Первый пуск электродвигателя


СОДЕРЖАНИЕ:

Однофазный асинхронный электродвигатель

Однофазный асинхронный электродвигатель с пусковой обмоткой

Конструкция однофазного двигателя с вспомогательной или пусковой обмоткой

Статор имеет две обмотки, расположенные под углом 90° относительно друг друга. Основная обмотка называется главной (рабочей) и обычно занимает 2/3 пазов сердечника статора, другая обмотка называется вспомогательной (пусковой) и обычно занимает 1/3 пазов статора.

Двигатель фактически является двухфазным, но так как рабочей является только одна обмотка, электродвигатель называют однофазным.

Ротор обычно представляет из себя короткозамкнутую обмотку, также из-за схожести называемой «беличьей клеткой». Медные или алюминиевые стержни которого с торцов замкнуты кольцами, а пространство между стержнями чаще всего заливается сплавом алюминия. Так же ротор однофазного двигателя может быть выполнен в виде полого немагнитного или полого ферромагнитного цилиндра.

Принцип работы однофазного асинхронного двигателя

Для того чтобы лучше понять работу однофазного асинхронного двигателя, давайте рассмотрим его только с одним витком в главной и вспомогательной обмотки.

Рассмотрим случай когда в вспомогательной обмотки не течет ток. При включении главной обмотки статора в сеть, переменный ток, проходя по обмотке, создает пульсирующее магнитное поле, неподвижное в пространстве, но изменяющееся от +Фmах до -Фmах.

Если поместить ротор, имеющий начальное вращение, в пульсирующее магнитное поле, то он будет продолжать вращаться в том же направлении.

Чтобы понять принцип действия однофазного асинхронного двигателя разложим пульсирующее магнитное поле на два одинаковых круговых поля, имеющих амплитуду равную Фmах/2 и вращающихся в противоположные стороны с одинаковой частотой:

  • где nпр – частота вращения магнитного поля в прямом направлении, об/мин,
  • nобр – частота вращения магнитного поля в обратном направлении, об/мин,
  • f1 – частота тока статора, Гц,
  • p – количество пар полюсов,
  • n1 – скорость вращения магнитного потока, об/мин

Действие пульсирующего поля на вращающийся ротор

Рассмотрим случай когда ротор, находящийся в пульсирующем магнитном потоке, имеет начальное вращение. Например, мы вручную раскрутили вал однофазного двигателя, одна обмотка которого подключена к сети переменного тока. В этом случае при определенных условиях двигатель будет продолжать развивать вращающий момент, так как скольжение его ротора относительно прямого и обратного магнитного потока будет неодинаковым.

Будем считать, что прямой магнитный поток Фпр, вращается в направлении вращения ротора, а обратный магнитный поток Фобр — в противоположном направлении. Так как, частота вращения ротора n2 меньше частоты вращения магнитного потока n1, скольжение ротора относительно потока Фпр будет:

  • где sпр – скольжение ротора относительно прямого магнитного потока,
  • n2 – частота вращения ротора, об/мин,
  • s – скольжение асинхронного двигателя

Магнитный поток Фобр вращается встречно ротору, частота вращения ротора n2 относительно этого потока отрицательна, а скольжение ротора относительно Фобр

  • где sобр – скольжение ротора относительно обратного магнитного потока

Согласно закону электромагнитной индукции прямой Фпр и обратный Фобр магнитные потоки, создаваемые обмоткой статора, наводят в обмотке ротора ЭДС , которые соответственно создают в короткозамкнутом роторе токи I2пр и I2обр. При этом частота тока в роторе пропорциональна скольжению, следовательно:

  • где f2пр – частота тока I2пр наводимого прямым магнитным потоком, Гц
  • где f2обр – частота тока I2обр наводимого обратным магнитным потоком, Гц

Таким образом, при вращающемся роторе, электрический ток I2обр, наводимый обратным магнитным полем в обмотке ротора, имеет частоту f2обр, намного превышающую частоту f2пр тока ротора I2пр, наведенного прямым полем.

Согласно закону Ампера, в результате взаимодействия электрического тока I2пр с магнитным полем Фпр возникает вращающий момент

  • где Mпр – магнитный момент создаваемый прямым магнитным потоком, Н∙м,
  • сM — постоянный коэффициент, определяемый конструкцией двигателя

Электрический ток I2обр, взаимодействуя с магнитным полем Фобр, создает тормозящий момент Мобр, направленный против вращения ротора, то есть встречно моменту Мпр:

  • где Mобр – магнитный момент создаваемый обратным магнитным потоком, Н∙м

Результирующий вращающий момент, действующий на ротор однофазного асинхронного двигателя,

Тормозящее действие обратного поля

При работе однофазного двигателя в пределах номинальной нагрузки, то есть при небольших значениях скольжения s = sпр, крутящий момент создается в основном за счет момента Мпр. Тормозящее действие момента обратного поля Мобр — незначительно. Это связано с тем, что частота f2обр много больше частоты f2пр, следовательно, индуктивное сопротивление рассеяния обмотки ротора х2обр = x2sобр току I2обр намного больше его активного сопротивления. Поэтому ток I2обр, имеющий большую индуктивную составляющую, оказывает сильное размагничивающее действие на обратный магнитный поток Фобр, значительно ослабляя его.

  • где r2 — активное сопротивление стержней ротора, Ом,
  • x2обр — реактивное сопротивление стержней ротора, Ом.

Если учесть, что коэффициент мощности невелик, то станет, ясно, почему Мобр в режиме нагрузки двигателя не оказывает значительного тормозящего действия на ротор однофазного двигателя.

Действие пульсирующего поля на неподвижный ротор

При неподвижном роторе (n2 = 0) скольжение sпр = sобр = 1 и Мпр = Мобр, поэтому начальный пусковой момент однофазного асинхронного двигателя Мп = 0. Для создания пускового момента необходимо привести ротор во вращение в ту или иную сторону. Тогда s ≠ 1, нарушается равенство моментов Мпр и Мобр и результирующий электромагнитный момент приобретает некоторое значение .

Пуск однофазного двигателя. Как создать начальное вращение?

Одним из способов создания пускового момента в однофазном асинхронном двигателе, является расположение вспомогательной (пусковой) обмотки B, смещенной в пространстве относительно главной (рабочей) обмотки A на угол 90 электрических градусов. Чтобы обмотки статора создавали вращающееся магнитное поле токи IA и IB в обмотках должны быть сдвинуты по фазе относительно друг друга. Для получения фазового сдвига между токами IA и IB в цепь вспомогательной (пусковой) обмотки В включают фазосмещающий элемент, в качестве которого используют активное сопротивление (резистор), индуктивность (дроссель) или емкость (конденсатор) [1].

После того как ротор двигателя разгонится до частоты вращения, близкой к установившейся, пусковую обмотку В отключают. Отключение вспомогательной обмотки происходит либо автоматически с помощью центробежного выключателя, реле времени, токового или дифференциального реле, или же вручную с помощью кнопки.

Таким образом, во время пуска двигатель работает как двухфазный, а по окончании пуска — как однофазный.

Подключение однофазного двигателя

С пусковым сопротивлением

Двигатель с расщепленной фазой — однофазный асинхронный двигатель, имеющий на статоре вспомогательную первичную обмотку, смещенную относительно основной, и короткозамкнутый ротор [2].

Однофазный асинхронный двигатель с пусковым сопротивлением — двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки отличается повышенным активным сопротивлением.

Для запуска однофазного двигателя можно использовать пусковой резистор, который последовательно подключается к пусковой обмотки. В этом случае можно добиться сдвига фаз в 30° между токами главной и вспомогательной обмотки, которого вполне достаточно для пуска двигателя. В двигателе с пусковым сопротивлением разность фаз объясняется разным комплексным сопротивлением цепей.

Также сдвиг фаз можно создать за счет использования пусковой обмотки с меньшей индуктивностью и более высоким сопротивлением. Для этого пусковая обмотка делается с меньшим количеством витков и с использованием более тонкого провода чем в главной обмотке.

Отечественной промышленностью изготавливается серия однофазных асинхронных электродвигателей с активным сопротивлением в качестве фазосдвигающего элемента серии АОЛБ мощностью от 18 до 600 Вт при синхронной частоте вращения 3000 и 1500 об/мин, предназначенных для включения в сеть напряжением 127, 220 или 380 В, частотой 50 Гц.

С конденсаторным пуском

Двигатель с конденсаторным пуском — двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки с конденсатором включается только на время пуска.

Среди фазосдвигающих элементов, только конденсатор позволяет добиться наилучших пусковых свойств однофазного асинхронного электродвигателя.

Двигатели в цепь которых постоянно включен конденсатор используют для работы две фазы и называются — конденсаторными. Принцип действия этих двигателей основан на использовании вращающегося магнитного поля.

Однофазный электродвигатель с экранированными полюсами

Двигатель с экранированными полюсами — двигатель с расщепленной фазой, у которого вспомогательная обмотка короткозамкнута.

Статор однофазного асинхронного двигателя с экранированными полюсами обычно имеет явно выраженные полюса. На явно выраженных полюсах статора намотаны катушки однофазной обмотки возбуждения. Каждый полюс статора разделен на две неравные части аксиальным пазом. Меньшую часть полюса охватывает короткозамкнутый виток. Ротор однофазного двигателя с экранированными полюсами — короткозамкнутый в виде «беличьей» клетки.

При включении однофазной обмотки статора в сеть в магнитопроводе двигателя создается пульсирующий магнитный поток. Одна часть которого проходит по неэкранированной Ф’, а другая Ф» — по экранированной части полюса. Поток Ф» наводит в короткозамкнутом витке ЭДС Ek, в результате чего возникает ток Ik отстающий от Ek по фазе из-за индуктивности витка. Ток Ik создает магнитный поток Фk, направленный встречно Ф», создавая результирующий поток в экранированной части полюса Фэ=Ф»+Фk. Таким образом, в двигателе потоки экранированной и неэкранированной частей полюса сдвинуты во времени на некоторый угол.

Пространственный и временной углы сдвига между потоками Фэ и Ф’ создают условия для возникновения в двигателе вращающегося эллиптического магнитного поля, так как Фэ ≠ Ф’.

Пусковые и рабочие свойства рассматриваемого двигателя невысоки. КПД намного ниже, чем у конденсаторных двигателей такой же мощности, что связано со значительными электрическими потерями в короткозамкнутом витке.

Однофазный электродвигатель с асимметричным магнитопроводом статора

Статор такого однофазного двигателя выполняется с ярко выраженными полюсами на не симметричном шихтованном сердечнике. Ротор — короткозамкнутый типа «беличья клетка».

Данный электродвигатель для работы не требует использования фазосдвигающих элементов. Недостатком данного двигателя является низкий КПД.

Расчет возможности пуска электродвигателя 380 В

В данной статье будет рассматриваться изменение напряжения (потеря напряжения) при пуске асинхронного двигателя с короткозамкнутым ротором (далее двигатель) и его влияние на изменения напряжения на зажимах других электроприемников.

При включении двигателя пусковой ток может превышать номинальный в 5-7 раз, из-за чего включение крупных двигателей существенно влияет на работу присоединенных к сети приемников.

Это объясняется тем, что пусковой ток вызывает значительное увеличение потерь напряжения в сети, вследствие чего напряжение на зажимах приемников дополнительно снижается. Это отчетливо видно по лампам накаливания, когда резко снижается световой поток (мигание света). Работающие двигатели в это время замедляют ход и при некоторых условиях могут вообще остановиться.

Кроме того, может случиться, что сам пускаемый двигатель из-за сильной просадки напряжения не сможет развернуть присоединенный к нему механизм.

Режим пуска двигателя рассматривается при максимальной нагрузке линии, так как именно при таких условиях создаются наиболее неблагоприятные условия для работы присоединенных к сети приемников.

Чтобы проверить можно ли включать двигатель, нужно рассчитать напряжение на его зажимах во время пуска и напряжение на любом другом работающем двигателе, а также проверить напряжение у ламп.

Пример возможности пуска электродвигателя 380 В

Требуется проверить возможность пуска электродвигателя типа 4А250М2 У3 мощностью 90 кВт. От шин 6 кВ подстанции 2РП-1 питается подстанция с трансформаторами типа ТМ мощностью 320 кВА. От подстанции 2РП-1 до трансформаторов ТМ-6/0,4 кВ с установленным ответвлением 0%, проложен кабель марки ААБ сечением 3х70 мм2, длина линии составляет 850 м. К шинам РУ-0,4 кВ присоединен кабелем марки ААБ сечением 3х95 мм2, длиной 80 м двигатель типа 4А250М2 У3.

