двигателя останавливается. Рекуперативное торможение производится при переводе двигателя в генераторный режим. При этом частота вращения ротора становится больше частоты вращающегося поля статора, скольжение становится меньше нуля, происходит торможение и остановка машины.

6.5. Регулирование частоты вращения трёхфазного асинхронного двигателя

Частота вращения ротора асинхронного двигателя определяется из выражения:

где — частота вращения магнитного поля статора в минуту,

— частота мгновенных токов в обмотках статора в секунду,

— количество пар полюсов статора.

Исходя из выражения (6.16), регулирование частоты вращения асинхронных двигателей с короткозамкнутым ротором возможно путём изменения частоты тока , скольжения , и количества пар полюсов статора .

Регулирование частоты тока в обмотках статора двигателя может осуществляться тиристорным регулятором частоты, конструкция которого достаточно сложна. При этом происходит плавное регулирование частоты вращения магнитного поля статора.

Регулирование скольжения производится путём изменения подводимого напряжения в цепи статора с помощью трёхфазного автотрансформатора, либо симисторного регулятора, схемы которых приведены выше.

Регулирование частоты вращения асинхронного двигателя путём изменения количества пар полюсов статора , является ступенчатым. Так, если , то количество обмоток статора равно шести. На каждую фазу приходится по две обмотки. При последовательном соединении звездой двух обмоток, соединённых согласно (рис.6.21), получим четырёхполюсное магнитное поле с количеством пар полюсов , которое будут вращаться с чатотой в минуту , или в два раза меньше, чем у двухполюсного магнитного поля с количеством пар полюсов , у которого частота вращения магнитного поля статора в минуту .

Рис.6.21. Схема последовательного соединения обмоток статора асинхронного двигателя, соединённых звездой, и образующих четырёхполюсное магнитное поле

На рис.6.22 изображена схема параллельного соединения статорных обмоток, подключенных встречно двойной звездой. Переключение секций фазных обмоток со звезды на двойную звезду происходит при постоянных значениях вращающегося максимального момента и пускового момента.

Рис.6.22. Схема параллельного соединения обмоток статора асинхронного двигателя, соединённых двойной звездой, и образующих двухполюсное магнитное поле

Механические характеристики преключения фазных обмоток приведены на рис.6.23.

Рис.6.23. Механические характеристики асинхронного двигателя со ступенчатым регулированием частоты вращения

Для регулирования частоты вращения асинхронных двигателей с фазным ротором применяется способ реостатного регулирования скольжения ротора путём изменения активного сопротивления его фазных обмоток.

Частотное управление асинхронным двигателем схема своими руками. Принцип работы и изготовление частотного преобразователя

С все более увеличивающимся ростом автоматизации в бытовой сфере появляется необходимость в современных системах и устройствах управления электродвигателями.

Управление и преобразование частоты в небольших по мощности однофазных асинхронных двигателях, запускаемых в работу с помощью конденсаторов, позволяет экономить электроэнергию и активирует режим энергосбережения на новом, прогрессивном уровне.

Принцип работы однофазной асинхронной машины

В основе работы асинхронного двигателя лежит взаимодействие вращающегося магнитного поля статора и токов, наводимых им в роторе двигателя. При разности частоты вращения пульсирующих магнитных полей возникает вращающий момент. Именно этим принципом руководствуются при регулировании скорости вращения асинхронного двигателя с помощью .

Каждый электрик должен знать:  Подключение электрического духового шкафа без заземления

Пусковая обмотка занимает в конструкции статора 1/3 пазов, на главную обмотку приходится 23 паза статора.

Ротор однофазного двигателя коротко замкнутый, помещенный в неподвижное магнитное поле статора, начинает вращаться.

Рис.№1 Схематический рисунок двигателя, демонстрирующий принцип работы однофазного асинхронного двигателя.

Основные виды однофазных электроприводов

Кондиционеры воздуха, холодильные компрессоры, электрические вентиляторы, обдувочные агрегаты, водяные, дренажные и фекальные насосы, моечные машины используют в своей конструкции асинхронный трехфазный двигатель.

Все типы частотников преобразуют переменное сетевое напряжение в постоянное напряжение. Служат для формирования однофазного напряжения с регулируемой частотой и заданной амплитудой для управления вращения асинхронных двигателей.

Управление скоростью вращения однофазных двигателей

Существует несколько способов регулирования скорости вращения однофазного двигателя.

  1. Управление скольжением двигателя или изменением напряжения. Способ актуален для агрегатов с вентиляторной нагрузкой, для него рекомендуется использовать двигатели с повышенной мощностью. Недостаток способа – нагрев обмоток двигателя.
  2. Ступенчатое регулирование скорости вращения двигателя с помощью автотрансформатора.

Рис.№2. Схема регулировки с помощью автотрансформатора.

Достоинства схемы – напряжение выхода имеет чистую синусоиду. Способность трансформатора к перегрузкам имеет большой запас по мощности.

Недостатки – автотрансформатор имеет большие габаритные размеры.

Использование тиристорного . Применяются тиристорные ключи, подключенные встречно-параллельно.

Рис. №3.Схема тиристорного регулирования однофазного асинхронного электродвигателя.

При использовании для регулирования скорости вращения однофазных асинхронных двигателей, чтобы избежать негативного влияния индукционной нагрузки производят модификацию схемы. Добавляют LRC-цепи для защиты силовых ключей, для корректировки волны напряжения используют конденсатор, минимальная мощность двигателя ограничивается, так гарантируется старт двигателя. Тиристор должен иметь ток выше тока электродвигателя.

Транзисторный регулятор напряжения

В схеме используется широтно-импульсная модуляция (ШИМ) с применением выходного каскада, построенного на использовании полевых или биполярных IGBT транзисторах.

Рис. №4. Схема использования ШИМ для регулирования однофазного асинхронного электродвигателя.

Частотное регулирование асинхронного однофазного электродвигателя считается основным способом регулирования , мощности, эффективности использования, скорости и показателей энергосбережения.

Рис. №5. Схема управления электродвигателем без исключения из конструкции конденсатора.

Частотный преобразователь: виды, принцип действия, схемы подключения

Разрешает своему владельцу снизить энергопотребление и автоматизировать процессы в управлении оборудованием и производством.

Основные компоненты частотного преобразователя: выпрямитель, конденсатор, IGBT-транзисторы, собранные в выходной каскад.

Благодаря способности управлением параметрами выходной частоты и напряжения достигается хороший энергосберегающий эффект. Энергосбережение выражается в следующем:

  1. В двигателе поддерживается неизменный текущий момент ращения вала. Это обусловлено взаимодействием выходной частоты инверторного преобразователя с частотой вращения двигателя и соответственно, зависимостью напряжения и крутящего момента на валу двигателя. Значит, что преобразователь дает возможность автоматически регулировать напряжение на выходе при обнаружении превышающего норму значения напряжения с определенной рабочей частотой нужно для поддержания требуемого момента. Все инверторные преобразователи с векторным управлением имеют функцию поддержания постоянного вращающего момента на валу.
  2. Частотный преобразователь служит для регулировки действия насосных агрегатов (). При получении сигнала, поступающего с датчика давления, частотник снижает производительность насосной установки. При снижении оборотов вращения двигателя уменьшается потребление выходного напряжения. Так, стандартное потребление воды насосом требует 50Гц промышленной частоты и 400В напряжения. Руководствуясь формулой мощности можно высчитать соотношение потребляемых мощностей.

Уменьшая частоту до 40Гц, уменьшается величина напряжения до 250В, означает, что уменьшается количество оборотов вращения насоса и потребление энергии снижается в 2,56 раз.

Рис. №6. Использование частотного преобразователя Speedrive для регулирования насосных агрегатов по систем CKEA MULTI 35.

Для повышения энергетической эффективности использования необходимо сделать следующее:

  • Частотный преобразователь должен соответствовать параметрам электродвигателя.
  • Частотник подбирается в соответствии с типом рабочего оборудования, для которого он предназначен. Так, частотник для насосов функционирует в соответствии с заложенными в программу параметрами для управления работой насоса.
  • Точные настройки параметров управления в ручном и автоматическом режиме.
  • Частотный преобразователь разрешает использовать режим энергосбережения.
  • Режим векторного регулирования позволяет произвести автоматическую настройку управления двигателем.

Преобразователь частоты однофазный

Компактное устройство преобразования частоты служит для управления однофазными электродвигателями для оборудования бытового предназначения. Большинство частотных преобразователей обладает следующими конструктивными возможностями:

  1. Большинство моделей использует в своей конструкции новейшие технологии векторного управления.
  2. Они обеспечивают улучшенный вращающий момент однофазного двигателя.
  3. Энергосбережение введено в автоматический режим.
  4. Некоторые модели частотных преобразователей используют съемный пульт управления.
  5. Встроенный PLC контроллер (он незаменим для создания устройств сбора и передачи данных, для создания систем телеметрии, объединяет устройства с различными протоколами и интерфейсами связи в общую сеть).
  6. Встроенный ПИД регулятор (контролирует и регулирует температуру, давление и технологические процессы).
  7. Напряжение выхода регулируется в автоматическом режиме.

Рис.№7. Современный преобразователь Optidrive с основными функциональными особенностями.

Важно: Однофазный преобразователь частоты, питаясь от однофазной сети напряжением 220В, выдает три линейных напряжения, величина каждого из них по 220В. То есть, линейное напряжение между 2 фазами находится в прямой зависимости от величины выходного напряжения самого частотника.

Частотный преобразователь не служит для двойного преобразования напряжения, благодаря наличию в конструкции ШИМ-регулятора, он может поднять величину напряжения не более чем на 10%.

Главная задача однофазного преобразователя частоты – обеспечить питание как одно- так и трехфазного электродвигателя. В этом случае ток двигателя будет соответствовать параметрам подключения от трехфазной сети, и оставаться постоянным

Частотное регулирование однофазных асинхронных электродвигателей

Первое на что обращаем внимание при выборе частотника для своего оборудования – это соответствие сетевого напряжения и номинального значения тока нагрузки, на который рассчитан двигатель. Способ подключения выбирается относительно рабочего тока.

Главным в схеме подключения является наличие фазосдвигающего конденсатора, он служит для сдвига напряжения, поступающего на пусковую обмотку. Она служит для пускового включения двигателя, иногда после того, как двигатель заработал, пусковая обмотка вместе с конденсатором отключается, иногда остается включенной.

Схема подключения однофазного двигателя с помощью однофазного частотного преобразователя без использования конденсатора

Выходное линейное напряжение устройства на каждой фазе равно выходному напряжению частотника, то есть на выходе будет три напряжения линии, каждое по 220В. Для запуска может использоваться только пусковая обмотка.

Рис. №8. Схема присоединения однофазного асинхронного двигателя через конденсатор

Фазосдвигающий конденсатор не может обеспечить равномерный фазовый сдвиг в пределах границ частот инвертора. Частотник обеспечит равномерный сдвиг фаз. Для того, чтобы исключить из схемы конденсатор, нужно:

  1. Конденсатор стартера С1 удаляется.
  2. Вывод обмотки двигателя присоединяем к точке выхода напряжения частотника (используется прямая проводка).
  3. Точка А присоединяется к СА; В соединяется с СВ; W соединяется к СС, таким образом электродвигатель присоединится напрямую.
  4. Для включения в обратном направлении (обратная проводка) необходимо В присоединить к СА; А присоединить к СВ; W соединить с СС.

Рис. №9. Схема подключения однофазного асинхронного двигателя без использования конденсатора.

На видео — Частотный преобразователь. в однофазную сеть 220В.

Создание трёхфазного асинхронного электродвигателя пришлось на конец XIX века. С тех пор, никакие промышленные работы не являются возможными без его использования. Наиболее значимый момент в рабочем процессе — плавный пуск и торможение двигателя. Это требование в полной мере выполняется при помощи частотного преобразователя.

Существует несколько вариантов названий частотника для трёхфазного электродвигателя. В том числе, он может называться:

  • Инвертором;
  • Преобразователем частоты переменного тока;
  • Частотным преобразователем;
  • Частотно регулируемым приводом.

С помощью инвертора осуществляется , предназначенного для преобразования электрической энергии в механическую. Осуществляемое при этом движение можно трансформировать в движение другого типа.

Схема актуальна, если требуется управлять однофазным приводом. Уровень мощности преобразователя в схеме при этом составляет до трёх киловатт, а мощность не теряется.

Способ, подходящий для подключения клемм трёхфазных частотников, питаемых промышленными трёхфазными сетями.

На рисунке схема подключения частотника 8400 Vector

Для ограничения пускового тока и снижения пускового момента при запуске электрического двигателя по мощности превосходящего 5 кВт, применяется переключение «звезда-треугольник».

Когда на статор пускается напряжение, то фигурирует подключение устройства по типу «звезда». Как только значение скорости двигателя начинает соответствовать номинальному, поступление питания осуществляется по схеме «треугольник». Но этот приём используется, только когда технические возможности позволяют подключаться по двум схемам.

В объединённой схеме «звезды» и «треугольника» наблюдаются резкие скачки токов. При переходе на второй тип подключения показания по вращательной скорости значительно уменьшаются. Для восстановления прежнего режима работы и частоты оборотов следует осуществить увеличение силы тока.

Наиболее активно применяются частотники в конструкции электрического двигателя с уровнем мощности 0,4 — 7,5 кВт.

Сборка преобразователя частот своими руками

Одновременно с промышленным производством частотных преобразователей, остаётся актуальной сборка подобного устройства своими руками. Особенно этому способствует относительная простота процесса. В результате работы инвертора производится преобразование одной фазы в три.

Применение в бытовых условиях электрических двигателей, имеющих в комплектации подобное устройство, не вызывает никаких дополнительных затруднений. Поэтому можно смело браться за дело.

На рисунке структурная схема частотных преобразователей со звеном постоянного тока.

Схемы частотного преобразователя, используемые при сборке, состоят из выпрямительного блока, фильтрующих элементов (отвечающих за отсечение переменной составляющей тока и конструируемых из IGBT-транзисторов). По стоимости покупка отдельных компонентов преобразователя и выполнение сборки своими руками обходится дешевле, чем приобретение готового устройства.

Применять самосборные частотные преобразователи можно в электродвигателях имеющих мощность 0,1 — 0,75 кВт.

В то же время, современные заводские частотники имеют расширенную функциональность, усовершенствованные алгоритмы и улучшенный контроль безопасности рабочего процесса ввиду того, что при их производстве используются микроконтроллеры.

Сферы применения преобразователей:

  • Машиностроение;
  • Текстильная промышленность;
  • Топливно-энергетические комплексы;
  • Скважинные и канализационные насосы;
  • Автоматизация управления технологическим процессом.

Стоимость электродвигателей находится в прямой зависимости от того, есть ли в его комплектации преобразователей.

В данной статье будет рассмотрен частотник для электродвигателя, принцип его работы и основные компоненты. Основной упор будет сделан на теорию, чтобы вы поняли и смогли в дальнейшем осуществить проектировку и изготовление своими руками. Но для начала потребуется небольшой вводный курс, в котором будет рассказано о том, что такое частотник и для каких целей он необходим.

Функции частотного преобразователя

Львиную долю занимают в промышленности асинхронные двигатели. И ими управлять всегда было трудно, так как они имеют постоянную частоту вращения ротора, а изменять входное напряжение оказывается очень сложно, а порой даже невозможно. Но частотник полностью изменяет картину. И если раньше для изменения скорости движения транспортера, например, использовались разнообразные редукторы, то сегодня достаточно применить одно электронное устройство.

