Основные понятия и определения


СОДЕРЖАНИЕ:

Основные понятия и определения

Как отмечалось, БД в простейшем случае представляется в виде системы двумерных таблиц. Таблицы могут быть представлены в ПК либо в виде отдельных файлов, либо размещаться в одном файле.

Файл – информация, хранимая на электронном носителе после завершения отдельных заданий и рассматриваемая в процессе обработки как единое целое. Файл имеет имя и требует некоторого объема памяти носителя, в качестве которого может выступать дискета, винчестер, компакт-диск (CD).

Поле – столбец файлового документа (таблицы). Имя поля часто называют атрибутом.

Домен – совокупность значений одного поля.

Универсум – совокупность значений всех полей.

Запись – строка документа. Следует отметить, что это понятие неоднозначно. В реляционной модели данных запись – строка таблицы, в сетевой модели данных – элемент структуры, аналогичный примерно таблице в реляционной модели данных.

Запись логическая – поименованная совокупность данных, рассматриваемая пользователем как одно целое.

Запись физическая (совокупность данных записываемых/считываемых одним блоком) характеризует расположение данных в физической памяти ПК.

Ключ – поле с уникальными (неповторяющимися) записями, используемое для определения места расположения записи. Ключ может состоять из совокупности полей (составной ключ), называемых суперключом.

Выделенный ключ – ключ, явно перечисленный вместе с реляционной схемой. В противном случае говорят о неявном ключе. Вводят и такие понятия как возможный ключ (ключ-кандидат), если любой из нескольких наборов полей может быть принят за составной ключ. Один из выделенных ключей называют первичным. При работе с несколькими связанными таблицами говорят о родительском ключе главной таблицы и внешнем ключе подчиненной таблицы. Иногда ключ называют идентификатором – атрибутом, значения которого однозначно определяют экземпляры объекта предметной области.

Предметная область – отражение в БД совокупности и объектов реального мира с их связями, относящимися к некоторой области знаний и имеющих практическую ценность для пользователя. Понятие «идентификатор» используется и в физической базе данных.

Указатель – идентификатор, который ведет к заданной записи из какой-то другой записи в физической базе данных. Здесь запись – некоторый блок данных в памяти компьютера.

Приведем перечень используемых в дальнейшем терминов, детальное пояснение которых проводится в последующих разделах данной работы.

Администратор базы данных (АБД) – лицо, отвечающее за выработку требований к БД, ее проектирование, реализацию, эффективное использование и сопровождение.

Архитектура – разновидность (обобщение) структуры, в которой какой-либо элемент может быть заменен на другой элемент, характеристики входов и выходов которого идентичны первому элементу. Понятие «принцип открытой архитектуры» используется при построении компьютера. Этот принцип означает, что вместо принтера одной марки (например, Epson) к компьютеру может быть подключен принтер другого типа (например, Hewlett Packard).

Безопасность – защита от преднамеренного или непреднамеренного нарушения секретности, искажения или разрушения.

Блокировка – неделимая операция, которая позволяет только одному процессу иметь доступ к совместно используемому ресурсу.

Вид (View) – таблица, вычисленная с помощью навигационной операции на основе исходной таблицы (таблиц). Вид может использоваться почти по тем же правилам, что и исходная таблица.

Внешняя схема – описание данных на концептуальном уровне. Как отмечалось, в реляционной БД порядок расположения полей (столбцов) таблицы безразличен. Однако для реализации следует выбрать вполне определенный порядок (схему). Чаще всего ключевые поля располагают в начале схемы.

Внутренняя схема – описание данных на физическом уровне.

Время доступа – промежуток времени между выдачей команды записи (считывания) и фактическим получением данных.

Время отклика – промежуток времени от момента запроса к БД до фактического получения данных.

Даталогическая модель – модель логического уровня, представляющая собой отображение логических связей безотносительно к их содержанию и среде хранения.

Доступ – операция поиска, чтения данных или записи их.

Задание (работа) – программа или совокупность программ и преобразуемые этими программами данные.

Защита данных – противостояние базы данных несанкционированному доступу, преднамеренному искажению или разрушению информации.

Индекс – совокупность указателей, содержащих информацию о местоположении записи. Для ускорения поиска полям сопоставляют уникальный набор (числовой или символьный). Индекс может быть представлен и несколькими полями. Если при построении БД заданы индексы, то для поиска сначала их и используют. Если индексов нет, то может проводиться длительный поиск путем перебора данных.

Концептуальный – определение, относящееся к обобщенному представлению данных, независимому от СУБД. При проектировании БД выделяют концептуальную, логическую и физическую базы данных (модели), определение которых приведено позднее.

Кортеж – совокупность полей или запись (строка).

КОДАСИЛ (CODASIL) – набор стандартов для сетевых баз данных.

Логический – определение, относящееся к представлению или описанию данных, не зависящему от запоминающей среды или вычислительной системы, однако «привязанное» к выбранной СУБД.

Машина баз данных (МБД) – вспомогательный периферийный процессор, выполняющий функции СУБД.

Метаданные – данные о данных, описание информационных ресурсов, их характеристик, местонахождения, способов использования и т. д. Например, перечень таблиц с характеристиками каждой из них (имя, объем памяти и другие параметры).

Многозначная зависимость (MV-зависимость, зависимость 1:М) – для подсхем X, Y, Z, принадлежащих схеме R, Z = R – (XY) и кортежей t2(X) = t1(Х) и t3(Y) = t1(Y) справедливо t3(Z) = t1(Z) и t3(Z) = t2(Z).

Модель данных – средство абстракции, позволяющее видеть информационное содержание (обобщенную структуру), а не их конкретные значения. Выделяют, как отмечалось, иерархическую, сетевую, реляционную, объектно-ориентированную, объектно-реляционную и многомерную модели данных.

Навигация – операция, результат которой представлен единым объектом, полученным при прохождении пути по логической структуре БД. Иными словами, операция получения новой таблицы из полей связанных таблиц.

Независимость данных – возможность изменения логической и физической структуры БД без изменения представлений пользователя.

Объект – термин, обозначающий факт, лицо, событие, предмет, о котором могут быть собраны данные. В реляционных СУБД выделяют такие основные объекты, как таблицы, формы, запросы, отчеты, макросы, модули.

Объектно-ориентированное программирование – методология программирования, основанная на представлении программ в виде связанной совокупности объектов, каждый из которых является экземпляром определенного класса, а классы образуют иерархию по наследованию.

Объектно-ориентированное проектирование – методология проектирования, соединяющая в себе процесс объектной декомпозиции и приемы представления логических и физических, а также статических и динамических моделей проектируемой системы.

Отношение r на множествах (доменах) S1, . Sn – подмножество декартова произведения S,& . &Sn. Понятие «отношение» является основным в реляционных БД. Пусть имеется таблица с двумя полями S1 и S2 по два значения в каждом (S1 = и S2 = , т. е. в каждом домене по два значения). «Полная» таблица имеет четыре возможных записи (al, bl; al, b2; а2, М; а2, b2), которые и образуют декартово произведение. Отношением является и часть этой таблицы (например, al, bl; а2, b1). Отношение может быть и составным: r – (r1, . rn), составленным, например, из нескольких связанных таблиц.

Подсхема – описание логического представления пользователя данной группы. Иными словами, это схема отдельного пользователя БД, если их несколько. Из подсхем может быть составлена схема БД (для всех пользователей). Нетрудно видеть, что при наличии одного пользователя подсхема является схемой.

Программа – полное и точное описание алгоритма на некотором формальном языке программирования.

Процедура – некоторая подпрограмма.

Распределенная база данных (РЕД) – единая БД, представленная в виде отдельных (возможно, избыточных и перекрывающихся) разделов на разных вычислительных средствах.

Связь – ассоциация между экземплярами примитивных или агрегированных объектов (записей) данных.

Семантика – часть языка, касающаяся указания смысла и действия текста, составленного в соответствии с синтаксическими правилами. Действия текста относится к операторам на некотором языке программирования.

Синтаксис – правила, определяющие разрешенные языковые конструкции, а также последовательности расположения символов в программе.

Система баз данных – совокупность СУБД, прикладного программного обеспечения, базы данных, операционной системы и технических средств, обеспечивающих информационное обслуживание пользователей.

Система управления базой данных (СУБД) – совокупность программных средств, обеспечивающих управление БД на всех уровнях.

Системный журнал – журнал регистрации всех изменений БД.

Словарь данных – набор обобщенных описаний данных БД, обеспечивает логически централизованное хранение метаданных.

Спецификация – операция, результатом которой является новая структура, построенная на основе структур базы данных.

Структура – совокупность элементов и нх связей.

Сущность – примитивный объект данных, отображающий элемент предметной области (человек, место, вещь и т. д.).

Схема данных – описание логической структуры данных, специфицированное на языке описания данных и обрабатываемое СУБД. Дело в том, что в общем случае поля таблицы (отношения) могут располагаться в произвольном порядке (семейство отношений). Для конкретного пользователя и в конкретной БД должен быть выбран и зафиксирован только один вариант порядка. Этот вариант называют схемой (пользователя).

Транзакция – процесс изменения файла или БД, вызванный передачей одного входного сообщения. Это сообщение (команду) часто тоже называют транзакцией.

Функциональная зависимость (F-зависимость, зависимость 1:1): схема Y функционально зависит от X, если для кортежей t,(X) = t2(X), справедливо t1(Y) = t2(Y), причем схемы X и Y могут принадлежать схеме R.

Хранимая запись – совокупность связанных элементов данных, соответствующая одной или нескольким логическим записям и содержащая все необходимые служебные данные.

Хранилище данных – предметно-ориентированный, интегрированный, привязанный ко времени и неизменный набор данных, предназначенный для поддержки принятия решений.

Целостность данных – устойчивость хранимых данных к разрушению (уничтожению), связанному с неисправностями технических средств, системными ошибками и ошибочными действиями пользователей.

Элемент данных – наименьшая единица данных, имеющая смысл при описании информации; наименьшая единица поименованных данных.

Экземпляр – отдельный экземпляр объекта, записи, элемента данных.

Язык базы данных – общий термин, относящийся к классу языков, которые используются для определения и обращения к базам данных.

Язык манипулирования данными (ЯМД) – командный язык, обеспечивающий доступ к содержимому БД и его обработку. Обработка предполагает вставку, удаление и изменение данных (операции обновления).

Язык описания данных (ЯОД) – предназначен для описания данных на концептуальном, логическом и физическом уровнях на основе соответствующих схем. Речь идет о командах по формированию структуры (шапки) таблиц и связей между ними. Эти операции могут быть обеспечены визуальным языком программирования QBE или директивным языком программирования SQL.

Язык запросов – высокоуровневый язык манипулирования данными, обеспечивающий взаимодействие пользователей с БД. Язык запросов предполагает выборку данных.

Следует отметить, что три группы операций с БД (описание, манипулирование, запрос) совмещены в языке SQL, а в некоторых СУБД – и в языке QBE.

Исходным элементом базы данных является таблица, структурные составляющие которой – поле и запись. Можно выделить две разновидности структуры таблиц: линейную и нелинейную. В линейной структуре поля располагаются последовательно друг за другом в произвольном порядке (табл. 1.11). В силу произвольности порядка для данной, конкретной реализации следует закрепить определенный вариант, называемый схемой пользователя.

Основные понятия и определения

Производство – это деятельность людей, направленная на удовлетворение их потребностей. Производство образует материальную основу любой экономики, можно сказать, что экономика вырастает из производства.

Различают две формы производства: натуральное и товарное. При натуральном производстве люди создают материальные блага – товары и нематериальные блага – услуги для собственного потребления, при товарном – для продажи. Таким образом, товар – это продукт, произведенный для обмена и торговли.
Современное производство – это товарное производство. Выделяют три уровня производства:

  • уровень работника – индивидуальное производство;
  • уровень предприятия, фирмы – микроуровень;
  • уровень национальной и мировой экономики – макроуровень.

Источники любого производства – это экономические ресурсы или факторы производства, которые в экономической науке объединены в 4 группы (схема 1):

  • природные ресурсы, созданные природой;
  • капитал, т.е. материальные объекты и финансовые ресурсы, созданные людьми;
  • трудовые ресурсы;
  • научные, интеллектуальные и информационные ресурсы.

Понятие экономических ресурсов шире, чем понятие факторов производства, так как экономические ресурсы это потенциальные ресурсы (например – целина), а факторы производства – это уже включенные в реальный процесс производства ресурсы (распаханная целина).

Схема 1 Экономические ресурсы как факторы производства

Природные ресурсы включают земельные, водные, лесные, биологические, минерально-сырьевые и топливно-энергетические ресурсы. Сюда же относится географическое расположение различных объектов, а также экологические ограничения, связанные со способностью природной среды к самоочищению и самовосстановлению при ее загрязнении и истощении. Чтобы быть включенными в экономический процесс, природные ресурсы, подобно другим видам экономических ресурсов, имеют денежную оценку и стоимость. Доход от владения и использования природных ресурсов называется рентой, потери и дополнительные затраты, связанные с загрязнением и истощением природных ресурсов и необходимостью их охраны и восстановления называются эколого-экономическим ущербом.
Капитал имеет две формы: денежную и материально-вещественную (схема 1). Капитал в денежной форме – это финансовые ресурсы, которые можно давать в ссуду или в кредит и получать от этого определенный доход, называемый процентом. Можно истратить финансовые (денежные) ресурсы на покупку ценных бумаг – акций и облигаций, которые также приносят их собственникам доход в виде дивидендов и процентов. Более стабильный и высокий доход в виде прибыли может быть получен при вложении (инвестировании) денежного капитала в покупку средств производства и организацию работы на промышленных, сельскохозяйственных, транспортных, строительных и других предприятиях и фирмах.
Средства производства состоят из средств труда и предметов труда.

Средства труда – это производственные здания и сооружения, станки, машины, оборудование, с помощью которых человек (работник) воздействует на предметы труда, то есть на сырье, материалы, топливо, энергию и другие компоненты будущего готового продукта или товара. Средства труда, выраженные в денежной форме, называются основными фондами предприятия (фирмы), денежная оценка предметов труда, в сумме с доходами от продажи готовой продукции образует оборотные (финансовые) фонды предприятия (фирмы).
Капитал приносит своим собственникам доход в виде процентов, дивидендов или прибыли.
Трудовые ресурсы как важнейший фактор производства включают в себя рабочую силу, то есть способность людей к труду, их умение производить товары и услуги, а также предпринимательские способности, как особый вид рабочей силы, состоящий в умении предпринимателя соединять в единый процесс все экономические ресурсы для организации производства, предприятия или бизнеса с целью получения предпринимательского дохода, (прибыли). Люди, обладающие предпринимательскими способностями, получают предпринимательский доход или прибыль, собственники рабочей силы в качестве наемных работников, получают зарплату.
Информация, наука, интеллект – как фактор производства и реальная производительная сила были признаны таковыми только в 20 веке. Информация – сообщения, сведения, данные для принятия решения. Наука – отрасль или вид деятельности, в которой создается интеллектуальный продукт: открытия, изобретения. Владельцы интеллектуальной собственности получают от нее доход в виде стоимости патентов, гонораров, авторских прав.
Таким образом, каждый вид экономических ресурсов (факторов производства) приносит своему собственнику определенный доход: владельцы природных ресурсов получают природную ренту, собственники капитала – проценты, дивиденды или прибыль, наемные работники – зарплату, предприниматели – предпринимательский доход и прибыль, владельцы интеллектуальной собственности получают доход в виде стоимости патентов, гонораров, авторских прав. Перечисленные виды доходов называются факторными доходами или доходами от владения соответствующими факторами производства.
В результате общественного производства создается общественный продукт, который представляет собой всю совокупность произведенных в стране и поступивших в распоряжение населения данной страны за определенный период времени (обычно за год) товаров и услуг и называется валовым национальным продуктом – ВНП. ВНП измеряется в натуральной и стоимостной форме.
Общественный продукт в своем движении проходит ряд взаимосвязанных стадий: производство – распределение – обмен – потребление. На стадии производства создаются товары и услуги. Распределение определяет долю (доход) каждого участника процесса воспроизводства в присвоении созданного общественного продукта. На стадии обмена каждый может обменять свой доход через куплю-продажу на конкретные продукты, товары, услуги. В потреблении реализуется конечная цель производства и воспроизводства – удовлетворение потребностей людей. Экономический рост – это процесс расширения производственных возможностей общества в результате увеличения предложения ресурсов (факторов производства) и развития научно-технического прогресса. Экономический рост возможен двумя путями: – за счёт вовлечения в производство дополнительных ресурсов на прежней технической основе – экстенсивный рост;

  • за счёт повышения качества факторов производства без дополнительного увеличения их количества и за счёт повышения производительности труда – интенсивный рост.

Факторы, от которых зависит экономический рост:

  1. внедрение достижений научно-технического прогресса;
  2. повышение производительности труда;
  3. снижение ресурсоёмкости производства;
  4. поддержка и развитие инициативы и предпринимательства в экономике;
  5. рост уровня образования и квалификации работников;
  6. развитие и внедрение менеджмента, то есть системы методов управления экономикой и бизнесом;
  7. совершенствование стимулирования труда;
  8. использование преимуществ международного разделения труда.

Процессу воспроизводства, как и любому процессу в природе, обществе, человеческом мышлении, присуща цикличность.
Причины цикличности в экономике объясняют по-разному. Существует около 200 точек зрения, ее объясняющих: от влияния солнечных пятен на урожай и сельскохозяйственные цены и нарушения пропорций в спросе и предложении товаров, услуг, ресурсов и до психологических факторов, например, таких, как утрата у населения и предпринимателей доверия к своему правительству или наоборот – обретение такого доверия.
В экономическом цикле различают четыре последовательных фазы: кризис – депрессия – оживление – подъём (рис. 1).

Рис. 1. Экономический цикл и его фазы

Кризис – это нарушение равновесия в экономике, вызывающее снижение и приостановку производства. Кризисы бывают: общеэкономические и частные (отраслевые, региональные или локальные); кризисы перепроизводства товаров и услуг и кризисы их недопроизводства; кризисы регулярные (периодические) и нерегулярные, имеющие свои особенные причины возникновения; кризисы краткосрочные с продолжительностью в 3-4 года, среднесрочные – 8-12 лет и долгосрочные 47-60 лет.
За кризисом следует депрессия. Кризис и депрессия характеризуются сокращением объёмов производства национального продукта и национального дохода, снижением инвестиций на развитие экономики, безработицей, повышением общего уровня цен или инфляцией, падением реальных доходов населения и снижением его уровня жизни.
Фаза депрессии сменяется фазами оживления и подъема. На фазе оживления восстанавливаются докризисные объемы производства, снижается инфляция, создаются новые рабочие места и растет занятость, оживают банки, которые выдают ссуды и кредиты для вкладывания их в развитие производства и бизнеса, растут зарплаты и другие виды доходов, а вместе с ними растет уровень жизни населения. На фазе подъема все экономические показатели превышают докризисные их значения.
Производство не может осуществляться любой ценой. По известному выражению Д.И. Менделеева «топить можно и ассигнациями», но целесообразно ли это? Сущность экономической организации производства состоит в том, чтобы эта организация была эффективной, то есть имела бы оптимальное (наилучшее из возможных) соотношение трех величин: «потребности», «затраты», «результаты». Оптимальным экономическим выбором считается получение максимального результата при минимальных затратах.
Функционирование производства должно соответствовать поставленным целям. При этом главная цель может состоять из нескольких подцелей (системы целей, «дерева целей»). Так, главная цель каждой национальной экономики состоит в повышении уровня жизни своего населения, обеспечения свободы и безопасности граждан. Цель каждого коммерческого предприятия – получение прибыли. Цель бюджетных предприятий, то есть предприятий, финансируемых из государственного бюджета – получение социального эффекта в виде охраны здоровья людей, повышения уровня их образования, защиты от бедности, гарантии свободы и безопасности. В зависимости от цели применяются различные формы, методы, способы и механизмы ее достижения.
Общий экономический результат производства характеризуется количеством произведенных товаров, благ и услуг. В масштабе отдельного предприятия, фирмы – это объемы их товарной продукции в натуральном и стоимостном выражении. В масштабе страны – это величина производимого национального продукта и национального дохода. Насколько рационально и эффективно используются при этом все экономические ресурсы или факторы производства, показывает сопоставление результатов и затрат.
Оценка эффективности любого вида деятельности может осуществляться по нескольким качественно разнородным критериям: экономическому, технико-технологическому, социальному, экологическому или путем их сочетания, например, оценка социально-экономической эффективности или эколого-экономической, или технико-экономической. Экономический критерий состоит в том, чтобы сумма затрат на осуществление какой-либо деятельности не превосходила суммы экономического эффекта – обычно прибыли. Оценка по технико-технологическому критерию определяет допустимость деятельности с точки зрения ее соответствия высшему уровню техники и технологии на современном этапе научно-технического прогресса. Под социальным критерием поднимаются интересы поддержания здоровья людей, сохранения природных ландшафтов и материальных объектов культуры. Оценка по экологическому критерию позволяет судить о допустимости вида деятельности с точки зрения ее отрицательного воздействия на окружающую природную среду. Она предполагает определение границ возможного использования и загрязнения. Главное в оценке по экологическому критерию – соблюдение нормативов использования и загрязнения природных ресурсов.
Показатели эффективности производства можно рассчитывать на разных экономических уровнях: на уровне отдельного рабочего места, предприятия, отрасли, региона, национальной экономики в целом. Таким образом, эти показатели носят «сквозной характер», то есть они могут рассчитываться и сопоставляться снизу доверху и сверху донизу.
В число важнейших показателей эффективности производства входят следующие: производительность труда, норма прибыли или рентабельность, срок окупаемости капитальных вложений, ресурсоёмкость продукции, в том числе такие ее частные показатели как, энергоёмкость, материалоёмкость, металлоёмкость, водоёмкость и т.п., а также показатели фондовооруженности, фондоёмкости и фондоотдачи.
Формулы для расчета показателей эффективности:

  1. Производительность труда = количество продукции (в натуральном и стоимостном выражении) : затраты труда (человек, часов);
  2. Рентабельность = (прибыль : затраты)* 100%;
  3. Срок окупаемости = затраты : прибыль годовая (лет);
  4. Ресурсоемкость = ресурсы : продукция;
  5. Фондовооруженность = стоимость основных производственных фондов : численность занятых;
  6. Фондоемкость = стоимость основных производственных фондов : продукция;
  7. Фондоотдача = стоимость продукции : стоимость основных производственных фондов.

