Перемещение преобразователя в электродвигатель поможет развиться электромобилям


СОДЕРЖАНИЕ:

Электродвигатель с транзисторными силовыми преобразователями.

Появление силовых транзисторов на токи порядка десятков и сотен ампер способствовало разработке ряда вариантов тяговых электроприводов электромобилей с транзисторными силовыми преобразователями в цепи якоря двигателя постоянного тока с независимым возбуждением. Типичными для этого направления являются работы французской фирмы «Рагоно» и американских — «Дженерал Электрик» и «Крайслер».

Фирмой «Рагоно» создан электропривод для электромобилей полной массой около 1200 кг , причем в качестве опытных образцов использовались конвертированные автомобили «Рено 5Л (Reno-ult 5L»). Привод осуществляется от двигателя номинальной мощностью 6 кВт при номинальной частоте вращения 5000 мин-1 и напряжении 96 В. В схеме электропривода предусмотрено два транзисторных импульсных преобразователя. Силовой преобразователь в цепи якоря состоит из параллельного соединения 11 групп по три транзистора в каждой. При номинальном токе якоря двигателя 75 А и кратности максимального тока около 4 А максимальная токовая нагрузка на транзистор не превышает 10 А. Каждая группа транзисторов снабжена защитной индуктивностью и обратным диодом. Силовой преобразователь работает с постоянной частотой коммутации 700 Гц и обеспечивает изменение относительной длительности импульсов выходного напряжения от 0,05 до 1. Регулирование скорости по возбуждению осуществляется до максимальной частоты вращения 7000 мин-1 с помощью транзисторного преобразователя, рассчитанного на изменение тока возбуждения от 2 до 8 А при постоянной частоте коммутации 1000 Гц.

Рис. 3.5. Схема электропривода электромобиля ETV-1 с транзисторным преобразователем фирмы «Дженерал электрик»

Принципиальная схема электропривода, разработанного фирмой «Дженерал Электрик» для экспериментального электромобиля ETV-1 фирмы «Крайслер», показана на рис. 3.5. По общей структуре этот электропривод близок к варианту двухзонного регулирования, приведенному на рис. 3.3. Двигатель постоянного тока независимого возбуждения М питается от тяговой батареи GB через силовой преобразователь цепи якоря. Обмотка возбуждения ОВ получает питание через преобразователь возбуждения ПВ.

Главной отличительной особенностью является использование мощных силовых транзисторов. Фирмой было предварительно проведено исследование ряда вариантов транзисторных преобразователей с использованием силовых транзисторов различных фирм 2SD648 фирмы «Тосиба» (Toshiba) на 200 А, 300 В; RSD-751 фирмы EVC на 100 А, 450 В и ряда других; после этого был разработан собственный силовой модуль (Ml-МЗ на рис. 3.5). Этот модуль представляет сборку из двух транзисторов по схеме Дарлингтона и шунтирующего обратного диода.

Параметры силового транзистора по схеме Дарлингтона:

Напряжение коллектор-эмиттер 350В

Напряжение насыщения при токе 200 А 1.6В

Номинальный ток 200 А

Коэффициент усиления по постоянному току при номинальном токе коллектора 250

Время спада тока коллектора 1,2 мкс

Время задержки 2,6 мкс

Два модуля Ml и М2 (рис. 3.5) соединены параллельно, и через них осуществляется импульсное питание якоря двигателя в режиме тяги. При этом в режиме разгона с максимальным ускорением ток достигает 400 А, причем допускаемая силовым преобразователем длительность такого тока составляет 1 мин. Для длительного режима номинальный ток преобразователя составляет 200 А, что согласовано с характеристиками применяемого электродвигателя, имеющего номинальный длительный ток 175 А.

В режиме электрического импульсного торможения якорь двигателя М замыкается транзисторным модулем МЗ, что позволяет иметь максимальный ток якоря при торможении 200 А в течение 1 мин и 100 А длительно. При периодическом замыкании цепи якоря происходит накопление электромагнитной энергии в индуктивностях якоря и добавочных полюсов двигателя, которая затем сбрасывается в аккумуляторную батарею GB по цепям обратных диодов силового преобразователя.

Индуктивность LI предназначена для защиты транзисторных модулей от перенапряжений при коммутации аппаратов в электроприводе. Сброс накопленной в этой индуктивности энергии при отключении цепи под током обеспечивает параллельная защитная цепь из вентиля VI и.резистора. Защита транзисторных модулей от недопустимых режимов при включении и выключении транзисторов производится специальными защитными цепями из конденсаторов CI, С2, вентиля V2 и резисторов Rl, R2. Кроме того, от перенапряжений цепи коллектор-эмиттер защищены диодами Зенера Z1 и Z2.

Транзисторный силовой преобразователь работает при сравнительно высокой частоте переключений. Эта частота непостоянная, а изменяется при изменении скважности, достигая максимальной величины 2000 Гц. Для компенсации индуктивного сопротивления аккумуляторной батареи и проводов монтажа вход силового преобразователя шунтирован батареей конденсаторов Ф суммарной емкостью 1200 мкФ.

Преобразователь возбуждения ПВ осуществляет регулирование тока возбуждения в пределах от 2,0 до 10,6 А при постоянной частоте коммутации выходного транзистора, равной 9500 Гц. Вентили КЗ-V5 служат для защиты выходного транзистора. Вместе с тем некоторые схемные особенности преобразователя ПВ определяются тем, что в электромобиле ETV-1 этот преобразователь выполняет вторую функцию — бортового зарядного выпрямителя. В этом режиме напряжение однофазной сети 115 В подается через мостовой однофазный выпрямитель (на схеме рис. 3.5 не показан) в точки а — плюсом и b — минусом. В цепи заряда тяговой батареи оказывается при этом включенной индуктивность L2, сглаживающая ток заряда батареи. В этом режиме преобразователь ПВ работает с переменной частотой коммутации 5-15 кГц и при регулируемом токе заряда от 2 до 24 А.

Реверсирование электродвигателя производится переключением полярности обмотки возбуждения ОВ с помощью контакторов ВиН.

Управление электроприводом предусматривается с помощью микропроцессора МП по структуре, показанной на рис. 3.5. Педали хода и торможения связаны с задающими потенциометрами, которые определяют сигналы управления тяговым и тормозным моментом. Магнитные датчики тока якоря двигателя ТЯ, тока возбуждения ТВ и тока батареи ТБ совместно с сигналами по напряжению батареи и частоте вращения двигателя ДС участвуют в процессе вычисления момента на валу. Через устройства интерфейса УВ и УТ микропроцессор управляет работой преобразователей питания якоря и возбуждения ПВ в соответствии с заданным тяговым или тормозным моментом. Так как при форсировке тока возбуждения двигателя до 10,6 А частота вращения двигателя составляет 1800 мин-1, то работа преобразователя питания якоря происходит в зоне от этой скорости и почти до нуля. При частоте вращения от 1800 до 5000 мин-1 силовой преобразователь питания якоря находится в режиме насыщения и, кроме того, шунтируется контактором КШ. По этой шунтирующей преобразователь цепи осуществляется и режим генераторного торможения на больших частотах вращения.

Современные конструкции электродвигателей постоянного тока с независимым возбуждением, регулируемым в достаточно широких пределах, создают основу для построения тяговых электроприводов, не имеющих импульсных преобразователей со сложными устройствами принудительной коммутации тиристоров в якорной цепи двигателя. Такие электроприводы разработаны в СССР лабораторией электромобилей НАМИ, а за рубежом — рядом японских фирм.

Виды двигателей для электромобиля

Наверное, каждый слышал, что жидкое топливо имеет ограниченный ресурс и в скором времени мы его исчерпаем. Вот почему многие производители автомобилей занялись разработками электрокаров. Двигатель для электромобиля имеет свои преимущества и недостатки: сравним его с ДВС и узнаем, можно ли купить электрический мотор и по какой цене.

Как устроен электрокар

Долго говорить об устройстве электрокара не придется, так как это обычное транспортное средство, в котором двигатель внутреннего сгорания (бензиновый или дизельный) заменен электромотором. Конечно, это повлекло некоторые изменения в механизмах управления, но суть осталась прежней.

Наверное, самым наглядным примером является электромобиль – это фактически тот же автомобиль, но только на электрической тяге. Узнайте подробнее, какое устройство электромобиля.

Что такое тяговый электромотор

Тяговый электропривод – это индукционный мотор, который предназначен для приведения в движение транспортного средства, независимо от его предназначения и габаритов. Подобными двигателями оснащены уже давно привычные нам транспортные средства:

  • погрузчики на складах;
  • троллейбусы;
  • локомотивы (поезда);
  • трамваи.

Относительно недавно такие агрегаты стали применяться и в гражданском автомобилестроении. Причем стоит отметить, что принципиально сами моторы не изменились: в зависимости от потребностей меняться может лишь размер и мощность устройства.

Тяговые электродвигатели для электрокара представляют собой мощные электрические моторы, которые в силу своих технических данных имеют некоторые конструктивные отличия от обычных двигателей:

  • индивидуальные способы крепления и усиленные крепежи;
  • место для размещения;
  • многогранные станины;
  • увеличенные габариты;
  • большой вес.

Тяговый электрический привод в силу того, что чаще всего используется в городских пассажирских транспортных средствах, должен быть рассчитан на эксплуатацию в довольно сложных погодных условиях – дождь, пыль, грязь, высокие и низкие температуры.

Все это делает обязательным наличие дополнительных способов защиты: тепло- и гидроизоляции.

Особенности тягового мотора:

  • Якорь состоит из:
    • сердечника,
    • обмотки,
    • вала,
    • коллектора.
  • Щетки и щеткодержатели в этом случае одна конструкция, которая крепится к остову через изоляторы.
  • Остов одновременно выполняет функции магнитопровода, ведь именно к нему крепятся основные и дополнительные полюса. Поэтому остов выполняется из стали, обладающей отличными магнитными свойствами.

Теперь рассмотрим принцип действия электромотора. Если в двух словах, то при подаче на обмотку статора образуется сильное вращающееся магнитное поле, которое наводит ток в короткозамкнутой обмотке ротора. Такое воздействие заставляет ротор вращаться. И чем сильнее магнитное поле, образуемое статором, тем мощнее будет сила вращения – так называемый крутящий момент.

Моторы для электрокаров

Существует большое количество разных разработок электрических моторов, которые отличаются между собой по множеству параметров. Иногда эти отличия весьма разительны.

Есть разделение по принципу работы:

  • По типу тока – переменный, постоянный или гибридный. Они, в свою очередь, могут разделяться на такие типы:
    • синхронный;
    • асинхронный;
    • шаговые и сервоприводы – как правило, используются в промышленных станках для точного позиционирования рабочего инструмента.
    • коллекторный и безколлекторный.
  • Мотор-колесо.

Каждый из этих приводов имеет свои особенности, которые определяют область применения. Поэтому давайте рассмотрим их подробнее.

Отличия по типу тока

Как мы знаем, существует два типа тока: переменный и постоянный.

По сути, такие моторы работают по схожим принципам: все отличия заключаются в способе питания привода. А он, в свою очередь, определяет некоторые особенности:

Электродвигатель постоянного тока имеет возможность более плавного и точного регулирования оборотов. А еще более высокий КПД, что очень важно в автомобилях. Но такой тип привода имеет и более высокую стоимость. Конструктивная особенность в том, что обмотка находится на роторе (он же называется якорем), который является подвижной вращающейся частью.

Двигатель переменного тока устроен так: обмотка мотора расположена на статоре. Причем между статором и ротором есть воздушный зазор, величина которого определяет другие дополнительные особенности привода. По большей части эти устройства нашли признание благодаря весьма простой конструкции.

Они разделяются на два типа:

  • Однофазный привод не имеет начального пускового момента, поэтому по большей части используется в бытовых приборах. Направление вращения определяется внешними силами в момент запуска.
  • Трехфазные разделяются на два подвида:
    • с короткозамкнутым ротором;
    • С фазным ротором.

Именно трехфазные электроприводы могут быть синхронными и асинхронными. Как раз асинхронный мотор с короткозамкнутым ротором получил наибольшее распространение.

Существуют универсальные приводы. В последнее время именно они вытесняют традиционные моторы постоянного и переменного тока.

Суть универсальных приводов заключается в том, что вся работа контролируется платой управления. Такие двигатели называются ЕС (англ. electronically communicated). Ротор такого привода имеет постоянные магниты, а статор оснащен набором неподвижных катушек. Подключение осуществляется при помощи электронных схем: они могут переключать фазы в неподвижных катушках, что помогает поддерживать вращение ротора.

В нужный момент плата управления подключает подачу постоянного тока в определенной полярности. Это увеличивает точность электромотора. Благодаря такой конструкции и внешнему управлению двигатель ЕС не имеет ограниченной синхронной скорости вращения.

Особенности мотора-колесо

Мотор-колесо уже давно известен, однако не получал применение в автомобилях в силу некоторых ограничений того времени. Относительно недавно была применена новая технология пусковой обмотки, благодаря чему получилось достичь высокого пускового момента.

Современное мотор-колесо для электромобиля имеет несколько преимуществ:

  • Устойчивость к перепадам температур.
  • Простота и дешевизна в производстве (сборке).
  • Низкий уровень шума при работе и малый вес.
  • Надежность и долговечность.
  • Простота в обслуживании.

По большей части это электродвигатели российского производства, так как изначально они были придуманы в РФ ученым Дуюновым, затем модернизированы.

Мотор-колесо состоит из тех же компонентов, что и обычный электродвигатель:

  • ротор с магнитами;
  • статор с катушками.

На статор подается электричество, которое при помощи катушек создает магнитное поле, воздействующее на магниты ротора, заставляя их вращаться. При этом все компоненты спрятаны внутри колеса.

Внутри ближе к центру оси располагается неподвижный статор с множеством катушек. Вокруг него подвижная часть – ротор с магнитами. Это традиционное расположение, но существуют варианты и с обратным порядком, когда вращающаяся часть находится внутри, а вокруг ротора располагается неподвижный статор. Такая конструкция имеет определенные преимущества, но реализовать ее технически сложнее.

Особенности электромотора

Можно выделить много положительных качеств, присущих электродвигателям:

  • экологичность,
  • экономичность,
  • низкий уровень шума,
  • простота в обслуживании,
  • долговечность.

К особенностям же можно отнести два наиболее важных показателя:

  • высокий крутящий момент,
  • неограниченное количество оборотов, что позволяет полностью исключить потребность в КПП.

Именно от этих параметров и зависит мощность автомобиля и его скорость. Конечно, есть и другие параметры, такие, как дальность пробега, надежность, легкость в обслуживании и многое другое. Но в первую очередь принимается во внимание именно крутящий момент и скорость вращения привода.

Крутящий момент

Тяговый показатель двигателя определяет мощность мотора. Измеряется данный показатель в ньютонах на метр (Hm).

Если говорить об электродвигателях, то современные приводы имеют весьма высокую мощность при относительно низком потреблении.

В целях экономии пространства и снижения веса автопроизводители стараются не оснащать машины слишком мощными приводами и большими аккумуляторами. Но даже в таком случае крутящий момент весьма высок.

Расчет электродвигателя включает в себя в первую очередь именно крутящий момент.

Если быть конкретнее, то минимальный показатель для электромобиля будет составлять около 170 Hm. Максимальный показатель может достигать и 10 000 Hm, как, например, у Tesla Roadster. Но такие характеристики стали возможными благодаря использованию КПП.

В большинстве случаев коробки переключения передач в электрокарах не используются, поэтому крутящий момент колеблется в диапазоне от 280 Hm до 600 Hm, чего более чем достаточно.

Количество оборотов

Как мы уже выяснили, электромотор обладает высоким потенциалом и отличной мощностью, а также имеет большое количество оборотов. Причем, как правило, количество оборотов ограничивается искусственно – платой управления. И это также является одним из преимуществ электрического привода в автомобилях. Конечно, все зависит от того, какого типа мотор будет установлен, какие аккумуляторы будут использоваться, и от других параметров.

На сегодняшний день количество оборотов асинхронного мотора, который используется в Tesla S, достигает 16 000 Обмин. В зависимости от производителя и типа двигателя данный показатель может изменяться, и, как правило, колеблется в пределах от 14 000 до 18 000 оборотов.

Коллекторный и бесколлекторный приводы

Для подачи питания на движущуюся часть двигателя (якорь) была разработана такая схема:

  • На якоре все катушки соединяются с группой контактов, которая называется коллектором.
  • Коллектор (подвижная деталь) соединяется со статичной частью мотора через так называемые щетки. Это графитовые контакты, которые пружинами придавливаются к коллектору. При этом коллектор может свободно вращаться, не теряя контакта со щетками.

Конечно, в этой конструкции есть несколько недостатков:

  • При резких перепадах напряжений (при старте или остановке) возникают довольно мощные искры.
  • Щетки со временем стираются и их надо заменять. По сути это расходный материал.
  • Количество оборотов ограничено.

Бесколлекторные электродвигатели (БД) лишены таких недостатков. Поэтому они получают все большее распространение и все чаще производители электрокаров обращают на них свое внимание. К таким моторам относятся современные универсальные приводы с электронным управлением.

Электропривод и ДВС при минусовой температуре

Каждый автовладелец сталкивался с проблемой, когда ДВС сложно запустить на сильном морозе. И это объясняется рядом факторов:

  • ДВС имеет множество трущихся деталей. При отрицательных температурах металл сжимается, и силы трения увеличиваются.
  • Масла при низкой температуре загустевают.
  • Емкость аккумулятора и его ударный ток снижаются при низких температурах.
  • Топливо может загустеть при большом морозе (особенно дизельное).

Все эти недостатки не касаются электропривода, так как в нем практически нет трущихся деталей, за исключением нескольких подшипников. А источником энергии для такого привода является аккумулятор, который расположен в теплоизолированном месте под салоном автомобиля.

Самый популярный электродвигатель

Выше мы в целом рассмотрели, какие применяются электродвигатели для электрокаров. Все они имеют плюсы и минусы. Но если говорить о промышленных масштабах, то здесь неоспоримое лидерство получили агрегаты с электронным управлением: они лишены большинства недостатков, вобрали в себя лучшие качества всех видов и являются оптимальным решением.

Конечно, такой электромотор для электромобиля имеет наиболее высокую стоимость, но она вполне оправдана получаемыми характеристиками.

Стоимость приводов для электрокаров

Цены на двигатели для электромобилей разнятся из-за конструктивных отличий моторов, характеристик используемых материалов. Стоимость может колебаться от 1500 до 5 000 американских долларов.

Многое зависит от технических характеристик:

  • мощность (W),
  • крутящий момент,
  • тип мотора,
  • напряжение и многое другое.

Более того, электродвигатели, которые используются при изготовлении электрокаров, не продаются в обычных магазинах. Купить двигатель такого типа можно только по индивидуальному заказу. В остальных случаях они поставляются оптом на автомобильные заводы.

В заключение

Новые разработки двигателей для электромобилей позволили достичь небывалых результатов:

  • Крутящий момент максимален сразу с момента запуска.
  • Нет трущихся деталей.
  • Малые размеры.
  • Надежность и долговечность.
  • Низкий уровень шума.
  • Исключено негативное влияние на экологию.
  • Широкий диапазон управления оборотами позволяет полностью убрать коробку переключения передач.

И это далеко не весь список достоинств. Однако двигатель для электрокара имеет два довольно существенных минуса:

  • Малая дальность пробега без подзарядки.
  • Нет оборудованных станций для заряда аккумуляторов.

Эти проблемы решаемы и минимизируются уже сегодня: разрабатываются новые технологии, позволяющие увеличить дальность пробега, создаются станции заряда электрокаров.

Драйверы от TI: Управляй любым электродвигателем

В ассортименте полупроводниковых компонентов производства компании Texas Instruments широко представлены микросхемы драйверов для управления всеми типами электродвигателей, которые, совершенствуясь, находят все более широкое применение в самом различном оборудовании. Компания предлагает решения для создания приводов, работающих в широком диапазоне токов и напряжений, обеспечивающих надежную и удобную эксплуатацию коллекторных, бесколлекторных и шаговых двигателей с полным комплексом защит по току, напряжению и температуре.