Рис. 1 — Однолинейная схема 0,4 кВ

В момент пуска двигателя 4А250М2 У3 работает подключенный к шинам двигатель 4А250S2 У3 мощностью 75 кВт с напряжением на зажимах 365 В. Напряжение на шинах 0,4 кВ при пуске двигателя равно Uш = 380 В.

  • Ммакс/Мн – кратность максимального момента;
  • Мп/Мн – кратность пускового момента;
  • Мн – номинальный момент двигателя;

1. Определяем длительно допустимый ток двигателя Д1:

2. Определяем пусковой ток двигателя Д1:

где:
Kпуск = 7,5 – кратность пускового тока, согласно паспорта на двигатель;

3. Определяем величину активного и индуктивного сопротивления для алюминиевого кабеля марки ААБ сечением 3х70 мм2 на напряжение 6 кВ от шин подстанции 2РП-1 до трансформатора типа ТМ 320 кВА, значения сопротивлений берем из таблицы 2.5 [Л2.с 48].

Получаем значения сопротивлений Rв = 0,447 Ом/км и Хв = 0,08 Ом/км.

Эти сопротивления необходимо привести к стороне низшего напряжения трансформатора, так как двигатель подключен к сети низшего напряжения. Из таблицы 8 [Л1, с 93] для номинального коэффициента трансформации 6/0,4 кВ и ответвления 0% находим значение n=15.

4. Определяем активное и индуктивное сопротивление кабеля по отношению к сети низшего напряжения по формуле [Л1, с 13]:

  • Rв и Хв – сопротивления сети со стороны высшего напряжения;
  • n = 6/0,4 =15 – коэффициент трансформации понижающего трансформатора.

5. Определяем сопротивление кабеля длиной 850 м от подстанции 2РП-1 до трансформатора 6/0,4 кВ:

Rс = Rн*L = 0,002*0,85 = 0,0017 Ом;

Хс = Хн*L = 0,000355*0,85 = 0,0003 Ом;

6. Определяем сопротивление трансформатора мощностью 320 кВА, 6/0,4 кВ по таблице 7 [Л1, с 92,93].

Rт = 9,7*10 -3 = 0,0097 Ом;

Хт = 25,8*10 -3 = 0,0258 Ом;

7. Определяем сопротивления линии от шин подстанции 2РП-1 до шин низшего напряжения подстанции:

Rш = Rс + Rт = 0,0017 + 0,0097 = 0,0114 Ом;

Хш = Хс + Хт = 0,0003 + 0,0258 = 0,0261 Ом;

8. Определяем сопротивление кабеля длиной 80 м марки ААБ 3х95 мм2 от шин низшего напряжения до зажимов двигателя:

где:
R = 0,329 Ом/км и Х = 0,06 Ом/км -значения активных и реактивных сопротивлений кабеля определяем по таблице 2-5 [Л2.с 48].

9. Определяем суммарное сопротивление линии от подстанции 2РП-1 до зажимов двигателя:

Rд = Rш + R1 = 0,0114 + 0,026 = 0,0374 Ом;

Хд = Хш + Х1 = 0,0261 + 0,0048 = 0,0309 Ом;

Если выполняется отношение Rд/ Хд = 0,0374/0,0309 = 1,21

где:
cosφ = 0,3 и sinφ = 0,95 средние значения коэффициентов мощности при пуске двигателя, принимаются при отсутствии технических данных, согласно [Л1. с. 16].

11. Определяем напряжение на зажимах двигателя Д1 по формуле [Л1, с 14]:

  • U*ш = Uш/Uн = 380/380 =1 – относительное напряжение на шинах распределительного пункта, во многих случаях его можно принять равным 1;
  • Iп – пусковой ток двигателя;

12. Проверяем сможет ли двигатель Д1 развернуть присоединяемый механизм нанос центробежный 1Д315-71а:

  • mп=Мпуск/Мном = 1,2 – кратность пускового момента электродвигателя при номинальном напряжении на его клеммах (выбирается по каталогу на двигатель);
  • mп.мех — требуемая кратность пускового момента приводимого механизма, выбирается по таблице 4 [Л1, с 88], для центробежного насоса равно 0,3;

12.1 Коэффициент загрузки определяем как отношение номинальной мощности, необходимой для нормальной работы механизма в данном случае нанос центробежный 1Д315-71а Рн.мех. = 80 кВт, к номинальной мощности двигателя 90 кВт:

Как мы видим условие выполняется и двигатель при пуске сможет развернуть присоединенный к нему центробежный насос в нормальных условиях без перегрева своих обмоток выше температуры, допустимой по нормам.

13. Определяем влияние пуска двигателя Д1 на работу присоединенного к шинам 0,4 кВ двигателя Д2 типа 4А250S2 У3, найдем величину колебания напряжения на шинах 0,4 кВ по формуле:

13.1 Определяем коэффициент Аш по формуле:

14. В момент пуска двигателя Д1 на зажимах работающего двигателя Д2 относительное напряжение согласно [Л1, с15] уменьшиться на величину колебания напряжения δU*Ш , откуда получаем:

где:
U*Д2 = UД2/Uн = 365/380 = 0,96 – относительное напряжение на зажимах двигателя Д2 до пуска двигателя Д1.

15. Проверяем устойчивость работы двигателя Д2 при пуске двигателя Д1:

  • mп= Ммакс/Мн = 2,2 – кратность максимального момента (выбирается по каталогу на двигатель);
  • mп.мех — требуемая кратность пускового момента приводимого механизма, выбирается по таблице 4 [Л1, с 88], для центробежного насоса равно 0,3;

15.1 Коэффициент загрузки определяем как отношение номинальной мощности, необходимой для нормальной работы механизма в данном случае нанос центробежный 1Д200-90а Рн.мех. = 72 кВт, к номинальной мощности двигателя 75 кВт:

Как мы видим, устойчивость работы двигателя Д2 типа 1Д200-90а обеспечивается с большим запасом.

1. Как проверить возможность подключения к электрической сети двигателей с короткозамкнутым ротором. Карпов Ф.Ф. 1964 г.
2. Проектирование кабельных сетей и проводок. Хромченко Г.Е. 1980 г.

Поделиться в социальных сетях

Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding» .

Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.

Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.

Основная цель токоограничивающего реактора (далее реактор)– это ограничение тока к.з. за реактором, при.

В данное статье речь пойдет о расчете таких технических характеристик асинхронного электродвигателя.

В данном примере, я буду рассчитывать ток утечки в сети при выборе УЗО для защиты водонагревателя типа.

В этой статье речь пойдет о выборе основных параметров ОПН в сети на напряжение 110 кВ. Отдельно хотелось.

В данное статье речь пойдет о том, какое значение сопротивления заземляющего устройства должно быть для.

Отправляя сообщение, Вы разрешаете сбор и обработку персональных данных.
Политика конфиденциальности.

Производство своими руками плавного пуска для электродвигателя

Кому хочется напрягаться, тратить свои деньги и время на переоборудование устройств и механизмов, которые и так прекрасно работают? Как показывает практика – многим. Хоть и не каждый в жизни сталкивается с промышленным оборудованием, оснащённым мощными электродвигателями, но, постоянно встречается пусть с не столь прожорливыми и мощными, электромоторами в быту. Ну а лифтом, наверняка, пользовался каждый.

Электродвигатели и нагрузки — проблема?

Дело в том, что фактически любые электродвигатели, в момент пуска или остановки ротора, испытывают огромные нагрузки. Чем мощнее двигатель и оборудование, приводимое им в движение, тем грандиозней затраты на его запуск.

Наверное, самая значительная нагрузка, приходящаяся на двигатель в момент пуска, это многократное, хоть и кратковременное, превышение номинального рабочего тока агрегата. Уже через несколько секунд работы, когда электромотор выйдет на свои штатные обороты, ток, потребляемый им, тоже вернётся к нормальному уровню. Для обеспечения необходимого электроснабжения приходиться наращивать мощность электрооборудования и токопроводящих магистралей, что приводит к их подорожанию.

При запуске мощного электродвигателя, из-за его большого потребления, происходит «просадка» напряжения питания, которая может привести к сбоям или выходу из строя оборудования, запитанного с ним от одной линии. Ко всему прочему, снижается срок службы аппаратуры электроснабжения.

При возникновении нештатных ситуаций, повлёкших перегорание двигателя или его сильный перегрев, свойства трансформаторной стали могут измениться настолько, что после ремонта двигатель потеряет до тридцати процентов мощности. При таких обстоятельствах, к дальнейшей эксплуатации он уже непригоден и требует замены, что тоже недешево.

Для чего нужен плавный пуск?

Казалось бы, все правильно, да и оборудование на это рассчитано. Вот только всегда есть «но». В нашем случае их несколько:

  • в момент запуска электродвигателя, ток питания может превышать номинальный в четыре с половиной-пять раз, что приводит к значительному нагреву обмоток, а это не очень хорошо;
  • старт двигателя прямым включением приводит к рывкам, которые в первую очередь влияют на плотность тех же обмоток, увеличивая трение проводников во время работы, ускоряет разрушение их изоляции и, со временем, может привести к межвитковому замыканию;
  • вышеупомянутые рывки и вибрация передаются на весь приводимый в движение агрегат. Это уже совсем нездорово, потому что может привести к повреждению его движущихся элементов: систем зубчатых передач, приводных ремней, конвейерных лент или просто представьте себя едущим в дёргающемся лифте. В случае насосов и вентиляторов — это риск деформации и разрушения турбин и лопастей;
  • не стоит также забывать об изделиях, возможно находящихся на производственной линии. Они могут упасть, рассыпаться или разбиться из-за такого рывка;
  • ну, и наверно, последний из моментов, заслуживающих внимание — стоимость эксплуатации такого оборудования. Речь идёт не только о дорогостоящих ремонтах, связанных с частыми критическими нагрузками, но и об ощутимом количестве не эффективно израсходованной электроэнергии.

Казалось бы, все вышеперечисленные сложности эксплуатации присущи лишь мощному и громоздкому промышленному оборудованию, однако, это не так. Все это может стать головной болью любого среднестатистического обывателя. В первую очередь это касается электроинструмента.

Специфика применения таких агрегатов, как электролобзики, дрели, болгарки и им подобных, предполагают многократные циклы запуска и остановки, в течение относительно небольшого промежутка времени. Такой режим эксплуатации, в той же мере, влияет на их долговечность и энергопотребление, как и у их промышленных собратьев. При всем этом не стоит забывать, что системы плавного запуска не могут регулировать рабочие обороты мотора или реверсировать их направление. Также невозможно увеличить пусковой момент или снизить ток ниже, чем требуется для начала вращения ротора электродвигателя.

Видео: Плавный пуск, регулировка и защита колектор. двигателя

Варианты систем плавного пуска электродвигателей

Система «звезда-треугольник»

Одна из наиболее широко применяемых систем запуска промышленных асинхронных двигателей. Основным её преимуществом является простота. Двигатель запускается при коммутации обмоток системы «звезда», после чего, при наборе штатных оборотов, автоматически переключается на коммутацию «треугольник». Такой вариант старта позволяет добиться тока почти на треть ниже, чем при прямом запуске электромотора.

Каждый электрик должен знать:  Термины ПУЭ питающая осветительная сеть

Однако, этот способ не подойдёт для механизмов с небольшой инерцией вращения. К таким, к примеру, относятся вентиляторы и небольшие насосы, из-за малых размеров и массы их турбин. В момент перехода с конфигурации «звезда» на «треугольник», они резко снизят обороты или вовсе остановятся. В результате после переключения, электродвигатель по сути, запускается заново. То есть в конечном счёте вы не добьётесь не только экономии ресурса двигателя, но и, вероятнее всего, получите перерасход электроэнергии.

Видео: Подключение трёхфазного асинхронного электродвигателя звездой или треугольником

Электронная система плавного пуска электродвигателя

Плавный пуск двигателя может быть произведён с помощью симисторов, включённых в цепи управления. Существует три схемы такого включения: однофазные, двухфазные и трехфазные. Каждая из них отличается своими функциональными возможностями и конечной стоимостью соответственно.

С помощью таких схем, обычно, удаётся снизить пусковой ток до двух–трёх номинальных. Кроме этого, удаётся снизить существенный нагрев, присущий вышеупомянутой системе «звезда-треугольник», что способствует увеличению срока службы электродвигателей. Благодаря тому, что управление запуска двигателя происходит за счёт снижения напряжения, разгон ротора осуществляется плавно, а не скачкообразно, как у других схем.