ГОСТ 3.1109-82 ЕСТД. Термины и определения основных понятий

ЕДИНАЯ СИСТЕМА ТЕХНОЛОГИЧЕСКОЙ ДОКУМЕНТАЦИИ

ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ ОСНОВНЫХ
ПОНЯТИЙ

ИПК ИЗДАТЕЛЬСТВО СТАНДАРТОВ

Единая система технологической документации

ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ ОСНОВНЫХ ПОНЯТИЙ

Unified system for technological documentation.
Terms and definitions of main concepts

Взамен
ГОСТ 3.1109-73

Постановлением Государственного комитета СССР по стандартам от 30 июля 1982 г. № 2988 дата введения установлена

Настоящий стандарт устанавливает применяемые в науке, технике и производстве термины и определения основных понятий в области технологических процессов изготовления и ремонта изделий машиностроения и приборостроения.

Термины, установленные стандартом, обязательны для применения в документации всех видов, научно-технической, учебной и справочной литературе.

Термины и определения технологических процессов и операций, применяемые в отдельных отраслях, устанавливаются в отраслевых стандартах в соответствии с настоящим стандартом.

Для каждого понятия установлен один стандартизованный термин. Применение терминов-синонимов стандартизованного термина запрещается. Недопустимые к применению термины-синонимы приведены в стандарте в качестве справочных и обозначены «Ндп».

Для отдельных стандартизованных терминов в стандарте приведены в качестве справочных краткие формы, которые разрешается применять в случаях, исключающих возможность их различного толкования.

Установленные определения можно, при необходимости, изменять по форме изложения, не допуская нарушения границ понятий.

В стандарте в качестве справочных приведены иностранные эквиваленты для ряда стандартизованных терминов на немецком ( D ), английском (Е) и французском ( F ) языках.

В стандарте приведены алфавитные указатели содержащихся в нем терминов на русском языке и их иностранных эквивалентов.

В стандарте имеется приложение, содержащее термины, характеризующие производственный процесс.

Стандартизованные термины набраны полужирным шрифтом, их краткая форма — светлым, а недопустимые синонимы — курсивом.

ОБЩИЕ ПОНЯТИЯ

1. Технологический процесс

D . Technologischer Prozeß

Е . Manufacturing process

F. Precédé de fabrication

Часть производственного процесса, содержащая целенаправленные действия по изменению и (или) определению состояния предмета труда.

1. Технологический процесс может быть отнесен к изделию, его составной части или к методам обработки, формообразования и сборки.

2. К предметам труда относятся заготовки и изделия.

2. Технологическая операция

D. Operation; Arbeitsgang

Законченная часть технологического процесса, выполняемая на одном рабочем месте

3. Технологический метод

Совокупность правил, определяющих последовательность и содержание действий при выполнении формообразования, обработки или сборки, перемещения, включая технический контроль, испытания в технологическом процессе изготовления или ремонта, установленных безотносительно к наименованию, типоразмеру или исполнению изделия

4. Технологическая база

D. Technologische Basis

Поверхность, сочетание поверхностей, ось или точка, используемые для определения положения предмета труда в процессе изготовления.

Примечание . Поверхность, сочетание поверхностей, ось или точка принадлежат предмету труда.

5. Обрабатываемая поверхность

D. Zu bearbeitende Flä che

Поверхность, подлежащая воздействию в процессе обработки.

6. Технологический документ

D. Technologisches Dokument

Графический или текстовый документ, который отдельно или в совокупности с другими документами определяет технологический процесс или операцию изготовления изделия

7. Оформление технологического документа

Комплекс процедур, необходимых для подготовки и утверждения технологического документа в соответствии с порядком, установленным на предприятии.

Примечание . К подготовке документа относится его подписание, согласование и т.д.

ТЕХНОЛОГИЧЕСКАЯ ДОКУМЕНТАЦИЯ

Комплектность технологических документов

8. Комплект документов технологического процесса (операции)

Комплект документов процесса (операции)

Совокупность технологических документов, необходимых и достаточных для выполнения технологического процесса (операции)

9. Комплект технологической документации

Совокупность комплектов документов технологических процессов и отдельных документов, необходимых и достаточных для выполнения технологических процессов при изготовлении и ремонте изделия или его составных частей

10. Комплект проектной технологической документации

Комплект проектной документации

Комплект технологической документации, предназначенный для применения при проектировании или реконструкции предприятия

11. Стандартный комплект документов технологического процесса (операции)

Стандартный комплект документов процесса (операции)

Комплект технологических документов, установленных в соответствии с требованиями стандартов государственной системы стандартизации

Степень детализации описания технологических процессов

12. Маршрутное описание технологического процесса

Маршрутное описание процесса

Ндп. Маршрутное изложение

Сокращенное описание всех технологических операций в маршрутной карте в последовательности их выполнения без указания переходов и технологических режимов

13. Операционное описание технологического процесса

Операционное описание процесса

Ндп. Операционное изложение

Полное описание всех технологических операций в последовательности их выполнения с указанием переходов и технологических режимов

14. Маршрутно-операционное описание технологического процесса

Маршрутно-операционное описание процесса

Ндп. Маршрутно-операционное изложение

Сокращенное описание технологических операций в маршрутной карте в последовательности их выполнения с полным описанием отдельных операций в других технологических документах

ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ И ОПЕРАЦИИ

15. Единичный технологический процесс

Ндп. Специальный технологический процесс

Технологический процесс изготовления или ремонта изделия одного наименования, типоразмера и исполнения, независимо от типа производства

16. Типовой технологический процесс

Технологический процесс изготовления группы изделий с общими конструктивными и технологическими признаками

17. Групповой технологический процесс

Технологический процесс изготовления группы изделий с разными конструктивными, но общими технологическими признаками

18. Типовая технологическая операция

Технологическая операция, характеризуемая единством содержания и последовательности технологических переходов для группы изделий с общими конструктивными и технологическими признаками

19. Групповая технологическая операция

Технологическая операция совместного изготовления группы изделий с разными конструктивными, но общими технологическими признаками

Методы обработки, формообразования, сборки и контроля

Е . Primary forming

F. Formage initial

Изготовление заготовки или изделия из жидких, порошковых или волокновых материалов

Изготовление заготовки или изделия из жидкого материала заполнением им полости заданных форм и размеров с последующим затвердением

Формообразование из порошкового или волокнового материала при помощи заполнения им полости заданных форм и размеров с последующим сжатием

По ГОСТ 17359-82

Действие, направленное на изменение свойств предмета труда при выполнении технологического процесса

25. Черновая обработка

Обработка, в результате которой снимается основная часть припуска

26. Чистовая обработка

Обработка, в результате которой достигаются заданные точность размеров и шероховатость обрабатываемых поверхностей

27. Механическая обработка

Обработка давлением или резанием

28. Раскрой материала

Разделение материала на отдельные заготовки

29. Обработка давлением

Обработка, заключающаяся в пластическом деформировании или разделении материала.

Примечание . Разделение материала происходит давлением без образования стружки

По ГОСТ 18970-84

По ГОСТ 18970-84

32. Поверхностное пластическое деформирование

(Измененная редакция, Изм. № 1).

По ГОСТ 18296-72

33. Обработка резанием

F. Usinage par enlevément de matiére

Обработка, заключающаяся в образовании новых поверхностей отделением поверхностных слоев материала с образованием стружки.

Примечание . Образование поверхностей сопровождается деформированием и разрушением поверхностных слоев материала.

34. Термическая обработка

D. Thermische Behandlung

E. Heat treatent

F. Traitement thermique

Обработка, заключающаяся в изменении структуры и свойств материала заготовки вследствие тепловых воздействий

35. Электрофизическая обработка

D. Elektrophysisches Abtragen

E. Electrophysical machining

F. Usinage électrophysique

Обработка, заключающаяся в изменении формы, размеров и (или) шероховатости поверхности заготовки с применением электрических разрядов, магнитострикционного эффекта, электронного или оптического излучения, плазменной струи

36. Электрохимическая обработка

D. Elektrochemisches Abtragen

E. Electrochemical machining

F. Usinage électrochimique

Обработка, заключающаяся в изменении формы, размеров и (или) шероховатости поверхности заготовки вследствие растворения ее материала в электролите под действием электрического тока

Формообразование из жидкого материала при помощи осаждения металла из раствора под действием электрического тока

38. Слесарная обработка

Обработка, выполняемая ручным инструментом или машиной ручного действия

Образование соединений составных частей изделия.

Примечания : 1. Примером видов сборки является клепка, сварка заготовок и т.д.

2. Соединение может быть разъемным или неразъемным

Основные понятия и определения — Лекционный курс по дисциплине Естествознание

Кибернетика определяется как наука, изучающая законы управления сложными системами. В дословном переводе с древнегреческого слово кибернетика означает «управление кораблём». Кибернетика возникла в результате бурного развития техники и появления очень сложных технических устройств (авианосцев, подводных лодок, ракет и т.д.) и электроники в середине ХХ столетия. Учёные, которые начали разрабатывать системы управления этими устройствами, заметили, что задачи управления, сформулированные на математическом языке, оказались практически идентичными как в случае описания систем управления сложными техническими системами, так и систем самоуправления живых организмов.

Первым научным трудом, в котором наиболее чётко были сформулированы принципы новой науки, была вышедшая в 1948 г. на английском языке книга американского математика Норберта Винера (1894 – 1964) «Кибернетика или управление и связь в животном и машине» .

Поскольку кибернетика тесно связана со сложными системами, многие из решаемых ею задач, оказались общими с общей теорией систем (ОТС). По мере развития обе теории настолько переплелись, что сегодня трудно указать границу между ними. Специалист в области биологической кибернетики А.Б.Коган считает, что ОТС является одним из разделов кибернетики, причём имеющим особо важное значение . В то же время специалист в области системных исследований М.И. Сетров приводит высказывание, в котором Л. Берталанфи называет кибернетику составной частью ОТС . Скорее всего, оба эти направления сегодня представляют одно целое, в котором они удачно дополняют друг друга и решают общие задачи.

Центральным понятием кибернетики, как и в ОТС, является понятие системы, которая в данном случае называется кибернетической. Под системой понимается объект, которым необходимо управлять. Здесь можно сразу отметить принципиальную разницу между кибернетикой и ОТС. Особенность кибернетического подхода состоит в том, что кибернетика не занимается анализом происхождения и внутреннего устройства систем. А в ОТС эти вопросы являются чуть ли не первостепенными. Кибернетика, как бы учитывая выводы ОТС о непреодолимой сложности внутреннего строения больших систем, не берётся за решение этой проблемы.


Кибернетическая система считается заданной, если указаны её параметры, воздействие на которые позволяет осуществлять управление, и параметры, по которым определяется эффективность управления. Первые принято называть входами системы и обозначать х1, х2, … хn. Вторые называются выходами системы и обозначаются у1, у2, … уm ( рис.8.1).

Выходные характеристики системы являются результатом преобразования входных воздействий внутри системы. Как это происходит, как связаны и взаимодействуют составные части (подсистемы: S1, S2, S3), кибернетику не интересует. Задачей – определить, как должны изменяться х1, х2, х3, чтобы у1, и у2 находились в заданных пределах?

Заданные значения выходов называются целью управления. Пока не найдены значения входов, соответствующие достижению цели, система называется чёрным ящиком. Если же необходимые соотношения между входами и выходами найдено, система называется белым ящиком.

Можно изготовить реальную материальную систему, соответствующую абстрактному изображению на рис.8.1. Такой моделью может быть ящик с тремя выключателями в качестве входов и двумя лампочками в качестве выходов. Тогда схема управления (белый ящик) может быть найдена путём перебора всех вариантов положений выключателей с одновременным определением вариантов включённых лампочек. Результат такого поиска может иметь вид табл. 8.1.

Пример возможного соотношения входов и выходов
кибернетической системы рис.8.1

Варианты включённых выключателей

Варианты
загоревшихся лампочек

Из этой таблицы следует, что если, например, целью управления является поддержание горящими первой и второй лампочек одновременно, то достаточно держать включенными либо только один первый, либо все три выключателя вместе.

Рассмотрим другой пример, когда имеющийся один выходной параметр представляет собой непрерывно меняющуюся количественную физическую характеристику (мощность излучения лампочки). Входом также является меняющийся физический параметр (угол поворота рукоятки). Тогда система управления может быть изображена в виде математической функции у=f(х) (рис.8.2)

В этом случае, если цель управления определена как необходимость удерживать мощность излучения в интервале 3, то из графика функции у=f(х) следует, что х должен поддерживаться либо в пределах интервала 1, либо находиться в интервале 2.

В некоторых случаях может оказаться полезным рассмотреть в качестве чёрных ящиков подсистемы S1, S2, S3. Но чаще полезна обратная процедура, когда управляемых систем много, то целесообразно рассматривать их как одну систему, поскольку основной задачей кибернетического подхода является нахождение наиболее простых способов описания систем и их поведения.

Если все входы находятся под контролем управляющей системы, то проблем с управлением не возникает за исключением начального этапа, пока не найден белый ящик. Этот этап тоже может создать проблему в случае большого количества входов, поскольку возникает уже обсуждённый в гл. 6 вопрос о числе вариантов комбинаций. Тем не менее, системы с полностью контролируемыми входами не считаются предметами особого внимания в кибернетике.

Для истинно кибернетических систем характерно то, что не все их входы являются контролируемыми, т.е. выходы меняются и под действием не контролируемых входов. В этом случае невозможно пользоваться заранее определённым планом управления. Решения по воздействию на контролируемые входы приходится принимать непосредственно в процессе работы системы. Это можно делать, только получая непрерывную информацию о состоянии выходов. Такое управление, когда изменение входов зависит от изменения выходов, получило название «управление с обратной связью».

В системах с обратной связью, как правило, выделяется часть (управляющая подсистема), задачей которой является приём сигналов о состоянии выходов, сравнение этих состояний с целью управления и посылка сигналов, которые корректируют входные воздействия (рис. 8.3).

Обратные связи бывают положительные и отрицательные. Положительная обратная связь так действует на вход, что начавшееся изменение выходных характеристик начинает происходить ещё быстрее в том же направлении. Отрицательная обратная связь, наоборот, при отклонении выходных характеристик от заданных значений так воздействует на вход, что начавшееся изменение выхода затормаживается и меняется на противоположное. Система возвращается в исходное состояние.

Основная стратегия поведения сложных технических и самоорганизующихся (биологических) систем заключается в сохранении своих характеристик в заданных пределах. Поэтому в этих системах чаще используются отрицательные обратные связи. Например, холодильник или термостат должен поддерживать строго определённую температуру и в случае отклонения её в сторону увеличения или уменьшения возвращать в прежнее состояние. Другим примером является самолёт, летящий на автопилоте. Направление его движения может измениться под действием ветра, дождя, облаков. Это отклонение будет зафиксировано управляющей системой, которая посылкой сигналов к регулировочным механизмам вернёт самолёт на прежний курс.

Системы, которые при возмущающих воздействиях среды эффективно поддерживают постоянными свои параметры, получили название гомеостатических. Устойчивое состояние таких систем называется гомеостазом.

Системы с положительной обратной связью используются реже, обычно в тех случаях, когда согласно задаче управления требуется ускорить начавшееся изменение и быстро его закончить. Примером такого процесса являются автокаталитические химические реакции. Автокатализ означает, что в результате преобразования данного вещества, образуется продукт, ускоряющий это преобразование. И чем быстрее идёт реакция, тем больше образуется катализатора, процесс ускоряется ещё сильнее. Такие процессы носят взрывной характер и часто приводят к катастрофическим явлениям. Системы резко переходят из одного состояния в другое. К таким явлениям можно отнести снежные лавины, когда случайно появившиеся небольшие комки увеличиваются в размерах и усиливают срывающее воздействие на остальную массу снега. Появляется ещё больше комьев, причём более крупных. При атомном взрыве первоначально появившееся небольшое количество нейтронов разбивает атомы урана с высвобождением ещё большего количества нейтронов и т.д.

На основании сказанного можно заключить, что кибернетика, имея много общего с ОТС, решает несколько более узкую задачу изучения систем управления, не рассматривая физические принципы их организации. Это подтверждают и слова У.Р. Эшби, который в своей книге «Введение в кибернетику» пишет: «Во всей нашей книге принимается, что внешние соображения уже определили цель, т.е. допустимые состояния … нас занимает лишь проблема того, как достичь этой цели, несмотря на помехи и трудности» . Может возникнуть вопрос: «Что означают слова «внешние соображения»? Для человека, незнакомого с принципами кибернетики, ответ может быть обескураживающим. Эти слова могут означать что угодно, что Вас больше устраивает, кибернетику это не интересует. Это означает, что тот, кто занимается управлением, может не знать, откуда и как появилась управляемая система и кто задал цель её управления. В биологии, в естествознании или в ОТС эти слова могут означать «природа».

ГОСТ 27.002-89 Надежность в технике. Основные понятия. Термины и определения

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

НАДЕЖНОСТЬ В ТЕХНИКЕ

ОСНОВНЫЕ ПОНЯТИЯ.
ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО УПРАВЛЕНИЮ
КАЧЕСТВОМ ПРОДУКЦИИ И СТАНДАРТАМ

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

НАДЕЖНОСТЬ В ТЕХНИКЕ

Основные понятия.
Термины
и определения

Industrial product dependability.
General concepts Terms and definitions

Настоящий стандарт устанавливает основные понятия, термины и определения понятий в области надежности.

Настоящий стандарт распространяется на технические объекты (далее — объекты).

Термины, устанавливаемые настоящим стандартом, обязательны для применения во всех видах документации и литературы, входящих в сферу действия стандартизации или использующих результаты этой деятельности.

Настоящий стандарт должен применяться совместно с ГОСТ 18322.

1. Стандартизованные термины с определениями приведены в табл. 1.

2. Для каждого понятия установлен один стандартизованный термин.

Применение терминов-синонимов стандартизованного термина не допускается.

2.1. Для отдельных стандартизованных терминов в табл. 1 приведены в качестве справочных краткие формы, которые разрешается применять в случаях, исключающих возможность их различного толкования.

2.2. Приведенные определения можно при необходимости изменять, вводя в них производные признаки, раскрывая значение используемых в них терминов, указывая объекты, входящие в объем определяемого понятия. Изменения не должны нарушать объем и содержание понятий, определенных в данном стандарте.

2.3. В случаях, когда в термине содержатся все необходимые и достаточные признаки понятия, определение не приведено и в графе «Определение» поставлен прочерк.

Каждый электрик должен знать:  Замена УЗО 50 А на 63 А

2.4. В табл. 1 в качестве справочных приведены эквиваленты стандартизованных терминов на английском языке.

3. Алфавитные указатели содержащихся в стандарте терминов на русском языке и их английских эквивалентов приведены в табл. 2-3.

4. Стандартизованные термины набраны полужирным шрифтом, их краткая форма — светлым.

5. В приложении даны пояснения к терминам, приведенным в настоящем стандарте.

1. ОБЩИЕ ПОНЯТИЯ

Свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, хранения и транспортирования.

Примечани е. Надежность является комплексным свойством, которое в зависимости от назначения объекта и условий его применения может включать безотказность, долговечность, ремонтопригодность и сохраняемость или определенные сочетания этих свойств

Reliability, failure-free operation

Свойство объекта непрерывно сохранять работоспособное состояние в течение некоторого времени или наработки

Свойство объекта сохранять работоспособное состояние до наступления предельного состояния при установленной системе технического обслуживания и ремонта

Свойство объекта, заключающееся в приспособленности к поддержанию и восстановлению работоспособного состояния путем технического обслуживания и ремонта

Свойство объекта сохранять в заданных пределах значения параметров, характеризующих способности объекта выполнять требуемые функции, в течение и после хранения и (или) транспортирования

2.1. Исправное состояние

Состояние объекта, при котором он соответствует всем требованиям нормативно-технической и (или) конструкторской (проектной) документации

2.2. Неисправное состояние

Fault , faulty state

Состояние объекта, при котором он не соответствует хотя бы одному из требований нормативно-технической и (или) конструкторской (проектной) документации

2.3. Работоспособное состояние

Состояние объекта, при котором значения всех параметров, характеризующих способность выполнять заданные функции, соответствуют требованиям нормативно-технической и (или) конструкторской (проектной) документации

2.4. Неработоспособное состояние

Состояние объекта, при котором значение хотя бы одного параметра, характеризующего способность выполнять заданные функции, не соответствует требованиям нормативно-технической и (или) конструкторской (проектной) документации.