Электродвигатели находят широчайшее применение в современном высокотехнологическом укладе жизни. Этот тип электромеханического привода по-прежнему является одним из наиболее распространенных и востребованных. Электродвигатели самого разного назначения являются одной из основных составляющих любого производства, повсеместно используются в офисной и домашней технике, в системах мониторинга и управления зданий и объектов. Очень широкое распространение электродвигатели нашли на современном транспорте. Еще более впечатляющее будущее уготовано электродвигателям в электромобилях и роботах.

С развитием технологий традиционные двигатели совершенствуются и находят все новые области применения. Современные высокоточные станки и робототехника немыслимы без электродвигателей с интеллектуальными системами управления. На земле, в воздухе и под водой электродвигатели остаются широко востребованным преобразователем электрической энергии в механическую.

Типы электродвигателей, способы управления и возникающие сложности

Впервые созданный в 1834 году русским ученым Якоби преобразователь электрической энергии во вращательное движение получил название электродвигатель. С тех пор он был серьезно усовершенствован – появилось множество новых вариантов, но использованные при его создании принципы электромагнетизма по-прежнему являются основой всех модификаций современных электродвигателей.

Проводник с проходящим по нему током (рисунок 1) создает вокруг себя магнитное поле, интенсивность (магнитная индукция) которого пропорциональна количеству витков, в случае использования катушки (N), и величине проходящего по ней тока (I), где, В – вектор магнитной индукции, К – магнитная постоянная, N – число витков, I – сила тока.

Рис. 1. Электромагнетизм в основе работы электродвигателя

Изменение направления тока влияет и на направление магнитного поля проводника.

При этом на помещенный во внешнее магнитное поле проводник с током действует сила Лоренца, вызывающая его вращательное перемещение. Направление вращения легко определяется с помощью известного правила правой руки для проводника с током в магнитном поле (рисунок 2). Сила (F), действующая на проводник в магнитном поле, равна произведению силы тока (I) в проводнике на вектор магнитной индукции поля (B) и длину проводника (L). F = LIB.

Рис. 2. Перемещение проводника с током в магнитном поле (Сила Лоренца)

Коллекторные двигатели

Коллекторные двигатели постоянного тока (Brushed DC или BDC, по терминологии TI) сегодня относятся к одним из наиболее распространенных механизмов электромагнитного вращения.

В магнитном поле собранного из постоянных магнитов статора вращается многосекционный ротор с катушками, которые попарно и попеременно подключаются через коммутируемые коллекторные ламели на оси ротора (рисунок 3). Выбор пары активируемых катушек выполняется на основании закона Лоренца в соответствии с правилом Буравчика. Источник тока всегда подключен к катушкам, силовые линии магнитного поля которых смещены на угол, близкий к 90°, относительно магнитного поля статора.

Рис. 3. Принцип действия коллекторного электродвигателя (BDC)

Электродвигатели подобного типа часто используют статор с постоянными магнитами. Они позволяют легко регулировать скорость вращения и отличаются невысокой стоимостью.

Также широко используется вариант 2-обмоточного электродвигателя подобного типа, но со статорной обмоткой вместо постоянного магнита. Такие модели обладают большим пусковым моментом и могут работать не только на постоянном, но и на переменном токе. Электродвигатели подобного типа почти повсеместно используются в различной бытовой технике.

К недостаткам этой конструкции BDC стоит отнести износ щеточно-коллекторного узла в процессе эксплуатации. Кроме того, из-за искрообразования при коммутации отдельных обмоток ротора отмечается повышенный уровень электромагнитных помех, что не позволяет использовать такие двигатели во взрывоопасных средах.

Особенностью двигателей BDC также является повышенный нагрев ротора, охлаждение которого затруднено в силу конструктивных особенностей двигателя.

Достоинства коллекторных двигателей:

  • малая стоимость;
  • простая система управления;
  • 2-обмоточные коллекторные двигатели, обладающие высоким крутящим моментом и способные работать на постоянном и переменном токе.

Особенности эксплуатации коллекторных двигателей:

  • щетки требуют периодического обслуживания, понижают надежность двигателя;
  • в процессе коммутации возникают электрические искры и электромагнитные помехи;
  • затруднен отвод тепла от перегревающегося ротора.

Бесколлекторные двигатели

Несколько менее распространенными среди двигателей постоянного тока являются модели с бесщеточной конструкцией (BrushLess DC или BLDC), использующие ротор с постоянными магнитами, которые вращаются между электромагнитами статора (рисунок 4). Коммутация тока здесь выполняется электронным способом. Переключение обмоток электромагнитов статора заставляет магнитное поле ротора следовать за его полем.

Рис. 4. Принцип действия бесколлекторного электродвигателя (BLDC)

Текущее положение ротора обычно контролируется энкодерами или датчиком на основе эффекта Холла, либо применяется технология с измерением напряжения противо-ЭДС на обмотках без использования в этом случае отдельного датчика положения ротора (SensorLess).

Коммутация тока обмоток статора выполняется с помощью электронных ключей (вентилей). Именно поэтому бесколлекторные двигатели BLDC часто называют «вентильными». Очередность подключения пары обмоток двигателя происходит в зависимости от текущего положения ротора.

Принцип работы BLDC основан на том, что контроллер коммутирует обмотки статора так, чтобы вектор магнитного поля статора всегда был сдвинут на угол, близкий к 90° или -90° относительно вектора магнитного поля ротора. Вращающееся при переключении магнитное поле заставляет перемещаться вслед за ним ротор с постоянными магнитами.

При использовании трехфазного сигнала управления подключенными к источнику тока всегда оказываются только две пары обмоток, а одна – отключена. В результате последовательно используется комбинация из шести состояний (рисунок 5).

Рис. 5. Чередование фаз при вращении BLDC

Электродвигатели без датчиков положения ротора отличаются повышенной технологичностью процесса изготовления и более низкой стоимостью. Подобная конструкция упрощает герметизацию внешних подключаемых выводов.

В качестве датчиков скорости и положения ротора в BLDC могут использоваться датчики Холла, которые отличаются небольшой стоимостью, но также и достаточно невысоким разрешением. Повышенное разрешение обеспечивают вращающиеся трансформаторы (резольверы). Они отличаются высокой стоимостью и требуют использования ЦАП, так как выходной сигнал у них синусоидальный. Высоким разрешением, но пониженной надежностью, обладают оптические датчики. На рисунке 6 представлены выходные сигналы датчиков разного типа при вращении ротора двигателя.

Рис. 6. Датчики положения ротора электродвигателей

Преимущества двигателей BLDC:

  • высокая эффективность;
  • отсутствие щеток, обеспечивающее повышенную надежность, снижение затраты на обслуживание;
  • линейность тока/крутящего момента;
  • упрощенный отвод тепла.

Особенности применения двигателей BLDC:

  • более сложная система управления с обратной связью по положению ротора;
  • пульсации крутящего момента.

Шаговые двигатели

Шаговые двигатели (ШД) получили достаточно широкое распространение в системах автоматики и управления. Они являются еще одним типом бесколлекторных двигателей постоянного тока. Конструктивно ШД состоят из статора, на котором размещены обмотки возбуждения, и ротора, выполненного из магнитных материалов. Шаговые двигатели с магнитным ротором позволяют обеспечить больший крутящий момент и жесткую фиксацию ротора при обесточенных обмотках.

В процессе вращения ротор ШД перемещается шагами под управлением подаваемых на обмотки статора импульсов питания. Шаговые двигатели удобны для использования в приводах машин и механизмов, работающих в старт-стопном режиме. Их диапазон перемещения задается определенной последовательностью электрических импульсов. Такие двигатели отличаются высокой точностью, не требуют датчиков и цепей обратной связи. Угол поворота ротора зависит от количества поданных импульсов управления. Точность позиционирования (величина шага) зависит от конструктивных особенностей двигателя, схемы подключения обмоток и последовательности подаваемых на них управляющих импульсов.

В зависимости от конфигурации схемы подключения обмоток шаговые двигатели делятся на биполярные и униполярные. Биполярный двигатель имеет в каждой из двух фаз единую обмотку для обоих полюсов статора, которая для изменения направления магнитного поля должна переполюсовываться драйвером. Биполярный двигатель имеет две обмотки и, соответственно, четыре вывода. Для управления таким ШД требуется мостовой драйвер или полумостовая схема с 2-полярным питанием. При биполярном управлении одновременно работают две обмотки и крутящий момент примерно на 40% больше. На рисунке 7 представлена последовательность сигналов управления при вращении биполярного ШД.

Рис. 7. Последовательность сигналов управления биполярным ШД

Униполярный двигатель использует в каждой фазе одну обмотку со средним выводом и позволяет использовать более простую схему управления с одним ключом на каждую из четырех полуобмоток.

Четырех обмоточные ШД могут использоваться как в биполярной, так и в униполярной конфигурации.

При протекании тока по одной из катушек ротор стремится изменить положение так, чтобы противоположные полюса ротора и статора установились друг против друга. Для непрерывного вращения ротора катушки попеременно переключают.

На практике используются разные способы подачи питания на четыре обмотки статора. Чаще всего применяют попарное подключение с полношаговым или полушаговым режимом работы. В полношаговом режиме ротор с двумя полюсами, вращающийся в переключаемом магнитном поле двух пар катушек, может занимать четыре положения (рисунок 8).

Рис. 8. Полношаговый режим управления ШД

Получить удвоенную точность позиционирования и восемь позиций позволяет полушаговый режим работы (рисунок 9). Для его реализации добавляется промежуточный шаг с одновременной запиткой всех четырех катушек.

Рис. 9. Полушаговый режим управления ШД

Значительно увеличить количество промежуточных положений и точность позиционирования позволяет режим микрошага. Идея микрошага заключается в подаче на обмотки шагового двигателя вместо импульсов управления непрерывного сигнала, напоминающего по форме ступенчатую синусоиду (рисунок 10). Полный шаг в этом случае делится на маленькие микрошаги, а вращение становится более плавным. Режим микрошага позволяет получить наиболее точное позиционирование. Кроме того, в этом режиме значительно снижается присущая шаговым двигателям вибрация корпуса.

Рис. 10. Управление ШД в режиме микрошага

Достоинства шаговых двигателей:

  • невысокая стоимость благодаря отсутствию схем контроля скорости вращения и позиционирования;
  • высокая точность позиционирования;
  • широкий диапазон скоростей вращения;
  • простой интерфейс управления с цифровыми контроллерами;
  • очень высокая надежность;
  • хороший удерживающий момент.

Особенности применения шаговых двигателей:

  • ШД присуще явление резонанса;
  • из-за отсутствия обратной связи возможна потеря контроля положения;
  • потребление энергии не уменьшается даже при работе без нагрузки;
  • затруднена работа на очень высоких скоростях;
  • невысокая удельная мощность;
  • достаточно сложная схема управления.

Традиционные решения для управления электродвигателями

Современная прецизионная система управления электродвигателем постоянного тока включает в себя микроконтроллер для обработки данных и блок управления питанием обмоток двигателя, часто называемый драйвером. В состав драйвера входит логическая схема для преобразования кодированных посылок в цифровые управляющие сигналы, из которых в блоке Gate Driver формируются аналоговые сигналы для управления силовыми ключами на основе полевых транзисторов (FET). FET могут входить в состав драйвера или размещаться в отдельном блоке. Кроме того, в состав драйвера входят схемы защиты силовых цепей и цепи обратной связи для контроля работы двигателя.

На рисунке 11 представлены варианты блок-схем для интегрированного и предварительного драйверов. Каждое из решений имеет свои преимущества и особенности. Предварительный драйвер (Pre-Driver) имеет значительно облеченный температурный режим, позволяет выбирать внешние силовые ключи в соответствии с мощностью подключаемого двигателя. Полнофункциональный интегрированный драйвер позволяет создавать более компактные системы управления, минимизирует внешние соединения, но значительно усложняет обеспечение необходимого температурного режима.

Рис. 11. Блок-схемы систем управления двигателем

Так, у интегрированного драйвера TI DRV8312 максимальная рабочая температура отдельных элементов на плате может достигать 193°С, а у предварительного драйвера DRV8301 этот показатель не превышает 37°С.

Рис. 12. Смена направления вращения коллекторного двигателя

Одной из наиболее распространенных схем для коммутации обмоток двигателей является мост типа “H”. Название схемы связано с конфигурацией подключения, которая похожа на букву “H”. Эта электронная схема позволяет легко изменять направление тока в нагрузке и, соответственно, направление вращения ротора. Напряжение, прикладываемое к обмоткам через транзисторы моста, может быть как постоянным, так и модулированным с помощью ШИМ. H-мост предназначен, в первую очередь, для смены полярности питания двигателя – реверса (рисунок 12), но также позволяет тормозить вращение, коротко замыкая выводы обмоток (рисунок 13).

Рис. 13. Режимы вращения, быстрого и медленного торможенияс

Важнейшей характеристикой силовых элементов моста, в качестве которых сегодня часто используют полевые транзисторы с изолированным затвором, является величина сопротивления открытого канала между истоком и стоком транзистора – RDSON. Значение RDSON во многом определяет тепловые характеристики блока и энергетические потери. С увеличением температуры RDSON также растет, а ток и напряжение на обмотках уменьшаются.

Использование управляющих сигналов с ШИМ позволяет уменьшить пульсации крутящего момента и обеспечить более плавное вращение ротора двигателя. В идеале частота ШИМ должна быть выше 20 кГц, чтобы избежать акустического шума. Но с увеличением частоты растут потери на транзисторах моста в процессе коммутации.

Из-за индуктивных свойств нагрузки в виде обмоток форма тока в ней не соответствует форме подаваемого напряжения ШИМ. После подачи импульса напряжения ток нарастает постепенно,а в паузах ток плавно затухает из-за возникновения в обмотках противо-ЭДС. Наклон кривой на графике тока, амплитуда и частота пульсаций влияют на рабочие характеристики двигателя (пульсации крутящего момента, шум, мощность и так далее).

Для ускоренного затухания в обмотках электродвигателей возбуждаемого эффектом противо-ЭДС тока используют диоды в обратном включении, шунтирующие переходы «сток-исток» транзисторов, либо закорачивают обмотки через переходы «сток-исток» двух транзисторов, одновременно включенных в разных плечах моста. На рисунке 13 представлены три состояния моста: рабочее, быстрого торможения (Fast Decay) и медленного торможения (Slow Decay).

А наиболее эффективным считается комбинированный режим (Mixed Decay), при котором в паузе между рабочими импульсами сначала работают диоды, шунтирующие сток-исток транзисторов, а затем включаются транзисторы в нижних плечах моста.

Решения для управления электродвигателями от TI

Среди полупроводниковых компонентов, выпускаемых компанией TI, представлен обширный ассортимент различных драйверов для управления электродвигателями постоянного тока. Все они требуют минимума внешних компонентов, позволяют создавать компактные решения для управления двигателями с рабочим напряжением до 60 В, отличаются повышенной надежностью, обеспечивают быстрое и простое проектирование систем привода электродвигателями.

Встроенные в драйверы интеллектуальные функции требуют минимальной поддержки внешнего управляющего микроконтроллера (MCU), обеспечивают расширенные коммутационные возможности для обмоток, поддерживают внешние датчики и цифровые контуры управления. Комплекс защитных функций включает ограничение напряжения питания, защиту от превышения тока и короткого замыкания, понижения напряжения и повышения рабочей температуры.

Весь модельный ряд драйверов TI разбит на три раздела: шаговые, коллекторные и бесколлекторные двигателей постоянного тока. В каждом из них на сайте компании действует удобная система подбора по целому ряду параметров. Есть отдельные драйверы, предназначенные для использования с двигателями разных типов.

Драйверы TI для шаговых двигателей

Большой раздел решений TI для управления двигателями включает драйверы для ШД (рисунок 14), которые выпускаются как со встроенными силовыми ключами на основе FET, так и в виде предварительных драйверов, предоставляющих пользователю подбор необходимых силовых ключей. Всего в модельном ряду компании более 35 драйверов для ШД.

Рис. 14. Драйверы TI для управления шаговыми двигателями

TI предлагает широкий выбор наиболее современных решений для управления перемещением и точным позиционированием с использованием микрошаговых схем управления, обеспечивающих электродвигателей плавным перемещением в широком диапазоне напряжения и тока.

Отдельные драйверы, используя один управляющий контроллер, позволяют управлять сразу двумя двигателями, имея для этого четыре встроенных моста на основе FET. Есть драйверы с встроенными FET, например, DRV8834, которые можно подключить для управления к двум обмоткам шагового двигателя или использовать эти же выводы для управления двумя электродвигателями постоянного тока (рисунок 15).

Рис. 15. Блок-схема драйвера DRV8834

Для более плавного перемещения ротора в драйверах для ШД используется настраиваемый механизм сглаживания импульсов тока (режимы Slow, Fast, Mixed Decay). Система расчета микрошага может быть следующих типов:

  • встроенной в драйвер;
  • с использованием внешнего опорного сигнала.

Не требуют внешнего контроллера для микрошагового перемещения драйверы DRV881, DRV8818, DRV8821, DRV8824 и DRV8825. Здесь шаг перемещения и алгоритм коммутации обмоток рассчитываются схемой, встроенной в драйвер.

Более простые драйверы DRV8812, DRV8813, DRV8828, DRV8829, DRV8841, DRV8842 и DRV8843 обеспечивают микрошаговое вращение с использованием получаемого от внешнего контроллера опорного напряжения (Vref). Уровень дробления основного шага может достигать 1/128 или 1/256.

Для управления ШД с униполярным подключением обмоток TI предлагает драйверы DRV8803, DRV8804, DRV8805 и DRV8806.


Драйверы TI для BDC

Для управления – коллекторными электродвигателями постоянного тока – предназначено специальное семейство драйверов DRV8x, ряд представителей которого изображен на рисунке 16. Они обеспечивает полную защиту от превышения напряжения и тока, короткого замыкания и перегрева. Благодаря возможностям интерфейса управления эти драйверы обеспечивают простую и эффективную эксплуатацию двигателей. Пользователи могут с помощью одного чипа управлять одним или несколькими двигателями c рабочим напряжением 1,8…60 В.

Рис. 16. Драйверы TI для управления коллекторными двигателями

Драйверы семейства выпускаются как с интегрированными силовыми ключами, так и как предварительные драйверы. Они требуют минимум дополнительных компонентов, обеспечивают компактность решений, сокращают время разработки и позволяют быстрее выпустить новые продукты на рынок.

Каждый электрик должен знать:  Электрогидравлические толкатели

Спящий режим (Sleep) позволяет минимизировать потребление энергии в режиме простоя и обеспечивает ускоренную активизацию при запуске двигателя. Для управления скоростью вращения могут использоваться внешние сигналы ШИМ или сигналы PHASE/ENABLE для выбора направления вращения и включения ключей выходного моста.

Имеющий четыре выходных моста драйвер DRV8823 способен управлять двумя ШД или одним ШД и двумя BDC, или же четырьмя BDC, используя при этом управляющий интерфейс SPI.

На рисунке 17 представлена функциональная схема простого драйвера DRV8837 для управления одним коллекторным двигателем.

Рис. 17. Блок-схема драйвера DRV8837

Драйверы TI для BLDC

Драйверы TI для бесколлекторных двигателей, или BLDC, могут включать интегрированный силовой мост или использовать внешние силовые транзисторы. Схема формирования 3-фазных сигналов управления также может быть внешней или встроенной.

Семейство драйверов для управления бесколлекторными электродвигателями включает модели c разным принципом управления и с различным крутящим моментом. Эти драйверы, обеспечивающие разные уровни шума при управлении BDLС, идеально подойдут для использования в промышленном оборудовании, автомобильных системах и другой технике. Чтобы гарантировать надежную эксплуатацию электродвигателей, драйверы обеспечивают всеобъемлющий набор защит от превышения тока, напряжения и температуры. На рисунке 18 представлены лишь некоторые из 3-фазных драйверов для BLDC в обширном и постоянно пополняющемся модельном ряду компании TI.