Кроме того, частотники позволяют получить не только возможность изменения параметров привода, но и несколько дополнительных степеней защиты. Отпадает необходимость в а порой даже не нужно иметь трехфазную сеть для обеспечения нормальной работы асинхронного двигателя. Все эти обязанности, связанные с коммутацией и включением электропривода, переходят к частотному преобразователю. Он позволяет изменять фазы на выходе, частоту тока (следовательно, и скорость вращения ротора меняется), проводить регулировку запуска и торможения, а также можно реализовать множество других функций. Все зависит от микроконтроллера, используемого в схеме управления.

Принцип действия

Сделать частотник для электродвигателя своими руками, схема которого приведена в статье, достаточно просто. Он позволяет осуществить преобразование одной фазы в три. Следовательно, появляется возможность использовать в быту асинхронный электродвигатель. При этом не потеряется его КПД и мощность. Ведь вы знаете, что при включении мотора в сеть с одной фазой происходит уменьшение этих параметров чуть ли не в два раза. А все дело в нескольких преобразованиях поступающего на вход устройства напряжения.

Первым по схеме идет выпрямительный блок. Более подробно о нем будет рассказано ниже. После выпрямленное напряжение подвергается фильтрации. И поступает чистый на вход инвертора. Он осуществляет преобразование постоянного тока в переменный с необходимым числом фаз. Вот этот каскад можно подвергнуть регулировкам. Он состоит из полупроводников, к которым подключена схема управления на микроконтроллере. Но теперь обо всех узлах более подробно.

Выпрямительный блок

Он может быть двух типов — одно- и трехфазным. Первый вид выпрямителя можно использовать в любой сети. Если у вас трехфазная, то достаточно произвести подключение к одной. Схема частотника для электродвигателя не обходится без выпрямительного блока. Так как имеется различие по числу фаз, значит, необходимо использовать определенное число полупроводниковых диодов. Если речь идет о частотных преобразователях, которые питаются от одной фазы, то требуется выпрямитель из четырех диодов. Они включаются по мостовой схеме.

Она позволяет уменьшить разницу между значением напряжения на входе и выходе. Конечно, можно использовать и однополупериодную схему, но она неэффективна, возникает большое число колебаний. Но если речь идет о трехфазном подключении, то необходимо в схеме использовать шесть полупроводников. Точно такая же схема в выпрямителе автомобильного генератора, никаких отличий нет. Единственное, что можно сюда добавить, так это еще три дополнительных диода, предназначенные для защиты от обратного напряжения.

Фильтрующие элементы

После выпрямителя идет фильтр. Его основное предназначение — это отсечка всей переменной составляющей Для более ясной картины нужно составить схему замещения. Итак, плюс проходит через катушку. А затем между плюсом и минусом включен электролитический конденсатор. Вот он-то и интересен в схеме замещения. Если катушка замещается то конденсатор при наличии различного тока может быть либо проводником, либо разрывом.

Как было сказано, в выпрямителе на выходе постоянный ток. А при подаче его на электролитический конденсатор не происходит ничего, так как последний является разрывом цепи. Но вот есть небольшая переменная в токе. А если течет переменный ток, то в схеме замещения конденсатор становится проводником. Следовательно, происходит замыкание плюса на минус. Данные выводы сделаны по законам Кирхгофа, которые являются основными в электротехнике.

Инвертор на силовых транзисторах

А вот теперь добрались до самого главного узла — каскада транзисторов. На них сделан инвертор — преобразователь постоянного тока в переменный. Если изготавливается частотник для электродвигателя своими руками, то рекомендуется использовать сборки IGBT-транзисторов, найти их можно в любом магазине радиодеталей. Причем стоимость всех компонентов для изготовления частотника окажется в десятки раз меньше, нежели цена готового изделия, даже китайского производства.

Для каждой фазы используется два транзистора. Они включены между плюсом и минусом, как изображено на схеме, приведенной в статье. Но есть у каждого транзистора особенность — управляющий вывод. В зависимости от того, какой на него подан сигнал, изменяются свойства полупроводникового элемента. Причем можно это произвести как при помощи ручного переключения (например, несколькими микровыключателями подавать напряжение на необходимые управляющие выводы), так и автоматического. Вот о последнем и пойдет речь дальше.

Схема управления

И если подключение частотного преобразователя к электродвигателю выполнить просто, достаточно только соединить соответствующие выводы, то со схемой управления все куда сложнее. Все дело в том, что возникает необходимость в программировании устройства, чтобы добиться максимально возможных регулировок от него. В основе находится микроконтроллер, к нему производится подключение считывающих устройств и исполнительных. Так, необходимо наличие трансформаторов тока, которые будут постоянно следить за мощностью, потребляемой электроприводом. И в случае превышения должно произойти отключение частотника.

Подключение схемы управления

Кроме того, предусматривается защита от перегрева. На выход микроконтроллера при помощи (сборки Дарлингтона) производится подключение управляющих выводов IGBT-транзисторов. Кроме того, необходимо визуально контролировать параметры, поэтому нужно включить в схему LED-дисплей. Из считывающих устройств требуется добавить кнопки, которые позволят переключаться между режимами программирования, а также переменное сопротивление, вращением его изменяется скорость вращения ротора электродвигателя.

Заключение

Хочется отметить, что изготовить можно и самостоятельно частотник для электродвигателя, цена же готового изделия начинается от 5000 рублей. И это для электродвигателей, мощность которых не превышает 0,75 кВт. Если нужно осуществить управление более мощным приводом, потребуется частотник подороже. Для использования в быту достаточно схемы, рассмотренной ниже. Причина — нет необходимости в большом количестве функций и настроек, самое главное — это возможность изменения частоты вращения ротора.

Во всем мире с успехом реализуются принципы частотного управления асинхронным электроприводом. Способ предусматривает кроме значительной экономии электроэнергии , усовершенствованное управление работы агрегатов, и ведет к существенному энергосбережению.

Принцип действия

Скорость вращения вала электродвигателя зависит от частоты подаваемого питающего напряжения. Использование частотных преобразователей повсеместно признано самым эффективным методом регулировки скорости вращения . Действие устройства заключается в формировании из значения выходного напряжения (U), характеризуемого постоянной частотой (F) и амплитудой (A), в напряжение с переменными параметрами. Это приводит к изменению величины частоты магнитного поля, изменяющего механическое вращение вала двигателя.

Принимая во внимание, что момент нагрузки постоянен, сила тока зависит от нагрузки, соответственно, происходит изменение подаваемого на клеммы двигателя напряжения пропорционального частоте, это сохраняет неизменным поток намагничивания и постоянный крутящий момент, а также неизменное значение тока.

Как следствие этих процессов, наблюдается постоянная корректировка скорости и вращающего момента в отношении рабочей нагрузки. Потери – минимальны, это достигается при помощи поддержания постоянного скольжения при любой скорости, для всех нагрузок.

Преимущества способа частотного регулирования

  • Управление электродвигателем может осуществляться на значительном расстоянии в удобном для этого месте.
  • Мягкий пуск и уменьшение затрат на техническое обслуживание устройства.
  • Возможность увеличивать производительность с помощью регулирования скорости, в соответствии с требуемой производственной потребностью.
  • Повышенный КПД преобразователя частоты до 97% асинхронной машины и до 95% повышает энергоэффективность за счет способа управления и применяемого электродвигателя.
  • Статический преобразователь применяется для переменного момента (невысокий крутящий момент, небольшие скорости) с уменьшенной величиной напряжения на клеммах присоединения к электродвигателю. Также, для использования в случае неизменного момента и мощности, в таком случае высокая эффективность достигается за счет плавного управления скоростью. Благодаря этим возможностям система может считаться универсальной.
  • Обязательный контроль скорости способствует достижению оптимизации технологического процесса, что способствует высокому качеству продукции.

Характеристики

Сигнал заданного значения напряжения и определенной частоты, получается по прохождении трех этапов – это:

  • Выпрямительный диодный мост.
  • Фильтр постоянного тока для осуществления сглаживания уже выпрямленного значения напряжения при помощи конденсаторов.
  • Инвертор или силовой модуль, работающий на базе IGВT (БТИЗ – биполярный транзистор с изолированным затвором). Этот силовой транзистор может использоваться в качестве ключа со значительным рабочим током в несколько кило-ампер, и с величиной напряжения в несколько киловольт с частотой коммутации более 30 кГц.

Рис №1. Три основных звена, из которых состоит устройство частотного преобразователя.

Типы частотного управления скоростью асинхронной машины

Существует два основных типа управления скоростью вращения, являющимися базовыми способами, это:

  • Скалярное (без использования обратной связи).
  • Векторное управление, обратная связь может применяться, а может отсутствовать.

Характеристика скалярного управления

При использовании этого типа управления, происходит сохранение соотношения U/F в неизменном виде по всему частотному интервалу для сохранения постоянного магнитного потока (Ф) электрического двигателя. Данный метод применяется при отсутствии надобности стремительного реагирования на колебания момента вращения и число оборотов.

Скалярное регулировании позволяет от одного частотного устройства запитать несколько рабочих асинхронных машин. При скалярном регулировании применяется компенсация скольжения за счет снижения скорости. Происходит увеличение постоянного момента вращения за счет повышения коэффициента V/F, это компенсирует понижение значения напряжения на статоре двигателя. Этот способ прост конструктивно и не нуждается в значительной точности и быстром реагировании на изменения числа оборотов вала.

Векторное управление двигателем

Увеличение эффективности в управлении рабочим приводом рекомендуется применить метод регулировки за счет изменения потокосцепления.

Самым точным и наиболее действенным считается метод векторного регулирования фазы тока в статоре машины и соответственно, фазой его магнитного поля относительно ротора. Для этого метода характерно применение датчика позиционирования или положения (энкодера), позволяющего показать точное положение ротора в каждый вращающий момент. Применение датчиков положения способно увеличить стоимость электропривода. С использованием энкодеров скорость можно регулировать с точностью до 0,01%.

Чтобы обойти такое ограничение рекомендуется применять в системе управления электродвигателем, преобразователь интегральных схем ASIC. Он создает адаптивную модель двигателя, выраженную математически с точным указанием величины токов, напряжений, сопротивления статора, индуктивность рассеивания на выходе. Делает возможным создание моделирования тепловых рабочих параметров двигателя при разных режимах работы.

Векторное управление без применения датчиков обратной связи способно обеспечить динамические погрешности, которые присутствуют в электроприводах с замкнутой обратной связью. Векторное управление без использования датчиков простое конструктивно, но весьма ограничено при использовании на невысоких скоростях, он отлично подходит для больших скоростей вращения.

Влияние токов высших гармоник

Важно : для сетей переменного тока система использующая преобразователь частоты служит нелинейной импульсной нагрузкой, где присутствуют токовые гармоники, отрицательно влияющие на качественные параметры линии электропередач в зависимости от значения сопротивления линии. Высшие гармоники обладают более низкой амплитудой и тем легче могут быть отфильтрованы.

Гармонические токи способствуют увеличению электрических потерь и снижение коэффициента мощности, способствуют перегреву элементов сети, например: кабелей, трансформаторов, двигателей, конденсаторов.

Сетевой дроссель или сглаживающий линейный реактор

Для преобразователей частоты обязательно наличие фильтрующего устройства. Снизить гармонические искажения можно за счет применения сетевых дросселей или DC-реакторов. Дроссель препятствует снижению величины напряжения на электродвигателе и способствует повышению его коэффициента мощности. Недостаток дросселя, он может привести нежелательному резонансу в общей системе электроснабжения, это происходит за счет неправильно выбранной комбинации его сопротивления с сопротивлением линии.

Рекомендуется сопротивление сетевого дросселя добавлять к существующему сопротивлению источника питания. При этом учитывается сопротивление трансформаторов и кабельных линий, в этом случае падение напряжения составит 2-4% и послужит для улучшения коэффициента мощности и уменьшения гармонических искажений на выходном токе.

Также сглаживающий реактор улучшает коэффициент мощности и служит для подавления или ослабления высших гармоник. Реактор помогает увеличить срок эксплуатации полупроводников, конденсаторных батарей. За счет этого происходит снижение значения тока выпрямительных диодов и уменьшается пульсация тока через конденсаторы.

Рис №2. Сетевой дроссель (реактор).

Мероприятия, направленные на сглаживание гармоник

Для подавления радиопомех, которые генерируются инвертором, в частотном преобразователе используют фильтр радиопомех и модуль DBR, устройства используются для соответствия требованиям по электромагнитной совместимости.

Также для уменьшения гармоник используют многоуровневый преобразователь, что влечет некоторое увеличение стоимости оборудования, снижает надежность и усложняет управление. Хорошее решение этого вопроса можно наблюдать при улучшении качества ШИМ, выполняется оптимизация временной диаграммы – происходит: пространственно векторная модуляция, улучшается контроль напряжения, повышается эффективность системы (частотный преобразователь + электродвигатель)

Энергосбережение

Повышение КПД электрического двигателя достигается за счет увеличения частоты коммутации. При подключении от преобразователя, происходит сохранение КПД двигателя, по сравнению со стандартными двигателями.

Энергоэффективность достигается за счет снижения тепловых потерь и потерь в железе, это можно нормализировать при снижении скорости. Качество управления происходит вследствие исключения механических устройств, при которых возникают потери, и понижается надежность – это могут быть: заслонки, системы тормозов, задвижки и т. д.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад, если вы найдете на моем еще что-нибудь полезное. Всего доброго.

Одна из первых схем преобразователя для питания трехфазного двигателя была опубликована в журнале «Радио» №11 1999г. Разработчик схемы М. Мухин в то время был учеником 10 класса и занимался в радиокружке.

Преобразователь предназначался для питания миниатюрного трехфазного двигателя ДИД-5ТА, который использовался в станке для сверления печатных плат. При этом следует отметить, что рабочая частота этого двигателя 400Гц, а напряжение питания 27В. Кроме того, средняя точка двигателя (при соединении обмоток «звездой») выведена наружу, что позволило предельно упростить схему: понадобилось всего три выходных сигнала, а на каждую фазу потребовался всего один выходной ключ. Схема генератора показана на рисунке 1.

Как видно из схемы преобразователь состоит из трех частей: генератора-формирователя импульсов трехфазной последовательности на микросхемах DD1…DD3, трех ключей на составных транзисторах (VT1…VT6) и собственно электродвигателя M1.

На рисунке 2 показаны временные диаграммы импульсов, сформированных генератором-формирователем. Задающий генератор выполнен на микросхеме DD1. С помощью резистора R2 можно установить требуемую частоту вращения двигателя, а также изменять ее в некоторых пределах. Более подробную информацию о схеме можно узнать в указанном выше журнале. Следует отметить, что по современной терминологии подобные генераторы-формирователи называются контроллерами.

Рисунок 2. Временные диаграммы импульсов генератора.

На базе рассмотренного контроллера А. Дубровским из г. Новополоцка Витебской обл. была разработана конструкция частотно-регулируемого привода для двигателя с питанием от сети переменного тока напряжением 220В. Схема устройства была опубликована в журнале «Радио» 2001г. №4.

В этой схеме, практически без изменений, используется только что рассмотренный контроллер по схеме М. Мухина. Выходные сигналы с элементов DD3.2, DD3.3 и DD3.4 используются для управления выходными ключами A1, A2, и A3, к которым подключается электродвигатель. На схеме полностью показан ключ A1, остальные идентичны. Полностью схема устройства показана на рисунке 3.

Для ознакомления с подключением двигателя к выходным ключам стоит рассмотреть упрощенную схему, приведенную на рисунке 4.

На рисунке показан электродвигатель M, управляемый ключами V1…V6. Полупроводниковые элементы для упрощения схемы показаны в виде механических контактов. Питание электродвигателя осуществляется постоянным напряжением Ud получаемым от выпрямителя (на рисунке не показан). При этом, ключи V1, V3, V5 называются верхними, а ключи V2, V4, V6 нижними.

