Нужна помощь при намотке трансформатора.


СОДЕРЖАНИЕ:

Electronics Engineering BLOG

Блог об электронике

Как намотать трансформатор? Первичная обмотка (Расчёт и перемотка трансформатора #4.1)

В прошлый раз мы разобрали и рассчитали трансформатор. В этом выпуске поговорим о намотке катушки.
Само важное и ценное при намотке – окно, в котором размещается катушка. Его размеры не безграничны, и необходимо стараться по максимуму экономить место, и не тратить его впустую.

К примеру вы мотаете, и у вас закончился провод именно в этом месте, да, такое бывает.

Вы берёте другую катушку с обмоточным проводом, подпаиваете провода, обязательно изолируете их и продолжаете мотать. Всё замечательно, так и нужно делать, но вы уже допустили одну грубую ошибку, разместив место спайки в окне, тем самым отобрав драгоценное место у полезного витка, который мог находиться на месте спайки. Все спайки, отводы, и другие конструктивные элементы отбирающие полезное место, должны располагаться вне окна. В данном случае нужно было отмотать четверть витка, отрезать лишний кусочек провода, и сделать спайку до окна.

Теперь можно приступать к намотке. Намотка у нас начинается с проверки, влезут ли все витки обмоток в предназначенное для них окно. Проще всего это проверить — намотать весь трансформатор, но может случиться так, что обмотки действительно не влезают, и вся проделанная работа насмарку… После нескольких промахов, до любого дойдёт осознание того, что лучше предварительно прикинуть, осуществив простой расчёт, влезут обмотки или нет. Если всё ОК, мотаем, если нет, пересчитываем всё для использования более тонкого провода. У меня уже есть первичная обмотка, от неё я никуда не уйду, поэтому я пока пропущу шаг проверки, и вернусь к нему когда буду мотать вторичную обмотку.
Вот мои расчёты на трансформатор, который мне необходимо намотать.

У мня две обмотки на 12В намотаны проводом 0,5мм, а обмотка со множеством отводов намотана вот такой шиной.

Шина это провод прямоугольного сечения, имеющий огромное преимущество перед проводом круглого сечения. При намотке проводом прямоугольного сечения остаются меньше неиспользованных пустот, то есть более рационально используется площадь окна магнитопровода. Тонкие провода нет смысла делать прямоугольного сечения, так как они легко перекручиваются, и их было бы очень сложно мотать.

Итак, мне нужно отмотать 115 витков. Как я это делаю? Я себе выбираю сторону с которой я начинаю считать витки, в данном случае я буду считать со стороны начала намотки. Запоминаю я её по вот этому второму отводу. Я сматываю по 10 витков, смотав которые я ставлю метку чтобы не сбиться. Бывает, что кто-то тебя отвлечёт, и можно легко сбиться.

Я всегда использую смотанный с других трансформаторов провод для своих нужд, поэтому нужно очень аккуратно снимать изоляционную бумагу, чтобы не повредить изоляцию провода. В трансформаторе много лака, и бумага очень плохо снимается, приходится её отрывать маленькими кусочками, чтобы упростить жизнь, можно просто начать сматывать провод не снимая бумаги, она тоненькая, и когда мы будем отматывать, сам провод будет её рвать. Снимаем первые 10 витков.
После 10 витков ставим какую-то метку на бумаге. Снимаем следующие 10 витков. Продолжаем до тех пор, пока не смотаем нужное кол-во витков. Теперь необходимо отрезать провод такой длины, чтобы запустить его в предназначенное для него отверстие и при этом он выступал на 3-4см из катушки. Теперь мне нужно выпустить провод в одно из предназначенных для этого отверстий. Так как я отмотал часть обмотки, то я уже не смогу пропустить провод в предыдущее отверстие, так как получится не очень красиво, ведь последующая намотка будет перелавливать этот провод, поэтому я просверлю в щёчках катушки новое отверстие.

Обмоточный провод я буду дополнительно изолировать кембриком, поэтому сверлю отверстие диаметром сверла немного большим, чем внешний диаметр кембрика. Для того, чтобы не повредить обмотки при сверлении, их нужно защитить, для этого я использую кусочек стеклотекстолита.

В итоге у меня получился достаточно аккуратный паз, при этом обмотки все целые, я ничего не зацепил и ничего не повредил. Дальше продеваем провод, одеваем кембрик. Теперь зафиксируем скотчем отвод для того чтобы он не болтался и не мешал нам в дальнейшей работе.

С первичной обмоткой я разобрался, и теперь мне нужно изолировать первичную обмотку от вторичной. Так как между первичной обмоткой и вторичной будет большая разность потенциалов, то просто проложить один слой изоляционного материала будет недостаточно. Здесь нужна более серьёзная изоляция. Когда я разматывал этот трансформатор, я смотал изоляцию между первичной обмоткой и вторичной. Её же я и намотаю. При закреплении изоляционного материала и обмоток удобно пользоваться скотчем. Он достаточно хорошо держит, тоненький, вот его и используем.
Изоляционный материал нужно хорошо натягивать, чтобы он плотно облегал обмотки и не воровал место в окне магнитопровода. Плотно намотать изоляционную плёнку у меня не получилось,мне это не нравится и я её сейчас немного прижму. Дело в том, что она в любом случае сожмётся когда на неё будет намотан провод, тем более я буду мотать одну из обмоток толстой шиной. Но есть проблема? Дело в том, что сначала я буду мотать 12 вольтную обмотку тонким проводом, и я не смогу этот провод натягивать на столько сильно чтобы он очень хорошо стянул плёнку. А сверху этого провода я уже буду мотать обмотку толстой шиной, и её в любом случае придётся затягивать с довольно сильным усилием, так как она толстая. Получится, что если я поверх свободно натянутой изоляционной плёнки намотаю обмотку тонким проводом, то потом, когда я буду сверху тонкого провода мотать толстую шину, шинка сомнёт тонкую обмотку её диаметр намотки уменьшится и провод перекрутится, витки налезут один на другой. Поэтому здесь нужно сделать так, чтобы все обмотки были очень плотно намотаны и когда я буду мотать вторичную обмотку толстой шиной, 12 вольтной вторичной обмотке не куда будет уйти, так как она будет стоять на плотном каркасе. Для того чтобы уплотнить часть намотанного изоляционного материала, я затяну скотчем наиболее свободные участки. Как видите, даже при затягивании скотчем, уже наблюдаются перегибы. Тоже самое будет происходить и с обмоткой. Она будет перегибаться, витки будут насаживаться один на другой что не есть хорошо.

Теперь мотаем обмотки.
Всё это я покажу уже в следующих роликах. Уже скоро. Подписывайтесь на канал чтобы не пропустить.

Перемотка трансформатора без разборки

Поскольку его родные обмотки меня не устраивали (в основном по допустимому току), то решил убрать все его вторичные обмотки и намотать свои. Процесс сопровождался множеством «открытий» и ставящих в тупик вопросов, в процессе решения которых собралось много полезных деталей, которыми захотелось поделится с такими же новичками в этом деле, как и я.

В статье есть видео с подробностями некоторых этапов.

В чем мне здесь несправедливо повезло:

  1. Было свободное время и никто не мешал.
  2. Было много разных старых запасов, в т.ч. медного провода нужной длины.
  3. Много информации в Интернет (особенно по части теории).

Заратустра меня простил.

Видео перемотки трансформатора

Время разных этапов этого видео:

26 мин 28 сек — экран из фольги между первичкой и вторичкой

27 мин 52 сек — как правильно последовательно соединить обмотки

36 мин 43 сек — как узнать направление витков при помощи батарейки и мультиметра

44 мин 14 сек — расчет и намотка новой вторичной обмотки

1 ч 24 мин 20 сек — просадка сетевого напряжения и другие потери

1 ч 30 мин 01 сек — ток холостого хода

1 ч 32 мин 14 сек — пайка алюминия

1 ч 33 мин 42 сек — итог

Исследование модифицируемого трансформатора

Трансформатор ТСА-30-1 оказался намотан алюминиевым проводом (буква «А» как раз означает алюминий).

Информации о нем в Интернет, к счастью, было достаточно, хотя реальность не совпала с найденным на него паспортом. По паспорту одна из обмоток должна была быть вроде бы как медной (провод ПЭВ-1, не имеет буквы «А» в названии как другие — ПЭВА), и я планировал ее не трогать, но в процессе работы оказалось, что эта обмотка тоже алюминиевая. Поэтому я ее тоже удалил. Т.е. осталась нетронутой только первичная обмотка.

Экран из алюминиевой фольги

В процессе разборки, я из любопытства отмотал немного пропарафиненной бумаги над первичной обмоткой хотел на нее посмотреть, и натолкнулся на один виток фольги, который присутствовал между первичной обмоткой и вторичной. Этот виток фольги шел внахлест вместе с бумагой, т.е. он не замыкался, и только один из концов был отрезком медного провода соединен точечной сваркой с корпусом. Такое разделение используют в качестве экрана от помех, хотя по поводу его эффективности идут споры. Трансформатор советский и экран был заложен на заводе изготовителе — я его трогать не стал.

Направление витков

Витки на трансформаторе были намотаны на разных катушках (левой и правой) абсолютно одинаково (не зеркально, а именно одинаково). В дальнейшем стало понятно, что такая намотка сделана исключительно для удобства при последующем последовательном соединении обмоток с разных катушек. Видимо, по той же причине направление разных вторичных обмоток чередуется. В этом случае перемычки между обмотками при последовательном соединении просто удобнее ставить с одной стороны.

Металлические клеммы

Клеммы этого трансформатора очень трудно паять и лудить, поскольку они судя по-всему сделаны не из меди. Медь, чем лучше ее прогреешь, тем лучше она паяется, а у стальных (?) клемм прогрев приводит к скатыванию припоя в шарик и его перетеканию с клеммы на жало паяльника. Нужно ловить один из начальных моментов прогрева, чтобы припой остался на клемме в приемлемом виде.

В исследуемом трансформаторе было тяжело вдвойне, т.к. к металлическим клеммам был припаян алюминий. Пришлось использовать для пайки ортофосфорную кислоту с последующей промывкой водой и сушкой на радиаторе.

Первичная обмотка

В этом трансформаторе две катушки, и каждая обмотка разделена на две равные части, которые намотаны на каждую из двух катушек, с последовательным соединением. Считается, что так выше КПД — равномернее нагрузка.

Первичная обмотка состоит из двух по 110v на каждой катушке, соединенных последовательно перемычкой. Кроме того к каждой из обмоток последовательно присоединена небольшая добавочная обмотка, которую я отсоединил и использовал в своих целях (превратив таким образом во вторичную). Напряжение этой добавочной пары — около 36v (при 230v в сети).

Расчет вторичной обмотки трансформатора

Главная ошибка которую я допустил — расчитывал вторичную обмотку, исходя из напряжения в сети 220v. Между тем, напряжение в сети в пиковые нагрузки может проседать до 185v, — это почти на 20% ниже положенного! Поэтому, рассчитывая вторичную обмотку, надо исходить из этого показателя — не 220, а например 180. Иначе можно сильно просчитаться.

При расчете напряжения в трансформаторе блока питания следует учитывать:

    Минимальное напряжение в сети

180 V

  • Падение напряжения на диодном мосту — более 2 V
  • Падение напряжения на стабилизаторе — например 3 V
  • Просадку напряжения на вторичных обмотках при увеличении тока нагрузки (умножаем в среднем на 1,02 — 1,06, в зависимости от предельного тока)
  • На рисунке ниже — напряжение на одном элементе диодного моста KBU801 при токе 8 A доходит до 1,08 V. Т.е. на всем мосту падение напряжения будет более 2 V (клинуть мышью для увеличения).

    Для уточнения количества витков на вольт во вторичной обмотке можно сделать временную контрольную обмотку (например 10 витков) и замерять выдаваемое ею напряжение (обязательно проверить напряжение в сети!). После чего разделить эти 10 (витков) на полученное напряжение. Таким образом получим количество витков на вольт.

    ВАЖНО! Необходимо делить витки контрольной обмотки на ее напряжение, а не наоборот!

    Необходимо напряжение питания 20 V при максимальном постоянном токе 2 A.

    Приблизительный подсчет выглядит примерно так:

    20 + 3 = 23 V (падение напряжения на стабилизаторе)

    23 + 2,2 = 25,2 V (падение напряжения на диодном мосту)

    17,3 V (переводим постоянное напряжение после диодного моста с конденсатором в необходимое переменное вторички)

    18,4 V (учитываем просадку напряжения в обмотке при максимальном токе нагрузки)

    Если у нас идет например 4,4 витка на вольт при идеальных

    220 V, то при напряжении

    180 V в сети, нам понадобится

    18,4 * 4,4 = 81 виток (для идеального напряжения

    81 * (220/180) = 99 витков (для пикового падения напряжения до

    220 V в сети, вторичная обмотка, содержащая 99 витков, будет выдавать около

    22,5 V
    (а при просадке в сети до

    180 V, необходимые

    Намотка

    Я наматывал одновременно четыре параллельных провода. В результате получил четыре обмотки на каждой катушке в каждом ряду. Такое количество обмоток дает возможность, соединяя их последовательно (или параллельно), комбинировать необходимое напряжение (и ток).

    Для лабораторного блока питания, используемого как инструмент при работе, это наиболее удобный вариант.

    ВАЖНО! Для трансформатора имеющего сердечник в виде буквы «О», с двумя катушками справа и слева (такого, как рассматривается в этой статье), лучше всего каждую обмотку разделить на две (одинаковые), намотанные на разные катушки и соединенные последовательно. В этом случае будет выше КПД.

    КСТАТИ при укладке на каркас, желательно слегка выгибать провод наружу перед каждым загибом на углах, чтобы витки потом не отходили в стороны от каркаса, образуя зазор при котором ухудшается плотность намотки. Я дополнительно еще придавливал провод сосновым бруском после каждого загиба на каркасе.

    Расчет длины провода.
    Перед намоткой необходимо замерять ширину каркаса и ширину окна между каркасами катушек (или каркасом и сердечником).
    После этого необходимо рассчитать длину провода, и учесть его диаметр (с лаковой изоляцией!). Если намотка происходит без разборки сердечника, способом продевания провода в окно, то кусок/куски провода необходимой длины нужно будет «откусить» заранее, поэтому важно не ошибиться. Если провод достаточно тонкий (например менее ᴓ 0,5 мм) и длинный, то имеет смысл сделать тонкий челнок, на который намотать провод нужной длины — так его будет легче протаскивать в окно.

    У меня здесь например внутренняя длина каркаса была 54 мм, и рассчитывая уложить 52 витка провода диаметром 1мм, я не угадал — последние пол витка мне пришлось делать частично внахлест (видимо я не учел толщину лаковой изоляции).
    См. рисунок (для увеличения — нажать мышью):

    При расчете возможностей окна нужно учитывать суммарную толщину изоляционных прокладок из бумаги или лакоткани между обмотками.

    Для точного расчета необходимой длины нужно сделать контрольный виток и замерять его длину. При этом, в каждом следующем ряду виток будет немного длиннее (скажется толщина нижнего ряда и толщина междурядной изоляционной прокладки). Надо понимать, что например при 50 витках ошибка длины в один миллиметр на виток даст погрешность 5 см на 50 витках. Также надо учесть запас на выводы (я добавлял к общей длине кусков по 10 см с каждой стороны, т.е. всего 20 см. — этого было достаточно и на выводы, и на возможную ошибку).

    Направление витков

    Я с трудом нашел информацию про направление витков обмотки, — для этого пришлось освежить школьный курс физики (правило буравчика и т.п.). Хотя этот вопрос неизбежно возникает у новичка.

    Главное правило — направление витков обмотки не имеет значения. до тех пор пока возникает необходимость соединять обмотки друг с другом (последовательно или параллельно), либо в случае применения трансформатора в каких-нибудь устройствах, где важна фаза сигнала.

    Последовательное соединение обмоток

    При последовательном соединении обмоток трансформатора, нужно мысленно представить, что одна обмотка является продолжением другой, а точка их соединения — это разрыв единой обмотки, в которой направление вращения витков вокруг сердечника сохраняется неизменным (и конечно не может разворачиваться в обратную сторону!).

    При этом любой вывод обмотки может быть началом или концом, а само направление вращения может быть любым. Главное, чтобы это направление оставалось одинаковым у соединяемых обмоток.

    При этом, движение соединяемых обмоток сверху вниз катушки или снизу вверх не имеет значения (см. рисунок — увеличивается кликом мыши).

    В трансформаторах, у которых сердечник имеет форму буквы «О», и катушки намотаны на двух каркасах справа и слева, действует те же правила. Но для простоты понимания можно мысленно «разорвать» сердечник (сверху или снизу), и представить, что он выпрямляется в один стержень, — так легче будет понять, как одна обмотка переходит в другую с сохранением направления вращения витков (по или против часовой стрелки). См. рисунок ниже (рисунок увеличивается кликом мыши).

    Параллельное соединение обмоток

    При параллельном соединении важна длина провода в обмотках.

    Даже при одинаковом количестве витков, разные обмотки могут иметь разную длину провода (та обмотка, которая ближе к середине — будет короче, а та что дальше — длиннее). В результате этого могут возникать перетоки.

    Если предполагается параллельное соединение обмоток, то лучше мотать их одновременно в два (три, четыре. ) провода. Тогда они будут одинаковой длины, что максимально исключит перетоки при их дальнейшем параллельном соединении.

    Намотку в несколько проводов также используют при отсутствии провода нужного сечения (набирают большое сечение несколькими проводами меньшего).

    Проверка направления витков при помощи батарейки и мультиметра

    Если есть трансформатор, в котором нужно соединить две обмотки последовательно, но направление витков не видно и не известно, можно подать импульс постоянного тока от батарейки на одну из обмоток, наблюдая за скачком напряжения на другой обмотке.

    Когда скачок напряжения в момент подключения батарейки на мультиметре (на второй обмотке) будет в «+», то точками соединения обмоток будут любые «+» и «-» разных обмоток (например «+» мультиметра и «-» батарейки, или наоборот). Два других конца при этом будут выводами этих обмоток после соединения (см. рисунок — кликнуть мышью для увеличения).

    Направление витков на разных катушках

    Повторюсь — не важно направление намотки, важно подключение обмоток.

    Хотя есть одно «но». Если говорить об удобстве, то на таком типе трансформатора (с сердечником в виде буквы «О» и двумя катушками), удобнее правую и левую катушку мотать одинаково (не зеркально, а одинаково). В этом случае удобнее будет ставить перемычки при последовательном соединении двух обмоток на разных катушках — перемычки будут с одной стороны, и не через весь каркас сверху вниз.

    См. рисунок (для увеличения — кликнуть мышью на рисунке):

    Ток холостого хода

    Если всё сделано правильно и сердечник трансформатора был собран (на заводе) качественно, то ток холостого хода (ток первичной обмотки, при полностью отключенной от нагрузки вторичной) должен быть в пределах допустимых норм.

    В моем случае этот ток был 27 мА, что просто отличный показатель.

    Амперметр надо включать в разрыв сетевого кабеля подключенного к первичной обмотке и, желательно соединив щупы мультиметра, включить трансформатор в сеть. После чего разъединить щупы и наблюдать показания. Соединять щупы перед включением в сеть необходимо для избежания выхода мультиметра из строя, т.к. у трансформатора может оказаться большой пусковой ток (в десятки раз выше номинального).

    Намотка тороидального трансформатора глазами практика

    Данная статья не претендует на звание бестселлера научно популярной литературы, а скорее руководством для начинающих. В статье рассказывается сам процесс намотки, а не его расчёт.

    Рано или поздно в практике каждого радиолюбителя возникает вопрос о том чем питать то или иное устройство. Самые ходовые мощности УНЧ это 2*100 или 2*200. Поэтому оптимальным вариантом есть «бублик» на 150 ватт габаритной мощности, в первом случае такой нужен один для 2 каналов, в другом парочка для двойного моно. Тороидальный трансформатор обладает лучшим соотношением размер-мощность, высокий КПД, а также минимальными помехами. Именно поэтому их так любят аудиофилы. Рассмотрим процесс намотки этого типа трансформаторов более подробно.

    Основное, что должен знать и главное понимать человек который мотает трансформатор:

    • длина провода (количество витков) это напряжение;
    • сечение проводника- это ток которым можно нагружать его;
    • если число витков в первичной цепи малое, то это лишний нагрев провода;
    • если габаритная мощность недостаточная (потребляется больше возможного) , это опять таки тепло;
    • перегрев трансформатора приводит к снижению надёжности.

    Итак, что нужно для намотки:

    1. Трансформаторное железо в форме тора (далее я напишу где взять);
    2. Лакопровод (на обмотку трансформатора нужен обмоточный провод);
    3. Скотч малярный (бумажный);
    4. Клей ПВА;
    5. Тканевая изолента или киперка;
    6. Кусочки провода в изоляции;
    7. И последнее, но главное — это желание.