Примечани е. Для сложных объектов возможно деление их неработоспособных состояний. При этом из множества неработоспособных состояний выделяют частично неработоспособные состояния, при которых объект способен частично выполнять требуемые функции

2.5. Предельное состояние

Состояние объекта, при котором его дальнейшая эксплуатация недопустима или нецелесообразна, либо восстановление его работоспособного состояния невозможно или нецелесообразно

2.6. Критерий предельного состояния

Limiting state criterion

Признак или совокупность признаков предельного состояния объекта, установленные нормативно-технической и (или) конструкторской (проектной) документацией.

Примечани е. В зависимости от условий эксплуатации для одного и того же объекта могут быть установлены два и более критериев предельного состояния

3. ДЕФЕКТЫ, ПОВРЕЖДЕНИЯ, ОТКАЗЫ

Событие, заключающееся в нарушении исправного состояния объекта при сохранении работоспособного состояния

Событие, заключающееся в нарушении работоспособного состояния объекта

Признак или совокупность признаков нарушения работоспособного состояния объекта, установленные в нормативно-технической и (или) конструкторской (проектной) документации

Явления, процессы, события и состояния, вызвавшие возникновение отказа объекта

3.6. Последствия отказа

Явления, процессы, события и состояния, обусловленные возникновением отказа объекта

3.7. Критичность отказа

Совокупность признаков, характеризующих последствия отказа.

Примечани е. Классификация отказов по критичности (например по уровню прямых и косвенных потерь, связанных с наступлением отказа, или по трудоемкости восстановления после отказа) устанавливается нормативно-технической и (или) конструкторской (проектной) документацией по согласованию с заказчиком на основании технико-экономических соображений и соображений безопасности

Отказ, в результате которого объект достигает предельного состояния

3.9. Независимый отказ

Отказ, не обусловленный другими отказами

3.10. Зависимый отказ

Отказ, обусловленный другими отказами

3.11. Внезапный отказ

Отказ, характеризующийся скачкообразным изменением значений одного или нескольких параметров объекта

3.12. Постепенный отказ

Отказ, возникающий в результате постепенного изменения значений одного или нескольких параметров объекта

Самоустраняющийся отказ или однократный отказ, устраняемый незначительным вмешательством оператора

3.14. Перемежающийся отказ

Многократно возникающий самоустраняющийся отказ одного и того же характера

Отказ, обнаруживаемый визуально ила штатными методами и средствами контроля и диагностирования при подготовке объекта к применению или в процессе его применения по назначению

Отказ, не обнаруживаемый визуально или штатными методами и средствами контроля и диагностирования, но выявляемый при проведении технического обслуживания или специальными методами диагностики

3.17. Конструктивный отказ

Отказ, возникший по причине, связанной с несовершенством или нарушением установленных правил и (или) норм проектирования и конструирования

3.18. Производственный отказ

Отказ, возникший по причине, связанной с несовершенством или нарушением установленного процесса изготовления или ремонта, выполняемого на ремонтном предприятии

3.19. Эксплуатационный отказ

Misuse failure, mishandling failure

Отказ, возникший по причине, связанной с нарушением установленных правил и (или) условий эксплуатации

3.20. Деградационный отказ

Wear-out failure, ageing failure

Отказ, обусловленный естественными процессами старения, изнашивания, коррозии и усталости при соблюдении всех установленных правил и (или) норм проектирования, изготовления в эксплуатации

4. ВРЕМЕННЫЕ ПОНЯТИЯ

Продолжительность или объем работы объекта.

Примечани е. Наработка может быть как непрерывной величиной (продолжительность работы в часах, километраж пробега и т. п.), так и целочисленной величиной (число рабочих циклов, запусков и т. п.).

Operating time to failure

Наработка объекта от начала эксплуатации до возникновения первого отказа

4.3. Наработка между отказами

Operating time between failures

Наработка объекта от окончания восстановления его работоспособного состояния после отказа до возникновения следующего отказа

4.4. Время восстановления

Продолжительность восстановления работоспособного состояния объекта

Useful life, life

Суммарная наработка объекта от начала его эксплуатации или ее возобновления после ремонта до перехода в предельное состояние

Useful lifetime, lifetime

Календарная продолжительность эксплуатации от начала эксплуатации объекта или ее возобновления после ремонта до перехода в предельное состояние

4.7. Срок сохраняемости

Storability time, shelf life

Календарная продолжительность хранения и (или) транспортирования объекта, в течение которой сохраняются в заданных пределах значения параметров, характеризующих способность объекта выполнять заданные функции.

Примечани е. По истечении срока сохраняемости объект должен соответствовать требованиям безотказности, долговечности и ремонтопригодности, установленным нормативно-технической документацией на объект

4.8. Остаточный ресурс

Суммарная наработка объекта от момента контроля его технического состояния до перехода в предельное состояние.

Примечани е. Аналогично вводятся понятия остаточной наработки до отказа, остаточного срока службы и остаточного срока хранения

4.9. Назначенный ресурс

Assigned operating time

Суммарная наработка, при достижении которой эксплуатация объекта должна быть прекращена независимо от его технического состояния

4.10. Назначенный срок службы

Календарная продолжительность эксплуатации, при достижении которой эксплуатация объекта должна быть прекращена независимо от его технического состояния

4.11. Назначенный срок хранения

Assigned storage time

Календарная продолжительность хранения, при достижении которой хранение объекта должно быть прекращено независимо от его технического состояния.

Примечани е к терминам 4.9.-4.11. По истечении назначенного ресурса (срока службы, срока хранения) объект должен быть изъят из эксплуатации и должно быть принято решение, предусмотренное соответствующей нормативно-технической документацией — направление в ремонт, списание, уничтожение, проверка и установление нового назначенного срока и т. д.

5. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ И РЕМОНТ

5.1. Техническое обслуживание

Процесс перевода объекта в работоспособное состояние из неработоспособного состояния

5.4. Обслуживаемый объект

Объект, для которого проведение технического обслуживания предусмотрело нормативно-технической документацией и (или) конструкторской (проси нон) документацией

5.5 Необслуживаемый объект

Объект, для которого проведение технического обслуживания не предусмотрено нормативно-технической и (или) конструкторской (проектной) документацией

5.6. Восстанавливаемый объект

Объект, для которого в рассматриваемой ситуации проведение восстановления работоспособного состояния предусмотрено в нормативно-технической и (или) конструкторской (проектной)) документации

5.7. Невосстанавливаемый объект

Объект, для которого в рассматриваемой ситуации проведение восстановления работоспособного состояния не предусмотрено в нормативно-технической и (или) конструкторской (проектной) документации

5.8. Ремонтируемый объект

Объект, ремонт которого возможен и предусмотрен нормативно-технической, ремонтной и (или) конструкторской (проектной) документацией

5.9. Неремонтируемый объект

Объект, ремонт которого не возможен или не предусмотрен нормативно-технической, ремонтной и (или) конструкторской (проектной) документацией

6. ПОКАЗАТЕЛИ НАДЕЖНОСТИ

6.1. Показатель надежности

Количественная характеристика одного или нескольких свойств, составляющих надежность объекта

6.2. Единичный показатель надежности

Simple reliability measure

Показатель надежности, характеризующий одно из свойств, составляющих надежность объекта

6.3. Комплексный показатель надежности

Integrated reliability measure

Показатель надежности, характеризующий несколько свойств, составляющих надежность объекта

6.4. Расчетный показатель надежности

Predicted reliability measure

Показатель надежности, значения которого определяются расчетным методом

6.5. Экспериментальный показатель надежности

Assessed reliability measure

Показатель надежности, точечная или интервальная оценка которого определяется по данным испытаний

6.6. Эксплуатационный показатель надежности

Observed reliability measure

Показатель надежности, точечная или интервальная оценка которого определяется по данным эксплуатации

6.7. Экстраполированный показатель надежности

Extrapolated reliability measure

Показатель надежности, точечная или интервальная оценка которого определяется на основании результатов расчетов, испытаний и (или) эксплуатационных данных путем экстраполирования на другую продолжительность эксплуатации и другие условия эксплуатации

6.8. Вероятность безотказная работы

Reliability function, survival function

Вероятность того, что в пределах заданной наработки отказ объекта не возникнет

6.9. Гамма-процентная наработка до отказа

Gamma-percentile operating time to failure

Наработка, в течение которой отказ объекта не возникнет с вероятностью g , выраженной в процентах

6.10 Средняя наработка до отказа

Mean operating time to failure

Математическое ожидание наработки объекта до первого отказа

6.11. Средняя наработка на отказ

Mean operating time between failures

Отношение суммарной наработки восстанавливаемого объекта к математическому ожиданию числа его отказов в течение этой наработки

6.12. Интенсивность отказов

Условная плотность вероятности возникновения отказа объекта, определяемая при условии, что до рассматриваемого момента времени отказ не возник

6.13. Параметр потока отказов

Отношение математического ожидания числа отказов восстанавливаемого объекта за достаточно малую его наработку к значению этой наработки

6.14. Осредненный параметр потока отказов

Mean failure intensity

Отношение математического ожидания числа отказов восстанавливаемого объекта за конечную наработку к значению этой наработки.

Примечани е к терминам 6.8-6.14. Все показатели безотказности (как приводимые ниже другие показатели надежности) определены как вероятностные характеристики. Их статистические аналоги определяют методами математической статистики

6.15. Гамма-процентный ресурс

Суммарная наработка, в течение которой объект не достигнет предельного состояния с вероятностью g , выраженной в процентах

Mean life, mean useful life

Математическое ожидание ресурса

6.17. Гамма-процентный срок службы

Календарная продолжительность эксплуатации, в течение которой объект не достигнет предельного состояния с вероятностью g , выраженной в процентах

6.18. Средний срок службы

Математическое ожидание срока службы.

Примечани е к терминам 6.15-6.18. При использовании показателей долговечности следует указывать начало отсчета и вид действий после наступления предельного состояния (например гамма-процентный ресурс от второго капитального ремонта до списания). Показатели долговечности, отсчитываемые от ввода объекта в эксплуатацию до окончательного снятия с эксплуатации, называются гамма-процентный полный ресурс (срок службы), средний полный ресурс (срок службы)

6.19. Вероятность восстановления

Probability of restoration, maintainability function

Вероятность того, что время восстановления работоспособного состояния объекта не превысит заданное значение

6.20. Гамма-процентное время восстановления

Gamma-percentile restoration time

Время, в течение которого восстановление работоспособности объекта будет осуществлено с вероятностью g , выраженной в процентах

6.21. Среднее время восстановления

Mean restoration time

Математическое ожидание времени восстановления работоспособного состояния объекта после отказа

6.22. Интенсивность восстановления

(Instantaneous) restoration rate

Условная плотность вероятности восстановления работоспособного состояния объекта, определенная для рассматриваемого момента времени при условии, что до этого момента восстановление не было завершено

6.23. Средняя трудоемкость восстановления

Mean restoration man-hours, mean maintenance man-hours

Математическое ожидание трудоемкости восстановления объекта после отказа.

Примечани е к терминам 6.19-6.23. Затраты времени и труда на проведение технического обслуживания и ремонтов с учетом конструктивных особенностей объекта, его технического состояния и условий эксплуатации характеризуются оперативными показателями ремонтопригодности

6.24. Гамма-процентный срок сохраняемости

Gamma-percentile storage time

Срок сохраняемости, достигаемый объектом с заданной вероятностью у, выраженной в процентах

6.25. Средний срок сохраняемости

Mean storage time

Математическое ожидание срока сохраняемости

КОМПЛЕКСНЫЕ ПОКАЗАТЕЛИ НАДЕЖНОСТИ

6.26. Коэффициент готовности

(Instantaneous) availability function


Вероятность того, что объект окажется в работоспособном состоянии в произвольный момент времени, кроме планируемых периодов, в течение которых применение объекта по назначению не предусматривается

6.27. Коэффициент оперативной готовности

Operational availability function

Вероятность того, что объект окажется в работоспособном состоянии в произвольный момент времени, кроме планируемых периодов, в течение которых применение объекта по назначению не предусматривается, и, начиная с этого момента, будет работать безотказно в течение заданного интервала времени

6.28. Коэффициент технического использования

Steady state availability factor

Отношение математического ожидания суммарного времени пребывания объекта в работоспособном состоянии за некоторый период эксплуатации к математическому ожиданию суммарного времени пребывания объекта в работоспособном состоянии и простоев, обусловленных техническим обслуживанием и ремонтом за тот же период

6.29. Коэффициент сохранения эффективности

Отношение значения показателя эффективности использования объекта по назначению за определенную продолжительность эксплуатации к номинальному значению этого показателя, вычисленному при условии, что отказы объекта в течение тою же периода не возникают

Способ обеспечения надежности объекта за счет использования дополнительных средств и (или) возможностей, избыточных по отношению к минимально необходимым для выполнения требуемых функции

Совокупность дополнительных средств и (или) возможностей, используемых для резервирования

7.3. Основной элемент

Элемент объекта, необходимый для выполнения требуемых функций без использования резерва

7.4. Резервируемый элемент

Element under redundancy

Основной элемент, на случай отказа которого в объекте предусмотрены одни или несколько резервных элементов

Элемент, предназначенный для выполнения функции основного элемента в случае отказа последнего

7.6. Кратность резерва

Отношение числа резервных элементов к числу резервируемых ими элементов, выраженное носок ращенной дробью

Резервирование с кратностью резерва один к одному

7.8. Нагруженный резерв

Active reserve, loaded reserve

Резерв, который содержит один или несколько резервных элементов, находящихся в режиме основного элемента

7.9. Облегченный резерв

Резерв, который содержит один пли несколько резервных элементов, находящихся в менее нагруженном режиме, чем основной элемент

7.10. Ненагруженный резерв

Standby reserve, unloaded reserve

Резерв, который содержит один или несколько резервных элементов, находящихся в ненагруженном режиме до начала выполнения ими функции основного элемента

7.11. Общее резервирование

Whole system redundancy

Резервирование, при котором резервируется объект в целом

7.12. Раздельное резервирование

Резервирование, при котором резервируются отдельные элементы объекта или их группы

7.13. Постоянное резервирование

Резервирование, при котором используется нагруженный резерв и при отказе любого элемента в резервированной группе выполнение объектом требуемых функций обеспечивается оставшимися элементами без переключений

7.14. Резервирование замещением

Резервирование, при котором функции основного элемента передаются резервному только после отказа основного элемента

7.15. Скользящее резервирование

Резервирование замещением, при котором группа основных элементов резервируется одним или несколькими резервными элементами, каждый аз которых может заменить любой из отказавших элементов данной группы

7.16. Смешанное резервирование

Сочетание различных видов резервирования в одном и том же объекте

7.17. Резервирование с восстановлением

Redundancy with restoration

Резервирование, при котором восстановление отказавших основных и (или) резервных элементов технически возможно без нарушения работоспособности объекта в целом и предусмотрено эксплуатационной документацией

7.18. Резервирование без восстановления

Redundancy without restoration

Резервирование, при котором восстановление отказавших основных и (или) резервных элементов технически невозможно без нарушения работоспособности объекта в целом и (или) не предусмотрено эксплуатационной документацией

7.19. Вероятность успешного перехода на резерв

Probability of successful redundancy

Вероятность того, что переход на резерв произойдет без отказа объекта, т. е. произойдет за время, не превышающее допустимого значения перерыва в функционировании и (или) без снижения качества функционирования

8. НОРМИРОВАНИЕ НАДЕЖНОСТИ

8.1. Нормирование надежности

Установление в нормативно-технической документации и (или) конструкторской (проектной) документации количественных и качественных требований к надежности

Примечани е. Нормирование надежности включает выбор номенклатуры нормируемых показателей надежности; технико-экономическое обоснование значений показателей надежности объекта и его составных частей; задание требований к точности и достоверности исходных данных; формулирование критериев отказов, повреждений и предельных состояний; задание требований к методам контроля надежности на всех этапах жизненного цикла объекта

8.2. Нормируемый показатель надежности

Specified reliability measure

Показатель надежности, значение которого регламентировано нормативно-технической и (или) конструкторской (проектной) документацией на объект.

Примечани е. В качестве нормируемых показателей надежности могут быть использованы один или несколько показателей, включенных а настоящий стандарт, в зависимости от назначе ния объекта, степени его ответственности, условий эксплуатации, последствий возможных отказов, ограничений на затраты, а также от соотношения затрат на обеспечение надежности объекта и затрат на его техническое обслужившие и ремонт. По согласованию между заказчиком и разработчиком (изготовителем) допускается нормировать показатели надежности, не включенные в настоящий стандарт, которые не противоречат определениям показателей настоящего стандарта. Значения нормируемых показателей надежности учитывают, в частности, при назначении пены объекта, гарантийного срока и гарантийной наработки

9. ОБЕСПЕЧЕНИЕ, ОПРЕДЕЛЕНИЕ И КОНТРОЛЬ НАДЕЖНОСТИ

9.1. Программа обеспечения надежности

Reliability support programme

Документ, устанавливающий комплекс взаимосвязанных организационно-технических требований и мероприятий, подлежащих проведению на определенных стадиях жизненного цикла объекта и направленных на обеспечение заданных требований к надежности и (или) на повышение надежности

9.2. Определение надежности

Определение численных значений показателей надежности объекта

9.3. Контроль надежности

Проверка соответствия объекта заданным требованиям к надежности

9.4. Расчетный метод определения надежности

Analytical reliability assessment

Метод, основанный на вычислении показателей надежности по справочным данным о надежности компонентов и комплектующих элементов объекта, по данным о надежности объекта, по данным о свойствах материалов и другой информации, имеющейся к моменту оценки надежности

9.5. Расчетно-экспериментальный метод определения надежности

Analytical-experimental reliability assessment

Метод, при котором показатели надежности всех или некоторых составных частей объектов определяют по результатам испытаний и (или) эксплуатации, а показатели надежности объекта в целом рассчитывают по математической модели

9.6. Экспериментальный метод определения надежности

Experimental reliability assessment

Метод, основанный на статистической обработке данных, получаемых при испытаниях или эксплуатации объекта в целом

Примечани е к терминам 9.4-9.6. Аналогично определяют соответствующие методы: контроля надежности

10. ИСПЫТАНИЯ НА НАДЕЖНОСТЬ

10.1. Испытания на надежность

Примечани е. В зависимости от исследуемого свойства различают испытании на безотказность, ремонтопригодность, сохраняемость и долговечность (ресурсные испытания)

10.2. Определительные испытания на надежность

Determinat ion test

Испытания, проводимые для определения показателей надежности с заданными точностью и достоверностью

10.3. Контрольные испытания на надежность

Испытания, проводимые для контроля показателей надежности

10.4. Лабораторные испытания на надежность

Испытания, проводимые в лабораторных или в заводских условиях

10.5. Эксплуатационные испытания на надежность

Испытания, проводимые в условиях эксплуатации объекта

10.6. Нормальные испытания на надежность

Лабораторные (стендовый) испытания, методы и условия проведения которых максимально приближены к эксплуатационным для объекта

10.7. Ускоренные испытания на надежность

Лабораторные (стендовые) испытания, методы и условия проведения которых обеспечивают получение информации о надежности в более короткий срок, чем при нормальных испытаниях

10.8. План испытаний на надежность

Reliability test programme

Совокупность правил, устанавливающих объем выборки, порядок проведения испытаний, критерии их завершения и принятии решений по результатам испытаний

10.9. Объем испытаний на надежность

Scope of reliability

Характеристика плана испытаний на надежность, включающая число испытываемых образцов, суммарную продолжительность испытаний в единицах наработки и числа серий испытаний

Алфавитный указатель терминов на русском языке

Вероятность безотказная работы

Вероятность успешного перехода на резерв

Время восстановления гамма-процентное

Время восстановления среднее

Испытания на надежность

Испытания на надежность контрольные

Испытания на надежность лабораторные

Испытания на надежность нормальные

Испытания на надежность определительные

Испытания на надежность ускоренные

Испытания на надежность эксплуатационные

Коэффициент оперативной готовности

Коэффициент сохранения эффективности

Коэффициент технического использования

Критерий предельного состояния

Метод определения надежности расчетный

Метод определения надежности расчетно-экспериментальный

Метод определения надежности экспериментальный

Наработка до отказа

Наработка до отказа гамма-процентная

Наработка до отказа средняя

Наработка между отказами

Наработка на отказ

Наработка на отказ средняя

Объем испытаний на надежность

Параметр потока отказов

Параметр потока отказов осредненный

План испытаний на надежность

Показатель надежности единичный

Показатель надежности комплексный

Показатель надежности нормируемый

Показатель надежности расчетный

Показатель надежности экспериментальный

Показатель надежности эксплуатационный

Показатель надежности экстраполированный

Программа обеспечения надежности

Резервирование без восстановления

Резервирование с восстановлением

Срок службы гамма-процентный

Срок службы назначенный

Срок службы средний

Срок сохраняемости гамма-процентный

Срок сохраняемости средний

Срок хранения назначенный

Трудоемкость восстановления средняя

Алфавитный указатель терминов на английском языке

Analytical-experimental reliability assessment

Analytical reliability assessment

Assessed reliability measure

Assigned operating time

Assigned storage time

Element under redundancy

Experimental reliability assessment

Extrapolated reliability measure

Failure free operation

Gamma-percentile operating time to failure

Gamma-percentile restoration time

Gamma-percentile storage time

(Instantaneous) availability function

(Instantaneous) restoration rate

Integrated reliability measure

Limiting state criterion

Mean failure intensity

Mean maintenance man-hours

Mean restoration man-hours

Mean operating time between failures

Mean operating time to failure

Mean storage time

Mean restoration time

Mean useful life

Observed reliability measure

Operating time between failures

Operating time to failure

Operational availability function

Predicted reliability measure

Probability of successful redundancy

Probability of restoration

Redundancy without restoration

Redundancy with restoration

Reliability support programme

Reliability test programme

Scope of reliability test

Simple reliability measure

Specified reliability measure

Steady state availability factor

Whole system redundancy

ПОЯСНЕНИЯ К ТЕРМИНАМ, ПРИВЕДЕННЫМ В СТАНДАРТЕ

К термину «Надежность» ( п. 1.1)

Терминология по надежности в технике распространяется на любые технические объекты — изделия, сооружения и системы, а также их подсистемы, рассматриваемые с точки зрения надежности на этапах проектирования, производства, испытании, эксплуатации и ремонта. В качестве подсистем могут рассматриваться сборочные единицы, детали, компоненты или элементы. При необходимости в понятие «объект» могут быть включены информация и ее носители, а также человеческий фактор (например при рассмотрении надежности системы «машина-оператор»). Понятие «эксплуатация» включает в себя, помимо применения по назначению, техническое обслуживание, ремонт, хранение и транспортирование.