В целом, на системы плавного пуска двигателя возлагаются несколько ключевых задач:

  • основная – понижение пускового тока до трёх–четырёх номинальных;
  • снижение напряжения питания двигателя, при наличии соответствующих мощностей и проводки;
  • улучшение параметров пуска и торможения;
  • аварийная защита сети от перегрузок по току.

Однофазная схема пуска

Данная схема предназначена для запуска электродвигателей мощностью не более одиннадцати киловатт. Применяют такой вариант в том случае, если требуется смягчить удар при запуске, а торможение, плавный пуск и понижение пускового тока не имеют значения. В первую очередь из-за невозможности организации последних, в такой схеме. Но по причине удешевления производства полупроводников, в том числе и симисторов, они сняты с производства и редко встречаются;

Двухфазная схема пуска

Такая схема предназначена для регулирования и пуска двигателей мощностью до двухсот пятидесяти ватт. Такие системы плавного пуска иногда комплектуют обходным контактором для удешевления прибора, однако, это не решает проблемы несимметричности питания фаз, что может привести к перегреву;

Трехфазная схема пуска

Эта схема является наиболее надёжной и универсальной системой плавного пуска электродвигателей. Максимальная мощность, управляемых таким устройством двигателей, ограничена исключительно максимальной температурной и электрической выносливостью применённых симисторов. Его универсальность позволяет реализовать массу функций, таких как: динамический тормоз, подхват обратного хода или балансировку ограничения магнитного поля и тока.

Важным элементом последней, из упомянутых схем, является обходной контактор, о котором говорилось раньше. Он позволяет обеспечить правильный тепловой режим системы плавного пуска электродвигателя, после выхода двигателя на штатные рабочие обороты, предотвращая его перегрев.

Существующие на сегодняшний день устройства плавного пуска электродвигателей, помимо приведённых выше свойств, рассчитаны на их совместную работу с различными контроллерами и системами автоматизации. Имеют возможность включения по команде оператора или глобальной системы управления. При таких обстоятельствах, в момент включения нагрузок, возможно появление помех, могущих привести к сбоям в работе автоматики, а следовательно, стоит озаботиться системами защиты. Использование схем плавного пуска, способно значительно уменьшить их влияние.

Плавный пуск своими руками

Большинство перечисленных выше систем фактически неприменимы в бытовых условиях. В первую очередь по той причине, что дома мы крайне редко используем трехфазные асинхронные двигатели. Зато коллекторных однофазных моторов — хоть отбавляй.

Существует немало схем устройства плавного запуска двигателей. Выбор конкретной зависит исключительно от вас, но в принципе, имея определённые знания радиотехники, умелые руки и желание, вполне можно собрать приличный самодельный пускатель, который продлит жизнь вашего электроинструмента и бытовой техники на долгие годы.

Схема пуска электродвигателя

Схемы пуска и торможения двигателя

В настоящее время наиболее распространены трехфазные асинхронные двигатели с короткозамкнутым ротором. Пуск и остановка таких двигателей при включении на полное напряжение сети осуществляются дистанционно при помощи магнитных пускателей.

Наиболее часто используется схема с одним пускателем и кнопками управления «Пуск» и «Стоп». Для того, чтобы обеспечить вращение вала двигателя в обе стороны используется схема с двумя пускателями (или с реверсивным пускателем) и тремя кнопками. Такая схема позволяет менять направление вращения вала двигателя «на ходу» без его предварительной остановки.

Схемы пуска двигателя

Электрический двигатель М питается от трехфазной сети переменного напряжения. Трехфазный автоматический выключатель QF предназначен для отключения схемы при коротком замыкании. Однофазный автоматический выключатель SF защищает цепи управления.

Основным элементом магнитного пускателя является контактор (мощное реле для коммутации больших токов) КМ. Его силовые контакты коммутируют три фазы, подходящие к электродвигателю. Кнопка SB1 («Пуск») предназначена для пуска двигателя, а кнопка SB2 («Стоп») — для остановки. Тепловые биметаллические реле KK1 и КК2 осуществляют отключение схемы при превышении тока, потребляемого электродвигателем.

Рис. 1. Схема пуска трехфазного асинхронного двигателя с помощью магнитного пускателя

При нажатии кнопки SB1 контактор КМ срабатывает и контактами KM.1, КМ.2, КМ.3 подключает электродвигатель к сети, а контактом КМ.4 блокирует кнопку (самоблокировка).

Для остановки электродвигателя достаточно нажать кнопку SB2, при этом контактор КМ отпускает и отключает электродвигатель.

Важным свойством магнитного пускателя является то, что при случайном пропадании напряжения в сети двигатель отключается, но восстановление напряжения в сети не приводит к самопроизвольному запуску двигателя, так как при отключении напряжения отпускает контактор КМ, и для повторного включения необходимо нажать кнопку SB1.

При неисправности установки, например, при заклинивании и остановке ротора двигателя, ток, потребляемый двигателем, возрастает в несколько раз, что приводит к срабатыванию тепловых реле, размыканию контактов KK1, КК2 и отключению установки. Возврат контактов КК в замкнутое состояние производится вручную после устранения неисправности.

Реверсивный магнитный пускатель позволяет не только запускать и останавливать электрический двигатель, но изменять направление вращения ротора. Для этого схема пускателя (рис. 2) содержит два комплекта контакторов и кнопок пуска.

Рис. 2. Схема пуска двигателя с помощью реверсивного магнитного пускателя

Контактор КМ1 и кнопка SB1 с самоблокировкой предназначены для включения двигателя в режиме «вперед», а контактор КМ2 и кнопка SB2 включают режим «назад». Для изменения направления вращения ротора трехфазного двигателя достаточно поменять местами любые две из трех фаз питающего напряжения, что и обеспечивается основными контактами контакторов.

Кнопка SB3 предназначена для остановки двигателя, контакты КМ 1.5 и КМ2.5 осуществляют взаимоблокировку, а тепловые реле КК1 и КК2 — защиту при превышении тока.

Включение двигателя на полное напряжение сети сопровождается большими пусковыми токами, что может быть недопустимо для сети ограниченной мощности.

Схема пуска электродвигателя с ограничением пускового тока (рис. 3) содержит резисторы R1, R2, R3, включенные последовательно с обмотками электродвигателя. Эти резисторы ограничивают ток в момент пуска при срабатывании контактора КМ после нажатия кнопки SB1. Одновременно с КМ при замыкании контакта КМ.5 срабатывает реле времени КТ.

Выдержка, осуществляемая реле времени, должна быть достаточной для разгона электродвигателя. По окончании времени выдержки замыкается контакт КТ, срабатывает реле К и своими контактами K.1, К.2, К.3 шунтирует пусковые резисторы. Процесс пуска завершен, на двигатель подается полное напряжение.

Рис. 3. Схема пуска двигателя с ограничением пускового тока

Далее будут рассмотрены две наиболее популярных схемы торможения трехфазных асинхронных двигателей с короткозамкнутым ротором: схема динамического торможения и схема торможения противовключением.

Схемы торможения двигателя

После снятия напряжения с двигателя его ротор какое-то время продолжает вращаться за счет инерции. В ряде устройств, например, в подъемно-транспортных механизмах, требуется осуществлять принудительное торможение для уменьшения величины выбега. Динамическое торможение заключается в том, что после снятия переменного напряжения через обмотки электродвигателя пропускается постоянный ток.

Схема динамического торможения показана на рис. 4.

Рис. 4. Схема динамического торможения двигателя

В схеме, помимо основного контактора КМ, присутствует реле К, включающее режим торможения. Поскольку реле и контактор не могут быть включены одновременно, применена схема взаимоблокировки (контакты КМ.5 и К.3).

При нажатии кнопки SB1 срабатывает контактор КМ, подает питание на двигатель (контакты КМ.1 КМ.2, КМ.3), блокирует кнопку (КМ.4) и блокирует реле К (КМ.5). Замыкание КМ.6 вызывает срабатывание реле времени КТ и замыкание контакта КТ без выдержки времени. Таким образом осуществляется пуск двигателя.

Для остановки двигателя следует нажать кнопку SB2. Контактор КМ отпускает, размыкаются контакты KM.1 — KM.3, отключая двигатель, замыкает контакт КМ.5, что вызывает срабатывание реле К. Контакты K.1 и К.2 замыкаются, подавая постоянный ток в обмотки. Происходит быстрое торможение.

При размыкании контакта КМ.6 реле времени КТ отпускает, начинается выдержка времени. Величина выдержки должна быть достаточна для полной остановки электродвигателя. По окончании выдержки времени контакт КТ размыкается, реле К отпускает и снимает постоянное напряжение с обмоток электродвигателя.

Наиболее эффективным способом торможения является реверсирование двигателя, когда сразу после снятия питания на электродвигатель подается напряжение, вызывающее появление встречного вращающего момента. Схема торможения противовключением приведена на рис. 5.

Рис. 5. Схема торможения двигателя противовключением

Частота вращения ротора двигателя контролируется с помощью реле частоты вращения с контактом SR. Если частота вращения больше некоторого значения, контакт SR замкнут. При остановке двигателя контакт SR размыкается. Кроме контактора прямого включения KM1 схема содержит контактор для реверсирования КМ2.

При пуске двигателя срабатывает контактор KM1 и контактом КМ 1.5 разрывает цепь катушки КМ2. С достижением определенной частоты вращения замыкается контакт SR подготавливая цепь для включения реверса.

При останове двигателя контактор KM1 отпускает и замыкает контакт КМ1.5. В результате этого контактор КМ2 срабатывает и подает на электродвигатель реверсирующее напряжение для торможения. Снижение частоты вращения ротора вызывает размыкание SR, контактор КМ2 отпускает, торможение прекращается.

Статьи и схемы

Полезное для электрика

Схема асинхронного электродвигателя

Опубликовано Февраль 9, 2014

Представленная выше схема является самой простой и распространенной, которая обладает простейшей пускозащитной аппаратурой, которая без проблем позволяет управлять работой асинхронного электродвигателя, а так же защищает от недопустимых режимов работы, таких как короткое замыкание и перегрузки.
На данной схеме имеются две части: силовая цепь, посредством которой осуществляется питание электродвигателя и цепь управления непосредственно участвующую в управлении электродвигателя (пуск, остановка). Необходимо уточнить, что по силовой цепи протекает рабочий ток электродвигателя, другими словами эта цепь должна выдерживать пусковые токи. Цепь управления в свою очередь, в зависимости от используемой пусковой и регулирующей аппаратуры может получать питание от одного источника вместе с силовой цепью или от независимого источника, причем цепь управления может питаться постоянным током. В зависимости от катушки магнитного пускателя цепь управления может питаться фазным или линейным напряжениями.

Схема состоит из следующих составных частей:

Два автоматических выключателя АВ1 и АВ2. Первый АВ1 устанавливается в силовой цепи, им осуществляется подача напряжения на контакты магнитного пускателя. Также от этого автоматического выключателя получает питание второй выключатель АВ2 расположенный в цепи управления. Автомат АВ1 является не только коммутирующим устройством, но и аппаратом защиты от коротких замыканий и перегрузки. Автоматический выключатель АВ2 подает напряжение на цепь управления и защищает ее от короткого замыкания.

Магнитного пускателя КМ, силовые контакты которого включены в силовую цепь, блок контакт КМ1 осуществляет шунтирование кнопки Пуск. Также в цепь управления включается катушка КМ данного магнитного пускателя. Магнитный пускатель осуществляет подачу напряжения на электродвигатель, а также препятствует повторного пуска электродвигателя при кратковременном исчезновении напряжения.

Тепловое реле КК, биметаллические пластины, которого включены последовательно в силовую цепь питания статора асинхронного электродвигателя. Отключающий контакт КК этого реле включен в цепь управления. Реле КК осуществляет защиту электродвигателя от перегрузки.

Сам асинхронный двигатель Д, которым осуществляется управление.

Кнопочная станция (кнопка управления), состоящая из двух кнопок Стоп — нормально замкнутый контакт, и кнопка Пуск – нормально разомкнутый контакт.

Все вышеперечисленные устройства изображены на схеме.

Работа схемы

shema puska ad1

В текущем состоянии, напряжение подается только на верхние контакты (губки) автоматического выключателя АВ1, это можно заметить по окраске линий в синий цвет.

При включенном автоматическом выключателе АВ1, напряжение поступает на силовые контакты магнитного пускателя КМ и автоматического выключателя АВ2. При замыкании Автомата АВ2, напряжение поступит через замкнутый контакт кнопки Стоп на контакт кнопки Пуск, и блок контакт магнитного пускателя КМ1.

shema puska ad2

Все выше перечисленные манипуляции являются подготовительными. В текущем состоянии все готово к пуску электродвигателя.

shema puska ad3

При замыкании контакта кнопки Пуск, питание получит катушка магнитного пускателя КМ, при этом через нее начнет протекать ток, так как образовалась замкнутая цепь: фаза С, автоматический выключатель АВ2, кнопка Стоп, кнопка Пуск, катушка КМ, контакт реле КК, фаза В.