    ТРАНСФОРМАТОРНОЕ ЖЕЛЕЗО

    Рассказывать о том как рассчитать мощность железа я не буду для этого есть уже очень много статей… Расчёт мощности сложен с практической точки зрения, так как не известна марка стали, качество её производства. Поэтому два сердечника с одной габаритной массой имеют разные параметры. Рассмотрим пример намотки сердечника на уже «отработанном» сердечнике. Один из самых легко доставаемых сердечников, качество которого достойно внимания. Является сердечник из советского стабилизатора «Украина-2»(сн-315). В своё время их много погорело, и на рынке можно достать такой аппарат за 20 грн… Нас интересует тор. Намотан этот бублик алюминиевым лакопроводом, мы нещадно его сматываем (или скусываем), нам необходим сердечник (аккуратно чтобы не повредить сердечник). Алюминиевый провод можно использовать для других целей (веники скручивать или провода), или как в моём случае я его переплавляю для других целей (делаю радиаторы). После сматывания получается красивый сердечник с габаритами 96-54-32 мм, соответственно наружный, внутренний диаметр и высота. Ниже приведён пример такого сердечника (Рис.1). Габаритная мощность такого сердечника не менее 120 ватт (проверено на практике).

    Перед намоткой необходимо подготовить железо к намотке. Если посмотрите на углы трансформатора то уведите что они под углом 90 градусов, в этих точках будет изгибаться провод и будет облущиваться лак, что б этого не было необходимо обработать углы напильником скруглив их максимально (понимаю что лень но нужно). Минимальный радиус окружности 3мм. На Рис.1 видно что углы уже обработаны, и тор готов к намотке. Небольшая хитрость, при обработке углов напильником необходимо избегать зализывания стали, дабы слои между собой оставались не замкнутыми! Для этого следует производить движения напильником вдоль направления трансформаторной ленты. После обработки рекомендую просмотреть углы на замыкание слоев и доработать их мелким напильником.

    Что-бы изолировать сердечник от обмотки необходимо его изолировать ТКАНЕВОЙ изолентой (или киперкой пропитанной парафином-воском). Лучше использовать изоленту из шириной около 25мм (Рис.2), тогда будет максимальное покрытие металла в один слой, что позволяет экономить место в окне. Конец намотки не заклеиваем (читаем дальше).

    После этих операций сердечник готов к намотке и мы переходим к следующему шагу.

    ЛАКОПРОВОД

    Лакопроводом я называю электрический проводник изоляция которого сделана из лака (по культурному намоточный или обмоточный провод). Бывает разных марок ПЭВ, ПЭВ-2, ПЭТ-155 и другие. Рекомендую использовать ПЭВ-2, насыщенный оранжевый цвет. Также очень хорошо себя показал провод очень тёмный с виду (ПЭЛ), цвета гнилой вишни, такой имеет толстый слой изоляции, что позволяет его использовать для трансформаторов высоковольтников (более 500В). К примеру провод ПЭВ-2, диаметром 1,6мм имеет толщину изоляции около 0,06-0,07мм, а «чёрный» 0,1-0,11мм.

    Расчёт сечения провода очень интересный процесс. На эту тему в интернете есть много литературы, и писать о всяких расчётах и тонкостях я не буду (Google в помощь). В зависимости от выбранной вами плотности тока будет разное сечение провода. Главное, что требуется это правильно соотношение мощностей. Необходимо чтоб мощность вторичной обмотки не привышала больше возможности первичной. Как известно КПД трансформаторов в виде тора очень высок и равняется около 97%, поэтому при намотке тора мощностью в 200 ватт, 6 ватт потерь это мелочь которой можно пренебречь. Считаем, что мощность первичной обмотки больше или равна мощности сумме всех вторичных обмоток.

    Пример расчёта. Нужно намотать трансформатор. Первичная обмотка рассчитана на 220В. Вторичных обмоток две по 28В. Диаметр провода первичной обмотки 0,6мм в лаке. Толщина лака около 0,06мм и того «чистый» диаметр провода первичной обмотки около 0,54мм. Подставляем в формулу площади круга и получаем сечение 0,228 мм 2 (если вы не знаете как я это рассчитал то купите усилитель и не заморачивайтесь). И так за пропорциею получаем 220В/28В*2=3,92 это значит что вторичная обмотка должна иметь сечение в 3,92 раза толще за первичную обмотку. Как вы видите я не использовал мощность и соответственно плотность тока. Каждый берет плотность тока какую считает правильной (для себя я принимаю 4А/мм 2 , и мои мысли подтверждают реальный тест транса который я дальше опишу).

    Для сердечника который описан выше лучше использовать провод по первичке не менее 0,6мм в диаметре. Провод такого сечения и необходимой длины можно найти в старых ламповых телевизорах, ввиде петель размагничеваний. На рынке всегда есть люди которые занимаются покупкой старых телевизоров («барахольщики»), у них можно найти необходимый провод. У нас на рынке есть два вида петель: маленькие и большие, меньшие по 20 грн, большие по 50.

    Маленькие по диаметру, таких в телевизорах используется по 2 штуки. Диаметр такой половинчатой петли размагничивания около 40-50см, сечения проводника где-то около 0,6мм. При качественной укладке этой петли хватает на намотку первичной обмотки одного тора с запасом в пару метров.

    Если же использовать большую петлю, то длина провода такой буквально в полтора раза больше маленькой по этому выгоднее покупать маленькие петли. Бывает попадается петля от лампового, цветного телевизора, длина провода в такой петле аналогична но сечение провода может достигать 0,7мм. Если вам такая попалась значит повезло.

    И так вы нашли петлю размагничивания как правило она обмотана киперной тканью (тряпочная полоска), а сверху прозрачной лентой или изолентой. Возле выводов проводов находится стык, где можно зацепится и аккуратно размотать петлю. Не нужно срезать, спиливать, срывать изоляцию вы можете повредить провод, кроме того эта изоляция нам ещё понадобится. После сматывания у нас остаётся красивый провод который можно использовать. Некоторые перематывают провод на «челнок», лично я так не делаю, зачем провод лишний раз изгибать, если он и так нужной формы, кроме того если наматывать маленькие торы, то челнок займёт больше места и может не пролезть в окно, а также повредить лак. Перед тем как начать его наматывать необходимо сделать скрутки чтоб провод не разъезжался. Для того чтоб делать скрутки необходимо взять кусочки одножильного провода (желательно в ПВХ-изоляции) длиной по 5-7см. Обматываем петлю по кругу из несильно плотным шагом, потом в ходе намотки чтоб добавить (отмотать провода) нужно будет просто прокрутить эту пружинку и провод отделится (смотрим фото Рис.3).

    Теперь наша петля имеет один конец с наружной части, а другой где-то внутри, нам нужен именно наружный. Далее вернёмся к железу которое у нас уже обработано и обмотано изолентой или киперкой. Помните мы не заклеивали край вот зачем (смотри на Рис.4). С той стороны где будет верх транса(выводы вверх выходят) на углу тора делаем надрез по центру изоленты и продеваем туда лакопровод уже в изоляции это будет отвод начала обмотки. Некоторые рекомендуют припаивать кусочек гибкого многожильного провода в изоляции и делать такой отвод. Меня такой вариант не устраивает потому что таким образом я не знаю какой провод находится в первичке, а так даже через десяток лет микрометром померил и знаешь что можно жать с него, а с отводом кто знает что там за сечение. Хотя дело ваше.

    Изготовим выводы для провода. Выводы обмоток необходимо «усилить» при помощи дополнительной изоляции. Для этих вещей очень хорошо подходит ПВХ-изоляция (советская белая), но ещё лучше подходит изоляция из провода необходимого сечения. Применять термоусадку можно, но лучше использовать ПВХ или изоляцию потому как первая имеет свойство изгибаться в одном месте что нам очень не нужно мы от этого пытаемся защитится дабы провод не отломался. Для того, чтобы стянуть изоляцию рекомендую взять провод который имеет дополнительную изоляцию в виде нитки обмотанную вокруг проводника. В этом случае нить не дает сильной связи между ПВХ и медью и позволяет стянуть изоляцию. Чтоб было проще стягивать провод нужно немного перегибать (под 45 градусов). Рекомендую за раз «натягать» изоляции и пользоваться. (Рис.2).

    Отечественные обмоточные провода

    Наибольшее распространение получили обмоточные провода в эмалевой изоляции на основе высокопрочных синтетических лаков с температурным индексом (ТИ) в диапазоне 105…200. Под ТИ понимается температура провода, при которой его полезный ресурс не менее 20000 ч.


    Медные эмалированные провода с изоляцией на основе масляных лаков (ПЭЛ) выпускаются с диаметром жилы 0,002…2,5 мм. Такие провода обладают высокими электроизоляционными характеристиками, которые практически не зависят от внешнего влияния повышенных температур и влажности.

    Проводам типа ПЭЛ свойственна большая зависимость от внешнего воздействия растворителей, относительно проводов с изоляцией на основе синтетических лаков. Обмоточный провод ПЭЛ можно отличить от других даже по внешнему признаку — эмалевое покрытие по цвету близко к черному.

    Медные провода типов ПЭВ-1 и ПЭВ-2 (выпускаются с диаметром жилы 0,02…2,5 мм) имеют поливинилацетатную изоляцию и отличаются золотистым цветом. Медные провода типов ПЭМ-1 и ПЭМ-2 (с тем же диаметром, как и ПЭВ) и прямоугольные медные проводники ПЭМП (сечением 1,4…20 мм2) имеют лакированную изоляцию на поливинил-формалевом лаке. Индекс «2» в соответствующем обозначении проводов ПЭВ и ПЭМ характеризует двухслойную изоляцию (повышенной толщины).

    ПЭВТ-1 и ПЭВТ-2 — эмалированные провода с температурным индексом 120 (диаметром 0,05…1,6 мм), они имеют изоляцию на основе полиуретанового лака. Такие провода удобно монтировать. При пайке не требуется зачищать лакированную изоляцию и применять флюсы. Достаточно обычного припоя марки ПОС-61 (или аналогичного) и канифоли.

    Эмалированные провода с изоляцией на полиэфирамидной основе ПЭТ-155 имеют ТИ равный 155. Они выпускаются с жилами не только круглого сечения (диаметра), но и прямоугольного (ПЭТП) типа с диаметром проводника 1,6-1 1,2 мм2. По своим параметрам провода ПЭТ близки к рассмотренным выше проводам типа ПЭВТ, но имеют более высокую стойкость к нагреванию и тепловому удару. Поэтому обмоточные провода типов ПЭВТ и ПЭТ, ПЭТП особенно часто можно встретить в мощных трансформаторах, в том числе в трансформаторах для сварочных работ.

    ПРОЦЕСС НАМОТКИ

    Для намотки транса вам потребуется 4-5 вечеров и по 2 часа времени, почему не менее 4 дней поймёте дальше.

    Один конец провода мы уже запустили и прижали. Далее начинается самое муторное намотка. Мотать рекомендую так. Берём транс (пока что железо), одеваем перчатку или берём в руку какую либо ветошь из натуральной ткани. Усаживаемся на диван или кровать включаем фильм который уже видел или музыку (чтоб не сильно отвлекаться), и начинаем мотать. Каждый виток продеваем в кольцо железа. Мотать нужно виток к витку из внутренней стороны (некоторые умудряются с наружной, каким образом не представляю).

    Рекомендации по ходу намотки

    Для того чтоб легче было считать витки их лучше группировать по 5 или 10 витков. Натягивать провод необходимо не чётко перпендикулярно (пунктир красная линия) к касательной (чисто красная), а слегка наклонено в сторону намотки(желтый), как будто внутренняя часть намотки идёт впереди наружной (Рис.5). Таким образом намотки провод при натяжке будет сам прижимается к другим уже уложенным виткам. Если у вас провод погнутый он идеально не уложится поэтому он должен быть максимально прямым, для этого во время намотки его нужно сильно натягивать тем самым его выпрямляя. Вот зачем нужны перчатки или ветошь, если не применять перчатки то пальцы и ладонь очень быстро устают и болят. Если наматывать провод сечением больше 1,5мм (очень тяжело) то рекомендую провод для простоты выпрямления слегка перегибать под натяжкой.

    (Отец моего друга мотает сварочники 50 герц, вторичка шинка медь 35 квадратов укладывает руками идеально ровно, так он изгибает 5 копеек украины в пельмень- пальцами).

    Во время намотки провод осматривается на наличие изъянов, особенно в местах изгиба, если лак нарушен то замазываем его аккуратно изолирующем цапон лаком или краской (на крайний случай обычным лаком для ногтей).

    Когда намотали слой до конца. Между слоями необходимо делать межслойную изоляцию. Мне повезло и у меня есть некоторые заначки лакоткани, причем ткань такая что тянется и пропитана чем то липким. Такая если прилипает друг до друга(сложилась) то её очень сложно разделить. От неё слипаются пальцы. Такая лакоткань идеальный изолятор, кроме того обмотка не дребезжит даже при перегрузке. Но такое есть у очень малого числа людей. Теже функции изолятора очень хорошо реализовать при помощи малярного скотча.

    После того как намотали слой берём и изолируем его при помощи малярного скотча. Делаем полосочки шириной где-то по 15мм. И этими полосками обматываем транс изначально что-б про изолировать внутреннюю часть намотки провода (изнутри бублика). Затем изолируем пробелы с наружной части бублика. В результате изоляции скотчем получится, что изнутри изоляция накладыванием слоев, станет в два раза толще, с наружи одинарная. После того как обмотали необходимо обильно смазать тор клеем ПВА, это делается для того что-б скотч не разматывался, а также он станет крепче и как будто цельный. Помимо всего клей будет удерживать обмотки что-б те не «гудели». Клея жалеть не нужно, смазываем пальцем и слегка втираем. После чего тору необходимо высохнуть. Я обычно мотаю тор вечером, намотав слой пропитываю клеем, а сам тор для хорошей циркуляции воздуха, ложу на игольчатый радиатор. За ночь тор высыхает и его можно мотать дальше. Вот почему минимум 4 вечера потребуется на намотку (4 вечера- 4 слоя). При необходимости можно ускорить процесс высыхания феном. Мотаем следующий слой… сам процесс намотки аналогичен и ни чем не отличается. По окончанию намотки конец намотки помещаем в такую же изоляцию как в начале обмотки. Затем конец обмотки закрепляем малярным скотчем, изолируем обмотку при помощи скотча малярного и пропитываем клеем.

    Есть ещё один хороший вариант изоляции между слоями. Очень хорошо будет если в ходе намотки будете использовать бумагу для выпечки (пергамент) нарезанную на такие же полосочки и после обмотанной. В итоге транс необходимо будет пропитать, а реально сварить на паровой бане смеси 50:50 соответственно парафин:воск. Паровая баня берем в кастрюлю набираем воды и ставим кипятится(нам нужен пар). Сверху устанавливаем емкость в которой помещен трансформатор и воск-парафин. Трансформатор зарание подвязываем на проволоку, конец оставляем(когда смесь потечёт за эту нить нужно в мокать трансформатор как пакетик чая в чашке). Когда будете окунать трансформатор нужно осторожно дабы капли воска не попали на пламя, очень сильно горючь. Ранее именно таким «расстовором» пропитывались выходные трансформаторы для ламповых УНЧ, Хотя и другие качественные трансы тоже. Когда смесь разогрета она имеет очень высокую текучесть почти как у воды, в результате чего бумага стает буквально пропитана парафином и воском. Однако этот вариант будет изначально не эффективен если транс будет греться (теплый) при температуре в 50 градусов, воск уже достаточно мягкий и не будет сдерживать провод от вибрации 50Гц, хотя и будет выполнять функции диэлектрика. (Правда именно из-за вибрации и трения провода перетираются и получается замкнутый виток, который приводит к повреждениям уже в ходе эксплуатации).

    Для импульсных трансформаторов рекомендую в качестве пропитки использовать не скотч, а бумагу+ клей БФ-2. Этот клей прежде всего применяется в изготовлении катушек для динамиков. Но в импульсном трансформаторе тоже очень хорошо себя проявил. При неоднократной перегрузке не малейшего писка на частоте преобразования в 15КГц. Разматывая обмотки из каркаса, они снимались шлейфом шириной у 8 жил.

    В ходе намотки периодически измеряем ток холостого хода, для этого необходимо подключать тестер последовательно с первичной обмоткой в режиме амперметра(читаем инструкцию на тестер). Измерять ток х.х. необходимо очень осторожно ведь работа от сети! Для избегания всяких ЧП рекомендую последовательно с первичкой включить лампочку на 220В, мощности порядка 40Вт. Лампочка будет гореть если число витков сильно мало, если транс намотан правильно то она должна быть лишь с розовым оттенком, что говорит о низком токе который через неё протекает. Трансформатор имеет большие пусковые токи, в момент запуска трансформатора перегрузки могут достигать 160 раз. Поэтому запуск трансформатора необходимо делать не непосредственно через тестер, а при помощи «перемычки» которую потом размыкаешь и ток начинает течь через тестер. Перемычку можно реализовать простым замыканием щупов тестера, которые потом разомкнуть. Каким должен быть ток холостого хода я напишу ниже.

    Для трансформаторов у которых низкий ток потребления рекомендуется использовать резистор 10 или 100 Ом(2-5Вт) который включается последовательно с первичной обмоткой. Измерив падение напряжения на резисторе, при помощи закона ома перещетать ток. Такой метод является более предпочтительный нежели первый, но в тоже время более опасным при высоком токе потребления- резистор превращается в уголь за доли секунд.

    О том как измерять ток х.х. я вкратце рассказал написал, теперь о значениях. Норму тока х.х. каждый определяет для каждого транса индивидуально, но обычно норма это до 50 мА при 230В, правда некоторые говорят что и 0,5А нормально. Чем ниже ток тем лучше! Чем ниже ток покоя, тем более форма тока х.х. похожа на синус. Если у вас ток х.х. от 20-50 то это терпимо, скажем так на троечку, от 10-20 это четыре, меньше 10мА эт явно пять. У маленьких ториков, ток будет маленьким из-за высокого сопротивления первичной обмотки, это нужно учитывать! Хотя как на меня мотать торы вручную меньше сотни ватт это зверство! Количество витков первичной обмотки в них достигает пару тысяч.

    Намотаный мною трансформатор по моей методике имеет ток х.х. равным 11мА (при 4 слоях первички).

    Если последовательно всё делать, то получится нечто похожее:

    ПРОЦЕСС ТЕСТИРОВАНИЯ И ИЗМЕРЕНИЯ

    О том как измерять ток х.х. я вкратце рассказал написал, теперь о значениях. Норму тока х.х. каждый определяется для каждого транса индивидуально, но обычно норма это до 50 мА при 230В, правда некоторые говорят что и 0,5А нормально. Чем ниже ток тем лучше! Чем ниже ток покоя, тем более форма тока х.х. похожа на синус. Если у вас ток х.х. от 20-50 то это терпимо, скажем так на троечку, от 10-20 это четыре, меньше 10мА эт явно пять. У маленьких ториков, ток будет маленьким из-за высокого сопротивления первичной обмотки, это нужно учитывать! Хотя как на меня мотать торы вручную меньше сотни ватт это зверство! Количество витков первичной обмотки в них достигает пару тысяч.

    Каждый электрик должен знать:  Расход электроэнергии в квартире 500-600 кВт - в чем причина

    Очень полезно будет посмотреть форму тока холостого хода, в первичной обмотке при помощи осциллографа. НО!! это нужно делать в очень специальных условиях! Для этого необходим развязывающий трансформатор (220/220В), при том что индукция должна быть очень низкой что-б не вызывать дополнительных искажений формы «синуса». А также латр. Этот пункт теста рекомендую делать только очень опытным специалистам, последствия чреваты выгоранием осциллографа.

    При использовании моих параметров намотки я «снимал» с такого транса 150 ватт на протяжении нескольких часов (дольше не было времени).

    Планируется дополнить статью такими «изюминками»… пока что очень бегло…

    Все трансформаторы и источники энергии (блоки питания) имеют такой абстрактный параметр как внутреннее сопротивление. Как это понимать?! В случае с трансформатором это сопротивление будет равняться активному сопротивлению обмоток. Когда вы подключаете к трансу нагрузку, то протекающий ток и сопротивление обмоток создают просадку напряжения. Что-б просадка по напряжению была минимальной необходимо увеличивать сечение проводника (снизив его сопротивление). Но в тоже время необходимо учитывать этот факт при эксплуатации, что габаритная мощность обмоток будет выше габаритной мощности сердечника, внимательно что-б не перегрузить первичку.

    Намотка тороидального трансформатора для УМЗЧ

    Основным элементом блока питания является трансформатор. Иногда его можно приобрести в специализированных магазинах, на радиорынке либо через интернет. Но чаще всего трансформатор с необходимыми параметрами купить не удается. Для изготовления трансформатора самостоятельно вначале нужно определиться с типом железа. Наиболее распространены трансформаторы из Ш-образных пластин. Вместе с тем, трансформаторы на тороидальном железе (бублик из железной ленты) в сравнении с трансформаторами на броневых сердечниках из Ш-образных пластин имеют меньший вес и габариты. Также торы отличаются лучшими условиями охлаждения обмоток и повышенным КПД. При равномерном распределении обмоток по периметру тороидального сердечника практически отсутствует поле рассеяния и в большинстве случаев отпадает необходимость в экранировании трансформатора. Хотя при построении качественного усилителя экраном пренебрегать не стоит.

