Причины возникновения и последствия коротких замыканий

СОДЕРЖАНИЕ:

Причины возникновения и последствия электромагнитных переходных процессов

Причины возникновения аварийных переходных процессов весьма разнообразны, но в большинстве случаев они являются результатом своевременно не обнаруженных и не устраненных дефектов электрооборудования, допущенных ошибок при проектировании, а также неудовлетворительного монтажа и (или) эксплуатации электроустановок.

Короткие замыкания являются результатом нарушения фазной или (и) линейной изоляции токоведущих частей электрооборудования, которое в основном вызывается:

  • • старением изоляционных материалов электротехнических устройств, своевременно не выявленным путем профилактических испытаний изоляции электрооборудования повышенным напряжением;
  • • загрязнением поверхности изоляторов;
  • • недостаточно тщательным уходом за оборудованием (в практике эксплуатации наблюдались случаи повреждения ограждений и крыш закрытых распределительных устройств, а также перекрытия изоляции животными и птицами);
  • • механическими повреждениями кабельных линий, имеющими место во время раскопок траншей;
  • • набросами посторонних предметов на токоведущие части воздушных ЛЭП и открытые шинопроводы;
  • • падением опор линий электропередачи;
  • • перенапряжениями в электроустановках (особенно в сетях с неза- земленными или резонансно-заземленными нейтралями), если их величина превосходит испытательное напряжение изоляции;
  • • прямыми ударами молнии;
  • • ошибками оперативного персонала.

К коротким замыканиям могут приводить ошибочные действия эксплуатационного персонала при невыполении им правил технической эксплуатации и должностных инструкций.

Сейчас на некоторых подстанциях, которые были спроектированы и построены в 1960—1970-х гг., еще применяются «упрощенные» схемы электрических соединений. Наличие короткозамыкателей в таких схемах и действие их создают преднамеренные короткие замыкания с целью быстрых отключений возникающих повреждений.

Уменьшение количества коротких замыканий в электрических системах связано со строгим соблюдением правил технической эксплуатации электроустановок и повышением качества продукции электротехнической промышленности.

Наиболее опасные последствия коротких замыканий проявляются обычно в элементах системы, прилегающих к месту короткого замыкания. В результате этого может возникнуть системная авария, приводящая к нарушению устойчивости системы и значительному технико-экономическому ущербу. Если короткое замыкание появилось на большой электрической удаленности от источника питания, то увеличение тока воспринимается генераторами как некоторое повышение нагрузки (см. пример 1.1), а сильное снижение напряжения происходит только вблизи места короткого замыкания.

Последствия коротких замыканий следующие.

1. Недопустимый нагрев токоведущих частей электрооборудования и его термическое повреждение из-за значительного увеличения токов (в 10—15 раз и более). Под термическим действием тока короткого замыкания понимается тепловое действие тока короткого замыкания, вызывающее изменение температуры элементов электроустановки. Характеристикой теплового действия тока короткого замыкания на рассматриваемый элемент электроустановки является интеграл Джоуля — условная величина, численно равная

где iK — ток короткого замыкания; готкл — момент отключения тока короткого замыкания.

Ток термической стойкости электрического аппарата при коротком замыкании — нормированный ток, термическое действие которого электрический аппарат способен выдержать при коротком замыкании в течение нормированного времени.

  • 2. Нарушение термической стойкости может привести к увеличению пожарной опасности и возгораниям в элекроустановках вследствие перегрева токоведущих частей, воспламенения горючих изоляционных материалов, самовоспламенения взрывоопасной среды. В электроустановках, находящихся в условиях взрывоопасной внешней среды, резкое увеличение тока при коротких замыканиях может нарушить взрыво- непроницаемость электрооборудования за счет коробления его оболочек. Увеличение пожароопасности может вызвать электрические искры и дуги, также обладающие воспламеняющей способностью.
  • 3. Появление больших усилий между токоведущими частями, особенно в начальной стадии процесса короткого замыкания, которые могут привести к их механическому повреждению и разрушению. В этом проявляется электродинамическое действие тока короткого замыкания — механическое действие электродинамических сил, обусловленных током короткого замыкания, на элементы электроустановки. Ток электродинамической стойкости электрического аппарата при коротком замыкании — нормированный ток, электродинамическое действие которого электрический аппарат способен выдержать при коротком замыкании без повреждений, препятствующих его дальнейшей исправной работе.
  • 4. Снижение напряжения и искажение его симметрии, что отрицательно сказывается на работе потребителей. Момент вращения асинхронных электродвигателей пропорционален квадрату подведенного напряжения: Мд = U 2 . Поэтому даже при сравнительно небольшом снижении напряжения момент двигателя может оказаться недостаточным для вращения механизма. При незначительных снижениях напряжения угловая скорость вращения ротора двигателей уменьшается, а это приводит к уменьшению производительности и увеличению потребляемого ими тока. При понижении напряжения на 30—40% в течение 1 с и более останавливаются достаточно загруженные электродвигатели, в результате чего нарушается технологический процесс промышленных предприятий и возникает экономический ущерб. Оставаясь включенными в сеть, остановившиеся двигатели могут вызвать дальнейшее снижение напряжения сети, т.е. полное нарушение электроснабжения не только данного предприятия, но и за его пределами.
  • 5. При замыканиях на землю возникают неуравновешенные системы токов. Они способны создавать магнитные потоки, которые достаточны, чтобы в соседних линиях сигнализации и связи навести ЭДС, величины которых могут быть опасны для обслуживающего персонала и аппаратуры этих линий.
  • 6. При задержке отключений коротких замыканий сверх допустимой продолжительности может произойти нарушение устойчивости электрической системы, что является одним из наиболее опасных последствий короткого замыкания, так как оно отражается уже на работе всей системы.

Определение короткому замыканию и его опасность. В чем заключается угроза КЗ? Какие могут быть последствия

Даже человек, далекий от электричества, хоть раз в жизни, но сталкивался с явлением, которое получило название «короткое замыкание». Для того чтобы обезопасить себя, своих близких, а также свое жилье и электроприборы от этого процесса, следует тщательно разобраться в его природе, причинах возникновения и разновидностях.

Понятие и характеристика короткого замыкания

Короткое замыкание с точки зрения электротехники представляет собой явление, при котором сопротивление электрической цепи, состоящей из нескольких проводов, крайне незначительно, и его вполне можно сопоставить с сопротивлением самих проводов. В этом случае согласно закону Ома сила тока превысит свое номинальное значение сразу в несколько раз, причем произойдет это практически в одно мгновение. Это, в свою очередь, приведет к тому, что электрическая цепь разорвется намного раньше, чем произойдет критическое увеличение температуры проводов.

Очень важно, чтобы он был помещен между верхним листом и обычным одеялом или покрывалом. Эта рекомендация важна, потому что защитное покрытие не должно выстилать, — говорит производитель. «Никогда не засыпайте с контрольным набором в самое сильное положение, но опустите его до минимума». В действительности рекомендуется отключить его, прежде чем заснуть, даже если одеяло перестает вырабатывать тепло как только достигнута желаемая температура. Регулируемые реостаты точно измеряют как тепло, создаваемое вашим собственным телом, так и контуром цепи.

Основные причины короткого замыкания

Как показывает практика, короткое замыкание возникает чаще всего из-за того, что по каким-либо причинам оказывается нарушенной внешняя изоляция проводов или электрического оборудования. Это, в свою очередь, может быть связано и с постепенным старением основных элементов электрической цепи, и с ее механическими повреждениями, и даже с ударом молнии. Кроме того, в последние годы на предприятиях участились случаи, когда короткое замыкание становилось следствием недобросовестного обслуживания электрооборудования со стороны соответствующих служб.

Они обычно оснащены возможностью регулировки температуры и автоматического отключения. Сто ватт пробегает пучок электрических проводов, хорошо скрытых и в принципе хорошо изолированных. Его можно промыть при 40 ° С мягким моющим средством. Его можно хорошо высушить, не используя колышки для одежды. Он будет хорошо высушен перед подключением. Десять промывок, это означает, что нагревательный слой должен в идеале быть заменен после десяти лет использования; и каждые три года проверял электрика.

Если устройство не используется в течение длительного времени, оно должно храниться в оригинальной упаковке; в сухом месте и без размещения тяжелых предметов сверху. При использовании на поверхность не помещаются книги, подушки, бутылки с горячей водой или одежда. Аналогично, коммутатор никогда не будет закрыт объектом. Избегайте изгиба или прокатки в уголке кровати, чтобы предотвратить концентрирование тепла в одной точке.