Совершенно очевидно, что открытие одновременно верхних и нижних ключей, а именно парами V1&V6, V3&V6, V5&V2 совершенно недопустимо: произойдет короткое замыкание. Поэтому, для нормальной работы такой ключевой схемы, обязательно, чтобы к моменту открытия нижнего ключа верхний ключ уже был закрыт. С этой целью контроллеры управления формируют паузу, часто называемую «мертвой зоной».

Величина этой паузы такова, чтобы обеспечить гарантированное закрытие силовых транзисторов. Если эта пауза будет недостаточна, то возможно кратковременное открытие верхнего и нижнего ключа одновременно. Это вызывает нагрев выходных транзисторов, часто приводящий к выходу их из строя. Такую ситуацию называют сквозными токами.

Вернемся к схеме, показанной на рисунке 3. В данном случае верхними ключами являются транзисторы 1VT3, а нижними 1VT6. Нетрудно заметить, что нижние ключи гальванически связаны с управляющим устройством и межу собой. Поэтому управляющий сигнал с выхода 3 элемента DD3.2 через резисторы 1R1 и 1R3 подаются непосредственно на базу составного транзистора 1VT4…1VT5. Этот составной транзистор есть не что иное, как драйвер нижнего ключа. В точности также от элементов DD3, DD4 управляются составные транзисторы драйверов нижнего ключа каналов A2 и A3. Питание всех трех каналов осуществляется от одного и того же выпрямителя VD2.

Верхние же ключи гальванической связи с общим проводом и управляющим устройством не имеют, поэтому для управления ими кроме драйвера на составном транзисторе 1VT1…1VT2 пришлось в каждый канал установить дополнительный оптрон 1U1. Выходной транзистор оптрона в этой схеме также выполняет функцию дополнительного инвертора: когда на выходе 3 элемента DD3.2 высокий уровень открыт транзистор верхнего ключа 1VT3.

Для питания каждого драйвера верхнего ключа используется отдельный выпрямитель 1VD1, 1C1. Каждый выпрямитель питается от индивидуальной обмотки трансформатора, что можно рассматривать как недостаток схемы.

Конденсатор 1C2 обеспечивает задержку переключения ключей около 100 микросекунд, столько же дает оптрон 1U1, тем самым формируется вышеупомянутая «мертвая зона».

Достаточно ли только регулирования частоты?

С понижением частоты питающего переменного напряжения падает индуктивное сопротивление обмоток двигателя (достаточно вспомнить формулу индуктивного сопротивления), что приводит к увеличению тока через обмотки, и, как следствие, к перегреву обмоток. Также происходит насыщение магнитопровода статора. Чтобы избежать этих негативных последствий, при уменьшении частоты приходится снижать и эффективное значение напряжения на обмотках двигателя.

Одним из способов решения проблемы в любительских частотниках предлагалось это самое эффективное значение регулировать при помощи ЛАТРа, подвижный контакт которого имел механическую связь с переменным резистором регулятора частоты. Такой способ был рекомендован в статье С. Калугина «Доработка регулятора частоты вращения трехфазных асинхронных двигателей». Журнал «Радио» 2002, №3, стр.31.

В любительских условиях механический узел получался в изготовлении сложным, а главное ненадежным. Более простой и надежный способ использования автотрансформатора был предложен Э. Мурадханяном из Еревана в журнале «Радио» №12 2004. Схема этого устройства показана на рисунках 5 и 6.

Напряжение сети 220В подается на автотрансформатор T1, а с его подвижного контакта на выпрямительный мост VD1 с фильтром C1, L1, C2. На выходе фильтра получается изменяемое постоянное напряжение Uрег, используемое собственно для питания двигателя.

Напряжение Uрег через резистор R1 также подается на задающий генератор DA1, выполненный на микросхеме КР1006ВИ1 (импортный вариант ). В результате такого подключения обычный генератор прямоугольных импульсов превращается в ГУН (генератор, управляемый напряжением). Поэтому, при увеличении напряжения Uрег увеличивается и частота генератора DA1, что приводит к увеличению частоты вращения двигателя. При снижении напряжения Uрег пропорционально уменьшается и частота задающего генератора, что позволяет избежать перегрев обмоток и перенасыщение магнитопровода статора.

Генератор выполнен на втором триггере микросхемы DD3, на схеме обозначен как DD3.2. Частота задается конденсатором C1, регулировка частоты осуществляется переменным резистором R2. Вместе с регулировкой частоты изменяется и длительность импульса на выходе генератора: при понижении частоты длительность уменьшается, поэтому напряжение на обмотках двигателя падает. Такой принцип управления называется широтно импульсной модуляцией (ШИМ).

В рассматриваемой любительской схеме мощность двигателя невелика, питание двигателя производится прямоугольными импульсами, поэтому ШИМ достаточно примитивна. В реальных большой мощности ШИМ предназначена для формирования на выходе напряжений практически синусоидальной формы, как показано на рисунке 8, и для реализации работы с различными нагрузками: при постоянном моменте, при постоянной мощности и при вентиляторной нагрузке.

Рисунок 8. Форма выходного напряжения одной фазы трехфазного инвертора с ШИМ.

Силовая часть схемы

Современные фирменные частотники имеют на выходе , специально предназначенные для работы в преобразователях частоты. В ряде случаев эти транзисторы объединены в модули, что в целом улучшает показатели всей конструкции. Управление этими транзисторами производится с помощью специализированных микросхем-драйверов. В некоторых моделях драйверы выпускаются встроенными в транзисторные модули.

Наиболее распространены в настоящее время микросхемы и транзисторы фирмы International Rectifier. В описываемой схеме вполне возможно применить драйверы IR2130 или IR2132. В одном корпусе такой микросхемы содержится сразу шесть драйверов: три для нижнего ключа и три для верхнего, что позволяет легко собрать трехфазный мостовой выходной каскад. Кроме основной функции эти драйверы содержат также несколько дополнительных, например защита от перегрузок и коротких замыканий. Более подробную информацию об этих драйверах можно узнать из технических описаний Data Sheet на соответствующие микросхемы.

При всех достоинствах единственный недостаток этих микросхем их высокая цена, поэтому автор конструкции пошел другим, более простым, дешевым, и в то же время работоспособным путем: специализированные микросхемы-драйверы заменены микросхемами интегрального таймера КР1006ВИ1 (NE555).

Выходные ключи на интегральных таймерах

Если вернуться к рисунку 6, то можно заметить, что схема имеет для каждой из трех фаз выходные сигналы, обозначенные как «Н» и «В». Наличие этих сигналов позволяет раздельно управлять верхними и нижними ключами. Такое разделение позволяет формировать паузу между переключением верхних и нижних ключей при помощи блока управления, а не самими ключами, как было показано в схеме на рисунке 3.

Схема выходных ключей с применением микросхем КР1006ВИ1 (NE555) показана на рисунке 9. Естественно, что для трехфазного преобразователя понадобится три экземпляра таких ключей.

В качестве драйверов верхних (VT1) и нижних (VT2) ключей используются микросхемы КР1006ВИ1, включенные по схеме триггеров Шмидта. С их помощью возможно получить импульсный ток затвора не менее 200мА, что позволяет получить достаточно надежное и быстрое управление выходными транзисторами.

Микросхемы нижних ключей DA2 имеют гальваническую связь с источником питания +12В и, соответственно, с блоком управления, поэтому их питание осуществляется от этого источника. Микросхемы верхних ключей можно запитать так же, как было показано на рисунке 3 с использованием дополнительных выпрямителей и отдельных обмоток на трансформаторе. Но в данной схеме применяется иной, так называемый, «бустрепный» метод питания, смысл которого в следующем. Микросхема DA1 получает питание от электролитического конденсатора C1, заряд которого происходит по цепи: +12В, VD1, C1, открытый транзистор VT2 (через электроды сток — исток), «общий».

Другими словами заряд конденсатора C1 происходит в то время, когда открыт транзистор нижнего ключа. В этот момент минусовой вывод конденсатора С1 оказывается практически накоротко соединен с общим проводом (сопротивление открытого участка «сток — исток» у мощных полевых транзисторов составляет тысячные доли Ома!), что и обеспечивает возможность его заряда.

При закрытом транзисторе VT2 также закроется и диод VD1, заряд конденсатора C1 прекратится до следующего открытия транзистора VT2. Но заряд конденсатора C1 достаточен для питания микросхемы DA1 на время, пока закрыт транзистор VT2. Естественно, что в этот момент транзистор верхнего ключа находится в закрытом состоянии. Данная схема силовых ключей оказалась настолько хороша, что без изменений применяется и в других любительских конструкциях.

В данной статье рассмотрены лишь самые простые схемы любительских трехфазных инверторов на микросхемах малой и средней степени интеграции, с которых все начиналось, и где можно даже по схеме рассмотреть все «изнутри». Более современные конструкции выполнены , схемы которых также неоднократно публиковались в журналах «Радио».

Микроконтроллерные блоки управления по схеме более просты, чем на микросхемах средней степени интеграции, имеют такие нужные функции, как , защита от перегрузок и коротких замыканий и некоторые другие. В этих блоках все реализовано за счет управляющих программ или как их принято называть «прошивок». Именно от этих программ и зависит насколько хорошо или плохо будет работать блок управления трехфазного инвертора.

Достаточно простые схемы контроллеров трехфазного инвертора опубликованы в журнале «Радио» 2008 №12. Статья называется «Задающий генератор для трехфазного инвертора». Автор статьи А. Долгий является также автором цикла статей о микроконтроллерах и многих других конструкций. В статье приведены две простых схемы на микроконтроллерах PIC12F629 и PIC16F628.

Частота вращения в обеих схемах изменяется ступенчато с помощью однополюсных переключателей, что вполне достаточно во многих практических случаях. Там же дается ссылка где можно скачать готовые «прошивки», и, более того, специальную программу, с помощью которой можно изменять параметры «прошивок» по своему усмотрению. Возможна также работа генераторов режиме «демо». В этом режиме частота генератора уменьшена в 32 раза, что позволяет визуально с помощью светодиодов наблюдать работу генераторов. Также даются рекомендации по подключению силовой части.

Но, если не хочется заниматься программированием микроконтроллера фирма Motorola выпустила специализированный интеллектуальный контроллер MC3PHAC, предназначенный для систем управления 3-фазным двигателем. На его базе возможно создание недорогих систем регулируемого трехфазного привода, содержащего все необходимые функции для управления и защиты. Подобные микроконтроллеры находят все более широкое применение в различной бытовой технике, например, в посудомоечных машинах или холодильниках.

В комплекте с контроллером MC3PHAC возможно использование готовых силовых модулей, например IRAMS10UP60A разработанных фирмой International Rectifier. Модули содержат шесть силовых ключей и схему управления. Более подробно с этими элементами можно в их документации Data Sheet, которую достаточно просто найти в интернете.

Как можно регулировать обороты асинхронного двигателя: обзор способов

Благодаря надежности и простоте конструкции асинхронные двигатели (АД) получили широкое распространение. В большинстве станков, промышленном и бытовом оборудовании применяются электродвигатели такого типа. Изменение скорости вращения АД производится механически (дополнительной нагрузкой на валу, балластом, передаточными механизмами, редукторами и т.д.) или электрическими способами. Электрическое регулирование более сложное, но и гораздо более удобное и универсальное.

Для многих агрегатов применяется именно электрическое управление. Оно обеспечивает точное и плавное регулирование пуска и работы двигателя. Электрическое управление производится за счет:

  • изменения частоты тока;
  • силы тока;
  • уровня напряжения.

В этой статье мы рассмотрим популярные способы, как может осуществляться регулировка оборотов асинхронного двигателя на 220 и 380В.

Изменение скорости АД с короткозамкнутым ротором

Существует несколько способов:

  1. Управление вращением за счет изменения электромагнитного поля статора: частотное регулирование и изменение числа пар полюсов.
  1. Изменение скольжения электромотора за счет уменьшения или увеличения напряжения (может применяться для АД с фазным ротором).

Частотное регулирование

В данном случае регулировка производится с помощью подключенного к двигателю устройства для преобразования частоты. Для этого применяются мощные тиристорные преобразователи. Процесс частотного регулирования можно рассмотреть на примере формулы ЭДС трансформатора:

Данное выражение означает, что для сохранения постоянного магнитного потока, означающего сохранение перегрузочной способности электромотора, следует одновременно с преобразованием частоты корректировать и уровень питающего напряжения. Если сохраняется выражение, вычисленное по формуле:

то это означает, что критический момент не изменен. А механические характеристики соответствуют рисунку ниже, если вы не понимаете, что значат эти характеристики, то в этом случае регулировка происходит без потери мощности и момента.

Достоинствами данного метода являются:

  • плавное регулирование;
  • изменение скорости вращения ротора в большую и меньшую сторону;
  • жесткие механические характеристики;
  • экономичность.

Недостаток один — необходимость в частотном преобразователе, т.е. увеличение стоимости механизма. К слову, на современном рынке представлены модели с однофазным и трёхфазным входом, стоимость которых при мощности 2-3 кВт лежит в диапазоне 100-150 долларов, что не слишком дорого для полноценной регулировки привода станков в частной мастерской.

Каждый электрик должен знать:  Какой генератор лучше - синхронный или асинхронный

Переключение числа пар полюсов

Данный метод применяется для многоскоростных двигателей со сложной обмоткой, позволяющей изменять число пар ее полюсов. Самое широкое применение получили двухскоростные, трехскоростные и четырехскоростные АД. Принцип регулировки проще всего рассмотреть на основе двухскоростного АД. В такой машине обмотка каждой фазы состоит из двух полуобмоток. Скорость вращения изменяется при подключении их последовательно или параллельно.


В четырехскоростном электродвигателе обмотка выполнена в виде двух независимых друг от друга частей. При изменении числа пар полюсов первой обмотки производится изменение скорости работы электромотора с 3000 до 1500 оборотов в минуту. При помощи второй обмотки производится регулировка вращения 1000 и 500 оборотов в минуту.

При изменении числа пар полюсов происходит и изменение критического момента. Для его сохранения неизменным, требуется одновременно с изменением числа пар полюсов регулировать и питающее напряжение, например, переключением схемы звезда-треугольник и их вариациями.

Достоинства данного метода:

  • жесткие механические характеристики двигателя;
  • высокий КПД.
  • ступенчатая регулировка;
  • большой вес и габаритные размеры;
  • высокая стоимость электромотора.

Способы управления скоростью АД с фазным ротором

Изменение скорости вращения АД с фазным ротором производится путем изменения скольжения. Рассмотрим основные варианты и способы.

Изменение питающего напряжения

Этот способ также применяется для АД с КЗ ротором. Асинхронный двигатель подключается через автотрансформатор или ЛАТР. Если уменьшать напряжение питания, частота вращения двигателя снизится.

Но такой режим уменьшает перегрузочную способность двигателя. Этот способ применяется для регулирования в пределах напряжения не выше номинального, так как увеличение номинального напряжения приведет к выходу электродвигателя из строя.

Активное сопротивление в цепи ротора

При использовании данного метода в цепь ротора подключается реостат или набор постоянных резисторов большой мощности. Данное устройство предназначено для плавного увеличения сопротивления.

Скольжение растет пропорционально увеличению сопротивления, а скорость вращения вала электромотора при этом снижается.

  • большой диапазон регулирования в сторону понижения скорости вращения.
  • снижение КПД;
  • увеличение потерь;
  • ухудшение механических характеристик.

Асинхронный вентильный каскад и машины двойного питания

Изменение скорости работы асинхронных электромоторов в данных случаях выполняется путем изменения скольжения. При этом скорость вращения электромагнитного поля неизменна. Напряжение подается напрямую на обмотки статора. Регулировка происходит за счет использования мощности скольжения, которая трансформируется в цепь ротора, и образует добавочную ЭДС. Такие методы используются только в специальных машинах и крупных промышленных устройствах.