    Кроме этого, даже на самом лучшем железе при индукции 15000 Гс в тороидальном трансформаторе ток намагничивания имеет форму импульсов с пикфактором 5. 50. Это является источником мощных помех с довольно широким спектром. Более-менее синусоидальным ток х.х. становится при индукции менее 6000 Гс для стали 3410 и 8000. 9000 Гс для 3425. Пониженная индукция заметно удорожает и утяжеляет трансформатор, что для серийной аппаратуры крайне нежелательно. Однако, для снижения помех в усилителе мощности звуковой частоты имеет смысл идти на снижение индукции в трансформаторе блока питания. В данном случае работает правило — «Чем меньше индукция, тем лучше».

    Для расчета параметров тороидального трансформатора очень удобно пользоваться калькулятором. Он позволяет быстро посчитать параметры трансформатора, имея в наличии готовый тор. Для Hi-End УМЗЧ рекомендуется индукцию в сердечнике из российского (советского) железа не выбирать более 1,0 Тл. Для импортного железа (тор из старого ИБП) допустимо 1,2 Тл. В таком случае будет получена низкая магнитная наводка и минимальный акустический шум от трансформатора.

    Перед намоткой тороидального трансформатора необходимо подготовить выбранный сердечник: вначале снять фаску полукруглым напильником со всех острых краев бублика, затем по торцу тора обвести карандашом и вырезать из плотной бумаги (открытки) щечки, приклеить щечки на боковинки тора, обклеить внешнюю и внутреннюю сторону сердечника обычной бумагой. Возможны другие варианты изоляции сердечника. Главное предотвратить возможное замыкание первичной обмотки на сердечник трансформатора в результате возможного продавливания изоляции и повреждения лака обмоточного провода на острых краях тора при намотке.

    Для намотки тороидального трансформатора я использую челнок из дерева или текстолита на концах которого делаю вырезы в виде ласточкиного хвоста. Челнок легко изготовить из деревянной ученической линейки длиной 20 – 30 см. А чтобы она не треснула вдоль при намотке на нее моточного провода «ласточкин хвост» укрепляется бумажным скотчем (3 – 4 витка в поперек). При намотке вручную следует пользоваться проводами ПЭЛШО, ПЭШО. В крайнем случае можно применить широко распространенный моточный провод ПЭВ-2 или ПЭТВ-2. В качестве межобмоточной и внешней изоляции пригодны фторопластовая пленка ПЭТФ толщиной 0,01-0,02 мм, лакоткань ЛШСС толщиной 0,06-0,12 мм или батистовая лента, я же использовал фторопластовую пленку.

    После намотки расчетного количества витков первичной обмотки желательно измерить ток холостого хода трансформатора. Для этого подключаем тестер последовательно с первичной обмоткой в режиме амперметра. Для избегания всяких ЧП последовательно с первичкой можно включить лампочку на 220 В и мощностью 40 Вт. Лампочка будет гореть если число витков мало. Если транс намотан правильно, то нить накала должна иметь розовый оттенок. Тороидальный трансформатор имеет большие пусковые токи, в момент запуска перегрузки могут достигать 160 раз. Поэтому запуск трансформатора необходимо делать не через тестер, а при помощи «перемычки», которая потом размыкается и ток начинает течь через тестер.

    Для измерения тока холостого хода я использую следующую схему:

    Последовательно с первичной обмоткой трансформатора включаю резистор номиналом 10 Ом, подаю напряжение сети и замеряю на нем падение напряжения. Соответственно ток холостого хода равен I=U/R. В моем случае 0,045 В / 10 Ом = 0,0045 А. или 4,5 мА.

    Норма тока холостого хода для каждого трансформатора индивидуальна и обычно не превышает 50 мА при напряжении 220 В. Здесь основное правило — «Чем ниже ток х.х., тем лучше», тем форма тока холостого хода больше похожа на синус.

    Для тороида в блоке питания УМЗЧ ток х.х.:

    • 20-30 мА — «удовлетворительно»,
    • 10-20 — «хорошо»,
    • меньше 10 мА — «отлично».

    Для вычисления количества витков первичной обмотки любым подручным проводом (в моем случае мгтф) наматываю вторичную обмотку, подав сетевое напряжение на первичную обмотку замеряю напряжение на вторичной обмотке.

    У меня на 4 витках вторички тестер показывает 0,581 В. Соответственно количество витков первичной обмотки будет равно: U сети х N вторички / U вторички. На момент измерений в сети было 230 В. В цифрах получаем: 230 В х 4 витка / 0,581 В = 1583 витка.

    Еще пару слов о намотке трансформатора. В целях максимального уменьшения помех, излучаемых тороидальным трансформатором, необходимо равномерно заполнять моточным проводом каждый слой обмоток. Если первую половину обмотки вы укладывали витки вправо, то вторую половину обмотки витки необходимо укладывать влево, не меняя при этом направление укладки самих витков вокруг сердечника. Если необходимо намотать две одинаковые обмотки (характерно для УМЗЧ) на шпулю сматвается двойной провод, а затем со шпули укладываются витки двух вторичек одновременно, как показано на фото.

    В моем случае три слоя первички уложены в одну сторону, и еще три слоя в другую. Выводы первички сделаны как можно ближе друг к другу. Две вторички намотаны аналогично, два слоя укладывались в одну сторону и еще 2 слоя в другую. С соблюдением данных правил мною был изготовлен тороидальный трансформатор мощностью 120 Ват для усилителя Василича с N-канальным выходным каскадом Алексея Никитина, обеспечивший минимальные наводки на входные цепи УМЗЧ.

    Буду рад если мой опыт изготовления тороидальных трансформатором будет полезен Вам.

    Поделки своими руками для автолюбителей

    Всем привет, сегодня опять речь пойдёт о зарядных устройствах и поскольку многим надоели всякие импульсные схемы источников питания, покажу я вам довольно универсальную, простую и мега надежную схему зарядного устройства, которую собирали еще наши деды.

    Схемка сейчас перед вами

    Суровый железный трансформатор, пара мощных тиристоров и узел регулировки. Кстати метод регулировки тут фаза-импульсный, а не линейный. За счет этого кпд схемы довольно высокая.

    Тиристоры являются регулирующим звеном и одновременно выпрямителем, поэтому тут нет дополнительного диодного выпрямителя, а это большой плюс.

    Схемы подобного класса практически резиновые, взял более мощный трансформатор, поставил тиристоры помощнее и всё, готово пуско-зарядное устройство.

    Ну а теперь по традиции давайте посмотрим как это работает…

    Линейный и ШИМ метод регулировки мощности вам прекрасно известен, но в случае тиристоров не все так просто, тут нужен совсем иной принцип регулировки.

    В случае линейного метода регулировки, который не применим к тиристорам, мощность регулируется за счет того, что регулирующий элемент, как правило транзистор. В зависимости от величины управляющего сигнала изменяет сопротивление открытого перехода линейно от 1 до 100%, чем больше приоткрыт транзистор, тем меньше сопротивление его перехода, а следовательно больше тока он пропускает и больше мощности будет на выходе.

    В случаи с ШИМ метода регулировки транзистор либо полностью открыт,

    когда на его управляющий вывод подаётся высокий уровень сигнала, либо полностью закрыт,

    если на управляющий вывод подается низкий уровень.

    Притом регулировка мощности осуществляется за счет времени нахождения транзистора в одном из двух состояний, чем больше времени транзистор открыт, тем больше мощность и наоборот.

    Этот метод самый экономичный, так как транзистор работает в ключевом режиме, когда в открытом состоянии сопротивление его перехода ну или канала — минимально, поэтому нагрев на нём практически отсутствует. Отсюда и очень высокий КПД.

    В случаи тиристоров не всё так просто… Тиристор это не транзистор и указанные два метода к нему можно сказать не применимы.

    Тиристор без проблем можно открыть подавая сигнал на управляющий электрод, но закрыть его принудительно практически невозможно, закроется он только тогда, когда с силовых выводов снимается напряжение.

    В цепи переменного тока это происходит автоматически, когда напряжение, проходит через нулевую точку.

    Наиболее популярный метод управления тиристором фазо-импульсный принцип регулировки с помощью так называемых релаксационных генераторов.

    Генератор может находиться в двух состояниях, на его выходе, либо есть управляющий импульс, либо его нет, величина этого импульса и длительность не меняется. Можно изменять только количество импульсов за единицу времени или чистоту.

    В нашей схеме релаксационный генератор построен на базе двух транзисторов и по сути является аналогом однопереходного транзистора, ну или динистор.

    Время срабатываний задается номиналами указанных резисторов и конденсатора, работает все это дело простым образом.

    Через маломощный диодный выпрямитель от силовой обмотки трансформатора, либо от дополнительной маломощной, переменное напряжение выпрямляется в постоянку и поступает на схему генератора. В цепи питания имеется стабилитрон для стабилизации питающего напряжения генератора, через цепочку резисторов заряжается конденсатор и как только напряжение на нём доходит до некоторого значения, генератор сработает, на его выходе образуется отпирающее для тиристора напряжение. Конденсатор разряжается, импульс пропадает и дальше процесс повторяется заново.

    Переменным резистором мы можем уменьшить или увеличить время заряда конденсатора, а следовательно и количество управляющих импульсов за единицу времени, а если попроще, просто меняем частоту импульсов.

    Управляются тиристоры через разделительный трансформатор,

    на самом деле есть много способов управления, через диоды или транзисторы, но в моем случае задействован именно трансформатор, так как в дальнейшем я собираюсь поэкспериментировать регулировку на в ходе по высоковольтной части, а трансформатор обеспечивает гальваническую развязку, вы же можете воспользоваться другими способами управления.

    Трансформатор имеет две вторичные обмотки, именно они управляют тиристорами, при наличии управляющего импульса тиристор сработает, закроется он только при прохождении тока через нулевую точку.

    Мы можем открыть тиристор в любой точке полуволны, если мы его открыли в начале полуволны, то естественно через него будет проходить больше тока, если в середине меньше, если в конце то еще меньше.

    Фактически тиристор будет обрезать синусоиду пропуская на выход только её части, чем меньше кусок синусоиды, тем меньше мощность на выходе, это если предельно простым и понятным языком надеюсь принцип понятен.

    Ну а теперь переходим к компонентом, в принципе с генератором думаю проблем не возникнут, номиналы компонентов не критичны, можно отклонять в ту или иную сторону процентов на 30.

    Собран генератор на компактной, печатной плате и её можно скачать в конце статьи.

    Трансформатор в моём случае намотан на жёлто-белом колечке от фильтра групповой стабилизации компьютерного блока питания, размеры трансформатора сейчас перед вами

    Вначале я намотал вторичные обмотки, 2 по 90 витков проводом 0,31 миллиметр, стараемся мотать аккуратно без перехлёстов, равномерно растягивая витки по всему кольцу, поверх мотаем еще 90 витков — это у нас первичная обмотка.

    В моём случае, управляющие или вторичные обмотки, залил эпоксидной смолой, затем только намотал первичную. Это сделано для безопасности, поскольку, как уже сказал ранее мой трансформатор экспериментальной и в дальнейшем будет управлять тиристорами, которые работают непосредственно в сетевой части.

    Тут замечу, что в итоге управляющие обмотки этого трансформатора я всё таки спалил вместе с менее мощными тиристорами на 10 ампер во время погони за большим выходным током, так что жадность фраера всё же губит, поэтому процедуру намотки трансформатора пришлось повторить заново. Сердечник из того же материала но размеры чуть меньше.

    Для заливки трансформатора я применяю китайскую, эпоксидную смолу, сохнет полностью где-то за 20 минут.

    За это время нужно будет повертеть трансформатор в руках для равномерного распределения смолы по всему сердечнику, тут главное не перестараться, смолы не должно быть слишком много, иначе получится неаккуратно.

    Можно использовать смолу любого цвета, трансформаторы залитые таким образом получаются предельно надежными и очень красивыми.

    После намотки первичной обмотки, всё дополнительно покрыл лаком, но это делать необязательно.

    Ещё пару слов об управляющих обмотках, полностью равноценные и мотаются разом, они должны обеспечить достаточное напряжение и ток для отпирания тиристоров, напряжение можно посмотреть осциллографом.

    Важно не перепутать начала обмоток, на схеме они указаны точками.

    Что касается характеристик схемы, именно мой вариант может обеспечить зарядный ток до 12-13 ампер, но можно получить хоть 200, хоть 500 ампер, если силовые компоненты, тиристоры и трансформатор, позволят этому.

    Несколько слов о компонентах, недавно в очередной раз посещал местную барахолку и просто не мог, не купить этих зеленых монстров, это довольно мощные, силовые тиристоры напоминающие о былом величии советского союза, да уж не жалели тогда материала.

    Тиристоры всего на 25 ампер, но посмотрите на сечении силового провода, он и сотню ампер пропустит и не шелохнется, естественно для этого тиристора 25 ампер далеко не предел. Тиристоров нужно два штуки.

    Теперь о трансформаторе, в моём случае вот такой — это накальный трансформатор с мощностью около 200 ватт, но и он способен на большее.

    Вторичных обмоток 4, обмотки по 6,3 вольта с током 8-9 ампер, правда ток одной из обмоток чуть поменьше, чем у остальных, но ничего прорвёмся.

    Из-за особенностей такого типа выпрямителя, трансформатор нужен с двумя одинаковыми обмотками, которые соединяются со средней точкой, при том итоговое выходное напряжение или напряжение заряда, будет не больше напряжения одного из плеч, минус потеря на тиристоре.

    Поэтому если зарядку делаете для АКБ легкового автомобиля, желательно использовать обмотки по 20 вольт. Для этого трансформатор единственное, логичное подключение обмоток с учётом ситуации показано на рисунке

    все обмотки последовательно с отводом от средней точки, но загвоздка в том, что итоговое выходное напряжение будет около 12,6 вольт, этого не достаточно для зарядки аккумуляторов, но транс рассчитан для работы в сетях 220 вольт, а у нас в розетке уже давно 230-240 вольт, то есть и выходное напряжение будет побольше, а если точнее 28 вольт суммарно или около 14 вольт в плече.

    Чуть меньше, чем нужно.

    Тиристоры удобно установить на общий радиатор, так как их аноды по схеме общие.

    Силовые провода стоит использовать с приличным сечением. Не забываем изолировать все соединения.

    В конце я нашёл стрелочную, измерительную головку от древнего мультиметра и подумал использовать её в качестве амперметра, шунты также были в наличии, мне тут сказочно повезло, потому что не пришлось ничего рассчитывать и настраивать.

    С применением шунта 50 ампер, 75 милливольт самая нижняя шкала очень точно показывает ток до 30 ампер.

    Притащил из подвала всеми любимый мультиметр))),

    он будет показывать нам напряжение на выходе зарядного устройства, вся шкала 15 вольт.

    Чуть не забыл все замеры делаются под нагрузкой, иначе мультиметры сойдут с ума.

    Теперь к делу, первый запуск схемы, как всегда делаем через страховочную ограничительную лампу, если все заработает как надо, не забываем установить предохранители по входу и выходу. Всё готово, нагрузка у нас лампа накаливания соответствующего периода.

    Пробуем и видим, как ток регулируется и регулируется довольно плавно, 12,13 ампер с такого транса снять можно, можно естественно и больше, но будут просадки и возможен перегрев.

    Тиристорам такие токи по барабану, они почти не греются, короткие замыкания при малых и средних токах схема терпит без проблем, мощность ограничивается, при запредельных туках трансформатору придётся несладко, поэтому предохранители обязательно ставить.

    Минимальный выходной ток около 4 ампер, теперь проверим стабильность выходного напряжения в зависимости от изменений сетевого, выход зарядного устройства нагружен мало мощными лампами.

    Об этом ранее указал и вот подтверждение, цифровой мультиметр показывает сетевое напряжение, стрелочный прибор выходной с зарядного устройства, изменение сетевого напряжения приводит к изменениям выходного и на практике вам нужно контролировать ток заряда.

    Это пожалуй основной недостаток таких зарядных устройств, а в целом все работает неплохо.

    Недостатки... Современное, зарядное устройство заряжает аккумулятор стабильным током и напряжением, но в те времена никто не заморачивался с этим, нужно понимать, что это дубовое зарядное устройство, которое не будет контролировать напряжение на аккумуляторе и отключать питание при полном заряде АКБ.

    Тут пользователь сам решает, каким током и в течение какого времени заряжать аккумулятор. Из-за указанного недостатка советую дополнить устройство узлом автоотключение аккумулятора при полном заряде. Схема подобного узла есть на сайте.

    Так же нужно понимать, что отсутствуют всякие узлы защиты помимо предохранителей.

    Достоинства... Сверх надежная штука, чтобы спалить такую зарядку нужно очень постараться, схема некапризна, регулировка довольно плавная, высокая повторяемость, очень простая конструкция и низкая себестоимость, почти все комплектующие можно найти в старых запасах.

    Довольно высокий КПД за счёт можно сказать импульсного принципа регулировки.

    Немаловажный момент… Нет необходимости в дополнительном выпрямителе, сами тиристоры являются и регулирующим органам, и выпрямителем.

    Совместно с надежным железным трансформатором, такая схема будет служить десятилетиями, а самое главное она универсальна и может быть использована для зарядки самых разных аккумуляторов.

    Ещё один момент, который я честно сказать не определился отнести к достоинствам или недостаткам, аккумулятор будет заряжаться пульсирующим током, многие говорят, что это даже полезно для аккумулятора, лично ничего сказать по этому поводу не могу.

    Сделай сам своими руками О бюджетном решении технических, и не только, задач.

    Как разобрать, перемотать, а потом собрать силовой трансформатор? FAQ Часть 4

    В статье рассмотрены приёмы разборки, сборки и перемотке трансформаторов, в зависимости от конструкции каркаса и сердечника.

    Самые интересные ролики на Youtube

    Страницы 1 2 3 4

    Как разобрать и собрать трансформатор?

    Наиболее удобными для перемотки являются трансформаторы на витых броневых и стержневых магнитопроводах, так как их сборка и разборка занимает считанные минуты.

    Однако при сборке требуется точное сопряжение отдельных частей магнитопровода. Поэтому при разборке, обязательно пометьте сопрягаемые части магнитопровода, чтобы в последствие их можно было правильно собрать.

    При производстве витых броневых и стержневых магнитопроводов, лента наматывается на шаблон, а затем весь пакет разрезается. Половинки сердечника маркируются так, чтобы при сборке можно было восстановить положение сердечника имевшее место до разрезания.

    Чтобы предотвратить вибрации и гудение, можно во время сборки склеить половинки магнитопровода клеем на основе эпоксидной смолой. Небольшое количество клея нужно нанести на зеркальные сопрягающиеся части магнитопровода.

    Если после разборки магнитопровода, на нём остались остатки старой эпоксидной смолы, то их можно удалить при помощи самой мелкой наждачной шкурки (нулёвки).

    При промышленной сборке, в смолу добавляют в качестве наполнителя ферромагнитный порошок.

    При нескольких сборках и разборках трансформатора на витых броневых сердечниках, могут переломиться лапки стягивающего хомута.

    Чтобы этого не произошло во время тестирования, можно стянуть магнитопровод 8-10-тью слоями изоляционной ленты.


    Стержневые витые и штампованные магнитопроводы могут иметь как один каркас поз.2, так и два каркаса поз.1 с обмотками расположенными симметрично.

    Первичные и вторичные обмотки двухкаркасных трансформаторов следует распределять равномерно на оба каркаса.

    От взаимного положения каркасов, зависит относительная фазировка обмоток.

    1. Самодельный кольцевой трансформатор.
    2. Промышленный неразборный кольцевой трансформатор.
    3. Кольцевой витой магнитопровод.

    Кольцевые магнитопроводы не требуют сборки-разборки, так как сами и являются каркасом для обмоток.

    1. Ш-образная пластина.
    2. Замыкатель.
    3. Трансформатор.

    Броневые штампованные магнитопроводы, с так называемым Ш-образным железом, тоже можно перематывать, но их разборка может занять намного больше времени, чем все остальные операции. Дело в том, что при сборке таких трансформаторов, последние пластины набора часто вбиваются молотком. Если же трансформатор ещё и прошёл пропитку вместе с магнитопроводом, то разборка может превратиться в сущий ад.

    Пластины пропитанного парафином магнитопровода после разборки можно сварить в воде, чтобы отделить от парафина. Парафин же легко удалить с поверхности воды после того, как он застынет.

    Если магнитопровод пропитан лаком, то после разборки, пластины нужно хорошо прожечь в бензине, но это имеет смысл только при ремонте какой-нибудь дорогостоящей аппаратуры.