Искусственное замыкание

Впрочем, в работе фабрик и заводов может наступить такой момент, когда возникнет потребность вызвать это явление искусственным путем. В частности, преднамеренное короткое замыкание достаточно часто используют в цепи трансформаторных подстанций, которые действуют на понижении тока. Для этого используется специальное оборудование — короткозамыкатели, выполняющие роль своеобразных контролеров. В том случае, если на линии или в самом трансформаторе возникнет какое-либо повреждение, то этот прибор искусственно вызовет короткое замыкание, цепь окажется разорванной и никаких тяжелых последствий (например пожара) не будет.

В целом, они не рекомендуются для беременных женщин, владельцев кардиостимуляторов и диабетиков, которые иногда становятся нечувствительными к нагреванию ног и рук. Обратите внимание, что кровати или подушки матраса посылают нагретую воду в замкнутом контуре. Либо более мягкая и приятная температура, чем сухое тепло, даже аллергенные, нагретые одеяла, а также источники электрических полей.

Причины коротких замыканий

Короткие замыкания могут произойти по многим причинам. Они представляют собой риски, которые нельзя игнорировать. От простых гранул, которые прыгают на пожары, последствия короткого замыкания могут быть серьезными. Короткое замыкание также называется «неисправностью». Это называется короткое замыкание, когда два проводника разной полярности входят в контакт. Затем этот контакт создает более высокий нормальный разряд тока, что создает ток короткого замыкания.

Последствия короткого замыкания

Данное явление приводит к весьма серьезным последствиям. Во-первых, достаточно часто оно сопровождается выходом из строя электроустановок и возникновением в них пожаров. Во-вторых, из-за резкого увеличения силы тока в цепи отдельные части кабеля могут быть подвергнуты механическому воздействию, в результате чего появятся механические и термические повреждения. В-третьих, достаточно часто короткое замыкание сопровождается значительным падением напряжения в цепи или на отдельных ее участках. Это, в свою очередь, ведет к ухудшению работы электрооборудования. Наконец, в-четвертых, это явление оказывает крайне негативное влияние на находящиеся поблизости приборы, провода и другое электрическое оборудование.

Ток короткого замыкания может иметь различное происхождение. Во-первых, он может иметь климатическое происхождение: отсутствие молниеотвода или громоотвода может вызвать короткое замыкание. Его происхождение также может быть внутренним: короткое замыкание может быть вызвано внутренним перенапряжением, также известным как перенапряжение, или наличием ветви или животного в электрической системе.

Риски, связанные с короткими замыканиями

Короткое замыкание также может быть вызвано изоляцией в плохом состоянии, особенно при коррозии, слишком старой или слишком влажной. Короткое замыкание может иногда оставаться незамеченным. Это называется самозатухающим коротким замыканием, когда короткое замыкание происходит в течение очень короткого времени и не запускает защитные устройства электрической системы, такие как предохранители или.

Способы защиты от короткого замыкания

Защита от короткого замыкания включает в себя целый комплекс мер, исходным пунктом в которых является профилактика повреждений линий электропередач и оборудования. Кроме того, чтобы предотвратить возникновение пожара, используют специальные приборы — плавкие ставки, которые при замыкании сгорают и размыкают электрическую цепь.

Короткое замыкание может также быть беглым, если оно вызывает короткие перерывы в сети, не требуя вмешательства электрика. Если разрезы в сетке длиннее, то это называется полупостоянием короткого замыкания. Наконец, если прерывание сети длительное и требует вмешательства электрика, это называется постоянным коротким замыканием.

Риски, связанные с короткими замыканиями, могут быть больше или меньше. Они могут привести к необратимому повреждению оборудования или электрических цепей. Эти деградации могут также вызвать электрический шок или пожары. Иногда короткое замыкание может вызывать электрические дуги.

Выполнение правил техники безопасности как основной способ профилактики короткого замыкания

Мощность короткого замыкания зависит от множества факторов, главным из которых является сила тока в цепи. В то же время следует помнить, что любое подобное явление представляет собой потенциальную опасность для человека, поэтому при работе с электричеством следует четко придерживаться правил техники безопасности.

Опишите, как ваша проекция получает бесплатные котировки. Большинство из нас рано или поздно сталкиваются с дискомфортом, вызванным короткой цепью в их доме. В этом руководстве мы увидим, как бороться с короткой цепью в доме. Короткое замыкание происходит в электрической системе, когда электрический ток, переносимый внутри схемы, перемещается из одной точки в другую, не сталкиваясь с каким-либо сопротивлением. Это явление может иметь место при самом «банальном» применении энергии в бытовых условиях, таких как зажигание лампочки.

Без какого-либо сопротивления ток может достичь высоких значений, перегревая весь завод и подвергая нас различным рискам: ударам, опасным перегрузкам, электрическим пожарам, неисправностям электрооборудования. Короткое замыкание происходит главным образом в электрических системах, которые в настоящее время устарели из-за кабелей, которые со временем потеряли свою изоляцию, для отказа от фиксированных гнезд, проводов или бытовых приборов. На старых заводах наиболее частым риском было образование огневых изделий, поскольку кабели с низкой изоляцией контактировали с теплом из-за дыр.

Короткое замыкание — электрическое соединение двух точек электрической цепи с различными значениями потенциала, не предусмотренное конструкцией устройства и нарушающее его нормальную работу. Короткое замыкание может возникать при нарушении изоляции токоведущих элементов или вследствие механического соприкосновения элементов, работающих без изоляции. Также коротким замыканием называют состояние, когда сопротивление нагрузки меньше внутреннего сопротивления источника питания.

На все это повлиял тот факт, что для противодействия образованию коротких замыканий, в старых системах использовались предохранители, недостаточное средство для защиты системы. Сегодня эти предохранители больше не используются. Чтобы снизить риск, закон давно навязывает наличие спасательного переключателя для внутреннего использования, а также обязывает строительные компании соблюдать определенные требования безопасности при строительстве новых домов.

Таким образом, спасатель — это небольшое устройство, которое может защитить нас от короткого замыкания: оно прерывает электрический поток системы, генерирует затемнение и ставит нас под угрозу серьезных рисков. Обычно называемый так, это переключатель, который позволяет прерывать энергии в случае возникновения перегрузки. Как только спасатель начнет функционировать, мы окажемся в доме без электричества в целом или просто в некоторых комнатах.

Виды коротких замыканий
В трёхфазных электрических сетях различают следующие виды коротких замыканий:

  • Однофазное (замыкание фазы на землю);
  • Двухфазное (замыкание двух фаз между собой);
  • Двухфазное на землю (2 фазы между собой и одновременно на землю);
  • Трёхфазное (3 фазы между собой).

Самое главное не паниковать. На этом этапе мы сначала попытаемся определить возможные причины короткого замыкания. Вопросы будут тривиальными: какие и сколько бытовых приборов были включены? Если спасатель ушел по какой-то, по-видимому, несуществующей причине, и снова отключается, когда мы пытаемся его реактивировать, это означает, что какой-то домашний прибор вызвал короткое замыкание, в этом случае его будет достаточно, чтобы найти устройство и отключить его от тока. И если мы услышим ожесточенное вонь нам нужно приблизиться к силовым розеткам и проверить, что зловоние не исходит от них, если это так, мы должны немедленно отключить ток и обратиться к электрику.

  • Межвитковые — замыкание между собой витков обмоток ротора или статора;
  • Замыкание обмотки на металлический корпус.

Методы защиты
Для защиты от короткого замыкания принимают специальные меры:

  • Ограничивающие ток короткого замыкания:
  • устанавливают токоограничивающие электрические реакторы
  • применяют расспаралеливание электрических цепей т.е. отключение секционных и шиносоеденительных выключателей
  • используют понижающие трансформаторы с расщепленной обмоткой низкого напряжения
  • используют отключающее оборудование — быстродействующее коммутационые аппараты с функцией ограничения тока короткого замыкания т.е. плавкие предохранители, автоматические выключатели
    • Применяют устройства релейной защиты для отключения поврежденных участков цепи

    Причины возникновения коротких замыканий
    Основной причиной возникновения коротких замыканий является нарушения изоляции электрооборудования.