Плавный пуск асинхронных электродвигателей

АД кроме безусловных преимуществ, обладают существенными недостатками. Это рывок на старте и большие пусковые токи, в 7 раз превышающие номинальные. Для мягкого старта электродвигателя используются следующие методы:

  • переключение обмоток по схеме звезда – треугольник;
  • включение электродвигателя через автотрансформатор;
  • использование специализированных устройств для плавного пуска.

В большинстве частотных регуляторов есть функция плавного пуска двигателя. Это не только снижает пусковые токи, но и уменьшает нагрузки на исполнительные механизмы. Поэтому регулирование частоты и плавный пуск довольно сильно связаны между собой.

Как сделать устройство для изменения скорости вращения электродвигателя своими руками

Для регулировки маломощных однофазных АД можно использовать диммеры. Однако этот способ ненадежен и обладает серьезными недостатками: снижением КПД, серьезным перегревом устройства и опасностью повреждения двигателя.

Для надежного и качественного регулирования оборотов электродвигателей на 220В, лучше всего подходит частотное регулирование.

Приведенная ниже схема позволяет собрать частотное устройство для регулировки электромоторов мощностью до 500 Вт. Изменение скорости вращения производится в границах от 1000 до 4000 оборотов в минуту.

Устройство состоит из задающего генератора с изменяемой частотой, состоящего из мультивибратора, собранного на микросхеме К561ЛА7, счетчика на микросхеме К561ИЕ8, полумоста регулятора. Выходной трансформатор Т1 выполняет развязку верхнего и нижнего транзисторов полумоста.

Демпфирующая цепь С4, R7 гасит всплески напряжения опасные для силовых транзисторов VT3, VT4. Выпрямитель, удвоитель напряжения питающей сети, включает в себя диодный мост VD9, с конденсатором фильтра на которых происходит удвоение напряжения питания полумоста.

Напряжение первичной обмотки: 2х12В, вторичной обмотки 12В. Первичная обмотка трансформатора управления ключами, состоит из 120 витков медного провода сечением 0,7мм, с отводом от середины. Вторичная – две обмотки, каждая по 60 витков повода сечением 0,7 мм.

Вторичные обмотки необходимо максимально надежно заизолировать друг от друга, так как разница потенциалов между ними доходит до 640 В. Подключение выходных обмоток к затворам ключей производится в противофазе.

Вот мы и рассмотрели способы регулировки оборотов асинхронных двигателей. Если возникли вопросы, задавайте их в комментариях под статьей!

Управление асинхронным двигателем

Устройство ПЧ

  • двигатель переменного тока природный контроллер;
  • привод;
  • дополнительные элементы.

Схема контроллера оборотов вращения двигателя 12 в изображена на рисунке. Обороты регулируются с помощью потенциометра. Если на вход поступают импульсы с частотой 8 кГц, то напряжение питания будет 12 вольт.

Прибор может быть куплен в специализированных точках продажи, а можно сделать самому.

При пуске трехфазного двигателя на всю мощность, передаётся ток, действие повторяется около 7 раз. Сила тока сгибает обмотки двигателя, образуется тепло, на протяжении долгого времени. Преобразователь представляет собой инвертор, обеспечивающий превращение энергии. Напряжение поступает в регулятор, где происходит выпрямления 220 вольт с помощью диода, расположенного на входе. Затем происходит фильтрация тока посредством 2 конденсатора. Образуется ШИМ. Далее импульсный сигнал передаётся от обмоток двигателя к определённой синусоиде.

Существует универсальный прибор 12в для бесколлекторных двигателей.

Схема состоит из двух частей–логической и силовой. Микроконтроллер расположен на микросхеме. Эта схема характерна для мощного двигателя. Уникальность регулятора заключается в применении с различными видами двигателей. Питание схем раздельное, драйверам ключей требуется питание 12В.

Преобразователи на электронных ключах

Распространённые регулятор тиристор, обладающие простой схемой работы.

Тиристор, работает в сети переменного тока.

Отдельным видом является стабилизатор напряжения переменного тока. Стабилизатор содержит трансформатор с многочисленными обмотками.

К источнику напряжения 24 вольт. Принцип действия заключаются в заряде конденсатора и запертом тиристоре, а при достижении конденсатором напряжения, тиристор посылает ток на нагрузку.

Процесс пропорциональных сигналов

Сигналы, поступающие на вход системы, образуют обратную связь. Подробнее рассмотрим с помощью микросхемы.

Микросхема TDA 1085, изображенная выше, обеспечивает управление электродвигателем 12в, 24в обратной связью без потерь мощности. Обязательным является содержание таходатчика, обеспечивающего обратную связь двигателя с платой регулирования. Сигнал стаходатчика идёт на микросхему, которая передаёт силовым элементам задачу – добавить напряжение на мотор. При нагрузке на вал, плата прибавляет напряжение, а мощность увеличивается. Отпуская вал, напряжение уменьшается. Обороты будут постоянными, а силовой момент не изменится. Частота управляется в большом диапазоне. Такой двигатель 12, 24 вольт устанавливается в стиральные машины.

Своими руками можно сделать прибор для гриндера, токарного станка по дереву, точила, бетономешалки, соломорезки, газонокосилки, дровокола и многого другого.

Промышленные регуляторы, состоящие из контроллеров 12, 24 вольт, заливаются смолой, поэтому ремонту не подлежат. Поэтому часто изготавливается прибор 12в самостоятельно. Несложный вариант с использованием микросхемы U2008B. В регуляторе используется обратная связь по току или плавный пуск. В случае использования последнего необходимы элементы C1, R4, перемычка X1 не нужна, а при обратной связи наоборот.

При сборе регулятора правильно выбирать резистор. Так как при большом резисторе, на старте могут быть рывки, а при маленьком резисторе компенсация будет недостаточной.

Важно! При регулировке контроллера мощности нужно помнить, что все детали устройства подключены к сети переменного тока, поэтому необходимо соблюдать меры безопасности!

Регуляторы оборотов вращения однофазных и трехфазных двигателей 24, 12 вольт представляют собой функциональное и ценное устройство, как в быту, так и в промышленности.

Некоторые ситуации требуют изменения оборотов двигателя от номинальных. Иногда требуется уменьшить обороты электродвигателя, потому что их увеличение негативно сказывается на подшипниковом аппарате. Способы изменения вращения зависят от модели электрической машины.

Характеристики электрических машин отличаются: постоянного и переменного тока, однофазные, трехфазные. Поэтому говорить нужно о каждом случае отдельно.

  • Простейший вариант
  • В цепи якоря
    • Для низкого напряжения
  • От сети
    • Коллекторные машины
    • Двухфазный двигатель
    • Обычные асинхронники
  • Измерения

Простейший вариант

Легче всего изменять обороты электродвигателя постоянного тока. Они меняются простым изменением напряжения питания. Причем неважно где: на якоре или на возбуждении, но это касается только маломощных машин с минимальной нагрузкой. В основном управление скоростью вращения производят по цепи якоря. Более того, здесь возможно реостатное регулирование, если мощность мотора небольшая, или есть довольно мощный реостат.

Это самый неэкономичный вариант. Механические характеристики двигателя с независимым возбуждением самые невыгодные из-за больших потерь, результатом чего является падение механической мощности, КПД.

Еще одна возможность – введение реостата в обмотку возбуждения. Рассматривая характеристики двигателя с независимым возбуждением, увидим, что регулирование скорости вращения возможно только в сторону увеличения оборотов. Это происходит ввиду насыщения обмотки.

Итак, реостатное регулирование скорости вращения аппарата независимого возбуждения оправдано в системах с минимальной нагрузкой. Лучше всего, когда работа при таком включении буде периодической.

В цепи якоря

Это лучший вариант регулирования скорости мотора с независимым возбуждением. Частота вращения прямо пропорциональна подводимому к якорю напряжению. Механические характеристики не меняют своего угла наклона, а перемещаются параллельно друг другу.

Для осуществления этой схемы нужно цепь якоря подключить к источнику напряжения, которое можно менять.

Это возможно в электрических машинах малой или средней мощности. Двигатель большой мощности целесообразно подключить в схему с генератором напряжения независимого возбуждения.

В качестве привода для генератора используют обычный трехфазный асинхронник. Чтобы уменьшить обороты, достаточно на якоре понизить напряжение. Оно меняется от номинального и вниз. Эта схема имеет название «двигатель-генератор». Таким образом можно менять параметры на двигателе 220в.

Для низкого напряжения

Управление агрегатами на 12в проще из-за более низкого напряжения и как следствие, более доступных деталей. Вариантов подобных схем множество, поэтому важно понять сам принцип.

Такой двигатель имеет ротор, щеточный механизм и магниты. На выходе у него всего два провода, контролирование скорости идет по ним. Питание может быть 12, 24, 36в, или другое. Что нужно – это его менять. Лучше, когда в пределах от нуля до максимума. В более простых вариантах 12–0в не получится, другие варианты дают такую возможность.

Кто-то паяет радиоэлементы навесным монтажом, кто-то набирает печатную плату – это уже зависит от желания и возможностей каждого человека.

Этот вариант подойдет, если точность неважна: например, вентилятор. Напряжение меняется от 0 до 12 вольт, пропорционально меняется крутящий момент.

Другой вариант – со стабилизацией оборотов независимо от нагрузки на валу.

Питание 12 вольт, схема очень проста. Двигатель набирает обороты плавно, и также плавно их сбавляет так как напряжение на выходе меняется в пределах 12–0в. Как результат – можно убратькрутящий момент практически до нуля. Если потенциометр крутить в обратном направлении, мотор так же постепенно набирает обороты до максимума. Микросхема очень распространенная, ее характеристики тоже подробно описаны. Питание 12–18в.

Есть еще один вариант, только это уже не для 12, а для 24в питания.

Двигатель постоянного тока, питание – переменное, так как стоит диодный мост. При желании можно мост выбросить и запитывать постоянкой от своего блока питания.

От сети

Однофазные электродвигатели переменного тока также позволяют регулировать вращение ротора.

Коллекторные машины

Такие моторы стоят на электродрелях, электролобзиках и другом инструменте. Чтобы уменьшить или увеличить обороты, достаточно, как и в предыдущих случаях, изменять напряжение питания. Для этой цели также есть свои решения.

Конструкция подключается непосредственно к сети. Регулировочный элемент – симистор, управление которого осуществляется динистором. Симистор ставится на теплоотвод, максимальная мощность нагрузки – 600 Вт.

Если есть подходящий ЛАТР, можно все это делать при помощи его.

Двухфазный двигатель

Аппарат, имеющий две обмотки – пусковую и рабочую, по своему принципу является двухфазным. В отличие от трехфазного имеет возможность менять скорость ротора. Характеристика крутящегося магнитного поля у него не круговая, а эллиптическая, что обусловлено его устройством.

Есть две возможности контролирования числа оборотов:

  1. Менять амплитуду напряжения питания (Uy);
  2. Фазное – меняем емкость конденсатора.

Такие агрегаты широко распространены в быту и на производстве.

Обычные асинхронники

Электрические машины трехфазного тока, несмотря на простоту в эксплуатации, обладают рядом характеристик, которые нужно учитывать. Если просто изменять питающее напряжение, будет в небольших пределах меняться момент, но не более. Чтобы в широких пределах регулировать обороты, необходимо довольно сложное оборудование, которое просто так собрать и наладить сложно и дорого.

Для этой цели промышленностью налажен выпуск частотных преобразователей, помогающих менять обороты электродвигателя в нужном диапазоне.

Асинхронник набирает обороты в согласии с выставленными на частотнике параметрами, которые можно менять в широком диапазоне. Преобразователь – самое лучшее решение для таких двигателей.

Схема регулятора оборотов однофазного асинхронного двигателя на транзисторе D209L

Немного поискав в сети, выбрал схему так называемого «беспомехового» регулятора:
Собрав схему, я убедился в её пригодности для регулировки оборотов однофазного асинхронного двигателя (как в ВН-2). Но после КЗ на выходе в страну вечной охоты отправляется мой единственный КТ840 и неоновая лампочка, которую я подключил без резистора. Цены на КТ840 меня совсем не обрадовали. Решив сэкономить стипендию, я подыскал транзистор-аналог из горелого компьютерного БП — D209L. С этим транзистором схему пришлось немного изменить:
Я решил добавить немного индикации, и поставил по светодиоду на вход и выход регулятора. Новую схему сначала тоже протестировал на навесном монтаже, а потом решил собирать в нормальном корпусе, который и приобрёл на радиорынке:

Сразу озаботился радиатором для транзистора. Радиатор пришлось немного подогнать с помощью ножовки и напильника:

Для крепления радиатора к корпусу применил самодельные винты М3 с широкой шляпкой (припаял по шайбе к винту):

Вот так это все будет выглядеть снаружи:

Теперь органы управления:
Примеряемся:

Сверлим отверстия и вставляем детали:

С диаметром отверстий для светодиодов немного промахнулся, пришлось упаковать в прозрачную термоусадку:

P.S.: прозрачная термоусадка — самая лучшая из всех, что я видел на киевском радиорынке, она при усаживании не вспучивается и не подгорает, а при соединении двух слоёв они сплавляются, и получается монолитная трубка.

Травление

Недавно открыл для себя просто фантастический метод травления плат: лимонной кислотой!

Рекомендуемый способ приготовления травильного раствора:
В 100 мл аптечной 3% перекиси водорода растворяется 30 г лимонной кислоты и 5 г поваренной соли. Этого раствора должно хватить для травления 100 см2 меди, толщиной 35мкм.

Соль при подготовке раствора можно не жалеть. Так как она играет роль катализатора, то в процессе травления практически не расходуется. Перекись 3% не стоит разбавлять дополнительно т.к. при добавлении остальных ингредиентов её концентрация снижается.

Чем больше будет добавлено перекиси водорода (гидроперита) тем быстрее пойдёт процесс, но не переусердствуйте — раствор не хранится, т.е. повторно не используется, а значит и гидроперит будет просто перерасходован. Избыток перекиси легко определить по обильному «пузырению» во время травления.
Однако добавление лимонной кислоты и перекиси вполне допустимо, но рациональнее приготовить свежий раствор.

Свою плату я вытравил примерно за 12 минут!

Дальше все без «самодеятельности»:

Использование широтно-импульсной модуляции

Для управления и регулировки числа оборотов вращения электродвигателя асинхронного типа, можно использовать импульсный регулятор-стабилизатор напряжения (инвертор). Он будет выполнять функцию источника питания. В его основу положено применение импульсного ШИМ-регулятора марки ТL494. Питающее напряжение электродвигателя, выходящее после ШИМ-регулятора, будет изменяться в соответствии с изменением частоты вращения. Используя этот способ, достигается больший экономический эффект, устройство достаточно простое и при этом увеличивает эффективность регулирования.

На рисунке выше изображена схема использования ШИМ-регулятора для трехфазного асинхронного двигателя, подключенного через конденсатор к однофазной сети.

Этот способ, несмотря на свою эффективность, имеет два существенных недостатка – это:

  • невозможность реверсивного управления двигателем без использования дополнительных коммутирующих аппаратов;
  • частотные преобразователи , использованные в регуляторе, отличаются высокой стоимостью и выпускаются ограниченным числом производителей.

Блок управления и регулирования скорости вращения электродвигателей изменением фазного напряжения

Существует несколько видов блоков управления, изготовленных промышленным способом. Они используются для однофазных асинхронных двигателей, границы регулирования составляют от 25 до 100% от значения мощности, и от 1000 до 4000 об/мин. Это устройства с маркировкой РВС207, РВ600/900.