Рис. 18. Драйверы TI для управления бесколлекторными двигателями

Для контроля текущего положения вращающегося ротора могут использоваться внешние датчики разных типов или схема управления с определением позиции ротора по величине противо-ЭДС (Back Electromotive Force, BEMF).

Управление может выполняться с помощью ШИМ, аналоговых сигналов или через стандартные цифровые интерфейсы. Наборы настраиваемых параметров для управления вращением могут храниться во внутренней энергонезависимой памяти.

На рисунке 19 представлен работающий в широком диапазоне температур 40…125°C интеллектуальный драйвер для BLDC со встроенными силовыми ключами на полевых транзисторах, с сопротивлением открытого канала лишь 250 мОм. При диапазоне рабочих напряжений 8…28 В драйвер может обеспечивать номинальный ток 2 А и пиковый ток 3 А.

Рис. 19. Блок-схема драйвера DRV10983

Драйвер не требует внешнего датчика для контроля положения ротора, но может использовать внешний резистор для контроля потребляемой двигателем мощности. DRV10983 отличается незначительным энергопотреблением, составляющим всего 3 мА, в дежурном режиме. А в модели DRV10983Z этот показатель доведен до уровня 180 мкА.

Встроенный интерфейс I2C обеспечивает диагностику и настройку, доступ к регистрам управления работой логической схемы и хранящимся в памяти EEPROM рабочим профилям драйвера.

Расширенный комплект защитных функций обеспечивает остановку двигателя в случае превышения тока и понижения напряжения. Предусмотрено ограничение входного напряжения. Защита по превышению тока работает без использования внешнего резистора. Методы использования защиты настраиваются через специальные регистры.

Заключение

Электродвигатели находят все более широкое применение в самом различном оборудовании, совершенствуются и получают новые возможности во многом благодаря современным системам электропривода.

В ассортименте полупроводниковых компонентов производства компании Texas Instruments широко представлены микросхемы драйверов для управления всеми типами двигателей постоянного тока. На их основе компания предлагает масштабируемые в зависимости от требований по точности, мощности и функциональности решения для создания приводов, работающих в широком диапазоне токов и напряжений, обеспечивающих надежную и удобную эксплуатацию коллекторных, бесколлекторных и шаговых двигателей с полным комплексом защит по току, напряжению и температуре.

Двигатели для электромобилей: производители, устройство

Исчерпание углеводородного топлива, ухудшение экологической обстановки и ряд других причин рано или поздно заставят производителей разработать модели электромобилей, которые станут доступны для широких слоев населения. А пока остается только ждать или собственноручно разрабатывать варианты экологически чистой техники.

Тяговый двигатель

Если вы решите поставить обыкновенный электромотор под капот своего автомобиля, то, скорее всего, из этого ничего не выйдет. А все потому, что вам необходим тяговый электрический двигатель (ТЭД). От обычных электромоторов он отличается большей мощностью, способностью выдавать больший крутящий момент, небольшими габаритами и малой массой.

Для питания тягового электродвигателя используются батареи. Они могут подзаряжаться от внешних источников («от розетки»), от солнечных батарей, от генератора, установленного в авто, или в режиме рекуперации (самостоятельное восполнение заряда).

Двигатели для электромобилей чаще всего работают от литий-ионных батарей. ТЭД обычно функционирует в двух режимах – двигательном и генераторном. В последнем случае он восполняет потраченный запас электроэнергии при переходе на нейтральную скорость.

Принцип работы

Стандартный электродвигатель состоит из двух элементов – статора и ротора. Первый компонент является неподвижным, имеет несколько катушек, а второй совершает вращательные движения и передает усилие на вал. На катушки статора с определенной периодичностью подается переменный электрический ток, что вызывает появление магнитного поля, которое начинает вращать ротор.

  • короткозамкнутый, на котором возникает магнитное поле, противоположное полю статора, за счет чего и происходит вращение;
  • фазный – используется для уменьшения тока запуска и контроля скорости вращения вала, является наиболее распространенным.

Кроме того, в зависимости от скорости вращения магнитного поля и ротора двигатели могут быть асинхронными и синхронными. Тот или иной тип необходимо выбирать из имеющихся средств и поставленных задач.

Синхронный двигатель

Синхронный двигатель – это ТЭД, у которого скорость вращения ротора совпадает со скоростью вращения магнитного поля. Такие двигатели для электромобилей целесообразно использовать только в тех случаях, когда имеется источник повышенной мощности – от 100 кВт.

Асинхронный электромотор

В асинхронном двигателе скорость вращения магнитного поля не совпадает со скоростью вращения ротора. Плюсом таких устройств является ремонтопригодность – запчасти для электромобилей, оснащенных этими установками, найти очень просто. К другим преимуществам относятся:

  1. Простая конструкция.
  2. Простота обслуживания и эксплуатации.
  3. Низкая стоимость.
  4. Высокая надежность.

В зависимости от наличия щеточно-коллекторного узла двигатели могут быть коллекторными и безколлекторными. Коллектор – устройство, служащее для преобразования переменного тока в постоянный. Щетки служат для передачи электроэнергии на ротор.

Производители электродвигателей

Большинство самодельных электромобилей сконструировано с применением коллекторного двигателя. Это объясняется доступностью, низкой ценой и простым обслуживанием.

Видным производителем линейки данных моторов является немецкая компания Perm-Motor. Ее продукция способна к рекуперативному торможению в генераторном режиме. Она активно используется для оснащения скутеров, моторных лодок, легковых автомобилей, электроподъёмных устройств. Если двигатели Perm-Motor устанавливали в каждый электромобиль, цена их была бы значительно ниже. Сейчас они стоят в пределах 5-7 тыс. евро.

  • точность управления;
  • легкость организации рекуперации;
  • высокая надежность за счет простой конструкции.

Завершает список производителей завод из США Advanced DC Motors, выпускающий коллекторные электромоторы. Некоторые модели обладают исключительной особенностью – они имеют второй шпиндель, что можно использовать для подключения на автомобиль-электромобиль дополнительного электрооборудования.

Какой двигатель выбрать

Чтобы покупка вас не разочаровала, надо сравнить характеристики приобретаемой модели с предъявляемыми требованиями к автомобилю. При выборе электродвигателя в первую очередь ориентируются на его тип:

  • Синхронные установки имеют сложное устройство и дорогостоящи, но обладают перегрузочной способностью, ими легче управлять, им не страшны перепады напряжения, используются при высоких нагрузках. Они устанавливаются на электромобиль Mercedes.
  • Асинхронные модели отличаются низкой стоимостью, простым устройством. Они просты в обслуживании и эксплуатации, однако выделяемая ими мощность намного меньше, чем тот же показатель синхронной установки.

На электромобиль цена будет значительно ниже, если электромотор будет работать в паре с двигателем внутреннего сгорания. На рынке такие комбинированные установки обладают большей популярностью, так как их стоимость составляет около 4-4,5 тыс. евро.

Power Electronics

Посвящается источникам питания вообще и сварочным источникам в частности

Текущее время: 23-11, 01:13

Часовой пояс: UTC + 4 часа

Преобразователь для Электромобиля.

Страница 3 из 4 [ Сообщений: 52 ] На страницу Пред. 1 , 2 , 3 , 4 След.
Пред. тема | След. тема
Автор Сообщение
retaler
Участник

Зарегистрирован: 03-06, 02:08
Сообщения: 104
Откуда: киев

У Вас прямой привод, скорее всего без кп, а если использовать кп,
то все станет проще. Нужно согласовывать систему не электрически а механически. Из за отсутствия толковой механики и требуются перегрузки в разы. Перегрузки сложных и очень дорогих узлов.
Если в автомобиле лады с механикой и тормоза не подклинивают,
то никаких 6 квт не нужно.

Насчет сравнения асинхронника и дпт, то даже сравнивать не буду, перегруз дпт конечно выдерживает большой , но при этом потери в нем возрастают в разы и незнаю насколько это хорошо и для батареи и для двигателя.

Вернуться к началу
Участник

Зарегистрирован: 16-08, 00:43
Сообщения: 92
Откуда: Киев

Но , коллега retaler, недобрав втрое по мощности, ещё больше
перебрал по напряжению -600 вольт. Это разве что для книги Гиннеса.
Но ведь нет таких ни моторов ни контроллеров ни И Т Д.
Да и кто сказал, что это увеличит тягу? Разве, что тягу длинны дуги.
Да и не стоит шутить с напряжением в 4 раза больше смертельного.

Надеюсь , тут коллега ещё дозреет..

Последний раз редактировалось Михалыч 08-08, 10:00, всего редактировалось 1 раз.

Вернуться к началу
Участник

Зарегистрирован: 16-08, 00:43
Сообщения: 92
Откуда: Киев

45% или 45 АЧ.
Но и это не все : Глубокий разряд на таких токах убивает СК батарею, потому , остаточная четверть ёмкости должна быть НЕПРИКАСАЕМОЙ ! Но, тогда реально-рабочая ёмкость 100 ампер-часовой батареи , составляет всего 33 ампер часа.
Не соблюдение этих ограничений и определяет годовалый (или меньше) срок службы СК батарей.

Вернуться к началу
Завсегдатай

Зарегистрирован: 17-07, 22:14
Сообщения: 331

Вернуться к началу
Участник

Зарегистрирован: 16-08, 00:43
Сообщения: 92
Откуда: Киев

Нет Коллега, я это книжное изображение видел многократно; не понимаю и могу опровергнуть.
Если оно соответствует учебникам о импульсной технике,
то это очень печально, так как не соответствует действительности.

Реальную осциллограмму, мною выложенную , я могу обосновать
в подробностях от начала и до конца : От кривизны до размеров и
соотношений между ними.
Но беда в том , что доказать подлинность моих доводов можно только тому, кто смотрит не в книгу, а в оциллограф и не в первый раз.

Вернуться к началу
Завсегдатай

Зарегистрирован: 17-07, 22:14
Сообщения: 331

Виноват’с, но учебников и книжков по импульсной технике давненько не читал. Да и не найдёте вы нигде в книжках подобных картинкОФФ.
Однако, жизнь показывает, что источники из симуляторов живут и в миру. Доказывать и убеждать вас в чем-либо не стану т.к. электроприводом не страдал. Но спецы по сварочным аппаратам (коими до недавнего времени также не страдал ) тоже мне говорили, что картинки из симуля-херня. Пришлось сваять виртуальный аппарат в железе. Больше усмешек с их стороны нет.
Не думаю, что кроме вас никто не делает самопальных и промышленных электроповозок. Поэтому, имхо, лучше не изобретать лысапет, а покопаться в патентах и соотв. публикасиях на эту тему. А смотреть в осциллограф -это последний этап, когда в симуле фсё вже работает. Кроме того, симуль не страдает ошибкой измерений, а вот отдельно взятый философ-таким ошибкам весьма подвержен.

Удачи вам в перемещении своего тела посредством электричества.

Вернуться к началу
Участник

Зарегистрирован: 16-08, 00:43
Сообщения: 92
Откуда: Киев

У Вас прямой привод, скорее всего без кп, а если использовать кп,
то все станет проще. Нужно согласовывать систему не электрически а механически. Из за отсутствия толковой механики и требуются перегрузки в разы. Перегрузки сложных и очень дорогих узлов.
Если в автомобиле лады с механикой и тормоза не подклинивают,
то никаких 6 квт не нужно.

Насчет сравнения асинхронника и дпт, то даже сравнивать не буду, перегруз дпт конечно выдерживает большой , но при этом потери в нем возрастают в разы и незнаю насколько это хорошо и для батареи и для двигателя.

Забудьте про механику и тормоза. Вот Вам чистая ФИЗИКА:

Физическое тело массой в 1000 кг, с лобовой площадью 1,5м и обтекаемостью 0,3 , перемещаясь на колёсах по ровной плоскость,с сопротивлением качению 0,018, со скоростью 16,6 м.с ( 60 кмч)
потребляет 4,92 квт энергии. Это на колёсах.
Примите это как факт , от Нас с Вами не зависящий ( 4,5 квт , было по памяти).
И вот теперь ВЫ , используя знания, опыт, изобретательность и финансы, используйте трансмиссию , мотор, контроллер , провода и батарею ,
с минимальными потерями и максимальным КПД. Перемножив их
получите общий КПД привода

от 0,4 до 0,7. (как сможете),

Тогда и получите потребляемую мотором от батареи мощность
ОТ 12,3 квт, при КПД 0,4 до7,02квт, при КПД -0,7.

И , уже тогда сможете посчитать пробег исходя из реальной , а не написанной Ёмкости Батареи.

Вернуться к началу
Участник

Зарегистрирован: 03-06, 02:08
Сообщения: 104
Откуда: киев

Но , коллега retaler, недобрав втрое по мощности, ещё больше
перебрал по напряжению -600 вольт. Это разве что для книги Гиннеса.
Но ведь нет таких ни моторов ни контроллеров ни И Т Д.
Да и кто сказал, что это увеличит тягу? Разве, что тягу длинны дуги.
Да и не стоит шутить с напряжением в 4 раза больше смертельного.

Надеюсь , тут коллега ещё дозреет..

Ув. Михалыч,
Контроллер управления 3-фазным двигателем питается от постоянного напряжения 600в (3ф-мост 380в). При наличии в системе 3-й гармоники, требуемое напряжение такого моста получается 585 вольт,
ато и ниже, все зависит насколько синусоида «модифицированная».

Насчет утверждений насчет книги Гиннеса итд, при всем почтении и уважении к Вам,
похоже здесь моя очередь послать Вас почитать литературку по теме частотных преобразователей 3-фазной сети 380в И Т Д.

Насчет дуги на напряжении 600в, и защитная автоматика которая для этого требуется то это не та тема для обсуждения таких вопросов,
а также смертельности подобных вещей.

Последний раз редактировалось retaler 08-08, 23:50, всего редактировалось 2 раз(а).

Вернуться к началу
Участник

Зарегистрирован: 03-06, 02:08
Сообщения: 104
Откуда: киев

Нет Коллега, я это книжное изображение видел многократно; не понимаю и могу опровергнуть.
Если оно соответствует учебникам о импульсной технике,
то это очень печально, так как не соответствует действительности.

Реальную осциллограмму, мною выложенную , я могу обосновать
в подробностях от начала и до конца : От кривизны до размеров и
соотношений между ними.
Но беда в том , что доказать подлинность моих доводов можно только тому, кто смотрит не в книгу, а в оциллограф и не в первый раз.

Коллега Вам нарисовал схему для Вашего подмагничивания а не питания двигателя в целом. На самом деле от 60в сделать 6в 200A совсем не сложно. Это обычная стандартная молотилка на типичной микрухе управления. Здесь еще все упрощается низким и достаточно стабильным входным напряжением, которое не требует сложного подхода к такому вопросу.
К сожелению вопрос чисто финансовый и все на этом форуме это знают. Специалистов поверьте предостаточно.

Если бы не моя загрузка на предприятии и не отпуск с семьей
я бы Вам подарил такую молотилку. Мы их для гальваники делаем уже много лет. Только она для сети 220в. Делов то перемотать транс.

В свою очередь Вы начинаете все опровергать.
К сожелению мне неприятно находиться в этой теме и читать попирание на механику, учебники по импульсной техники, итд.

Вернуться к началу
Участник

Зарегистрирован: 16-08, 00:43
Сообщения: 92
Откуда: Киев

Нет Коллега, я это книжное изображение видел многократно; не понимаю и могу опровергнуть.
Если оно соответствует учебникам о импульсной технике,
то это очень печально, так как не соответствует действительности.

Реальную осциллограмму, мною выложенную , я могу обосновать
в подробностях от начала и до конца : От кривизны до размеров и
соотношений между ними.
Но беда в том , что доказать подлинность моих доводов можно только тому, кто смотрит не в книгу, а в оциллограф и не в первый раз.

Коллега Вам нарисовал схему для Вашего подмагничивания .

В свою очередь Вы начинаете все опровергать.
К сожелению мне неприятно находиться в этой теме и читать попирание на механику, учебники по импульсной техники, итд.

Печальное взаимо непонимание: Я не понял графиков , про схему и речи не было.
А вот опровергать и Физику и Механику пробуете ВЫ.

Счастливой езды Вам на электромобиле в тонну , на 1,5 киловаттах, 600вольтах, с батареей 7 ампер часов.

Вернуться к началу
Новичок

Зарегистрирован: 12-04, 20:42
Сообщения: 6
Откуда: Сыктывкар

Вернуться к началу
Участник

Зарегистрирован: 16-08, 00:43
Сообщения: 92
Откуда: Киев

Да, может действительно без трансформатора для преобразователя лучше, но потом, уже мне, чтобы включать его ревернсивно, понадобиться не менее сложное устройство.

Кстати НМ , преобразователь с 60 на 14 вольт, сделанный Сорокой,
в дежурном режиме потребляет миллиамперы, потому и не выключается,
на уже заряженный аккум выдает 0,0 ампера и периодически выдаёт кратковременные подзарядные порции , по мере надобности.
и всё пишет на дисплее. Ток максимальный 15 а.

Вернуться к началу
Участник

Зарегистрирован: 16-08, 00:43
Сообщения: 92
Откуда: Киев

Вернуться к началу
Магистр

Зарегистрирован: 08-01, 16:57
Сообщения: 3324
Откуда: когдато Чернигов

Вернуться к началу
Участник

Зарегистрирован: 16-08, 00:43
Сообщения: 92
Откуда: Киев

Р-н, фотку выложу чуть позже.
Этот преобразователь из контроллеров «КЕЛЛИ» Он программируемый
на требуемый режим. Спецы его программируют , потом будем испытывать
на машине. Тогда сфотографирую и выложу вместе с результатами
испытаний.

Вернуться к началу
Страница 3 из 4 [ Сообщений: 52 ] На страницу Пред. 1 , 2 , 3 , 4 След.

Часовой пояс: UTC + 4 часа

Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 0

Тяговый электродвигатель для электромобиля: как электрокары на нем работают

Тяговый электродвигатель для электромобиля Tesla Model S

Неотвратимым будущим автомобилестроения, хотим мы того или нет, являются электрические автомобили. Производители авто во всем мире вкладывают огромные средства в их разработку, желая снизить концентрацию вредных веществ выбрасываемых автомобилями традиционными, сделать поездки безопасными и комфортными, а также экономичными. Работа по их созданию проводится в двух направлениях – создание новых моделей и реконструкция серийных, которая более предпочтительна, поскольку менее затратная. Электромобили, по сравнению с традиционными, более надежны, поскольку более просты по конструкции, т.е. отличаются минимумом движущихся частей.

Крупнейшими рынками электрических автомобилей являются сегодня: США и Норвегия, Япония и Германия, Китай и Франция, Великобритания и др. Наша страна пока от производства и использования новых средств передвижения находится в стороне, исключая энтузиастов, разработавших Lada Ellada. Но, это случай пока единичный, поэтому он не в счет, тем более, что собрано авто на импортных комплектующих.

Понятие «электрический автомобиль» означает средство передвижения, приводимое в движение несколькими (или одним) электродвигателями. Теоретически питание мотора может быть от аккумулятора, топливных элементов или солнечных батарей. Тем не менее, большее распространение получил вариант первый. Батарея, питающая двигатель требует зарядки, осуществлять которую можно при помощи внешних источников, рекуперации или генератора, установленного на борту автомобиля. Электродвигатель, являющийся основным элементом электромобиля, питается, как правило, от литий — ионной батареи. Он же, в режиме рекуперации, играет роль генератора, заряжающего батарею.

Назначение тягового электродвигателя

Электродвигатель тяговый (ТЭД) предназначен для приведения в движение транспортного средства, т.е. он преобразует в механическую, энергию электрическую. Их классифицируют по способу питания, роду тока, конструктивному исполнению, типу привода колесных пар. В большинстве экологичных машин: гибридных авто, серийных электромобилях, авто на топливных элементах, которые в наши дни приобретают завидную популярность, они являются основной движущей силой.

В качестве двигателя используют в них моторы тяговые постоянного тока, которые работают в двух режимах – двигательном и генераторном.