    Если мы заметили дым или даже пламя, мы продолжаем гасить огнетушителем, напоминая нам, что мы не должны использовать большинство Абсолютная вода, чтобы избежать застревания. При отключении безопасность будет нашим приоритетом: все предохранительные устройства должны использоваться и следить за тем, чтобы руки были сухими, потому что остаточное напряжение все еще может присутствовать.

    Сообщить о неприемлемом содержании

    Вы должны выбрать хотя бы один из вариантов. Вы должны ввести описание проблемы. В системе произошла ошибка. Вы должны подтвердить свою личность. Спасибо, что помогли нам улучшить качество нашего контента. Как и все устройства, электрические розетки также сломаны в какой-то момент. Не ждите, пока настенная розетка перестанет работать, чтобы заменить ее.

    Нарушения изоляции вызываются:

    1. Перенапряжениями (особенно в сетях с изолированными нейтралями),

    2. Прямыми ударами молнии,

    3. Старением изоляции,

    4. Механическими повреждениями изоляции, проездом под линиями негабаритных механизмов,

    5. Неудовлетворительным уходом за оборудованием.

    Часто причиной повреждений в электрической части электроустановок являются неквалифицированные действия обслуживающего персонала.

    В каждом здании электроустановка должна быть защищена от пожара, вызванного электрическим током. Даже малейшее короткое замыкание может иметь серьезные последствия. Когда в электрическом приборе или кабеле возникает дуга вольта, это акустическое короткое замыкание.

    Как правило, из-за разрывов контактов и клемм или повреждений изоляции кабеля короткое замыкание на дугу не всегда имеет серьезные последствия, но может вызвать пожар и, следовательно, причинить значительный ущерб людям, оборудованию и зданиям. Электрические цепи обычно защищены миниатюрными автоматическими выключателями и автоматическими выключателями с остаточным током, но эти устройства не предназначены для обнаружения коротких замыканий, образующих вольтовую дугу, и поэтому не обеспечивают достаточной защиты от него.

    Преднамеренные короткие замыкания
    При осуществлении упрощенных схем соединений понижающих подстанций используют специальные аппараты — короткозамыкатели, которые создают преднамеренные короткие замыкания с целью быстрых отключений возникших повреждений. Таким образом, наряду с короткими замыканиями случайного характера в системах электроснабжения имеют место также преднамеренные короткие замыкания, вызываемые действием короткозамыкателей.

    Приходят устройства обнаружения дуги. Они заполняют довольно большой пробел в безопасности сетки, которая существовала до недавнего времени. Даже если пользователи достаточно осторожны, чтобы кабели находились на безопасном расстоянии и использовали только сертифицированные адаптеры и разъемы, могут возникнуть условия короткого замыкания дуги. Во всех домашних хозяйствах использование электрических приборов не является однородным. Существуют периоды максимальной нагрузки, но также время, когда все приборы находятся в режиме ожидания и потребляют очень мало электроэнергии.

    Последствия коротких замыканий
    При возникновении коротких замыканий в системе электроснабжения ее общее сопротивление уменьшается, что приводит к увеличению токов в ее ветвях по сравнению с токами нормального режима, а это вызывает снижение напряжения отдельных точек системы электроснабжения, которое особенно велико вблизи места короткого замыкания.

    Такие режимы подвергают кабели и соединения критическим нагрузкам, которые ослабляют их и изнашивают изоляцию. В результате в электрической установке возникают слабые места, где возникают вольтовые дуги. Характеристики устройств обнаружения дуги. Детекторы дуги специально разработаны для защиты от таких. Они автоматически прерывают цепь, когда обнаруживают опасную дугу вольта.

    Как уже упоминалось, детекторы дуги чрезвычайно чувствительны и предназначены для обнаружения потенциально опасных дуг и реагируют только на них. Они используют специальный алгоритм для различения опасных вольтовых дуг — например, безопасных искр, возникающих при удалении вилки из гнезда.

    В зависимости от места возникновения и продолжительности повреждения его последствия могут иметь местный характер или отражаться на всей системе электроснабжения.

    При большой удаленности короткого замыкания величина тока короткого замыкания может составлять лишь незначительную часть номинального тока питающих генераторов и возникновение такого короткого замыкания воспринимается ими как небольшое увеличение нагрузки. Сильное снижение напряжения получается только вблизи места короткого замыкания, в то время как в других точках системы электроснабжения это снижение менее заметно. Следовательно, при рассматриваемых условиях опасные последствия короткого замыкания проявляются лишь в ближайших к месту аварии частях системы электроснабжения.

    Стрелочные короткодействующие детекторы очень быстро реагируют с наименьшим изменением волновых характеристик. В этом случае скорость очень важна, так как вольтовая дуга может расти и отводить близлежащие легковоспламеняющиеся материалы. Они уже давно используются в авиационной промышленности, но в последнее время они привлекают внимание как оборудование для защиты жилых и общественных зданий.

    Пожары, возникающие в результате электромонтажа. В более чем 80% случаев здания, затронутые этими пожарами, являются жилыми. Наиболее распространенной причиной этих пожаров является силовая сеть. Пожары, вызванные электрическими установками, вызваны перегрузками, короткими замыканиями, утечками на землю и блуждающими токами, а также электрическими дугами в электрических кабелях и соединениях. Когда кабель локально поврежден или электрическая петля теряет, есть два явления, которые могут вызвать пожар из-за дуги вольта: карбонизация и резистивное короткое замыкание.

    Ток короткого замыкания, являясь даже малым по сравнению с номинальным током генераторов, обычно во много раз превышает номинальный ток ветви, где произошло короткое замыкание. Поэтому и при кратковременном протекании тока короткого замыкания он может вызвать дополнительный нагрев токоведущих элементов и проводников выше допустимого.

    Токи короткого замыкания вызывают между проводниками большие механические усилия, которые особенно велики в начале процесса короткого замыкания, когда ток достигает максимального значения. При недостаточной прочности проводников и их креплений могут иметь место разрушения механического характера.

    Внезапное глубокое снижение напряжения при коротком замыкании отражается на работе потребителей. В первую очередь это касается двигателей, так как даже при кратковременном понижении напряжения на 30-40% они могут остановиться (происходит опрокидывание двигателей). Опрокидывание двигателей тяжело отражается на работе промышленного предприятия, так как для восстановления нормального производственного процесса требуется длительное время и неожиданная остановка двигателей может вызвать брак продукции предприятия.

    При малой удаленности и достаточной длительности короткого замыкания возможно выпадение из синхронизма параллельно работающих станций, т.е. нарушение нормальной работы всей электрической системы, что является самым опасным последствием короткого замыкания.

    Возникающие при замыканиях на землю неуравновешенные системы токов способны создать магнитные потоки, достаточные для наведения в соседних цепях (линиях связи, трубопроводах) значительных ЭДС, опасных для обслуживающего персонала и аппаратуры этих цепей.

    Таким образом, последствия коротких замыканий следующие:

    1. Механические и термические повреждения электрооборудования.

    2. Возгорания в электроустановках.

    3. Снижение уровня напряжения в сети, ведущее к уменьшению вращающего момента электродвигателей, их торможению, снижению производительности или даже к опрокидыванию их.

    4. Выпадение из синхронизма отдельных генераторов, электростанций и частей электрической системы и возникновение аварий, включая системные аварии.

    5. Электромагнитное влияние на линии связи, коммуникации и т.п.

    Короткое замыкание. Причины возникновения и как его избежать

    Наверняка многие слышали такое словосочетание как короткое замыкание, но мало кто понимает, из-за чего возникает данное явление, чем оно опасно и какие процессы происходят во время КЗ. В этой статье мы подробно рассмотрим данный вопрос, так как «коротыш в проводке» — это достаточно частая ситуация, которая является очень опасной и может привести к неблагоприятным последствиям. Итак, причины возникновения короткого замыкания, способы предотвращения и последствия мы рассмотрели ниже.

    Что это такое?

    Электрическая цепь — это, как правило, два проводника с разноименным потенциалом и подключенным потребителем тока. Каждый конечный потребитель имеет свое внутреннее сопротивление, которое сопротивляется току и ограничивает, тем самым дозируя его количество и плотность в проводнике, заставляя производить работу.

    В момент, когда сопротивление резко уменьшается до статической погрешности сопротивления проводников, электрический ток, ничем практически не ограниченный, возрастает до такой величины, что сечение проводников становится малым и проходя через них, разогревает жилы до температуры разрушения и плавления. Поэтому частый спутник короткого замыкания — это огонь, расплавленный металл проводников и вспомогательных механизмов.