Работа блока регулировки происходит при изменении средней величины переменного напряжения на электродвигателе. Она производится с помощью метода фазового регулирования напряжения, при изменении угла открытия полупроводниковых приборов (тиристоров, симисторов и т. д.), при использовании которых осуществлена сборка схемы.

Управление блоком осуществляется посредством использования внешнего переменного резистора. В том случае, когда мощность менее 25%, двигатель отключается и переходит в дежурный режим ожидания.

Контроль за работой осуществляется при помощи светового индикатора. Отключенное состояние двигателя – изредка мигает красный цвет. Двигатель работает – скважность включения индикатора пропорциональна оборотам вращения (производительности) двигателя.

На рисунке схема подключения блока регулятора РВС 207.

Регулятор скорости асинхронного двигателя

Помимо образцов регуляторов, промышленных образцов регуляторов, существует возможность самостоятельного выполнения регуляторов скорости бесколлекторных двигателей, не уступающих промышленным образцам. За основу схемы берется пример регулятора промышленного производства, ее можно собрать своими силами.

На рисунке выше электрическая схема регулятора скорости вращения бесколлекторного двигателя.

Регулировать количество оборотов вращения вала бесколлекторного асинхронного электродвигателя допускается также при изменении значения переменного напряжения, подаваемого к двигателю.

В состав регулятора входит задающий генератор, он служит для изменения частоты в границах значений 50 – 200 Гц. Генератор состоит из мультивибратора, работа которого строится на микросхеме К561ЛА7 и счетчика-дешифратора марки К561ИЕ8 с коэффициентом пересчета – 8, она отвечает за формирование сигналов управления силовыми полевыми транзисторами полумоста.

В схеме присутствует выходной трансформатор Т-1. Он служит для развязки транзисторов полумоста.

Выпрямитель включает в свою конструкцию диодный мост и удваивающие напряжение питания – конденсаторы с большой емкостью.

Диодный мост подключен по нетрадиционной схеме. С4 и R7 выполняют роль демпфирующей цепи, она служит для сглаживания всплесков напряжения, которые представляют собой опасность для транзисторов VТ4.

Рекомендация : для трансформатора управления транзисторными ключами, можно применить трансформатор от телевизионного блока питания. В этом случае, тип не играет большого значения, главное, чтобы первичная обмотка состояла из 120 витков провода 0,7 мм2, вторичная представляет собой 2 независимые друг от друга обмотки с количеством витков – 60, провод, применяемый во вторичной обмотке, аналогичен проводу первичной. Первичная обмотка имеет напряжение 2 х 12 В, вторичная обмотка – по 12 В каждая.

Необходимо помнить, что обе вторичные обмотки должны обладать хорошей изоляцией друг от друга, между обмотками присутствует высокий потенциал, он составляет 640 В, они подключаются к затворам транзисторных ключей в противофазе.

Такой регулятор может управлять вращением асинхронного двигателя с максимальным значением рабочей мощности – 500 Вт. Чтобы регулятор использовать для регулировки электродвигателей более высокой мощности, нужно применить большее количество силовых ключей, а также изменить в сторону увеличения емкость конденсаторов для питающего фильтра, это элементы схемы С3 и С4. Для регулятора достаточно использовать печатную плату размером 110 х 80 мм. Управляющий силовыми транзисторными ключами трансформатор монтируется отдельно от блока регулятора.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.

Асинхронные двигатели используются в станках и прочем оборудовании, как электроприводы, для приведения в действие движущихся частей. Их широкое применение обусловлено простой конструкцией и сравнительно небольшой стоимостью. В этих условиях важное значение имеет регулировка оборотов асинхронного двигателя, позволяющая работать в самых разных условиях. Стандартные схемы предусматривают механические системы передач, которые не очень удобны при определенных обстоятельствах. Электрическое управление дает ряд преимуществ, несмотря на все сложности, связанные с подключением.

Особенности частотного регулирования

Чаще всего применяется частотное регулирование, которое производится с помощью полупроводниковых преобразователей. Их действие основано на особенностях асинхронных двигателей. Здесь магнитное поле вращается с частотой, связанной с частотой, которая имеется у напряжения электрической сети.

Для того, чтобы работа двигателя была эффективной, одновременно с частотой, необходимо изменять и напряжение. Изменение значения напряжения находится в тесной связи с моментом нагрузки. При постоянной нагрузке, напряжение будет изменяться в пропорции с показателем частоты.

С помощью современных приборов, регулировка оборотов асинхронного двигателя может производиться в самом широком диапазоне. При необходимости, можно применять ускорение или замедление агрегатов, в зависимости от тех или иных технологических операций. Для задания нужных параметров используются специальные модули управления. Силовыми переключателями служат специальные транзисторы повышенной мощности. При высокой частоте переключения искажения тока получаются наиболее минимальными.

Основы работы преобразователя

Преобразователь частоты не только обеспечивает плавный пуск-остановка двигателя, но и изменяет частоту вращения ротора, регулируя частоту напряжения на входе двигателя. При этом инверторы изменяют частоту в широком диапазоне от значения частоты питающей сети. В асинхронном двигателе величина напряжения питания определяет частоту вращения магнитного поля, создаваемого статором. Обозначим частоту напряжения , тогда угловая скорость магнитного поля двигателя определяется следующей формулой:

где -число пар полюсов статора. Закон пропорциональности зависит от момента нагрузки. Если момент нагрузки постоянный, то напряжение на статоре регулируется по закону

Для вентиляторов применяется следующая зависимость:

Если момент нагрузки обратно пропорционален скорости, то напряжение и частота связаны формулой:

По принципу управления преобразователи можно разделить на типы:

  • со скалярным управлением;
  • с векторным управлением.

Принцип скалярного управления заключается в управлении частотой питающего тока и силы этого тока. Скалярное управление предусматривает поддержание заданного соотношения частоты и напряжения при неизменном крутящемся моменте. Инвертор с управлением по скалярному принципу применяется для вентиляторов, компрессоров, насосов. Допускается подключение к одному преобразователю несколько двигателей.

Скалярный режим позволяет осуществлять регулировку скорости двигателя в узком диапазоне и в среднем колеблется от 1Гц до 100Гц. Это означает, что инвертор преобразует частоту вращения электрического тока сети 50Гц на входе в частоту вращения электрического тока на выходе в диапазоне 1:100Гц.

Важной характеристикой частотных преобразователей является диапазон сохранения скорости с сохранением крутящего момента вала двигателя.

Принцип действия инвертора с векторным управлением заключается в управление характеристиками частоту, силы тока и фазы питающего тока. Так как вращение ротора асинхронной машины отстает от вращения магнитного поля статора на 3-5% при максимальном КПД и соответственно максимальной мощности и крутящем моменте, то инвертор с векторным управлением регулирует вращение фазы магнитного поля статора по отношению к вращению ротора, так, чтобы оно было всегда впереди на 3-5%.

При использовании частотного преобразователя реализованного по векторному принципу необходимы датчики обратной связи, которые отслеживают положение ротора электродвигателя. С использованием датчиков диапазон регулирования скорости увеличивается и может достигать показаний выходного тока от 1Гц до 800Гц, что составляет диапазон 1:800Гц. Что актуально для регулирования скорости в лифтовых механизмах, станках.

Название «векторное управление» возникло из-за математического представления тока, создаваемого магнитным полем статора в виде вектора, величина которого равна величине тока, а координаты зависят от фазы тока. Кратко можно сказать, что при векторном режиме управления двигатель развивает максимальный момент тогда, когда вектор магнитного поля находится под углом 1030— 1050 к электрическому току в обмотке ротора. Векторный режим обеспечивает постоянный момент вращения на малых скоростях, высокую точность управления и возможность быстро регулировать скорость изменением частоты.

В инверторе используется принцип преобразования напряжения сети в два этапа. На первом этапе переменное напряжение сети (220 В/380 В) выпрямляется, сглаживается с помощью диодов и конденсаторов. В итоге на первом этапе получается напряжение постоянного тока. На втором этапе формируются прямоугольные импульсы заданной частоты. Через транзисторы инвертора они поступают на обмотки статора, где под воздействием магнитного поля превращаются в синусоидальные, соответствующие переменному току.

Преобразователи с методом широтно-импульсной модуляции напряжения (ШИМ) формируют синусоидальную кривую, параметры которой определяют амплитуду и частоту напряжения.

Виды модулированных сигналов управления эл. двигателем с помощью шим

Виды частотных преобразователей

По назначению преобразователи выпускаются для однофазного и трехфазного напряжения. По типу управления — со скалярным или векторным управлением, о чем рассказывали выше. По типу преобразования делятся на два вида:

  • с автономным инвертором напряжения (АИН);
  • автономным инвертором тока (АИТ).

Современная промышленность выпускает частотные преобразователи в широком ассортименте, разной мощности и с разными функциями.

Виды входной и выходной информации

Частотные преобразователи различаются по количеству входов и выходов. Входные(выходные) сигналы делятся на следующие типы, которые приведены в таблице 1.

Дискретные сигналы Аналоговые сигналы Цифровые сигналы
Входные Выходные Входные Выходные Входные Выходные
Пуск Готов Задание частоты от систем управления или получение сигналов от датчиков Для подключения к устройствам отображения информации Передают информацию от датчиков положения и скорости. Для передачи данных АСУ
Стоп Работа
Блокировка пуска Отказ
Торможение
Реверс
Выбор скорости

Способы подключения частотного преобразователя

Преобразователи частоты по способу подключения к сети делятся на однофазные и трехфазные. Однофазные частотники подключаются к бытовой сети 220 В, а на выходе формируют трехфазное напряжение. К двигателю они подключаются по схеме «треугольник». При этом необходимо, чтобы выходной ток составлял не больше половины номинального.

Трехфазные инверторы подключаются к сети 380 В, подключение проводится по принципу «звезда».

Частотный преобразователь на корпусе имеет ряд клемм для подключения с соответствующей маркировкой. Рассмотрим их обозначения и функции.

Назначение Обозначение Описание
Входные клеммы R, S, T Подключение к питающей сети
Выходные клеммы U, V, W Подключение к двигателю
Дополнительные клеммы G

Соединение с тормозным резистором

Клеммы постоянного тока

Отдельно имеются цифровые выходы для подключения к управляющей аппаратуре (АСУ). Количество выходов определяется производителем инверторов, подробнее они описаны в инструкции по эксплуатации на конкретную модель.

Основные правила выбора преобразователя

В зависимости от требований по мощности и типу управляемых механизмов подбирается частотный преобразователь.

  • Мощность инвертора, указанная в документации, должна быть равной или больше механической мощности электродвигателя. Но при этом необходимо дополнительно ориентироваться на тип подключаемых механизмов. Для подъемных устройств выбирается преобразователь, имеющий величину мощности выше паспортного значения мощности двигателя. А для центробежного насоса допускается мощность инвертора ниже.
  • Если подключаемая нагрузка отличается большой инерционностью, то в зависимости от требуемого времени разгона подбирается мощность преобразователя. Для быстрого разгона потребуется преобразователь с мощностью, больше номинальной мощности двигателя на 10-15%.
  • При выборе частотника номинальный рабочий ток должен превышать значение номинального тока электродвигателя на 10%, чтобы не допустить блокировку по превышению тока.

Основным критерием выбора частотного преобразователя при невозможности одновременно удовлетворить требования по току и напряжению является выбор по полной номинальной мощности, которая должна превышать номинальную мощность двигателя.

При выборе инвертора нельзя обойти вниманием и количество входных (выходных) сигналов и их тип, что позволяет осуществлять автоматизацию производственным процессом и ее модернизацию. При этом желательно ориентироваться принципом — «входов много не бывает».

Основные функции частотного преобразователя

Как уже обсуждали, в первую очередь выбирается метод управления: скалярный или векторный. Скалярный способ используется для простых механизмов, где требуется обеспечение заданной скорости вращения (вентиляторы, компрессоры и т. д.), где не требуются датчики обратной связи. Векторное управление подразделяется на управление по напряжению и по току. При высоких требованиях к регулировке скорости (от 1:800) дополнительно предусмотрены специальные приводы. И есть необходимость ставить датчики обратной связи на вал двигателя

На использовании сигнала обратной связи основана работа ПИД — регулятора. ПИД — регулятор расшифровывается как пропорционально – интегрально — дифференциальный регулятор. Измеряется отклонение величины (скорости, напряжения) от уставки (заранее заданного отклонения) и управляющей системой формируется сигнал по корректировке с учетом статистической ошибки. Такая система используется при работе насосов, станков.

Использование преобразователя частоты позволяет обеспечить защиту двигателя от перегрузки (холостого хода), возникающих при сбое в работе присоединенных механизмов. При обнаружении перегрузки преобразователь формирует аварийный сигнал и выдает команду «Останов».

Дополнительная функция «Летящий пуск» позволяет осуществлять задержку пуска двигателя в зависимости от условий вращения, при перезапуске двигателя. Особенно это актуально для механизмов, допускающих вращение в одну или другую сторону.

Фильтр ЕМС уменьшает электромагнитные помехи, обеспечивая защиту преобразователя и машин, чувствительных к помехам.

Среди функций защиты системы преобразователь — двигатель перечислим основные, которые осуществляются с помощью частотника:

  • от перегрузки по току;
  • от перегрева;
  • от замыкания выходных фаз;
  • от перенапряжения;
  • от неисправностей в системе питания.

Разные производители оснащают инверторы различными дополнительными функциями по согласованию с заказчиком. Поэтому выбор частотного преобразователя определяется подключаемым оборудованием и задачами, выполнение которых должна обеспечивать система преобразователь — двигатель.

Несколько способов управления однофазным асинхронным двигателем

Достоинства и недостатки различных способов управления асинхронными двигателями. Выводы, сделанные по опыту практического применения.

В настоящее время получили большое распространение асинхронные электродвигатели с короткозамкнутым ротором. Это вызвано тем, что такие машины не имеют щеточного узла, их ротор сделан из алюминия и технологически очень прост, а значит, сама конструкция получается очень надежной. Рассмотрим несколько способов управления однофазным асинхронным электродвигателем.

Конденсаторный однофазный электродвигатель

Наиболее распространенным типом асинхронного однофазного электродвигателя является двигатель с двумя статорными обмотками. Первая и вторая обмотки идентичны по количеству витков, но последовательно с одной из обмоток включают конденсатор. Конденсатор обеспечивает сдвиг фаз между обмотками для образования вращающегося магнитного поля для ротора.

Частотный способ управления

Основным способом управления таким двигателем, применяемым в настоящее время, является частотный способ. Этот способ реализуется с помощью специальных приборов, называемых ШИМ инверторами. Эти инверторы, в свою очередь, бывают однофазными и трехфазными, что определяется количеством пар силовых выходов для управления обмотками двигателя. Для управления однофазным двигателем может быть применен как однофазный, так и трехфазный инвертор. Пример самодельной конструкции — частотный преобразователь своими руками.

Управление однофазным ШИМ инвертором

При таком управлении обе обмотки двигателя включены параллельно. Два выхода инвертора подключаются к точкам соединения обмоток. Инвертор формирует напряжение с варируемой частотой и с линейной зависимостью напряжение к частоте. Регулировать частоту можно как вниз, так и вверх. Диапазон регулировки обычно не превышает 1:10, т.к. емкость конденсатора в одной из обмоток напрямую зависит от частоты.

Основные достоинства этого метода – это простота ввода в эксплуатацию, не требующая переделки конструкции двигателя; надежная работа, т.к. частотный преобразователь специально разработан для управления такими типами двигателей; хорошие характеристики (ПИД-регулятор, предустановленные скорости, низкий пусковой ток, защитные функции и т.д.)