Видео: Как устроен двигатель электромобиля Tesla Model S

Принцип работы

Принцип работы электромобиля Golf blue-e-motion с тяговым электродвигателем

В основе их работы лежит принцип электромагнитной индукции, т.е. возникновение в замкнутом контуре электродвижущей силы при изменении магнитного потока. От традиционной машины электромеханической ТЭД отличается большей мощностью, более компактными размерами, а кроме этого, у него более высокий КПД.

По способу питания моторы делятся на двигатели постоянного и переменного тока. По числу фаз – на однофазные (с одной обмоткой, подключаемой к сети однофазной переменного тока), двухфазные (две обмотки, расположенные под углом девяносто градусов), трехфазные (три обмотки с магнитными полями через 120 градусов).

По исполнению конструктивному двигатели могут быть: коллекторными, преимущественно работающие на постоянном токе (универсальные современные могут также работать и на токе переменном), бесколлекторными, синхронными, асинхронными. Наконец, по способу возбуждения они делятся на: двигатели с последовательным, параллельным, последовательно-параллельным возбуждением и от постоянных магнитов.

Основные характеристики тягового электродвигателя электрического автомобиля

В современных авто электродвигатель может быть от переменного или постоянного тока. Основной его задачей является передача на движитель авто крутящего момента. Основными характеристиками ТЭД помимо максимального крутящего момента и мощности, являются: частота вращения, ток и напряжение.

В автомобилях чаще используют коллекторные двигатели (один из них благодаря способности вращаться в обратную сторону, может работать как генератор). Но, в отдельных моделях устанавливают электрические моторы и других типов – магнитоэлектрические моторы, подразделяющиеся на двигатели переменного и постоянного тока. Тяговые двигатели электрические, установленные в электромобилях, от других электромоторов не отличаются по конструкции.

Мотор-колесо

Если вначале использовали один тяговый электродвигатель для электромобиля, редуктор которого соединен с трансмиссией, то сегодня все чаще обращаются к мотор-колесу. Суть концепции состоит в том, что компьютерная программа управляет при помощи отдельных моторов каждым из колес. Главным преимуществом является отсутствие трансмиссии, из-за которой силовая установка теряет значительную часть энергии. Помимо этого удается ликвидировать тормозную гидравлическую систему, функцию которой берут на себя электромоторы, а также отдельные механизмы ESP и ABS.

Как работает электромобиль

Хотя современные электрические автомобили стали доступны по более или менее приемлемым ценам уже в 2011 году, многие покупатели все еще открывают их для себя, и так, те кто хочет познать основы, эта статья для вас.

Во-первых, технология электромобилей, которая будет здесь описываться, будет касаться только чисто электрических версий, хотя можно сказать, что некоторые гибридные и автомобили на топливных элементах также могут называться электрическими.

Второе, что нужно отметить, это то, что электромобили, несмотря на их силовые агрегаты и некоторые вспомогательные компоненты, вполне обыкновенные автомобили. На самом деле, принцип работы таких автомобилей как Nissan Leaf, Tesla Model S, Ford Focus EV, Honda Fit EV и других покажется знакомым тем, кто ездил на авто с автоматической коробкой передач.

Их уникальность заключается в том, что в них, конечно же, нет никакого двигателя внутреннего сгорания, а вместо него они используют электричество.

Сердцем электромобиля являются аккумулятор, контроллер и двигатель. Подозрительно, что в этом списке отсутствует многоскоростная коробка передач.

Электромобили могут быть переделаны из уже существующего обычного автомобиля либо разработаны с нуля. Правда они были расхвалены своими поклонниками как «будущее» автомобилей, которое могло бы предложить гораздо большую сложность и изысканность, но это верно лишь отчасти. На самом деле, их основы достаточно просты, и это то, на чем мы здесь сосредоточимся.

АККУМУЛЯТОР

Электромобили уже имели триумф сто лет назад, в первые десятилетия 20 века, но в тех электромобилях использовались намного более тяжелые и менее мощные аккумуляторы и им не доставало сегодняшних компьютерных систем управления и современных технологий безопасности.

Отличительной чертой новых электромобилей являются их «Системы аккумулирования энергии»( “Energy Storage Systems” ESS)- литий-ионные аккумуляторы.

Tesla Motors представила концепт модели Roadster 2008 за 100 000$, который доказывал правильность выбора в пользу литий-ионных батарей. В нем использовалось почти 7000 частиц, собранных в модули.

Другие автопроизводители, подстраивают литий-ионные аккумуляторы под себя, но сейчас, в общей сложности, все они используют энергию литий-ионных аккумуляторов.

Скорость зарядки таких батарей зависит от того, сколько накопленной энергии киловатт-часов имеет блок, насколько мощное бортовое зарядное устройство и от того, какое количество энергии поступает из сети, к которой подключен автомобиль.
Кроме того, у всех электромобилей есть рекуперативное торможение, которое захватывает энергию при торможении и направляет ее назад в аккумулятор. К сожалению, энергии, которая вернулась, недостаточно для того, чтобы привести автомобиль в движение, а значит ( несмотря на некоторые слухи), нет такого электромобиля, который бы работал по принципу «вечного двигателя».

Поэтому для подзарядки электромобиль можно подключить к стандартной американской 120-вольтной сети или же любой другой электросети в мире, но это самый медленный способ. Даже подзарядка среднеразмерной 16 кВт-ной батареи Mitsubishi i-MiEV может занимать до 20 часов. Полностью разряженная батарея Model S мощностью 85 кВт будет заряжаться несколько дней, если подключить ее к обычной электросети.

Таким образом, пока некоторые довольствуются 120 вольтами, есть простое приспособление с причудливым названием «Electric Vehicle Supply Equipment» на 240 вольт. Такие блоки варьируются в цене от нескольких сотен долларов до нескольких тысяч, отличаются они силой тока, тем самым меняя фактическую мощность и скорость зарядки.

И все же зарядка от домашней электросети переменного тока не так проста, как кажется, даже если вы нашли самый мощный EVSE который только есть в продаже.

Производители установили максимальный порог мощности, которую может принимать электромобиль, и этим препятствием является бортовое зарядное устройство, через которое, как через соломинку, электромобиль пытается «всасывать» энергию.

Помимо этого, в случае необходимости, есть общественные быстрые зарядные станции DC, мощностью обычно 480 вольт, хотя специальная зарядная станция Tesla Supercharger более эффективна- она может восполнить 80% заряда всего за 20 минут. Некоторые электромобили могут принимать DC (Direct Current-«постоянный ток») и обойти переход от 120 вольт на 240, которые также известны как уровень 1 и уровень 2.

В батарею также встроено программное обеспечение Battery Management System (BMS), которое контролирует расход энергии и зарядку. Литий-ионные аккумуляторы нуждаются в такой программе, и именно она не позволила еще ни одной батарее быстро израсходовать весь свой потенциал.

С одной стороны, система предотвращает полный разряд частиц, с другой стороны переизбыток энергии. Цель состоит в том, чтобы создать максимальный срок годности (намного больше, чем у батареи в ноутбуке и не меньше, чем продолжительность жизни двигателя внутреннего сгорания, хотя некоторый процент сохранения энергии со временем будет утрачиваться).

Инженеры консервативных взглядов могут утверждать, что аккумулятор имеет определенное количество энергии, которое может поступать до тех пор, пока батарея не разрядится полностью. На самом деле, если заряд электромобиля уже на нуле, то у него все еще достаточно энергии, чтобы управлять автомобилем, но это обязательно скажется не его долговечности.

Для лучшей работы аккумуляторам, также как и людям нужно поддержание постоянной оптимальной температуры. Конечно, они смогут работать как жарким летом, так и холодной зимой, но запас хода от этого немного ухудшится. Кроме того, производители могут охладить или подогреть устройства для регулировки температуры. Считается, что лучше, или по крайней мере, дешевле, использовать жидкое охлаждение, но некоторые транспортные средства обходятся и без него.

КОНТРОЛЛЕР

Простыми словами, контроллер это прибор, соединяющий аккумулятор и электродвигатель, который приводит в работу колеса. Так как литий-ионные технологии считаются «hi-tech», то это может быть еще одним аргументом в пользу новых электромобилей с микропроцессорным управлением.

На самом деле, для управления контроллером есть педаль акселератора, которая по сути то же самое, что и педаль газа в автомобиле с двигателем внутреннего сгорания. Работает она по принципу реостата, который регулирует свет в доме.
Педаль крепится к особому типу резистора, потенциометру, который в конечном итоге постепенно посылает небольшое количество переменного тока контроллеру.

Контроллер, в свою очередь, определяет сколько тока нужно подать от аккумулятора в двигатель. На самом деле от транзисторов идут потоки импульсов, а не один непрерывный поток. Импульсы поступают с переменностью 1500 в секунду.

В большинстве современных автомобилей, которые используют мощные двигатели переменного тока, контроллер также меняет полярность аккумулятора с постоянным током в переменный.

В конечном счете, частота переданной контроллером энергии от аккумулятора определяет мощность двигателя. И, как вы наверно, знаете, вращающийся двигатель приводит в движение автомобиль.

ДВИГАТЕЛЬ

Двигатель электрического автомобиля также называют «тяговый двигатель». Современные производители электромобилей остановили свой выбор на асинхронных электродвигателях переменного тока или электродвигателях с постоянным магнитом, которые обеспечивают высокий крутящий момент, надежную работу, а также сравнительно небольшой вес.

Цилиндрический двигатель состоит из статора, который неподвижно закреплен и получает переменный ток для создания магнитного поля. Внутри статора ротор, который вращается на выходном валу.

Он принимает крутящую силу и вращает механизм, который затем механически направляется к оси колеса.

Кроме того, электродвигатель делает гораздо больше, чем просто приводит в движение- он заряжает, и он также известен под названием «двигатель-генератор». Так, вышеупомянутое «рекуперативное торможение» появляется при торможении когда двигатель выступает в качестве генератора и отправляет энергию назад в аккумулятор. Это преимущество неиспользования двигателя внутреннего сгорания в электромобиле.

Электромобиль может иметь один или несколько электродвигателей. Некоторые компании размышляли о том, чтобы размещать их прямо в колесах, но такие колесные двигатели имеют свои преимущества и недостатки, которые и привели к тому, что главные автопроизводители отказались от этой идеи.

Как часто говорят, электродвигатель обеспечивает эффективное использование энергии по сравнению с бензиновым, или даже турбодвигателем. Также ему не нужно набрать определенную скорость оборотов, чтобы получить максимальный крутящий момент.
Электродвигатели готовы выдать максимальный крутящий момент уже со старта, в то время как мощность то увеличивается, то снижается.

ПРОСТАЯ ТРАНСМИССИЯ

Есть, конечно, исключения из правил, но в основном в электромобилях предпочитают не использовать мультимодальные коробки передач.

Почему? Простыми словами, у них так много крутящего момента с самого старта, что электромобиль может использовать одну передачу, на которой он сможет довольно быстро разогнаться и они достаточно высокие, чтобы справиться с такой скоростью.
И, конечно, это позволяет сократить затраты, уменьшить вес и сложность автомобиля.

Некоторые заступники электромобилей зашли так далеко, что говорят, что им не нужно нескольких передач, как дизельным или бензиновым автомобилям, но это заявление правильно только в некотором смысле. Точнее, электромобилю могут пригодиться дополнительные передачи, но они могут работать и без них.

До сих пор, все девять электромобилей, которые были представлены в наших обзорах, были односкоростными.
Даже могучая Tesla Model S с 210 км/ч работает с одной фиксированной передачей с передаточным числом 9.73:1.

Контрпримером может стать Porsche Panamera S E-Hybrid, гибрид, который может работать только на электрике. От электричества он работает через восьмискоростную механическую коробку передач, так же как и автомобили на газовом питании. Также, у Brammo есть шестиступенчатая электрическая трансмиссия в электрическом мотоцикле Empulse, который преподносит преимущество возможности мотоцикла быть на крайней скоростной точке, при этом создавая ощущение езды на обыкновенном велосипеде.

Но, опять же, сейчас электромобили прекрасно работают и есть всего несколько моментов, которые нужно исправить или убрать совсем. Кроме того, они бесшумные и не требуют больших затрат во время эксплуатации, чем создают уникальный набор качеств, которые идеальны для коротких, не очень быстрых ежедневных передвижений, они ничего не выбрасывает в атмосферу, а просто выполняет свою работу.

гость | 15:53, 28. Июль, 2020 Ответить

Херня это всё.
Энергия для вала мотора,который колеса крутит откуда берётся?! А КПД его в районе 80-90%. А питает его контроллер с КПД в 80-90%, который питается
От АКБ, который нельзя разряжать ниже 80%, ячейку которого чтоб зарядить
До 3,6 вольт,нужно приложить 5 вольт…3,6/5

0,7=70%,а прилагать эти вольты будет автоматическое зарядное устройство с КПД в 80-90%.
Только внутри электрички теряются мищности аж на 0,8*0,8*0,8*0,7*0,8=0,28672=28,672%,то есть до 70% энергии,полученной с розетки.
А туда она поступает через трансформаторы,ЛЭП, опять трансформаторы,генератор,паровые или газовые турбины.
Реально,на вал мотора попадает до 7-11% от произведенной на электростанции.
Эквивалент расхода топлива составит,для среднего авто 70-110 литров на 100 км.
Ну и где же тут экологии с жкономиками.

Выбор электродвигателей для электромобилей и гибридных автомобилей Текст научной статьи по специальности « Электротехника, электронная техника, информационные технологии»

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Мигаль В.Д., Двадненко В.Я.

Представлен анализ преимуществ и недостатков тяговых электродвигателей следующих типов: вентильные электродвигатели, частотно управляемые асинхронные электродвигатели, электродвигатели постоянного тока с независимым возбуждением и постоянного тока с последовательным возбуждением.

Похожие темы научных работ по электротехнике, электронной технике, информационным технологиям , автор научной работы — Мигаль В.Д., Двадненко В.Я.

SELECTION OF ELECTRIC MOTORS FOR ELECTROMOBILES AND HYBR >An analysis of the advantages and disadvantages of traction motors of the following types: BLDC motors, variable frequency driven asynchronous motors, DC motors with separate excitation, DC motors with series excitation is presented.

Текст научной работы на тему «Выбор электродвигателей для электромобилей и гибридных автомобилей»

ВЫБОР ЭЛЕКТРОДВИГАТЕЛЕЙ ДЛЯ ЭЛЕКТРОМОБИЛЕЙ И ГИБРИДНЫХ

В. Д. Мигаль, проф., д.т.н., В. Я. Двадненко, доц., к.т.н., Харьковский национальный автомобильно-дорожный университет

Аннотация. Представлен анализ преимуществ и недостатков тяговых электродвигателей следующих типов: вентильные электродвигатели, частотно управляемые асинхронные электродвигатели, электродвигатели постоянного тока с независимым возбуждением и постоянного тока с последовательным возбуждением.

Ключевые слова: электромобиль, гибридный автомобиль, электропривод, преимущества и недостатки.

ВИБ1Р ЕЛЕКТРОДВИГУН1В ДЛЯ ЕЛЕКТРОМОБ1Л1В I Г1БРИДНИХ

В.Д. Мигаль, проф., д.т.н., В.Я. Двадненко, доц., к.т.н., Харкчвський нацюнальний автомобшьно-дорожнш ушверситет

Анотаця. Подано анал1з переваг i недолМв електропривода таких титв: вентильм електро-двигуни, асинхронт двигуни — частотно кероват, посттного струму iз двигуном незалежного збудження та посттного струму iз двигуном по^довного збудження.

Ключов1 слова: електромобть, гiбридний автомобть, електропривiд, переваги i недолти.

SELECTION OF ELECTRIC MOTORS FOR ELECTROMOBILES AND HYBRID

V. Migal, Prof., D. Sc. (Eng.), V. Dvadnenko, Assoc. Prof., Cand. Sc. (Eng.), Kharkiv National Automobile and Highway University

Abstract. An analysis of the advantages and disadvantages of traction motors of the following types: BLDC motors, variable frequency driven asynchronous motors, DC motors with separate excitation, DC motors with series excitation is presented.

Key words: electromobile, hybrid car, electric drive, advantages and disadvantages.

Эксплуатация электромобиля в городских условиях характеризуется произвольным чередованием режимов разгона, торможения и движения с установившейся скоростью, преодоления подъемов и спусков, кратковременных стоянок (заторы, светофоры, перекрестки) и «случайной» нагрузки на систему тягового электропривода. В этих условиях электромобиль работает практически при постоянном изменении управляющего воздействия на системы автоматического регулирования (САР), которые взаимодействуют

с аккумуляторной батареей, преобразователями частоты и напряжения и с электрической машиной.

На рис. 1 приведены экспериментально снятые параметры движения электромобиля в городских условиях. САР позволяют уменьшить неблагоприятное воздействие на электромобиль переходных процессов и имеющихся нелинейных характеристик, обусловленных наличием ферромагнитных материалов в электродвигателе. Кроме того, возможность рекуперативного торможения с помощью электрической машины позволяет вернуть некоторую часть.

Рис. 1. Параметры движения электромобиля в городских условиях

энергии торможения в тяговый аккумулятор и существенно уменьшить как нагрев, так и износ тормозных колодок, тормозных дисков или тормозных барабанов.

Анализ существующих отечественных и зарубежных разработок показал [1-4], что практическое применение в электромобилях получили электроприводы следующих типов: вентильные электродвигатели (ВЭД), асинхронные частотно-управляемые (АЧУЭД), ЭД постоянного тока с независимым возбуждением (ПН) и ЭД постоянного тока с последовательным возбуждением (ПП). Сопоставление достоинств и недостатков этих двигателей с учетом эксплуатационных требований дает следующие результаты. Наиболее высокий КПД имеют ВЭД. КПД ЭД постоянного тока и асинхронных ЭД примерно равны, однако в последнее время АЧУЭД, имеющие электрические машины с малым скольжением и более точное электронное управление на основе специализированных быстродействующих микроконтроллеров с

набором соответствующих датчиков (векторное управление), достигают КПД, сравнимый с КПД ВЭД.

Цель и постановка задачи

Целью исследования является выбор электропривода электромобиля или гибридного автомобиля, позволяющего получить заданные технические, экологические и эксплуатационные качества электромобиля. Методами исследований являются: анализ, сопоставление и обобщение.

Выбор тягового электродвигателя для электромобиля и для гибридного автомобиля

Вентильные электродвигатели применяют в большинстве современных гибридных автомобилей и электромобилей. ВЭД представляет собой синхронную электрическую машину, снабженную датчиками положения ротора, запитываемую через инвертор на основе современных силовых электронных ключей и управляемую по оптимальным алгоритмам с помощью микроконтроллера с использованием минимум двух САР: по положению ротора и по предельному фазному току. Иногда добавляют САР по угловой скорости (круиз-контроль).

Синхронные электрические машины бывают с возбуждением от постоянных магнитов и с электромагнитным возбуждением. Наиболее широко применяют ВЭД на основе синхронной электрической машины с высококоэрцитивными постоянными магнитами на роторе. Такие ВЭД имеют более высокий КПД и лучшие электрические характеристики. Однако они имеют высокую стоимость. Кроме того, недостатком таких ВЭД является малый диапазон скоростей вращения ротора. Поскольку скорость идеального холостого хода пропорциональна напряжению питания якоря и обратно пропорциональна магнитному потоку возбуждения ротора, для расширения скоростного диапазона, при невозможности управлять магнитным потоком, требуется увеличение напряжения питания.

Относительно недорогими и широко распространенными являются синхронные электрические машины с электромагнитным возбуждением, поскольку они применяются в качестве генераторов переменного тока, в

том числе и в качестве автомобильных генераторов. Именно этот тип электрических машин был выбран для изготовления ВЭД тягового электропривода базового автомобиля, переоборудованного в гибридный [5].