    Чтобы было легче разобрать трансформатор, следует сначала удалить все замыкатели, а затем попытаться выбить несколько Ш-образных пластин с какого-нибудь края или середины, если в середине есть пластины установленные не в перекрест.

    Пример разборки и сборки штампованного броневого магнитопровода.

    Это выходной трансформатор лампового однотактного УНЧ, поэтому Ш-образные пластины и замыкатели собраны с магнитным зазором. Мне нужно превратить его в силовой трансформатор, для чего я должен собрать Ш-образные пластины в перекрест.

    Чтобы быстро собрать трансформатор, можно сразу вставлять и Ш-образные пластины и замыкатели.

    Очень часто у радиолюбителя после перемотки таких трансформаторов, остаются лишние пластины. Это снижает габаритную мощность трансформатора.

    Для того чтобы все пластины вошли в каркас, вставляйте Ш-образные пластины и замыкатели заусенцами вниз.

    Когда половина пластин будет вставлена, установите однообразно (не в перекрест) две Ш-образные пластины без замыкателей. Не вставляёте эти пластины до конца. Затем продолжите вставлять пластины до 2/3 всех пластин. Вставьте оставшуюся 1/3 часть Ш-образных пластин без замыкателей. Вот, что у Вас должно получиться. Обычно остаётся несколько пластин, которые невозможно всунуть в каркас и два десятка замыкателй.

    Теперь нужно вставить оставшиеся пластины промеж двух заложенных ранее пластин и вбить их при помощи текстолитового или деревянного бруска и молотка. В завершение сборки магнитопровода, нужно вставить все замыкатели.

    На картинке пластина броневого штампованного магнитопровода и трансформатор собранный из таких пластин. Это одна из самых неудачных конструкций магнитопровода. Во-первых, эти пластины не имеют отдельного замыкателя, что сильно затрудняет сборку-разборку, а во-вторых, они снабжены крепёжными отверстиями, проходящими через тело магнитопровода, что снижает габаритную мощность. От использования подобных трансформаторов лучше воздержаться.

    Как намотать трансформатор?

    В современных броневых и стержневых трансформаторах обмотки наматываются на жёсткий каркас. Поэтому, для закрепления каркаса, можно воспользоваться вот такими щёчками. Одну из щёчек нужно жёстко закрепить на шпильке двумя гайками, чтобы каркас вместе со щёчками при намотке не прокручивался относительно шпильки.

    Вторая щёчка будет просто удерживать каркас.

    Если же Вам попадётся какой-нибудь старинный трансформатор с картонным каркасом, то придётся выпилить деревянную бобышку размером чуть шире сечения магнитопровода, чтобы при намотке каркас не деформировался вместе с обмотками.

    Длина бобышки должна быть равной или чуть больше высоты каркаса.

    Каркас вместе с бобышкой можно прикрутить к шпильке подобным образом.

    Я использую для перемотки трансформаторов вот такое нехитрое приспособление, которое с натяжкой можно назвать намоточным станком. В одни тиски зажимаю ручную дрель, а в другие счётчик оборотов.

    Катушку с проводом закрепляю вот на таком мобильном устройстве, которое обычно стоит на полу, как раз под тем местом, где находится каркас.

    Обмотки кольцевых трансформаторов можно намотать при помощи челнока. При мощности более 100 Ватт, число витков вторичной обмотки понижающего трансформатора столь мало, что намотка не вызывает серьёзных затруднений даже в отсутствие челнока.

    Быстро изготовить челнок под любые размеры сердечника и диаметр провода можно из медной проволоки подходящего диаметра. Чем толще обмоточный провод, тем соответственно толще нужно выбирать и проволоку для челнока.

    Как закрепить выводы обмоток трансформатора?

    Если при намотке трансформаторов на броневых и стрежневых магнитопроводах, выводы катушки можно закрепить на контактах встроенных в каркас, то при намотке трансформатора на кольцевом магнитопроводе, такая возможность отсутствует.

    Одним из способов решения этой проблемы является вывод концов обмоток гибким многожильным проводом. Особенно это полезно делать, если обмотка намотана сравнительно тонким приводом.

    Припаиваем к началу катушки отрезок многожильного провода. Лучше, если это будет провод во фторопластовой изоляции (МГТФ), но можно использовать и любой другой.

    Затем помещаем место пайки в небольшой кусочек электрокартона или бумаги сложенной пополам. Толщина электрокартона – 0,1мм.

    Закрепляем электрокартон вместе с местом пайки на внешней стороне магнитопровода при помощи витков катушки.

    К концу катушки так же, как и к началу, припаиваем отрезок многожильного провода и изолируем кусочком электрокартона. Закрепляем соединение при помощи толстых швейных ниток. Чтобы при завязывании узла нить не ослабла, можно закрепить её расплавленной канифолью или клеем.

    Как изменить напряжение на вторичной обмотке не разбирая трансформатор?

    Иногда возникает ситуация, когда необходимо скорректировать напряжение на вторичной обмотке понижающего трансформатора всего на 10 – 15%, но очень не хочется разбирать трансформатор.

    Если на каркасе есть свободное место, то можно домотать дополнительную катушку не разбирая магнитопровод, а затем включить её в фазе или противофазе, в зависимости от того, нужно ли увеличить или уменьшить выходное напряжение. На картинке слева напряжение дополнительной катушки «II» складывается с напряжением основной катушки «III», а справа вычитается.

    Программы для расчёта силовых трансформаторов.

    Существует много разных программ для расчёта силовых трансформаторов. Их недостаток в том, что при вводе одних и тех же данных, результаты могут отличаться на 40-50%. И это не удивительно, так как вводимых данных явно недостаточно для точных расчётов. Кроме этого, не всегда понятно, что происходит в череве программы и какие коэффициенты она использует.

    В общем, мне не удалось найти простую бесплатную программу, которая бы удовлетворяла моим требованиям. Если Вам известна такая программа, оставьте комментарий.

    Если же всё-таки Вы желаете автоматизировать вычисления, можете скачать несколько программ, не требующих инсталляции (portable version), из «Дополнительных материалов».

    Нужна помощь при намотке трансформатора.

    Уважаемые. Мне нужен трансформатор для мощного блока питания (для домашнего использования), требуемые параметры :
    1. Чтобы можно было собрать на его основе, мощный блок питания на 10-15 А.
    2. Требуемые напряжения со вторичной обмотки : 13 в.; 24 в.; 33 в.
    3. Посоветуйте схему для исполнения мощного, регулируемого блока питания (0. 30 в.) 10-15 А.

    P.S. Я сам из Томска, если здесь есть Томичи, отзовитесь !

    Вт, 01.05.2020, 13:03 | Сообщение # 2
    atoumar

    Ср, 02.05.2020, 07:33 | Сообщение # 3
    GRAB9142

    А масса-габарит ? Понимаю конечно стремление к 40градусам Цельсия , но это будет провод диаметром 2,5 мм .

    Может сойдёт и 3 кв.мм ?

    Ср, 02.05.2020, 11:26 | Сообщение # 4
    atoumar

    «Понимаю конечно стремление к 40градусам Цельсия , но это будет провод диаметром 2,5 мм «

    Но такого провода будет всего около 20 витков во вторичной обмотке. В зависимости от размеров железа это может быть всего один слой. Так, что экономить не нужно.

    Ср, 02.05.2020, 14:21 | Сообщение # 5
    Tygra

    Ср, 02.05.2020, 15:28 | Сообщение # 6
    GRAB9142

    При требуемой мощности 500Вт , как вы сказали , площадь попересного сечения примерно 20кв.см , а значит 60/20=3в/вольт .
    Учитывая потери потенциала на диодном мосту и регулирующем элементе , вторичка транса должна быть расчитана хотя бы на 35 вольт действующего напряжения .

    Соответственно , 35х3=105 витков , если даже в один слой влезет 20 витков , то с учётом межслоевой изоляции толщина вторички будет порядка 1,5 сантиметра .
    Или — 15 кв.см полезной площади окна

    Ср, 02.05.2020, 19:50 | Сообщение # 7
    Обормот

    1. Вы не сможете сами изготовить трансформатор без специальных приспособлений и навыков, и тем более если никогда этим не занимались. В России единицы таких людей кто качественно мотает трансформаторы. И «диванные теоретики» вам в этом не помогут.

    2. А вам собственно зачем блок питания такой мощности? Может требования всё-таки завышены?

    Ср, 02.05.2020, 21:04 | Сообщение # 8
    GRAB9142

    Для таких заявлений нужно быть как минимум Путиным !

    В своё время «диванные теоретики» окончив простые курсы ДОСААФ спокойно расчитывали и изготавливали трансы с точностью на вторичках до десятых долей вольта , — так что не надо здесь расписываться за нас всех .

    Подключаем к сети неизвестный трансформатор.

    Как разобраться с обмотками трансформатора, как его правильно подключить к сети и не «спалить» и как определить максимальные токи вторичных обмоток.
    Такие и подобные вопросы задают себе многие начинающие радиолюбители.
    В этой статье я постараюсь ответить на подобные вопросы и на примере нескольких трансформаторов (фото в начале статьи), разобраться с каждым из них..Надеюсь, эта статья будет полезной многим радиолюбителям.

    Для начала запомните общие особенности для броневых трансформаторов

    — Сетевая обмотка, как правило мотается первой (ближе всех к сердечнику) и имеет наибольшее активное сопротивление (если только это не повышающий трансформатор, или трансформатор имеющий анодные обмотки).

    — Сетевая обмотка может иметь отводы, или состоять например из двух частей с отводами.

    — Последовательное соединение обмоток (частей обмоток) у броневых трансформаторов производится как обычно, начало с концом или выводы 2 и 3 (если например имеются две обмотки с выводами 1-2 и 3-4).

    — Параллельное соединение обмоток (только для обмоток с одинаковым количеством витков), производится как обычно начало с началом одной обмотки, и конец с концом другой обмотки (н-н и к-к, или выводы 1-3 и 2-4 — если например имеются одинаковые обмотки с выводами 1-2 и 3-4).

    Общие правила соединения вторичных обмоток для всех типов трансформаторов.

    Для получения различных выходных напряжений и нагрузочных токов обмоток для личных нужд, отличных от имеющихся на трансформаторе, можно получать путём различных соединений имеющихся обмоток между собой. Рассмотрим все возможные варианты.

    — Обмотки можно соединять последовательно, в том числе обмотки намотанные разным по диаметру проводом, тогда выходное напряжение такой обмотки будет равно сумме напряжений соединённых обмоток (Uобщ. = U1 + U2. + Un). Нагрузочный ток такой обмотки, будет равен наименьшему нагрузочному току из имеющихся обмоток.
    Например: имеются две обмотки с напряжениями 6 и 12 вольт и токами нагрузки 4 и 2 ампера — в итоге получим общую обмотку с напряжением 18 вольт и током нагрузки — 2 ампера.

    — Обмотки можно соединять параллельно, только если они содержат одинаковое количество витков , в том числе намотанные разным по диаметру проводом. Правильность соединения проверяется так. Соединяем вместе два провода от обмоток и на оставшихся двух измеряем напряжение.
    Если напряжение будет равно удвоенному, то соединение произведено не правильно, в этом случае меняем концы любой из обмоток.
    Если напряжение на оставшихся концах равно нулю, или около того (перепад более чем в пол-вольта не желателен, обмотки в этом случае будут греться на ХХ), смело соединяем вместе оставшиеся концы.
    Общее напряжение такой обмотки не изменяется, а нагрузочный ток будет равен сумме нагрузочных токов, всех соединённых параллельно обмоток.
    (Iобщ. = I1 + I2. + In) .
    Например: имеются три обмотки с выходным напряжением 24 вольта и токами нагрузки по 1 амперу. В итоге получим обмотку с напряжением 24 вольта и током нагрузки — 3 ампера.

    — Обмотки можно соединять параллельно-последовательно (особенности для параллельного соединения см. пунктом выше). Общее напряжение и ток будет, как при последовательном соединении.
    Например: имеем две последовательно и три параллельно соединённые обмотки (примеры, описанные выше). Соединяем эти две составные обмотки последовательно. В итоге получаем общую обмотку с напряжением 42 вольта (18+24) и током нагрузки по наименьшей обмотке, то есть — 2 ампера.

    — Обмотки можно соединять встречно, в том числе намотанные разным по диаметру проводом (так же параллельно и последовательно соединённые обмотки). Общее напряжение такой обмотки будет равно разности напряжений, включённых встречно обмоток, общий ток будет равен наименьшей по току нагрузки обмотки. Такое соединение применяется в том случае, когда необходимо понизить выходное напряжение имеющейся обмотки. Так же, что бы понизить выходное напряжение какой либо обмотки, можно домотать поверх всех обмоток дополнительную обмотку проводом, желательно не меньшего диаметра той обмотки, напряжение которой необходимо понизить, что бы не уменьшился нагрузочный ток. Обмотку можно намотать, даже не разбирая трансформатор, если есть зазор между обмотками и сердечником , и включить её встречно с нужной обмоткой.
    Например: имеем на трансформаторе две обмотки, одна 24 вольта 3 ампера, вторая 18 вольт 2 ампера. Включаем их встречно и в итоге получим обмотку с выходным напряжением в 6 вольт (24-18) и током нагрузки 2 ампера.
    Но это чисто теоретически, на практике-же КПД такого включения будет ниже, чем если бы трансформатор имел одну вторичную обмотку
    Дело в том, что протекающий по обмоткам ток — создаёт в обмотках ЭДС, и в большей обмотке напряжение уменьшается по отношению к напряжению ХХ, а в меньшей — увеличивается, и чем больше протекающий по обмоткам ток — тем больше это воздействие.
    В итоге общее расчётное напряжение (при расчётном токе) будет ниже.

    Начнём с маленького трансформатора, придерживаясь вышеописанных особенностей (левый на фото).
    Внимательно его осматриваем. Все выводы у него пронумерованы и провода подходят к следующим выводам; 1, 2, 4, 6, 8, 9, 10, 12, 13, 22, 23, и 27.
    Дальше необходимо прозвонить омметром все выводы между собой, чтобы определить количество обмоток и нарисовать схему трансформатора.
    Получается следующая картина.
    Выводы 1 и 2 — сопротивление между ними 2,3 Ома, 2 и 4 — между ними 2,4 Ома, между 1 и 4 — 4,7 Ома (одна обмотка со средним выводом).
    Дальше 8 и 10 — сопротивление 100,5 Ома (ещё одна обмотка). Выводы 12 и 13 — 26 Ом (ещё обмотка). Выводы 22 и 23 — 1,5 Ома (последняя обмотка).
    Выводы 6, 9 и 27 не прозваниваются с другими выводами и между собой — это скорее всего экранные обмотки между сетевой и другими обмотками. Эти выводы в готовой конструкции соединяются между собой и присоединяются к корпусу (общий провод).
    Ещё раз внимательно осматриваем трансформатор.
    Сетевая обмотка, как мы знаем, мотается первой, хотя бывают и исключения.

    На фото плохо видно, поэтому продублирую. К выводу 8 подпаян провод, выходящий от самого сердечника (то есть он к сердечнику ближе всех), потом идёт провод к выводу 10 — то есть обмотка 8-10 намотана первой (и имеет самое высокое активное сопротивление) и скорее всего является сетевой.
    Теперь по полученным данным от прозвонки, можно нарисовать и схему трансформатора.

    Остаётся попробовать подключить предполагаемую первичную обмотку трансформатора к сети 220 вольт и проверить ток холостого хода трансформатора.
    Для этого собираем следующую цепь.

    Последовательно с предполагаемой первичной обмоткой трансформатора (у нас это выводы 8-10), соединяем обычную лампу накаливания мощностью 40-65 ватт (для более мощных трансформаторов 75-100 ватт). Лампа в этом случае сыграет роль своеобразного предохранителя (ограничителя тока), и защитит обмотку трансформатора от выхода её из строя при подключении к сети 220 вольт, если мы выбрали не ту обмотку или обмотка не рассчитана на напряжение 220 вольт. Максимальный ток, протекающий в этом случае по обмотке (при мощности лампы 40 ватт), не превысит 180 миллиампер. Это убережёт Вас и испытываемый трансформатор от возможных неприятностей.

    -И вообще, возьмите себе за правило, если Вы не уверены в правильности выбора сетевой обмотки, её коммутации, в установленных перемычках обмотки, то первое подключение к сети всегда производить с последовательно включённой лампой накаливания.

    Соблюдая осторожность, подключаем собранную цепь к сети 220 вольт (у меня напряжение сети чуть больше, а точнее — 230 вольт).
    Что видим? Лампа накаливания не горит.
    Значит сетевая обмотка выбрана правильно и дальнейшее подключение трансформатора можно производить без лампы.
    Подключаем трансформатор без лампы и измеряем ток холостого хода трансформатора.

    Ток холостого хода (ХХ) трансформатора измеряется так; собирается аналогичная цепь, что мы собирали с лампой (рисовать уже не буду), только вместо лампы включается амперметр, который предназначен для измерения переменного тока (внимательно осмотрите свой прибор на наличие такого режима).
    Амперметр сначала устанавливается на максимальный предел измерения, потом, если его много, амперметр можно перевести на более низкий предел измерения.
    Соблюдая осторожность — подключаем к сети 220 вольт, лучше через разделительный трансформатор. Если трансформатор мощный, то щупы амперметра на момент включения трансформатора в сеть лучше закоротить или дополнительным выключателем, или просто закоротить между собой, так как пусковой ток первичной обмотки трансформатора превышает ток холостого хода в 100-150 раз и амперметр может выйти из строя. После того, как трансформатор включён в сеть — щупы амперметра разъединяются и измеряется ток.

    Ток холостого хода трансформатора должен быть в идеале 3-8% от номинального тока трансформатора. Вполне считается нормальным и ток ХХ 5-10% от номинального. То есть если трансформатор с расчётной номинальной мощностью 100 ватт, ток потребления его первичной обмоткой будет 0,45 А, значит ток ХХ должен быть в идеале 22,5 мА (5% от номинала) и желательно, чтобы он не превышал 45 мА (10% от номинала).

    Как видим, ток холостого хода чуть более 28 миллиампер, что вполне допустимо (ну может чуток завышен), так как на вид этот трансформатор мощностью 40-50 ватт.
    Измеряем напряжения холостого хода вторичных обмоток. Получается на выводах 1-2-4 17,4 + 17,4 вольта, выводы 12-13 = 27,4 вольта, выводы 22-23 = 6,8 вольта (это при напряжении сети 230 вольт).
    Дальше нам нужно определить возможности обмоток и их нагрузочные токи. Как это делается?
    Если есть возможность и позволяет длина подходящих к контактам проводов обмоток, то лучше измерить диаметры проводов (грубо до 0,1 мм — штангенциркулем и точно микрометром), и по таблице ЗДЕСЬ , при средней плотности тока 3-4 А/мм.кв. — находим токи, которые способны выдать обмотки.
    Если измерить диаметры проводов не представляется возможным, то поступаем следующим образом.
    Нагружаем по очереди каждую из обмоток активной нагрузкой, в качестве которой может быть что угодно, например лампы накаливания различной мощности и напряжения (лампа накаливания мощностью 40 ватт на напряжение 220 вольт имеет активное сопротивление 90-100 Ом в холодном состоянии, лампа мощностью 150 ватт — 30 Ом), проволочные сопротивления (резисторы), нихромовые спирали от электро плиток, реостаты и т.д.
    Нагружаем до тех пор, пока напряжение на обмотке не уменьшится на 10% относительно напряжения холостого хода.
    Потом измеряем ток нагрузки.

    Этот ток и будет являться максимальным током, который обмотка способна будет выдавать длительное время не перегреваясь.

    Условно принята величина падения напряжения до 10% для постоянной (статической) нагрузки для того, чтобы не перегревался трансформатор. Вы вполне можете взять 15%, или даже 20%, в зависимости от характера нагрузки. Все эти расчёты приближённые. Если нагрузка постоянная (накал ламп например, зарядное устройство), то берётся меньшее значение, если нагрузка импульсная (динамическая), например УНЧ (за исключением режима «А»), то можно взять значение и больше, до 15-20%.

    Я беру в расчёт статическую нагрузку, и у меня получилось; обмотка 1-2-4 ток нагрузки (при снижении напряжения обмотки на 10% относительно напряжения холостого хода) — 0,85 ампер (мощность около 27 ватт), обмотка 12-13 (на фото выше) ток нагрузки 0,19-0,2 ампера (5 ватт) и обмотка 22-23 — 0,5 ампер (3,25 ватт). Номинальная мощность трансформатора получается около 36 ватт (округляем до 40).

    Да, ещё хочу рассказать о сопротивлении первичной обмотки.
    Для маломощных трансформаторов оно может составлять десятки, или даже сотни Ом, а для мощных — единицы Ом.
    Очень часто на форуме задают такие вопросы;
    «Измерил мультиметром сопротивление первичной обмотки ТС250, а оно оказалось 5 Ом. Не мало ли оно для сети 220 вольт, я боюсь его включать в сеть. Подскажите — нормально ли оно?»