    Признаками замыкания в проводке являются запах гари, искрение и возгорание проводов, а также отключение электричества на определенном участке или же во всей сети.

    Как возникает КЗ?

    Итак, рассмотрим основные причины возникновения короткого замыкания в электропроводке и электроустановках.

    Высокое напряжение . В момент выше допустимых параметров, присутствует возможность электрического пробоя изоляции проводника или электрической схемы. В результате развивается утечка тока до размеров КЗ, с созданием кратковременного стабильного дугового разряда.

    Старая изоляция . Жилые и промышленные фонды, не проводившие замену электрической проводки — это первые претенденты на спонтанные КЗ. Любая изоляция, используемая в электропроводке, имеет свой ресурс. Со временем она разрушается под воздействием внешних факторов, что и приводит к возникновению замыкания.

    Внешнее механическое воздействие. Снятие изоляции с провода, ее перетирание и прочее воздействие на защитную оболочку, ослабляющее ее свойства, рано или поздно вызовут возгорание и КЗ. К примеру, в быту часто причиной возникновения короткого замыкания является повреждение проводки при сверлении стен. О том, читайте в нашей статье.

    Посторонние предметы . Сюда относится пыль различного происхождения, мелкие животные, детали с соседних узлов, волей случая попавших на электрические проводники, вызвав и развив таким образом КЗ.

    Прямой удар молнии. Происходит тоже, что и при (смотри выше).

    Пример последствия от возникновения КЗ в электроустановке демонстрируется на видео:

    Последствия короткого замыкания — это выгоревшие участки проводки и ее возгорание!

    Виды явлений

    Самое распространенное — это замыкание на землю, когда либо одна фаза взаимодействует с землей, либо две фазы взаимодействует с землей, на одном или нескольких участках. Короткое замыкание на землю, встречается в системах с глухозаземленной нейтралью и составляют до 70% всех случаев.

    Существует также межфазное КЗ, когда происходит взаимодействие двух фаз между собой. Происходит в следствии нарушении изоляции в трехфазном оборудовании.

    Ну и последний вид КЗ — трехфазное, когда взаимодействуют все три фазы. На схеме ниже изображены основные виды коротких замыканий:

    Способы предотвращения

    Для предотвращения развития КЗ и защиты электрических устройств и линий электроснабжения самым эффективным методом является или же плавких предохранителей. Автомат (на фото ниже) при возникновении «коротыша» своевременно отключит питание, тем самым предотвратит возникновение опасной ситуации.

    Еще один способ предотвратить возникновение короткого замыкания — своевременная , благодаря которой можно визуально определить место оплавления изоляции и перейти к устранению неполадки.

    В этой статье рассмотрим главную головную боль любого электрика – короткое замыкание. При этом поясним, что такое ток короткого замыкания и развеем миф о том, что такое напряжение короткого замыкания, заодно обсудив, что коротыш (он же КЗ ) значит для электросети. Но сначала немного физики, что поможет вспомнить о том, что электричество – это передача электронами заряда от одной точки в другую. Последовательный и упорядоченный процесс. Но иногда в эту строгую последовательность вмешивается авария, и вот тут-то приходится вспомнить эти два слова «короткое замыкание».

    Почему замыкание короткое, и кто в этом виноват?

    Любая схема электрической цепи представляет собой «плюс» и «минус», как в любой батарейке. Если между ними поместить лампочку, она при замыкании цепи начнёт гореть. Правильно собранная цепь позволить гореть лампочке довольно долго, что успешно демонстрирует любой фонарик. Но давайте посмотрим, что случится, если мы просто соединим «плюс» и «минус» батарейки. Без лампочки и вообще без какого бы то ни было сопротивления. Да, в этой модели мы получим замыкание электропроводки в чистом виде. Провод между контактами батарейки нагреется, заряд почти мгновенно истощится и через пару секунд эта батарейка не зажжет ни одну лампочку. Вся энергия батарейки уйдёт на максимальный подъём силы тока короткого замыкания, разогрев провода и полное истощение ресурса. Такой опыт безопасен для экспериментатора, поскольку токи невелики.

    Однако примерно то же самое произойдет, если в розетку сунуть ножницы, чтобы понять что случится. Ток, обнаружив самый короткий путь (ножницы) устремится в розетке именно через этот короткий путь от «плюса» к «минусу» (), забыв про остальные пути, на которых его ожидает сопротивление цепи. Отсюда и название этой неприятности – «короткое замыкание». Фактически, КЗ — это возможность для тока максимально быстро и с максимальным эффектом достигнуть от «плюса» «минуса». Ток при этом становится неразборчивым в средствах, на чем и построена защита от замыкания, и основные правила того, как избежать этой напасти.

    Итак, короткое замыкание — это аварийная ситуация в электрической сети, где прохождение тока получает наиболее короткий и прямой путь для ликвидации потенциала (разности потенциала между «плюсом» и «минусом»), приводя к лавинообразному росту силы тока и сильному разогреву участка цепи, в котором произошло КЗ.

    Отметим, что перманентное (непрерывное КЗ) имеет место и в сетях, в которых использованы силовые провода с недостаточным уровнем изоляции (низкое сопротивление изоляции), многочисленными лишними коммутациями (скрутки в распредкоробках, в линиях и пр.), а также во влажных зонах.

    Выходит, что виноват в коротком замыкании кто угодно, но не электрик, который делал проводку? Не совсем так. Именно электрик обязан, прокладывая линию или, включая оконечное (проходное) устройство, обеспечить невозможность короткого замыкания. Иначе любая защита от короткого замыкания будет ни к чему. Чаще всего защита не справляется именно в щитках, собранных с нарушениями, что приводит к катастрофическим последствиям:

    Немного подробнее о причинах короткого замыкания

    1. Неправильно заизолированные провода или физическое перемещение контактов в оконечных устройствах (сдвиг, поворот, иные действия способные соединить два провода).
    2. Повреждение изоляции кабелей при прокладке (в том числе скрытых) силовых линий или при работах по ремонту и отделке помещений.
    3. Использование в работе неисправных приборов (от патрона к лампе до клеммника и розетки), в которых есть прямая возможность возникновения короткого замыкания.
    4. Игнорирование замыканий электропроводки при работах (самая частая ошибка начинающих электриков), поскольку эффект КЗ не повторяется.
    5. «Плавающие», «спорадические» неисправности проводки, которым не уделено достаточно внимания из-за редких проявлений.

    Это список наиболее частых причин коротких замыканий, выхода из строя квартирных и домашних электросетей, а также пожаров, которые сложно тушить по причине постоянной подпитки огня со стороны горящих кабелей. Очевидно, что такие неприятности не нужны никому.

    Ещё несколько слов о физике короткого замыкания.

    Вернёмся за парту, и вспомним, что при прохождении тока можно наблюдать, как падает сила тока при возрастании сопротивления проводника. Это тот самый фактор, благодаря которому ток короткого замыкания значительно превышает допустимые параметры. Так и работает защита от замыкания – отслеживает внезапные скачки силы тока, обесточивая «подозрительную» линию.

    Не все вспомнят, что при снятии сопротивления в проводнике, также изменится ещё один параметр. Мы говорим о том, что напряжение короткого замыкания станет совсем уж подозрительным. А при наличии индуктивного фактора (например, человек с феном упал в ванну с водой) и вовсе нелинейным и не синусоидальным. При этом непосредственно короткого замыкания может и не быть, но защита от короткого замыкания работает и в этом случае – это автоматы отключения УЗО. Устройство защитного отключения, принцип действия которого исключает реагирование на изменение только силы тока.

    Что оценивают защитные устройства, и что мы должны знать о КЗ, если не хотим, чтобы нас спасали только ?

    • Любая электросеть имеет точки нестабильности. Это контакты, клеммы, выключатели света и прочие автоматические выключатели, работающие на основе программ (например, датчик отслеживания освещённости). Каждая из этих точек потенциальный источник КЗ. Именно им электрик обязан уделить максимальное внимание при работах и монтаже;
    • Наличие заземления в сети. Вы удивитесь, но замыкание на землю (ноль) это наиболее безопасное КЗ. Да, оно тоже доставит много хлопот и неприятностей, но, по крайней мере, никого не убьет. Кроме того, заземление приборов позволяет оценить наличие пробоя изоляции и утечки ДО того, как короткое замыкание случится.