Термин «объект» может относиться к конкретному объекту, и к одному из представителей, в частности, к наугад выбранному представителю из серии, партии или статистической выборки однотипных объектов. На стадии разработки термин «объект» применяется к наугад выбранному представителю из генеральной совокупности объектов.

Границ понятия «надежность» не изменяет следующее определение: надежность — свойство объекта сохранять во времени способность к выполнению требуемых функций в заданных режимах и условиях применения, технического обслуживания, хранения и транспортирования.

Это определение применяют тогда, когда параметрическое описание нецелесообразно (например для простейших объектов, работоспособность которых, характеризуется по типу «да-нет») или невозможно (например для систем «машина-оператор», т. е. таких систем, не все свойства которых могут быть характеризованы количественно).

К параметрам, характеризующим способность выполнять требуемые функции, относят кинематические и динамические параметры, показатели конструкционной прочности, показатели точности функционирования, производительности, скорости и т. п. С течением времени значения этих параметров могут изменяться.

Надежность — комплексное свойство, состоящее в общем случае из безотказности, долговечности, ремонтопригодности и сохраняемости. Например для неремонтируемых объектов основным свойством может являться безотказность. Для ремонтируемых объектов одним из важнейших свойств, составляющих понятие надежности, может быть ремонтопригодность.

Для объектов, которые являются потенциальным источником опасности, важными понятиями являются «безопасность» и «живучесть». Безопасность — свойство объекта при изготовлении и эксплуатации и в случае нарушения работоспособного состояния не создавать угрозу для жизни и здоровья людей, а также для окружающей среды. Хотя безопасность не входит в общее понятие надежности, однако при определенных условиях тесно связана с этим понятием, например, если отказы могут привести к условиям, вредным для людей и окружающей среды сверх предельно допустимых норм.

Понятие «живучесть» занимает пограничное место между понятиями «надежность» и «безопасность». Под живучестью понимают свойство объекта, состоящее в его способности противостоять развитию критических отказов из дефектов и повреждений при установленной системе технического обслуживания и ремонта, или свойство объекта сохранять ограниченную работоспособность при воздействиях, не предусмотренных условиями эксплуатации, или свойство объекта сохранять ограниченную работоспособность при наличии дефектов или повреждений определенного вида, а также при отказе некоторых компонентов. Примером служит сохранение несущей способности элементами конструкции при возникновении в них усталостных трещин, размеры которых не превышают заданных значений.

Термин «живучесть» соответствует международному термину fail- safe concept [6]. Для характеристики отказоустойчивости по отношению к человеческим ошибкам в последнее время начали употреблять термин fool- proof concept. В международных документах ИСО, МЭК и ЕОКК [4-6] сочетание свойств безотказности и ремонтопригодности с учетом системы технического обслуживания и ремонта называют готовностью объекта ( availability).

К термину «Безотказность» ( п. 1.2)

Безотказность в той или иной степени свойственна объекту в любом из возможных режимов его существования. В основном безотказность рассматривается применительно к его использованию по назначению, но во многих случаях необходима оценка безотказности при храпении и транспортировании объекта.

Необходимо подчеркнуть, что показатели безотказности ( пп. 6.8-6.14) вводятся либо по отношению ко всем возможным отказам объекта, либо по отношению к какому-либо одному типу (типам) отказа с указанием на критерии отказа (отказов).

К термину «Долговечность» ( п. 1.3)

Объект может перейти в предельное состояние, оставаясь работоспособным, если, например, его дальнейшее применение но назначению станет недопустимым «о требованиям безопасности, экономичности и эффективности.

К термину «Ремонтопригодность» ( п. l.4)

Термин «ремонтопригодность» традиционно трактуется в широком смысле. Этот термин эквивалентен международному термину «приспособленность к поддержанию работоспособного состояния» или, короче, «поддерживаемость» ( maintainability). Помимо ремонтопригодности в узком смысле это понятие включает в себя «обслуживаемость», т. е. приспособленность объекта к техническому обслуживанию, «контролепригодность» и приспособленность к предупреждению и обнаружению отказов и повреждений, а также причин их вызывающих. Более общее понятие «поддерживаемость», «эксплуатационная технологичность» ( maintenance support, supportability) включает в себя ряд технико-экономических и организационных факторов, например качество подготовки обслуживающего персонала.

Допускается дополнительно к термину «ремонтопригодность» (в узком смысле) применять термины «обслуживаемость», «контролепригодность», «приспособленность к диагностированию», «эксплуатационная технологичность» и др.

К терминам «Сохраняемость» и «Срок сохраняемости» ( пп. 1.5; 4.7)

В процессе хранения и транспортирования объекты подвергаются неблагоприятным воздействиям, например колебаниям температуры, действию влажного воздуха, вибрациям и т. п. В результате после хранения и (или) транспортирования объект может оказаться в неработоспособном и даже в предельном состоянии. Сохраняемость объекта характеризуется его способностью противостоять отрицательному влиянию условий и продолжительности его хранения и транспортирования.

В зависимости от условий и режимов применения объекта требования сохраняемости ставят по-разному. Для некоторых классов объектов может быть поставлено требование, чтобы после хранения объект находился в таком же состоянии, что и к моменту начала хранения. В этом случае объект будет удовлетворять требованиям безотказности, долговечности и ремонтопригодности, предъявляемым к объекту к моменту начала хранения. В реальных условиях происходит ухудшение параметров, характеризующих работоспособность объекта, а также снижается его остаточный ресурс. В одних случаях достаточно потребовать, чтобы после хранения и (или) транспортирования объект оставался в работоспособном состоянии. В большинстве других случаев требуется, чтобы объект сохранял достаточный запас работоспособности, т. е. обладал достаточном безотказностью после хранении и (или) транспортирования. В тех случаях, когда предусмотрена специальная подготовка объекта к применению по назначению после хранения и (или) транспортирования, требование о сохранении работоспособности заменяется требованием, чтобы технические параметры объекта, определяющие его безотказность и долговечность, сохранялись в заданных пределах. Очевидно, что все эти случаи охватываются приведенным в стандарта определением понятия сохраняемости.

Требования к показателям безотказности, долговечности и ремонтопригодности для объекта, подвергнутого длительному хранению, должны указываться в техническом задании и в отдельных случаях могут быть снижены относительно уровня требований на новый объект, не находившийся на хранении.

Следует различать сохраняемость объекта до ввода в эксплуатацию и сохраняемость объекта в период эксплуатации (при перерывах в работе). Во втором случае срок сохраняемости входит составной частью в срок службы.

В зависимости от особенностей и назначения объектов срок сохраняемости до ввода объекта в эксплуатацию может включать в себя срок сохраняемости в упаковке и (или) законсервированном виде, срок монтажа и (или) срок хранения на другом упакованном и (или) законсервированном более сложном объекте.

К терминам «Исправное состояние», «Неисправное состояние», «Работоспособное состояние», «Неработоспособное состояние» ( пп. 2.1; 2.2; 2.3; 2.4)

Данные понятия охватывают основные технические состояния объекта. Каждое из них характеризуется совокупностью значений параметров, описывающих состояние объекта, а также качественных признаков, для которых не применяют количественные оценки. Номенклатуру этих параметров и признаков, а также пределы допустимых их изменений устанавливают в нормативно-технической и (или) конструкторской (проектной) документации.

Работоспособный объект в отличие от исправного должен удовлетворять лишь тем требованиям нормативно-технической и (или) конструкторской (проектной) документации, выполнение которых обеспечивает нормальное применение объекта по назначению. Работоспособный объект может быть неисправным, например, если он не удовлетворяет эстетическим требованиям, причем ухудшение внешнего вида объекта не препятствует его применению по назначению.

Для сложных объектов возможны частично неработоспособные состояния, при которых объект способен выполнять требуемые функции с пониженными показателями или способен выполнять лишь часть требуемых функций.

Для некоторых объектов признаками неработоспособного состояния, кроме того, могут быть отклонения показателей качества изготавливаемой ими продукции. Например для некоторых технологических систем к неработоспособному состоянию может быть отнесено такое, при котором значение хотя бы одного параметра качества изготавливаемой продукции не соответствует требованиям нормативно-технической и (или) конструкторской (проектной) и технологической документации.

Переход объекта из одного состояния в другое обычно происходит вследствие повреждения или отказа. Переход объекта из исправного состояния в неисправное работоспособное состояние происходит из-за повреждений.

В международных документах ИСО, МЭК и ЕОКК [5, 6] введена более детальная классификация состояний. Так, в работоспособном состоянии различают «рабочее состояние» ( operating state) и «нерабочее состояние ( non- Operating state), при котором объект не применяется по назначению. «Нерабочее состояние» подразделяют в свою очередь, на состояние дежурства ( standby state) и состояние планового простоя ( idle, free state). Кроме того, различают «внутренне» неработоспособное состояние ( internal disabled state), обусловленное отказом или незавершенностью планового технического обслуживания (ремонта), и внешне неработоспособное состояние ( external disabled state), обусловленное организационными причинами. В отраслевой документации допускается использование более детальной классификации состояний, не противоречащей приведенной в настоящем стандарте.

К терминам «Предельное состояние» и «Критерий предельного состояния» ( пп. 2.5, 2.6)

Переход объекта в предельное состояние влечет за собой временное или окончательное прекращение эксплуатации объекта. При достижении предельного состояния объект должен быть снят с эксплуатации, направлен в средний или капитальный ремонт, списан, уничтожен или передан для применения не по назначению. Если критерий предельного состояния установлен из соображений безопасности хранения и (или) транспортирования объекта, то при наступлении предельного состояния хранение и (или) транспортирование объекта должно быть прекращено. В других случаях при наступлении предельного состояния должно быть прекращено применение объекта по назначению.

Для неремонтируемых объектов имеет место предельное состояние двух видов . Первый вид совпадает с неработоспособным состоянием. Второй вид предельного состояния обусловлен тем обстоятельством, что начиная с некоторого момента времени дальнейшая эксплуатация еще работоспособного объекта оказывается недопустимой в связи с опасностью или вредностью эксплуатации. Переход неремонтируемого объекта в предельное состояние второго вида происходит до потери объектом работоспособности.


Для ремонтируемых объектов выделяют два или более видов предельных состояний. Например для двух видов предельных состояний требуется отправка объекта в средний или капитальный ремонт, т. е. временное прекращение применения объекта по назначению. Третий вид предельного состояния предполагает, окончательное прекращение применения объекта по назначению. Критерии предельного состояния каждого вида устанавливаются нормативно-технической и (или) конструкторской (проектной) и (или) эксплуатационной документацией.

К терминам «Отказ», «Критерий отказа» ( пп. 3.3, 3.4)

Если работоспособность объекта характеризуют совокупностью значений некоторых технических параметров, то признаком возникновения отказа является выход значении любого из этих параметров за пределы допусков. Кроме того в критерии отказов могут входить также качественные признаки, указывающие на нарушение нормальной работы объекта.

Критерии отказов следует отличать от критериев повреждений. Под критериями повреждений понимают признаки или совокупность признаков неисправного, но работоспособного состояния объекта.

К термину «Критичность отказа» ( п. 3.7)

Понятие критичности отказа введено для того, чтобы проводить классификацию отказов по их последствиям. Подобная классификация содержится в международных документах ИСО, МЭК и ЕОКК, а также в некоторых отраслевых отечественных документах, например в нормативно-технической документации на объекты сельскохозяйственного машиностроения. Критерием для классификации могут служить прямые и косвенные потери, вызванные отказами, затраты труда и времени на устранение последствий отказов, возможность и целесообразность ремонта силами потребителя или необходимость ремонта изготовителем или третьей стороной, продолжительность простоев из-за возникновения отказов, степень снижения производительности при отказе, приводящем к частично неработоспособному состоянию и т. п. Классификация отказов по последствиям устанавливается по согласованию между заказчиком и разработчиком (изготовителем). Для простых объектов эта классификация не используется.

При классификации отказов по последствиям могут быть введены две, три и большее число категорий отказов. В международных документах ИСО, МЭК, ЕОКК различают критические ( critical) и некритические ( non- critical). Последние подразделяют на существенные ( major) и несущественные ( miner) отказы. Границы между категориями отказов достаточно условны.

Отказ одного и того же объекта может трактоваться как критический; существенный или несущественный в зависимости от того, рассматривается объект как таковой или он является составной частью другого объекта. Несущественный отказ объекта, входящего в состав более ответственного объекта, может рассматриваться как существенный и даже критический в зависимости от последствий отказа сложного объекта. Для проведения классификации отказов по последствиям необходим анализ критериев, причин и последствий отказов и построение логической и функциональной связи между отказами.

Классификация отказов по последствиям необходима при нормировании надежности (в частности, для обоснованного выбора номенклатуры и численных значений нормируемых показателей надежности), а также при установлении гарантийных обязательств.

К терминам «Внезапный отказ» и «Постепенный отказ» ( пп. 3.1, 3.12)

Эти термины позволяют разделять отказы на две категория в зависимости от возможности прогнозировать момент наступления отказа. В отличие от внезапного отказа, наступлению постепенного отказа предшествует непрерывное и монотонное изменение одного или нескольких параметров, характеризующих способность объекта выполнять заданные функции. Ввиду этого удается предупредить наступление отказа и (или) принять меры по устранению (локализации) его нежелательных последствий.

Четкой границы между внезапными и постепенными отказами однако, провести не удается. Механические, физические и химические процессы, которые составляют причины отказов, как правило, протекают во времени достаточно медленно. Так, усталостная трещина в стенке трубопровода или сосуда давления, зародившаяся из трещинообразного дефекта, медленно растет в процессе эксплуатации; этот рост в принципе может быть прослежен средствами неразрушающего контроля. Однако собственно отказ (наступление течи) происходит внезапно. Если по каким-либо причинам своевременное обнаружение несквозной трещины оказалось невозможным, то отказ придется признать внезапным.

По мере совершенствования расчетных методов и средств контрольно измерительной техники, позволяющих своевременно обнаруживать источники возможных отказов и прогнозировать их развитие во времени, все большее число отказов будет относиться к категории постепенных.

В документе [6] дано следующее, определение внезапного отказа: это отказ, наступление которого не может быть предсказано предварительным контролем или диагностированием.

К термину «Сбой» ( п. 3.13)

Отличительным признаком сбоя является то, что восстановление работоспособного состояния объекта может быть обеспечено без ремонта, например, путем воздействия оператора на органы управления, устранением обрыва нити, магнитной ленты и т. п., коррекцией положения заготовки.

Характерным примером сбоя служит остановка ЭВМ, устраняемая повторным пуском программы с места останова или ее перезапуском сначала.

К терминам «Конструктивный отказ», «Производственный отказ», «Эксплуатационный отказ» ( пп. 3.17, 3.18, 3.19)

Классификация отказов по причинам возникновения введена с целью установления, на какой стадии создания или существования объекта следует провести мероприятия для устранения причин отказов.

Допускается выделить отказы комплектующих изделий, изготовляемых не на том предприятии, где производится объект в целом. Отказы комплектующих элементов также могут быть конструктивными, производственными и эксплуатационными. Классификация не является исчерпывающей, поскольку возможно возникновение отказов, вызванных двумя или тремя причинами.

К термину «Деградационный отказ» ( п. 3.20)

При анализе надежности различают ранние отказы, когда проявляется влияние дефектов, не обнаруженных в процессе изготовления, испытаний и (или) приемочного контроля, и поздние, деградационных отказы. Последние происходят на заключительной стадии эксплуатации объекта, когда вследствие естественных процессов старения, изнашивания и т. п. объект или его составные части приближаются к предельному состоянию по условиям физического износа. Вероятность возникновения деградационных отказов в пределах планируемого полного или межремонтного срока службы (ресурса) должна быть достаточно мала. Это обеспечивается расчетом на долговечность с учетом физической природы деградационных отказов, а также надлежащей системой технического обслуживания и ремонта.

В принципе можно практически исключить возникновение ранних отказов, если до передачи объекта в эксплуатацию провести приработку, обкатку, технологический прогон и т. п. При этом соответственно может варьироваться цена объекта.

К термину «Наработка» ( п. 4.1)

Наработку объекта, работающего непрерывно можно измерять в единицах календарного времени. Если объект работает с перерывами, то различают непрерывную и суммарную наработку. В этом случае наработку также можно измерять в единицах времени. Для многих объектов физическое изнашивание связано не только с календарной продолжительностью эксплуатации, но с объемом работы объекта, и поэтому зависит от интенсивности применения объекта по назначению. Для таких объектов наработку обычно выражают через объем произведенной работы или число рабочих циклов.

Если трактовать понятие «время» в обобщенном смысле — как параметр, служащий для описания последовательности событий и смены состояний, то принципиальная разница между наработкой и временем отсутствует даже в том случае, когда наработка является целочисленной величиной (например календарное время тоже отсчитывают в днях, месяцах и т. п.). Поэтому наработка и родственные ей величины (ресурс, остаточный ресурс) отнесены к категории временных понятий.

В международных документах [5, 6] введена детальная классификация временных понятий, относящихся к наработке: требуемая наработка ( required time), продолжительность планового простоя ( non- required time), продолжительность планового простоя работоспособного объекта ( idle time) и т. д.

К терминам «Наработка до отказа», «Наработка между отказами», «Время восстановления», «Ресурс», «Срок службы», «Срок сохраняемости», «Остаточный ресурс» ( п. 4.2-4.8)

Перечисленные понятия относятся к конкретно взятому индивидуальному объекту. Имеется важное различие между величинами, определяемыми этими понятиями, и большинством величин, характеризующих механические, физические и другие свойства индивидуального объекта. Например, геометрические размеры, масса, температура, скорость и т. д. могут быть измерены непосредственно (в принципе — в любой момент времени существования объекта). Наработка индивидуального объекта до первого отказа, его наработка между отказами, ресурс и т. п. могут быть определены лишь после того, как наступил отказ или было достигнуто предельное состояние. Пока эти события не наступили, можно говорить лишь о прогнозировании этих величин с большей или меньшей достоверностью.

Ситуация осложнена из-за того, что безотказная наработка, ресурс, срок службы и срок сохраняемости зависят от большого числа факторов, часть которых не может быть проконтролирована, а остальные заданы с той или иной степенью неопределенности. Безотказная работа конкретно взятого индивидуального объекта зависит от качества сырья, материалов, заготовок и полуфабрикатов, от достигнутого уровня технологии и степени стабильности технологического процесса, от уровня технологической дисциплины, от выполнения всех требований по хранению, транспортированию и применению объекта по назначению. Многие объекты включают в себя комплектующие изделия, детали и элементы, поставленные другими изготовителями. Перечисленные выше факторы, влияя на работоспособность составных частей объекта, определяют его работоспособность в целом.

Опыт эксплуатации объектов массового производства показывает, что как наработка до отказа, так и наработка между отказами обнаруживают значительный статистический разброс. Аналогичный разброс имеют также ресурс, срок службы и срок сохраняемости. Этот разброс может служить характеристикой технологической культуры и дисциплины, а также достигнутого уровня технологии. Разброс наработки до первого отказа, ресурса и срока службы может уменьшить, а их значения можно увеличить путем надлежащей и экспериментальной отработки каждого индивидуального объекта до передачи в эксплуатацию. Этот подход осуществляют для особо ответственных объектов Целесообразность такого подхода для массовых объектов должна каждый раз подтверждаться технико-экономическим анализом.