При протекании тока по катушке магнитного пускателя, замкнутся его контакты в силовой цепи, кроме этого срабатывает блок контакт КМ1, который шунтирует катушку магнитного пускателя КМ, он срабатывает, то есть замыкает свои контакты в с кнопку Пуск. После размыкания контакта кнопки Пуск, катушка не потеряет питание.

При срабатывании, магнитный пускатель замыкает свои силовые контакты КМ и подает напряжение на статор двигателя через тепловое реле. Асинхронный двигатель, получив питание, запустится, его ротор начнет вращаться.

shema puska ad4

Для выполнения остановки электродвигателя, необходимо отключить катушку магнитного пускателя КМ, для этого нажимают кнопку Стоп, размыкая его контакт. При этом цепь, по которой питалась катушка КМ, размыкается, вследствие чего размыкаются силовые контакты магнитного пускателя КМ, электродвигатель теряет питание и останавливается, при этом размыкается шунтирующий блок контакт КМ1. При возврате кнопки Стоп в замкнутое положение, состояние схемы возвращается в исходное положение и готова для очередному пуска.

Стоит отметить, что данная схема не приспособлена для обеспечения плавного пуска асинхронного электродвигателя, выполнения регулировки частоты вращения и реверса. Все эти операции требуют усложнения схемы путем включения дополнительных устройств.

Асинхронные двигатели — самый распространенный вид электрических машин. Выше представленную схему пуска электродвигателей так же называют самой простой и распространенной.

4 комментария: Схема асинхронного электродвигателя

5.7. Способы и схемы пуска электроприводов с асинхронными двигателями

Асинхронные электродвигатели с короткозамкнутым ротором являются основным приводом большинства судовых механизмов, не требующих широкого регулирования частоты вращения. Они просты в изготовлении и эксплуатации, обладают высокой надежностью и долговечностью, имеют сравнительно низкую стоимость.

Пусковые свойства асинхронного двигателя оцениваются его пусковы­ми характеристиками:

значением пускового тока Iп или его кратностьюIп/Iном;

значением пускового Мп или его кратностью Мп/Мп ном;

продолжительностью и плавностью пуска двигателя в ход;

сложностью пусковой операции;

экономичностью пусковой операции (стоимостью и надежностью пусковой аппаратуры), а также потерями энергии в ней.

Значение пускового тока

где R1 иX1 – активное и индуктивное сопротивления статора, аR2 и Х2 – приведённые активное и индуктивное сопротивления ротора.

Из анализа (7) следует, что улучшить пусковые свойства двигателя можно увеличением активного сопротивления цепи ротора R2, так как в этом случае уменьшается пусковой ток и увеличивается пусковой момент. Уменьшение напряженияU1. влияет благоприятно наIп (уменьшая его значение), однако пусковой момент Мп при этом также уменьшается. Возможность применения того или иного способа улучшения пусковых характеристик определяется видом двигателя, условиями эксплуатации требованиями к нему.

Управление приводом для нереверсивных механизмов заключается чаще всего в дистанционном пуске и отключении электродвигателя. Схема такого рода легко может быть автоматизирована посредством замены кнопок ручного управления на устройство, замыкающее или размыкающее контакты при достижении порогового значения параметра, когда необходимо включить или выключить электродвигатель.

а) Наиболее простой способ подключения асинхронного двигателя – прямой пуск посредством магнитного пускателя (рис.5.18).

Здесь при нажатии кнопки SB2 (Пуск) получает питание катушка линейного контактора КМ, и двигатель включается на сеть. Нажатием кнопкиSB1 (Стоп) катушка КМ теряет питание, и двигатель отключается от сети. При перегрузке электродвигателя размыкается контакт теплового реле КК, который также обесточивает цепь контактора КМ. Пусковой ток асинхронного электродвигателя с короткозамкнутым ротором при прямом включении на сеть достигает (6-7)Iном. Если, например, мощность пускаемого двигателя составляет 30% мощности работающего генератора, то такой большой пусковой ток вызывает резкое кратковременное снижение напряжения сети, называемое провалом напряжения на 15-20%. При большей относительной мощности двигателя провал напряжения значительно увеличивается, что может привести к отключению магнитных пускателе работающих электроприводов, к всплеску тока генератора и срабатыванию его защиты и т.п. Поэтому двигатели соизмеримой с генератором мощности на судах пускаются по специальным схемам, которые ограничивают силу пускового тока.

Рис.5.18. Схема прямого пуска АД.

б) Пуск с включением резисторов в цепь статора (рис.5.19). Разгон двигателя осуществляется в две ступени. На первой в цепь всех трех фаз включается сопротивление, которое на второй степени шунтируется контактами контактора ускорения КМ2:1. Время работы на пусковой ступени контролируется электромагнитным реле времени КТ1. Схема работает следующим образом. При нажатии кнопки SB1 (Пуск) получает питание реле КТ1, которое своими контактами КТ1:1 шунтирует кнопкуSB1 и включает контактор ускорения КМ2, а он размыкает свои контакты КМ2:1, шунтирующие пусковые сопротивления и тем самым подготавливает схему к пуску. Контактор КМ2 замыкает цепь линейного контактора КМ1, который подключает двигатель на сеть через пусковое сопротивлениеR. Блок-контакт КМ1:3 шунтирует кнопкуSB1 и контакт КМ2:2, обеспечивая питание катушки КМ1. Второй блок-контакт КМ1:2 разрывает цепь питания реле КТ1, которое с выдержкой времени размыкает свой контакт в цепи контактора КМ2. Контактор КМ2 своими контактами КМ2:1 шунтирует пусковое сопротивлениеR.

Пусковое сопротивление Rограничивает пусковой ток до необходимого значения

где R – соответственно активное сопротивление двигателя в пусковом режиме.

Следует иметь в виду, что это сопротивления при разгоне не остаются постоянными, так как входящие в них приведенные сопротивления ротора зависят от скольжения. Потеря напряжения U=Iп Rв пусковом сопротивлении уменьшает напряжение на статоре двигателяUд .

Рис.5.19. Схема (а) и график (б) пуска АД введением пускового сопротивления в цепь

Для асинхронного двигателя момент на валу пропорционален квадрату напряжения. Поэтому пусковая механическая характеристика при включенном в цепь статора резистора (кривая 1, рис.5.19, б) имеет значительно меньший пусковой момент, чем при номинальном напряжении (Мп1 Мп2 ), характерном для прямого включения двигателя на сеть (кривая 2). Может случиться так, что при выборе пускового сопротивленияRП для уменьшения пускового тока оно окажется настолько большим, что пусковой момент Мп1 будет недостаточен для преодоления момента сопротивления и пуск станет невозможным.

в) Автотрансформаторный пуск (рис.5.20) предусматривает пусковое подключение двигателя от источника пониженного напряжения – автотрансформатора. Здесь пусковой ток, потребляемый из сети за счет трансформации напряжения, меньше, чем ток, потребляемый двигателем при прямом пуске. Это приводит к тому, что в рассматриваемой схеме в отличие от предшествующих уменьшение пускового тока, происходит в той же степени, что и при уменьшении пускового момента на двигателе.

Схема автотрансформаторного пуска имеет повышенную стоимость и ее использование оправдано, когда другие более дешевые схемы не обеспечивают необходимого снижения пускового тока. Работа схемы происходит следующим образом. При нажатии кнопки SB2 включается контактор КМ2, который контактом КМ2:1 подключает автотрансформаторTVи шунтирует кнопкуSB2, а также подает питание на линейный контактор КМ1. Двигатель подключается к сети черезTV, реле времени КТ1 клапанного типа включается блок-контактом КМ1:2. Через отрезок времениtконтакт КТ1:1 замкнет цепь питания контактора ускорения КМ3, который своим контактом КМ3:1 шунтирует автотрансформатор и подключает двигатель прямо на сеть. Блок-контакт КМ3:2 размыкает цепь питания контактора КМ2, который, в свою очередь, разомкнет цепь автотрансформатора. Второй блок-контакт КМ3:3 сохранит цепь питания контактора КМ1.

Рис.5.20. Схема автотрансформаторного пуска АД

г) Пуск переключением обмотки статора со звезды на треугольник осуществляется по схеме, изображенной на рис.5.21. При пуске обмотка статора соединена звездой, пусковое напряжение на фазе будет в раз меньше номинального, что приведёт к уменьшению пускового тока в 3 раза. Вместе с тем, пусковой момент, пропорциональный квадрату напряжения, уменьшится также в три раза, что не всегда допустимо, особенно для механизмов, обладающих значительным статическим моментом сопротивления.

Схема работает следующим образом. При нажатии кнопки SB2 получает питание электромагнитное реле времени КТ1, подключающее контактор КМ2 (звезда), который своими главными контактами КМ2:1 замыкает трехфазную обмотку статора по схеме звезда, а вспомогательными контактами КМ2:3 включает линейный контактор КМ1 и разрывает цепь контактора КМ3 (треугольник). Контактор КМ1 своими главными контактами КМ1:1 подключает двигатель к сети, а блок- контактами КМ1:4 шунтирует кнопку пускSB2. В тоже время блок-контакт КМ1:2 обесточивает реле времени КТ1, которое отпускает с выдержкой времени и своим контактом КТ1:1 обесточивает контактор КМ2, который размыкает соединение звезда. Блок-контакт КМ2:3 замыкает цепь контактора КМ3, который собирает схему соединений треугольник. Работа контакторов КМ1, КМ2, КМ3 электрически взаимно сблокирована соответствующими блок-контактами, исключающими непредусмотренную или неправильную последовательность соединений.

Рис.5.21. Схема пуска АД переключением обмотки статора со звезды на

д) Плавный пуск электродвигателей переменного тока. В настоящее время широко начинают применяться устройства плавного пуска электродвигателей переменного тока на базе тиристорных коммутаторов и преобразователей. За счёт плавного разгона ЭД удаётся достигнуть значительного уменьшения величины пускового тока и тем самым ограничить его влияние на напряжение судовой сети.

Современное устройство плавного пуска представляет собой нереверсивный трехфазный тиристорный коммутатор (ТК) с многофункциональной системой управления (СУ) на базе микропроцессорного контроллера (МК) и развитым пользовательским интерфейсом, аппаратно обеспечиваемым устройством ввода-вывода дискретных сигналов (УВВ). Принцип действия и устройство пускателя поясняет функциональная схема, приведенная на рис. 5.22.

Рис. 5.22 Устройство плавного пуска

Основным силовым элементом ТК является тиристорный ключ, представляющий собой цепную схему, состоящую из ряда последовательно соединенных звеньев, а каждое звено — два включенных встречно-параллельно тиристора. Для выравнивания напряжения между последовательно включенными тиристорами в статических и динамических режимах параллельно каждому звену включены резисторная и резисторно-ёмкостная цепи, а также датчик состояния тиристоров.

Информация о состоянии тиристоров передается в систему управления по оптоволоконному кабелю. Каждый из тиристоров ключа имеет свой импульсный трансформаторный узел управления. Для уменьшения разброса во временах включения тиристоров, включенных последовательно, первичные обмотки их импульсных трансформаторов соединены последовательно. Потенциальное разделение между высоковольтной силовой частью и низковольтной системой управления осуществляется с помощью оптоволоконного кабеля и импульсных трансформаторов.

В Триол АС15 имеется три описанных выше тиристорных ключа по числу фаз питания. Изменяя угол управления (включения) тиристоров можно регулировать подводимое к статорной обмотке двигателя напряжение и, соответственно, ток. Снижение подводимого к статорной обмотке двигателя напряжения позволяе уменьшить токи в динамических режимах (при пуске) и избежать ударных нагрузок на механизм. Наличие регулятора тока обеспечивает поддержание заданного значения тока практически в течение всего времени разгона с помощью увеличения напряжения на выходе ТК. Это достигается уменьшением угла управления тиристоров. Разгон с заданным значением пускового тока продолжается до тех пор, пока текущее значение угла управления тиристорами больше также изменяющегося угла сдвига между первыми гармониками напряжения и тока. Когда это соотношение не соблюдается, что имеет место в конце пуска, тиристоры открываются полностью. К этому моменту, однако, ток уже не должен превышать заданного значения при правильно настроенных параметрах пускового устройства.