    Так как все мультиметры измеряют сопротивление постоянному току (активное сопротивление), то волноваться не стоит, потому что для переменного тока частотой 50 герц эта обмотка будет иметь совсем другое сопротивление (индуктивное), которое будет зависеть от индуктивности обмотки и частоты переменного тока.
    Если у Вас есть, чем измерить индуктивность, то Вы сами можете рассчитать сопротивление обмотки переменному току (индуктивное сопротивление).

    Например;
    Индуктивность первичной обмотки при измерении составила 6 Гн,, идём сюда и вводим эти данные (индуктивность 6 Гн, частота тока сети 50 Гц), смотрим — получилось 1884,959 (округляем 1885), это и будет индуктивное сопротивление этой обмотки для частоты 50 Гц. Отсюда Вы можете вычислить и ток холостого хода этой обмотки для напряжения 220 вольт — 220/1885=0.116 А (116 миллиампер), да, сюда ещё можно добавить и активное сопротивление 5 Ом, то есть будет 1890.
    Естественно, что для частоты 400 Гц будет совсем другое сопротивление этой обмотки.

    Аналогично проверяются и другие трансформаторы.
    На фото второго трансформатора видно, что выводы подпаяны к контактным лепесткам 1, 3, 4, 6, 7, 8, 10, 11, 12.
    После прозвонки становится ясно, что у трансформатора 4 обмотки.
    Первая на выводах 1 и 6 (24Ома), вторая 3-4 (83 Ома), третья 7-8 (11,5 Ом), четвёртая 10-11-12 с отводом от середины (0,1+0,1 Ом).

    Причём хорошо видно, что обмотка 1 и 6 намотана первой (белые выводы), потом идёт обмотка 3-4 (чёрные выводы).
    24 Ома активного сопротивления первичной обмотки вполне достаточно. У более мощных трансформаторов активное сопротивление обмотки доходит до единиц Ом.
    Вторая обмотка 3-4 (83 Ома), возможно повышающая.
    Здесь можно замерить диаметры проводов всех обмоток, кроме обмотки 3-4, выводы которой выполнены чёрным, многожильным, монтажным проводом.

    Дальше подключаем трансформатор через лампу накаливания. Лампа не горит, трансформатор на вид мощностью 100-120, замеряем ток холостого хода, получается 53 миллиампера, что вполне допустимо.
    Замеряем напряжения холостого хода обмоток. Получается 3-4 — 233 вольта, 7-8 — 79,5 вольта, и обмотка 10-11-12 по 3,4 вольта (6,8 со средним выводом). Обмотку 3-4 нагружаем до падения напряжения на 10% от напряжения холостого хода, и измеряем протекающий ток через нагрузку.

    Максимальный ток нагрузки этой обмотки, как видно из фотографии — 0,24 ампера.
    Токи других обмоток определяются из таблицы плотности тока, исходя из диаметра провода обмоток.
    Обмотка 7-8 намотана проводом 0,4 и накальная проводом 1,08-1,1. Соответственно токи получаются 0,4-0,5 и 3,5-4,0 ампера. Номинальная мощность трансформатора получается около 100 ватт.

    Остался ещё один трансформатор. У него контактная планка с 14-ю контактами, верх 1, 3, 5, 7, 9, 11, 13 и низ соответственно чётные. Он мог переключаться на различные напряжения сети (127,220.237) вполне возможно, что первичная обмотка имеет несколько отводов, или состоит из двух полу-обмоток с отводами.
    Прозваниваем, и получается такая картина:
    Выводы 1-2 = 2,5 Ом; 2-3 = 15,5 Ом (это одна обмотка с отводом); 4-5 = 16,4 Ом; 5-6 = 2,7 Ом (ещё одна обмотка с отводом); 7-8 = 1,4 Ома (3-я обмотка); 9-10 = 1,5 Ом (4-я обмотка);11-12 = 5 Ом (5-я обмотка) и 13-14 (6-я обмотка).
    Подключаем к выводам 1 и 3 сеть с последовательно включённой лампой накаливания.

    Лампа горит в половину накала. Измеряем напряжение на выводах трансформатора, оно равняется 131 вольт.
    Значит не угадали и первичная обмотка здесь состоит из двух частей, и подключенная часть при напряжении 131 вольт начинает входить в насыщение (повышается ток холостого хода) и по этому нить лампы раскалилась.
    Соединяем перемычкой выводы 3 и 4, то есть последовательно две обмотки и подключаем сеть (с лампой) к выводам 1 и 6.
    Ура, лампа не горит. Измеряем ток холостого хода.

    Ток холостого хода равен 34,5 миллиампер. Здесь скорее всего (так, как часть обмотки 2-3, и часть второй обмотки 4-5 имеют большее сопротивление, то эти части рассчитаны на 110 вольт, а части обмоток 1-2 и 5-6 по 17 вольт, то есть общее для одной части 1278 вольт) 220 вольт подключалось к выводам 2 и 5 с перемычкой на выводах 3 и 4 или наоборот. Но можно оставить и так, как мы подключили, то есть все части обмоток последовательно. Для трансформатора это только лучше.
    Всё, сеть нашли, дальнейшие действия аналогичны описанным выше.

    Ещё немного о стержневых трансформаторах. Например имеется такой (фото выше). Какие для них общие особенности?

    — У стержневых трансформаторов, как правило две симметричные катушки, и сетевая обмотка разделена на две катушки, то есть на одной катушке намотано витков на 110 (127) вольт , и на другой. Нумерация выводов одной катушки — аналогична другой, номера выводы на другой катушке помечаются (или условно помечаются) штрихом, т.е. 1′, 2′ и т.д.

    — Сетевая обмотка, как правило, мотается первой (ближе всех к сердечнику).

    — Сетевая обмотка может иметь отводы, или состоять из двух частей (например одна обмотка — выводы 1-2-3; или две части — выводы 1-2 и 3-4).

    -У стержневого трансформатора магнитный поток движется по сердечнику (по «кругу, эллипсу»), и направление магнитного потока одного стержня будет противоположно другому, поэтому для последовательного соединения двух половин обмоток, на разных катушках соединяют одноимённые контакты или начало с началом (конец с концом), т.е. 1 и 1′, сеть подают на 2-2′, или 2 и 2′, сеть подают тогда на 1 и 1′.

    — Для последовательного соединения обмоток, состоящих из двух частей на одной катушке — обмотки соединяют как обычно, начало с концом или конец с началом, (н-к или к-н), то есть вывод 2 и 3 (если, например имеются 2 обмотки с номерами выводов 1-2 и 3-4), так же и на другой катушке. Дальнейшее последовательное соединение получившихся двух полу-обмоток на разных катушках, смотри пунктом выше. (Пример такого соединения на схеме трансформатора ТС-40-1).

    — Для параллельного соединения обмоток ( только для обмоток с одинаковым количеством витков ) на одной катушке соединение производится как обычно (н-н и к-к, или выводы 1-3 и 2-4 — если например имеются одинаковые обмотки с выводами 1-2 и 3-4). Для разных катушек соединение производится следующим образом, к-н- отвод и н-к- отвод, или соединяются выводы 1-2′ и 2-1′ — если, например имеются одинаковые обмотки с выводами 1-2 и 1′-2′.

    Ещё раз напоминаю о соблюдении техники безопасности, и лучше всего для экспериментов с напряжением 220 вольт иметь дома разделительный трансформатор (трансформатор с обмотками 220/220 вольт для гальванической развязки с промышленной сетью), который защитит от поражения током, при случайном прикосновении к оголённому концу провода.

    Если возникнут какие то вопросы по статье, или найдёте в загашниках трансформатор (с подозрением, что он силовой), задавайте вопросы ЗДЕСЬ , поможем разобраться с его обмотками и подключением к сети.

    Как мотать трансформатор

    Намотка трансформатора

    Часто при намотке сварочных трансформаторов или каких то других мощных трансформаторов, возникает проблема при намотке обмотки на сердечник тороидального трансформатора и появляется разумный вопрос как мотать трансформатор? Проблема заключается в том, что сердечник имеет замкнутый контур и укладка провода, особенно во внутренней части сердечника, очень не удобна, что приводит к образованию так называемых «воздушных витков», которые занимают место и в результате обмотка может не уместится в окно сердечника.

    Намотка тороидального трансформатора

    Что бы избежать этого, нужно производить намотку трансформатора правильно, начиная с самого первого ряда обмотки. Если делать все по методике описанной ниже, то можно добиться качества намотки трансформатора сравнимое с заводской.

    Так как же мотать трансформатор? Для того чтобы намотать провод на тороидальный трансформатор, нужен челнок. На него наматывается требуемое количество провода, которое нужно для намотки обмотки трансформатора.

    Затем продевая челнок в окно сердечника начинаем наматывать обмотки трансформатора, прижимая виток к витку:

    Данная статья опубликована на сайте whoby.ru. Постоянная ссылка на эту статью находится по этому адресу http://whoby.ru/page/prnamotka

    Читайте статьи на сайте первоисточнике, не поддерживайте воров.

    Воздушные витки

    Вроде бы сложного ни чего нет, но тут есть подводные камни. Если мотать не прижимая как положено обмотку, то получаем воздушные витки, которые в последствии будут занимать много места и обмотка не уместится.

    Далее на фото показан воздушный виток внутри окна сердечника, изгибая прод в противоположную сторону, можно полностью избавиться от этого при намотке:

    Тоже самое нужно делать с воздушными витками на торцах сердечника:

    Эпилог

    В результате такого не хитрого метода можно намотать трансформатор очень качественно, что хорошо видно на последней фотографии.

    Всем безвоздушных витков.

    Автор статьи: Admin Whoby.Ru

    Если вам понравилась статья, нажмите на кнопку нужной социальной сети расположенной ниже. Этим действием вы добавите анонс статьи к себе на страницу. Это очень поможет в развитии сайта.

    Портал о стройке

    КАК НАМОТАТЬ ТОРОИДАЛЬНЫЙ ТРАНСФОРМАТОР

    Технология намотки и способ изоляции на самом деле очень прост и не предполагает ни в коем случае ни какой обмотки, ни лакотканью, ни чем-либо другим. Дело в том, что при любой обмотки сердечника трансформатора лакотканью или другими изоляторами внутреннее окно ТОРА мгновенно заполняются, так как, на внешней стороне получается один слой, а на внутренней 5- 10 слоев, да еще неровных.
    Я давно собирался написать статью о способе качественной намотки тороидальных трансформаторов. Это довольно долго объяснять и лучше показать на фото. Причем после намотки обмотки не превращаются в колесо, а сам трансформатор не становиться, яйцеобразным и расход провода минимален. Ввиду всего этого и КПД трансформатора максимален. А что из этого получается, Вы можете посмотреть в моем усилителе.
    Сразу оговорюсь, речь идет о мощных тороидальных трансформаторах. Габаритная мощность, которых более 500 Вт. Которые мотаются проводами от 1 до 3 мм. естественно виток к витку. И, как правила, сетевая обмотка которых лежит в приделах от 100 до 400 витков, всего, то есть 0,5-2 витка на вольт. Мотать таким способом менее мощные трансформаторы хлопотно, но при желании можно.
    Что нужно для намотки:
    1) Необходимо сделать подставку для намотки тороида, делается это очень просто. Берем квадратный кусок ДСП или фанеры толщиной 10-15мм. Размерами 200Х200мм еще нам нужны два деревянных бруска длинной 200мм и с квадратом 20Х20мм. Эти два бруска нам нужно либо приклеить по центру нашей площадки, параллельно друг другу, на расстоянии между ними 100мм. А еще лучше привернуть к площадке эти бруски с помощью шурупов, но с потайными головками и головки утопить в фанеру иначе они будут царапать стол. Теперь если на эту подставку поставить то- роид, он будет прочно и устойчиво стоять.
    2) Нужен челнок, челнок я выпиливаю из оргстекла толщиной 5-бмм. Ширина обычно 30-40мм. длинна 300-400мм. Торцевые пропилы я делаю не углом, а полукругом и обрабатываю их напильником, что бы не портилась изоляция провода и даже проклеиваю одним двумя полосками изоленты опять же для защиты провода. На челнок мы наматываем провод, не страшно, если провода не хватит, можно аккуратно спаять провод и мотать дальше. Но лучше все-таки рассчитать, так что бы провода хватило.
    3) Теперь нам нужен материал для изоляции между слоями, это очень просто нужно найти тонкий картон (упаковочный), я например, применяю коробки от динамиков для автомобилей. Главное что бы это был не толстый, но и не тонкий материал — толщина картона, где-то 0,5мм. Если он будет с одной стороны глянцевый, то это тоже хорошо.
    4) Еще нам потребуется нитки толстые 10-20 номер. Но на худой конец можно и 40 номер. Сама намотка ведется от себя в правую сторону.


    А теперь самое главное, это изготовление самих изоляционных прокладок между слоями. Нам потребуется штангель-циркуль, с острыми концами.
    Измеряем, внешний диаметр нашего тора, прибавляем 20мм. (для нахлеста) и делим пополам. Например, внешний диаметр тора 150 мм.+ 20 мм.= 170 мм. 170мм./2 = 85 мм.
    Выставляем штангель на 85мм. и фиксируем винтом. Сам штангель мы будем использовать как циркуль для черчения кругов на картоне. Почему именно штангелем, а не обычным циркулем, которым и проще и удобнее? А все очень просто, когда мы будем острым и прочным концом штангеля чертить по картону, то на картоне останется продавленная борозда и именно она поможет нам. Эта борозда очень полезна для удобства сгибания внутренней рассеченной окружности наших прокладок. В общем, сами поймете, что штангелем лучше, чем удобным циркулем.

    И так чертим, внешний круг на картоне и вырезаем его ножницами, в принципе внешний круг можно нарисовать и обычным циркулем.
    Далее замеряем внутренний диаметр тора ничего не прибавляем, не убавляем, а просто делим пополам. Например, диаметр 60мм./2 = 30 мм. Выставляем, именно штангель-циркуль, на 30мм. фиксируем винтом и чертим внутренний диаметр на картоне.

    Далее мы берем карандаш и линейку и работаем над внутренним кругом, сначала рисуем крест, то есть, делим круг на 4 части, потом на 8 частей, если внутренний диаметр ТОРА больше 60мм. то еще и на 16 частей.
    Далее мы рисуем обычным циркулем еще один круг, который меньше внутреннего в два раза, то есть, раздвигаем циркуль на 15 мм.
    А теперь нам потребуется ровный кусок, фанеры или ДСП на который, мы положим нашу картонную заготовку для прорезания концом острого скальпеля или ножа, нанесенных карандашом наших частей. Прорезать нужно по кругу от внешнего края окружности к центральной точке, не далее иначе картон будет задираться. Прорезать нужно насквозь картона.

    Потом ножницами вырезаем внутренний круг нарисованный нами обычным циркулем. Полученные дольки отгибаем перпендикулярно заготовки. Понятно, что таких заготовок нужно на каждый слой по две штуки, каждый раз замеры диаметров делаются вновь, так как от слоя к слою их значение меняется.

    Далее меряем высоту тора и вырезаем две полоски картона такой же ширины. Одну полоску вставляем внутрь тора, так что бы нахлест был не более 10 мм. Вторую полоску накручиваем одним слоем на внешнюю сторону тора с таким же нахлестом. Надеваем обе круглые заготовки на торцы тора, крепим ниткой в трех-че- тырех местах по кругу. И далее начинаем мотать.

    Самые опасные места для пробоя это углы окружностей ТОРА внешний и особенно внутренний. Поэтому если во время намотки мы увидим, что провод может соприкасаться с проводом внутреннего слоя, особенно по внутреннему углу окружности ТОРА. То необходимо подложить под провод полоски такого же картона шириной 10 мм. и длинной по 20-30 мм. там, где это необходимо.

    На внешней стороне, как правила этого делать не приходится, так как внешняя сторона заготовки наслаивается на край и хорошо предохраняет провод от замыкания. Вся разметка и прорезка картонных заготовок делается с матовой стороны картона, применять картон с двух сторон глянцевый не желательно. Перед тем как начать мотать тор, на пальцы рук нужно намотать два слоя изоленты на оба сгиба мизинца и на сгиб указательного пальца, иначе будут огромные водяные мозоли.

    Многих интересует, как рассчитать тороидальный трансформатор.

    Дело в том что количество витков будет зависеть от качества железа но приблизительный расчет делается просто, как и у обычного трансформатора только коэффициент берем 20-30.
    Ну, например измеряем высоту, она = 10 см.
    Измеряем толщину стенки, она = 5 см. 10×5=50 см.
    25/50=0,5 витков на 1вольт.
    220×0,5=110 витков сетевой обмотки.

    Теперь начинаем мотать сетевую обмотку трансформатора, намотав приблизительно 90 витков пробуем включить в сеть, меряя при этом ток холостого хода.
    Совсем несложно подключить кончик провода прямо на челноке. Постепенно доматывая провод, доводим ток холостого хода до 50-100 мА и на этом прекращаем мотать, полученное количество витков и будет реально.
    Теперь это реальное количество делим на 220 и получаем реальное значение количества витков на 1 вольт. И в соответствии с этой цифрой рассчитываем все выходные обмотки.
    Имейте ввиду, что при включении трансформатора в сеть первичный мгновенный бросок тока очень большой. И для того, что бы не спалить тестер нужно делать так:сетевой провод подключаем через замкнутый тумблер параллельно тумблеру включаем тестер, включаем вилку в розетку и только потом размыкаем тумблер, что бы посмотреть ток холостого хода.
    Кстати, именно из за мощного первичного броска тока трансформаторы мощностью более 1 КВт, обязательно нужно включать с помощью схемы мягкого включения. Тем более схема эта очень проста.

    Федотов Алексей Геннадьевич. (UA3VFS)

    Трансформатор представляет собой агрегат, предназначенный для передачи электроэнергии с измененными показателями по сети к конечному потребителю. Это оборудование отличается определенной схемой. Трансформаторы могут понижать или повышать напряжение.

    Со временем сердечнику может потребоваться перемотка. В этом случае радиолюбитель сталкивается с вопросом, как намотать трансформатор. Этот процесс занимает достаточно много времени и требует концентрации внимания. Однако сложного ничего в перемотке контура нет. Для этого существует пошаговая инструкция.

    Конструкция

    Трансформатор работает по принципу электромагнитной индукции. Он может иметь различную конструкцию магнитопривода. Однако одной из самых распространенных является тороидальная катушка. Ее конструкция была изобретена еще Фарадеем. Чтобы понимать, как намотать тороидальный трансформатор или прибор любой другой конструкции, необходимо изначально рассмотреть конструкцию его катушки.

    Тороидальные устройства преобразуют переменное напряжение одной мощности в другую. Бывают однофазные и трехфазные конструкции. Они состоят из нескольких элементов. В состав конструкции входит сердечник из ферромагнитной стали. Есть резиновая прокладка, первичная, вторичная намотка, а также изоляция между ними.

    Обмотка имеет экран. Изоляционным материалом покрыт и сердечник. Также применяется предохранитель, крепежные элементы. Чтобы соединить обмотки в единую систему, применяется магнитопривод.

    Приспособление для намотки

    Тороидальные трансформаторы могут быть разных видов. Это необходимо учитывать в процессе создания контура. Намотать трансформатор 220/220. 12/220 или прочие разновидности можно при помощи специального инструмента.

    Чтобы упростить процесс, можно изготовить особый аппарат. Он состоит из деревянных стоек, которые скреплены между собой металлическим прутом. Он имеет форму рукояти. Этот вертел поможет быстро намотать контуры. Прутик должен быть не толще 1 см. Он будет пронизывать каркас насквозь. При помощи дрели выполнить этот процесс будет проще.

    Дрель крепится на плоскости стола. Она будет находиться параллельно. Рукоять должна свободно вращаться. Прут вставляется в патрон дрели. Перед этим на металлический штырь нужно надеть колодку с каркасом будущего трансформатора. Прут может иметь резьбу. Этот вариант считается предпочтительнее. Колодку можно будет зажать с обеих сторон при помощи гайки, текстолитовыми пластинами или дощечками из дерева.

    Другие инструменты

    Чтобы намотать трансформатор 12/220, импульсный, ферритовый или прочие разновидности конструкций, необходимо подготовить еще несколько инструментов. Вместо представленной выше конструкции можно воспользоваться индуктором от телефона, устройством для перемотки пленки, машиной для шпули с ниткой. Вариантов существует множество. Они должны обеспечить плавность, равномерность процесса.

    Также потребуется подготовить прибор для размотки. По своему принципу подобное оборудование похоже на представленные выше устройства. Однако при обратном процессе можно производить вращение без ручки.

    Чтобы не считать число витков самостоятельно, следует приобрести специальный прибор. Он будет учитывать количество витков на катушке. Для этих целей может подойти обыкновенный водяной счетчик или велосипедный спидометр. При помощи гибкого валика выбранный прибор учета соединяется с наматывающим оборудованием. Можно сосчитать количество витков катушки устно.