К недостаткам относятся: только однонаправленное вращение; более высокая стоимость и дефицит однофазных преобразователей по сравнению с трехфазными, по причине их малого выпуска.

Управление трехфазным ШИМ инвертором

В данном случае обмотки двигателя включают последовательно. Выходы трехфазного преобразователя подключают к средней точке и к концам обмоток электродвигателя. Конденсатор при этом из схемы исключают (требуется некоторая переделка двигателя) Так как обмотки двигателя сдвинуты на 90 градусов, а инвертор дает сдвиг фаз на 120 градусов, то поле не будет идеально круговым и это отрицательно скажется на параметрах регулирования.

Поле будет пульсирующим. Так как порядок коммутации выводов инвертора можно менять программным путем, то легко добиться изменения чередования напряжений на обмотках, следовательно, менять направление вращения ротора двигателя.

К достоинствам следует отнести: доступность на рынке и сравнительно низкую цену; возможность реверсивной работы обычного нереверсивного двигателя; более широкий, чем у однофазного преобразователя диапазон регулировки; возможности программируемых функций как у однофазного инвертора или даже шире за счет большего количества коммутируемых выходов.

Недостатки это: пониженный и пульсирующий момент однофазного двигателя; повышенный его нагрев; не все стандартные преобразователи готовы для такой работы, т.к. некоторые производители прямо запрещают использовать свои изделия в таком режиме.

Фазовое управление с помощью симисторного регулятора (диммера)

Этот метод самый «древний», он обусловлен отсутствием до недавнего времени в широкой продаже частотных регуляторов и их относительно высокой ценой. При таком управлении обмотки двигателя остаются включенными параллельно. Одна из обмоток включена последовательно с фазосдвигающим конденсатором. К точкам параллельного соединения обмоток подключается симисторный регулятор.

На выходе этого регулятора формируется однофазное напряжение с постоянной частотой (50 Гц) и регулируемым среднеквадратическим значением. Это происходит за счет регулирования напряжения открывания симистора, т.е. изменяется время открытого состояния симистора за период следования сетевого напряжения.

Момент на валу двигателя, при таком регулировании, будет снижаться пропорционально напряжению, критическое скольжение будет неизменным.

Основные достоинства: исключительная простота устройства управления; возможность собрать и починить такое устройство любым радиолюбителем; на порядок или даже несколько порядков более низкая цена по сравнению с частотными приводами.

Основные недостатки это: регулирование оборотов только на понижение; диапазон регулирования с помощью диммера только 2:1; стабильность скорости только удовлетворительная; допустимая нагрузка резко снижается с уменьшением скорости; перегрев двигателя на низких скоростях, т.к. не хватает производительности встроенного вентилятора двигателя; необходимость завышения мощности двигателя.

Исходя из всего вышеперечисленного, необходимо настоятельно рекомендовать применение частотных приводов для управления асинхронными двигателями. Такие приводы (ШИМ инверторы) кроме несомненных удобств по управлению, позволяют получить высокий КПД установок и добиться роста коэффициента мощности (cos фи) до 0.98, т.е. реализовать программу энергосбережения.

Смотрите также: Однофазное подключение трехфазного двигателя и Регуляторы оборотов коллекторных двигателей

Как подключить однофазный двигатель

Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Поэтому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В этой статье рассмотрим, как правильно сделать подключение однофазного двигателя.

Асинхронный или коллекторный: как отличить

Вообще, отличить тип двигателя можно по табличке — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

Так выглядит новый однофазный конденсаторный двигатель

Как устроены коллекторные движки

Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

Строение коллекторного двигателя

Недостатки коллекторных двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

Асинхронные

Асинхронный двигатель имеет статор и ротор, может быть одно и трёхфазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

Строение асинхронного двигателя

Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Более точно определить бифилярный или конденсаторный двигатель перед вами, можно при помощи измерений сопротивления обмоток. Если сопротивление вспомогательной обмотки больше в два раза (разница может быть еще более значительная), скорее всего, это бифилярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.

    Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС

подключение однофазного двигателя

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку.

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

Несколько способов управления однофазным асинхронным двигателем » Электрика в квартире и доме своими руками

Достоинства и недостатки различных способов управления асинхронными двигателями. Выводы, сделанные по опыту практического применения.

В настоящее время получили большое распространение асинхронные электродвигатели с короткозамкнутым ротором. Это вызвано тем, что такие машины не имеют щеточного узла, их ротор сделан из алюминия и технологически очень прост, а значит, сама конструкция получается очень надежной. Рассмотрим несколько способов управления однофазным асинхронным электродвигателем.

Конденсаторный однофазный электродвигатель

Наиболее распространенным типом асинхронного однофазного электродвигателя является двигатель с двумя статорными обмотками. Первая и вторая обмотки идентичны по количеству витков, но последовательно с одной из обмоток включают конденсатор. Конденсатор обеспечивает сдвиг фаз между обмотками для образования вращающегося магнитного поля для ротора.

Частотный способ управления

Основным способом управления таким двигателем, применяемым в настоящее время, является частотный способ. Этот способ реализуется с помощью специальных приборов, называемых ШИМ инверторами. Эти инверторы, в свою очередь, бывают однофазными и трехфазными, что определяется количеством пар силовых выходов для управления обмотками двигателя. Для управления однофазным двигателем может быть применен как однофазный, так и трехфазный инвертор. Пример самодельной конструкции — частотный преобразователь своими руками.

Управление однофазным ШИМ инвертором

При таком управлении обе обмотки двигателя включены параллельно. Два выхода инвертора подключаются к точкам соединения обмоток. Инвертор формирует напряжение с варируемой частотой и с линейной зависимостью напряжение к частоте. Регулировать частоту можно как вниз, так и вверх. Диапазон регулировки обычно не превышает 1:10, т.к. емкость конденсатора в одной из обмоток напрямую зависит от частоты.

Основные достоинства этого метода — это простота ввода в эксплуатацию, не требующая переделки конструкции двигателя; надежная работа, т.к. частотный преобразователь специально разработан для управления такими типами двигателей; хорошие характеристики ( ПИД-регулятор, предустановленные скорости, низкий пусковой ток, защитные функции и т.д.)

К недостаткам относятся: только однонаправленное вращение; более высокая стоимость и дефицит однофазных преобразователей по сравнению с трехфазными, по причине их малого выпуска.

Управление трехфазным ШИМ инвертором

В данном случае обмотки двигателя включают последовательно. Выходы трехфазного преобразователя подключают к средней точке и к концам обмоток электродвигателя. Конденсатор при этом из схемы исключают (требуется некоторая переделка двигателя) Так как обмотки двигателя сдвинуты на 90 градусов, а инвертор дает сдвиг фаз на 120 градусов, то поле не будет идеально круговым и это отрицательно скажется на параметрах регулирования.

Поле будет пульсирующим. Так как порядок коммутации выводов инвертора можно менять программным путем, то легко добиться изменения чередования напряжений на обмотках, следовательно, менять направление вращения ротора двигателя.

К достоинствам следует отнести: доступность на рынке и сравнительно низкую цену; возможность реверсивной работы обычного нереверсивного двигателя; более широкий, чем у однофазного преобразователя диапазон регулировки; возможности программируемых функций как у однофазного инвертора или даже шире за счет большего количества коммутируемых выходов.

Недостатки это: пониженный и пульсирующий момент однофазного двигателя; повышенный его нагрев; не все стандартные преобразователи готовы для такой работы, т.к. некоторые производители прямо запрещают использовать свои изделия в таком режиме.

Фазовое управление с помощью симисторного регулятора ( диммера)

Этот метод самый «древний», он обусловлен отсутствием до недавнего времени в широкой продаже частотных регуляторов и их относительно высокой ценой. При таком управлении обмотки двигателя остаются включенными параллельно. Одна из обмоток включена последовательно с фазосдвигающим конденсатором. К точкам параллельного соединения обмоток подключается симисторный регулятор.

На выходе этого регулятора формируется однофазное напряжение с постоянной частотой (50 Гц) и регулируемым среднеквадратическим значением. Это происходит за счет регулирования напряжения открывания симистора, т.е. изменяется время открытого состояния симистора за период следования сетевого напряжения.

Момент на валу двигателя, при таком регулировании, будет снижаться пропорционально напряжению, критическое скольжение будет неизменным.

Основные достоинства: исключительная простота устройства управления; возможность собрать и починить такое устройство любым радиолюбителем; на порядок или даже несколько порядков более низкая цена по сравнению с частотными приводами.

Основные недостатки это: регулирование оборотов только на понижение; диапазон регулирования только 2:1; стабильность скорости только удовлетворительная; допустимая нагрузка резко снижается с уменьшением скорости; перегрев двигателя на низких скоростях, т.к. не хватает производительности встроенного вентилятора двигателя; необходимость завышения мощности двигателя.

Исходя из всего вышеперечисленного, необходимо настоятельно рекомендовать применение частотных приводов для управления асинхронными двигателями. Такие приводы (ШИМ инверторы) кроме несомненных удобств по управлению, позволяют получить высокий КПД установок и добиться роста коэффициента мощности (cos фи) до 0.98, т.е. реализовать программу энергосбережения.

Смотрите также: Однофазное подключение трехфазного двигателя

▼ Электрическое отопление: ▼

Оптимальная для человека влажность воздуха находится в пределах от 40 до 60%. Именно при таких показателях относительной влажности большинство людей чувствуют себя достаточно комфортно. Кроме того, серьёзной проблемой является и запылённость, у многих пыль вызывает аллергию, а у больных астмой людей – провоцирует приступы. Для решения обеих этих проблем, а именно высокой запылённости и низкой влажности воздуха в помещении, было создано специальное устройство – мойка воздуха. Принцип её действия достаточно прост, но как раз простота и обеспечивает эффективность и высочайшую надёжность данной техники. Содержание Принцип действия моек воздуха Не все мойки воздуха одинаковы Как выбрать мойку воздуха 1 Принцип действия моек воздуха2 Не все мойки воздуха одинаковы3 Как выбрать мойку воздуха Принцип действия моек воздуха В отличие от большинства увлажнителей воздуха, которые для поддержания нужной влажности распыляют в пространстве комнаты.

1 Срочный качественный ремонт отопления1.1 ООО ДИЗАЙН ПРЕСТИЖ 8(495)744-67-741.2 Отопление от ООО ДИЗАЙН ПРЕСТИЖ Вид: водяное тут > http://resant.ru/uslugi/vodyanoe-otoplenie.html Срочный качественный ремонт отопления ООО ДИЗАЙН ПРЕСТИЖ 8(495)744-67-74 Кроме быстрого и качественного ремонта труб отопления, оказываем профессиональный монтаж систем отопления под ключ. На нашей странице по тематике отопления > http://resant.ru/otoplenie-doma.html http://resant.ru/uslugi/vodyanoe-otoplenie.html.

Как избежать риска при покупке дома в Алматы?Алматы — прекрасный город, который ежегодно привлекает просто огромное количество туристов и отличается непревзойденными пейзажами.Именно поэтому недвижимость в этом городе пользуется просто сумасшедшим спросом не только у местных жителей, но и у приезжих людей. Не стоит упускать возможности посмотреть доступные предложения относительно покупки недвижимого имущества в городе Алматы. С этим вопросом сможет помочь онлайн-площадка https://homsters.kz/estate/search/almata-and-house, где можно купить, а также, при необходимости, продать дом в Алматы. 1 Новые дома в Алматы — комфортное и доступное жилье2 Предложения на любой вкус3 Где нужно искать варианты? на Homsters4 Как избежать риска при покупке недвижимости?5 Похожие статьи:6 Новые статьи:7 Прошлые статьи:8 Срочный качественный ремонт отопления8.1 ООО ДИЗАЙН ПРЕСТИЖ 8(495)744-67-748.2 Отопление от ООО ДИЗАЙН ПРЕСТИЖ Вид: водяное тут > http://resant.ru/uslugi/vodyanoe-otoplenie.html Новые дома в Алматы — комфортное и.

Особенности выбора объектов недвижимости под склад и производствоВедение успешной предпринимательской деятельности, как правило, предполагает наличие коммерческой недвижимости. При этом к ней всегда предъявляются особые требования.Выбирая склады или производственные помещения, необходимо учитывать массу важных аспектов.Первым делом нужно составить подробный бизнес-план. После этого можно будет заняться поиском подходящих объектов.Стоит иметь в виду, что помещения можно и арендовать, и покупать в личную собственность.Первый вариант подходит для начинающих бизнесменов, не имеющих большого стартового капитала. Но если есть экономические возможности, то недвижимость лучше приобрести. В дальнейшем это позволит расширить сферы деятельности или получать пассивные доходы.Сегодня найти доступную коммерческую недвижимость можно практически в каждом населенном пункте. Однако предпочтение стоит отдавать тем городам, которые характеризуются удобным месторасположением, наличием выходов к важным транспортным артериям. Это могут быть как морские пути, ведущие в крупные регионы, так и железнодорожные узлы.

Как сделать качественный гумус Cделать качественный гумус из компостной кучи, Вам могут помочь дождевые черви, которые значительно ускоряют процесс. А самыми «профессиональными» из всех подобных организмов являются калифорнийские дождевые черви. Сегодня их разведение и продажа стали очень популярными, большое количество людей во всём мире делают выбор в пользу этих организмов. Калифорнийские дождевые черви существенным образом увеличивают урожайность Вашего огорода. 1. Чтобы Ваши черви начали удобрять почву, их нельзя отпускать в свободное плавание. Нужно создать отдельный ящик, где черви будут перерабатывать мусор, превращая его в плодородную почву. В противном случае, черви ненадолго задержатся на Вашем огороде и могут даже умереть от холода. 2. Нужно создавать червям особые условия питания. В каждой деревне или на ферме найдётся навоз, поэтому нужно откармливать им и червей, предварительно замочив в воде. Конечно, такая работа потребует.

Когда высаживать лук севок под зиму? 1 Срочный качественный ремонт отопления1.1 ООО ДИЗАЙН ПРЕСТИЖ 8(495)744-67-741.2 Отопление от ООО ДИЗАЙН ПРЕСТИЖ Вид: водяное тут > http://resant.ru/uslugi/vodyanoe-otoplenie.html Срочный качественный ремонт отопления ООО ДИЗАЙН ПРЕСТИЖ 8(495)744-67-74 Кроме быстрого и качественного ремонта труб отопления, оказываем профессиональный монтаж систем отопления под ключ. На нашей странице по тематике отопления > http://resant.ru/otoplenie-doma.html http://resant.ru/uslugi/vodyanoe-otoplenie.html.

Количество жил 3 шт. Сечение жилы 2.5 мм кв. Мощьность жилы 5.5 кВт Напряжение кабеля 220 В Производитель «Севкабель» г. С-Петербург Цена: 46.72руб.

Услуги по монтажу отопления водоснабжения ООО ДИЗАЙН ПРЕСТИЖ 8(495)744-67-74 Кроме быстрого и качественного ремонта труб отопления, оказыв.

1 Срочный качественный ремонт отопления1.1 ООО ДИЗАЙН ПРЕСТИЖ 8(495)744-67-741.2 Отопление от ООО ДИЗАЙН ПРЕСТИЖ Вид: водяное тут > http://resant.ru/uslugi/vodyanoe-otoplenie.html Срочный качественный ремонт отопления ООО ДИЗАЙН ПРЕСТИЖ 8(495)744-67-74 Кроме быстрого и качественного ремонта труб отопления, оказываем профессиональный монтаж систем отопления под ключ. На нашей странице по тематике отопления > http://resant.ru/otoplenie-doma.html http://resant.ru/uslugi/vodyanoe-otoplenie.html.