Каждый электрик должен знать:  Группы допуска по электробезопасности какие бывают и как получить

Изменяя коэффициент усиления и постоянную интегрирования регулятора тока, а также начальное значение угла открывания тиристоров и величину (кратность) пускового тока можно получить требуемые динамические характеристики. Следует учесть, что величина пускового тока не должна превосходить номинального значения тока, указанного в паспорте конкретного пускового устройства. В Триол АС15 при нагрузках, значительно меньших номинального значения, предусматривается режим энергосбережения, при котором за счет изменения угла управления тиристорами привод работает с пониженным напряжением. Пускатель может осуществлять торможение двигателя:

— выбегом, путем снятия управляющих импульсов с тиристоров ТК;

— скатом, путем снижения подводимого к статорной обмотке электродвигателя напряжения (плавным увеличением углов управления тиристорами ТК);

— динамическим торможением, путем подачи иа статорную обмотку двигателя постоянного по направлению напряжения.

Датчики тока ДТ1, ДТ2 на трансформаторах тока в силовом канале АС15 служат для контроля, регулирования и измерения величины пускового или нагрузочного тока электродвигателя, в т.ч. для защиты от токов перегрузки и короткого замыкания.

Датчики напряжения ДН1 и ДН2 на высоковольтных трансформаторах напряжения служат для синхронизации системы управления с силовой питающей сетью, контроля наличия всех фаз силового напряжения и правильности их чередования.

Многоканальный источник питания ИП преобразует сетевое переменное напряжение 380 В в систему напряжений постоянного тока требуемых уровней и степени стабильности, гальванически связанных и не связанных между собой, для питания устройств правления.

Микропроцессорный контроллер МК осуществляет формирование режимов работы устройства с заданными параметрами с помощью сигналов управления: сигналов управления тиристорами, сигналов защиты и аварийного отключения АС15, приёма и пер

дачи внешних управляющих, задающих и информационных сигналов.

Устройство ввода/вывода УВВ предназначено для приёма и передачи внешних управляющих сигналов.

УВВ имеет набор дискретных входов и выходов. Во входные и выходные цепи УВВ включены устройства гальванической развязки для потенциального разделения с внешними управляющими цепями. Формирователи импульсов ФИ (драйверы) предназначены для формирования требуемых уровней управляющих сигналов тиристоров, гальванического разделения силовых цепей и цепей управления тиристоров и МК. В составе устройства предусмотрен встроенный пульт управления ПУ, который содержит клавиатуру для управления режимами работы, задания и программирования параметров, а также элементы индикации и сигнализации для отображения значений па_

раметров и диагностирования. По согласованию с Заказчиком в комплект поставки может входить пульт дистанционного управления (ПДУ), функции которого аналогичны ПУ.

Для удобства работы оператора программируемые и информационные параметры устройства сведены в функциональные группы. Далее по тексту ссылки а соответствующие параметры даны в форме [ХХ YY],

где ХХ — № группы, YY — № параметра.

Ниже на рис. 1.2 … рис. 1.4 проиллюстрировано выполнение отдельных технологических процедур в процессе пуска и в процессе останова двигателя соответственно.торный ключ, представляющий собой цепную схему, состоящую из ряда последовательно соединенных

звеньев, а каждое звено — два включенных встречно-параллельно тиристора. Для выравнивания напряжения между последовательно включенными тиристорами в

статических и динамических режимах параллельно каждому звену включены резисторная и резисторно_емкостная цепи, а также датчик состояния тиристоров. Информация о состоянии тиристоров передается в систему управления по оптоволоконному кабелю. Каждый из тиристоров ключа имеет свой импульсный трансформаторный узел правления. Для уменьшения разброса во временах включения тиристоров, включенных послдовательно, первичные обмотки их импульсных трансформаторов соединены последовательно. Потенциальное разделение между высоковольтной силовой частью и низковольтной системой управления осуществляется с помощью оптоволоконного кабеля и импульсных трансформаторов. В Триол АС15 имеется три описанных выше тиристорных ключа по числу фаз питания. Изменяя угол управления (включения) тиристоров можно регулировать подводимое к статорной обмотке двигателя напряжение и, соответственно, ток. Снижение подводимого к статорной обмотке двигателя напряжения позволяет уменьшить токи в динамических режимах (при пуске) и избежать ударных нагрузок на механизм. Наличие регулятора тока обеспечивает поддержание заданного значения тока практически в течение всего времени разгона с помощью увеличения напряжения на выходе ТК. Это достигается уменьшением угла управления тиристоров. Разгон с заданным значением пускового тока продолжается до тех пор, пока текущее значение угла управления тиристорами больше также изменяющегося угла сдвига между первыми гармониками напряжения и тока. Когда это соотношение не соблюдается, что имеет место в конце пуска, тиристоры открываются полностью. К этому моменту, однако, ток уже не должен превышать заданного значения при правильно настроенных параметрах пускового устройства.

Способы пуска асинхронного двигателя — прямой пуск

При применении асинхронных короткозамкнутых электродвигателей, очень остро встает вопрос ограничения пусковых токов. Для ограничения пусковых токов применяются различные схемы пуска асинхронного двигателя.

Пусковой ток

При подаче на электродвигатель напряжения, в цепи статора двигателя возникают скачки тока, именуемые пусковым током или током заторможенного ротора. Пусковой ток при пуске трехфазного асинхронного двигателя может превышать в 5 – 7 раз выше номинального, хотя действует кратковременно. После окончания пуска двигателя, и выхода двигателя на номинальные обороты, ток падает до номинального, как показано на рис.

В каждом отдельном случае необходимо принимать меры, для снижения пусковых токов, используя различные способы пуска. Кроме этого необходимо принять специальные меры для стабилизации питающего напряжения.

Пусковые периоды

Рассматривая различные способы пуска трехфазного асинхронного двигателя, которые снизить пусковой ток, нужно следить за тем, чтобы период пуска не был слишком долгим. Потому что продолжительное время пуска двигателя может вызвать перегрев обмоток.

Способы пуска трехфазного асинхронного двигателя


Следует знать основные достоинства и недостатки различных способов пуска трехфазного асинхронного двигателя. В данной таблице представлены сравнительные характеристики часто используемых способов пуска.

Прямой пуск

Что такое прямой пуск? Как следует из названия, прямой пуск трехфазного асинхронного двигателя означает, что электродвигатель подключается к сети на номинальное напряжение. Прямой пуск в англоязычной аббревиатуре обозначается как (direct-on-line starting – DOL). Его обычно применяют при стабильном питании двигателя, если вал двигателя жестко привязан к приводу, например привод вентилятора или насоса.

Прямой пуск трехфазного асинхронного двигателя от сети (DOL), на сегодняшний день является самым дешёвым и простым. Поэтому он получил и самое большое распространение в промышленности. Кроме того, он даёт минимальное увеличение температуры электродвигателя при пуске по сравнению со всеми другими способами пуска. Если величина пускового тока не ограничивается специальными нормами, то такой способ является наиболее предпочтительным, но не самым экономичным. Если величина пускового тока ограничена параметрами сети, то необходимо выбирать другие способы пуска. Простейшая схема управления трехфазным асинхронным двигателем M включает в себя силовой контактор KM, устройство зашиты от перегрузок QF тепловое реле KT и кнопки управления SB1, SB2.

В схемах прямого пуска асинхронных двигателей пусковой момент составляет 150% -300% номинального, при этом пусковой ток может достигать 300% — 800% тока номинального.

Схема пуска асинхронного двигателя с фазным ротором, функции времени.

Для уменьшения пускового тока и увеличения пускового момента — в цепь ротора включают токоограничивающий резистор R, ступени которого включены в цепь не только вовремя пуска, и торможении, а также при реверсе электродвигателя с фазным ротором.

Двигатель будет разгоняться по искусственной характеристики с большим пусковым моментом и меньшим пусковым током. По мере разгона ступени резистора будут шунтироваться до полного вывода из цепи (обмотка ротора закорочена), а следовательно электродвигатель перейдёт на свою естественную характеристику. Пуск окончен.

Схема пуска двигателя с фазным ротором, функции тока.

Схема подключения двигателя с фазным ротором, функции времени.

Схема подключения двигателя фазным ротором представлена на рисунке 1. В данной схеме используется управление функции времени и двухступенчатый пусковой резистор.
Включением автоматического выключателя QF напряжение подается на управляющую и силовую цепь. Это приводит к срабатыванию реле времени КТ1, КТ2 которые размыкают свои контакты. Нажатием кнопки SB1 “ Пуск” подключается магнитный пускатель КМ3, который:
размыкает контакты:

  • КМ3.3 — снимает напряжения с реле времени КТ1, которое, после окончания выдержки времени, размыкает свои контакты КТ1.

замыкает контакты:

  • КМ3.1 в цепи статора — двигатель запускается с включенными в цепь ротора двумя ступенями резистора, так как контакторы КМ1 и КМ2 питания не получают. До истечении выдержки времени КТ1.
  • КМ3.2 — шунтирует кнопку “ Пуск” (позволяет не удерживать кнопку SB1 в нажатом положении)
  • КМ3.4 – в цепи катушек магнитных пускателей КМ1 и КМ2, но до окончания выдержки времени КТ1 пускатели КМ1 и КМ2 не получают питания. Рисунок 1.1 GIF — анимация схемы работы пуска асинхронного двигателя с фазным ротором

Для удобства просмотра — в конце статьи выложены все кадры анимации.

По истечении времени выдержки, КТ1 срабатывает и замыкает свои контакты – по катушке КМ1 протекает ток, пускатель срабатывает и шунтирует первую ступень пускового резистора R. Одновременно своими нормально замкнутыми контактами КМ1.1 обесточивает реле времени КТ2. До окончания выдержки времени КТ2 двигатель разгоняется только со второй ступенью сопротивления. После окончания выдержки резистор полностью шунтируется и двигатель переходит на свою естественную механическую характеристику. Пуск окончен.

Как подключить 3 фазный электродвигатель к сети 220 вольт через конденсатор

Многие любители и профессионалы применяют в работе электрооборудование различного предназначения. И во многих случаях электрооборудование приводится в движение трехфазными двигателями. Но трехфазная сеть зачастую недоступна в гаражных боксах и индивидуальных домовладениях. И тогда на помощь приходят схемы подключения трехфазного двигателя в однофазную сеть.

Для чего нужен конденсатор

Наиболее распространены и применяются в станках трехфазные асинхронные двигатели переменного тока с короткозамкнутым ротором. Их подключение к однофазной сети мы и будем рассматривать. При включении двигателя в трехфазную сеть по трем обмоткам, в разный момент времени протекает переменный ток. Этот ток создает вращающееся магнитное поле, которое начинает вращать ротор двигателя.

При подключении двигателя к однофазной сети, ток по обмоткам течет, но вращающегося магнитного поля нет, ротор не крутится. Выход из этой ситуации был найден. Самым простым и действенным способом оказалось параллельное подключение конденсатора к одной из обмоток двигателя. Конденсатор, импульсно получая и отдавая энергию создает смещение фазы, в обмотках двигателя получается вращающееся магнитное поле и он работает. Емкость постоянно находится под напряжением и называется рабочим конденсатором.

ВАЖНО! Правильно рассчитать и подобрать емкость рабочего конденсатора и его тип.

Как правильно подобрать конденсаторы

Теоретически предполагается осуществлять расчет необходимой емкости путем деления силы тока на напряжение и полученную величину умножить на коэффициент. Для разного типа соединений обмоток коэффициент составляет:

  • звездой – 2800;
  • треугольником – 4800.

Недостатком этого метода является то, что не всегда на электродвигателе сохранилась табличка с данными. Невозможно точно знать коэффициент мощности и мощность двигателя, а следовательно и силу тока. К тому же на силу тока могут действовать такие факторы как отклонения напряжения в сети и величина нагрузки на двигатель.

Мощность электродвигателя, кВт 0,4 0,6 0,8 1,1 1,5 2,2
Ёмкость конденсатора C2 в номинальном режиме, мкФ 40 60 80 100 150 230
Ёмкость конденсатора C2 в недогруженном режиме, мкФ 25 40 60 80 130 200
Ёмкость пускового конденсатора C1 в номинальном режиме, мкФ 80 120 160 200 250 300
Ёмкость конденсатора C1 в недогруженном режиме, мкФ 20 35 45 60 80 100

Поэтому следует применять упрощенный расчет емкости рабочих конденсаторов. Просто учесть, что на каждые 100 ватт мощности необходимо 7 микрофарад емкости. Удобнее использовать несколько параллельно соединенных конденсаторов малой, желательно одинаковой емкости, чем один большой. Просто суммируя емкость собранных конденсаторов, можно легко определить и подобрать оптимальное значение. Для начала лучше процентов на десять занизить суммарную емкость.