    Чтобы понять, как намотать импульсный трансформатор, необходимо произвести расчеты. Если же осуществляется перемотка уже существующей катушки, можно просто запомнить изначальное количество ее витков и приобрести провод идентичного сечения. В этом случае без расчетов можно обойтись.

    Но если требуется создать новый трансформатор, нужно определить количество и тип материалов. Например, для устройства с рабочей нагрузкой от 12 до 220 В потребуется аппарат от 90 до 150 Вт мощностью. Взять магнитопривод можно, например, из старого телевизора. Сечение проводника определяется в соответствии с мощностью агрегата.

    Количество витков катушек определяется для 1В. Этот показатель приравнивается к 50 Гц. Первичная (П) и вторичная (В) обмотки рассчитываются так:

    • П = 12 х 50/10 = 60 витков.
    • В = 220 х 50/10 = 1100 витков.

    Чтобы определить в них токи, применяется следующая формула:

    Полученный результат необходимо учесть при выборе материалов для создания нового прибора.

    Изоляция слоев

    Чтобы намотать ферритовый трансформатор или другую разновидность приборов, необходимо изучить еще один нюанс. Между определенными слоями проводников следует устанавливать изоляционные материалы. Чаще всего для этого применяется конденсатная или кабельная бумага. Все необходимые материалы можно приобрести в специализированных магазинах. Бумага должна обладать достаточной плотностью, быть ровной без просветов или отверстий.

    Между отдельными катушками изоляционные слои создаются из более прочных материалов. Чаще всего применяется лакоткань. Ее с обеих сторон обкладывают бумагой. Это необходимо еще и для выравнивания поверхности перед проведением намотки. Если лакоткань найти не удалось, вместо нее можно использовать сложенную в несколько слоев бумагу.

    Бумагу режут на полоски, ширина которых должна быть больше, чем контур. Они должны выходить за края обмотки на 3-4 мм. Лишний материал будет подворачиваться вверх. Это позволит хорошо защитить края катушки.

    Чтобы понять, как правильно намотать трансформатор. следует уделить внимание каждой детали этого процесса. Подготовив изоляцию, провод и инструмент, следует сделать каркас. Для этого можно взять картон. Внутренняя часть каркаса должна быть больше стержня сердечника.

    Для О-образного магнитопривода необходимо подготовить 2 катушки. Для сердечника Ш-образной формы потребуется один контур. В первом варианте круглый сердечник необходимо покрыть изоляционным слоем. Только после этого приступают к намотке.

    Если же магнитопривод будет Ш-образный, каркас выкраивают из гильзы. Из картона вырезаются щетки. Катушку в этом случае необходимо будет завернуть в компактную коробку. Щетки надеваются на гильзы. Подготовив каркас, можно приступать к намотке проводника.

    Пошаговая инструкция намотки

    Намотать трансформатор своими руками будет достаточно просто. Для этого катушку с проводом следует установить в оборудовании для размотки. С нее будет снят старый провод. Каркас будущего трансформатора нужно поставить в оборудование для намотки. Далее можно производить вращательные движения. Они должны быть размеренные, без рывков.

    В процессе такой процедуры провод со старой катушки будет перемещен на новый каркас. Между проводом и поверхностью стола расстояние должно составлять не менее 20 см. Это позволит положить руку и фиксировать кабель.

    На стол нужно заранее выложить все необходимые инструменты и оборудование. Под рукой должна быть бумага изоляционная, ножницы, наждачная бумага, паяльник (включенный в сеть), ручка или карандаш. Одной рукой необходимо поворачивать ручку устройства для наматывания, а второй – проводник фиксировать. Нужно чтобы витки укладывались равномерно, ровно.

    Рекомендации о намотке

    Рассматривая пошаговую инструкцию, как намотать трансформатор. следует уделить внимание последующим операциям. После укладывания проводника каркас потребуется заизолировать. Сквозь его отверстие необходимо продеть конец провода, выведенный из контура. Фиксация будет временной.

    Опытные радиолюбители рекомендуют перед проведением намотки сначала потренироваться. Когда получится накладывать витки ровно, можно приступать к работе. Угол натяжения и провода должны быть постоянными. Каждый следующий слой не требуется мотать до упора. Иначе проводник может соскользнуть с предназначенного для него места.

    В процессе наматывания витков нужно установить счетчик на нулевую отметку. Если же его нет, нужно проговаривать количество поворотов проволоки вслух. При этом следует максимально сконцентрироваться, чтобы не сбиться со счета.

    Изоляцию нужно будет прижать кольцом из мягкой резины или клеем. Каждый последующий слой будет на 1-2 витка меньше, чем предыдущий.

    Процесс соединения

    Рассматривая, как намотать трансформатор. необходимо изучить процесс соединения проводов. Если при наматывании жила оборвется, следует произвести процесс спайки. Эта процедура может потребоваться и в том случае, если изначально предполагается создавать контур из нескольких отдельных кусков проволоки. Спайку выполняют в соответствии с толщиной провода.

    Для проволоки толщиной до 0,3 мм необходимо очистить концы на 1,5 см. Затем их можно просто скрутить и спаять при помощи соответствующего инструмента. Если же жила толстая (более 0,3 мм), можно спаять концы напрямую. Скручивание в этом случае не потребуется.

    Если же провод очень тонкий (менее 0,2 мм), его можно сварить. Их скручивают без проведения процедуры зачистки. Место соединения подносят в пламя зажигалки или спиртовки. В месте соединения должен появиться наплыв из металла. Место соединения проводов нужно обязательно изолировать лакотканью или бумагой.

    Изучив процедуру, как намотать трансформатор, следует учесть еще несколько рекомендаций. Количество витков тонкого проводника может достигать несколько тысяч. В этом случае лучше использовать специальное счетное оборудование. Обмотку защищают сверху бумагой. Для толстого проводника наружная защита не требуется.

    Далее производится испытание работы трансформатора. Его первичный контур подключается к сети. Последовательно к источнику питания подсоединяют лампу. Это позволит выявить короткое замыкание.

    Чтобы оценить надежность изоляции, необходимо поочередно касаться выведенным проводником каждого выхода сетевых контуров. Процедуру проверки нужно выполнять очень осторожно. Следует исключить вероятность удара током.

    Рассмотрев пошаговую инструкцию намотки трансформатора, можно отремонтировать старый или создать новый прибор. При четком следовании всем ее пунктам удается создать надежный, долговечный агрегат.

    30 лучших противовоспалительных продуктов Чтобы укрепить свое здоровье и улучшить фигуру, постарайтесь почаще употреблять эти полезные продукты.

    Непростительные ошибки в фильмах, которых вы, вероятно, никогда не замечали Наверное, найдется очень мало людей, которые бы не любили смотреть фильмы. Однако даже в лучшем кино встречаются ошибки, которые могут заметить зрител.

    Эти 10 мелочей мужчина всегда замечает в женщине Думаете, ваш мужчина ничего не смыслит в женской психологии? Это не так. От взгляда любящего вас партнера не укроется ни единая мелочь. И вот 10 вещей.

    Никогда не делайте этого в церкви! Если вы не уверены относительно того, правильно ведете себя в церкви или нет, то, вероятно, поступаете все же не так, как положено. Вот список ужасных.

    15 симптомов рака, которые женщины чаще всего игнорируют Многие признаки рака похожи на симптомы других заболеваний или состояний, поэтому их часто игнорируют. Обращайте внимание на свое тело. Если вы замети.

    9 знаменитых женщин, которые влюблялись в женщин Проявление интереса не к противоположному полу не является чем-то необычным. Вы вряд ли сможете удивить или потрясти кого-то, если признаетесь в том.

    Данная статья не претендует на звание бестселлера научно популярной литературы, а скорее руководством для начинающих. В статье рассказывается сам процесс намотки, а не его расчёт.

    Рано или поздно в практике каждого радиолюбителя возникает вопрос о том чем питать то или иное устройство. Самые ходовые мощности УНЧ это 2*100 или 2*200. Поэтому оптимальным вариантом есть «бублик» на 150 ватт габаритной мощности, в первом случае такой нужен один для 2 каналов, в другом парочка для двойного моно. Тороидальный трансформатор обладает лучшим соотношением размер-мощность, высокий КПД, а также минимальными помехами. Именно поэтому их так любят аудиофилы. Рассмотрим процесс намотки этого типа трансформаторов более подробно.

    Основное, что должен знать и главное понимать человек который мотает трансформатор:

    • длина провода (количество витков) это напряжение;
    • сечение проводника- это ток которым можно нагружать его;
    • если число витков в первичной цепи малое, то это лишний нагрев провода;
    • если габаритная мощность недостаточная (потребляется больше возможного). это опять таки тепло;
    • перегрев трансформатора приводит к снижению надёжности.

    Итак, что нужно для намотки:

    1. Трансформаторное железо в форме тора (далее я напишу где взять);
    2. Лакопровод (на обмотку трансформатора нужен обмоточный провод);
    3. Скотч малярный (бумажный);
    4. Клей ПВА;
    5. Тканевая изолента или киперка;
    6. Кусочки провода в изоляции;
    7. И последнее, но главное — это желание.

    Рассказывать о том как рассчитать мощность железа я не буду для этого есть уже очень много статей… Расчёт мощности сложен с практической точки зрения, так как не известна марка стали, качество её производства. Поэтому два сердечника с одной габаритной массой имеют разные параметры. Рассмотрим пример намотки сердечника на уже «отработанном» сердечнике. Один из самых легко доставаемых сердечников, качество которого достойно внимания. Является сердечник из советского стабилизатора «Украина-2»(сн-315). В своё время их много погорело, и на рынке можно достать такой аппарат за 20 грн… Нас интересует тор. Намотан этот бублик алюминиевым лакопроводом, мы нещадно его сматываем (или скусываем), нам необходим сердечник (аккуратно чтобы не повредить сердечник). Алюминиевый провод можно использовать для других целей (веники скручивать или провода), или как в моём случае я его переплавляю для других целей (делаю радиаторы). После сматывания получается красивый сердечник с габаритами 96-54-32 мм, соответственно наружный, внутренний диаметр и высота. Ниже приведён пример такого сердечника ( Рис.1 ). Габаритная мощность такого сердечника не менее 120 ватт (проверено на практике).

    Перед намоткой необходимо подготовить железо к намотке. Если посмотрите на углы трансформатора то уведите что они под углом 90 градусов, в этих точках будет изгибаться провод и будет облущиваться лак, что б этого не было необходимо обработать углы напильником скруглив их максимально (понимаю что лень но нужно). Минимальный радиус окружности 3мм. На Рис.1 видно что углы уже обработаны, и тор готов к намотке. Небольшая хитрость, при обработке углов напильником необходимо избегать зализывания стали, дабы слои между собой оставались не замкнутыми! Для этого следует производить движения напильником вдоль направления трансформаторной ленты. После обработки рекомендую просмотреть углы на замыкание слоев и доработать их мелким напильником.

    Что-б изолировать сердечник от обмотки необходимо его изолировать ТКАНЕВОЙ изолентой (или киперкой пропитанной парафином-воском). Лучше использовать изоленту из шириной около 25мм (Рис.2), тогда будет максимальное покрытие металла в один слой, что позволяет экономить место в окне. Конец намотки не заклеиваем (читаем дальше).

    После этих операций сердечник готов к намотке и мы переходим к следующему шагу.

    Лакопроводом я называю электрический проводник изоляция которого сделана из лака (по культурному намоточный или обмоточный провод). Бывает разных марок ПЭВ, ПЭВ-2, ПЭТ-155 и другие. Рекомендую использовать ПЭВ-2, насыщенный оранжевый цвет. Также очень хорошо себя показал провод очень тёмный с виду (ПЭЛ), цвета гнилой вишни, такой имеет толстый слой изоляции, что позволяет его использовать для трансформаторов высоковольтников (более 500В). К примеру провод ПЭВ-2, диаметром 1,6мм имеет толщину изоляции около 0,06-0,07мм, а «чёрный» 0,1-0,11мм.

    Расчёт сечения провода очень интересный процесс. На эту тему в интернете есть много литературы, и писать о всяких расчётах и тонкостях я не буду (Google в помощь). В зависимости от выбранной вами плотности тока будет разное сечение провода. Главное, что требуется это правильно соотношение мощностей. Необходимо чтоб мощность вторичной обмотки не привышала больше возможности первичной. Как известно КПД трансформаторов в виде тора очень высок и равняется около 97%, поэтому при намотке тора мощностью в 200 ватт, 6 ватт потерь это мелочь которой можно пренебречь. Считаем, что мощность первичной обмотки больше или равна мощности сумме всех вторичных обмоток.

    Пример расчёта. Нужно намотать трансформатор. Первичная обмотка рассчитана на 220В. Вторичных обмоток две по 28В. Диаметр провода первичной обмотки 0,6мм в лаке. Толщина лака около 0,06мм и того «чистый» диаметр провода первичной обмотки около 0,54мм. Подставляем в формулу площади круга и получаем сечение 0,228 мм 2 (если вы не знаете как я это рассчитал то купите усилитель и не заморачивайтесь). И так за пропорциею получаем 220В/28В*2=3,92 это значит что вторичная обмотка должна иметь сечение в 3,92 раза толще за первичную обмотку. Как вы видите я не использовал мощность и соответственно плотность тока. Каждый берет плотность тока какую считает правильной (для себя я принимаю 4А/мм 2. и мои мысли подтверждают реальный тест транса который я дальше опишу).

    Для сердечника который описан выше лучше использовать провод по первичке не менее 0,6мм в диаметре. Провод такого сечения и необходимой длины можно найти в старых ламповых телевизорах, ввиде петель размагничеваний. На рынке всегда есть люди которые занимаются покупкой старых телевизоров («барахольщики»), у них можно найти необходимый провод. У нас на рынке есть два вида петель: маленькие и большие, меньшие по 20 грн, большие по 50.

    Маленькие по диаметру, таких в телевизорах используется по 2 штуки. Диаметр такой половинчатой петли размагничивания около 40-50см, сечения проводника где-то около 0,6мм. При качественной укладке этой петли хватает на намотку первичной обмотки одного тора с запасом в пару метров.

    Если же использовать большую петлю, то длина провода такой буквально в полтора раза больше маленькой по этому выгоднее покупать маленькие петли. Бывает попадается петля от лампового, цветного телевизора, длина провода в такой петле аналогична но сечение провода может достигать 0,7мм. Если вам такая попалась значит повезло.

    И так вы нашли петлю размагничивания как правило она обмотана киперной тканью (тряпочная полоска), а сверху прозрачной лентой или изолентой. Возле выводов проводов находится стык, где можно зацепится и аккуратно размотать петлю. Не нужно срезать, спиливать, срывать изоляцию вы можете повредить провод, кроме того эта изоляция нам ещё понадобится. После сматывания у нас остаётся красивый провод который можно использовать. Некоторые перематывают провод на «челнок», лично я так не делаю, зачем провод лишний раз изгибать, если он и так нужной формы, кроме того если наматывать маленькие торы, то челнок займёт больше места и может не пролезть в окно, а также повредить лак. Перед тем как начать его наматывать необходимо сделать скрутки чтоб провод не разъезжался. Для того чтоб делать скрутки необходимо взять кусочки одножильного провода (желательно в ПВХ-изоляции) длиной по 5-7см. Обматываем петлю по кругу из несильно плотным шагом, потом в ходе намотки чтоб добавить (отмотать провода) нужно будет просто прокрутить эту пружинку и провод отделится (смотрим фото Рис.3).

    Теперь наша петля имеет один конец с наружной части, а другой где-то внутри, нам нужен именно наружный. Далее вернёмся к железу которое у нас уже обработано и обмотано изолентой или киперкой. Помните мы не заклеивали край вот зачем (смотри на Рис.4). С той стороны где будет верх транса(выводы вверх выходят) на углу тора делаем надрез по центру изоленты и продеваем туда лакопровод уже в изоляции это будет отвод начала обмотки. Некоторые рекомендуют припаивать кусочек гибкого многожильного провода в изоляции и делать такой отвод. Меня такой вариант не устраивает потому что таким образом я не знаю какой провод находится в первичке, а так даже через десяток лет микрометром померил и знаешь что можно жать с него, а с отводом кто знает что там за сечение. Хотя дело ваше.

    Изготовим выводы для провода. Выводы обмоток необходимо «усилить» при помощи дополнительной изоляции. Для этих вещей очень хорошо подходит ПВХ-изоляция (советская белая), но ещё лучше подходит изоляция из провода необходимого сечения. Применять термоусадку можно, но лучше использовать ПВХ или изоляцию потому как первая имеет свойство изгибаться в одном месте что нам очень не нужно мы от этого пытаемся защитится дабы провод не отломался. Для того, чтобы стянуть изоляцию рекомендую взять провод который имеет дополнительную изоляцию в виде нитки обмотанную вокруг проводника. В этом случае нить не дает сильной связи между ПВХ и медью и позволяет стянуть изоляцию. Чтоб было проще стягивать провод нужно немного перегибать (под 45 градусов). Рекомендую за раз «натягать» изоляции и пользоваться. ( Рис.2 ).

    Отечественные обмоточные провода

    Наибольшее распространение получили обмоточные провода в эмалевой изоляции на основе высокопрочных синтетических лаков с температурным индексом (ТИ) в диапазоне 105. 200. Под ТИ понимается температура провода, при которой его полезный ресурс не менее 20000 ч.

    Медные эмалированные провода с изоляцией на основе масляных лаков (ПЭЛ) выпускаются с диаметром жилы 0,002. 2,5 мм. Такие провода обладают высокими электроизоляционными характеристиками, которые практически не зависят от внешнего влияния повышенных температур и влажности.

    Проводам типа ПЭЛ свойственна большая зависимость от внешнего воздействия растворителей, относительно проводов с изоляцией на основе синтетических лаков. Обмоточный провод ПЭЛ можно отличить от других даже по внешнему признаку — эмалевое покрытие по цвету близко к черному.

    Медные провода типов ПЭВ-1 и ПЭВ-2 (выпускаются с диаметром жилы 0,02. 2,5 мм) имеют поливинилацетатную изоляцию и отличаются золотистым цветом. Медные провода типов ПЭМ-1 и ПЭМ-2 (с тем же диаметром, как и ПЭВ) и прямоугольные медные проводники ПЭМП (сечением 1,4. 20 мм2) имеют лакированную изоляцию на поливинил-формалевом лаке. Индекс «2» в соответствующем обозначении проводов ПЭВ и ПЭМ характеризует двухслойную изоляцию (повышенной толщины).

    ПЭВТ-1 и ПЭВТ-2 — эмалированные провода с температурным индексом 120 (диаметром 0,05. 1,6 мм), они имеют изоляцию на основе полиуретанового лака. Такие провода удобно монтировать. При пайке не требуется зачищать лакированную изоляцию и применять флюсы. Достаточно обычного припоя марки ПОС-61 (или аналогичного) и канифоли.

    Эмалированные провода с изоляцией на полиэфирамидной основе ПЭТ-155 имеют ТИ равный 155. Они выпускаются с жилами не только круглого сечения (диаметра), но и прямоугольного (ПЭТП) типа с диаметром проводника 1,6-1 1,2 мм2. По своим параметрам провода ПЭТ близки к рассмотренным выше проводам типа ПЭВТ, но имеют более высокую стойкость к нагреванию и тепловому удару. Поэтому обмоточные провода типов ПЭВТ и ПЭТ, ПЭТП особенно часто можно встретить в мощных трансформаторах, в том числе в трансформаторах для сварочных работ.

    Для намотки транса вам потребуется 4-5 вечеров и по 2 часа времени, почему не менее 4 дней поймёте дальше.

    Один конец провода мы уже запустили и прижали. Далее начинается самое муторное намотка. Мотать рекомендую так. Берём транс (пока что железо), одеваем перчатку или берём в руку какую либо ветошь из натуральной ткани. Усаживаемся на диван или кровать включаем фильм который уже видел или музыку (чтоб не сильно отвлекаться), и начинаем мотать. Каждый виток продеваем в кольцо железа. Мотать нужно виток к витку из внутренней стороны (некоторые умудряются с наружной, каким образом не представляю).

    Рекомендации по ходу намотки

    Для того чтоб легче было считать витки их лучше группировать по 5 или 10 витков. Натягивать провод необходимо не чётко перпендикулярно (пунктир красная линия) к касательной (чисто красная), а слегка наклонено в сторону намотки(желтый), как будто внутренняя часть намотки идёт впереди наружной (Рис.5). Таким образом намотки провод при натяжке будет сам прижимается к другим уже уложенным виткам. Если у вас провод погнутый он идеально не уложится поэтому он должен быть максимально прямым, для этого во время намотки его нужно сильно натягивать тем самым его выпрямляя. Вот зачем нужны перчатки или ветошь, если не применять перчатки то пальцы и ладонь очень быстро устают и болят. Если наматывать провод сечением больше 1,5мм (очень тяжело) то рекомендую провод для простоты выпрямления слегка перегибать под натяжкой.