Каждый электрик должен знать:  Цепь переменного тока с емкостью

Наработка до отказа вводится как для неремонтируемых (невосстанавливаемых), так и для ремонтируемых (восстанавливаемых) объектов. Наработка между отказами определяется объемом работы объекта от k-го до ( k+ l)-г o отказа, где k=1, 2 … Эта наработка относится только к восстанавливаемым объектам.

Технический ресурс представляет запас возможной наработки объекта. Для неремонтируемых объектов он совпадает с продолжительностью пребывания работоспособном состоянии в режиме применения по назначению, если переход в предельное состояние обусловлен только возникновением отказа.

Поскольку средний и капитальный ремонт позволяют частично или полностью восстанавливать ресурс, то отсчет наработки при исчислении ресурса возобновляют по окончании такого ремонта, различая в связи с этим доремонтный, межремонтный, послеремонтный и полный (до списания) ресурс.

Доремонтный ресурс исчисляют до первого среднего (капитального) ремонта. Число возможных видов межремонтного ресурса зависит от чередования капитальных и средних ремонтов. Послеремонтный ресурс отсчитывают от последнего среднего (капитального) ремонта.

Полный ресурс отсчитывают от начала эксплуатации объекта до его перехода в предельное состояние, соответствующее окончательному прекращению эксплуатации.

Аналогичным образом выделяют виды срока службы и срока сохраняемости. При этом срок службы и срок сохраняемости измеряют в единицах времени. Соотношение значений ресурса и срока службы зависит от интенсивности использования объекта. Полный срок службы, как правило, включает продолжительности всех видов ремонта.

К терминам «Назначенный срок службы», «Назначенный ресурс», «Назначенный срок хранения» ( пп. 4.10; 4.9; 4.11)

Цель установления назначенного срока службы и назначенного ресурса — обеспечить принудительное заблаговременное прекращение применения объекта по назначению, исходя из требований безопасности или технико-экономических соображений. Для объектов, подлежащих длительному хранению, может быть установлен назначенный срок хранения, по истечении которого дальнейшее хранение недопустимо, например, из требований безопасности.

При достижении объемом назначенного ресурса (назначенного срока службы, назначенного срока хранения), и зависимости от назначения объекта, особенности эксплуатации, технического состояния и других факторов объект может быть списан, направлен в средний или капитальный ремонт, передан для применения не по назначению, переконсервирован (при хранении) или может быть принято решение о продолжении эксплуатации.

Назначенный срок службы и назначенный ресурс являются технико-эксплуатационными характеристиками и не относятся к показателям надежности (показателям долговечности). Однако при установлении назначенного срока службы и назначенного ресурса принимают во внимание прогнозируемые (или достигнутые) значения показателей и надежности. Если установлено требование безопасности, то назначенный срок службы (ресурс) должен соответствовать значениям вероятности безотказной работы по отношению к критическим отказам, близким к единице. Из соображений безопасности может быть также введен коэффициент запаса по времени.

К терминам «Техническое обслуживание», «Восстановление», «Ремонт» ( пп. 5.1; 5.2; 5.3)

Техническое обслуживание включает регламентированные в конструкторской (проектной) и (или) эксплуатационной документации операции по поддержанию работоспособного и исправного состояния. В техническое обслуживание входят контроль технического состояния, очистка, смазывание и т. п. [9].

Восстановление включает в себя идентификацию отказа (определение его места и характера), наладку или замену отказавшего элемента, регулирование и контроль технического состояния элементов объекта и заключительную операцию контроля работоспособности объекта в целом.

Перевод объекта из предельного состояния в работоспособное состояние осуществляется при помощи ремонта, при котором происходит восстановление ресурса объекта в целом. В ремонт могут входить разборка, дефектовка, замена или восстановление отдельных блоков, деталей и сборочных единиц, сборка и т. д. Содержание отдельных операций ремонта может совпадать с содержанием операций технического обслуживания [9].

К терминам «Обслуживаемый объект», «Необслуживаемый объект», «Ремонтируемый объект», «Неремонтируемый объект», «Восстанавливаемый объект», «Невосстанавливаемый объект» ( пп. 5.4; 5.5; 5.8; 5.9)

При разработке объекта предусматривают выполнение (или невыполнение) технического обслуживания объектов на протяжении срока их службы, т. е. объекты делят на технически обслуживаемые и технически необслуживаемые. При этом некоторые неремонтируемые объекты являются технически обслуживаемыми.

Деление объектов на ремонтируемые и неремонтируемые связано с возможностью восстановления работоспособного состояния путем ремонта, что предусматривается и обеспечивается при разработке и изготовлении объекта. Объект может быть ремонтируемым, но не восстанавливаемым в конкретной ситуации.

К термину «Показатель надежности» ( п. 6.1)

К показателям надежности относят количественные характеристики надежности, которые вводят согласно правилам статистической теории надежности [2, 3, 7, 12]. Область применения этой теории ограничена крупносерийными объектами, которые изготавливают и эксплуатируют в статистически однородных условиях и к совокупности которых применимо статистическое истолкование вероятности. Примером служат массовые изделия машиностроения, электротехнической и радиоэлектронной промышленности.

Применение статистической теории надежности к уникальным и малосерийным объектам ограничено. Эта теория применима для единичных восстанавливаемых (ремонтируемых) объектов, в которых в соответствии с нормативно-технической документацией допускаются многократные отказы, для описания последовательности которых применима модель потока случайных событий. Теорию применяют также к уникальным и малосерийным объектам, которые в свою очередь состоят из объектов массового производства. В этом случае расчет показателей надежности объекта в целом проводят методами статистической теории надежности по известным показателям надежности компонентов и элементов.

Методы статистической теории надежности позволяют установить требования к надежности компонентов и элементов на основании требований к надежности объекта в целом.

Статистическая теория надежности является составной частью более общего подхода к расчетной оценке надежности технических объектов, при котором отказы рассматривают как результат взаимодействия объекта как физической системы с другими объектами и окружающей средой [8]. Так при проектировании строительных сооружений и конструкций учитывают в явной или неявной форме статистический разброс механических свойств материалов, элементов и соединений, а также изменчивость (во времени и в пространстве) параметров, характеризующих внешние нагрузки и воздействия. Большинство показателей надежности полностью сохраняют смысл и при более общем подходе к расчетной оценке надежности. В простейшей модели расчета на прочность по схеме «параметр нагрузки — параметр прочности» вероятность безотказной работы совпадает с вероятностью того, что в пределах заданного отрезка времени значение параметра нагрузки ни разу не превысит значение, которое принимает параметр прочности. При этом оба параметра могут быть случайными функциями времени.

На стадии проектирования и конструирования показатели надежности трактуют как характеристики вероятностных или полувероятностных математических моделей создаваемых объектов. На стадиях экспериментальной отработки, испытаний и эксплуатации роль показателей надежности выполняют статистические оценки соответствующих вероятностных характеристик.

В целях единообразия все показатели надежности, перечисленные в настоящем стандарте, определены как вероятностные характеристики. Это подчеркивает также возможность прогнозирования значения этих показателей на стадии проектирования [3, 8, 9].

Показатели надежности вводят по отношению к определенным режимам и условиям эксплуатации, установленным в нормативно-технической и (или) конструкторской (проектной) документации.

К терминам «Единичный показатель надежности» и «Комплексный показатель надежности» ( пп. 6.2; 6.3)

В отличие от единичного показателя надежности комплексный показатель надежности количественно характеризует не менее двух свойств, составляющих надежность, например безотказность и ремонтопригодность. Примером комплексного показателя надежности служит коэффициент готовности ( п. 6.26) Kг, стационарное значение которого (если оно существует) определяют по формуле

где Т — средняя наработка на отказ ( п. 6.11);

Тв — среднее время восстановления ( п. 6.21).

К терминам «Расчетный показатель надежности», «Экспериментальный показатель надежности», «Эксплуатационный показатель надежности», «Экстраполированный показатель надежности» ( пп. 6.4; 6.5; 6.6; 6.7)

Такую классификацию показателей надежности вводят в зависимости от способов их получения. Аналогичная классификация содержится в международных документах ИСО, МЭК. и ЕОКК [4-6]. Наличие этих понятий должно предупредить путаницу, которая имеет место на практике при обсуждении численных данных, полученных разными способами и на разных стадиях жизненного цикла объекта.

К термину «Вероятность безотказной работы» ( п. 6.8)

Вероятность безотказной работы определяется в предположении, что в начальный момент времени (момент начала исчисления наработки) объект находился в работоспособном состоянии. Обозначим через t время или суммарную наработку объекта (в дальнейшем для краткости называем t просто наработкой). Возникновение первого отказа — случайное событие, а наработка t от начального момента до возникновения этого события — случайная величина. Вероятность безотказной работы Р( t) объекта в интервале от 0 до t включительно определяют как

Здесь Р < ×>— вероятность события, заключенного в скобках. Вероятность безотказной работы Р( t) является функцией наработки t. Обычно эту функцию предполагают непрерывной и дифференцируемой.

Если способность объекта выполнять заданные функции характеризуется одним параметром v, то вместо (1) имеем формулу

где v* и v**— предельные по условиям работоспособности значения параметров (эти значения, вообще, могут изменяться во времени).

Аналогично вводят вероятность безотказной работы в более общем случае, когда состояние объекта характеризуется набором параметров с допустимой по условиям работоспособности областью значений этих параметров [8].

Вероятность безотказной работы Р(t) связана с функцией распределения F( t) и плотностью распределения f( t) наработки до отказа:

Наряду с понятием «вероятность безотказной работы» часто используют понятие «вероятность отказа», которое определяется следующим образом: это вероятность того, что объект откажет хотя бы один раз в течение заданной наработки, будучи работоспособным в начальный момент времени. Вероятность отказа на отрезке от 0 до t определяют по формуле

Точечные статистические оценки для вероятности безотказной работы от 0 до t и для функции распределения наработки до отказа даются формулами:

где N — число объектов, работоспособных в начальный момент времени;

п(t) число объектов, отказавших на отрезке от 0 до t.

Для получения достоверных оценок объем выборки N должен бить достаточно велик [2, 3, 7].

Определение безотказной работы в соответствии с формулами (1) и (2) относится к объектам, которые должны функционировать в течение некоторого конечного отрезка времени. Для объектов одноразового (дискретного) применения вероятность безотказной работы определяют как вероятность того, что при срабатывании объекта отказ не возникает. Аналогично вводят вероятность безотказного включения (например в рабочий режим из режима ожидания).

К терминам «Гамма-процентная наработка до отказа» «Гамма-процентный ресурс», «Гамма-процентный срок службы», «Гамма-процентное время восстановления», «Гамма-процентный срок сохраняемости» ( пп. 6.9; 6.15; 6.20; 6.24)

Перечисленные показатели определяют как корни t g уравнения

где F( t) — функция распределения наработки до отказа (ресурса, срока службы).

В частности, гамма-процентную наработку до отказа t g определяют из уравнения

где P( t)-вероятность безотказной работы.

Как видно из формулы (6), гамма-процентные показатели равны квантилям соответствующих распределений. Если вероятности, отвечающие этим квантилям, выражают в процентах, то для показателей безотказности обычно задают значения 90; 95; 99; 99,5°/о и т. д. Тогда вероятность возникновения отказа на отрезке [0; t] будет составлять 0,10; 0,05; 0,01; 0,005 и т. д. Задаваемые значения g для критических отказов должны быть весьма близки к 100%, чтобы сделать критические отказы практически невозможными событиями. Для прогнозирования потребности в запасных частях, ремонтных мощностях, а также для расчета пополнения и обновления парков машин, приборов и установок могут потребоваться гамма-процентные показатели при более низких значениях g, например при g=50%, что приближенно соответствует средним значениям.

Статистические оценки для гамма-процентных показателей могут быть получены на основе статистических оценок либо непосредственно, либо после аппроксимации эмпирических функций подходящими аналитическими распределениями. Необходимо иметь в виду, что экстраполирование эмпирических результатов за пределы продолжительности испытаний (наблюдений) без привлечения дополнительной информации о физической природе отказов может привести к значительным ошибкам.

К терминам «Средняя наработка до отказа», «Средний ресурс», «Средний срок службы», «Среднее время восстановления», «Средний срок сохраняемости» ( пп. 6.10; 6.16; 6.18; 6.21; 6.25)

Перечисленные показатели равны математическим ожиданиям соответствующих случайных величин, наработки до отказа, ресурса, срока службы, времени восстановления, срока сохраняемости.

Среднюю наработку до отказа Т1 вычисляют по формуле

где F( t) функция распределения наработки до отказа,

f( t) плотность распределения наработки до отказа.

С учетом (3) Т1 выражается через вероятность безотказной работы:

Статистическая оценка для средней наработки до отказа дается формулой

Здесь N— число работоспособных объектов при t=0,

t j — наработка до первого отказа каждого из объектов.

Формула (7) соответствует плану испытаний, при котором все объекты испытываются до отказа [2, 3, 7].

К термину «Средняя наработка на отказ» ( п. 6.11)

Этот показатель введен применительно к восстанавливаемым объектам, при эксплуатации которых допускаются многократно повторяющиеся отказы. Очевидно, что это должны быть несуществующие отказы, не приводящие к серьезным последствиям и не требующие значительных затрат на восстановление работоспособного состояния. Эксплуатация таких объектов может быть описана следующим образом: в начальный момент времени объект начинает работать и продолжает работать до первого отказа; после отказа происходит восстановление работоспособности, и объект вновь работает до отказа и т. д. На оси времени моменты отказов образуют поток отказов, а моменты восстановлений — поток восстановлений. На оси суммарной наработки (когда время восстановления не учитывается) моменты отказов образуют поток отказов. Полное и строгое математическое описание эксплуатации объектов по этой схеме построено на основе теории восстановления [2, 7].

Определению средней наработки на отказ Т, которое приведено в данном стандарте, соответствует следующая формула

Здесь t — суммарная наработка, r( t) — число отказов, наступивших в течение этой наработки, M < r(t)> — математическое ожидание этого числа. В общем случае средняя наработка на отказ оказывается функцией t. Для стационарных потоков отказов средняя наработка на отказ от t не зависит.

Статистическую оценку средней наработки на отказ Т вычисляют по формуле, которая аналогична формуле (8)

В отличие от формулы (8) здесь r( f) — число отказов, фактически происшедших за суммарную наработку t.

Формула (9) допускает обобщение на случай, когда объединяются данные, относящиеся к группе однотипных объектов, которые эксплуатируются в статистически однородных условиях. Если поток отказов — стационарный, то в формуле (9) достаточно заменить t на сумму наработок всех наблюдаемых объектов и заменить r( t) на суммарное число отказов этих объектов [3].

К терминам «Интенсивность отказов» и «Интенсивность восстановления» ( пп. 6.12; 6.22)

Интенсивность отказов l(t) определяют по формуле

Для высоконадежных систем Р ( t) »1, так что интенсивность отказов приближенно равна плотности распределения наработки до отказа.

Статистическая оценка для интенсивности отказов имеет вид

где использованы те же обозначения, что и в формуле (5).

Аналогично вводится интенсивность восстановления.

К терминам «Параметр потока отказов» и «Осредненный параметр потока отказов » ( пп. 6.13; 6.14)

Параметр потока отказов m( t) определяют по формуле

где D t — малый отрезок наработки,

r( t) число отказов, наступивших от начального момента времени до достижения наработки t.

Разность r( t+ t) r( t) представляет собой число отказов на отрезке D t.

Наряду с параметром потока отказов в расчетах и обработке экспериментальных данных часто используют осредненный параметр потока отказов

По сравнению с формулой (12) здесь рассматривается число отказов за конечный отрезок [ t1, t2], причем t1 £ t1 £ t2. Если поток отказов стационарный, то параметры, определяемые по формулам (12) и (13) от t не зависят.

Статистическую оценку для параметра потока отказов m(t) определяют по формуле

которая по структуре аналогична формуле (13). Для стационарных потоков можно применять формулу

где оценка (8) для средней наработки на отказ.

В международных документах ИСО, МЭК. и ЕОКК термину «параметр потока отказов» соответствует термин failure intensity, в то время как термину «интенсивность отказов» ( п. 6.12) соответствует термин failure rate. Это необходимо учитывать при использовании англоязычных источников, а также переводной литературы.

К терминам «Вероятность восстановления», «Гамма-процентное время восстановления», «Среднее время восстановления», «Интенсивность восстановления», «Средняя трудоемкость восстановления» ( пп. 6.19; 6.20; 6.21; 6.22; 6.23)

Для комплексной оценки ремонтопригодности допускается дополнительно использовать показатели типа удельной трудоемкости ремонта и удельной трудоемкости технического обслуживания.

К терминам «Коэффициент готовности», «Коэффициент оперативной готовности», «Коэффициент технического использования», «Коэффициент сохранения эффективности» ( пп. 6.26; 6.27; 6.28; 6.29)

Коэффициент готовности характеризует готовность объекта к применению по назначению только в отношении его работоспособности в произвольный момент времени. Коэффициент оперативной готовности характеризует надежность объекта, необходимость применения которого возникает в произвольный момент времени, после которого требуется безотказная работа в течение заданного интервала времени. Различают стационарный и нестационарный коэффициенты готовности, а также средний коэффициент готовности [3, 5, 6].

Коэффициент технического использования характеризует долю времени нахождения объекта в работоспособном состоянии относительно общей продолжительности эксплуатации. Коэффициент сохранения эффективности характеризует степень влияния отказов на эффективность его применения по назначению. Для каждого конкретного типа объектов содержание понятия эффективности и точный смысл показателя (показателей) эффективности задаются техническим заданием и вводятся в нормативно-техническую и (или) конструкторскую (проектную) документацию.

К термину «Резервирование» ( п. 7.1)

Резервирование — одно из основных средств обеспечения заданного уровня надежности объекта при недостаточно надежных компонентах и элементах. Цель резервирования — обеспечить безотказность объекта в целом, т. е. сохранить его работоспособность, когда возник отказ одного или нескольких элементов [11]. Наряду с резервированием путем введения дополнительных (резервных) элементов находят широкое применение другие виды резервирования. Среди них временное резервирование (с использованием резервов времени), информационное резервирование (с использованием резервов информации), функциональное резервирование, при котором используется способность элементов выполнять дополнительные функции или способность объекта перераспределять функции между элементами, нагрузочное резервирование, при котором используется способность элементов воспринимать дополнительные нагрузки сверх номинальных, а также способность объекта перераспределять нагрузки между элементами.

К терминам «Нормирование надежности», «Нормируемый показатель надежности» ( пп. 8.1; 8.2)

При выборе номенклатуры нормируемых показателей надежности необходимо учитывать назначение объекта, степень его ответственности, условия эксплуатации, характер отказов (внезапные, постепенные и т. п.), возможные последствия отказов, возможные типы предельных состояний. При этом целесообразно, чтобы общее число нормируемых показателей надежности было минимально; нормируемые показатели имели простой физический смысл, допускали возможность расчетной оценки на этапе проектирования, статистической оценки и подтверждения по результатам испытаний и (или) эксплуатации [10, 11].

При обосновании численных значений нормируемых показателей надежности необходимо руководствоваться принципом оптимального распределения затрат на повышение надежности, техническое обслуживание и ремонт.

Значения нормируемых показателей надежности учитываются, в частности, при назначении гарантийного срока эксплуатации (гарантийной наработки, гарантийного срока хранения), которые являются технико-экономическими (отчасти коммерческими) характеристиками объекта и не относятся к показателям надежности. Гарантийные сроки, показатели надежности и цена объекта должны быть взаимоувязаны.

Длительность гарантийного срока эксплуатации (гарантийной наработки, гарантийного срока хранения) должна быть достаточной для выявления и устранения скрытых дефектов и определяется соглашением между потребителем (заказчиком) и поставщиком (изготовителем).

К термину «Программа обеспечения надежности» ( п. 9.1)

Программа обеспечения надежности — важнейший документ, служащий организационно-технической основой для создания объектов, удовлетворяющих заданным требованиям по надежности. Программа должна охватывать все или отдельные стадии жизненного цикла объекта.

Программа обеспечения надежности включает, в частности, программу экспериментальной отработки, которая определяет цели, задачи, порядок проведения и необходимый объем испытаний или экспериментальной отработки, а также регламентирует порядок подтверждения показателей надежности на стадии разработки. Программа обеспечения ремонтопригодности устанавливает комплекс взаимосвязанных организационно-технических требований и мероприятий, направленных на обеспечение заданных требований по ремонтопригодности и (или) повышения ремонтопригодности. Она разрабатывается одновременно с программой обеспечения надежности и является либо ее составной частью, либо самостоятельной программой [1].

К термину «Испытания на надежность» ( п. 10.1)

Испытания на надежность относятся к числу важнейших составных частей работы по обеспечению и повышению надежности технических объектов. Эти испытания в зависимости от контролируемых (оцениваемых) свойств, составляющих надежность, могут состоять из испытаний на безотказность, долговечность, ремонтопригодность и сохраняемость. В частности, ресурсные испытания относятся к испытаниям на долговечность.