Если двигатель легко запускается и мощности его достаточно для работы, то все подобрано правильно. Если нет – нужно еще подсоединять конденсаторы, пока двигатель не достигнет оптимальной мощности.

СПРАВКА. При подключении трехфазного асинхронного двигателя с короткозамкнутым ротором в однофазную сеть теряется не менее трети его мощности.

Следует помнить, что много не всегда хорошо, и при превышении оптимальной емкости рабочих конденсаторов двигатель будет перегреваться. Перегрев может привести к сгоранию обмоток и выходу электродвигателя из строя.

ВАЖНО! Конденсаторы следует соединять между собой параллельно.

Желательно выбирать конденсаторы с рабочим напряжением не менее 450 вольт. Самыми распространенными являются так называемые бумажные конденсаторы, с буквой Б в наименовании. В настоящее время выпускаются и специализированные, так называемые моторные конденсаторы, например К78-98.

ВНИМАНИЕ! Желательно выбирать конденсаторы для переменного тока. Использование иных тоже возможно, но связано с усложнением схемы и возможными нежелательными последствиями.

В случае, если запуск двигателя осуществляется под нагрузкой и происходит тяжело, необходим еще и пусковой конденсатор. Он включается параллельно рабочему на непродолжительное время пуска электродвигателя. Его емкость должна быть равной или не более чем в два раза превышать емкость рабочего.

Схема подключения электродвигателя 380 на 220 вольт с конденсатором

Подключить трехфазный двигатель в однофазную сеть несложно и с этим справится даже электромонтер-любитель. Если возникают затруднения, следует обратиться к друзьям или знакомым. Рядом всегда найдется грамотный электрик.

Обмотки трехфазных двигателей с рабочим напряжением 380 на 220 для работы в сети на триста восемьдесят вольт соединены по схеме звезда. Это значит, что концы обмоток соединены между собой, а начала подсоединяются в сеть. Для возможности работы электродвигателя в однофазной сети 220 вольт необходимо для начала его обмотки переключить на схему треугольник. Т.е. конец первой соединить с началом второй, конец второй с началом третьей и конец третьей с началом первой.

Эти соединения и будут выводами двигателя для подключения к электропитанию. Два вывода необходимо через двухполюсной выключатель подсоединить к нулю и фазе сети в 220 вольт. Третий вывод через рабочие конденсаторы, соединить с каким либо из первых двух выводов из двигателя. Можно пробовать запускать.

Если запуск прошел успешно, двигатель работает с приемлемой мощностью и не сильно греется, то можно ничего не менять. Получилась работоспособная схема только с рабочими конденсаторами.

В случае запуска под нагрузкой или просто тяжелого пуска двигателя, он может раскручиваться долго и не достигать приемлемой мощности. Тогда потребуется включить в схему еще и пусковую емкость. Пусковые конденсаторы выбираются того же типа, что и рабочие. Одинаковой или в два раза превышающей ёмкость рабочих. И подключаются параллельно им. Используются только для пуска электродвигателя.

Очень удобно для такого пуска использовать своеобразный выключатель серии АП. Важно чтобы он был в исполнении с блок контактами. В нем при нажатии кнопки Пуск пара контактов остается замкнутыми до нажатия на кнопку Стоп. К ним подключают выводы двигателя и электросеть. Третий контакт замкнут только во время удержания кнопки Пуск, через него и подсоединяется пусковой конденсатор. Выключатели такого типа, только без предохранительной аппаратуры часто устанавливали на старые советские центрифуговые стиральные машинки.

Схема подключения электродвигателя без конденсаторов

Реально работающих схем подключения трехфазного двигателя в бытовую сеть 220 вольт без конденсаторов нет. Некоторые изобретатели предлагают подключать двигатели через индукционные катушки или сопротивления. Якобы, таким образом, создается сдвиг фаз на необходимый угол и двигатель вращается. Другие предлагают тиристорные схемы подключения. На практике это не работает, и не стоит изобретать велосипед. Когда есть дешевый и проверенный способ пуска посредством конденсаторов.

Действительно рабочим вариантом является подключение трехфазного асинхронного двигателя через преобразователь частоты. Преобразователь подключается в бытовую сеть и выдает трехфазный ток, причем с возможностью плавного пуска и регулировки оборотов. Но стоит такое чудо примерно от 7000 рублей с подключаемой мощностью всего в 250 ватт. Мощные приборы стоят гораздо дороже. За такие деньги можно приобрести электрооборудование с возможностью подключения к однофазной цепи. Будь то мини токарный станок, циркулярка, насос или компрессор.

Как подключить с реверсом

Обеспечить вращение ротора в обратную сторону не представляет затруднения. В схему подключения двигателя необходимо добавить двухпозиционный переключатель. Средний контакт переключателя подсоединяется к одному из контактов конденсаторов, а крайние к выводам двигателя.

ВНИМАНИЕ! Сначала необходимо переключателем выбрать направление вращения, и только потом запустить двигатель. При работающем электродвигателе переключателем направления вращения пользоваться нельзя.

Рассмотренные варианты подключения промышленных двигателей в бытовую сеть не представляют большой сложности при их реализации. Важно только внимательно отнестись к некоторым нюансам и оборудование, хоть и с небольшой потерей мощности, прослужит долго и принесет пользу.

Схема нереверсивного пуска асинхронного двигателя

Здравствуйте, уважаемые посетители и гости сайта http://zametkielectrika.ru.

Сегодня Драницын Кирилл Эдуардович, студент ГБОУ СПО «КПК» г.Чернушка, Пермского края, прислал свою работу на конкурс «Электрика своими руками».

Ее название «Схема нереверсивного пуска асинхронного двигателя с короткозамкнутым ротором», которая в полной мере дополняет мою статью, написанную несколько дней назад, о схеме магнитного пускателя нереверсивного типа без применения теплового реле.

Оборудование:

2. Магнитный пускатель ПМЛ (для пуска, остановки двигателя).

3. Тепловое реле ТРН (для защиты трехфазных асинхронных двигателей с короткозамкнутым ротором от перегрузок).

4. Кнопка пуск/стоп.

Рабочий инструмент:

  • отвертка плоская
  • бокорезы
  • нож
  • кабель (провод) одножильный
  • круглогубцы
  • плоскогубцы
  • трехфазная вилка

Схема нереверсивного пуска асинхронного двигателя с короткозамкнутым ротором

До начала работы хотелось бы объяснить обыкновенные понятия для понимания схемы:

  • нормально замкнутый контакт в кнопке пуск/стоп под цифрами (3-4)
  • нормально разомкнутый контакт в кнопке пуск/стоп под цифрами (1-2)

Алгоритм (порядок выполнения) сборки схемы нереверсивного пуска асинхронного двигателя (АД)

1. Силовая цепь:

1.1. Берем крайние 2 провода (фаза А и С) выходящие от двигателя

1.2. Присоединяем эти провода к верхним контактам теплового реле

1.3. Третий провод от двигателя соединяем с магнитным пускателем, присоединяя его на контакт 3 (фаза В)

1.4. Соединяем нижние контакты теплового реле с магнитным пускателем

1.5. Один нижний контакт теплового реле соединяем с контактом 1 на магнитном пускателе

1.6. Другой нижний контакт теплового реле соединяем с контактом 5 на магнитном пускателе

2. Цепь управления:

2.1. Контакт 6 на магнитном пускателе соединяем проводом с нормально замкнутым контактом кнопки «Стоп»

Нормально замкнутые контакты на кнопке «Стоп» под цифрами 3 и 4.

2.2. Делаем перемычку с нормально замкнутого контакта кнопки «Стоп» на нормально разомкнутый контакт кнопки «Пуск»

2.3. Блокируем нормально разомкнутый контакт: соединяем контакт 2 кнопки «Пуск» с блок-контактом магнитного пускателя 13

2.4. Соединяем нормально разомкнутый контакт 1 кнопки «Пуск» с блок-контактом магнитного пускателя 14

2.5. Перемычкой соединяем блок-контакт магнитного пускателя 13 с катушкой магнитного пускателя (контакт — А2)

2.6. С катушки магнитного пускателя (контакт А1) подаём питание на нормально замкнутые контакты теплового реле

2.7. С теплового реле (с нормально замкнутого контакта) на контакт 2 магнитного пускателя

2.8. Присоединяем питающий шнур к контактам магнитного пускателя – 2, 4, 6

2.9. Перед пуском проверяем схему ещё раз!

2.10. Запускаем двигатель.

P.S. Если у Вас имеются вопросы по схеме пуска асинхронного двигателя с короткозамкнутым ротором, то задавайте их в комментариях к этой статье.

71 комментариев к записи “Схема нереверсивного пуска асинхронного двигателя”

И опять подключение питания снизу — вверх. Да и заземлить двигатель желательно, хоть это и стенд правила по электробезопасности никто не отменял.

Дмитрий, согласен с Вами. Соблюдать маркировку при подключении пускателя необходимо. Но конструктивно, для данного пускателя это не критично.

Была бы не лишней статья на сайте о тепловых реле. Для чего оно нужно, как подобрать и отрегулировать.

Дмитрий, я как раз пишу сейчас о тепловом трехполюсном реле с защитой от перегрузки и обрыва питающих фаз. Статья выйдет скорее всего в начале следующей недели.

Катушка пускателя на 220, а садите на две фазы (380), судя по схеме. Это как?

Аскер, автор статьи не упомянул о величине напряжения трехфазной сети. Согласно представленной в статье схемы — трехфазная сеть выполнена с линейным напряжением на 220 (В). Схема управления взята с двух фаз, поэтому катушка пускателя, соответственно, на 220 (В).

Добрый день!Отвёртка без изолированного жала, да и таким ножом пользоваться нельзя.

Александр, Вы наверное забыли, что это студенты колледжа и у них материальная база не такая «богатая». Да и вообще, куда Вы смотрите? На инструменты? На дату их испытания? Главное в этой статье — это сборка схемы, где прослеживается четкая последовательность и наглядность.

Уважаемый, Дмитрий! Не надо моё замечание сводить к на нет! В статье не написано, что монтаж проведен студентом. Вот такой же студент зайдет на Ваш сайт, глянет статью и начнёт работать инструментом, какой в руку попался. При всём моём уважении к Вам это всё таки не мелочь. За описание монтажа схемы можно поставить 5(студенту,который собирал), но,как говорится, была бы схема….

В самом начале статьи написано, что это конкурсная работа, которую выполнял студент колледжа — читайте внимательнее. Ваше замечание никто не сводит на нет, я с Вами полностью согласен — инструмент действительно должен быть исправным и проверенным. Остальное я написал в посте выше.

Ах,да!Извиняюсь. Я обычно первые абзацы читаю мельком. Начинаю с самого интересного.

а если подключать 2 двигателя таким образом что нибудь изменится?

Алан, ничего не изменится, подключайте хоть 4 двигателя, главное правильно рассчитайте номинальный ток силовых контактов пукателя, чтобы при пусковых и номинальных токах они не выгорели.

тогда ещё один вопрос, применима ли эта схема для подключения в станок с 380В , то есть не для пуска двигателя, а для работы станка с двумя двигателями

Алан, Ваш вопрос не конкретный, ведь нужно знать схему станка и перечень его электрооборудования. А в принципе можно.

ну и замутили….на каком-то говне показали включение, не могли взять нормальное реле,а не «совдеп» какой-то. Я бы как -то постеснялся бы это кому-то показывать.

А Вы видимо не бывали на предприятиях — там же все именно на таком оборудовании работает по 30 лет. Да и дело не в красоте, а в донесении сути.

хорошая статья, сейчас именно этому учусь на предприятие!

на фото со словом перемычка пропал один провод, идущий от конца кнопки пуск к контакту пускателя 13!
в преддыщей фото он есть

Уважаемый Админ Дмитрий
Я попытался расписать схему подключения соблюдая маркировку при подключении пускателя
Вроде расписал но поскольку я максималист хотелось бы быть уверенным что расписал правильно.
В статье которую вы написали (схема магнитного пускателя нереверсивного типа без применения теплового реле) в конце вы расписали схему подключения.
Если конечно возможно могли бы вы и схему подключения этой статьи расписать. Буду благодарен.
Заранее огромное спасибо!

все просто замечательно, но почему тепловое реле у вас старого образца? меня это смущает.

Бакыт, потому что они все еще находятся, как в эксплуатации, так и в учебных кабинетах по электротехнике. Почитайте, ведь эта статья прислана на конкурс от одного из студентов колледжа.

Имеется данная схема подключения на Электрическом кране
встретился глюк с отказом отключения 1 из магнитных пускателей он просто отказывается выключатся когда нажимаешь кнопку стоп
контакты зачищал все равно проблема оставалась хотя по началу была не критичной, но чем дальше тем дольше он не выключается !