    Заземлять в обязательном порядке необходимо микроволновую печь, посудомоечную и стиральную машины, морозильную камеру и духовой электрический шкаф. Посмотрите на заднюю панель микроволновки. Вы увидите прикрученный медный контакт. Это – заземление. Не стоит рассчитывать на вилку с контактами «ноль». Найдите специалиста, который заземлит эту печь. Такой же контакт Вы обнаружите на задней стенке электрического духового шкафа. На морозильной камере этот контакт будет, скорее всего, в зоне змеевика-охладителя. Это делается не просто так, поэтому не думайте, что вилка способна Вас защитить. Найдите способ такую технику «занулить» по-настоящему!

    Кроме перечисленного, автоматы ещё определяют постоянный «баланс сети», отслеживая перегрузки и пиковые перепады как токов короткого замыкания (или близких по значению), так и напряжений. Но автоматы не станут панацеей, если произойдёт короткое замыкание на участке Вашей сети, который проложен с нарушениями требований и правил. Например, провод, проходящий под листом фанеры или другого горючего отделочного материала. О том, что произойдет при КЗ в таком месте ниже.

    Процесс возникновения короткого замыкания. Время отключения, развитие процесса, последствия

    Несмотря на кажущуюся «мгновенность», процесс короткого замыкания имеет хорошо описанные стадии при возникновении.

    • Возникновение несанкционированного мостика между двумя проводниками;
    • Пробой током «барьера изоляции» и возникновение новой, короткой, цепи в электрической схеме;
    • Перенаправление энергии, и возникновение тока короткого замыкания в новом участке;
    • Резкий рост силы тока, падение напряжения и быстрый разогрев нового участка «сопротивления» — проводов, в которых происходит короткое замыкание;
    • Расплавление проводов (нагрев не останавливается сам, и температуры нагрева существенно превышают температуры плавления сплавов и металлов) с одновременным возгоранием изоляции;
    • Срабатывание автоматов защиты, пытающихся обесточить проблемную зону;
    • Снятие напряжение и обесточивание линии;
    • Продолжающийся нагрев повреждённого участка сети (даже после обесточивания, поскольку нагрев значительно более длительный процесс) с возгоранием изоляции или проводов, если защита от замыкания не работала как надо;
    • Выход из строя участка сети, в котором произошло КЗ.

    Всё это занимает примерно 2-4 секунды. Достаточное время для того, чтобы провод разогрелся до 1100 градусов и изоляция вспыхнула как спичка. Предотвратить короткое замыкание в этом случае не получится, только минимизировать урон. Несмотря на время, даже при визуальном наблюдении процесса замыкания электропроводки, возникновения КЗ, Вы просто не успеете ничего сделать. Поэтому несколько рекомендаций о том, как избежать такой беды

    Если не можешь предотвратить – возглавь!

    Эта фраза великого политического деятеля как нельзя лучше описывает ситуацию с электросетью, которой мы доверяем многое. И свою жизнь, и комфорт и почти всё имущество. Поэтому не будет лишним список простых рекомендаций.

    Проверку новых электросетей и коммуникаций проводите с избыточными токами, моделируя перегрузку. Такое испытание надо проводить со специалистом, самостоятельно делать это опасно.

    Не пренебрегайте замером сопротивления изоляции в готовой сети. Да, это стоит денег и занимает время, но такой замер исключит замыкание на землю, свойственное длинным кабелям, а также покажет наиболее опасные участки, которые возможно правильнее будет заменить.

    На изображении видно, что дуга (пробой) может происходить и без физического контакта проводников. Именно поэтому, собирая розетки и выключатели, зачищайте изоляцию проводов только на участке, полностью убираемом в клемму! Не допускайте даже нескольких миллиметров оголённых проводов, иначе может случиться то, что на фото – электрическая дуга внутри прибора. Напомним, что при таком происшествии защита от короткого замыкания почти гарантированно опоздает с отключением линии!

    Непродуманное наращивание и добавление линий без мер защиты – прямая дорога к замыканию и пожару. Это хороший пример того, что никогда нельзя делать.

    Нормальным установившимся режимом работы электроустановки считается такой режим, параметры которого находятся в пределах нормы. Ток короткого замыкания (ток КЗ) возникает при аварии в работе электроустановки. Он чаще всего появляется из-за повреждения изоляции токоведущих частей.

    В результате короткого замыкания нарушается бесперебойное питание потребителей, и влечет за собой неисправности и выход из строя оборудования. Вследствие этого при подборе токоведущих элементов и аппаратов необходимо производить их расчет не только для нормальной работы, но и производить проверку по условиям предполагаемого аварийного режима, который может быть вызван коротким замыканием.

    Причины повреждения изоляции

    • Воздействие на изоляцию механическим путем.
    • Электрический пробой токоведущих частей вследствие чрезмерных нагрузок или перенапряжения.
    • Подобно нарушению изоляции можно считать причиной повреждения схлестывание неизолированных проводов воздушных линий от сильного ветра.
    • Наброс металлических предметов на линию.
    • Воздействие животных на проводники, находящиеся под напряжением.
    • Ошибки в работе обслуживающего персонала в электроустановках.
    • Сбой в функционировании защит и автоматики.
    • Техническое старение оборудования.
    • Умышленное действие, направленное на повреждение изоляции.

    Последствия короткого замыкания

    Ток короткого замыкания во много раз превышает ток при нормальной работе оборудования. Возможными последствиями такого замыкания могут быть:

    • Перегрев токоведущих частей.
    • Чрезмерные динамические нагрузки.
    • Прекращение подачи электрической энергии потребителям.
    • Нарушение нормального функционирования других взаимосвязанных приемников, которые подключены к исправным участкам цепи, из-за резкого снижения напряжения.
    • Расстройство системы электроснабжения.

    Виды коротких замыканий

    Понятие короткого замыкания подразумевает электрическое соединение, которое не предусмотрено условиями эксплуатации оборудования между точками различных фаз, либо нейтрального проводника с фазой или земли с фазой (при наличии контура заземления нейтрали источника питания).

    При эксплуатации потребителей напряжение питания может подключаться различными способами:

    • По схеме трехфазной сети 0,4 киловольта.
    • Однофазной сетью (фазой и нолем) 220 В.
    • Источником постоянного напряжения выводами положительного и отрицательного потенциала.
    Каждый электрик должен знать:  Значение электродугового термического воздействия спецодежды

    В каждом отдельном случае может возникнуть нарушение изоляции в некоторых точках, вследствие чего возникает ток короткого замыкания.

    Для 3-фазной сети переменного тока существуют разновидности короткого замыкания:

    1. Трехфазное замыкание.
    2. Двухфазное замыкание.
    3. Однофазное замыкание на землю.
    4. Однофазное замыкание на землю (Изолированная нейтраль).
    5. Двухфазное замыкание на землю.
    6. Трехфазное замыкание на землю.

    При выполнении проекта снабжения электрической энергией предприятия или оборудования подобные режимы требуют определенных расчетов.

    Принцип действия короткого замыкания

    До начала возникновения короткого замыкания величина тока в электрической цепи имела установившееся значение i п. При резком коротком замыкании в этой цепи из-за сильного уменьшения общего сопротивления цепи электрический ток значительно повышается до значения i к. Вначале, когда время t равно нулю, электрический ток не может резко измениться до другого установившегося значения, так как в замкнутой цепи кроме активного сопротивления R, есть еще и индуктивное сопротивление L. Это увеличивает во времени процесс возрастания тока при переходе на новый режим.

    В результате в начальный период короткого замыкания электрический ток сохраняет первоначальное значение iK = i но. Чтобы ток изменился, необходимо некоторое время. В первые мгновения этого времени ток повышается до максимального значения, далее немного снижается, а затем через определенный период времени принимает установившийся режим.

    Период времени от начала замыкания до установившегося режима считается переходным процессом. Ток короткого замыкания можно рассчитать для любого момента в течение переходного процесса.

    Ток КЗ при режиме перехода лучше рассматривать в виде суммы составляющих: периодического тока i пt с наибольшей периодической составляющей I пт и апериодического тока i аt (его наибольшее значение – I am).

    Апериодическая составляющая тока КЗ во время замыкания постепенно затухает до нулевого значения. При этом ее изменение происходит по экспоненциальной зависимости.

    Возможный максимальный ток КЗ считают ударным током i у. Когда нет затухания в начальный момент замыкания, ударный ток определяется:

    I у – i п m + i а t=0 ’, где i п m является амплитудой периодической токовой составляющей.