    (Отец моего друга мотает сварочники 50 герц, вторичка шинка медь 35 квадратов укладывает руками идеально ровно, так он изгибает 5 копеек украины в пельмень- пальцами).

    Во время намотки провод осматривается на наличие изъянов, особенно в местах изгиба, если лак нарушен то замазываем его аккуратно изолирующем цапон лаком или краской (на крайний случай обычным лаком для ногтей).

    Когда намотали слой до конца. Между слоями необходимо делать межслойную изоляцию. Мне повезло и у меня есть некоторые заначки лакоткани, причем ткань такая что тянется и пропитана чем то липким. Такая если прилипает друг до друга(сложилась) то её очень сложно разделить. От неё слипаются пальцы. Такая лакоткань идеальный изолятор, кроме того обмотка не дребезжит даже при перегрузке. Но такое есть у очень малого числа людей. Теже функции изолятора очень хорошо реализовать при помощи малярного скотча.

    После того как намотали слой берём и изолируем его при помощи малярного скотча. Делаем полосочки шириной где-то по 15мм. И этими полосками обматываем транс изначально что-б про изолировать внутреннюю часть намотки провода (изнутри бублика). Затем изолируем пробелы с наружной части бублика. В результате изоляции скотчем получится, что изнутри изоляция накладыванием слоев, станет в два раза толще, с наружи одинарная. После того как обмотали необходимо обильно смазать тор клеем ПВА, это делается для того что-б скотч не разматывался, а также он станет крепче и как будто цельный. Помимо всего клей будет удерживать обмотки что-б те не «гудели». Клея жалеть не нужно, смазываем пальцем и слегка втираем. После чего тору необходимо высохнуть. Я обычно мотаю тор вечером, намотав слой пропитываю клеем, а сам тор для хорошей циркуляции воздуха, ложу на игольчатый радиатор. За ночь тор высыхает и его можно мотать дальше. Вот почему минимум 4 вечера потребуется на намотку (4 вечера- 4 слоя). При необходимости можно ускорить процесс высыхания феном. Мотаем следующий слой… сам процесс намотки аналогичен и ни чем не отличается. По окончанию намотки конец намотки помещаем в такую же изоляцию как в начале обмотки. Затем конец обмотки закрепляем малярным скотчем, изолируем обмотку при помощи скотча малярного и пропитываем клеем.

    Есть ещё один хороший вариант изоляции между слоями. Очень хорошо будет если в ходе намотки будете использовать бумагу для выпечки (пергамент) нарезанную на такие же полосочки и после обмотанной. В итоге транс необходимо будет пропитать, а реально сварить на паровой бане смеси 50:50 соответственно парафин:воск. Паровая баня берем в кастрюлю набираем воды и ставим кипятится(нам нужен пар). Сверху устанавливаем емкость в которой помещен трансформатор и воск-парафин. Трансформатор зарание подвязываем на проволоку, конец оставляем(когда смесь потечёт за эту нить нужно в мокать трансформатор как пакетик чая в чашке). Когда будете окунать трансформатор нужно осторожно дабы капли воска не попали на пламя, очень сильно горючь. Ранее именно таким «расстовором» пропитывались выходные трансформаторы для ламповых УНЧ, Хотя и другие качественные трансы тоже. Когда смесь разогрета она имеет очень высокую текучесть почти как у воды, в результате чего бумага стает буквально пропитана парафином и воском. Однако этот вариант будет изначально не эффективен если транс будет греться (теплый) при температуре в 50 градусов, воск уже достаточно мягкий и не будет сдерживать провод от вибрации 50Гц, хотя и будет выполнять функции диэлектрика. (Правда именно из-за вибрации и тре ния провода перетираются и получается замкнутый виток, который приводит к повреждениям уже в ходе эксплуатации ).

    Для импульсных трансформаторов рекомендую в качестве пропитки использовать не скотч, а бумагу+ клей БФ-2. Этот клей прежде всего применяется в изготовлении катушек для динамиков. Но в импульсном трансформаторе тоже очень хорошо себя проявил. При неоднократной перегрузке не малейшего писка на частоте преобразования в 15КГц. Разматывая обмотки из каркаса, они снимались шлейфом ш ириной у 8 жил.

    В ходе намотки периодически измеряем ток холостого хода, для этого необходимо подключать тестер последовательно с первичной обмоткой в режиме амперметра(читаем инструкцию на тестер). Измерять ток х.х. необходимо очень осторожно ведь работа от сети! Для избегания всяких ЧП рекомендую последовательно с первичкой включить лампочку на 220В, мощности порядка 40Вт. Лампочка будет гореть если число витков сильно мало, если транс намотан правильно то она должна быть лишь с розовым оттенком, что говорит о низком токе который через неё протекает. Трансформатор имеет большие пусковые токи, в момент запуска трансформатора перегрузки могут достигать 160 раз. Поэтому запуск трансформатора необходимо делать не непосредственно через тестер, а при помощи «перемычки» которую потом размыкаешь и ток начинает течь через тестер. Перемычку можно реализовать простым замыканием щупов тестера, которые потом разомкнуть. Каким должен быть ток холостого хода я напишу ниже.

    Для трансформаторов у которых низкий ток потребления рекомендуется использовать резистор 10 или 100 Ом(2-5Вт) который включается последовательно с первичной обмоткой. Измерив падение напряжения на резисторе, при помощи закона ома перещетать ток. Такой метод является более предпочтительный нежели первый, но в тоже время более опасным при высоком токе потребления- резистор превращается в уголь за доли секунд.

    О том как измерять ток х.х. я вкратце рассказал написал, теперь о значениях. Норму тока х.х. каждый определяет для каждого транса индивидуально, но обычно норма это до 50 мА при 230В, правда некоторые говорят что и 0,5А нормально. Чем ниже ток тем лучше! Чем ниже ток покоя, тем более форма тока х.х. похожа на синус. Если у вас ток х.х. от 20-50 то это терпимо, скажем так на троечку, от 10-20 это четыре, меньше 10мА эт явно пять. У маленьких ториков, ток будет маленьким из-за высокого сопротивления первичной обмотки, это нужно учитывать! Хотя как на меня мотать торы вручную меньше сотни ватт это зверство! Количество витков первичной обмотки в них достигает пару тысяч.

    Намотаный мною трансформатор по моей методике имеет ток х.х. равным 11мА (при 4 слоях первички).

    Если последовательно всё делать, то получится нечто похожее:

    ПРОЦЕСС ТЕСТИРОВАНИЯ И ИЗМЕРЕНИЯ

    О том как измерять ток х.х. я вкратце рассказал написал, теперь о значениях. Норму тока х.х. каждый определяется для каждого транса индивидуально, но обычно норма это до 50 мА при 230В, правда некоторые говорят что и 0,5А нормально. Чем ниже ток тем лучше! Чем ниже ток покоя, тем более форма тока х.х. похожа на синус. Если у вас ток х.х. от 20-50 то это терпимо, скажем так на троечку, от 10-20 это четыре, меньше 10мА эт явно пять. У маленьких ториков, ток будет маленьким из-за высокого сопротивления первичной обмотки, это нужно учитывать! Хотя как на меня мотать торы вручную меньше сотни ватт это зверство! Количество витков первичной обмотки в них достигает пару тысяч.

    Очень полезно будет посмотреть форму тока холостого хода, в первичной обмотке при помощи осциллографа. НО. это нужно делать в очень специальных условиях! Для этого необходим развязывающий трансформатор (220/220В), при том что индукция должна быть очень низкой что-б не вызывать дополнительных искажений формы «синуса». А также латр. Этот пункт теста рекомендую делать только очень опытным специалистам, последствия чреваты выгоранием осциллографа.

    При использовании моих параметров намотки я «снимал» с такого транса 150 ватт на протяжении нескольких часов (дольше не было времени).

    Изолируем первичную обмотку от вторичной.

    После намотки необходимо числа слоев первичной обмотки мы подходим к моменту намотки вторички. Изолировать первичную обмотку от вторичной нужно очень тщательно.

    В случае если вдруг сгорит вторичная обмотка то найхутшие последствия это выход из строя УНЧ. Но если в этот момент каким то образом вторичная обмотка «закоротит» на первичную то это уже опасность для жизнь! Ибо вторичная обмотка трансформатора в средней точке подключена к корпусу уся, представьте что когда вы крутите ручку регулировку громкости вас бьет током. Неприятно поэтому заземление в розетке это не желаемая норма это необходимость, если вам дорого свое здоровье рекомендую уделить этому особое внимание… (Это было небольшое отступление).

    Исходя из того что в розетках ОЧЕНЬ редко бывает НАСТОЯЩИЕ заземление, нужно максимально изолировать первичную обмотку от вторичной. Для этой операции можно применить уже накатанный метод и использовать скотч малярный. НО толщину слоя нужно как минимум удвоить, а лучше втрое. Притом пропитка клеем обязательно, клей придаст эластичности и дополнительный слой. Более лучшим вариантом будет применение специальных электротехнических лаков типа ЦАПОН (цвет не важен). В этом случае мы буквально вымачиваем тор в лаке, можно вплоть до того что замочить его! Лак будет более текучий если его подогреть, цапон при нагрев стает похожий на воду, и тем самым хорошо пропитывает обмотки изолируя и закрепляя их. Относительно первичной обмотки это одни из лучших мер, как на меня даже лучше парафина. Если вы собираетесь использовать пропитки то логично что использовать всякие «жёлтые-трансформаторные» скотчи противопоказанно, слой скотча просто не даст протечь глубже, в отличии от бумаги или лакоткани. Касательно «фиксации» и изолирования вторичной обмотки при помощи лаков категорически против (вдруг нужно перемотать вторичную, это будет сделать не возможно, кроме того смотанный провод только на металлолом.)

    Если нет лака, а малярный-скотч не впечатляет. Очень даже неплохо будет изолировать обмотки фторопластом, этот материал супер изолятор! С виду он похож на плёнку белого слегка прозрачного цвета (фото ниже).

    Основная особенность он термоустойчив к нагреванию (от минус -268 до +260 градусов). Когда мне нужно увеличить температуру жала паяльника, я просто обматываю его фторопластом не давая охлаждаться «телу» паяльника). Такие изюминки можно найти только в спец магазинах, хотя там рядом будет и лакоткань J, что тоже очень хорошо. Доступ к таким ассортиментам есть далеко не у всех, а если хочется… В таком случае рекомендую порыться в закромах. Фторопласт нужной нам формы можно достать в конденсаторах типа ФТ. Если аккуратно демонтировать алюминиевый корпус конденсатора то мы получим сердечник(сам конденсатор) из плотно намотанного так нам нужного фторопласта. Из конденсатора 0,022мкф можно смотать два куска по одному метру. Для изоляции первички нам потребуется около 5-6 метров. То бишь ищем мин 3 конденсатора. Фторопластовые конденсаторы очень хорошие на звук поэтому сначала подумайте, прежде чем их портить.

    Учитывайте то что фторопласт не даст пропитаться обмотке транса подобно скотчу, поэтому если хотите пропитать парафином делайте это до изоляции обмоток фторопластом.

    Об экранировании первичной обмотки от вторичной опишу немного позже, это уже скорее в раздел о высоких материях.

    Финальная отделка транса и его крепёж.

    Момент по намотке вторички я пропускаю, потому как он абсолютно аналогичный процессу намотки первички. Что касается финальной отделки то тут нужно понимать некоторые моменты.

    Тороидальный трансформатор это замкнутый магнитопровод, лента сердечника намотана плотным рулоном после отожжённая в печи при вакууме. Намотка его осложнена необходимостью продевания провода в окно. Преимуществом его является то что сам сердечник находится внутри не испуская лишних помех, потому как их в момент подхватывают вторички транса. Таким образом сердечник транса- грубая железка находится внутри, а мягкий медный провод вскрытый хрупким лаком его (кусок железки) храбро защищает. Корпус тороида очень сильно подвержен повреждениям из вне. Падение тора из приличной высоты может его «убить» при помощи КЗ обмоток. Тогда как трансы типа ПЛ или Ш-образном железе наоборот защищают вторичную обмотку. Таким образом закрепить ТС-ник намного проще потому что его можно и нужно очень сильно сжимать металическими стяжками дабы уменьшить зазор- щель в сердечнике, и тем самым минимизировать потери и гул- вибрации пластин. Тороид закрепить намного сложнее, а точнее вариантов минимум. Прежде чем делать финальную отделку транса нужно четко представлять, как будет крепиться транс к корпусу.

    И всё же, какие варианты изоляции-отделки:

    Как вариант можно применить прозрачную ленту в которую была упакована петля размагничивания (кстати некоторые петли обматывались фторопластом, проверьте может вам повезло). В результате получаются очень красивые бублики (видно намотку, и красивый провод). Но повышенная температура трансформатора будет смягчать изоляции тем самым понижая уровень её прочности. Но это не главное! Когда вы изолируете трансформатор «пленкой» уровень теплоотдачи сильно падает, а тор может греться сильнее. Думаю все стараются покупать вещи из натуральных материалов, стараясь избегать синтетику, потому как в ней тело «не дышит» и человек потеет… так почему тор должен терпеть. Для этих вещей более лучше подходит применение киперной ленты (простынь нарезанная в полосы J). Для того что-б она была ещё прочнее я перед намоткой вымачиваю её в том клее- ПВА. Затем обматываю тор, во время намотки лишнее выдавливает. После засыхания образуется хороший жестковатый тряпочный каркас… Если вдруг нужно размотать достаточно просто ненадолго замочить. Также допускаются варианты обработки (по уже обмотанному трансформатору) краской как алкидной так и водоэмульсионной, или спец лаками.

    Какие варианты крепежа:

    Одним из явных способов крепления тора есть крепёж при помощи болта продетого через центр тора. При креплении таким образом учитывайте то что через болт, а потом днище корпуса, после по стенках корпуса, верхней крышке может образоваться виток сечение которого просто бешенное (в зависимости от диаметра крепёжного болта). Не в коем случае не крепите тор к днищу и верхней крышке, образуете замкнутый виток и спалите тор!

    Кроме того в щели между крепежом и верхней крышкой будут наводиться помехи так как болт железный (магнетик). Чем меньше зазор тем выше уровень. Не редко говорят без крышки УНЧ играет всё отлично нет фона накрываю крышкой и появляется сумасшедший фон. Наводятся помехи, для избежание таких наводок необходимо применять крепёжный болт из материалов диамагнетиков, например хорошо себя показала латунь. (но не забываем об возможности образования витка через корпус).

    Теперь нужно как то упереться в обмотку тора, при том площадь касания должна быть максимальна, для минимизации давления на провод. Я для этих целей использую заднюю шайбу и керно от магнитной системы динамиков, всё что нужно — это просверлить отверстие в керне и нарезать резьбу после получается очень хороший крепеж (фото ниже).

    Также можно вырезать кусок текстолита или гитинакса толщиной от 3 мм, придать форму для максимального контакта «шайбы» с поверхностью тора. Нужно использовать прокладку между «шайбой» и телом тора для этого используйте резину, толщина которой должна быть минимум в два раза толще диаметра вторичной обмотки (почему догадайтесь сами), ложем и снизу и сверху. Изготавливая эту шайбу можно предусмотреть установку медных заклёпок для того чтобы зафиксировать выводы на «клеммной колодке». Если кому то непонятно по ссылке есть фото такой конструкции.

    Диаметр шпильки или болта продетого через центр тора вряд ли будет соответствует диаметру окна. Для того чтоб бублик не летал на этом болту как обруч на балерине необходимо его либо обмотать изолентой (до нужного диаметра) или можно применить толстую резину конусной формы. Такого рода резинку без проблем найдут автомобилисты например резинка из ВАЗ2107 реактивного стабилизатора или амортизатора, имеет нужно форму и стоит копейки.

    Не редко в заводских версиях окно заполняют компаундом вставив туда втулку, за которую и крепят тор. В практике радиолюбители такое не применяется (обычно) потому что опять же разобрать тор не повредив провод не возможно. В домашних условиях такую заглушку можно реализовать при помощи эпоксидки.

    Ещё один вариант крепежа «паук». По сути делается такая же крышка шайба только больших размеров. Форма её обычно квадратная крышка из железа или текстолита, края выступают за границы наружной части трансформатора. В этих углах просверлены отверстия и при помощи болтов притягивается к корпусу, таким образом вы не продеваете через центр болт и не создаете не доделанный виток через корпус УНЧ.


    ОЧЕНЬ хорошо будет сделать железный «горшок с крышкой» из толстой стали (мин 2мм) для тороида, в который поместить тор и залить компаундом например парафином или воском (или той же эпоксидной смолой), хотя после эпоксидки его будет не разобрать. Таким образом решается не только проблема крепежа но также и экранирования от помех. (Фото подобной конструкции завалялось на компе, автора не помню но думаю он не обидится).

    Немного об экранировании.

    Между первичной и вторичной обмоткой очень хорошо будет разместить экранирующую обмотку. В идеале эта обмотка должна практически перекрывать все видимые части тороида, перекрывая магнитные потоки на пути от сердечника (первичной обмотки) ко вторичке. Один конец экранирующей обмотки должен быть «ввоздухе», а другой подключен на мекку(корпус) усилителя (иногда через резистор до 10 ом). Первый конец можно хорошо заизолировать и оставить внутри тора. Второй, тот который на землю корпуса, вывести при помощи многожильного гибкого провода.

    В идеальном случае намотку нужно производить медной лентой шириной около 15-20мм, которая изолирована с обеих сторон лакотканью, изолентой или фторопластом, можно и скотчем малярным но очень аккуратно дабы не порвать и не сделать микро трещин (как в ленте так и в изоляторе), которые пробьет напряжением. Экранирование таким образом занимает очень много места и делает много пустот, которые ухудшают теплоотдачу, добавляя гул и «зря» отдаляют вторичку от сердечника. «Более» экономно будет если намотать экран проводом диаметром около 0,6мм. Но если будет просматриваться сердечник, то будьте уверены помехи пройдут через эти «окошки», то есть или мотаем как нужно очень плотно в несколько слоев, или не делаем пустую работу! Если есть возможность то можно сделать такой экран, однозначно хуже будет!

    Гораздо лучше экранировать трансформатор по итогу намотки, то есть когда намотан полностью трансформатор (Хотя честно говоря нужно делить помехи по классам и виду, и отдельно рассматривать методы борьбы с ними). Идеально в таком случае будет использовать не медную ленту, а пермаллой. Хотя если на Вас смотрят кирпичными глазами при слове фторопласт, то о пермаллое можете мечтать ;). Очень даже хорошо обвернуть трансформатор в несколько слоев трансформаторного железа, для этих целей подойдёт железо из любого трансформатора. (Я применяю сталь от старого сердечника из 2-х амперного латра).

    Вот тор экранирован при помощи трансформаторной ленты, помещен в металлическую крышку и проварен в парафине, ток х.х. 1,5 мА, первички более 2500 витков, межслойная фторопласт, с последовательной проваркой в парафине. Делал в кружке + трансформаторная сталь, получилось очень даже хорошо (смотрите выше)! Этот тор использовал для работы в предварительном усилителе.

    Делать горшок из алюминия не стоит, он не от чего не защитит. Делать нужно из толстой стали (не менее 2мм), и ещё очень хорошо изнутри дополнительно про экранировать медью (листовой толщиной около 1мм). Хотя сам таких вещей не делал (из медью), но авторитетные люди советовали.

    В заключении о помехах из торов скажу, что тороиды очень редко генерируют помехи на оборудование, при том замечена особенность что фонят торы те которые не домотаны, имеют высокий ток х.х. ил завышенную индукцию… Поэтому если не пожадничать и намотать тороид из заниженной магнитной индукцией(увеличить число витков на вольт) то вы вряд ли столкнётесь с проблемой помех от трансформатора.

    Планируется дополнить статью такими «изюминками». пока что очень бегло.

    Все трансформаторы и источники энергии (блоки питания) имеют такой абстрактный параметр как внутреннее сопротивление. Как это понимать. В случае с трансформатором это сопротивление будет равняться активному сопротивлению обмоток. Когда вы подключаете к трансу нагрузку, то протекающий ток и сопротивление обмоток создают просадку напряжения. Чтобы просадка по напряжению была минимальной необходимо увеличивать сечение проводника (снизив его сопротивление). Но в тоже время необходимо учитывать этот факт при эксплуатации, что габаритная мощность обмоток будет выше габаритной мощности сердечника, внимательно чтобы не перегрузить первичку.

    Экранирование и виды помех.

    P.S. Моя первая статья да ещё и не законченная просьба помидорами не кидать. Времени закончить никак нет, выкладываю то, что уже накатал очень давно. Сейчас эти бублик успешно работает в Натали 2012ЭА, в соответствующей ветке можете поискать фото, а вот и ссылка

    петя 21.10.2015 22:13 #

    Очень много ошибок в статье. Автор демонстрирует некоторое непонимание процессов, происходящих в трансформаторе. Материалы — применяются от балды. Цапон лак может и растворять изоляцию проводов. экран между первичной и вторичными обмотками — чаще необходимость, чем просто пожелание. Кроме того этот экран не экранирует магнитную связь, как указал автор. Иначе бы трансформатор не работал. А вот наружный экран — как раз для экранирования магнитных полей рассеяния — делается из магнитного материала. Например пермаллоя. Медь там особо не нужна. Малярный скотч лучше применять по назначению, а не в трансформаторе.