Несмотря на несколько худшие значения КПД, ВЭД на основе синхронной электрической машины с электромагнитным возбуждением, помимо невысокой стоимости, имеет ряд других важных преимуществ. Среди них — возможность организовать регулирование оборотов во второй зоне электродвигателя посредством управления потоком возбуждения. При фиксированном напряжении питания это позволяет расширить рабочий диапазон скоростей вращения ротора, а значит, увеличить передаточное число от ВЭД к ведущим колесам. В результате удаётся повысить пусковой вращающий момент и сохранить требуемую максимальную скорость. Вторым преимуществом использования ВЭД с электромагнитным возбуждением является существенно меньший тормозной момент в обесточенном состоянии, что улучшает накат гибридного автомобиля. Третье преимущество — возможность простого и эффективного управления ВЭД в режиме генератора путем регулировки сравнительно небольшого тока возбуждения. Четвертое преимущество -возможность работы без перенапряжения силовой электроники при угловой скорости, намного превосходящей угловую скорость идеального холостого хода. Такой режим необходим в гибридных автомобилях во время принудительного холостого хода ВЭД при движении автомобиля с помощью ДВС на высокой скорости. Действительно, ВЭД с постоянными магнитами имеет ЭДС вращения, пропорциональную угловой скорости, следовательно, ВЭД с постоянными магнитами должен иметь силовые ключи с рабочим напряжением, в 3-4 раза большим, чем напряжение тяговой батареи. Это приводит к существенному увеличению стоимости инвертора и снижению его КПД. В ВЭД с электромагнитным возбуждением при выключении тока обмотки возбуждения перенапряжение не возникает, поэтому рабочее напряжение ключей должно быть только примерно на 20 % выше рабочего напряжения тяговой батареи [6].

Следовательно, выбор параметров тяговых ЭД не может рассматриваться изолированно вне всей энергетической системы: аккумуля-

торная батарея — преобразователь-инвертор частоты — двигатель.

При проектировании тяговых электродвигателей используют различные критерии оптимальности, например: минимум стоимости, минимум массы, минимум проводниковых материалов, минимум потерь или максимум КПД, минимальные виброшумовые характеристики и др. Для тягового двигателя электромобиля или гибридного автомобиля критерием оптимальности могут быть минимальные потери, так как таким образом увеличивается пробег электромобиля в течение одного цикла разряда аккумуляторной батареи (АБ). Решающим критерием при выборе типа электропривода является наиболее полное использование энергии АБ. Электрическое торможение с рекуперацией энергии в АБ наиболее просто и эффективно достигается в ВЭД и ПН. В АЧУЭД осуществление этого режима затруднено, особенно в области низких частот вращения. В транспортных средствах с ПП рекуперацию не применяют.

Для оптимизации регулирования требуется возможность независимого изменения тока и потока ЭД. В полной мере такая возможность имеется в ПН, а также в ВЭД с электромагнитным возбуждением. В АЧУЭД независимое изменение тока и напряжения возможно в весьма ограниченных пределах, а в ПП связано с техническими трудностями. ВЭД и АЧУЭД имеют существенные преимущества по сравнению с ЭД постоянного тока, по массогабаритным показателям имеют существенно меньшую стоимость электрической машины, во много раз больший ресурс и надежность, практически не нуждаются в обслуживании, имеют возможность перехода двигателя в генераторный режим (режим рекуперативного торможения электромобиля). Однако СУ АЧУЭД по показателям регулирования может уступать СУ ВЭД и имеет пока более высокую стоимость. Несколько меньшую стоимость имеют СУ ПН и ПП, но у них более сложно осуществляется реверс. Наиболее сложным является выбор оптимальных параметров элементов тягового электродвигателя электромобиля. Критерием оптимальности служит, как правило, достижение максимального пробега L или максимальной полезной транспортной работы А = L•mn, где тп — масса перевозимого груза, а также оптимизация закона регулирования ЭД с целью возврата возможно

большей части запасенной при разгоне электромобиля кинетической энергии в АБ в ходе электрического рекуперативного торможения. Асинхронный двигатель с короткоза-мкнутым ротором при работе от статического преобразователя частоты-напряжения сочетает достоинства наиболее простой тяговой электрической машины переменного тока с хорошими пусковыми и регулировочными свойствами двигателя постоянного тока. Для этого он должен быть спроектирован с соблюдением всех требований, предъявляемых к тяговым электрическим машинам: обеспечением защиты от воздействия окружающей среды, с современными подшипниками, не требующей замены или добавления смазки в течение 30000-50000 часов. Асинхронный двигатель позволяет практически полностью исключить техническое обслуживание в течение назначенного безопасного ресурса автомобиля. При питании электродвигателя от аккумуляторной батареи через преобразователь частоты и напряжения (инвертор) в выражении М/Р (минимальная масса/электромагнитная мощность) необходимо учитывать массу электронного блока и потери в этом блоке. Увеличение массы двигателя обычно не служит препятствием при проектировании электропривода электромобиля, так как масса двигателя обычно не превышает 2-5 % полной массы электромобиля и несоизмеримо меньше массы аккумуляторной батареи. КПД новых серий тяговых двигателей повышают по сравнению с выпускаемыми ранее двигателями за счет увеличения расхода меди и стали в том же объеме, уменьшения воздушного зазора в системе ротор-статор, повышения коэффициента заполнения пазов якоря медью. Дальнейшее совершенствование ТАБ, а также тягового электропривода позволит значительно улучшить технико-

эксплуатационные характеристики электромобилей и обеспечит их широкое распространение.

Выбор электродвигателей для электромобилей и гибридных автомобилей должен рассматриваться с учетом всей энергетической системы и условий эксплуатации автомобиля. Тяговые коллекторные двигатели постоянного тока в новых разработках электромобилей и гибридных автомобилей не

применяют, поскольку их высокая стоимость и эксплуатационные недостатки не могут быть компенсированы несколько более низкой стоимостью силового электронного управляющего блока. По сравнению с ними ВЭД и АЧУЭД имеют значительные преимущества по массогабаритным показателям, КПД и затратам на техническое обслуживание.

1. Косой Ю.М. Некоторые особенности проектирования асинхронных двигателей для электромобилей / Ю.М. Косой // Труды ВНИИЭМ. Вопросы проектирования и исследования специальных машин. — 1984. — Том 5. — С. 64-69.

2. Богдан Н.В. Троллейбус. Теория, конструирование, расчет / Н.В. Богдан, Ю.Е. Атаманов, А.И. Сафонов. — Минск: Ураджай, 1999. — 262 с.

3. Доржинкевич И.Б. Особенности применения тягового электродвигателя в системе электропривода электромобиля / И.Б. Доржинкевич, А.А. Максимчук,

A.С. Ройтман // Труды ВНИИЭМ. Вопросы проектирования и исследования специальных машин. — 1984. — Том 5. -С.70-75.


4. Пбридш автомобш / О.В. Бажинов, О.П. Смирнов, С.А. Серков та ш.; за заг. ред. О.В. Бажинова. — Х.: ХНАДУ, 2008. — 328 с.

5. Синергетичний автомобшь. Теорiя и практика / О.В. Бажинов, О.П. Смирнов, С.А. Серков, В.Я. Двадненко; за заг. ред. О.В. Бажинова. — Х.: ХНАДУ, 2011. — 236 с.

6. Двадненко В. Я. Особенности двухзоно-вого регулирования вентильного электропривода гибридного автомобиля /

B. Я. Двадненко, С. А. Сериков // Перспективы развития автомобилей. Развитие транспортных средств с альтернативными энергоустановками: материалы 75-ой Международной научно-технической конференции ААИ 14.1115.11.2011. — Тольятти, Россия. — 2011.

Рецензент: А.В. Бажинов профессор, д.т.н., ХНАДУ.

Статья поступила в редакцию 3 октября 2020 г.

«Сердце» электромобиля

В автомобилестроении применяют двигатели, работающие от электрической энергии. Они отличаются от привычных для нас моторов: имеют специфические характеристики и функции. Двигатель для электромобиля может функционировать самостоятельно или параллельно с двигателем внутреннего сгорания. Также такие моторы бывают двух видов: синхронные и несинхронные. Можно сказать, что силовая авто с электродвигателем беспроигрышная и бесхитростная установка. При движении на нейтральной передаче аккумулятор электромобиля заряжается. Коэффициент полезного действия двигателя, работающего на электричестве, приближается к 90%, то есть практически весь объем выделенной энергии идёт на движение. Электродвигатель можно определить, как преобразователь одного вида энергии в другой, в частности, электрической в механическую с тепловым излучением.

Особенности и принцип работы электродвигателя

Существует ряд особенностей электродвигателей. Во-первых, перед запуском крутящий момент достигает максимума. Поэтому на машину с таким двигателем не стоит крепить стартер или сцепление. Во-вторых, электродвигатель для электромобиля работает в обширном промежутке оборотов. В связи с этим коробка переключения передач необязательна. Для перемены вращения двигателя достаточно просто поменять местами полярности, и этим выиграть на задней передаче. Двигателям для электромобиля необходимо соответствовать таким положениям:

  • обладание наиболее удобным и безопасным для работы строением;
  • гарантия прочности при применении;
  • наличие незначительных габаритов;
  • легкость в управлении;
  • современность прибора;
  • доступность электродвигателя.

Работа любого электродвигателя основана на индукции магнитной природы. Обычно электродвигатель состоит из двух элементов: статора и ротора. Статор — недвижимая часть, а второй элемент — крутящаяся. На катушки статора поступает непостоянный ток, что влечет за собой появление магнитного поля. Управляющий элемент выключает ток от одной катушки и передаёт его на следующую. В результате этого ротор приходит в движение. Скорость его оборотов определяется быстротой переключения напряжения с одной катушки статора на другую. Ротор бывает нескольких видов:

  • Короткозамкнутый;
  • Фазный, который применяют при необходимости уменьшить ток запуска и контролировать скорость кручения электромотора. Чаще всего, это двигатели электрической природы, применяемые в крановых системах.

На немощных двигателях используют индуктор, который имеет вид магнита. Якорем называют движимый элемент механизмов непеременного тока или же всеобщего мотора. Такой двигатель представляет собой прибор установленного тока, имеющий порядковую активацию обмотки и индуктора. Разница состоит лишь в количестве намотки. На неизменном токе нет сопротивления реактивной природы.

Разнообразие электродвигателей

Двигатели электрической природы подразделяются на множество групп, в зависимости от критерия, лежащего в основе классификации. Исходя из появления момента вращения:

  • Гистерезисные — момент вращения появляется после гистерезиса в условиях полного изменения магнитных показателей ротора. Эта группа электродвигателей не особо используется в производстве.
  • Магнитоэлектрические — широко используются в производстве и потреблении. Эта группа включает двигатели неизменного и непостоянного тока.

Электродвигатель постоянного тока — мотор, который работает от неизменного электричества. Двигатель сменного тока — мотор, который функционирует на непостоянном токе. По типу своего функционирования они бывают синхронными и асинхронными. Различие между ними заключается в скорости кручения гармоники. В первой ситуации эта скорость равна частоте оборотов ротора. Во второй — скорости эти различаются.

Синхронные двигатели

Синхронный двигатель можно определить, как мотор, работающий на непостоянном токе. Его ротор двигается в унисон с полем магнитной природы источника напряжения. Такой тип электродвигателя целесообразно использовать при повышенной мощности: от 100 киловатт и более. Шаговые моторы — конкретный вид синхронных. Они характеризуются наличием дискретного углового движения ротора, который размещен в конкретном месте. Его положение обусловлено питанием, что подается на конкретную обмотку. Чтобы изменить местоположение ротора, нужно перенаправить напряжение между обмотками. Вентильный реактивный электродвигатель является еще одной разновидностью синхронных, питается составляющими-полупроводниками.

Асинхронный электродвигатель

Асинхронный электродвигатель — мотор непостоянного тока, где скорость кручения ротора отлична от этой характеристики у магнитного поля, созданного напряжением, которое создается источником питания. Такие двигатели, работающие от электричества, приобрели сегодня особую популярность.

В зависимости от щёточно-коллекторного узла, который может относиться к данной группе или не принадлежать ей, двигатели подразделяются на:

По типу активизации коллекторные электродвигатели принято делить на:

  • Моторы с активизацией от магнитов (электрических и постоянных);
  • Самовозбуждающиеся двигатели электрической природы, которые, также содержат группы.

Сюда относят электродвигатели с параллельным возбуждением, последовательным, или смешанным. Обмотка на якоре начинает свою работу соответственно одновременно или после начала функционирования обмотки активации. Бесколлекторные двигатели (их еще называют вентильными) — моторы электрической природы, включающие в себя индикатор ротора, элемент управления и индикатор-реобразователь.

В зависимости от численности фаз электродвигатели непостоянного тока делятся на такие группы:

  • Однофазные — активизируются вручную человеком. Они имеют цепь, которая сдвигает фазу и обмотку для запуска.
  • Двухфазные, включая конденсаторные.
  • Двигатели, имеющие три фазы.
  • Многофазные.

Выбор электрического двигателя

Чтобы выбрать электродвигатель для электромобиля правильно, нужно определиться с типом двигателя ознакомиться с техническими характеристиками конкретной модели и сопоставить их с собственными требованиями к данному прибору.

Тип электродвигателя

Двигатели постоянного тока не особо распространены сегодня, ведь зависимы от источника питания, за ними сложно ухаживать. Такие двигатели применяют на производстве. Синхронные электродвигатели улучшают характеристики сети, им не страшны перемены напряжения, обладают перегрузочной способностью и установленной скоростью вращения. Но такие моторы дорогостоящие и сложно устроенные. Их стоит использовать, если вы нуждаетесь в мощности от 100 киловатт. Асинхронные электродвигатели предназначены для незначительных нагрузок. Их довольно легко обслуживать, к тому же они доступны в цене. Но боятся резких перепадов напряжения.

Модель конкретной мощности

При выборе окончательно убедитесь, что мощность приглянувшейся вам модели достаточна для работы конкретного прибора или механизма. Модели двигателей создаются для различных режимов работы. Поэтому прежде, чем приобрести мотор, убедитесь, что конкретная модель может функционировать на протяжении длительного времени без перерыва или же с легкостью выдерживает постоянные включения и отключения. Двигатель должен быть самоокупаемым, то есть энергоэффективным. Самый высокоэффективный электродвигатель — модель класса IE3. Именно они экономят много энергии и, соответственно, ваши деньги. Выбрать нужный именно вам электродвигатель достаточно просто. Следует учесть все описанные выше моменты и избрать идеально подходящую модель. Тем более, что выбор достаточно велик — сегодня многие отечественные и зарубежные производители предлагают свои приборы.Создание электродвигателей

Моторы электрической природы применятся во многих отраслях промышленности и сельского хозяйства. Различные специализированные заводы и фирмы производят электродвигатели различного строения с определенными функциональными характеристиками.

Производство электрических двигателей — высокотехнологичный процесс, разбитый на этапы. Для начала нужно запастись материалами и проверить их на пригодность, а лишь потом приступать к процессу изготовления, который состоит из ряда этапов:

  • Создание металлических составляющих. Часто используется чугун, а литье производят с помощью форм из глины и песка.
  • Производство легких комплектующих из металла. Чаще всего применяют для этого алюминий. Литье создают с помощью сдавливающих форм. На этом этапе используют специализированную технику, которая обеспечивает создание давления.
  • С помощью термопластавтоматов создают полимерные элементы будущих электродвигателей.
  • Процесс заготовки вала, созданного из проката металла. Чтобы получить нужный элемент, достаточно всего лишь отрезать часть изделия нужной продолжительности.
  • Элементы крепления чаще всего закупают. Так как это почти ювелирная работа.
  • Процесс изготовления листов, из которых будут созданы статор и ротор. Для этого используют особый вид стали, электротехнической.
  • Процесс обрабатывания листов-основ ротора. Их прессуют и покрывают слоем алюминия.
  • Процесс обрабатывания листов-основ статора. Их прессуют и скрепляют скобами.
  • Следующий этап — изоляция, которую проводят с помощью специальных материалов.
  • Процесс обмотки может быть ручным или машинным, автоматизированным.
  • Процесс проверки сердечников — обязательное условие будущей пропитки.
  • Механическая работа над составляющими, осуществляется на специальных станках.
  • Процесс сборки ротора и его обработки, происходит с помощью универсальных станков.
  • Работа над готовым ротором: его балансировка.
  • Сборка готового изделия.
  • Испытания — апробация нового готового электродвигателя.

Так, среди ведущих украинских производителей электродвигателей можно назвать следующие: Харьковский электротехнический завод Укрэлектромаш, Первомайский электромеханический завод им.К.Маркса, ЗАО Завод Крупных Электрических Машин, ООО Новокаховский электромашиностроительный завод, Промприбор.

Электродвигатель — составляющая новых экологичных авто — электромобилей. Эффективность и полезность электричества как альтернативного источника энергии доказана уже давно, но электродвигатели только набирают популярность. Эти моторы дорогостоящие, хотя с каждым днём они становятся доступнее. Обратить своё внимание на электродвигатель стоит ради его экологичности и экономичности. Электродвигатель имеет ещё один существенный плюс — самоокупаемость. Хорошо заплатив однажды, вы сэкономите намного больше в будущем. Всерьёз задумайтесь над тем, чтобы приобрести электродвигатель. Это, вне всякого сомнения, выгодно!

Электромотор для электромобиля — как он устроен? Тяговый электродвигатель для электромобиля: как электрокары на нем работают.

Безусловно самой затратной частью электромобиля является батарея!
И как рассказывалось в прошлой статье от емкости батареи зависит дальность пробега, но
и от КПД двигателя и расходуемой им энергии на 1 км тоже зависит многое!
Что касается стоимости то дуэт двигателя и контроллера занимает вторую строчку по стоимости после батареи!

На каких двигателях вообще можно ездить?
П сути их 3 типа!
1. Двигатель постоянного тока смешанного, последовательного или параллельного возбуждения(DC);
2. Двигатели постоянного тока с постоянными магнитами или еще их называют без щеточными (BLDC);
3. Двигатели переменного тока асинхронные с медным или алюминиевым короткозамкнутым ротором (АС);

Самым бюджетным комплектом из этой тройки является 1 вариант. Как правило он состоит из б/у или нового тягового двигателя от погрузчика «Балканкар» болгарского производства или хорошо зарекомендовавших себя двигателей марки ДС-3,6 и ДС-6,3. Многие конверсии авто начинались с того, что человеку подворачивался такой двигатель, а вместе с ним мысль перейти на электротягу. Цена такого двигателя в зависимости от состояния может быть разной но в среднем это около 400 у.е. Есть американские монстры такие как Varp и Advanced по цене от 700 у.е. и выше! Контрллер к нему подобрать не трудно, многие дерзают паять их дома. Из широко используемых у нас это Kelly, Комета и так называемый Контроллер от «Романтика» (Юрия Логвина, Романтик — никнейм на электромобилном форуме), Цена таких контроллеров тоже не высока от 300 до 500 у.е. Для американских монстров Varp и Advanced контроллер выской мощности может стоить и до 2000 у.е. Плюсами двигательной установки с двигателем постоянного тока последовательного возбуждения о которых шла речь выше, несомненно являются цена и высокая перегрузочная способность, т.е. при номинальной мощности в 3,6 кВт двигатель может выдать при необходимости в 3-5 раз больше! В зависимости от мощности используемого контроллера. Минус отсутствие либо сложность организации процесса рекуперации (свойство двигателя становится генератором и заряжать батарею во время торможения или движения под гору) относительно низкий КПД 75-85% на номинальных оборотах. Двигатели с параллельным возбуждением среди самоделок получили меньшее распространение, но ими комплектовались серийные электромобили Рено и Ситроен Саксо. Эти машины можно относительно недорого купить на вторичном рынке в Германии, останется только укомплектовать батареей.

2-й вариант Дороже предыдущего как правило продается парой двигатель+контроллер, (в среднем около 1,5 тыс. у.е.) обладает высоким КПД более 90%, но имеет низкую перегрузочную способность, если взять минимальную расчетную мощность 6 кВт на 1т снаряженной массы, то для 1 варианта достаточно мощности 3,6 кВт для варианта 2 — 10-12 кВт. Рекуперация на таком комплекте организовывается без проблем и чаще всего присутствует как стандартная опция контроллера.