    Полезное короткое замыкание

    Считается, что короткое замыкание является отрицательным и нежелательным явлением, от которого происходят разрушительные последствия в электроустановках. Оно может создать условия для пожара, отключения защитной аппаратуры, обесточиванию объектов и другим последствиям.

    Однако ток короткого замыкания может принести реальную пользу на практике. Есть немало устройств, функционирующих в режиме повышенных значений тока. Для примера можно рассмотреть . Наиболее ярким примером для этого послужит электродуговая сварка, при работе которой накоротко замыкается сварочный электрод с заземляющим контуром.

    Такие режимы короткого замыкания действуют кратковременно. Мощность сварочного трансформатора обеспечивает работу при таких значительных перегрузках. Во время сварки в точке соприкосновения электрода возникает очень большой ток. В итоге выделяется значительное количество теплоты, достаточное для расплавления металла в месте касания, и образования сварочного шва достаточной прочности.

    Способы защиты

    Еще в начале развития электротехники появилась проблема защиты электрических устройств от чрезмерных токовых нагрузок, в том числе и короткого замыкания. Наиболее простым решением стала установка , которые перегорали от их нагревания вследствие превышения тока определенной величины.

    Такие плавкие вставки функционируют и в настоящее время. Их основным достоинством является надежность, простота и невысокая стоимость. Однако имеются и недостатки. Простая конструкция предохранителя побуждает человека после сгорания плавкого элемента заменить его самостоятельно подручными материалами в виде скрепок, проволочек и даже гвоздей.

    Такая защита не способна обеспечить необходимой защиты от короткого замыкания, так как она не рассчитана на определенную нагрузку. На производстве для отключения цепей, в которых возникло замыкание, используют . Они намного удобнее обычных плавких предохранителей, не требуют замены сгоревшего элемента. После устранения причины замыкания и остывания тепловых элементов, автомат можно просто включить, тем самым подав напряжение в цепь.

    Существуют также более сложные системы защиты в виде . Они имеют высокую стоимость. Такие устройства отключают напряжение цепи в случае наименьшей утечки тока. Такая утечка может возникнуть при поражении работника током.

    Другим способом защиты от короткого замыкания является токоограничивающий реактор. Он служит для защиты цепей в сетях высокого напряжения, где величина тока КЗ способна достичь такого размера, при котором невозможно подобрать защитные устройства, выдерживающие большие электродинамические силы.

    Реактор представляет собой катушку с индуктивным сопротивлением. Он подключен в цепь по последовательной схеме. При нормальной работе на реакторе имеется падение напряжения около 4%. В случае возникновения КЗ основная часть напряжения приходится на реактор. Существует несколько видов реакторов: бетонные, масляные. Каждый из них имеет свои особенности.

    Закон Ома при КЗ

    В основе расчета замыканий цепи лежит принцип, который определяет вычисление силы тока по напряжению, путем его деления на подключенное сопротивление. Такой же принцип работает и при определении номинальных нагрузок. Отличие в следующем:

    • При возникновении аварийного режима процесс протекает случайным образом, стихийно. Однако он поддается некоторым расчетам по разработанным специалистами методикам.
    • В процессе нормальной работы электрической цепи сопротивление и напряжение находятся в уравновешенном режиме и могут незначительно изменяться в рабочих диапазонах в пределах нормы.

    Мощность источника питания

    По этой мощности выполняют оценку энергетической силовой возможности разрушительного действия, которое может осуществить ток короткого замыкания, проводят анализ времени протекания, размер.

    Для примера рассмотрим, что отрезок медного проводника с площадью сечения 1,5 мм 2 длиной 50 см сначала подсоединили непосредственно к батарее «Крона». А в другом случае этот же кусок провода вставили в бытовую розетку.

    В случае с «Кроной» по проводнику будет протекать ток КЗ, который нагреет эту батарею до выхода ее из строя, так как мощности батареи не достаточно для того, чтобы нагреть и расплавить подключенный проводник для разрыва цепи.

    В случае с бытовой розеткой сработают защитные устройства. Представим, что эти защиты вышли из строя, и не сработали. В этом случае ток короткого замыкания будет протекать по бытовой проводке, затем по проводке всего подъезда, дома, и далее по воздушной линии или кабеля. Так он дойдет до на подстанции.

    В результате к трансформатору подсоединяется длинная цепь с множеством кабелей, проводов, различных соединений. Они намного повысят электрическое сопротивление нашего опытного отрезка провода. Однако даже в таком случае остается большая вероятность того, что этот кусок провода расплавится и сгорит.

    Сопротивление цепи

    Участок линии электропередач от источника питания до места короткого замыкания обладает некоторым электрическим сопротивлением. Его значение влияет на величину тока короткого замыкания. Обмотки трансформаторов, катушек, дросселей, пластин конденсаторов вносят свой вклад в суммарное сопротивление цепи в виде емкостных и индуктивных сопротивлений. При этом создаются апериодические составляющие, которые искажают симметричность основных форм гармонических колебаний.

    Существует множество различных методик, с помощью которых производится расчет ток короткого замыкания. Они позволяют рассчитать с необходимой точностью ток короткого замыкания по имеющейся информации. Практически можно измерить сопротивление имеющейся схемы по методике «фаза-ноль». Это сопротивление делает расчет более точным, вносит соответствующие коррективы при подборе защиты от короткого замыкания.

    Всем привет. Я очень рад, что вы зашли на мой сайт. И сегодня, мы с вами, поговорим о том, что такое короткое замыкание и какие замыкания бывают.

    Короткое замыкание – это соединение (соприкосновение) двух или нескольких точек (проводников) электрической цепи с разными потенциальными значениями.

    Разные потенциалы – это когда фаза и ноль в сети переменного тока, или плюс и минус в сети постоянного тока.

    Теперь давайте рассмотрим, какие бывают виды короткого замыкания.

    В однофазной сети может быть только два вида короткого замыкания:

    1. фаза и ноль – это вид замыкания очень часто бывает в простых бытовых условиях. К примеру с наступление зимы становится холодно, и многие люди пытаются согреться с помощью электрических обогревателей.

    Но мало кто обращает внимание на розетки, в которые включают эти самые обогреватели. Очень часто бывает, что розетки не рассчитаны на токи, которые потребляют обогреватели, или же часто в розетках может быть плохой контакт.

    Из-за этого розетки и вилочки начинают греться. В следствии длительных нагревов разрушается изоляция проводов. И в один прекрасный момент два, уже оголевших, проводника могут соприкоснуться, и получится короткое замыкание.

    2. фаза и заземление – это когда фазный провод, каким-то образом начинает контактировать с заземлённым корпусом любого электрического оборудования. Будь то электрический водонагреватель, светильник, станок и так далее.

    Бывает ещё такое, что корпус может быть занулённым, тогда такое замыкание можно отнести к первому случаю.

    А вот в ситуаций, при которых возникает короткое замыкание, может быть намного больше:

    1. однофазное замыкание – фаза и ноль. Этот вид я уже описывал выше, так что переходим к следующему.

    2. двухфазное – это когда соединились между собой две фазы. Часто случается на воздушных линиях электропередач. Такое явление, наверное, видел каждый человек в своей жизни. Когда на улице сильный ветер и начинает расшатывать провода, и получает не большой салют. На промышленных предприятиях такое замыкание часто случается в силовых цепях.

    3. двухфазное и земля – такое, конечно, реже бывает, но всё равно случается. Пример, когда две фазы могут соединиться между собой, и одновременно контактировать ещё и с землёй.

    4. трёхфазное – это когда все три фазы каким-то образом замкнулись между собой. Такое замыкание получится при падении или прикосновении, какого-то токопроводящего предмета ко всем трём фазам одновременно.

    Какие могут быть последствия от токов короткого замыкания.

    При коротком замыкании мгновенно возрастает ток, что приводит сильному нагреву и расплавлению металлов. Брызги этого металла разлетаются во все стороны, и всё это сопровождается яркой вспышкой и огнём. Что легко может привести к пожару и к очень серьёзным последствиям.

    В обычных домашних условиях, если не правильно подобрать защиту от короткого замыкания, то реально можно потерять очень многое. Начиная от жилища и мебели, и заканчиваю своей и жизнью людей живущих с вами под одной крышей.

    На предприятиях токи короткого замыкания могут привести к аварийным ситуациям, повреждению оборудования, ну и от этого так же могут пострадать люди. Но на предприятиях обычно используют несколько защит сразу, что практически исключает возникновению коротких замыканий.