    Да никто и не претендует на звание гениальной статьи, это скорее руководство для начинающих. (кстати в шапке так и указано). С большим удовольствием почитаю ВАШУ ПРАВИЛЬНУЮ статью. По моей статье намотано не один десяток, и они работают пускай без детального понимания происходящего. Сейчас я бы написал немного по другому, спустя время и опыта. Я писал эту статью будучи студентом 3 курса.

    Цапон лак может и растворять изоляцию проводов. Сомниваюсь что СПИРТ сможет это сделать, хотя вы наверное знаете что любой лак содержит растворитель, спирт самый безобидный. На воде лаков с высоким уровнем изоляции не бывает (общедоступных).

    Кроме того этот экран не экранирует магнитную связь, как указал автор.
    Смотря какая частота сигнала, для экранирования мегагерц достаточно напыления металла(тому пример любой ноут, пластмасса которого обмедненная изнутри).

    А вот наружный экран — как раз для экранирования магнитных полей рассеяния — делается из магнитного материала.
    Нуда. Ты скажи где в селе найти пермаллой? Я в своем городе не смогу такого дела найти. Да и цена будет соответствующая! Поэтому и предложил использовать трубу потолще, что то работает и не намного хуже, но достать не проблема в маломальском колхозе, там же и сварщик подварит за небольшую плату.
    Медный провод скорее ориентирован для сливания помех от ВЧ сигналов. Экранировать 50гц внутри транса очень большое расточителство окна тора, что призводит большому удорожанию конструкции и т.д.
    Малярный скотч лучше применять по назначению, а не в трансформаторе.
    Повторюсь я рекомендую использовать фторопласт(только не фум ленту) или лакоткань ЛКШ. Но если нет то можно использовать и скотч. В любом случае будет не хуже чем без него.

    П.С. Много говорит не так, а я отвечаю «Сделай лучше» а я тоже почитаю и гарантирую что найду к чему придратся. Статья не идеальна но для начинающих самое то. Статья досих пор очень актуальна, среднее кол-во просмотров 60 в день.

    Отредактирован 22.10.2015 20:38

    Константин 29.12.2015 03:17 #

    Интересная статья, спасибо.
    А воск не будет плавиться\кипеть при больших нагрузках?
    Можно пару примеров, удачных трансформаторов на этом кольце, с указанием первичной\вторичных намоток и толщины проволоки и замеров с них?

    demo1420 29.12.2015 10:05 #

    Максимально рабочей температурой для трансформатора принято считать 70 градусов. При 70 градусах воск действительно будет очень мягок не не потечёт. Другое дело что не нужно доводить до такой температуры иначе быстрое пересыхание изоляции и последующее повреждение гарантировано.
    Касательно примеров в статье и комментариях где-то есть описание и фото. поищите там

    Перед обмоткой изолентой ТОРа нужно острые края железа защитить полосой прессшпана, для большей уверенности (напильником закруглить тоже нужно) уголочком сложить и приклеить внутри и снаружи, иначе К.З не миновать!

    demo1420 09.01.2020 18:15 #

    Можно и миновать если не поленится и хорошо закруглить напильником. Из-за картона возникнет зазор между сердечником и обмоткой, а после прогрева начнет зудеть. Мои торы работают уже более 2 лет КРУГЛОСУТОЧНО.

    Согласен, если хорошо закруглить, то пойдёт.
    Но, жесткость этой изоленты оставляет желать лучшего, поэтому его нужно пропитать после обмотки ТОРа (но не клеем ПВА) лаком для жесткости, чтобы не повредить(не продавить) изоленту при намотке.
    И если Вы исключите из списка клей ПВА, то все люди будут Вам благодарны за это. Пропитывать клеем ПВА или вообще применять в электрике ни в коем случае нельзя.
    И изготовитель трансформаторов должен знать что такое мегомметр и обязательно проверять им сопротивление изоляции между первичной и вторичной обмотками.
    Если Вы возьмете этот прибор в руки и проверите сопротивление клея ПВА то Вы им больше не захотите пользоваться никогда.
    Используйте лучше клей БФ-2 .

    Да, Вы правы электрическая прочность поливинилацетата (ПВА) всего 1МВ/м, а у обычного полиэтилена 40-50МВ/м.

    Клеевые швы, образуемые клеями БФ, стойки к воде, минеральным маслам, керосину, бензину и многим спиртам. Они не вызывают коррозии металлов и могут работать в интервале температур от —60 до +60° С. Электрическая прочность БФ — 50—70 МВ/м. В добавок к БФ-2 я бы еще рассмотрел клей БФ-4, который стоек к вибрациям.

    • Расчет тороидального трансформатора
    • Подбор и изготовление тороидального сердечника
    • Намотка трансформатора

    Многие домашние мастера задумываются об изготовлении тороидального трансформатора своими руками. Объясняется это тем, что его эксплуатационные характеристики значительно лучше, чем у трансформаторов с сердечниками другой формы. Например, при тех же электрических характеристиках, его вес может быть до полутора раз меньше. К тому же и КПД такого трансформатора заметно выше.

    Устройство тороидального сварочного трансформатора.

    Основных причин, по которым изготовление тороида не всегда удается, две:

    1. Трудно найти подходящий сердечник.
    2. Трудоемкость изготовления, особенно сложна намотка трансформатора.

    Расчет тороидального трансформатора

    Схема сварочного полуавтомата.

    Для упрощенного расчета трансформатора на тороидальном магнитопроводе необходимо знать следующие исходные данные:

    1. Подаваемое на первичную обмотку входное напряжение U1 .
    2. Наружный диаметр D сердечника.
    3. Его внутренний диаметр – d.
    4. Толщина магнитопровода – H.

    Площадь поперечного сечения магнитопровода Sc определяет мощность трансформатора и, соответственно, надежность работы будущего сварочного аппарата. Оптимальными считаются значения 45-55 см 2. Рассчитать ее значение можно по формуле:

    Важной характеристикой сердечника является площадь его окна S. поскольку этот параметр определяет не только удобство намотки обмоточных проводов и интенсивность отвода избытков тепла, но и оказывает влияние на характер магнитного рассеяния. Оптимальные значения этого параметра 80-110 см 2. Вычислить его значение позволяет формула:

    Броневой тип трёхфазных трансформаторов.

    Зная эти значения, можно рассчитать ориентировочную мощность трансформатора:

    P = 1,9 * Sc * S. где Sc и S берутся в квадратных сантиметрах, а P получается в ваттах.

    Далее можно найти число витков на вольт:

    Зная значение k, можно рассчитать количество витков во вторичной обмотке:

    Количество витков в первичной обмотке лучше рассчитать, используя в качестве исходного данного напряжение на вторичной обмотке:

    W1 = (U1 * w2 ) / U2. где U1 – напряжение, подводимое к первичной обмотке, а U2 – снимаемое со вторичной.

    Дело в том, что регулировать сварочный ток лучше изменением числа витков первичной обмотки, поскольку величина тока в ней меньше, чем во вторичной. Пусть, например, нужно получить три значения выходного тока 60 А, 80 А и 100 А при мощности трансформатора 5000 Вт.

    Этим значениям сварочного тока будут соответствовать следующие значения напряжений на вторичной обмотке:

    U21 = P / I21 = 5000 Вт / 60 А = 83,3 В;

    U22 = P / I22 = 5000 Вт / 80 А = 62,5 В;

    Классификационная схема трансформаторов.

    U23 = P / I23 = 5000 Вт / 100 А = 50 В.

    Пусть вторичная обмотка содержит w2 = 70 витков. Теперь можно рассчитать число витков в соответствующих ступенях первичной обмотки для напряжения в сети U1 = 220 В:

    Последнее значение следует увеличить на 5%:

    W13 = 308 * 1,05 ≈ 323 витка – это и будет их необходимое число в первичной обмотке, а отводы следует сделать от 185-го и 246-го витка.

    Для самодельных трансформаторов для сварки допустимая плотность тока в обмотках j = 3 А/мм 2. Зная ее, можно найти площадь поперечного сечения проводов обмоток. В приведенном ранее примере максимальный ток в первичной обмотке:

    Сечение этого провода должно составлять:

    Во вторичной обмотке следует применить провод с площадью поперечного сечения:

    S2 = I23 / j = 100 А / 3 А/мм 2 ≈ 33 мм 2 .

    Вернуться к оглавлению

    Подбор и изготовление тороидального сердечника

    Наилучшим материалом для изготовления тороидального магнитопровода является ленточная трансформаторная сталь. Для изготовления сердечника эта лента сворачивается в рулон, имеющий форму тора прямоугольного сечения. Если имеется такая лента или сердечник из нее, то особых проблем при изготовлении магнитопровода для тороидального трансформатора не будет.

    Характеристики сварочных трансформаторов.

    При малом значении внутреннего диаметра d можно часть ленты с внутренней стороны тора отмотать, а затем намотать ее на наружную поверхность сердечника. В результате возрастут оба диаметра, а площадь внутренней части магнитопровода увеличится. Правда, несколько уменьшится площадь поперечного сечения сердечника S. При необходимости можно добавить ленту с другого магнитопровода.

    Хороший готовый тороидальный сердечник можно взять от рассчитанного на ток 9 А лабораторного автотрансформатора ЛАТР 1М. Нужно только перемотать его обмотки. Бывает, что для изготовления тороидального сердечника для трансформатора используется магнитопровод статора подходящего электродвигателя.

    Еще один способ изготовления тороидального сердечника – использование в качестве материала пластин от неисправного мощного промышленного или силового трансформатора, питавшего в свое время ламповый цветной телевизор. Сначала из этих пластин с помощью заклепок изготовляется обруч, имеющий диаметр около 26 см. Затем внутрь этого обруча начинают вставлять одну за другой пластины встык, придерживая их рукой от разматывания.

    После набора нужного сечения S магнитопровод готов. Для увеличения S можно изготовить два тороида одинаковых размеров, а затем соединить их вместе. Края тороидов следует слегка закруглить с помощью напильника. Из электроизоляционного картона следует изготовить два кольца, имеющих внутренний диаметр d и внешний D, а также две полоски на внутреннюю и наружную сторону тора. После наложения их на тороид, сердечник обматывается поверх картонных прокладок киперной или тканой изоляционной лентой. Магнитопровод готов, и можно начинать наматывать обмотки.

    Вернуться к оглавлению

    Намотка трансформатора

    Основные части обмотки трансформатора.

    Как уже говорилось, мотать обмотки на любой тороидальный трансформатор, в том числе и сварочный, непросто. Самый простой способ – это использование для этой цели челнока, на который предварительно наматывается провод нужной длины, а затем, пропуская челнок через внутреннее окно сердечника, виток за витком формируется соответствующая обмотка.

    Челнок обычно изготовляют из дерева или выпиливают из оргстекла. Его толщина 5-6 мм, ширина сантиметра 3-4, а длина порядка 40 см. В его торцах делаются полукруглые вырезы для провода. Для оценки длины провода, который нужно намотать на челнок, производится оценка средней длины одного витка наматываемой обмотки, ее значение умножается на число витков, и на всякий случай делается запас в 15-20%.

    Удобнее производить намотку с помощью так называемого кругового челнока. В качестве заготовок для изготовления кругового челнока могут служить согнутые в кольцо пластмассовые трубы или гимнастический обруч со спиленной наружной частью, обод от велосипедного колеса и т. д.

    Обруч или колесо распиливаются в одном месте, продеваются сквозь внутреннее окно сердечника, а затем место распила фиксируется любым удобным способом. Намотанный на челнок провод можно в нескольких местах зафиксировать изолентой, но удобнее резиновая лента по длине челнока, натянутая поверх провода. Она не дает проводу рассыпаться, но не препятствует его вытаскиванию сбоку.

    Из описания ясно, что хотя изготовление тороидального сварочного трансформатора не такое уж простое дело, но оно вполне выполнимо.

    Были бы только нужные материалы, а самое главное – желание.

    Как намотать тороидальный трансформатор для мощного усилителя НЧ

    Надоело уже собирать усилители НЧ на микросхемах, руки чешутся, и захотелось что-нибудь серьезное спаять. Задумал я паять транзисторный усилитель с двуполярным питанием. Источником питания будет служить линейный блок питания с тороидальным трансформатором, о намотке которого я буду рассказывать в этой статеечке.

    Сначала нужно нам определится с мощностью усилителя, количеством каналов и сопротивления нагрузки.

    Каналов у меня будет два, выходная мощность будет приблизительно 100Вт на канал, сопротивление нагрузки будет составлять 4Ом.

    Можно не заморачиваться и взять трансформатор мощностью 300Вт, но это лишние размеры и масса. По хорошему, если усилитель класса АБ имеет КПД приблизительно 50%, то чтобы на выходе получить 100Вт, необходимо потребить 200Вт. Если два канала по 100Вт, то потребление будет 400Вт. Это все приблизительно, и с условием, что входным сигналом будет являться синусоида с постоянной амплитудой. Я не думаю, что среди разумных людей есть любители слушать ужасный писк в колонках.

    Музыка, которую мы прослушиваем, имеет форму сигнала в виде синусоиды, которая меняется как по частоте, так и по амплитуде. Этот сигнал будет не всегда иметь максимальную амплитуду, в такие моменты будет заряжаться электролитический конденсатор источника питания, а на максимальных амплитудах разряжаться, тем самым можно сэкономить на мощности трансформатора. Опять же если вы не любитель слушать писк в акустической системе.

    Вычислим мощность и напряжение нашего будущего трансформатора. Скачиваем и запускаем программу PowerSup .

    Заполняем в верхней части программы все поля, ток покоя ставим 10мА, ток предусилителя 0мА, назначение и тип сигнала выбираем по вкусу прослушиваемой музыки. Нажимаем “Применить”.

    Программа произвела расчет напряжение холостого хода источника питания, а также емкость конденсаторов, эти номиналы имеют рекомендательный характер и даны для одного плеча.

    Далее заполняем два нижних окошка в соответствии с рекомендательными величинами и нажимаем “Вычислить”. Получили выходное напряжение обмоток трансформатора, у меня 34,5В на каждое плече, ток вторичных обмоток 1,7А, параметры диодов и схему подключения.

    С параметрами трансформатора мы определились, теперь скачиваем и запускаем программу Trans50Hz(3700). Будем вычислять намоточные данные.

    Сердечник у меня тороидальный и имеет размеры 130*80*25. Заполняем поля программы.

    Амплитуду индукции выставляем 1.2 Тл, можно полтора (как в моем случае), это для ленточных сердечников, а для пластинчатых ставим 1 Тл. Этот параметр зависит от железа.

    Плотность тока для класса АБ от 3.5- 4 А/мм2, для класса А 2.5 А/мм2.

    Выставляем токи и напряжение вторичных обмоток, нажимаем рассчитать.

    Итак, мы получили количество витков первичной и вторичных обмоток, а также диаметры проводов.

    Можно обойтись без расчетов, мотать примерно 900 витков, и периодически обмотку включать в сеть 220В последовательно через лампу накаливания, с номинальным напряжением 220В.

    Если лампа будет гореть, даже в пол накала, то мотаем дальше, периодически проверяя. Как только лампа перестанет светиться, необходимо замерить ток холостого хода (но уже без лампы, обмотку подключаем в сеть напрямую), который должен составлять 10-100мА.

    Если ток холостого хода будет меньше 10мА, то это не очень хорошо. Из-за большого сопротивления трансформатор будет греться на нагрузке. Если ток будет превышать 100мА, то трансформатор будет греться на холостом ходу. Хотя есть трансформаторы с током холостого хода и 300мА, но они греются без нагрузки и ужасно гудят.

    Можно приступать к самой намотке трансформатора. Мотать мне нужно 1291 виток первичной обмотки, проводом, диаметр которого составляет 0,6мм. Заметьте диаметр, а не сечение! У меня провод 0.63мм.

    Обматываю тряпочной изолентой. Как-то раз я обмотал сердечник одной лавсановой лентой, без изоленты (или картона), после намотки нескольких слоев произошел пробой. Видимо передавило нижние слои провода, и повредился лак об острую кромку сердечника. Теперь всегда при намотке тороидальных трансформаторов, произвожу обмотку сердечника тряпочной изолентой.

    Далее слой лавсановой ленты.

    Лавсановую ленту можно купить в магазине, в виде рукава для запекания, который нарезается лентами с помощью лезвия бритвы и металлической линейки.

    Берем деревянную линейку на 40см, пропиливаем оба края, чтобы на нее можно было намотать провод. Наматываем большое количество провода (мне пришлось несколько раз наматывать 1300 витков).

    Далее определяемся с направлением обмотки, можете выбрать любое, но с условием, что все обмотки (первичная и вторичные) будут мотаться в выбранную вами сторону.

    Я мотаю все обмотки по часовой, как на картинке.

    Закрепляем скотчем, можно ниткой, свободный конец провода и мотаем виток к витку слой обмотки.

    Припаиваем провода первичной обмотки. Изолируем места пайки и зачистки лака.

    Дам вам один маленький совет. Припаивая провода, к выводам первичной обмотки выбирайте качественные и прочные провода, либо не припаивайте, а уложите их в диэлектрические трубки (термоусадка, кембрик). Пока я мотал вторичные обмотки, мои выводы из-за многократных изгибов отломились. Я брал провода от блока питания ПК.

    Мотаем внахлёст 4-5 слоев лавсановой ленты, добытой из рукава для выпекания.

    Не забываем записывать на листочек количество витков в каждом слое, чтобы не забыть. Ведь намотка трансформатора может продолжаться не 1-2 дня, а месяц или несколько месяцев, когда нет времени, и вы все можете позабыть.

    Мотаем в том же направлении остальные слои провода, между которыми располагаем слои изоляции лавсановой ленты.

    Места соединения необходимо паять и изолировать термоусадочной трубкой.

    Когда намотаете необходимое количество витков первичной обмотки тороидального трансформатора, нужно подключить обмотку последовательно через лампу 220В к сети, как говорилось выше. Лампа не должна светиться. Если светиться, значит у вас малое количество витков, либо короткое замыкание между слоями или витками (если провод плохой).

    Далее нужно померить ток холостого хода, но уже без лампы (конечно если она у вас не светилась). Рекомендуемый ток холостого хода 10-100мА.

    У меня ток холостого хода 11мА.

    Припаиваем отвод. Изолируем первичную обмотку от вторичной хорошенько, можно слоев 6-8 лавсановой ленты.

    Вторичную обмотку можно мотать по расчетам, сделанным выше, либо следующим методом.

    Берем тонкий провод и мотаем десятка два-три витков поверх “первички”. Далее включаем первичную обмотку в сеть и измеряем напряжение на нашей экспериментальной обмотке. У меня получилось 18 витков 2,6В.

    Разделив 2.6В на 18витков, я вычислил, что один виток равен 0,144В. Чем больше витков на экспериментальной обмотке будет намотано, тем точнее расчет. Далее беру необходимую мне величину напряжения на одной из вторичных обмоток (у меня 35В) и делю на 0,144В, получаю количество витков вторичной обмотки равное 243.

    Намотка “вторички” ничем не отличается. Мотаем в туже сторону, тем же челноком, только диаметр провода берем из расчетов выше. Мой диаметр провода равен 1,25мм (меньше у меня не оказалось).

    Как только наберется нужное нам количество витков, включаем наш трансформатор в сеть и измеряем величину выходного напряжения, если она нас устраивает, то делаем отвод и продолжаем мотать вторую вторичную обмотку.

    Можно сделать отвод и начать мотать новую вторичную обмотку, то есть, у вас получится четыре вывода “вторички”, а можно скрутить конец первой “вторички”, с началом второй “вторички”, как у меня. Зависит от того какое исполнение вам нужно и будете ли вы использовать по отдельности вторичные обмотки.

    Намотав вторую “вторичку”, выставляем одинаковое напряжение между плечами относительно общего провода, увеличивая или наоборот уменьшая количество витков.

    Изолируем выводы (термоусадкой или кембриком), изолируем обмотку лавсановой лентой. Все наша намотка тороидального трансформатора закончена. Я еще добавил одну обмотку на 12В, для запитывания различных устройств (пока не решил каких), например, предусилитель, темброблок, вентилятор, индикаторы.

    Трансформатор продается. Цена 1500 руб. [email protected]

    Программа для расчета силовых трансформаторов с частотой 50 Гц — Trans50Hz(3700) СКАЧАТЬ

    Программа для расчета параметров блока питания (50Гц) PowerSup СКАЧАТЬ

    Каждый электрик должен знать:  Кабель для наружной проводки по кирпичной стене и дереву
    Добавить комментарий