у меня магнитный пускатель блокирует,НАЖИМАЮ НА ПУСК ДВИГАТЕЛЬ НОРМАЛЬНО РАБОТАЕТ КОГДА ДЕРЖИШЬ…ОТПУСКАЮ ВОТ ВЫКЛЮЧАЕТСЯ…ЧЕМ ПРОБЛЕМА.

МОЖЕТ ВМЕСТО ПУСКА ВКЛЮЧАТЕЛИ СТАВИТЬ.

нет Динар этого делать не надо посмотрите правильность подключения кнопочного поста и НО пускателя где то ошибка в схеме

спасибо!проверю обязательно напишу)))

Дмитрий, доброе утро.

У меня огромная просьба к Вам!
Вы не могли бы написать про двухскоростные двигатели:
схема запуска, принцип работы. Был бы очень признателен!

Александр, двухскоростные двигатели мне попадаются редко, но Вашу просьбу учту.

Здравствуйте,Дмитрий! Вопрос такой, почему при выключении ПМЛ происходит скачек напряжения до 700в! Обнаружилось случайно, на работе решили поставить розетку и чтобы не заморачиваться решили запитаться от ПМЛ! Скачок длится меньше 1 секунды, как это может повлиять на подключенную технику(дрель,принтер и т.д.)?

Правильно все- выбег обесточенного ротора плюс напряжение сети и дают такое

подскажите что делать если схема правильная, но мы ещё добавляем 2 провода на кнопочную станцию и засовываем их в магнитный пускатель (не в силовую часть), без этих проводов схема не работает, что делать?!

спасибо, уже не надо, буду сам думать что да как, экзамен сам сдам, всё сам

Сгорит двигатель. Питание трехфазное 220в а двигатель соеденен на звезду (для 380в)

И чего ради ему гореть? Не наоборот же!

Под нагрузкой сгорит обязательно

Если ток фазы ниже номинального, от чего сгорит? Разве что от перегруза и останова ротора, но это уже механика и здравый смысл.

Стоит в цеху электропривод. ключ управления и сигнальная арматура на щите управления метрах в ста от него.подходит оператор который совсем не электрик поворачивает ключ и ждет когда электропривод откроется. двигатель перегружается греется и в результате получаем сгоревший двигатель

И кто виноват- мотор, оператор, схема или…? Если ток в обмотках изначально ноже номинального, кто сие придумал??

Виноват тот кто установил двигатель не соответствующий напряжению в сети. А в данном случае для конкурсного стенда это серьезная ошибка со стороны будущего специалиста электрика.

Есть вопрос по подключению световой сигнализации.
По схеме это две лампы:
1 лампа сигнализирует о подаче питания (питание подано, но двиган пока не работает)
2 лампа включается когда начинает работать двигатель.

Ну и тут два варианта (хотя я сомневаюсь что так можно сделать)
1. При включении двигателя включается вторая лампа (первая, сигнализирующая о том что есть напряжение, продолжает гореть)
2. При включении двигателя включается вторая лампа, а первая гаснет.

Весьма благодарен. Не обратил внимания на то, что кнопки с одной стороны роазомкнуты, а с другой — наоборот)

Ильдар, вполне осуществимо. Первую лампу называют «Сеть», она подключается сразу же после автомата цепей управления. Вторая лампа «Движение вперед» или «Движение назад» подключают параллельно катушке соответствующего контактора.

Вот задача, кто подскажет. Трехфазный двигатель подключен по схеме нереверсивного пуска. Включаем «пуск», двигатель гудит и не вращается. Включаем опять. Определяем пробником наличия напряжения на верхних и на отходящих контактах пускателя, а также после теплового реле и в клеммнике двигателя, везде есть наличие напряжения, а двигатель не работает. Разбираем звезду и проверяем обмотки, все нормально. Собираем двигатель, включаем и опять везде фиксируется напряжение, двигатель не работает.

«Везде есть наличие напряжения» — я здесь имел ввиду на всех трех фазах.

Вы бы тестер, а не пробник брали.

тестер все равно показывает наличие напряжения.

вик-тор, у двигателя обмотки имеют одинаковое сопротивление? Необходимо измерить напряжение между фаз непосредственно на клеммах двигателя? Нужно измерить именно напряжение между каждыми фазами, чтобы исключить обрыв фазы. Пробник такого не покажет — он будет светиться от соседних фаз. Больше склоняюсь к тому, что все таки где-то обрыв одной из питающих фаз. Двигатель от руки легко вращается?

Админ, все правильно. Тепловой элемент ТРН вышел из строя. Одной фазы не было и через звезду пробник везде показывал наличие напряжения.

есть э-двиг с 6 выводами надо подключить по схеме звезда-треугольник с автоматическим переключением от звезды на треугольник . и переключение на реверс по таймеру периодически.подскажите покажите на схеме очень жду!

niksanbad, на сайте такой статьи пока нет (вернее она уже написана, но мне не хватает времени на ее сборку и оформление). А объяснять на словах — это не так быстро. Рекомендую обратиться с этим вопросом на наш Форум (ссылочка в верхнем меню сайта). Спасибо.

по шее,за земляные провода,которые вешаешь на фазу.двоечник.

Что за провод соединен к концам обмоток, к их общей точке?

Нет там никакого провода, присмотритесь внимательнее- обычная звезда без нейтрали, ближние клеммы соединены перемычкой, дальние- с проводами к пускателю.

Привет всем!Полазал по многим сайтам и везде встретился со схемой, где катушка пускателя соединена между 2 фазами? Почему не между фазой и нулем? Ведь между фазами 380В, а пускатель обычно на 220В. Объясните мне подробнее пожалуйста. И еще один вопрос: насколько правильно подключено у Вас тепловое реле(серии ТРН)? Насколько я понял, верхние контакты теплового реле подключается в разрыв пускателя.

Альберт, есть катушки пускателей не только на 220 (В), но и на 380 (В), на 500 (В), на 127 (В) и т.д. Все зависит от Вашей электроустановки и величины напряжения сети. Вот почитайте статью про схему подключения магнитного пускателя, я в ней приводил несколько примеров схем.

Хорошо, почитаю. Есть еще вопрос:имеется станок токарный по металлу 1А62, в электрическом шкафу имеется трансформатор на освещение, первичная обмотка подключена в 2 фазы. Получается трансформатор на 380В?

Альберт, питание трансформатора для освещения взято с линейного напряжения между фаз В и С. Если у Вас трехфазная сеть 220 (В), то значит установлен однофазный понижающий трансформатор 220/12 (В) или 220/36 (В), если сеть трехфазная 380 (В), то, соответственно, однофазный понижающий трансформатор 380/12 (В) или 380/36 (В). По картинке не вижу вторичное напряжение…

Спасибо. Значит я все правильно понимал.Осталось только выяснить подключение теплового реле серии ТРН по этой схеме. Не могу найти более подробную информацию по контактам этого реле.

Стандартное включение многих станков, справа вверху тр-р 380/36. правда, были и 380/24 и даже 380/12, а вот 220/36 не встречал.

Альберт, а что с контактами ТРН?! Они подключены в цепи катушки контактора КГ (см. схему). В случае срабатывания теплового реле, они размыкают цепь катушки, контактор обесточивается, там самым отключая двигатель от сети.

ПАВ! У меня на работе на токарном станке по дереву СТД-120М, там трансформатор подключен в одну фазу с нулем. Сам трансформатор как раз 220-36В.

Админ! Да, все там верно. Нашел я устройство ТРН и посмотрел как в ней контакты реализованы, теперь разобрался. А вообще, дело такое, что мой знакомый купил б/у этот и там в электрошкафчике уже полазили хорошо, что один ТРН не подключен никуда, просто провода висят, да и трансформатор подключен между фазами. Поэтому решил обратиться сюда, так сказать прояснить ситуацию. С пускателями и прочей ерундой часто работал и связывался,но с таким подключением особо не встречался, а тепловыми реле вообще не приходилось работать. Теперь узнал что к чему.

Альберт, я писал про токарные по металлу, естесьььвенно, все станки охватить не в моих силах. У вас так, у других- или так, или иначе, не встречали?

как подключить электродвигатель чтобы он включался на определенное число оборотов потом отключался на 1мин затем включался опять
спасибо за внимание

Это будет не простое устройство- посчитать обороты- ЧЕМ. если в обычном асинхронном моторе нет такого устройства подсчета оборотов и потом чтобы отключить. Или внятно изложите мысль/задачу, или вам это дорого стоить будет.

Почему у вас на пускателе нет нормально закрытых контактов

пуск (электродвигателя) из холодного состояния

1 cold start

2 cold start

  1. холодный старт источника бесперебойного питания
  2. холодная загрузка
  3. пуск электродвигателя из холодного состояния
  4. пуск из холодного состояния
  5. пуск (электродвигателя) из холодного состояния
  6. включение (напр. трансформатора) в холодном состоянии

включение (напр. трансформатора) в холодном состоянии

[Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г

Тематики

  • электротехника, основные понятия

пуск (электродвигателя) из холодного состояния

[Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г

Тематики

  • электротехника, основные понятия

пуск из холодного состояния
(напр. котла при температуре в топке, равной температуре окружающего воздуха, энергоблока АЭС в первый раз после перегрузки топлива)
[А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г

Тематики

2.5.12. Электродвигатели с короткозамкнутыми роторами разрешается пускать из холодного состояния 2 раза подряд, из горячего — 1 раз, если заводской инструкцией не допускается большего количества пусков. Последующие пуски разрешаются после охлаждения электродвигателя в течение времени, определяемого заводской инструкцией для данного типа электродвигателя.
[ ПТЭЭП — Правила технической эксплуатации электроустановок потребителей ]
&nbsp

Тематики

Тематики

холодный старт ИБП
Способность ИБП включаться и обеспечивать питанием критичную нагрузку при отсутствии входного напряжения в питающей сети, получая электроэнергию от аккумуляторной батареи.
[ http://www.radistr.ru/misc/document423.phtml]

EN

black start
cold start

The ability to turn a UPS on from batteries, without mains.
[ http://www.upsonnet.com/UPS-Glossary/

Параллельные тексты EN-RU

Battery-start function when utility power is not present.
[Delta Electronics

Способность ИБП включаться и обеспечивать питанием нагрузку при отсутствии напряжения питающей сети, получая электроэнергию от батареи.
[Перевод Интент

Тематики

Синонимы

3 cold starting

  1. пуск электродвигателя из холодного состояния

2.5.12. Электродвигатели с короткозамкнутыми роторами разрешается пускать из холодного состояния 2 раза подряд, из горячего — 1 раз, если заводской инструкцией не допускается большего количества пусков. Последующие пуски разрешаются после охлаждения электродвигателя в течение времени, определяемого заводской инструкцией для данного типа электродвигателя.
[ ПТЭЭП — Правила технической эксплуатации электроустановок потребителей ]
&nbsp

Тематики

4 starting from cold

  1. пуск электродвигателя из холодного состояния

2.5.12. Электродвигатели с короткозамкнутыми роторами разрешается пускать из холодного состояния 2 раза подряд, из горячего — 1 раз, если заводской инструкцией не допускается большего количества пусков. Последующие пуски разрешаются после охлаждения электродвигателя в течение времени, определяемого заводской инструкцией для данного типа электродвигателя.
[ ПТЭЭП — Правила технической эксплуатации электроустановок потребителей ]
&nbsp

Тематики

5 hot start

  1. функция горячего старта
  2. пуск электродвигателя из горячего состояния
  3. пуск из горячего состояния
  4. пуск (электродвигателя) из горячего состояния

пуск (электродвигателя) из горячего состояния

[Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г

Тематики

  • электротехника, основные понятия

пуск из горячего состояния
(напр. пуск парового котла после останова на 6-8 часов)
[А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г

Тематики

пуск электродвигателя из горячего состояния

2.5.12. Электродвигатели с короткозамкнутыми роторами разрешается пускать из холодного состояния 2 раза подряд, из горячего — 1 раз, если заводской инструкцией не допускается большего количества пусков. Последующие пуски разрешаются после охлаждения электродвигателя в течение времени, определяемого заводской инструкцией для данного типа электродвигателя.
[ ПТЭЭП — Правила технической эксплуатации электроустановок потребителей

Тематики

функция горячего старта
(вентилятор внутреннего блока включается только после того, как теплообменник внутреннего блока достаточно прогреется, что исключает подачу холодного воздуха в кондиционируемое помещение)
[Интент

Тематики

6 warm start

  1. теплый старт (в электросвязи)
  2. теплый старт
  3. пуск электродвигателя из горячего состояния