Планирование испытаний и обработка их результатов проводятся с применением методов математической статистики [2, 3, 7, 10]. Оценивание значений показателей надежности при определительных испытаниях должно проводиться с заданной точностью (т. е. при заданной относительной погрешности) и с заданной достоверностью (т. е. при заданном уровне доверительной вероятности). Аналогичные требования предъявляются к контрольным испытаниям. Ускорение (форсирование) испытаний не должно приводить к снижению точности и достоверности оценок.

ПЕРЕЧЕНЬ ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Надежность и эффективность в технике. Справочник в 10 т. (Ред. совет: В. С. Авдуевский (пред.) и др. Т. 1. Методология. Организация. Терминология) Под ред. А. И. Рембезы.-М.: Машиностроение, 1989.-224 с.

2. Надежность и эффективность в технике. Справочник в 10 т. / Ред. совет:

В. С. Авдуевский (пред.) и др. Т. 2. Математические методы в теории надежности и эффективности/Под ред. Б. В. Гнеденко.-М.: Машиностроение, 1987.-280 с.

3. Надежность технических систем. Справочник/Ю. К. Беляев, В. А. Богатырев, В. В. Болотин и др./Под ред. И. А. Ушакова-М.: Радио и связь, 1985-608 с.

4. Data Processing Vocabulary. Section 14. Reliability, Maintenance and Availability. — Geneva: ISO 2382, 1976. — 16 p.

5. International Electrotechnical Vocabulary. Chapter 191. Reliability, Maintainability and Quality of Service (draft).-Geneva: International Electrotechnical Commission, 1987.-75 p.

6. EOQC Glossary.-Bern: EOQC. 1988.-24 p.

7. Гнеденко Б. В., Беляев Ю. К., Соловьев А. Д. Математические методы в теории надежности.-М.: Наука, 1965.-524 с.

8. Болотин В.В. Прогнозирование ресурса машин и конструкций.-М.: Машиностроение, 1984.-312 с.

9. Хазов Б. Ф., Дидусев Б. А. Справочник по расчету надежности машин на стадии проектирования.-М.: Машиностроение, 1986.-224 с.

10. Дзиркал Э. В. Задание и проверка требований к надежности сложных изделий.-М.: Радио и связь, 1981.-176 с.

11. Резиновский А. Я. Испытания и надежность радиоэлектронных комплексов.-М.: Радио и связь, 1985- 168 с.

12. F. S. Goodell, Reliability and Maintainability by Design: A Blue-Print for Success. Journal of Aircraft, v. 24, № 8, 1987, p. 481-483.

1. РАЗРАБОТАН И ВНЕСЕН Институтом машиноведения АН СССР, Межотраслевым научно-техническим комплексом «Надежность машин» и Государственным Комитетом СССР по управлению качеством продукции и стандартам

В.В. Болотин, чл.-корр. АН СССР (руководитель); П.П. Пархоменко, чл.-корр. АН СССР; А.Ф. Селихов, чл.-корр. АН СССР; И.А. Ушаков, д-р техн. наук; Л.В. Коновалов, д-р техн. наук; Р.В. Кугель, д-р техн. наук; Л.П. Глазунов, д-р техн. наук; И.Д. Грудев, д-р техн. наук; И.А. Биргер, д-р техн. наук; В.П. Когаев, д-р техн. наук; Б.Ф. Хазов, д-р техн. наук; А.Я. Резиновский, канд. техн. наук; Ф.И. Фишбейн, канд. техн. наук; Э.В. Дзиркал, канд. техн. наук; В.А. Гречин, канд. техн. наук; И.Е. Декабрун, канд. техн. наук; Я.А. Ольштейн, канд. техн. наук; Д.И. Бельский, канд. техн. наук; И.З. Аронов, канд. техн. наук; В.Л. Шпер, канд. техн. наук; Г.К. Мартынов, канд. техн. наук; В.В. Худяков, канд. техн. наук; А. Л. Раскин, В.И. Карзов, канд. техн. наук; Э.Ф. Капанец, канд. техн. наук; Ю.И. Тарасьев; П.В. Рубинштейн; С. В. Нефедов, канд.техн. наук

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 15.11.89 № 3375

3. Срок проверки- 1992 г.

4. ВВЕДЕН ВПЕРВЫЕ.

5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Основные понятия и определения статики

Определение статики

Статика – это раздел теоретической механики, в котором изучаются условия равновесия материальных тел, находящихся под действием сил, а также методы преобразования сил в эквивалентные системы для упрощения расчетов.

Собственно условия равновесия твердого тела представляют собой систему векторных уравнений:
векторная сумма сил, приложенных к телу равна нулю:
(1) ;
векторная сумма моментов этих сил относительно произвольного неподвижного центра O равна нулю:
(2) .
Нередко приложенные к телу силы распределены таким образом, что исследование этих уравнений представляет собой довольно громоздкую задачу. Например силы, возникающие в следствие земного притяжения, распределены по всем точкам тела пропорционально их массам. Для исследования приведенных выше уравнений нам пришлось бы учитывать бесконечное их число, действующих на каждую частицу тела. Но решение этой задачи можно упростить, если вместо реальных сил тяжести ввести расчетный вектор, равный сумме сил тяжести отдельных его частей, приложенный к центру масс. При этом мы заменим бесконечное число сил одной расчетной силой тяжести и получим, как говорят, эквивалентную систему сил. Суть такой замены состоит в том, что она позволяет упростить расчеты, не изменяя решений уравнений (1) и (2).

Таким образом, основной задачей статики является установление законов преобразования системы сил в эквивалентные системы с целью упрощения расчетов для решений уравнений равновесия.

Методы статики применяются не только для изучения неподвижных тел, но и для движущихся. Это связано с тем, что если заменить исходную систему сил на эквивалентную, то законы движения тела, или как говорят, кинематическое состояние тела, от этого не изменится. Поэтому методы статики применяются к любым механическим системам, состоящих из точек и твердых тел независимо от того, покоятся они или совершают движение. Эти методы позволяют привести исходную систему сил к эквивалентной с целью упрощения расчетов. Таким образом силы в статике и в теоретической механике являются чисто расчетными величинами. Они могут отличаться от реальных сил, действующих на тела, которые применяются в физике или теории упругости. Все эти методы применяются только к абсолютно твердым телам, пренебрегая возможными деформациями внутри самих тел.

Определения тел

Материальное тело – это некоторое количество вещества, которое заполняет какой-нибудь объем в пространстве и имеет границу.

Заметим, что под это определение подходит и твердое тело, и жидкость, и газ, заключенный в определенный объем.

Материальная точка – это материальное тело, обладающее массой, но размерами которого, в данных условиях, можно пренебречь.

Понятие материальной точки является моделью или упрощением. В одних задачах тело можно считать материальной точкой. В других задачах – это же тело считать точкой нельзя. Например, при изучении движения Земли вокруг Солнца, Землю, и Солнце можно считать материальными точками. Но в задачах, связанных с выведением спутников на орбиту, пренебрегать размерами Земли и строением ее атмосферы уже нельзя.

Положение материальной точки полностью описывается ее тремя координатами x, y, z , которые образуют некоторый вектор , проведенный из начала O заранее выбранной прямоугольной системы координат Oxyz в точку с координатами .

Твердое тело, или абсолютно твердое тело – это материальное тело, в котором расстояния между любыми точками остаются неизменными, даже при воздействии любых сил.

В статике и теоретической механике, если это особо не оговорено, все тела считаются абсолютно твердыми. Исключение составляют пружины. Но теоретическая механика не изучает состояние их деформации, а лишь использует законы (в частности закон Гука), установленные методами теории упругости и смежных наук.

Механическая система – это совокупность взаимодействующих между собой материальных тел, в котором положение и движение каждого тела зависят от положения и движения других материальных тел этой системы.

Кинематическое состояние

Состояние покоя – это состояние тела, при котором скорости всех его точек, относительно выбранной системы координат, равны нулю. При этом координаты всех точек имеют постоянные, не зависящие от времени значения.

Состояние движения тела – это состояние тела, при котором существуют его точки, которые движутся относительно выбранной системы координат с отличной от нуля скоростью.

Кинематическое состояние тела – это состояние покоя или движения. Два кинематических состояния тела считаются одинаковыми или равными, если закон движения любой точки в первом кинематическом состоянии совпадает с законом движения той же точки во втором состоянии.

Механическое воздействие

Механическое воздействие одного тела на другое – это такое воздействие, в результате которого могут происходить изменения скоростей точек тел без изменения их химического состава. Механическое воздействие может происходить при соприкосновении тел или на расстоянии – в результате действия электромагнитных или гравитационных полей.

Также действие пружины часто рассматривают как действие потенциального поля.

Сила – это мера механического воздействия тел, в результате которого свободное тело получает ускорение относительно инерциальной системы отсчета.

Действие силы на тело определяется двумя векторами – собственно вектором силы и точкой приложения A этой силы к телу. Точку приложения A также можно представить вектором , проведенным из начала отсчета O системы координат в точку A . В прямоугольной системе координат Oxyz , вектор задается тремя проекциями силы на оси координат. Как и всякий вектор, он имеет модуль и направление. Вектор также имеет модуль и направление. Но они зависят от выбора системы координат, поэтому особого физического смысла не имеют. В то время, как модуль силы определяет интенсивность механического воздействия и не зависит от выбора системы координат. Направление вектора силы относительно тела также не зависит от выбора системы отсчета.

Обычно силу обозначают как вектор . Но вектор в математике – это три числа: его проекции на оси системы координат . В теоретической механике важное значение имеет точка приложения силы. Поэтому под силой обычно подразумевают два вектора – саму силу , и точку ее приложения .

Линия действия силы – это прямая, параллельная вектору силы, проходящая через ее точку приложения.

На рисунке прямая BC – это линия действия силы F , приложенной в точке A . В статике, точку приложения силы можно перемещать вдоль ее линии действия, поскольку такое преобразование не меняет уравнений равновесия. А вот при изучении деформаций, перемещать точку приложения нельзя. В связи с этим вводят следующие определения.

Связанный вектор – это вектор, приложенный к определенной точке и не допускающий переноса в другие точки.

Скользящий вектор – это вектор, точку приложения которого можно перемещать вдоль линии его действия.

Свободный вектор – это вектор, точку приложения которого можно помещать в любую точку пространства.

Такм образом, если мы изучаем деформации в теле, то все приложенные к нему силы являются связанными векторами.
Но в задачах теоретической механики, мы изучаем скорости движения тел, считая их твердыми. Перемещение точки приложения силы вдоль линии ее действия не меняет уравнений движения. Поэтому силы в теоретической механике являются скользящими векторами.
Момент пары сил и угловая скорость вращения тела являются примерами свободных векторов.

Системы сил

Система сил – это совокупность нескольких сил, действующих на данное тело или систему тел.

Эквивалентные системы сил – это системы сил, под действием которых твердое тело находится в одинаковых кинематических состояниях ⇑.

Равнодействующая сила – это сила, эквивалентная некоторой системе сил.

Система взаимно уравновешивающихся сил – это система сил, которая не меняет кинематическое состояние ⇑ тела.

Внешние силы, действующие на механическую систему – это силы, действующие на тела рассматриваемой системы со стороны тел, не входящих в эту систему.

Внутренние силы, действующие на механическую систему – это силы, действующие на тела рассматриваемой системы со стороны тел, входящих в эту систему.

Например, если в качестве механической системы мы возьмем стол с лежащей на нем книгой, то силы тяжести, действующие на оба тела и сила давления поверхности пола на стол, являются внешними силами. А сила давления книги на стол и сила давления стола на книгу будут внутренними.

Использованная литература:
А. А. Яблонский, В.М. Никифорова, Курс теоретической механики, часть 1, статика, кинематика. Москва, «Высшая школа», 1966.

Автор: Олег Одинцов . Опубликовано: 07-06-2020

Основные понятия и определения логистики (стр. 1 из 14)

Глава 1. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ ЛОГИСТИКИ

Как возник термин «логистика», и как он определяется в словарях?

Понятие «логистика» трактуется в зарубежной и отечественной литературе по-разному. Большинство исследователей сходится на том, что семантика слова восходит к Древней Греции, где «логистика» (англ. – logistics ) обозначала «счетное искусство» или «искусство рассуждения, вычисления». Ис­торически можно проследить две основные трактовки термина, которые дошли до наших дней. Первая связана с военной областью. Здесь логистика определяется как практическое искусство управления войсками и включает широкий круг вопросов, связанных с планированием и управлением материально-техническим снабжением армии, определением мест дислокации войск, транспортным обслуживанием армии и т.п. Вторая – с математической логикой. Этот термин использовался в работах знаменитого немецкого математика Г. Лейбница (1646-1716). Это значение было закреплено за логистикой на философском конгрессе в Женеве в 1904 г.

Две основные трактовки термина «логистика» сохранились и в настоящее время практически во всех европейских языках, что проиллюстрировано в таблице 1, где приведены в хронологическом порядке определения, взятые из ряда словарей. Более подробный семантический анализ термина приведен в терминологическом словаре по логистике и работе В.И. Сергеева.

Существует ли общее (стандартное) определение логистики?

Эволюция понятия «логистика» тесно связана с историей и эволюцией рыночных отношений в промышленно развитых странах, причем сам термин укоренился и стал повсеместно применяться в бизнесе лишь с конца 1970-х годов. С эволюцией рыночных отношений менялось и содержание понятия (подробно см 3 ).

Унификацией и стандартизацией терминологии по логистике за рубежом в настоящее время занимаются в основном две организации: Совет логистического менеджмента США ( Council of Logistics Management , CLM ) u Европейская логистическая ассоциация ( European Logistics Association , ELA ).

Таблица 1 – Словарные определения термина «логистика»

Определение Источник
Искусство управления перемещением войск как вдали, так и вблизи от неприятеля, организация их тылового обеспечения Военный энциклопедический лексикон. Санкт-Петербург, 1850
Математическая логика Словарь современного русского литературного языка, М., Л.: АН СССР, Институт русского языка, т. 1-17, 1948-1965
Символическая логика, новейшая разновидность формалистической логики Словарь иностранных слов. М.: Гос. изд-во иностранных и национальных словарей, 1954
Техника штабной службы, расчеты тылов; техника перевозок и снабжения Мюллер В. К. Англо-русский словарь. М.: Гос. изд-во иностранных и национальных словарей, 1963
Материально-техническое обеспечение, работа тыла; организация тыла и снабжения Гаршина К. А. Французско-русский словарь. М.: Русский язык, 1977
Тыл и снабжение, материально-техническое обеспечение, работа тыла Мюллер В. К. Англо-русский словарь. — М.: Русский язык, 1990
Военная наука, связанная со снабжением, поддержкой и движением материалов и людей Webster’s Desk Dictionary. N. Y.: Portland House, 1990
Управление перемещением и материально-техническим обеспечением вооруженных сил. Наряду с тактикой, стратегией и разведкой логистика является одним из четырех важнейших элементов военной науки… Термином «логистика» может также обозначаться снабженческо-сбытовая деятельность гражданских предприятий The Encyclopedia Americana. International Edition. Danbury: Grolier Inc., 1991. V. 17
Организация, планирование, контроль и выполнение товарного потока от проектирования и закупок, через производство и распределение до конечного потребителя с целью удовлетворения требований рынка с минимальными операционными и капитальными затратами Terminology in Logistics. ANNEX Dictionary. European Logistics Association, 1994
Наука о планировании, контроле управлении транспортированием, складированием и другими материальными и нематериальными операциями, совершаемыми в процессе доведения сырья и материалов до производственного предприятия, внутризаводской переработки сырья, материалов и полуфабрикатов, доведения готовой продукции до потребителя в соответствии с интересами и требованиями последнего, а также передачи, хранения и обработки соответствующей информации Родников А. Н. Логистика: Терминологический словарь. М.: Экономика, 1995
В производственном контексте – искусство и наука обеспечения, производства и распределения материалов и продукции в необходимом месте и нужных количествах. В военном деле может также включать перемещение войск APICS Dictionary. 8th Ed. American Production and Inventory Control Society, Inc., 1995

Наиболее известным определением, цитируемым большинством зарубежных университетских учебников, является определение логистики, данное CLM b1985 г.:

«Логистика есть процесс планирования, выполнения и контроля эффективного с точки зрения снижения затрат потока запасов сырья, материалов, незавершенного производства, готовой продукции, сервиса и связанной информации от точки его зарождения до точки потребления (включая импорт, экспорт, внутренние и внешние перемещения) для полного удовлетворения требований потребителей».

В этом определении важны три момента. Во-первых, то, что логистическая деятельность имеет интегрированный характер и охватывает процесс от места возникновения до места потребления потока материальных ресурсов и готовой продукции. Во-вторых, акцентирована важность управления сопутствующей информацией. И, наконец, в-третьих, впервые в сферу интересов логистики попал сервис, т.е. нематериальная деятельность. Это имеет принципиальное значение для развития логистических подходов в индустрии услуг. Так, ранее объектом изучения и оптимизации в логистике были только материальные потоки.

Определение ELA приведено в таблице 1. В настоящее время ELA завершает работу над новой версией словаря ANNEX , где, по всей видимости, будет дано новое определение логистики.

Какова современная трактовка понятия «логистика» с позиций бизнеса?

Современная трактовка понятия «логистика» с позиций бизнеса неоднозначна и зависит от страны, логистической школы (направления) и конкретного исследователя. Разброс мнений очень широк: от утилитарного представления о логистике как наборе некоторых функций, связанных с управлением материальным потоком (транспортировка, складирование, грузопереработка, упаковка, управление запасами и т.п.), до научной (философской) концепции как средства оптимизации любого экономического процесса в локальном или глобальном масштабе.

Определение логистики в литературных источниках обычно дается в широком и/или узком смысле.

В широком смысле: «логистика – наука об управлении материальными потоками, связанной с ними информацией, финансами и сервисом в определенной микро-, мезо- или макроэкономической системе для достижения поставленных перед нею целей с оптимальными затратами ресурсов».

Как указывают Д. Бауэрсокс и Д. Клосс в известной работе, термин «логистика» не относится исключительно к бизнесу или к государственному сектору. Основные концепции логистики применимы как для частного, так и для государственного предприятия.

Большинство исследователей сходятся на том, что с позиций бизнеса (как показывает практика промышленно развитых стран и передовых компаний) логистика представляет собой определенную бизнес-концепцию, позволяющую оптимизировать ресурсы фирмы, связанные с управлением материальными и сопутствующими потоками.

В узком смысле: «логистика инструментарий интегрированного управления материальными и связанными с ними информационными, финансовыми потоками, а также сопутствующим сервисом, способствующий достижению целей организации бизнеса с оптимальными затратами ресурсов».

В последние годы за рубежом активное распространение получила концепция « Supply Chain Management , SCM » — «Управление цепями поставок». Многие исследователи в США и ЕС противопоставляют SCM собственно логистике (например, CLM , в Крэнфилдском институте логистики и транспорта Великобритании такие известные ученые и специалисты в области логистики, как М. Кристофер, Дж. Сток, Д. Ламберт, М. Купер и многие другие). Общая позиция сводится к тому, что логистика является частью более широкой бизнес-концепции – SCM . В 1998 г. CLM пересмотрел определение логистики 1985 г.: «Логистика является частью процесса управления цепями поставок и представляет собой планирование, реализацию и контроль эффективности потока и запасов продукции, сервиса и связанной информации от точки его зарождения до точки потребления в соответствии с требованиями потребителей».

На наш взгляд, SCM естественное продолжение и развитие концепции интегрированной логистики в плане межфункциональной и межорганизационной координации . А.Н. Родников трактует Supply Chain Management как логистическую координацию . Вчастности, в своем терминологическом словаре он указывает, что SCM «управление логистической цепью – упорядочение различных логистических операций и правил их выполнения».

Что является объектом исследования и управления в логистике?

В логистике обычно исследуются возникновение, преобразование и поглощение (потребление) основных и сопутствующих или связанных с основными потоков в определенном экономическом объекте, функционирующем как система, т.е. реализующем поставленные перед ним цели, рассматриваемом вэтом смысле как единое целое и обладающем определенным синергетическим эффектом.


Основы безопасности жизнедеятельности: основные понятия, термины, определения

Основные положения и задачи учебной дисциплины «Безопасность жизнедеятельности». Понятие, номенклатура и таксономия опасностей. Понятие о концепции допустимого риска. Связь между реализованными опасностями и причинами. Методы обеспечения безопасности.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид методичка
Язык русский
Дата добавления 06.09.2020
Размер файла 28,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

ГБОУ ВПО ИвГМАМиздравсоцразвития России

Кафедра экстремальной, военной медицины и

для самостоятельной работы студентов 2 курса стоматологического факультетов

ТЕМА: «Введение. Основы безопасности жизнедеятельности. Основные понятия, термины, определения»

Каждый электрик должен знать:  Как выбрать телевизор в детскую комнату

Доцент кафедры ЭВМиБЖ

Время подготовки — 90 минут

1. Основные положения и задачи учебной дисциплины Безопасность жизнедеятельности

2. Основные понятия и определения БЖД

3. Опасность. Номенклатура опасностей. Таксономия опасностей.