3-й вариант самый дорогостоящий! Самый прогрессивный! Имеет один минус — Цена! Но сколько плюсов?!
Достаточно сказать, что асинхронным двигателем с медным ротором оборудован автомобиль Tesla model S!
Но не все так грустно! Для конверсии можно использовать обычный общепромышленный асинхронный двигатель, скажем АИР112MB8! Но обмотки статора нужно будет перемотать специальным образом. Тип такой обмотки называется «Славянка» такое название ей дали ее разработчики, наши с вами соотечественники. Этот тип обмотки позволяет получить из обычного асинхронника отличный тяговый мотор, с расходом энергии на км на 30-40% ниже чем на двигателях постоянного тока! Это значит что с одной и той же батареей на асинхроннике со «Славянкой» ваш пробег будет больше. Диапазон оборотов до 6000 и выше. Контроллер для такого двигателя стоит от 1,5 до 2,5 тыс. у.е. можно найти на торговых площадках за 700-1000 у.е. б/у. в основном это Сurtis. Сейчас активно ведется разработка такого контроллера Российскими учеными-энтузиастами! Возможно к весне будут готовы первые мелкосерийные образцы. Они будут дешевле.

Если вы хотите не дорого электрифицировать авто до 800 кг, ищите двиг от погрузчика! Масса двигателя должна быть не менее 40-50 кг! Это важно! Двигатель в 30 кг мощностью 6 кВт не будет обладать нужным крутящим моментом и будет греться до критических 110 градусов! Также на шилде двигателя может быть указан режим его работы — S1, S2, S3, S4. Вам нужен S1 или S2. Обороты двигателя для конверсии с КПП должны быть сопоставимы с ДВСными, т.е. не менее 1800 оборотов. Их число можно поднять увеличив напряжение с номинальных, скажем 48В до 72В. Уже под найденный двигатель подбирайте контроллер!

Если вы хотите получить компактный двигатель с рекуперацией и не дорого, возьмите комплект бесколлекторный двигатель плюс контроллер! Лучше брать комплект т.к. это упростит монтаж и будет гарантировать совместимость контроллера и двигателя и их оптимальность работы.

Если вы решили подойти к конверсии всерьез и хотите получить авто с отличными характеристиками с рекуперацией и максимальной скоростью за 100 км, то ваш выбор в пользу асинхронника со «Славянкой»!
Такую конверсию лучше начать с поиска и покупки именно контроллера! И уже под контроллер и его характеристики подбирать двигатель.

Вот такие пироги!

Комментарии 7

Привет! Много букв, ноя осилил!)
Откуда вы взяли, что Дуюнов раскрыл обмоточные данные «славянки»?
У нас к примеру с ним лицензионный договор, на ее использование, а его патентное право охраняется законом. В вашей идее все логично! Лично меня смущает 2 момента:
Качество обеспечения электробезопасности при использовании опасных напряжений на серийных образцах.
Абсолютная непригодность промышленных частотников к потребительской эксплуатации на транспорте.
Что думаете?

В свете того, что г-н Д. А. Дуюнов раскрыл свой секрет совмещённой обмотки типа «Славянка, мы составили отладочную блок-схему гибридного транспортного средства с таким двигателем, поскольку на малых оборотах такой двигатель создаёт 4-х кратный крутящий момент, по сравнению с обычным асинхронным двигателем.
Изначально предполагалось, что двигатель лучше мотать на нестандартное пониженное напряжение, для уменьшения количества банок аккумуляторов. Однако, ознакомившись с ассортиментом и ценами на низковольтные ПЧ мы пришли к выводу, что целесообразнее использовать промышленный ПЧ, рассчитанный на питание от 3-х фазной сети переменного тока 200…240V — для транспортных средств средней грузоподъёмности, и

115V – для более лёгких применений.
Примером первого ПЧ может быть VARISPEED CIMR-F7Z-2020 – 18kW,
второго — VACON0010-1L-0005-1-MACHINERY

115V 1.1kW.
Диодный мост на входе ПЧ исключается, напряжение питания с аккумуляторов подаётся непосредственно на конденсатор фильтра.
При использовании ПЧ с векторным управлением можно отказаться от коробки передач – КПП.
Аккумуляторы можно использовать разные, у каждого типа есть свои достоинства и недостатки. Свинцово — кислотные самые дешевые, но и самые тяжелые, зато не требуют балансировочных устройств на каждой банке. Однако, самый неприятный их недостаток – малое количество циклов заряда – разряда. Поэтому оставим их в прошлом.
Никель – металл — гидридные получше, однако в промышленных гибридах сейчас от них отказываются в пользу LiFePO4.
Это лучший вариант, цена за 1Ah около 70…80р, к сожалению, требуются балансировочные устройства на 3.65V. Однако их плюс в том, что в процессе цикла разряда напряжение на них остаётся более-менее стабильным в пределах 3.2V. Хотя, рабочим считается диапазон 2.8…3.65V.
LiIon и LiPo аккумуляторы имеют меньший вес при той же мощности, но цена у них более 100р. за 1ah. Требуются балансировочные устройства на каждой банке на 4.2V. Кроме того имеют меньшее число циклов заряда – разряда.
Таким образом, целесообразно использовать один из последних типов аккумуляторов: LiPo или LiFePO4, у последних цена получится ниже, вес немного больше, разброс напряжений немного ниже, больше циклов заряд — разряд.
Стоить заметить, что для гибрида особо большая ёмкость аккумуляторов не нужна. Основная их функция – буфер между генератором и ПЧ. При разгоне энергия берётся из АКБ, при ровной езде – от генератора, в это же время происходит подзарядка АКБ для следующих разгонов. Вторичная функция АКБ – забирать энергию в себя при торможении двигателем — рекуперация.
В качестве генератора можно использовать массу различных устройств. Это и стандартные генераторы, работающие на бензине, солярке или газу. Лучшие результаты должны дать линейные (вибрационные) генераторы, в которых отсутствует кривошипно-шатунный механизм, в результате чего, повышается их КПД. Можно использовать двигатель внешнего сгорания — Стирлинга, совмещённый с линейным генератором и топить гибрид дровами)))

Возьмём для примера гибридный автомобиль Toyota Prius NHW20.
В высоковольтной батарее ВВБ используются NiMH (никель-металл-гидридные) аккумуляторы (ячейки) ёмкостью 6500 mAh и номинальным напряжение 7.2v.
Каждая ячейка состоит из шести «банок» напряжением 1.2v объединенных в один общий корпус с двумя выводами по краям. В высоковольтной батарее таких ячеек 28 штук,
разбитых на 14 контролируемых компьютером пар.
Общее количество элементов питания 6 *28 =168шт. Среднее напряжение 1.2 *168 =201.6V. Общая мощность (6500mah/1000) *7.2V *28шт. =1310.4 W.

Делаем перерасчёт на LiPo и PiFePO4 батареи, с учётом того, что они будут питать промышленный ПЧ — VARISPEED F7.
Номинальное напряжение — 3 фазы, 200/220/230/240V + 10%, — 15%, 50/60 Гц
Следовательно, ПЧ сохраняет работоспособность при переменном напряжении на его входе от 170 до 264 вольт.
По постоянке — это 170 *sqrt(2) =240.4 минус падение на диодах моста 239V
264 *sqrt(2) =373.3 минус падение на диодах моста 372V
Для LiIon, выбираем 84 банки. Диапазон напряжений составит:
84 *2.85 =239…84 *3.7 =311…84 *4.2 =353V
Pэл =1300 /84 =15.5W; Iэл =1000 *15.5 /3.7 =4200mah.
Для LiFePO4 оптимально 96 банок. Диапазон напряжений составит:
96 *2.8 =268.8…96 *3.2 =307.2…96 *3.65 =350.4V
Pэл =1300 /96 =13.5W; Iэл =1000 *13.5 /3.2 =4232mah.
Стоимость 96-и ячеек LiFePO4 5500mah составит около 45000р. Стоимость балансировочных устройств к ним – 5000р. И того: 50000р. Масса 15kg.

Теперь произведем расчёт, с использованием ПЧ на 115Vac, подходящий, скажем, для электромопеда.
VACON0010-1L-0005(4,3,2,1)-1-MACHINERY

115V;
1.1(0.75, 0.55, 0.37, 0.25) kW; 4.7(3.7, 2.8, 2.4, 1.7) A
Input voltage Uin 115 V, -15%…+10% 1

97.75… 126.5V
По постоянке это: 138.24…178.9V, минус падение на мосте 137…177.5V
Для LiIon выбираем 44 банки. Диапазон напряжений составит:
44 *3.11 =137 …44 *3.7 =163…44 *4.2 =184.8V, вывод: забрать можно около 90…94% емкости.
Для LiFePO4 оптимально 48 банок. Диапазон напряжений составит:
48 *2.85 =136.8…48 *3.2 =153.6…48 *3.65 =175.2V, вывод: забрать можно около 98% емкости.

Возьму асинхронный двигатель на 180W (завалялся у меня такой), перемотаю его на 115Vac, «Славянку». 48 элементов LiFePO4 5.5ah обойдутся в 22.2т.р., плюс балансировочные платы 2.5т.р. масса АКБ получится 7.1кг. При потреблении 180W на таком АКБ ехать можно в течении 4.7часа. При 500W — 1.7часа.

В свете того, что изобретатель г-н Дуюнов Дмитрий Александрович раскрыл свой секрет совмещённой обмотки типа «Славянка, я решила составить приблизительную блок-схему гибридного транспортного средства с таким двигателем.
Хотелось бы, чтобы участники форума внесли свои предложения, замечания, исправления.
В расчетах буду исходить из того, что оборудование будет установлено на легковой автомобиль, например ВАЗ 2109.
Начну с самого двигателя. Поиск в Интернете показал, что для перемотки можно использовать 4-x киловаттный двигатель, однако для достижения больших мощностей и скоростей стоит взять немного более мощный двигатель, например 5kW. После перемотки на «Славянку» номинальная мощность двигателя должна составить более 15kW, а пиковая (при разгоне) 55…65kW.
Изначально предполагала, что двигатель лучше мотать на пониженное напряжение, для уменьшения количества банок аккумуляторов, однако, ознакомившись с ассортиментом и ценами на низковольтные частотные преобразователи решила, что дешевле получится использовать стандартный промышленный преобразователь частоты, рассчитанный на питание от однофазной сети

220V или от 3-х фазной 200V.
Примером первого может быть «Овен» ПЧВ3-11К-Б — 11kW.
— второго VARISPEED CIMR-F7Z-2020 – 18kW.
Впрочем, какой мощности должен быть частотник стоит подумать дополнительно, поскольку в пике он должен выдавать до 65kW.
Предполагается не использовать диодный мост на входе частотника, а подавать напряжение питания с аккумуляторов непосредственно на конденсатор фильтра. При этом разброс питания полностью заряженных и полностью разряженных аккумуляторов весьма велик. Например, для LiIon АКБ, составленной из 74 банок разброс составляет 210.8…307.2V. Поэтому необходимо будет изменить схему защиты от пониженного напряжения внутри ПЧ, чтобы он мог работать при таком разбросе. Возможно, следует увеличить количество банок в АКБ, например до 83-х, тогда разброс напряжений будет в диапазоне 236…348.6V, однако, тогда придётся изготавливать нестандартный генератор, с переменным напряжением на выходе не

250V.
Если использовать ПЧ с векторным управлением, то можно отказаться от коробки передач – КПП.
Аккумуляторы можно использовать разные, у каждого типа есть свои достоинства и недостатки. Свинцово — кислотные самые дешевые, но и самые тяжелые, зато не требуют балансировочных устройств на каждой банке. Однако, самый неприятный их недостаток – малое количество циклов заряда – разряда. Именно поэтому не стоит с ними связываться. В итоге дороже окажется. Никель – марганцевые, не знаю, можно подумать, но почему то в промышленных гибридах сейчас от них отказываются в пользу LiFePO4.
Это хороший вариант, цена за 1Ah около 70…80р, требуются балансировочные устройства на 3.65V. Ещё их плюс в том, что в процессе цикла разряда напряжение на них остаётся более-менее стабильным в пределах 3.3…3V. Хотя, рабочим считается диапазон 2.8…3.65V. LiIon и LiPo имеют меньший вес при той же мощности, но цена у них более 100р. За 1ah. Требуются балансировочные устройства на каждой банке на 4.2V.
В общем целесообразно использовать один из последних типов аккумуляторов: LiIon или LiFePO4, у последних цена получится пониже, вес побольше, разброс напряжений немного ниже.
Стоить заметить, что особо большая ёмкость аккумуляторов не нужна. Основная их функция – буфер между генератором и частотником. При разгоне энергия берётся из АКБ, при ровной езде – от генератора, в это же время происходит подзарядка АКБ для следующих разгонов. Вторичная функция АКБ – забирать энергию в себя при торможении двигателем.
В качестве генератора можно использовать массу различных устройств. Это и стандартные генераторы, работающие на бензине, солярке или газу. Лучшие результаты должны дать линейные (вибрационные) генераторы, в которых отсутствует кривошипно-шатунный механизм, в результате чего, теоретически, поднимается их КПД. Можно использовать двигатель внешнего сгорания Стирлинга, совмещённый с линейным генератором и топить гибрид дровами)))
Какая должна быть мощность генератора – не знаю, думаю можно попробовать, начать с 6kW.

Лучше, хуже, тут не совсем уместно…
В каждом типе двигателя есть свои плюсы и минусы.
Один из важных плюсов тягового двигателя от погрузчика, это цена и совокупная стоимость комплекта двигатель+контроллер и его высокая перегрузочная способность, о чем сказано выше.
Тут уж что Вам ближе, доступнее, интереснее. Ну и где и как собираетесь эксплуатировать авто.

Данный двигатель, используется в перемотанном виде. Обмотка его статора заменяется на совмещенную обмотку «Славянка», с которой развивемая им мощность существенно увеличивается и, по сути, ограничивается мощностью контроллера.

Неотвратимым будущим автомобилестроения, хотим мы того или нет, являются электрические автомобили. Производители авто во всем мире вкладывают огромные средства в их разработку, желая снизить концентрацию вредных веществ выбрасываемых автомобилями традиционными, сделать поездки безопасными и комфортными, а также экономичными. Работа по их созданию проводится в двух направлениях – создание новых моделей и реконструкция серийных, которая более предпочтительна, поскольку менее затратная. Электромобили, по сравнению с традиционными, более надежны, поскольку более просты по конструкции, т.е. отличаются минимумом движущихся частей.

Крупнейшими рынками электрических автомобилей являются сегодня: США и Норвегия, Япония и Германия, Китай и Франция, Великобритания и др. Наша страна пока от производства и использования новых средств передвижения находится в стороне, исключая энтузиастов, разработавших Lada Ellada. Но, это случай пока единичный, поэтому он не в счет, тем более, что собрано авто на импортных комплектующих.

Понятие «электрический автомобиль» означает средство передвижения, приводимое в движение несколькими (или одним) электродвигателями. Теоретически питание мотора может быть от аккумулятора, топливных элементов или солнечных батарей. Тем не менее, большее распространение получил вариант первый. Батарея, питающая двигатель требует зарядки, осуществлять которую можно при помощи внешних источников, рекуперации или генератора, установленного на борту автомобиля. Электродвигатель, являющийся основным элементом электромобиля, питается, как правило, от литий — ионной батареи. Он же, в режиме рекуперации, играет роль генератора, заряжающего батарею.

Назначение тягового электродвигателя

Электродвигатель тяговый (ТЭД) предназначен для приведения в движение транспортного средства, т.е. он преобразует в механическую, энергию электрическую. Их классифицируют по способу питания, роду тока, конструктивному исполнению, типу привода колесных пар. В большинстве экологичных машин: гибридных авто, серийных электромобилях, авто на топливных элементах, которые в наши дни приобретают завидную популярность, они являются основной движущей силой.

В качестве двигателя используют в них моторы тяговые постоянного тока, которые работают в двух режимах – двигательном и генераторном.

Видео: Как устроен двигатель электромобиля Tesla Model S

Принцип работы

Принцип работы электромобиля Golf blue-e-motion с тяговым электродвигателем

В основе их работы лежит принцип электромагнитной индукции, т.е. возникновение в замкнутом контуре электродвижущей силы при изменении магнитного потока. От традиционной машины электромеханической ТЭД отличается большей мощностью, более компактными размерами, а кроме этого, у него более высокий КПД.

По способу питания моторы делятся на двигатели постоянного и переменного тока. По числу фаз – на однофазные (с одной обмоткой, подключаемой к сети однофазной переменного тока), двухфазные (две обмотки, расположенные под углом девяносто градусов), трехфазные (три обмотки с магнитными полями через 120 градусов).

По исполнению конструктивному двигатели могут быть: коллекторными, преимущественно работающие на постоянном токе (универсальные современные могут также работать и на токе переменном), бесколлекторными, синхронными, асинхронными. Наконец, по способу возбуждения они делятся на: двигатели с последовательным, параллельным, последовательно-параллельным возбуждением и от постоянных магнитов.

Основные характеристики тягового электродвигателя электрического автомобиля

В современных авто электродвигатель может быть от переменного или постоянного тока. Основной его задачей является передача на движитель авто крутящего момента. Основными характеристиками ТЭД помимо максимального крутящего момента и мощности, являются: частота вращения, ток и напряжение.

В автомобилях чаще используют коллекторные двигатели (один из них благодаря способности вращаться в обратную сторону, может работать как генератор). Но, в отдельных моделях устанавливают электрические моторы и других типов – магнитоэлектрические моторы, подразделяющиеся на двигатели переменного и постоянного тока. Тяговые двигатели электрические, установленные в электромобилях, от других электромоторов не отличаются по конструкции.

Мотор-колесо

Если вначале использовали один тяговый электродвигатель для электромобиля, редуктор которого соединен с трансмиссией, то сегодня все чаще обращаются к мотор-колесу. Суть концепции состоит в том, что компьютерная программа управляет при помощи отдельных моторов каждым из колес. Главным преимуществом является отсутствие трансмиссии, из-за которой силовая установка теряет значительную часть энергии. Помимо этого удается ликвидировать тормозную гидравлическую систему, функцию которой берут на себя электромоторы, а также отдельные механизмы ESP и ABS.

Сегодня электротранспорт подается маркетологами, как носитель самых прогрессивных технологий в автомобилестроении. И многие уверены, что электромобиль может быть либо дорогим, как Nissan Leaf или Mitsubishi i-MiEV, либо очень дорогим – как Tesla. Однако члены дружного сообщества электромобилистов-самодельщиков знают, что это не так! В простейшем рукотворном варианте «машина на батарейках» значительно дешевле своих промышленных аналогов и не требует инновационных технологий и материалов. Поэтому немало элементарных электромобилей ездит рядом с нами по дорогам под личиной обычных бензиновых моделей – просто мы об этом не знаем!

«Электромобиль версии 1.0» – машина базового уровня, сделать которую может за полгода в гараже фактически любой рукастый мужик, умеющий ремонтировать автомобиль и обладающий начальными знаниями в электротехнике. Цель этой статьи, конечно же, не вручить читателю четкую инструкцию по применению, а дать, как сегодня модно говорить, «дорожную карту» понимания того, что электромобиль – это просто! Рассказал «Колесам» об этом один из самых авторитетных российских электромобилистов-самодельщиков Игорь Корхов, администратор крупнейшего тематического форума electrotransport.ru, успешно строивший законченные конструкции собственных электромобилей, а в данный момент ездящий на модернизированой Lada Ellada.

Бой комарам в машине: как сделать фумигатор для автомобиля

Некоторое время назад я отправился на рыбалку на торфяные озера Сергиево-Посадского района Подмосковья. Маршрут был привычным, план тоже — заезд вечером в субботу, ночевка в машине, а в три утра выход на воду на лодке.