    Вот и всё что хотел сказать. Если у вас есть какие-то вопросы, то задавайте их в комментариях. Если статья была вам полезной, то поделитесь нею со своими друзьями в социальных сетях и подписывайтесь на обновления. До новых встреч.

    С уважением Александр!

    Однажды одной даме, не очень сведущей в электротехнике, монтер сообщил причину пропадания света в ее квартире. Это оказалось короткое замыкание, и женщина потребовала немедленно его удлинить. Над этой историей можно посмеяться, но лучше все же рассмотреть эту неприятность подробнее. Специалистам-электрикам и без этой статьи известно, что это за явление, чем оно грозит и как рассчитать ток короткого замыкания. Изложенная ниже информация адресована людям, не имеющим технического образования, но, как и все прочие, не застрахованным от неприятностей, связанных с эксплуатацией техники, машин, производственного оборудования и самых обычных бытовых приборов. Каждому человеку важно знать, что такое короткое замыкание, каковы его причины, возможные последствия и методы его предотвращения. Не обойтись в этом описании и без знакомства с азами электротехнической науки. Не знающий их читатель может заскучать и не дочитать статью до конца.

    Популярное изложение закона Ома

    Независимо от того, каков характер тока электрической цепи, он возникает только в том случае, если существует разница потенциалов (или напряжение, это то же самое). Природа этого явления может быть объяснена на примере водопада: если есть разность уровней, вода течет в каком-то направлении, а когда нет — она стоит на месте. Даже школьникам известен закон Ома, согласно которому, ток тем больше, чем выше напряжение, и тем меньше, чем выше сопротивление, включенное в нагрузку:

    I — величина тока, которую иногда называют «силой тока», хотя это не совсем грамотный перевод с немецкого языка. Измеряется в Амперах (А).

    На самом деле силой (то есть причиной ускорения) ток сам по себе не обладает, что как раз и проявляется во время короткого замыкания. Этот термин уже стал привычным и употребляется часто, хотя преподаватели некоторых вузов, услышав из уст студента слова «сила тока» тут же ставят «неуд». «А как же огонь и дым, идущие от проводки во время короткого замыкания? — спросит настырный оппонент, — Это ли не сила?» Ответ на это замечание есть. Дело в том, что идеальных проводников не существует, и нагрев их обусловлен именно этим фактом. Если предположить, что R=0, то и тепло бы не выделялось, как ясно из закона Джоуля-Ленца, приведенного ниже.

    U — та самая разница потенциалов, называемая также напряжением. Измеряется в Вольтах (у нас В, за границей V). Его также называют электродвижущей силой (ЭДС).

    R — электрическое сопротивление, то есть способность материала препятствовать прохождению тока. У диэлектриков (изоляторов) оно большое, хотя и не бесконечное, у проводников — малое. Измеряется в Омах, но оценивается в качестве удельной величины. Само собой, что чем толще провод, тем он лучше проводит ток, а чем он длиннее, тем хуже. Поэтому удельное сопротивление измеряется в Омах, умноженных на квадратный миллиметр и деленных на метр. Кроме этого, на его величину влияет температура, чем она выше, тем больше сопротивление. Например, золотой проводник длиной в 1 метр и сечением в 1 кв. мм при 20 градусах Цельсия обладает общим сопротивлением 0,024 Ома.

    Есть еще формула закона Ома для полной цепи, в нее введено внутреннее (собственное) сопротивление источника напряжения (ЭДС).

    Две простых, но важных формулы

    Понять причину, по которой возникает ток короткого замыкания, невозможно без усвоения еще одной нехитрой формулы. Мощность, потребляемая нагрузкой, равна (без учета реактивных составляющих, но о них позже) произведению тока на напряжение.

    P — мощность, Ватт или Вольт-Ампер;

    U — напряжение, Вольт;

    Мощность бесконечной не бывает, она всегда чем-то ограничена, поэтому при ее фиксированной величине при увеличении тока напряжение уменьшается. Зависимость этих двух параметров рабочей цепи, выраженная графически, называется вольт-амперной характеристикой.

    И еще одна формула, необходимая для того, чтобы произвести расчет токов короткого замыкания, это закон Джоуля-Ленца. Она дает представление о том, сколько тепла выделяется при сопротивлении нагрузке, и очень проста. Проводник будет греться с интенсивностью, пропорциональной величинам напряжения и квадрата тока. И, конечно же, формула не обходится без времени, чем дольше раскаляется сопротивление, тем больше оно выделит тепла.

    Что происходит в цепи при коротком замыкании

    Итак, читатель может считать, что освоил все главные физические закономерности для того, чтобы разобраться в том, какой может быть величина (ладно, пусть будет сила) тока короткого замыкания. Но сначала следует определиться с вопросом о том, что, собственно, это такое. КЗ (короткое замыкание) — это ситуация, при которой сопротивление нагрузки близко к нулю. Смотрим на формулу закона Ома. Если рассматривать его вариант для участка цепи, несложно понять, что ток будет стремиться к бесконечности. В полном варианте он будет ограничен сопротивлением источника ЭДС. В любом случае ток короткого замыкания очень велик, а по закону Джоуля-Ленца, чем он больше, тем сильнее греется проводник, по которому он идет. Причем зависимость не прямая, а квадратичная, то есть, если I увеличится стократно, то тепла выделится в десять тысяч раз больше. В этом и состоит опасность явления, приводящего порой к пожарам.

    Провода накаляются докрасна (или добела), они передают эту энергию стенам, потолкам и другим предметам, которых касаются, и поджигают их. Если фаза в каком-то приборе касается нулевого проводника, возникает ток короткого замыкания источника, замкнутого на самого себя. Горючее основание электропроводки — страшный сон инспекторов пожарной охраны и причина многих штрафов, налагаемых на безответственных собственников зданий и помещений. И всему виной, конечно же, не законы Джоуля-Ленца и Ома, а пересохшая от старости изоляция, неаккуратно или безграмотно произведенный монтаж, повреждения механического характера или перегрузка проводки.

    Однако и ток короткого замыкания, каким бы он ни был большим, также не бесконечен. На размеры бед, которые он может натворить, влияет продолжительность нагрева и параметры схемы электроснабжения.

    Цепи переменного тока

    Рассмотренные выше ситуации имели общий характер или касались цепей постоянного тока. В большинстве случаев электроснабжение и жилых, и промышленных объектов производится от сети переменного напряжения 220 или 380 Вольт. Неприятности с проводкой, рассчитанной на постоянный ток, чаще всего случаются в автомобилях.

    Между этими двумя основными типами электропитания есть разница, и существенная. Дело в том, что прохождению переменного тока препятствуют дополнительные составляющие сопротивления, называемые реактивными и обусловленные волновой природой возникающих в них явлений. На переменный ток реагируют индуктивности и емкости. Ток короткого замыкания трансформатора ограничивается не только активным (или омическим, то есть таким, которое можно измерить карманным приборчиком-тестером) сопротивлением, но и его индуктивной составляющей. Второй тип нагрузки — емкостный. Относительно вектора активного тока векторы реактивных составляющих отклонены. Индуктивный ток отстает, а емкостный опережает его на 90 градусов.

    Примером разницы поведения нагрузки, обладающей реактивной составляющей, может служить обычный динамик. Его некоторые любители громкой музыки перегружают до тех пор, пока диффузор магнитное поле не выбивает вперед. Катушка слетает с сердечника и тут же сгорает, потому что индуктивная составляющая ее напряжения уменьшается.

    Виды КЗ

    Ток короткого замыкания может возникать в разных цепях, подключенных к различным источникам постоянного или переменного тока. Проще всего дело обстоит с обычным плюсом, который вдруг соединился с минусом, минуя полезную нагрузку.

    А вот с переменным током вариантов больше. Однофазный ток короткого замыкания возникает при соединении фазы с нейтралью или ее заземлении. В трехфазной сети может возникнуть нежелательный контакт между двумя фазами. Напряжение в 380 или более (при передаче энергии на большие расстояния по ЛЭП) вольт также может вызвать неприятные последствия, в том числе и дуговую вспышку в момент коммутации. Замкнуть может и все три (или четыре, вместе с нейтралью) провода одновременно, и ток трехфазного короткого замыкания будет течь по ним до тех пор, пока не сработает защитная автоматика.