пуск электродвигателя из горячего состояния

2.5.12. Электродвигатели с короткозамкнутыми роторами разрешается пускать из холодного состояния 2 раза подряд, из горячего — 1 раз, если заводской инструкцией не допускается большего количества пусков. Последующие пуски разрешаются после охлаждения электродвигателя в течение времени, определяемого заводской инструкцией для данного типа электродвигателя.
[ ПТЭЭП — Правила технической эксплуатации электроустановок потребителей

Тематики

«теплый» старт
Перезагрузка компьютера без его выключения (обычно при нажатии кнопки RESET).
[ http://www.morepc.ru/dict/]

перезагрузка
Теплая перезагрузка (перезапуск системы без выполнения ряда процедур начального тестирования и инициализации некоторых интерфейсных СБИС).
[ http://www.morepc.ru/dict/]

Параллельные тексты EN-RU

Warm Restart
If the self-monitoring function detects a fault that might be eliminated by a system restart — such as a fault in the hardware -, then a procedure called a warm restart is automatically initiated
.
[Schneider Electric

Теплый старт
Если функция самоконтроля обнаруживает, например, неисправность аппаратных средств, которую можно устранить перезагрузкой, то перезагрузка запускается автоматически и ее часто называют «теплый старт&quot
;.
[Перевод Интент

Тематики

Синонимы

«теплый старт»
Состояние приемника при выключенном питании, в котором его память сохраняет текущий до выключения альманах и начальные координаты в границах определенной зоны, например, радиусом 3000 км, а также обеспечивается поддержка часов истинного времени. Первое определение координат в этом режиме занимает существенно меньше времени, чем при «холодном старте», так как приемник может идентифицировать спутники, предположительно находящиеся в зоне видимости, и вычислять планируемое доплеровское смещение для каждого из них.
[ http://www.iks-media.ru/glossary/index.html?gloss >]

Тематики

  • электросвязь, основные понятия

7 hot start

8 trip time cold

  1. время срабатывания защиты при пуске электродвигателя из холодного состояния

время срабатывания защиты при пуске электродвигателя из холодного состояния

[Интент

Тематики

9 cold start curve

  1. время-токовая характеристика пуска электродвигателя из холодного состояния

время-токовая характеристика пуска электродвигателя из холодного состояния

Тематики

10 cold state curve

  1. время-токовая характеристика пуска электродвигателя из холодного состояния

время-токовая характеристика пуска электродвигателя из холодного состояния

Тематики

11 cold restart

  1. повторный пуск (турбины) из холодного состояния

повторный пуск (турбины) из холодного состояния

[А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г

Тематики

12 boiler cold startup

  1. пуск котла из холодного состояния

пуск котла из холодного состояния
растопка котла из холодного состояния


[А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г

Тематики

Синонимы

13 cold start

14 cold startup

15 cold start

16 cold startup

17 cold start

18 cold start

19 cold

exposed to cold — выдержал на холоде; выдержанный на холоде

20 cold start

См. также в других словарях:

пуск электродвигателя из холодного состояния — 2.5.12. Электродвигатели с короткозамкнутыми роторами разрешается пускать из холодного состояния 2 раза подряд, из горячего — 1 раз, если заводской инструкцией не допускается большего количества пусков. Последующие пуски разрешаются после… … Справочник технического переводчика

пуск (электродвигателя) из холодного состояния — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN cold start … Справочник технического переводчика

пуск электродвигателя из горячего состояния — 2.5.12. Электродвигатели с короткозамкнутыми роторами разрешается пускать из холодного состояния 2 раза подряд, из горячего — 1 раз, если заводской инструкцией не допускается большего количества пусков. Последующие пуски разрешаются после… … Справочник технического переводчика

система — 4.48 система (system): Комбинация взаимодействующих элементов, организованных для достижения одной или нескольких поставленных целей. Примечание 1 Система может рассматриваться как продукт или предоставляемые им услуги. Примечание 2 На практике… … Словарь-справочник терминов нормативно-технической документации

время — 3.3.4 время tE (time tE): время нагрева начальным пусковым переменным током IА обмотки ротора или статора от температуры, достигаемой в номинальном режиме работы, до допустимой температуры при максимальной температуре окружающей среды. Источник … Словарь-справочник терминов нормативно-технической документации

Требования — 5.2 Требования к вертикальной разметке 5.2.1 На поверхность столбиков, обращенную в сторону приближающихся транспортных средств, наносят вертикальную разметку по ГОСТ Р 51256 в виде полосы черного цвета (рисунки 9 и 10) и крепят световозвращатели … Словарь-справочник терминов нормативно-технической документации

Схема подключения электродвигателя. Подключение однофазного электродвигателя

Существует несколько схем подключения электродвигателей. Всё зависит от того, какой тип машины используется. В быту каждый человек использует множество электрических приборов, около 2/3 из общего числа имеют в своей конструкции электрические двигатели различной мощности с разными характеристиками.

Обычно, когда приборы выходят из строя, двигатели могут продолжать работать. Их можно использовать в других конструкциях: изготовить самодельные станки, электронасосы, газонокосилки, вентиляторы. Но вот нужно определиться с тем, какую схему использовать для подключения к бытовой сети.

Конструкция электродвигателей и подключение

Для того чтобы использовать электрические моторы для самодельных аппаратов, нужно произвести правильно подключение обмоток. В однофазную бытовую сеть 220 В можно включить следующие машины:

  1. Асинхронные трехфазные электрические двигатели. Производится к сети подключение электродвигателей «треугольником» или «звездой».
  2. Асинхронные электромоторы, работающие от сети с одной фазой.
  3. Коллекторные двигатели, оснащенные щеточной конструкцией для питания ротора.

Все остальные электрические двигатели необходимо подключать при помощи сложных устройств, предназначенных для запуска. А вот шаговые моторы должны оснащаться специальными электронными схемами управления. Без знаний и умений, а также специальной аппаратуры, выполнить подключение невозможно. Приходится использовать сложные схемы подключения электродвигателей.

Одно- и трехфазная сеть

В бытовой сети одна фаза, напряжение в ней 220 В. Но можно подключить к ней и трехфазные электродвигатели, рассчитанные на напряжение 380 В. Для этого используются специальные схемы, вот только выжать из устройства больше 3 кВт мощности практически нереально, так как увеличивается риск привести в негодность электропроводку в доме. Поэтому если имеется необходимость установки сложного оборудования, в котором требуется применять электрические двигатели на 5 или 10 кВт, лучше провести в дом трехфазную сеть. Подключение электродвигателей «звездой» к такой сети произвести намного проще, нежели к однофазной.

Что потребуется для подключения мотора

Принцип работы любого электрического двигателя знаком каждому, основан он на вращении магнитного потока. При подключении однофазных электродвигателей вам теория не очень нужна, поэтому хватит следующих знаний:

  1. Вы должны иметь представление о конструкции электрического двигателя, с которым производятся работы.
  2. Знать, для какой цели предназначены обмотки, а также уметь по схеме подключения электродвигателя осуществить монтаж.
  3. Уметь работать со вспомогательными устройствами – балластными сопротивлениями или пусковыми конденсаторами.
  4. Знать, как подключается электродвигатель при помощи магнитного пускателя.

Запрещается включать электрический двигатель, если не знаете его модель, а также назначение выводов. Обязательно проверьте, какое допускается соединение обмоток при работе в сети 220 и 380 В. На всех электрических двигателях обязательно присутствует табличка из металла, которая прикреплена к корпусу. На ней указывается модель, тип, схема подключения, напряжение, а также другие параметры. Если нет никаких данных, то необходимо при помощи мультиметра прозвонить все обмотки, после чего правильно соединить их.

Подключение коллекторного двигателя

Такие электродвигатели используются практически во всех бытовых электроприборах. Их можно встретить в стиральных машинках, кофемолках, мясорубках, шуруповертах, обогревателях и прочих приборах. Электродвигатели рассчитаны на сравнительно небольшое время работы, включаются они на несколько секунд или минут. Но зато моторы очень компактные, высокооборотные и мощные. А схема подключения электродвигателя очень простая.

Подключить такой электродвигатель к бытовой сети 220 В можно очень просто. Напряжение поступает от фазы к щетке, затем через обмотку ротора — к противоположной ламели. А вторая щетка снимает напряжение и передаёт его на обмотку статора. Она состоит из двух половин, соединенных последовательно. Второй вывод обмотки поступает на нулевой провод питания.

Особенности включения мотора

Для того чтобы включать и отключать электрический двигатель, применяется кнопка с фиксатором (или без него), но можно использовать и простой выключатель. Если имеется необходимость, то обе обмотки разделяются и их можно подключать попеременно. Этим достигается изменение частоты вращения ротора. Но имеется один недостаток у таких двигателей — относительно низкий ресурс, который напрямую зависит от качества щёток. Именно коллекторный узел является самым уязвимым местом двигателя.

Как подключить однофазный асинхронный мотор

В любом асинхронном электродвигателе, рассчитанном на питание от однофазной сети 220 В, имеется две обмотки — пусковая и рабочая. В качестве «коллектора» используется цилиндрическая болванка из алюминия, которая насажена на валу. Можно даже отметить, что цилиндр на роторе является, по сути, короткозамкнутой обмоткой. Существует множество схем для включения асинхронного мотора, но применяется на практике немного:

  1. С использованием балластного сопротивления, подключенного к обмотке пуска.
  2. С включенным конденсатором на обмотке запуска.
  3. При помощи кнопочного или релейного пускателя, стартового конденсатора, включенного в цепь обмотки пуска.

Очень часто применяется комбинация кнопочного или релейного пускателя, а также постоянно включенного рабочего конденсатора. Вместо реле очень часто используется электронный ключ на тиристоре. При помощи этого переключателя производится подключение однофазного электродвигателя с дополнительной группой конденсаторов.

Практические схемы

Асинхронные электрические двигатели обладают довольно маленьким на старте крутящим моментом. Поэтому необходимо использовать дополнительные устройства, например, пусковые реле или балластные сопротивления, а также мощные конденсаторы для подключения однофазных электродвигателей. Обмотки в моторах изготавливаются с разделением на несколько выводов. Если три вывода, то один из них общий. Но может быть четыре или два.

Для того чтобы понять, к каким конкретно контактам подключена та или иная обмотка, необходимо изучить схему мотора. Если ее нет, потребуется осуществить прозвонку с помощью мультиметра. Для этого переведите его в режим измерения сопротивления. Если на паре выводов большое сопротивление, то это означает, что вы произвели замер одновременно двух обмоток. Обычно у рабочей обмотки асинхронных двигателей сопротивление не более 13 Ом. У пусковой же оно практически в три раза выше — примерно 35 Ом.

Для того чтобы подключить при помощи пускателя однофазный асинхронный мотор, достаточно лишь правильно соединить все контакты проводами. Для того чтобы запустить асинхронник, необходимо кратковременно включить в цепи дополнительные элементы — конденсатор или балластное сопротивление. Чтобы выключить электрическую машину, достаточно просто обесточить все обмотки.

Трехфазные электродвигатели

В трехфазных электрических двигателях существенно большая мощность, а также крутящий момент во время запуска. Подключение трехфазного электродвигателя простое только в том случае, если имеется розетка с тремя фазами 380 В. Но использовать в бытовых условиях такие моторы оказывается проблематично, так как трехфазная сеть есть далеко не у всех дома. Обмотки соединяются по схеме «звезда» или «треугольник», это зависит от того, какое межфазное напряжение в сети.

Но вот в том случае, если вам потребуется подключить такой электрический двигатель в бытовую сеть, придётся использовать маленькую хитрость. По сути, у вас имеется в розетке ноль и фаза. При этом «0» можно считать как один из выводов источника питания, то есть фазу, у которой сдвиг равен нулю.

Чтобы сделать еще одну фазу, необходимо при помощи дополнительного конденсатора осуществить сдвиг фазы питания. Всего должно быть три фазы, каждая имеет сдвиг относительно соседних на 120 градусов. Но чтобы сделать сдвиг правильно, необходимо рассчитать емкость конденсаторов. Так, на каждый киловатт мощности электродвигателя потребуется рабочая емкость около 70 мкФ, а также пусковая около 25 мкФ. При этом они должны быть рассчитаны на напряжение от 600 В и выше.

Но лучше всего производить подключение электродвигателей 380 В трехфазного типа с помощью частотных преобразователей. Существуют модели, которые подключаются к однофазной сети, а при помощи специальных инверторных схем они преобразуют напряжение, в результате чего на выходе оказывается три фазы, которые необходимы для питания асинхронного мотора.

Каждый электрик должен знать:  Автоматизация управления системами электроснабжения
Добавить комментарий