4. Понятие о концепции приемлемого (допустимого) риска

5. Управление риском. Системный анализ безопасности

6. Анализ причинно-следственных связей между реализованными опасностями и причинами

7. Логические операции при системном анализе безопасности

8. Методы обеспечения безопасности. Классификация. Определения

1. Основные положения и задачи учебной дисциплины Безопасность жизнедеятельности

Проблема защиты человека от опасностей в различных условиях его обитания возникла одновременно с появлением на Земле наших далеких предков. На заре человечества людям угрожали опасные природные явления, представители биологического мира. С течением времени стали появляться опасности, творцом которых стал сам человек. Статистические данные свидетельствуют, что в настоящее время он больше всего страдает от им же созданных опасностей. Только в дорожно-транспортных происшествиях в России ежегодно погибает более 30 тыс. чел. Десятки тысяч людей становятся ежегодно жертвами алкоголя. Тысячи человек погибают на производстве. безопасность жизнедеятельность опасность риск

Ученые с древних времен изучают безопасность человека в различных условиях жизни и деятельности. Трудами многих ученых созданы научные предпосылки для разработки средств и методов защиты от опасностей. Комплексной научной дисциплиной, изучающей опасности и защиту от них человека, является безопасность жизнедеятельности (БЖД).

Основные положения учебной дисциплины БЖД:

1) С момента своего появления на Земле человек перманентно живет и действует в условиях постоянно изменяющихся потенциальных опасностей, поэтому деятельность человека потенциально опасна.

2) Реализуясь в пространстве и времени, опасности причиняют вред здоровью человека, который проявляется в нервных потрясениях, травмах, болезнях, инвалидных и летальных исходах. Следовательно, опасности — это то, что угрожает не только человеку, но и обществу и государству в целом. Значит, профилактика опасностей и защита от них — актуальнейшая гуманитарная и социально-экономическая проблема, в решении которой государство не может не быть заинтересованным.

3) Обеспечение безопасности деятельности — приоритетная задача для личности, общества, государства. Абсолютной безопасности не бывает. Всегда существует некоторый остаточный риск. Под безопасностью понимается такой уровень опасности, с которым на данном этапе научного и экономического развития можно смириться.

4) Безопасность — это приемлемый риск. Как достичь этой цели? Первейший и главнейший способ состоит в образовании народа. Другого пути просто нет. И вот почему. Опасности по своей природе вероятностны (т. е. случайны), потенциальны (т. е. скрыты), перманентны (т. е. постоянны, непрерывны) и тотальны (т. е. всеобщи, всеобъемлющи). Следовательно, нет на Земле человека, которому не угрожают опасности. Но зато есть множество людей, которые об этом не подозревают. Их сознание работает в режиме отчуждения от реальной жизни, так как оно не придает приоритетного значения информации, которая носит вероятностный характер.

5) Для выработки идеологии безопасности, формирования безопасного мышления и поведения в учебные планы подготовки специалистов любого профиля включена учебная дисциплина — безопасность жизнедеятельности (это область научных знаний, изучающая общие опасности, угрожающие каждому человеку и разрабатывающая соответствующие способы защиты от них в любых условиях обитания человека) БЖ не решает специальных проблем безопасности. Она обеспечивает общую грамотность в области безопасности, это научно-методический фундамент для всех без исключения специальных дисциплин безопасности. Человек, освоивший БЖД, надежно защищен от опасностей, не навредит другому, способен грамотно действовать в условиях опасности. БЖД — это не средство личной защиты, как полагают некоторые. БЖД — это защита личности, общества и государства. Введение БЖД в вузах (1990) и ОБЖ в школах (1991) — величайшее достижение советской образовательной системы в области безопасности.

БЖД решает три группы учебных задач: а) идентификация (распознавание) опасностей: вид опасности, пространственные и временные координаты, величина, возможный ущерб, вероятность и др.; б).профилактика идентифицированных опасностей на основе сопоставления затрат и выгод; в). в соответствии с концепцией остаточного риска часть идентифицированных опасностей может с определенной вероятностью реализоваться, следовательно, третья группа задач — это действия в условиях чрезвычайных ситуаций.

БЖД рассматривает все опасности, с какими может столкнуться человек в процессе своей жизни и деятельности.

Таким образом: 1) БЖД — неотъемлемая составная часть вобщая образовательная компонента подготовки всесторонне развитой личности; 2) этот предмет должен входить в государственные образовательные стандарты всех специальностей и направлений без какого-либо исключения в интересах личности, общества, государства.

2. Основные понятия и определения БЖД

Безопасность жизнедеятельности — область научных знаний, изучающая опасности и способы защиты от них человека в любых условиях его обитания.

Безопасность — состояние деятельности, при котором с определенной вероятностью исключено проявление опасностей, или отсутствие чрезмерной опасности.

Деятельность — специфическая человеческая форма активного отношения к окружающему миру, содержание которой составляет его целесообразное изменение и преобразование. Всякая деятельность включает в себя цель, средство, результат и сам процесс деятельности. Формы деятельности многообразны. Они охватывают практические, интеллектуальные, духовные процессы, протекающие в быту, общественной, культурной, трудовой, научной, учебной и других сферах жизни.

Условия деятельности — совокупность факторов среды обитания, воздействующих на человека.

Здоровье — естественное состояние организма, характеризующееся его уравновешенностью с окружающей средой и отсутствием каких-либо болезненных изменений.

Идентификация опасности — процесс распознавания образа опасности, установления возможных причин, пространственных и временных координат, вероятности проявления, величины и последствий опасности.

Опасность — явления, процессы, объекты, свойства предметов, способные в определенных условиях причинить ущерб здоровью человека.

Потенциальный — возможный, скрытый.

Причина — событие, предшествующее и вызывающее другое событие, именуемое следствием.

Риск — количественная оценка опасности. Определяется как частота или вероятность возникновения одного события при наступлении другого события. Обычно это безразмерная величина, лежащая в пределах от 0 до 1. Может определяться и другими удобными способами.

Ущерб здоровью — это заболевание, травмирование, следствием которого может стать летальный исход, инвалидность и т. п.

Система — совокупность элементов, взаимодействие между которыми адекватно цели.

Цель — то, что представляется в сознании и ожидается в результате определенных направленных действий

3. Опасность. Номенклатура опасностей. Таксономия опасностей

Опасность — центральное понятие БЖД, под которым понимаются любые явления, угрожающие жизни и здоровью человека. Количество признаков, характеризующих опасность, может быть увеличено или уменьшено в зависимости от целей анализа. Опасность хранят все системы, имеющие энергию, химически или биологически активные компоненты, а также характеристики, несоответствующие условиям жизнедеятельности человека.

Опасности носят потенциальный характер. Актуализация опасностей происходит при определенных условиях, именуемых причинами. Признаками, определяющими опасность, являются: угроза для жизни; возможность нанесения ущерба здоровью; нарушение условий нормального функционирования органов и систем человека. Опасность — понятие относительное.

Номенклатура — система названий, терминов, употребляемых в какой-либо отрасли науки, техники. В теории БЖД целесообразно выделить несколько уровней номенклатуры: общую, локальную, отраслевую, местную (для отдельных объектов) и др. В общую номенклатуру в алфавитном порядке включаются все виды опасностей: алкоголь, аномальная температура воздуха, аномальная влажность воздуха, аномальная подвижность воздуха, аномальное барометрическое давление, арборициды, аномальное освещение, аномальная ионизация воздуха, вакуум, взрыв, взрывчатые вещества, вибрация, вода, вращающиеся части машины, высота, газы, гербициды, глубина, гиподинамия, гипокинезия, гололед, горячие поверхности, динамические перегрузки, дождь, дым, движущиеся предметы, едкие вещества, заболевания, замкнутый объем, избыточное давление в сосудах, инфразвук, инфракрасное излучение, искры, качка, кинетическая энергия, коррозия, лазерное излучение, листопад, магнитные поля, микроорганизмы, медикаменты, метеориты, микроорганизмы, молнии (грозы), монотонность, нарушение газового состава воздуха, наводнение, накипь, недостаточная прочность, неровные поверхности, неправильные действия персонала, огнеопасные вещества, огонь, оружие (огнестрельное, холодное и т. д.), острые предметы (колющие, режущие), отравление, ошибочные действия людей, охлажденные поверхности, падение (без установленной причины), пар, перегрузка машин и механизмов, перенапряжение анализаторов, пестициды, повышенная яркость света, пожар, психологическая несовместимость, пульсация светового потока, пыль, рабочая поза, радиация, резонанс, сенсорная депривация, скорость движения и вращения, скользкая поверхность, снегопад, солнечная активность, солнце (солнечный удар), сонливость, статические перегрузки, статическое электричество, тайфуны, ток высокой частоты, туман, ударная волна, ультразвук, ультрафиолетовое излучение, умственное перенапряжение, ураган, ускорение, утомление, шум, электромагнитное поле, эмоциональный стресс, эмоциональная перегрузка, ядовитые вещества и др.

При выполнении конкретных исследований составляется номенклатура опасностей для отдельных объектов (производств, цехов, рабочих мест, процессов, профессий и т. п.). Полезность номенклатур состоит в том, что они содержат полный перечень потенциальных опасностей и облегчают процесс идентификации. Процедура составления номенклатуры имеет профилактическую направленность.

Таксономия — наука о классификации и систематизации сложных явлений, понятий, объектов. Поскольку опасность является понятием сложным, иерархическим, имеющим много признаков, таксономирование их выполняет важную роль в организации научного знания в области безопасности деятельности, позволяет глубже познать природу опасности. Термин “таксономия” предложил швейцарский ботаник О. Декандоль в 1813 г.

Совершенная, достаточно полная таксономия опасностей пока не разработана. Приведем лишь некоторые примеры. По происхождению различают 6 групп опасностей: природные, техногенные, антропогенные, экологические, социальные, биологические. По характеру воздействия на человека опасности можно разделить на 5 групп: механические, физические, химические, биологические, психофизиологические.

По времени проявления отрицательных последствий опасности делятся на импульсивные и кумулятивные.

По локализации опасности бывают: связанные с литосферой, гидросферой, атмосферой, космосом.

По вызываемым последствиям: утомление, заболевания, травмы, аварии, пожары, летальные исходы и т. д.

По приносимому ущербу:социальный, технический, экологический, экономический.

Сферы проявления опасностей: бытовая, спортивная, дорожно-транспортная, производственная, военная и др.

По структуре (строению): простые и производные, порождаемые взаимодействием простых.

По реализуемой энергии опасности делятся на активные и пассивные. Кпассивным относятся опасности, активизирующиеся за счет энергии, носителем которой является сам человек. Это — острые (колющие и режущие) неподвижные элементы; неровности поверхности, по которой перемещается человек; уклоны, подъемы; незначительное трение между соприкасающимися поверхностями и др. Различают априорные признаки (предвестники) опасности и апостериорные признаки (следы) опасностей.

Идентификация — процесс обнаружения и установления количественных, временных, пространственных и иных характеристик, необходимых и достаточных для разработки профилактических и оперативных мероприятий, направленных на обеспечение жизнедеятельности. В процессе идентификации выявляются: номенклатура опасностей,вероятность их проявления, пространственная локализация (координаты), возможный ущерб и другие параметры, необходимые для решения конкретной задачи. Главное в идентификациизаключается в установлении возможных причин проявления опасности. Полностью идентифицировать опасность очень трудно.

Условия в которых реализуются потенциальные опасности, называются причинами. Причины характеризуют совокупность обстоятельств, благодаря которым опасности проявляются и называются те или иные нежелательные последствия, ущерб. Формулы ущерба, или желательные последствия, разнообразны: травмы различной тяжести, заболевания, определяемые современными методами, урон окружающей среде и др.

Опасность, причины, следствия являются основными характеристиками таких событий, как несчастный случай, чрезвычайная ситуация, пожар и т. д. Триада “опасность — причины — нежелательные следствия” — это логический процесс развития, реализующий потенциальную опасность в реальный ущерб (последствие). Как правило, этот процесс является многопричинным. Одна и та же опасность может реализоваться в нежелательное событие через разные причины. В основе профилактики несчастных случаев по существу лежит поиск причин

4. Понятие о концепции приемлемого (допустимого) риска

Традиционная концепция приемлемого (допустимого) рискатехника безопасности базируется на категорическом императиве — обеспечить безопасность, не допустить никаких аварий. Как показывает практика, такая концепция неадекватна законам техносферы и может обернуться трагедией для людей потому, что обеспечить нулевой риск в действующих системах невозможно. Современный мир отверг концепцию абсолютной безопасности и пришел к концепции приемлемого (допустимого) риска, суть которой в стремлении к такой безопасности, которую приемлет общество в данный период времени. Восприятие общественностью риска и опасностей субъективно. Люди резко реагируют на события редкие, сопровождающиеся большим числом единовременных жертв.

В то же время частые события, в результате которых погибают единицы или небольшие группы людей, не вызывают столь напряженного отношения. Ежедневно на производстве погибает 40-50 человек, в целом по стране от различных опасностей лишаются жизни более 1000 человек в день. Но эти сведения менее впечатляют, чем гибель 5-10 человек в одной аварии или каком-либо конфликте. Это необходимо иметь в виду при рассмотрении проблемы приемлемого риска. Субъективность в оценке риска подтверждает необходимость поиска приемов и методологий, лишенных этого недостатка. По мнению специалистов, использование риска в качестве оценки опасностей предпочтительнее, чем использование традиционных показателей. Приемлемый риск сочетает в себе технические, экономические, социальные и политические аспекты и представляет некоторый компромисс между уровнем безопасности и возможностями ее достижения. Прежде всего, нужно иметь в виду, что экономические возможности повышения безопасности технических систем небезграничны. Затрачивая чрезмерные средства на повышение безопасности, можно нанести ущерб социальной сфере, например ухудшить медицинскую помощь.

При увеличении затрат технический риск снижается, но растет социальный. Суммарный риск имеет минимум при определенном соотношении между инвестициями в техническую и социальную сферы. Это обстоятельство и нужно учитывать при выборе риска, с которым общество пока вынуждено мириться. В некоторых странах, например в Голландии, приемлемые риски установлены в законодательном порядке. Максимально приемлемым уровнем индивидуального риска гибели обычно считается 10- 6 в год. Пренебрежительно малым считается индивидуальный риск гибели 10- 8 в год.

Максимально приемлемым риском для экосистем считается тот, при котором может пострадать 5% видов биогеоценоза. На самом деле приемлемые риски на 2-3 порядка “строже” фактических. Следовательно, введение приемлемых рисков является акцией, прямо направленной на защиту человека.

5. Управление риском. Системный анализ безопасности

Основным вопросом теории и практики безопасности является повышение уровня безопасности. Для этой цели средства можно расходовать по трем направлениям:

1) совершенствование технических систем и объектов; 2) подготовка персонала; 3) ликвидация последствий.

Для определения соотношения инвестиций по каждому из этих направлений необходим специальный анализ с использованием конкретных данных. Обоснованные данные необходимы для расчета риска. Острая потребность в данных в настоящее время признана во всем мире на национальном и международном уровне. Необходима тщательно аргументированная разработка базы и банков данных и их реализация в условиях предприятия, региона. В основе управления риском лежит методика сравнения затрат и получаемых выгод от снижения риска.

Последовательность изучения опасностей:

Стадия I — предварительный анализ опасности (ПАО).

Шаг 1. Выявить источники опасности.

Шаг 2. Определить части системы, которые могут вызвать эти опасности.

Шаг 3. Ввести ограничения на анализ, т. е. исключить опасности, которые не будут изучаться.

Стадия II — выявление последовательности опасных ситуаций, построение дерева событий и опасностей.

Стадия III — анализ последствий.

Системный анализ — это совокупность методологических средств, используемых для подготовки и обоснования решений по сложным проблемам, в данном случае, безопасности. Система — это совокупность взаимосвязанных компонентов, взаимодействующих между собой таким образом, что достигается определенный результат (цель). Под компонентами (элементами, составными частями) системы понимаются не только материальные объекты, но и отношения и связи. Любая машина представляет пример технической системы. Система, одним из элементов которой является человек, называется эргатической. Примеры эргатической системы: “человек-машина”, “человек-машина-окружающая среда” и т. п. Любой предмет может быть представлен как системное образование. Принцип системности рассматривает явления в их взаимной связи, как целостный набор или комплекс. Цель или результат, который дает система, называют системообразующим элементом. Например, такое системное явление, как горение (пожар), возможно при наличии следующих компонентов: горючее вещество, окислитель, источник воспламенения. Исключая хотя бы один из названных компонентов, мы разрушаем систему.

Системы имеют качества, которых может не быть у элементов, их образующих. Это важнейшее свойство систем, именуемоеэмерджентностью, лежит, по существу, в основе системного анализа вообще и проблем безопасности, в частности.

Эмерджентность (от англ. emergence — возникающий, неожиданно появляющийся) в теории систем — наличие у какой-либо системы особых свойств, не присущих её подсистемам и блокам, а также сумме элементов, не связанных особыми системообразующими связями; несводимость свойств системы к сумме свойств её компонентов; синоним — «системный эффект».

В биологии и экологии понятие эмерджентности можно выразить так: одно дерево — не лес, скопление отдельных клеток — не организм.

В эволюционистике выражается как возникновение новых функциональных единиц системы, которые не сводятся к простым перестановкам уже имевшихся элементов.

В классификации систем эмерджентность может являться основой их систематики как критериальный признак системы.

Методологический статус системного анализа необычен: в нем переплетаются элементы теории и практики, строгие формализованные методы сочетаются с интуицией и личным опытом, с эвристическими приемами. Цель системного анализа безопасности состоит в том, чтобы выявить причины, влияющие на появление нежелательных событий (аварий, катастроф, пожаров, травм и т. п.), и разработать предупредительные мероприятия, уменьшающие вероятность их появления.

6. Анализ причинно-следственных связей между реализованными опасностями и причинами

Любая опасность реализуется, принося ущерб, благодаря какой-то причине или нескольким причинам. Без причин нет реальных опасностей. Следовательно, предотвращение опасностей или защита от них базируется на знании причин. Между реализованными опасностями и причинами существует причинно-следственная связь; опасность есть следствие некоторой причины (причин), которая, в свою очередь, является следствием другой причины и т. д. Таким образом, причины и опасности образуют иерархические, цепные структуры или системы. Графическое изображение таких зависимостей чем-то напоминает ветвящееся дерево. В зарубежной литературе, посвященной анализу безопасности объектов, используются такие термины, как “дерево причин”, “дерево отказов”, “дерево опасностей”, “дерево событий”. В строящихся деревьях, как правило, имеются ветви причин и ветви опасностей, что полностью отражает диалектический характер причинно-следственных связей. Разделение этих ветвей нецелесообразно, а иногда и невозможно. Поэтому точнее называть полученные в процессе анализа безопасности объектов графические изображения “деревьями причин и опасностей”.

Построение “деревьев” является исключительно эффективной процедурой выявления причин различных нежелательных событий (аварий, травм, пожаров, дорожно-транспортных происшествий и т. д.).

Многоэтапный процесс ветвления “дерева” требует введения ограничений с целью определения его пределов. Эти ограничения целиком зависят от целей исследования. В общем, границы ветвления определяются логической целесообразностью получения новых ветвей.

7. Логические операции при системном анализе безопасности

Логические операции принято обозначать соответствующими знаками. Чаще всего употребляются операции “И” и “ИЛИ”. Операция (или вентиль) “И” указывает, что для получения данного выхода необходимо соблюсти все условия на входе. Вентиль “ИЛИ” указывает, что для получения данного выхода должно быть соблюдено хотя бы одно из условий на входе.

Методы анализа. Анализ безопасности может осуществляться априорно или апостериорно, т. е. до или после нежелательного события. В обоих случаях используемый метод может быть прямым и обратным.

Априорный анализ. Исследователь выбирает такие нежелательные события, которые являются потенциально возможными для данной системы, и пытается составить набор различных ситуаций, которые могут привести к их появлению.

Апостериорный анализ. Выполняется после того, как нежелательные события уже произошли. Цель такого анализа — разработка рекомендаций на будущее. Априорный и апостериорный анализы дополняют друг друга. Прямой метод анализа состоит в изучении причин, чтобы предвидеть последствия. При обратном методе анализируются последствия, чтобы определить причины, т. е. анализ начинается с венчающего события. Конечная цель всегда одна — предотвращение нежелательных событий. Имея вероятность и частоту возникновения первичных событий, можно, двигаясь снизу вверх, определить вероятность венчающего события. Основной проблемой при анализе безопасности — установление параметров или границ системы в зависимости от конкретных целей анализа.

8. Методы обеспечения безопасности. Классификация. Определения

Гомосфера — пространство (рабочая зона), где находится человек в процессе рассматриваемой деятельности. Ноксосфера — пространство, в котором постоянно существуют или периодически возникают опасности. Совмещение гомосферы и ноксосферы недопустимо с позиций безопасности. Обеспечение безопасности достигается тремя основными методами.

Метод А состоит в пространственном и (или) временном разделении гомосферы и ноксосферы. Это достигается средствами дистанционного управления, автоматизации, роботизации, организации и др.