1 Срочный качественный ремонт отопления1.1 ООО ДИЗАЙН ПРЕСТИЖ 8(495)744-67-741.2 Отопление от ООО ДИЗАЙН ПРЕСТИЖ Вид: водяное тут > http://resant.ru/uslugi/vodyanoe-otoplenie.html Срочный качественный ремонт отопления ООО ДИЗАЙН ПРЕСТИЖ 8(495)744-67-74 Кроме быстрого и качественного ремонта труб отопления, оказываем профессиональный монтаж систем отопления под ключ. На нашей странице по тематике отопления > http://resant.ru/otoplenie-doma.html http://resant.ru/uslugi/vodyanoe-otoplenie.html.

Газовые обогреватели – устройства, предназначенные для локального обогрева небольшой территории (6–10 квадратных метров). Такие устройства позволяют организовать автономное отопление загородного коттеджа или дачного домика. Источником тепла в них является сжиженный газ, который заправляют во внутренний бак обогревателя. Разнообразие конструкций газовых устройств позволяет выбрать подходящий вариант для автономного обогрева дома. На какие характеристики необходимо обратить внимание при покупке устройства? Как выбрать газовый обогреватель для дачи? Содержание Характеристики газовых обогревателей: мощность Выбор нагревателя: учёт источника тепла Эксплуатация газовых нагревателей Выбор разновидности обогревателей: инфракрасные, каталитические и конвекторные 1 Характеристики газовых обогревателей: мощность2 Выбор нагревателя: учёт источника тепла3 Эксплуатация газовых нагревателей4 Выбор разновидности обогревателей: инфракрасные, каталитические и конвекторные4.1 Инфракрасные керамические обогреватели4.2 Обогреватели каталитического действия4.3 Газовые конвекторы Характеристики газовых обогревателей: мощность При выборе вида газового обогревателя, необходимо определиться с требуемыми техническими характеристиками устройства. Какая мощность.

Выбор радиатора отопления для дома – задача, к которой надо подходить ответственно. От типа батареи и некоторых других факторов будет зависеть скорость обогрева помещения и его эффективность. В этой статье рассмотрим основные виды радиаторов отопления для частного дома и квартиры, достоинств и недостатков батарей разного типа, а также дадим несколько советов по их выбору. Содержание Классы радиаторов отопления Чугунные секционные радиаторы Радиаторы биметаллические Радиаторы из алюминия Радиаторы трубчатые Радиаторы панельные Конвекторы (пластинчатые батареи) Советы по выбору радиаторов отопления 1 Классы радиаторов отопления2 Чугунные секционные радиаторы3 Радиаторы биметаллические4 Радиаторы из алюминия5 Радиаторы трубчатые6 Радиаторы панельные7 Конвекторы (пластинчатые батареи)8 Советы по выбору радиаторов отопления8.1 Рабочее давление радиатора8.2 Мощность секции8.3 Габариты агрегата8.4 Дизайн8.5 Производители Классы радиаторов отопления Выделяют 4 класса отопительных приборов: Секционные; Пластинчатые; Трубчатые; Панельные. Радиаторы секционного типа известны всем. Их выполняют.

Добавить к сравнениюАртикул: 1022682 Труба из сшитого полиэтилена PE-Xa для горячего и холодного водоснабжения Внимание акция! Закажи монтаж отопления под ключ — получи скидку до 30000 рублей на любое оборудование. Подробнее… Производитель:UPONORРейтинг:( 0, голосов — 0 )голосоватьНаличие: на складе (доставка 1-3 дня)Цена: 97 рубКупитьКупить в один кликКупить в один клик✖Фамилия Имя Отчество:* Телефон:* — поля, обязательные для заполненияОтправить Размеры: Ø 16 x 2,2 mmДлина бухты: 100 м Цена: 97.

Добавить к сравнениюАртикул: N 230.90.1000 RR U EV1 Водяной конвектор встраиваемый в пол Varmann Ntherm — это готовый к монтажу отопительный прибор с естественной конвекцией, также подходит для встраивания в подоконник. Подходит для применения в однотрубных и двухтрубных системах водяного отопопления. Внимание акция! Закажи монтаж отопления под ключ — получи скидку до 30000 рублей на любое оборудование. Подробнее… Производитель:VARMANNРейтинг:( 0, голосов — 0 )голосоватьНаличие: на складе (доставка 1-3 дня)Цена: 16 248 рубКупитьКупить в один кликКупить в один клик✖Фамилия Имя Отчество:* Телефон:* — поля, обязательные для заполненияОтправить Размеры (Ширина х Высота х Длина), мм: 230х90х1000Тепловая мощность, Вт: 290 Цена: 16 248.

Добавить к сравнениюАртикул: 309228 Напольный газовый котёл с атмосферной одноступенчатой горелкой Внимание акция! Закажи монтаж отопления под ключ — получи скидку 30 000 рублей на оборудование VAILLANT. Подробнее… Производитель:VAILLANTРейтинг:( 0, голосов — 0 )голосоватьНаличие: на складе (доставка 1-3 дня)Цена: 85 167 рубКупитьКупить в один кликКупить в один клик✖Фамилия Имя Отчество:* Телефон:* — поля, обязательные для заполненияОтправить Конструктивные особенности: Одноступенчатый низкотемпературный котёл Чугунный секционный блок теплообменника Система Pro E (штекерная система электрических соединений) Высокий средний КПД за отопительный период — до 92 % Низкий уровень выбросов NOx (
Радиатор стальной панельный Kermi Profil-V FTV 33 900 x 2600 — купить по низкой цене в Москве. Оборудование для отопления в наличии, скидки на монтаж и установку. Фото, описание, характеристики, стоимость, подбор и доставка оборудования

Добавить к сравнениюРадиатор стальной профильный фирмы Kermi (Германия). Настенный, двухрядный с тремя конвекторами, монтажная глубина 155 мм, подключение нижнее.Рейтинг:( 0, голосов — 0 )голосовать Наличие: на складе (доставка 1-3 дня)Цена: 34 739 рубКупитьКупить в один кликКупить в один клик✖Фамилия Имя Отчество:* Телефон:* — поля, обязательные для заполненияОтправитьРазмеры (ВхШхГ), мм: 900x2600x155Теплоотдача, Вт: 11417Тип подключения: нижнее Цена: 34 739 1 8(495)744-67-74 1.1 Услуги >>> Портфолио >>> Цены >>> Контакты1.2 ВЫБЕРИТЕ РАЗДЕЛ:1.2.1 ВНИМАНИЕ, АКЦИЯ. скидки всем1.3 СТОИМОСТЬ МОНТАЖА ОТОПЛЕНИЯ:1.4 УСЛУГИ ПО ВОДОСНАБЖЕНИЮ1.4.0.0.1 Монтаж бойлеракосвенного нагрева1.4.0.0.2 Монтаж насоснойстанции1.4.0.0.3 Монтаж баканакопительного1.4.0.0.4 Установкаглубинного насоса1.4.0.0.5 Монтаж бойлерапрямого нагрева1.4.1 ВОДОСНАБЖЕНИЕ ЗАГОРОДНОГО ДОМА ПОД КЛЮЧ1.5 КАНАЛИЗАЦИЯ ЗАГОРОДНОГО ДОМА ПОД КЛЮЧ1.5.0.1 СХЕМА СЕПТИКА ЗАГОРОДНОГО ДОМА1.6 УСЛУГИ ПО САНТЕХНИКЕ1.6.0.0.1 Установка унитаза1.6.0.0.2 Установка ванной1.6.0.0.3 Установка раковины1.6.0.0.4 Установка душевой кабины1.6.0.0.5 Подключение стиральной машины1.6.0.0.6 Установка смесителя1.6.0.0.7 Установка полотенцесушителя1.6.0.0.8 Установка счетчиков воды и отопления1.6.0.0.9 Прочистка.

Добавить к сравнению Внимание акция! Закажи монтаж отопления под ключ — получи скидку до 30000 рублей на радиаторы RIFAR. Подробнее… Рейтинг:( 0, голосов — 0 )голосоватьНаличие: на складе (доставка 1-3 дня)Цена: 2 660 рубКупитьКупить в один кликКупить в один клик✖Фамилия Имя Отчество:* Телефон:* — поля, обязательные для заполненияОтправить Кол-во секций: 4 Тип подключения: боковое Размеры секции (ВхДхГ), мм: 261x79x100 Теплоотдача секции, Вт: 104 Межосевое расстояние, мм: 200 Рабочее давление, МПа: 2,0 Давление опрессовки, МПа: 3,0 Температура теплоносителя: 110°С Цена: 2 660 1 8(495)744-67-74 1.1 Услуги >>> Портфолио >>> Цены >>> Контакты1.2 ВЫБЕРИТЕ РАЗДЕЛ:1.2.1 ВНИМАНИЕ, АКЦИЯ. скидки всем1.3 СТОИМОСТЬ МОНТАЖА ОТОПЛЕНИЯ:1.4 УСЛУГИ ПО ВОДОСНАБЖЕНИЮ1.4.0.0.1 Монтаж бойлеракосвенного нагрева1.4.0.0.2 Монтаж насоснойстанции1.4.0.0.3 Монтаж баканакопительного1.4.0.0.4 Установкаглубинного насоса1.4.0.0.5 Монтаж бойлерапрямого нагрева1.4.1 ВОДОСНАБЖЕНИЕ ЗАГОРОДНОГО ДОМА ПОД КЛЮЧ1.5 КАНАЛИЗАЦИЯ ЗАГОРОДНОГО ДОМА ПОД КЛЮЧ1.5.0.1 СХЕМА СЕПТИКА ЗАГОРОДНОГО ДОМА1.6 УСЛУГИ.

Добавить к сравнению Внимание акция! Закажи монтаж отопления под ключ — получи скидку до 30000 рублей на радиаторы RIFAR. Подробнее… Рейтинг:( 0, голосов — 0 )голосоватьНаличие: на складе (доставка 1-3 дня)Цена: 4 067 рубКупитьКупить в один кликКупить в один клик✖Фамилия Имя Отчество:* Телефон:* — поля, обязательные для заполненияОтправить Кол-во секций: 6 Тип подключения: боковое Размеры секции (ВхДхГ), мм: 415x79x90 Теплоотдача секции, Вт: 136 Межосевое расстояние, мм: 350 Рабочее давление, МПа: 2,0 Давление опрессовки, МПа: 3,0 Температура теплоносителя: 110°С Цена: 4 067 1 8(495)744-67-74 1.1 Услуги >>> Портфолио >>> Цены >>> Контакты1.2 ВЫБЕРИТЕ РАЗДЕЛ:1.2.1 ВНИМАНИЕ, АКЦИЯ. скидки всем1.3 СТОИМОСТЬ МОНТАЖА ОТОПЛЕНИЯ:1.4 УСЛУГИ ПО ВОДОСНАБЖЕНИЮ1.4.0.0.1 Монтаж бойлеракосвенного нагрева1.4.0.0.2 Монтаж насоснойстанции1.4.0.0.3 Монтаж баканакопительного1.4.0.0.4 Установкаглубинного насоса1.4.0.0.5 Монтаж бойлерапрямого нагрева1.4.1 ВОДОСНАБЖЕНИЕ ЗАГОРОДНОГО ДОМА ПОД КЛЮЧ1.5 КАНАЛИЗАЦИЯ ЗАГОРОДНОГО ДОМА ПОД КЛЮЧ1.5.0.1 СХЕМА СЕПТИКА ЗАГОРОДНОГО ДОМА1.6 УСЛУГИ.

Услуги по монтажу отопления водоснабжения ООО ДИЗАЙН ПРЕСТИЖ 8(495)744-67-74 Кроме быстрого и качественного ремонта труб отопления, оказыв.

Электрическое отопление 8(495)744-67-74

Вы можете задать свой вопрос при помощи формы обратной связи:

AVR494: Управление асинхронным электродвигателем переменного тока по принципу постоянства V/f и обычного ШИМ-управления

  • Управление недорогим и универсальным 3-фазным асинхронным электродвигателем
  • Управление по прерываниям
  • Небольшие требования к объему памяти и вычислительным способностям

Электрическая энергия уже давно используется для формирования механического движения (вращение или перемещение) с помощью электромеханических приводов. По оценкам, 50% электрической энергии, генерированной в США, потребляется электродвигателями. Более 50 электродвигателей обычно можно найти в бытовом хозяйстве и примерно столько же в автомобиле.

В целях охраны окружающей среды и снижения эффекта излучения парниковых газов правительства по всему миру вводят правила, требующие от производителей бытового электрооборудования и промышленных предприятий выпускать продукцию более экономично расходующих электроэнергию. Наиболее часто этого можно достичь за счет эффективного управления скоростью электродвигателя. Это является причинной, почему разработчики бытовых приборов и поставщики полупроводников в настоящее время заинтересованы в разработке недорогих и экономичных регулируемых приводов.

За счет высокой выносливости, надежности, низкой стоимости и высокого к.п.д. (80%) асинхронные электродвигатели используются во многих промышленных приложениях, в т.ч.:

  • бытовые электроприборы (стиральные машины, вытяжки, холодильники, вентиляторы, пылесосы, компрессоры и др.);
  • системы нагрева, вентиляции и кондиционирования воздуха;
  • промышленные электропривода (управление движением, центробежные насосы, робототехника и др.);
  • автомобили (электромобили)

Однако недостатком асинхронных двигателей является работа только на номинальной скорости при подключении к сети. Это является причиной, почему преобразователи частоты необходимы для регулировки частоты вращения асинхронных электродвигателей. Наиболее популярным алгоритмом управления трехфазным асинхронным электродвигателем является алгоритм с поддержанием постоянства отношения напряжение/частота (правило Костенко) и использованием обычного широтно-импульсно модулированного (ШИМ) управления инвертором напряжения, как показано на рисунке 1.1. Целью данных рекомендаций по применению является демонстрация реализации данного способа на основе AVR RISC-микроконтроллере AT90PWM3, разработанного специально для применения в силовой электронике.

Рисунок 1.1 — Типичная структура инверторного асинхронного привода

2. Ключевые особенности AT90PWM3

Алгоритмы управления реализованы на основе недорого и экономичного однокристального микроконтроллера AT90PWM3, который достигает производительности 16 миллионов инструкций в секунду и ориентирован на применение в качестве устройства управления в повышающих/понижающих преобразователях постоянного напряжения, синхронных электрических машинах на основе постоянных магнитов, трехфазных асинхронных двигателей и бесколлекторных электродвигателей постоянного тока. Микроконтроллер содержит:

  • ядро, выполненное на основе 8-разрядной AVR RISC-архитектуры (похожее на ATmega 88);
  • 8 кбайт внутрисистемно-программируемой флэш-памяти программ, которая позволяет хранить до 4096 инструкций и разделена на секторы прикладной программы и загрузочного кода;
  • 512 байт статического ОЗУ для хранения переменных и таблицы преобразования, которые используются в прикладной программе;
  • 512 байт ЭСППЗУ для хранения конфигурационных данных и таблиц преобразования;
  • один 8-разрядный таймер и один 16-разрядный таймер;
  • программируемый сторожевой таймер с внутренним генератором;
  • 11-канальный 10-разрядный АЦП и 10-разрядный ЦАП.

Основной особенностью, которая делает данный микроконтроллер привлекательным для применения в устройствах управления электроприводами, является интегрирование трех контроллеров управления силовым каскадом. В состав данных периферийных устройств входят 12-разрядные реверсивные счетчики с двумя компараторами, выходы которых могут управлять силовыми транзисторами инвертора. Эти элементы позволяют генерировать любую трехфазную форму, используя широтно-импульсную модуляцию, и поддерживают простое управление паузами неперекрытия.