6599 0 0 29.08.2020

Кузов

Из чего состоит электромобиль начального уровня, который несложно построить на гаражном «стапеле»? Кузов от машины-донора с рулевым управлением, подвеской, трансмиссией и тормозами, электродвигатель постоянного тока, агрегатированный со штатной ручной КПП, пакет батарей с контроллером, педаль акселератора, от которой контроллер получает сигнал и ряд вспомогательных узлов, которые можно даже привносить в конструкцию не сразу, а позже – после первых пробных выездов, коих с таким нетерпением ждет душа гаражного инженера…

В качестве кузовного донора, как правило, берут переднеприводную машину, чтобы не терять энергию на трение в крестовинах кардана и гипоидной передаче заднего моста. Стараются найти машинку полегче, в идеале до 600–700 килограммов, хотя это не всегда удается – большинство авто избыточно тяжелы с точки зрения постройки электромобиля. В свое время весьма популярна среди гаражных электромобильщиков была Таврия – кузов легкий и отменная «катучесть» – на ровной дороге можно было буквально пальцем толкать! Но Таврии почти все, увы, сгнили уже… Популярны Golf-ы первого–второго поколения, Daihatsu Mira и тому подобные небольшие машинки. «Катучесть» стараются увеличивать за счет особых шин – так называемых «зеленых»: узких и допускающих давление 2,7 и более атмосфер для устранения потерь на деформацию резины.

Двигатель

Я видел, как на машине со снятым двигателем к первичному валу ручной КПП подключали мощный шуруповерт, выводили в салон управление его кнопкой включения и фактически получали за полчаса электромобиль! Да, курьезный, да, едущий не быстрее пяти километров в час, но, в сущности, неплохо демонстрирующий простоту и работоспособность конструкции «варианта 1.0»! Все это, разумеется, из области «механики шутят», но принцип, в общем, сохраняется.

Самыми распространенными двигателями для самоделок начального уровня были и по-прежнему являются тяговые моторы ДС-3.6 от болгарских вилочных складских электропогрузчиков типа «Балканкар EB-687». Это двигатели последовательного возбуждения, питающиеся постоянным током с напряжением 80 вольт, мощностью 3,6 киловатта. Выглядит такой мотор, как цилиндрический бочонок, весит 66 килограммов. Это далеко не самый лучший по характеристикам массы и экономичности мотор, но он легкодоступен и популярен у начинающих конструкторов электромобилей. Приобрести такой «движок» можно в меру своего везения – кому-то он перепадет за спасибо, кто-то найдет за 5–10 тысяч рублей. В принципе, такая стоимость оправдана – мотор не скоростной, но имеет великолепный крутящий момент, вытягивает на любую горку даже на третьей передаче, прост в монтаже, неприхотлив.

Трансмиссия

Самодельный кондиционер в машине: наш эксперимент

Бутылка со льдом как средство от перегрева? Наверное, когда-то кондиционер в автомобиле станет совершеннейшей нормой, вне зависимости от стоимости и комплектации. Однако по-прежнему миллионы машин, «бегающих» по нашим.

67278 6 5 25.07.2020

В «Варианте 1.0» не встретишь мотор-колес и прочих прогрессивных электромобильных «нанотехнологий». Делается, как проще, а проще всего срастить электродвигатель с уже существующей на автомобиле-доноре трансмиссией – ручной КПП с главной передачей и дифференциалом, через ШРУСы переднего привода со ступицами и передними колесами.
— Собственно, корзина и диск сцепления, его привод (гидравлический или тросовый), да и сама левая педаль удаляются – это лишний вес, и они нам больше не нужны. – рассказывает Игорь Юрьевич, — Переключать скорости мы, правда, все же будем – но редко и без разъединения валов мотора и КПП – просто втыкая передачи рукояткой коробки. Включается нужная передача без сцепления совершенно спокойно как перед началом движения, так и на ходу: бросаешь газ, подводишь рукоятку КПП, синхронизаторы срабатывают – и едем дальше.

Третью передачу используем для езды по городу, четвертую – по загородной трассе, вторую – по буеракам. Первая вообще никогда не используется, момент на колесах такой, что их просто прокручивает при легком касании акселератора!

Чтобы установить электромотор под капот, нужны две основные «хендмейд»-детали: переходная плита и переходная втулка, с помощью которых электродвигатель соединяется с «родной» ручной коробкой передач автомобиля. Плита соединяет электромотор и КПП, а втулка – вал мотора и первичный вал КПП.

Плита легко делается своими руками из толстолистовой стали или алюминия – достаточно наличия слесарных навыков среднего уровня, болгарки и дрели.

Переходную втулку, соединяющую валы электромотора и КПП, также сделать несложно с помощью дяди Васи-токаря и сварки – с одной стороны втулка должна совмещаться с валом электродвигателя, а с другой к ней приваривается шлицевая часть, вырезанная из диска сцепления той коробки, с которой мы соединяем электромотор.

Батарея

Батарея для электроавто — только литий-железо-фосфат, иных вариантов нет! Про стартерные свинцовые батареи, кажущиеся привлекательными для начала, «на попробовать», забудьте сразу и навсегда – они категорически непригодны, просто деньги на ветер. Несколько зарядок-разрядок – и аккумуляторы отправятся в пункт приема цветмета! Тяговые свинцовые батареи тоже долго не живут, поскольку при их массе емкость всегда будет недостаточной, а это означает избыточно большой потребляемый ток в расчете на одну батарею. При таких токах не держится и тяговый свинец. Так что исключительно «лиферы», хотя это и недешево.

В свое время через свинец многие проходили – и я в том числе. Сейчас такие ошибки повторять никакого смысла нет. Стартерные батареи у меня начали помирать через пару месяцев, еле успел распродать за полцены, пока не потеряли емкость. Потом одно время использовал герметичные батареи от питания телекоммуникационных систем (источники бесперебойного питания сотовых вышек) – хватало на сезон, начинало расти внутреннее сопротивление… Поэтому, как только появился широкодоступный литий-феррум, все перешли на него. Лучшая удельная плотность энергии, умение отдавать и принимать большие токи, долговечность, морозостойкость. Но цены пока высоки, и батарея является самым дорогим узлом электромобиля – это нужно учитывать самодельщику…

Упрощенный расчет параметров и стоимости батареи выглядит так: предположим, что нам надо набрать 100-вольтовую батарею – на такое напряжение рассчитано довольно много моторов. Напряжение одной «лифер-банки»–- 3,3 вольта: значит, нам нужно соединить последовательно 30 банок. Но второй важный параметр батареи – емкость. Поскольку «банки» одинаковые, емкость одной = емкость всей батареи. «Банка» хорошего качества стоит примерно 1,5 доллара за 1 ампер-час, а 30-амперчасовая батарейка начального уровня обеспечит машине весом до тонны 25–30 километров запаса хода.

30 ампер-часов х $1,5 = $45 за одну банку
$45 х 30 банок = $1350 $ за всю батарею

В общем, батарея небюджетна, и это лишь емкость, пригодная для первых экспериментов – по-хорошему, её нужно увеличивать хотя бы вдвое…

Заряжают аккумуляторы электромобиля чаще всего полусамодельными зарядными устройствами, сделанными на основе дешевых списанных блоков питания, насыщавших резервные аккумуляторы на базовых станциях сотовой связи – там они работают совместно с 48-вольтовыми свинцовыми батареями. Таких блоков нужно две штуки – их соединяют последовательно, внутренняя регулировка позволяет поднять напряжение каждого до 64 вольт и зарядить батареи для большинства распространенных электромоторов, используемых EV-самодельщиками.

Микронасос для замены масла с чистыми руками: испытываем в деле

Голь на выдумки… На сайте популярного китайского Интернет-магазина в описании 12-вольтового водяного насоса для обустройства фонтанчиков в аквариумах и дачных декоративных мини-бассейнах нам случайно попался на глаза.

53573 6 0 14.07.2020

К слову, штатный 12-вольтовый аккумулятор, как правило, остается на своем месте – от него удобно питать разные штатные же потребители – звуковой сигнал, стеклоочистители, стеклоподъемники, «музыку», свет и т. п. Позже, в качестве одного из первых апгрейдов, его можно заменить на DC/DC конвертер ватт на триста, делающий 12 вольт из 100.

Прочие узлы

Собственно, помимо мотора, трансмиссии и батареи в простейшем электромобиле имеется еще ряд узлов – как необходимых, так и устанавливаемых по желанию. Категорически необходимым является, конечно же, контроллер управления двигателем. В простейшем варианте он может быть изготовлен самостоятельно на относительно недорогих и широко распространенных деталях, а датчиком педали газа послужит датчик угла поворота дроссельной заслонки от инжекторного ВАЗа. Можно купить контроллер у отечественных самодельщиков, выписать фабричный из Китая или заказать с eBay бэушный брендовый блок от Curtis – обойдется модуль в 250–300$.

Дополнительных узлов, которые не являются обязательными для пробной (а то и вообще!) поездки – немало. Например, печка, из которой выкидывается жидкостный радиатор и устанавливается вместо него электрический ТЭН. Или, скажем, вакуумный насос для усилителя тормозов. Поскольку двигатель внутреннего сгорания на машине отсутствует, исчезает и разрежение впускного коллектора, необходимое для работы вакуумного усилителя тормозов. Поэтому многие самодельщики ставят электрические вспомогательные насосы ВУТ, заимствованные от машин типа Volvo XC90, Ford Kuga и т. п.

Впрочем, все зависит от проекта – на легком электромобиле даже апгрейд тормозов делают далеко не все, поскольку роль «вакуумника» отчасти выполняет рекуперативное торможение двигателем, да и немало машин с завода не имели вакуумного усилителя в принципе, вполне неплохо тормозя. Без него, к примеру, производились не только небезызвестный ВАЗ-«копейка», но и Таврия, Ока в некоторые годы и так далее.

Цены и деньги

Машина-донор, электромотор, контроллер – все это гибко варьируется и здесь можно «кроить» в меру хитрости и желаний. Можно купить автомобиль-донор тысяч за 100–150 в приличном состоянии по кузову, можно тысяч за 50 – но с необходимостью жестянки, сварки, малярки… Можно купить электродвигатель от престарелого болгарского погрузчика, а можно подержанный или новый американский мотор, спроектированный специально для электромобилей. Можно приобрести промышленный контроллер управления тягой двигателя, а можно спаять и самому, если есть навыки. То же самое касается и всего остального, кроме батареи. Тут особенно «скроить» ничего не удастся: цены на новые литий-феррум банки везде приблизительно одинаковые, вопрос в емкости. Хорошая 80–100-вольтовая батарея на приблизительно сто километров пробега обойдется по сегодняшним деньгам в 4–5 тысяч долларов. Можно, конечно, начать с малоемкого аккумулятора с перспективой наращивания (ведь даже короткая первая поездка воодушевляет и дает понимание, что трудишься не зря!), но надо понимать, что маленькую емкость нужно как можно скорее увеличивать, поскольку её недостаток ведет к повышению тока отдачи от каждой отдельной банки вплоть до опасных ударных величин, укорачивающих им жизнь… Пока будешь рассусоливать с покупкой второй половины, умрет первая…

Готовим автомобиль к туристическому выезду: три важных аксессуара

Три фактора, без которых не обходится комфортный выезд на пару-тройку дней на природу, на рыбалку/охоту или на какой-нибудь фестиваль или слет — это водоснабжение, свет и печка. Многим кажется, что эти вопросы легко.

23578 0 0 08.08.2020

Так выгодно ли строить электромобиль? Даже опытный самодельщик и фактически гуру гаражного EV-строения Игорь Корхов считает, что на первом месте тут все же хобби, а «обмануть систему» можно лишь весьма условно — это будет граничить с самообманом… Дело в том, что конечный результат нельзя оценивать чисто по стоимости пройденного километра, как многим кажется – приходится брать в расчет и комфорт, и функциональность, и безопасность машины, и просто ощущение от того, чем владеешь. Вот, допустим, новая бензиновая Лада Гранта — стоит она от 360 тыс. рублей, что приблизительно равняется 5 500 $. Самый бюджетный электромобиль на базе какого-нибудь VW Golf ранних поколений обойдется в столько же по комплектующим – плюс время, просиженное на тематических форумах, и вложенный собственный труд. В результате на одной чаше весов – пусть и отечественный, но пахнущий новизной и беспроблемный автомобиль на гарантии, а на другой – немолодой и внешне потрепанный «электросамопал» в стадии бесконечной доделки, без возможности дозаправки топливом в пути, в первое время (а то и навсегда) без кондиционера, усилителя тормозов и тому подобного.

Ну или, скажем, следующая планка — Hyundai Solaris. Новым он стоит от 600 000 рублей, что составляет около 9 200 $. Подобную же сумму придется затратить, если строить электромобиль на базе более-менее свежего кузова иномарки, который прилично выглядит снаружи и имеет не убитый салон, купив к этому кузову хороший американский электромотор, надежный фирменный контроллер Curtis и набрав емкую батарею. Однако на выходе – в общем-то, почти то же самое, что и в первом случае… У Соляриса в козырях максимальная скорость и динамика, возможность пополнять запас топлива повсеместно, а не только в личном гараже, где есть розетка, все преимущества новой и надежной машины с массой функциональных удобств, гарантии и прочее. Самоделка же, пусть и более приличная внутри и снаружи, остается самоделкой – машиной с существенными ограничениями по дальности пробега и возможности заправки, вечным конструктором, тренажером для рук и ума…

Выводы

С точки зрения приложения рук и ума для человека, любящего автомобили и технологии, постройка электромашины, безусловно, оправдана! Хобби это, конечно, затратное, но все познается в сравнении — причем, в сравнении не с олигархическими крайностями вроде коллекционирования яичек Фаберже, а со вполне распространенными и массовыми техническими прикладными увлечениями. Скажем, любителю рыбалки средненькая надувная лодчонка с подвесным двигателем известной марки сил эдак в десять выльется как минимум в две трети простейшего электромобиля…

Хороший квадрокоптер с камерой стоит не меньше. На этом фоне постройка электромобиля ничуть не выделяется – нормальная такая мужская забава…

Не меньшая привлекательность постройки электромобиля «Версии 1.0» в том, что результат достижим для многих, а не только для избранных — не надо быть «инженером 80-го уровня», чтобы сочленить электродвигатель с КПП, проложить силовую и управляющую проводку и разместить в багажнике батареи. В простейшем варианте конструкции да с многочисленными советами отзывчивого электромобильного коммьюнити в интернете работа будет приятной и почти наверняка успешной.

Однако, пока не подешевели эффективные батареи и не распространились недорогие комплекты тяговых моторов и контроллеров, как это произошло с китами для электровелосипедов, электромобиль гаражной постройки в отношении стоимости эксплуатации вряд ли будет серьезным конкурентом бюджетным бензиновым авто и тем более – газифицированным машинам… В случае стремления к экономии вложиться в установку пропанового газового оборудования – проще и выгоднее…

Фото любезно предоставил американский самодельщик Брюс, тщательно документировавший все этапы постройки в домашних условиях своего электромобиля на базе пикапа-хэтчбека Suzuki Mighty Boy 1985 года .

Заинтересовались темой постройки электромобиля?

Электродвигатель – устройство, которое занимается преобразованием электроэнергии в механическую. Он работает, используя принцип электромагнитной индукции.В последнее время он все сильнее популяризируется на автомобильном рынке в качестве перспективного направления развития автопромышленности. Поэтому есть смысл подробнее ознакомиться с устройством электромобиля, его двигателя, за которым может быть будущее отрасли.

Принцип работы и устройство

Электродвигатель включает в себя статор и ротор. Вращающееся магнитное поле в статоре действует на обмотку ротора и наводит в нём ток индукции, возникает вращающий момент, который приводит в движение ротор. Электроэнергия, поступающая на обмотки мотора, преобразуется в механическую энергию вращения.

Благодаря развитию технологии электродвигатели нашли применение в разных отраслях, например, автомобилестроении. Причем они способны использоваться либо отдельно, либо совместно с (ДВС). Последний вариант – гибридные авто.

От электродвигателей, применяемых на производствах, агрегат для авто отличается малыми габаритами, но повышенной мощностью. К тому же современные разработки все больше отдаляют двигатели для автомобилей от иных подобных устройств. Характеристиками электромобилей являются не только показатели мощности, крутящего момента, но и частота вращения, ток и напряжение. Поскольку от этих данных зависит передвижение и обслуживание авто.

Чтобы лучше разобраться в многообразии, которое нам дарит авторынок, стоит рассмотреть существующие виды электродвигателей для электромобилей.

Их можно условно классифицировать по типу тока:

  • устройства переменного тока;
  • конструкции постоянного тока;
  • решения универсального образца (способны функционировать от постоянного и переменного тока).

Электродвигатели переменного тока делятся на группы:

  • асинхронные – скорость вращения магнитного поля статора выше скорости вращения ротора;
  • синхронные – частоты вращения магнитного поля статора и ротора совпадают.

С учетом используемого количества фаз, электрические устройства разделяют на: одно-, двух-, трехфазные.

Если привести реальные образцы, используемые известными автопроизводителями, то хороший пример применения трехфазного агрегата асинхронного типа – Volt от Chevrolet. Он является гибридным автомобилем. Пример трехфазного синхронного двигателя — i-MiEV от Mitsubishi. А этот автомобиль является исключительно электрическим.

Силовая установка Chevrolet Volt

Следует отметить, что у разных производителей разные двигатели, отличающиеся массой, мощностью, габаритами и прочими параметрами.

Есть еще одна классификация – по конструкции щеточно-коллекторного узла. Такие агрегаты бывают:

  • Бесколлекторными. Представляют собой замкнутую систему, в которую входят: преобразователь координат, инвертор и извещатель положения.
  • Коллекторными. Щеточно-коллекторный узел играет роль в такой конструкции одновременно и извещателя положения ротора, и переключателя тока в обмотках. В основном используется ток постоянной частоты.

В конструкциях электромобилей зачастую задействуются коллекторные моторы, хотя есть примеры и с иными моделями. Как вариант — автомобиль «Санрейсер», в котором установлен как раз бесколлекторный двигатель от компании General Motors. При массе 3,6 кг его КПД составляет 92%.

Нельзя не отметить еще один тип двигателя, который используется в некоторых современных моделях авто. Это система мотор-колесо. Пример — спорт-кар Volage. В такой конструкции предусмотрена возможность регенерации энергии торможения. Для этого используется тяговый двигатель Active Wheel. Он весит всего 7 кг, что позволяет добиться приемлемой массы колеса – 11 кг.

Самой распространенной сегодня конструкцией является решение с питанием от аккумуляторной батареи. Она нуждается в регулярной зарядке, способной реализоваться за счет внешних источников, генератора в конструкции и рекуперации энергии торможения. Генератор действует от ДВС, поэтому такая схема работы уже не относится к чисто электрическим. Подобные машины называют гибридными.

Преимущества и недостатки электродвигателей

Выделим достоинства электрических агрегатов:

  • высокий коэффициент полезного действия – до 95 процентов;
  • компактность, малый вес;
  • простота использования;
  • экологичность;
  • долговечность;
  • создается максимальный показатель крутящего момента на любой отметке скорости;
  • воздушное охлаждение;
  • способны функционировать в режиме генератора;
  • не нужна коробка передач;
  • возможность рекуперации энергии торможения.

В качестве примера удачной разработки модели с высокими характеристиками можно привести мотор от Yasa Motors. Инженеры компании создали агрегат, который при весе 25 кг способен выдавать до 650 Нм крутящего момента.

Электродвигатель Yasa Motors

Что касается недостатков непосредственно электродвигателя, то их нет. Больше вопросов вызывает питание агрегата, что, собственно, и тормозит распространение, широкое использование технологии. Поэтому на данный момент большей популярностью пользуются гибридные авто, нежели электромобили. Благодаря такой схеме увеличивается запас хода, позволительно использовать менее мощные и дорогостоящие аккумуляторные батареи.

Устройство электромобиля

Если сравнивать электромобиль с авто, где используется ДВС, он характеризуется более простой схемой, минимальным числом движущихся элементов. Следовательно, такое решение является более надежным.

Главные составляющие электромобиля:

  • непосредственно электродвигатель;
  • питающая аккумуляторная батарея разной емкости, которая связана с мощностью мотора;
  • упрощенная трансмиссия;
  • инвертор;
  • зарядное устройство на борту;
  • электронная система управления элементами конструкции;
  • преобразователь.

Питание мотора в этой схеме организовывает, конечно же, тяговая аккумуляторная батарея. Зачастую задействуется литий-ионный тип, включающий в себя несколько модулей, подключенных последовательно. На выходе аккумулятора формируется напряжение от 300 (В) постоянного тока. Это значение определяется моделью авто. Современные образцы способны создавать и 700 В. Пример – автомобили Lola-Drayson, разработанные для гонок. Они оснащаются батареями напряжением 700 (В) и емкостью 60 кВт⋅ч.