Метод Б состоит в нормализации ноксосферы(ноксосфера — пространство, в котором постоянно существуют или периодически возникают опасности) путем исключения опасностей. Это совокупность мероприятий, защищающих человека от шума, газа, пыли, опасности травмирования и т. п. средствами коллективной защиты.

Метод Ввключает гамму приемов и средств, направленных на адаптацию человека к соответствующей среде и повышению его защищенности. Данный метод реализует возможности профотбора, обучения, психологического воздействия, СИЗ. В реальных условиях реализуется комбинация названных методов.

Средства обеспечения безопасности делятся на средства коллективной (СКЗ) и индивидуальной защиты (СИЗ). В свою очередь СКЗ и СИЗ делятся на группы в зависимости от характера опасностей, конструктивного исполнения, области применения и т. д. В широком понимании к средствам безопасности следует относить все то, что способствует защищенности человека от опасности, а именно: воспитание, образование, укрепление здоровья, дисциплинированность, здравоохранение, государственные органы управления и т. п.

Вопросы для самоконтроля знаний:

1. Основные положения учебной дисциплины БЖД

2. Какие задачи решает БЖД?

3. Дать определение основным понятиям «Безопасность жизнедеятельности»: «безопасность», «деятельность», «условия деятельности», «здоровье», «идентификация опасности», «опасность», причина», «риск» и т.д.

4. Что такое «таксономия опасности»? Перечислите группы опасности

5. Что такое «концепция приемлемого (допустимого) риска»?

6. Что такое «управление риском»?

7. Перечислите стадии и шаги последовательности изучения опасности

8. Что такое «системный анализ безопасности»?

9. Что такое эмерджентность системы?

10. Перечислить методы анализа при системном анализе безопасности

11. Перечислить методы обеспечения безопасности жизнедеятельности

· Арустамова Э.А. — М.: Издательско-торговая корпорация «Дашков и К°», 2003. — 496 с.

· Экологическая безопасность. Защита территории и населения при чрезвычайных ситуациях. Учебное пособие/ Гринин А.С., Новиков В.Н.- М.: Фаир — Пресс, 2002.- 336 с.

· Мастрюков Б.С. Безопасность в чрезвычайных ситуациях: Учебник для вузов. — М.: Изд. центр «Академия», 2003.- 336 с.

· «О защите населения и территории от чрезвычайных ситуаций природного и техногенного характера» от 21 декабря 1994 г. №68-ФЗ.

· «О пожарной безопасности» от 21 декабря 1994 г. № 69-ФЗ.

· «О радиационной безопасности населения» от 9 января 1996 г. № 3-ФЗ.

· «О промышленной безопасности опасных производственных объектов» от 21 июля 1997 г. № 116-ФЗ.

· «Об аварийно-спасательных службах и статусе спасателей» от 22 августа 1995 г. №151-ФЗ.

· «Об обороне» от 31 мая 1996 г. №61-ФЗ.

· «О гражданской обороне» от 12 февраля 1998 г. №28-ФЗ.

· «О безопасности гидротехнических сооружений» от 21 июля 1997г. №117-ФЗ.

Постановления Правительства РФ

· «О порядке подготовки населения в области защиты от чрезвычайных ситуаций» от 24 июля 1995 г. №738.

· «О единой государственной системе предупреждения и ликвидации чрезвычайных ситуаций» от 5 ноября 1995 г. № 1113.

· «О силах и средствах единой государственной системы предупреждения и ликвидации чрезвычайных ситуаций» от 3 августа 1996 г. № 924.

Размещено на Allbest.ru

Подобные документы

Основные понятия, термины и задачи предмета «Безопасность жизнедеятельности». Классификация опасных и чрезвычайных ситуаций (ЧС). Правовое регулирование национальной безопасности и единая государственная система предупреждения и ликвидации ЧС.

реферат [32,7 K], добавлен 10.03.2009

История возникновения научной и учебной дисциплины. Признаки опасности. Принципы БЖД. Виды негативных воздействий в системе «Человек — Среда обитания». Понятие «риск». Определение риска. Методы выявления производственных опасностей.

реферат [56,1 K], добавлен 09.06.2002

Понятие, цель и составляющие безопасности жизнедеятельности. Содержание аксиомы о потенциальной опасности. Основные виды опасностей. Особенности конфликтных и бесконфликтных чрезвычайных ситуаций, их классификация по скорости и масштабам распространения.

презентация [1,3 M], добавлен 19.04.2014

Концепция обеспечения безопасности жизнедеятельности. Человек и среда обитания. Физические, химические, биологические, социальные факторы, способные оказывать прямое или косвенное, немедленное или отдаленное воздействие на деятельность человека.

контрольная работа [55,8 K], добавлен 18.12.2014

БЖД – степень защиты человека от чрезвычайных опасностей. Основная направленность мероприятий по безопасности жизнедеятельности. Понятие и критерий безопасности. Классификация рисков и опасностей, их проявления. Влияние факторов опасности на человека.

курс лекций [33,2 K], добавлен 20.07.2010

Понятие, критерии определения и оценивания психофизиологического состояния человека, факторы, оказывающие на него влияние: среда, наркотические, алкогольные и другие вещества. Организационные мероприятия обеспечения безопасности жизнедеятельности.

контрольная работа [359,6 K], добавлен 10.04.2010

Средства обеспечения безопасности жизнедеятельности. Механические активные и пассивные опасности: сущность и примеры, количественное описание и защитные мероприятия. Особенности проявления, негативные последствия и защита от космических опасностей.

контрольная работа [26,9 K], добавлен 19.01.2012

Общие положения и основные понятия безопасности жизнедеятельности. Организация безопасности жизнедеятельности в образовательных учреждениях. Охрана труда, радиационная, экологическая, электротехническая и пожарная безопасность, взрывобезопасность.

курсовая работа [25,6 K], добавлен 18.05.2014

Сущность и виды риска, основные положения его теории. Концепция приемлемого (допустимого) риска. Последовательность изучения опасностей. Цель системного анализа безопасности, принципы ее обеспечения и средства управления ею. Причины отказов оборудования.

презентация [226,2 K], добавлен 09.02.2014

Факторы и ситуации, оказывающие отрицательное влияние на человека. Системно-структурная модель основ безопасности жизнедеятельности (ОБЖ) как науки, её цели. Классификация и характеристика опасностей. Определение приемлемого риска и системы безопасности.

презентация [1,1 M], добавлен 17.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.

Основные понятия и определения сопромата.

Сопротивление материалов – раздел механики деформируемого твердого тела, в котором рассматриваются методы расчета элементов машин и сооружений на прочность, жесткость и устойчивость.

Прочностью называется способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций. Расчеты на прочность дают возможность определить размеры и форму деталей, выдерживающих заданную нагрузку, при наименьшей затрате материала.

Жесткостью называется способность тела сопротивляться образованию деформаций. Расчеты на жесткость гарантируют, что изменения формы и размеров тела не превзойдут допустимых норм.

Устойчивостью называется способность конструкций сопротивляться усилиям, стремящимся вывести их из состояния равновесия. Расчеты на устойчивость предотвращают внезапную потерю равновесия и искривление элементов конструкции.

Долговечность состоит в способности конструкции сохранять необходимые для эксплуатации служебные свойства в течение заранее предусмотренного срока времени.

Брус (рис.1, а — в) представляет собой тело, размеры перечного сечения которого малы по сравнению с длиной. Ось бруса, это линия, соединяющая центры тяжести его поперечных сечений. Различают брусья постоянного или переменного поперечного сечения. Брус может иметь прямолинейную или криволинейную ось. Брус с прямолинейной осью называется стержнем (рис.1, а, б). Тонкостенные элементы конструкции разделяют на пластины и оболочки.

Оболочка (рис.1, г) это тело, один из размеров которого (толщина) намного меньше остальных. Если поверхность оболочки представляет собой плоскость, то объект называют пластиной (рис.1, д). Массивами называются тела, у которых все размеры одного порядка (рис.1, е). К ним относятся фундаменты сооружений, подпорные стены и др.

Эти элементы в сопротивлении материалов используются для составления расчетной схемы реального объекта и проведения ее инженерного анализа. Под расчетной схемой понимается некоторая идеализированная модель реальной конструкции, в которой отброшены все малосущественные факторы, влияющие на ее поведение под нагрузкой

Допущения о свойствах материала

Материал считается сплошным, однородным, изотропным и идеально упругим.
Сплошность – материал считается непрерывным. Однородность –физические свойства материала одинаковы во всех его точках.
Изотропность – свойства материала одинаковы по всем направлениям.
Идеальная упругость – свойство материала ( тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Допущения о деформациях

1. Гипотеза об отсутствии первоначальных внутренних усилий.

2. Принцип неизменности начальных размеров – деформации малы по сравнению с первоначальными размерами тела.

3. Гипотеза о линейной деформируемости тел – деформации прямо пропорциональны приложенным силам (закон Гука).

4. Принцип независимости действия сил.

5. Гипотеза плоских сечений Бернулли – плоские поперечные сечения бруса до деформации остаются плоскими и нормальными к оси бруса после деформации.

6. Принцип Сен-Венана – напряженное состояние тела на достаточном удалении от области действия локальных нагрузок очень мало зависит от детального способа их приложения

Внешние силы

Действие на конструкцию окружающих тел заменяют силами, которые называют внешними силами или нагрузками. Рассмотрим их классификацию. К нагрузкам относятся активные силы (для восприятия которых создана конструкция), и реактивные (реакции связей) — уравновешивающие конструкцию силы. По способу приложения внешние силы можно разделить на сосредоточенные и распределенные. Распределенные нагрузки характеризуются ин- тенсивностью, и могут быть линейно, поверхностно или объемно распределенными. По характеру воздействия нагрузки внешние силы бывают статические и динамические . К статическим силам относят нагрузки, изменения которых во времени малы, т.е. ускорениями точек элементов конструкций (силами инерции) можно пренебречь. Динамические нагрузки вызывают в конструкции или отдельных ее элементах такие ускорения, которыми при расчетах пренебрегать нельзя

Внутренние силы. Метод сечений.

Действие на тело внешних сил приводит к его деформации (меняется взаимное расположение частиц тела). Вследствие этого между частицами возникают дополнительные силы взаимодействия. Это силы сопротивления изменению формы и размеров тела под действием нагрузки, называют внутренними силами (усилиями). С увеличением нагрузки внутренние усилия возрастают. Выход из строя элемента конструкции наступает при превышении внешних сил некоторого предельного для данной конструкции уровня внутренних усилий. Поэтому оценка прочности нагруженной конструкции требует знания величины и направления возникающих внутренних усилий. Значения и направления внутренних сил в нагруженном теле определяют при заданных внешних нагрузках методом сечений.

Метод сечений (см. рис. 2) состоит в том, что брус, находящийся в равновесии под действием системы внешних сил, мысленно рассекают на две части (рис. 2, а), и рассматривают равновесие одной из них, заменяя действие отброшенной части бруса системой внутренних сил, распределенных по сечению (рис. 2, б). Заметим, что внутренние силы для бруса в целом, становятся внешними для одной из его частей. Причем во всех случаях внутренние усилия уравновешивают внешние силы, действующие на отсеченную часть бруса.

В соответствии с правилом параллельного переноса сил статики приведем все распределенные внутренние силы к центру тяжести сечения. В результате получим их главный вектор R и главный момент M системы внутренних сил (рис. 2, в). Выбрав систему координат Oxyz так, чтобы ось z являлась продольной осью бруса и проецируя главный вектор R и главный момент M внутренних сил на оси, получим шесть внутренних силовых факторов в сечении бруса: продольную силу N, поперечные силы Qx и Qy, изгибающие моменты Мx и My, а также крутящий момент Т. По виду внутренних силовых факторов можно определить характер нагружения бруса. Если в поперечных сечениях бруса возникает только продольная сила N, а другие силовые факторы отсутствуют, то имеет место «растяжение» или «сжатие» бруса (в зависимости от направления силы N). Если в сечениях действуют только поперечная сила Qx или Qy — это случай «чистого сдвига». При «кручении» в сечениях бруса действуют только крутящие моменты Т. При «чистом изгибе» — только изгибающие моменты М. Возможнытакже комбинированные виды нагружения (изгиб с растяжением, кручение с изгибом и др.) – это случаи «сложного сопротивления». Для наглядного представления характера изменения внутренних силовых факторов вдоль оси бруса строят их графики, называемые эпюрами . Эпюры позволяют определить наиболее нагруженные участки бруса и установить опасные сечения.

Основные понятия и определения теории автоматического управления. Предмет и задачи дисциплины

Теория автоматического управления (ТАУ) является теоретической основой, на базе которой разрабатываются большинство автоматических устройств. Предметом изучения ТАУ являются принципы построения, методы анализа и синтеза широко распространённых систем автоматического регулирования и управления.

Основоположником ТАУ, зародившейся немногим более века назад, является проф. Петербургского технологического института И.А. Вышнеградский (1831—1895). Основы ТАУ были изложены в его работе «О регуляторах прямого действия» (1876 г.) Он впервые показал, что процессы в устройстве управления и связанном с ним объектом неразрывно связаны между собой и требуют совместного исследования.

В устройствах управления важное место занимает проблема обеспечения устойчивости движения. Основоположником строгой теории устойчивости является профессор Харьковского университета А.М. Ляпунов (1857-1918).

Основные понятия и определения

Мир технических систем разнообразен. Однако математика и физика выявили простые параллели в этом сложном мире. Можно выделить ряд энергетических доменов, которым принадлежат те или другие системы или их модули. Это электрический, магнитный, термальный, гидравлический, акустический, механический и ротационный домены. Так же существуют два фундаментальных постулата. Первый постулат гласит, что материя не может появиться ни откуда и не может исчезнуть в никуда. Второй постулат утверждает то же самое в отношении энергии. Эти постулаты имеют частные формулировки для каждого энергетического домена. Например, для электрического домена это первый и второй законы Кирхгофа. Каждый из энергетических доменов характеризуется двумя физическими величинами первого и второго рода. В случае электрического домена — это электрические ток и напряжение соответственно. Эти парные физические величины, в каждом энергетическом домене, связаны между собой законом Ома в соответствующей формулировке (существуют: электрическое, магнитное, термальное, гидравлическое, акустическое, механическое и ротационное сопротивления). Так же следует отметить, что произведение физических величин первого и второго рода всегда есть мощность.

Представленная система параллелей позволяет понять, что математическое описание процессов движения координат систем принадлежащих разным энергетическим доменам подобно, и может быть предметом изучения одной науки, которая называется «Теория систем автоматического регулирования». Более того, в последние годы, приобретен успешный опыт применения методов этой теории при решении задач управления в экономических, финансовых и других нетехнических системах.

Производственный, технологический или технический объект, нуждающийся для определенного взаимодействия с другими объектами или процессами в специально организованном управляющем воздействии, называется объектом управления (ОУ).

Состояние любого технического устройства, которые можно характеризовать одной или несколькими физическими величинами. Физические величины, характеризующие состояние объекта управления называются выходными переменными объекта. Их совокупность определяют как вектор выходных состояний объекта управления. Этот вектор должен удовлетворять определенным требованиям, предъявляемым как установившимся, так и динамическим режимам работы технического устройства. Совокупность предписаний, определяющих характер изменения вектора входных состояний объекта управления, называется алгоритмом его функционирования. Несмотря на многообразие технических устройств можно выделить 3 базовых алгоритма их функционирования. К ним относятся:

Алгоритм стабилизации, который требует постоянства вектора выходного состояния ОУ и равенство его заданному значению .

При этом заданное значение должно оставаться постоянным в течении достаточно долгого периода времени. Примером систем, в которых используется алгоритм стабилизации, являются приводы главного движения станочного оборудования.

Программный алгоритм, для которого характерно изменение вектора выходного состояния ОУ по наперед известному закону или программе. В этом случае заданное значение вектора выходного состояния является известной функцией времени, то есть

Примером использования такого алгоритма являются системы числового программного управления.

Следящий алгоритм работы ОУ характеризуется тем, что требуемый закон изменения вектора выходного состояния объекта заранее неизвестен. Следящий алгоритм может быть описан выражением:

где — неопределенная функция времени.

Таким алгоритмом работы характеризуются системы наведения или слежения за состоянием объекта, изменяющегося по случайному закону. Например, системы компенсации износа режущего инструмента.

Графическое представление алгоритмов функционирования для вектора выходного состояния, содержащего только одну компоненту, представлено на рис. 1.

Рис. 1 Алгоритмы функционирования ОУ

Можно привести графическое представление алгоритмов работы САУ в пространстве состояний как точка, регулярная траектория и случайная траектория.

Для формирования требуемого алгоритма работы ОУ на него подается одно или несколько управляющих воздействий. Эти управляющие воздействия, скомпонованные в виде матрицы столбца, называются вектором управляющих воздействий. Взаимосвязь этих величин определяется как переходная характеристика ОУ

В случае многомерных ОУ переходная характеристика представляется в виде матрицы переходной характеристики.

На практике вектор выходных состояний в процессе работы ОУ отклоняется от требуемого значения. Это вызывается взаимодействием объекта со средой его обитания и изменением параметров самого объекта управления. Взаимодействие ОУ с внешней средой характеризуется различного рода возмущающими факторами. Их совокупность называется вектором возмущающих воздействий на объект управления или внешних вектором возмущений.

Вторым важным фактором влияющим на изменение вектора выходного состояния ОУ являются изменение параметров самого объекта в процессе его работы. Такие воздействия называют параметрическими, а их совокупность можно представить в виде вектора параметрических возмущений .

На рис. 2 показано взаимодействие объекта управления с окружающей средой.

Рис. 2 Условия работы ОУ

Еще одной причиной отклонения вектора выходного состояния от требуемого значения является инерционность ОУ, проявляющаяся при изменении вектора управляющих воздействий на объект. Очевидно, что для изменения вектора выходного состояния ОУ необходимо изменение вектора управляющих воздействий на этот объект. То есть имеет место следующая последовательность действий:

Для любого инерционного ОУ оказывается невозможным мгновенное изменение выходной переменной вслед за управляющим воздействием. Это утверждение справедливо для большинства энергетических доменов — механического, электрического, теплового и др.

При изменении управляющего воздействия на объект, обладающий некоторой инерционностью, возникает переходный процесс. В течении этого процесса вектор выходного состояния ОУ не будет соответствовать требуемому значению. Характер переходного процесса определяется динамическими свойствами ОУ и закона изменения управляющего воздействия. Один из возможных видов переходного процесса для инерционного ОУ показан на рис. 3.

Рис. 3 Переходный процесс в ОУ

Действие любого возмущающего фактора на объект управления приводит к отклонению значения вектора выходного состояния ОУ от требуемого значения. То есть имеет место соотношение:

Такое отклонение называется ошибкой управления объектом управления. Глобальной задачей теории автоматического управления можно считать определение такого алгоритма управления, который обеспечивает минимальное или не превышающего необходимого, отклонение вектора выходного состояния ОУ от требуемого значения.

Принцип действия всякой системы автоматического регулирования (САР) заключается в том, чтобы обнаруживать отклонения регулируемых величин, характеризующих работу объекта или протекание процесса от требуемого режима и при этом воздействовать на объект или процесс так, чтобы устранять эти отклонения.

Под управлением понимают процесс организации такого целенаправленного воздействия на объект управления, в результате действия которого последний переходит в требуемое состояние. (по академику А.И. Бергу).

Для решения этой задачи используются разнообразные управляющие устройства или регуляторы. Управляющим устройством называется устройство, обеспечивающее формирование управляющего воздействия на объект управления, соответствующего алгоритму его работы. Устройство, выполняющее эти функции без непосредственного участия человека, называется автоматическим управляющим устройством или регулятором.

Совокупность объекта управления и управляющего устройства, взаимодействие которых приводит к выполнению поставленной цели, называется системой автоматического управления (рис. 4). Такая система включает в себя кроме ОУ и устройства управления, задающее устройство, которое формирует необходимый закон изменения требуемых значений вектора выходного состояния объекта управления.

Более частным случаем понятия «Управление» является понятие «регулирование». Регулирование состоит в достижении такой деятельности системы, при которой выравниваются все отклонения на выходе системы от заданного значения этого состояния. обеспечение только требуемых значений параметров, определяющих желаемый ход технологического процесса в том или ином объекте без участия человека, осуществляется системой автоматического регулирования.

Рис. 4 Функциональная схема САУ

Заданное значение технического параметра может быть постоянным или переменным. В первом случае говорят о прямом регулировании совмещенном с управлением. Во втором случае регулирование заключается в корректировке отклонений вектора выходных состояний системы от нормы каждого компонента этого вектора. Следовательно, регулированием можно назвать выравнивание отклонений от нормы, каждое значение которой определяется управлением.

В теории автоматического регулирования основными являются проблемы: устойчивости, качества переходных процессов, статической и динамической точности, автоколебаний, оптимизации, синтеза и отождествления (идентификации).

Задачи общей теории автоматического регулирования заключаются в решении перечисленных проблем. При поиске решений используются:

Методы анализа устойчивости замкнутых САР

Методы оценки качественных показателей САР

Методы повышения точности САР

Методы коррекции динамических свойств САР

Методы синтеза САР

Разработка же методов решения прикладных инженерных задач стоящих при проектировании САР есть глобальная цель теории систем автоматического регулирования.

Добавить комментарий