3. Принцип действия

3.1 Асинхронный электродвигатель

В противоположность коллекторным и бесколлекторным электродвигателям постоянного тока асинхронные электродвигатели не содержат постоянных магнитов. Ротор выполнен в виде короткозамкнутой обмотки («беличья клетка»), в которой вращающееся электрическое поле создает магнитный поток. Благодаря различиям в скорости между электрическим полем статора и магнитным потоком в роторе электродвигатель способен создавать вращающий момент и совершать вращательное движение.

3.2 Принцип постоянства отношения напряжение/частота (правило Костенко)

Принцип постоянства отношения напряжение/частота наиболее широко распространен в современных регулируемых асинхронных приводах [1,2]. Он может использоваться в приложениях, которые не требуют высоких динамических характеристик, а необходимо только эффективно варьировать частотой вращения в полном диапазоне. Это позволяет использовать синусоидальную установившуюся модель асинхронного электродвигателя, в которой величина магнитного потока статора пропорциональна отношению амплитуды и частоты напряжения статорной обмотки. Если данное отношение поддерживать на постоянном уровне, то постоянство будет сохранять и магнитный поток статора и, таким образом, вращающий момент будет зависеть только от частоты скольжения.

Более точно, исходя из обычной модели асинхронного электродвигателя:

где — напряжение статора, магнитные потоки статора и ротора, токи статора и ротора, соответственно, а — общее сопротивление статора, сопротивление ротора, индуктивность статора, индуктивность ротора, общая индуктивность рассеяния и угловая частота вращения, соответственно. При питании электродвигателя 3-фазным синусоидальным напряжением с частотой , установившиеся токи в роторе и статоре будут также иметь синусоидальную форму с частотой и . Преобразуем предыдущие выражения к виду , где , а . Однако, амплитудное значение может оставаться постоянным при сохранении постоянства отношения . На высоких скоростях , а амплитудное значение магнитного потока ротора остается постоянным при постоянстве отношения : .

Тогда, вращающий момент электродвигателя пропорционален частоте скольжения: . Данные выражения показывают, что желаемые значения вращающего момента и частоты вращения электродвигателя могут быть достигнуты, если . На низких скоростях , а . Когда частота статора снижается меньше определенной пороговой частоты, амплитуду напряжения необходимо поддерживать на определенном уровне для поддержания постоянства магнитного потока ротора. В противоположность этому, когда частота становится выше номинального значения, амплитуда напряжения останется на номинальном уровне ввиду насыщения ключей инвертора. В этом случае поток ротора будет непостоянным и вращающий момент снизится.

Рисунок 3.1 — Зависимость амплитуды напряжения статора от частоты статора, следуемая из принципа V/f

Грубо говоря, скалярный принцип управления «V/f» заключается в подаче на обмотки электродвигателя 3-фазного синусоидального напряжения, амплитуда которого пропорциональна частоте, за исключением частот ниже порогового значения и выше номинального, как показано на рисунке 3.1. На практике, наклон, который определяет отношение амплитуды напряжения к частоте напряжения, определяется по номинальным значениям напряжения питания и частоты питающей сети, которые приводятся в паспорте на электродвигатель, а пороговая частота выбирается по проценту (например, 5%) от номинальной частоты.

Данный принцип может использоваться для построения контуров автоматического управления скоростью (рисунок 3.2), в которых отклонение желаемой скорости от фактического измеренного значения скорости поступает в ПИ-регулятор, где вычисляется значение частоты напряжения статора. В целях снижения сложности регулятора в качестве исходных данных для правила V/f и векторного ШИМ-алгоритма используется абсолютное значение частоты статорного напряжения. Если на выходе ПИ-регулятора присутствует отрицательное значение, то для реверсирования электродвигателя обменивается содержимое двух переменных, управляющие силовыми транзисторами инвертора. Необходимо заметить, что принцип управления, рассмотренный здесь, может использоваться только в приложениях, где поддерживается постоянный уровень скорости при любом допустимом моменте сопротивления. В приложениях, где необходимо поддерживать постоянство момента сопротивления при любых значениях частоты вращения, требуется измерение статорных токов и более сложные принципы управления.

Рисунок 3.2 — Блок-схема системы автоматического управления скоростью по принципу V/f

3.3 Принцип обычной широтно-импульсной модуляции

Одним из способов решения задачи формирования с помощью инвертора трехфазной синусоидальной системы напряжений со сдвигом по фазе 120 градусов на обмотках статора является использование таблицы синусов. В этом случае частота статора s определяет три дискретных времени интеграторов, которые вычисляют мгновенные значения фаз для каждого статорного напряжения:

где , а Ts — период дискретизации для алгоритма управления.

Если одно из этих значений становится больше 2 p , то для поддержания области значений в диапазоне от 0 до 2 p из результирующего значения вычитается 2 p . Таблица синусов используется для вычисления трех напряжений, которые необходимо приложить к статору:

где Vsm( w s) — амплитуда напряжения статора, определенная по принципу постоянства отношения напряжение-частота и sita( q ) = sin( q ).

Достичь улучшения можно путем добавления к чистой синусоиде в таблице синусов третьей гармоники sita( q ) = sin( q )+1/6sin(3 q ), т.к. она не оказывает влияние на поведение электродвигателя и позволяет генерировать сигнал, первая гармоника которого имеет амплитуду на 15.47% выше (2/ n 3) по сравнению максимумом сигнала (см. рисунок 3.3).

С учетом данного улучшения имеется возможность генерировать более высокое переменное напряжение при питании от той же самой шины постоянного напряжения. Таким образом, имеется возможность увеличения частоты вращения электродвигателя при сохранении постоянства отношения V/F.

Рисунок 3.3 — Использование несинусоидальной формы напряжения для увеличения отношения между амплитудой первой гармоники максимальным значением

Данные значения сравнивают с выходом реверсивного счетчика (используется в качестве генератора треугольных импульсов). Когда выходное значение реверсивного счетчика перешагивает через данные значения, переключается соответствующий выход компаратора. Как результат, в каждом ШИМ-канале генерируются импульсы, коэффициент заполнения которых пропорционален соответствующему значению напряжения статора. Поскольку данный реверсивный счетчик с тремя компараторами достаточно сложен для программной реализации, то такое устройство должно присутствовать в микроконтроллере в качестве встроенного аппаратного блока. Это и послужило причиной выбора микроконтроллера AT90PWM3, в состав которого входят три контроллера силового каскада (PSC). Если рассмотреть в качестве примера первую фазу, коэффициент заполнения импульсов, задаваемый содержимым регистра сравнения соответствующего PSC, будет пропорционален

, где , а Vs max и d — наибольшее значение амплитуды напряжения статора и длительность паузы неперекрытия силовых ключей, соответственно. Результирующая блок-схема показана на рисунке 3.4.

Рисунок 3.4 — Блок-схема обычного ШИМ-управления

3.4 Количество байт для хранения таблицы синусов

Как показано в предыдущем разделе обычное ШИМ-управление подразумевает использование таблицы синусов для вычисления sin( q ) для всех значений d от 0 до 2 p . Используя некоторые свойства тригонометрических функций, имеется возможность сократить размер таблицы преобразования. Наиболее эффективным способом является использование таблицы преобразования со значениями синусов в диапазоне только от 0 до p /3, т.к.

sin( q )=sin( q — p /3)+ sin(2 p /3- q ) для q между p /3 и 2 p /3; sin( q )=sin( p — q ) для q между 2 p /3 и p ; sin( q )=-sin( q — p ) для q между p и 4 p /3; sin( q )=-sin( q -4 p /3)+ sin(5 p /3- q ) для q между 4 p /3 и 5 p /3; sin( q )=-sin(2 p — q ) для q между 5 p /3 и 2 p ;

Однако данное решение не позволяет добавить третью гармонику к функции синуса, необходимость чего обсуждалась в предыдущем разделе. Это является причиной, почему необходимо использовать таблицу преобразования sita( q ) со значениями или sin( q ) или sin( q )+1/6 sin( q ) в диапазоне q между 0 и p /2, а также использовать следующие соотношения для вычисления sita( q ) между p /2 и 2 p :

sita( q )=sita( p — q ) для q между p /2 и p ; sita( q )=sita( q — p ) для q между p и 3 p /2; sita( q )=-sita(2 p — q ) для q между 3 p /2 и 2 p .

Последнее решение позволяет достаточно легко обмениваться между двумя возможными таблицами преобразования.

3.5 Принцип действия ПИ-регулятора

Алгоритм ПИ-регулятора может быть реализован без обращения к сложной теории автоматического управления. Целью данного алгоритма является определение управляющего сигнала объектом управления (в нашем случае это частота статорного напряжения), при котором контролируемый выходной сигнал объекта управления (в нашем случае это частота вращения ротора) достигнет заданного значения (желаемая частота вращения, заданная пользователем). ПИ это сокращение от «пропорциональный и интегральный». Эти два термина описывают отдельные элементы регулятора:

    пропорциональная часть, которая выполняет умножение результирующего сигнала рассогласования (разницы измеренного выходного сигнала объекта управления и заданного значения) на постоянную величину, которая носит название коэффициент передачи пропорциональной части. Пропорциональная часть определяет краткосрочное поведение регулятора, т.к. она определяет, как сильно нужно реагировать регулятору на изменение заданных значений;

  • интегральная часть, которая добавляет долговременную точность регулятору. Данная часть регулятора выполняет произведение суммы всех предшествующих сигналов рассогласования на постоянную величину, которая называется коэффициентом передачи интегрирующей части. Предшествующие значения сигнала рассогласования для вычисления суммы хранятся в памяти и обновляются пока значение рассогласования не равно нулю. Это позволяет регулятору убрать различия между измеренным выходным значением и заданным, но, при этом, снижается быстродействие и устойчивость замкнутой системы.
  • Иногда, помимо пропорциональной и интегрирующей части, добавляется третья- дифференцирующая. В этом случае регулятор называется ПИД (пропорционально-интегрально-дифференцирующий). Применение такого регулятора для управления асинхронным электродвигателем по принципу постоянства V/f нецелесообразно. Его применение позволяет повысить быстродействие контура регулирования, но при этом также пропускаются шумы и снижается стабильность замкнутого контура. Кроме того, Д-компонент сложен в настройке.

    3.6 Датчики для управления электродвигателем

    Датчики скорости играют важную роль в управлении с обратной связью. Для определения частоты и направления вращения ротора могут использоваться несколько решений.

    Наиболее точным, но при этом и самым дорогим, является использование абсолютного шифратора (энкодера) или шифратора (энкодера) приращений. Стоимость данных оптических датчиков высока и соразмерна со стоимостью собственно электродвигателя.

    Другим решением, которое использовалось авторами данных рекомендаций при экспериментировании, является использование тахогенератора, механически связанного с ротором электродвигателя. Для подключения данного датчика к микроконтроллеру потребуется один канал аналогово-цифрового преобразования.

    Третьим решением является использование датчиков на эффекте Холла. Данные недорогие бесконтактные датчики в настоящее время выпускаются в виде компактных корпусных интегральных схем, в состав которых входят собственно датчик и схема формирования выходного сигнала. Такие микросхемы формируют выходной сигнал, который может быть непосредственно подключен к порту ввода-вывода микроконтроллера.

    4. Описание аппаратной части (ATAVRMC200)

    Рассматриваемое решение присутствует на оценочной плате ATAVRMC200. Данная плата является инструментом, который позволяет начать ознакомление и провести эксперименты по управлению асинхронным электродвигателем. Основные особенности платы ATAVRMC200:

    • Микроконтроллер AT90PWM3
    • Управление электродвигателем переменного напряжения 110-230В
    • Интеллектуальный силовой модуль (230В/370Вт)
    • Интерфейс внутрисистемного программирования и эмулятора
    • Интерфейс RS232
    • Ввод информации с датчиков с гальванической развязкой
    • Вход 0-10В для команд или датчика

    5. Описание программного обеспечения

    Все алгоритмы реализованы на языке Си в программных средах для проектирования IAR Embedded Workbench и AVR Studio. ЦПУ тактируется частотой 8МГц, используя внутренний калиброванный RC-генератор. В этом приложении 3 компонента микроконтроллера играют важную роль:

    8-разрядный таймер 0 используется для генерации прерываний каждые 1 мс, что определяет частоту преобразования для АЦП и контроллера порта ввода-вывода. Данный таймер используется в режиме CTC (сброс таймера при совпадении) и тактируется частотой 32 кГц. 16-разрядный таймер 1 свободен для решения прочих задач.

    Контроллеры силового каскада (PSC) тактируются повышенной частотой 64 МГц, которая формируется с помощью встроенной схемы ФАПЧ, и используются в качестве трех синхронизированных счетчиков, один из которых (PSC2) выступает в роли «ведущего», а остальные (PSC0 и PSC1) — в роли «подчиненных». В данной конфигурации изменения значений в регистрах сравнения PSC0 и PSC1 вступают в силу только при изменении значений регистров сравнения PSC2. Этим обеспечивается одновременность развертки трех PSC. Они настроены на работу в центрированном режиме с частотой преобразования 12 кГц (значение 2666 хранится в регистрах RB, чтобы частота ШИМ приблизительно равнялась 64 МГц/(2* 2666)=12 кГц).

    Аналогово-цифровой преобразователь также настроен на генерацию прерывания по завершении преобразования. Это позволяет иметь постоянную задержку между двумя выборками измеренной скорости. В качестве опорного напряжения преобразователя выбрано напряжение Vcc.

    Цифро-аналоговый преобразователь может также использоваться в процессе тестирования для отслеживания изменения внутренних переменных. Для обычного ШИМ-алгоритма используется таблица ближайших значений 127sin(2 k/180) или 127(sin(2 k/480)+1/6 sin(6 k/480)) для значений k=0. 120. Размер данной таблицы (121 байт) является оптимальным с точки зрения размера доступной внутренней памяти и периодичности оцифровки частоты вращения ротора. В случае двунаправленного управления скоростью значения, хранящиеся в обоих компараторах, обмениваются, когда на выходе ПИ-регулятора присутствует отрицательное значение.

    На рисунках 5.1 и 5.2 приведены переходные процессы для частоты вращения и статорных напряжений, полученных под управлением микроконтроллера при скачкообразном изменении заданных скоростей вращения между +700 и -700 оборотов в минуту. Данные результаты получены при управлении асинхронным электродвигателем мощностью 750 Вт (с нагрузкой не более 370Вт). Данными рисунками демонстрируется, что желаемая скорость достигается по завершении 1 секундного переходного процесса и что при достижении частотой статора на выходе ПИ-регулятора значения близкого к нулю амплитуда напряжения статора становится равной пороговому напряжению («boost voltage»). Данные рисунки также подтверждают, что одни и те же значения скоростей вращения и вращающих моментов могут быть достигнуты при более низких размахах амплитудных значений напряжения на обмотках статора за счет использования третьей гармонической составляющей.

    Рисунок 5.1 — Экспериментальные результаты, полученные с помощью таблицы преобразования идеальной синусоиды

    Рисунок 5.2 — Экспериментальные результаты, полученные с помощью таблицы преобразования, включающей третью гармонику

    6. Задействованные ресурсы

    • Размер программного кода: 1947 байт
    • Размер ОЗУ: 246 байт (в т.ч. таблица синусов)
    • Загрузка ЦПУ: 30% (без ПИ-регулятора) / 55% (с учетом ПИ-регулятора)

    7. Перечень ссылок

    1. W. Leonhard, «Control of electrical drives», 2nd Ed, Springer, 1996.
    2. F.A. Toliyat, S.G. Campbell, «DSP-based electromechanical motion control», CRC Press, 2004.
    Engl 382 Kb Исходный файл
    80 Kb Программа

    Туристическая компания предлагает туры в Латвию, Литву и Эстонию.

    Добавить комментарий