Для корректного взаимодействия емкость батареи подбирается с учетом мощности двигателя. Этот показатель в подавляющем большинстве конструкций составляет от 15 до 200 (кВт). Если сравнить электрический двигатель с ДВС, то у первого КПД составляет 95%, а у другого – 25%. Разница существенна.

Имеются примеры в автомобилестроении, когда в конструкции используется несколько агрегатов. Они могут приводить в движение определенные колеса. Такой принцип организации позволяет увеличить тяговую мощность авто. Двигатель, интегрированный в колесо, имеет массу преимуществ, однако такое устройство тягового электродвигателя характеризуется ухудшенной управляемостью транспортного средства. Поэтому разработчики продолжают вести активную деятельность в этом направлении.

Электродвигатель с редуктором (вид снизу)

Что касается трансмиссии, то у электромобиля она имеет упрощенный вид. Многие конструкции оснащены одноступенчатым редуктором. Благодаря инвертору происходит преобразование высокого напряжения постоянного тока батареи. За счет наличия в конструкции бортового зарядного устройства гарантируется зарядка аккумулятора от электросети бытового назначения.

Обеспечением зарядки дополнительной батареи на 12 (В) занимается преобразователь. Эта батарея задействуется в качестве питающего элемента различных устройств транспортного средства:

  • аудиосистемы;
  • климат-контроля;
  • освещения;
  • отопительной системы;
  • прочих элементов.

Система управления организовывает такие процессы:

  • мониторинг используемой энергии;
  • управление рекуперацией энергии торможения;
  • оценка уровня заряда;
  • управление динамикой движения;
  • обеспечение необходимого режима перемещения транспортного средства;
  • регулировка тяги;
  • управление напряжением.

Система объединяет блок управления, датчики и прочие элементы других систем авто. Благодаря датчикам оценивается уровень давления в тормозной системе, разряда батареи, а также положение селектора переключения передач, тормозной педали и педали газа. По данным этих устройств обеспечивается оптимальное перемещение электромобиля с учетом текущих условий. На панели приборов традиционно отображаются основные показатели функционирования транспортного средства.

панель приборов Tesla

Внешне электромобиль не имеет отличий от традиционного автомобиля с ДВС, однако основные расхождения находятся в области эксплуатации: высокая стоимость, необходимость длительной зарядки, ограниченный ход. Поэтому устройство электромобиля имеет определенные расхождения с составом традиционного транспортного средства.

Высокая стоимость авто формируется в основном из-за цены на аккумуляторы, которые еще и имеют небольшой срок службы – до 7 лет. Это вынуждает специалистов искать новые решения для совершенствования технологии: литий — полимерные батареи, суперконденсаторы, топливные составляющие и прочие.

Затраты на содержание электромобиля зачастую ниже, чем авто с ДВС, особенно в тех государствах, где стоимость электроэнергии низкая.

Слабым местом электромобиля является также невысокий уровень автономного функционирования, вызванный коротким километражем без подзарядки. Этот параметр определяется многими факторами:

  • стилем вождения;
  • условиями и скоростью передвижения;
  • емкостью используемых аккумуляторов;
  • уровнем использования дополнительного оборудования.

К примеру, при скорости 80 км/ч средний показатель дальности передвижения электрического транспортного средства составит около 140 км. Если же повысить скорость до 120 км/ч, этот показатель резко упадет до 80 км. Благодаря внедрению систем рекуперативного торможения степень автономности может повышаться до показателя в 300 км и более.

Как отмечалось, зарядка аккумулятора требует много времени, поэтому этот недостаток решается несколькими подходами:

  • замена батареи на заряженную (услугу могут предоставлять на специальных станциях);
  • ускоренная зарядка – за полчаса может зарядиться 80% емкости аккумулятора;
  • нормальный режим – продолжительность зарядки может составить 8 часов.

Устройство и особенности гибридных систем

Применение гибридных автомобилей не только имеет свои преимущества, например, экологические, но и преследует определенные цели действующих игроков автомобильного рынка. Компании намерены сохранить налаженное конвейерное производство двигателей внутреннего сгорания. А постоянное ужесточение норм выброса вредных веществ – лишнее тому подтверждение.

По сути, гибридные системы подразумевают использование электродвигателя как дополнительного элемента, который способствует повышению мощности и экономии топлива. Ведь все подобные машины начинают движение именно благодаря ДВС.

Гибридные системы условно можно разделить на подвиды:

  • Интегрированное содействие мотору.
  • Интегрированный генератор стартера. Система, как и предыдущая, позволяет начинать движение машине, только в этом случае используется меньший электродвигатель.
  • Система остановки/старта двигателя. Происходит отключение мотора, когда его мощность не используется, а затем он запускается моментально, как только это необходимо.

Различают также три вида «гибридов»:

  • Параллельный. В этом случае батареи передают энергию электродвигателю, а бак – топливо для ДВС. Оба агрегата способны создать условия для перемещения транспортного средства.
  • Последовательный. ДВС поворачивает генератор, который может или завести электродвигатель, или зарядить аккумуляторы.
  • Последовательно-параллельная. ДВС, электродвигатель и генератор соединены с колёсами через планетарный редуктор.

Большинство существующих сейчас гибридных автомобилей относятся к параллельным. Хорошим решением является транспортное средство с подзарядкой. Оно открывает новые эксплуатационные возможности, нивелируя недостаток ограниченности пробега. При исчерпании заряда аккумулятора в работу вступает ДВС малой мощности.

Гибридная система существенно снижает уровень выводимых газов и увеличивает продуктивность расхода топлива, что особо актуально в условиях крупного населенного пункта. А рекуперативная система аккумулирует энергию.

Управление гибридным транспортным средством похоже на управление обычным автомобилем с автоматической коробкой передач. Только в этом случае обеспечивается низкий уровень шума, лучшая управляемость и повышенная мощность. При этом не нужно специально подзаряжать аккумуляторную батарею, это происходит при работе автомобиля.

Перспективы применения электродвигателей в автомобилях

Судя по текущим тенденциям, мировые лидеры автомобильной промышленности, политики и другие влиятельные лица всерьез взялись за то, чтобы развивать отрасль производства электрических автомобилей. Это видно по регулярно внедряемым нормам, которые постоянно повышают планку по выбросу максимального уровня вредных газов в атмосферу, и по мощной рекламной кампании, которая развернулась в медиапространстве в поддержку такого типа транспортных средств. В развитых странах с каждым годом растет количество заправочных станций, обеспечивающих зарядку электромобилей.

Поэтому открываются большие возможности инженерам для развития отрасли. И для этого есть два основных направления – адаптировать серийные автотранспортные средства или вести разработку новых моделей. Конечно, менее затратным мероприятием является усовершенствование существующих моделей.

Как раз европейские специалисты и занимаются улучшением нынешних гибридных двигателей, в то время как японские компании занялись совершенствованием обычного двигателя. Им удалось увеличить степень сжатия. При этом состав топлива остался неизменным.

В свою очередь, немецкие разработчики установили небывалый рекорд. Созданному электромобилю удалось проехать без подзарядки целых 600 км. Для автомобилей с ДВС это не показатель, однако электромобили могут похвастаться теперь и такими возможностями.

Дело в том, что даже Tesla, ведущий участник рынка, ещё не создал легкий аккумулятор, который смог вытянуть это расстояние. А в этом случае разработчикам удалось достичь показателя в 600 км.

Автомобиль проехал расстояние между двумя немецкими городами – Мюнхеном и Берлином. Его средняя скорость передвижения по трассе составила около 90 км/ч. Установление подобного рекорда стало возможным благодаря плодотворной работе предприятия DBM Energy, которое в тесном сотрудничестве с Lekker Energie создало такое решение.

В электромобиле была установлена аккумуляторная батарея емкостью 115 кВт/ч. Благодаря этому транспортное средство способно увеличивать мощность до 55 кВт, что отвечает приблизительно объему 1,4 Л для бензинового двигателя. Эффективность такой батареи доказывает установка в погрузчик, который способен увеличить время своей работы в четыре раза, если сравнивать действия с обычным аккумулятором. Именно этот емкостный агрегат был установлен на немецкий автомобиль Audi A2.

Может сложиться впечатление, что автомобиль «пустой», однако это не так. Организаторы эксперимента оснастили его всем необходимым: кондиционером, усилителем руля, аудиосистемами, системами безопасности и даже подогревом сидений. Поэтому потребление энергии, кроме перемещения, требовалось для выполнения и других функций.

Как стало известно, подобная технология находится на рассмотрении министерства экономики Германии, поэтому вполне возможно, что уже в скором времени эта отрасль получит новый толчок. Уже есть планы, по которым к 2020 году правительство страны намеревается достичь показателя в один миллион электрических автомобилей на европейских дорогах. Причем это не только транспортные средства личного пользования, но и другого назначения.

К тому же один из менеджеров компании Lekker Energie сообщил, что используемый аккумулятор на автомобиле А2 способен обеспечить общий пробег на уровне 500 тысяч километров.

Есть и еще один рекорд в этом направлении, поставленный Japan Electric Vehicle Club. Однако он касается чистого эксперимента. Это значит, что для повседневного использования такой электрокар не приспособлен. В результате японцам удалось побить рекорд – 1 тыс. км без подзарядки.

Какие бы разработки не велись в этой области, они сводятся к тому, что их должны поддержать гиганты автомобильной промышленности. Только им под силу внедрить достойное новшество, распространяя его по всему миру, создавая необходимую инфраструктуру, сервис и прочие необходимые средства. Все это требует больших затрат, поэтому предложенная идея может быть воплощена в жизнь, если расчеты по ее реализации дадут действительно существенную прибыль и установят новую планку стандартов на мировом рынке.

Тем не менее, учитывая текущее положение вещей, вряд ли стоит предполагать, что уже очень быстро электромобили займут свою большую нишу в автомобилестроении. И важный фактор, притормаживающий прогресс — психология человека. Очень непросто переубедить автомобилистов пересесть с бензиновых и дизельных автомобилей на электрические. Это особенно сложно сделать тем, кто занимается автогонками или является любителем динамичной езды.

Электромобиль Tesla Model S

Но тенденция к изменению отношения к такому явлению, как электрокар, уже проявляется. Сегодня все больше подобных автомобилей можно встретить на дорогах не только Европы, но и России. Пусть их еще немного, но их дополняют бесплатные зарядные станции в некоторых странах, позволяющие перемещаться на большие расстояния. Поэтому электрический транспорт постепенно становится естественным участником дорожного движения, закладывая фундамент новой эры машиностроения.

В автомобилестроении применяют двигатели, работающие от электрической энергии. Они отличаются от привычных для нас моторов: имеют специфические характеристики и функции. Двигатель для электромобиля может функционировать самостоятельно или параллельно с двигателем внутреннего сгорания. Также такие моторы бывают двух видов: синхронные и несинхронные. Можно сказать, что силовая авто с электродвигателем беспроигрышная и бесхитростная установка. При движении на нейтральной передаче аккумулятор электромобиля заряжается. Коэффициент полезного действия двигателя, работающего на электричестве, приближается к 90%, то есть практически весь объем выделенной энергии идёт на движение. Электродвигатель можно определить, как преобразователь одного вида энергии в другой, в частности, электрической в механическую с тепловым излучением.

Особенности и принцип работы электродвигателя

Существует ряд особенностей электродвигателей. Во-первых, перед запуском крутящий момент достигает максимума. Поэтому на машину с таким двигателем не стоит крепить стартер или сцепление. Во-вторых, электродвигатель для электромобиля работает в обширном промежутке оборотов. В связи с этим коробка переключения передач необязательна. Для перемены вращения двигателя достаточно просто поменять местами полярности, и этим выиграть на задней передаче. Двигателям для электромобиля необходимо соответствовать таким положениям:

  • обладание наиболее удобным и безопасным для работы строением;
  • гарантия прочности при применении;
  • наличие незначительных габаритов;
  • легкость в управлении;
  • современность прибора;
  • доступность электродвигателя.

Работа любого электродвигателя основана на индукции магнитной природы. Обычно электродвигатель состоит из двух элементов: статора и ротора. Статор — недвижимая часть, а второй элемент — крутящаяся. На катушки статора поступает непостоянный ток, что влечет за собой появление магнитного поля. Управляющий элемент выключает ток от одной катушки и передаёт его на следующую. В результате этого ротор приходит в движение. Скорость его оборотов определяется быстротой переключения напряжения с одной катушки статора на другую. Ротор бывает нескольких видов:

  • Короткозамкнутый;
  • Фазный, который применяют при необходимости уменьшить ток запуска и контролировать скорость кручения электромотора. Чаще всего, это двигатели электрической природы, применяемые в крановых системах.

На немощных двигателях используют индуктор, который имеет вид магнита. Якорем называют движимый элемент механизмов непеременного тока или же всеобщего мотора. Такой двигатель представляет собой прибор установленного тока, имеющий порядковую активацию обмотки и индуктора. Разница состоит лишь в количестве намотки. На неизменном токе нет сопротивления реактивной природы.

Разнообразие электродвигателей

Двигатели электрической природы подразделяются на множество групп, в зависимости от критерия, лежащего в основе классификации. Исходя из появления момента вращения:

  • Гистерезисные — момент вращения появляется после гистерезиса в условиях полного изменения магнитных показателей ротора. Эта группа электродвигателей не особо используется в производстве.
  • Магнитоэлектрические — широко используются в производстве и потреблении. Эта группа включает двигатели неизменного и непостоянного тока.

Электродвигатель постоянного тока — мотор, который работает от неизменного электричества. Двигатель сменного тока — мотор, который функционирует на непостоянном токе. По типу своего функционирования они бывают синхронными и асинхронными . Различие между ними заключается в скорости кручения гармоники. В первой ситуации эта скорость равна частоте оборотов ротора. Во второй — скорости эти различаются.

Синхронные двигатели

Синхронный двигатель можно определить, как мотор, работающий на непостоянном токе. Его ротор двигается в унисон с полем магнитной природы источника напряжения. Такой тип электродвигателя целесообразно использовать при повышенной мощности: от 100 киловатт и более. Шаговые моторы — конкретный вид синхронных. Они характеризуются наличием дискретного углового движения ротора, который размещен в конкретном месте. Его положение обусловлено питанием, что подается на конкретную обмотку. Чтобы изменить местоположение ротора, нужно перенаправить напряжение между обмотками. Вентильный реактивный электродвигатель является еще одной разновидностью синхронных, питается составляющими-полупроводниками.

Асинхронный электродвигатель

Асинхронный электродвигатель — мотор непостоянного тока, где скорость кручения ротора отлична от этой характеристики у магнитного поля, созданного напряжением, которое создается источником питания. Такие двигатели, работающие от электричества, приобрели сегодня особую популярность.

В зависимости от щёточно-коллекторного узла, который может относиться к данной группе или не принадлежать ей, двигатели подразделяются на:

По типу активизации коллекторные электродвигатели принято делить на:

  • Моторы с активизацией от магнитов (электрических и постоянных);
  • Самовозбуждающиеся двигатели электрической природы, которые, также содержат группы.

Сюда относят электродвигатели с параллельным возбуждением, последовательным, или смешанным. Обмотка на якоре начинает свою работу соответственно одновременно или после начала функционирования обмотки активации. Бесколлекторные двигатели (их еще называют вентильными) — моторы электрической природы, включающие в себя индикатор ротора, элемент управления и индикатор-реобразователь.

В зависимости от численности фаз электродвигатели непостоянного тока делятся на такие группы:

  • Однофазные — активизируются вручную человеком. Они имеют цепь, которая сдвигает фазу и обмотку для запуска.
  • Двухфазные, включая конденсаторные.
  • Двигатели, имеющие три фазы.
  • Многофазные.

Выбор электрического двигателя

Чтобы выбрать электродвигатель для электромобиля правильно, нужно определиться с типом двигателя ознакомиться с техническими характеристиками конкретной модели и сопоставить их с собственными требованиями к данному прибору.

Двигатели постоянного тока не особо распространены сегодня, ведь зависимы от источника питания, за ними сложно ухаживать. Такие двигатели применяют на производстве. Синхронные электродвигатели улучшают характеристики сети, им не страшны перемены напряжения, обладают перегрузочной способностью и установленной скоростью вращения. Но такие моторы дорогостоящие и сложно устроенные. Их стоит использовать, если вы нуждаетесь в мощности от 100 киловатт. Асинхронные электродвигатели предназначены для незначительных нагрузок. Их довольно легко обслуживать, к тому же они доступны в цене. Но боятся резких перепадов напряжения.

Модель конкретной мощности

При выборе окончательно убедитесь, что мощность приглянувшейся вам модели достаточна для работы конкретного прибора или механизма. Модели двигателей создаются для различных режимов работы. Поэтому прежде, чем приобрести мотор, убедитесь, что конкретная модель может функционировать на протяжении длительного времени без перерыва или же с легкостью выдерживает постоянные включения и отключения. Двигатель должен быть самоокупаемым, то есть энергоэффективным. Самый высокоэффективный электродвигатель — модель класса IE3. Именно они экономят много энергии и, соответственно, ваши деньги. Выбрать нужный именно вам электродвигатель достаточно просто. Следует учесть все описанные выше моменты и избрать идеально подходящую модель. Тем более, что выбор достаточно велик — сегодня многие отечественные и зарубежные производители предлагают свои приборы.Создание электродвигателей

Моторы электрической природы применятся во многих отраслях промышленности и сельского хозяйства. Различные специализированные заводы и фирмы производят электродвигатели различного строения с определенными функциональными характеристиками.

Производство электрических двигателей — высокотехнологичный процесс, разбитый на этапы. Для начала нужно запастись материалами и проверить их на пригодность, а лишь потом приступать к процессу изготовления, который состоит из ряда этапов:

  • Создание металлических составляющих. Часто используется чугун, а литье производят с помощью форм из глины и песка.
  • Производство легких комплектующих из металла. Чаще всего применяют для этого алюминий. Литье создают с помощью сдавливающих форм. На этом этапе используют специализированную технику, которая обеспечивает создание давления.
  • С помощью термопластавтоматов создают полимерные элементы будущих электродвигателей.
  • Процесс заготовки вала, созданного из проката металла. Чтобы получить нужный элемент, достаточно всего лишь отрезать часть изделия нужной продолжительности.
  • Элементы крепления чаще всего закупают. Так как это почти ювелирная работа.
  • Процесс изготовления листов, из которых будут созданы статор и ротор. Для этого используют особый вид стали, электротехнической.
  • Процесс обрабатывания листов-основ ротора. Их прессуют и покрывают слоем алюминия.
  • Процесс обрабатывания листов-основ статора. Их прессуют и скрепляют скобами.
  • Следующий этап — изоляция, которую проводят с помощью специальных материалов.
  • Процесс обмотки может быть ручным или машинным, автоматизированным.
  • Процесс проверки сердечников — обязательное условие будущей пропитки.
  • Механическая работа над составляющими, осуществляется на специальных станках.
  • Процесс сборки ротора и его обработки, происходит с помощью универсальных станков.
  • Работа над готовым ротором: его балансировка.
  • Сборка готового изделия.
  • Испытания — апробация нового готового электродвигателя.

Так, среди ведущих украинских производителей электродвигателей можно назвать следующие: Харьковский электротехнический завод Укрэлектромаш, Первомайский электромеханический завод им.К.Маркса, ЗАО Завод Крупных Электрических Машин, ООО Новокаховский электромашиностроительный завод, Промприбор.

Электродвигатель — составляющая новых экологичных авто — электромобилей. Эффективность и полезность электричества как альтернативного источника энергии доказана уже давно, но электродвигатели только набирают популярность. Эти моторы дорогостоящие, хотя с каждым днём они становятся доступнее. Обратить своё внимание на электродвигатель стоит ради его экологичности и экономичности. Электродвигатель имеет ещё один существенный плюс — самоокупаемость. Хорошо заплатив однажды, вы сэкономите намного больше в будущем. Всерьёз задумайтесь над тем, чтобы приобрести электродвигатель. Это, вне всякого сомнения, выгодно!

Добавить комментарий