    Но и это еще не все. В роторах и статорах электрических машин (двигателей и генераторов) и трансформаторах порой случается такое неприятное явление, как межвитковое замыкание, при котором соседние петли провода образуют своеобразное кольцо. Этот замкнутый контур обладает крайне низким сопротивлением в сети переменного тока. Сила тока короткого замыкания в витках растет, это становится причиной нагрева всей машины. Собственно, если такая беда произошла, не следует ждать, пока оплавится вся изоляция и электромотор задымится. Обмотки машины нужно перематывать, для этого необходимо специальное оборудование. Это же касается и тех случаев, когда из-за «межвиткового» возник ток короткого замыкания трансформатора. Чем меньше обгорит изоляция, тем проще и дешевле будет перемотка.

    Расчет величины тока при коротком замыкании

    Каким бы ни было катастрофичным то или иное явление, для инженерной и прикладной науки важна его количественная оценка. Формула тока короткого замыкания очень похожа на закон Ома, просто к ней требуются некоторые пояснения. Итак:

    I к.з.=Uph / (Zn + Zt),

    I к.з. — величина тока короткого замыкания, А;

    Uph — фазное напряжение, В;

    Zn — полное (включая реактивную составляющую) сопротивление короткозамкнутой петли;

    Zt — полное (включая реактивную составляющую) сопротивление трансформатора питания (силового), Ом.

    Полные сопротивления определяются как гипотенуза прямоугольного треугольника, катеты которого представляют собой величины активного и реактивного (индуктивного) сопротивления. Это очень просто, нужно пользоваться теоремой Пифагора.

    Несколько чаще, чем формула тока короткого замыкания, на практике используются экспериментально выведенные кривые. Они представляют собой зависимости величины I к.з. от длины проводника, сечения провода и мощности силового трансформатора. Графики представляют собой совокупность нисходящих по экспоненте линий, из которых остается лишь выбрать подходящую. Метод дает приблизительные результаты, но его точность вполне отвечает практическим потребностям инженеров по энергоснабжению.

    Как проходит процесс

    Кажется, что все происходит мгновенно. Что-то загудело, свет померк и тут же погас. На самом деле, как любое физическое явление, процесс можно мысленно растянуть, замедлить, проанализировать и разбить на фазы. До наступления аварийного момента цепь характеризуется установившимся значением тока, находящимся в пределах номинального режима. Внезапно полное сопротивление резко уменьшается до величины, близкой к нулю. Индуктивные составляющие (электродвигатели, дроссели и трансформаторы) нагрузки при этом как бы замедляют процесс роста тока. Таким образом, в первые микросекунды (до 0,01 сек) сила тока короткого замыкания источника напряжения остается практически неизменной и даже несколько снижается за счет начала переходного процесса. ЭДС его при этом постепенно достигает нулевого значения, затем проходит через него и устанавливается в каком-то стабилизированном значении, обеспечивающем протекание большого I к.з. Сам ток в момент переходного процесса представляет собой сумму из периодической и апериодической составляющих. Форма графика процесса анализируется, в результате чего можно определить постоянную величину времени, зависящую от угла наклона касательной к кривой разгона в точке ее перегиба (первой производной) и времени запаздывания, определяемого величиной реактивной (индуктивной) составляющей суммарного сопротивления.

    Ударный ток КЗ

    В технической литературе часто встречается термин «ударный ток короткого замыкания». Не следует пугаться этого понятия, оно вовсе не такое страшное и к поражению электричеством прямого отношения не имеет. Понятие это означает максимальное значение I к.з. в цепи переменного тока, достигающее своей величины обычно через полпериода после того, как возникла аварийная ситуация. При частоте 50 Гц период составляет 0,2 секунды, а его половина — соответственно 0,1 сек. В этот момент взаимодействие проводников, расположенных вблизи друг относительно друга, достигает наибольшей интенсивности. Ударный ток короткого замыкания определяется по формуле, которую в этой статье, предназначенной не для специалистов и даже не для студентов, приводить не имеет смысла. Она доступна в специальной литературе и учебниках. Само по себе это математическое выражение не представляет особой сложности, но требует довольно объемных комментариев, углубляющих читателя в теорию электроцепей.

    Полезное КЗ

    Казалось бы, очевидный факт состоит в том, что короткое замыкание — явление крайне скверное, неприятное и нежелательное. Оно может привести в лучшем случае к обесточиванию объекта, отключению аварийной защитной аппаратуры, а в худшем — к выгоранию проводки и даже пожару. Следовательно, все силы нужно сосредоточить на том, чтобы избежать этой напасти. Однако расчет токов короткого замыкания имеет вполне реальный и практический смысл. Изобретено немало технических средств, работающих в режиме высоких токовых значений. Примером может служить обычный сварочный аппарат, особенно дуговой, замыкающий в момент эксплуатации практически накоротко электрод с заземлением. Другой вопрос состоит в том, что режимы эти носят кратковременный характер, а мощность трансформатора позволяет выдерживать эти перегрузки. При сварке в точке касания окончания электрода проходят огромные токи (они измеряются в десятках ампер), в результате чего выделяется достаточно тепла для местного расплавления металла и создания прочного шва.

    Методы защиты

    В первые же годы бурного развития электротехники, когда человечество еще отважно экспериментировало, внедряя гальванические приборы, изобретало различные виды генераторов, двигателей и освещения, возникла проблема защиты этих устройств от перегрузок и токов короткого замыкания. Самое простое ее решение состояло в последовательной с нагрузкой установке плавких элементов, которые разрушались под воздействием резистивного тепла, в случае если ток превышал установленное значение. Такие предохранители служат людям и сегодня, их главные достоинства состоят в простоте, надежности и дешевизне. Но есть у них и недостатки. Сама простота «пробки» (так назвали держатели плавких ставок за их специфическую форму) провоцирует пользователей после ее перегорания не мудрствовать лукаво, а заменять вышедшие из строя элементы первыми попавшимися под руку проволочками, скрепками, а то и гвоздями. Стоит ли упоминать о том, что такая защита от токов короткого замыкания не выполняет своей благородной функции?

    На промышленных предприятиях для обесточивания перегруженных цепей автоматические выключатели начали использовать раньше, чем в квартирных щитках, но в последние десятилетия «пробки» были в основном заменены ими. «Автоматы» намного удобнее, их можно не менять, а включить, устранив причину КЗ и дождавшись, когда тепловые элементы остынут. Контакты у них иногда подгорают, в этом случае их лучше заменить и не пытаться почистить или починить. Более сложные дифференциальные автоматы при высокой стоимости не служат дольше обычных, но функционально их нагрузка шире, они отключают напряжение в случае минимальной утечки тока «на сторону», например при поражении человека током.

    В обыденной же жизни экспериментировать с коротким замыканием не рекомендуется.

    Короткое замыкание розетки. Причины и последствия коротких замыканий в электропроводке

    Короткое замыкание (КЗ) – это возникновение электрического контакта между разными фазами, фазой и нулевым рабочим или защитным проводом. В сети с глухозаземленной нейтралью коротким замыканием можно считать контакт между фазным проводником и землей.

    Причинами короткого замыкания могут быть :

    • ухудшение или повреждение изоляции;
    • попадание посторонних предметов, проводящих электрический ток, на токоведущие части;
    • механические повреждения или разрушения электрических машин и аппаратов;
    • ошибки работников при монтаже или обслуживании электрооборудования;
    • аварийные режимы работы сети, связанные с возникновением в ней перенапряжений или резких бросков тока.

    Со временем изоляция стареет и теряет свои свойства . Это относится в равной степени и к кабелям, и к обмоткам электродвигателей, и к изоляторам. Этому свойству подвержены и изоляционные поверхности: корпуса автоматических выключателей, предохранителей. На ухудшение свойств изоляторов влияет среда, в которой они работают: степень загрязненности, наличие влаги, пыли, агрессивных газов. Стоит появиться небольшому токопроводящему участку, и он начинает греться и разрастаться, пока ток через него не достигнет критической величины. Он лавинообразно возрастет, разогреет и обуглит поверхность, по которой протекает. С этого момента участок с ослабленной изоляцией становится местом короткого замыкания.

    Примером посторонних предметов на токоведущих частях являются деревья, падающие на провода линий электропередач. Сами они создают контакт между землей и фазными проводниками, дополнительно обрываются провода или замыкаются между собой.

    Износ подшипников электродвигателей тоже может привести к короткому замыканию. Ротор при вращении цепляет своими обмотками за внутренние детали или обмотку статора. Изоляция повреждается и возникает КЗ. Кабели, проложенные в земле, неизбежно подвергаются механическим деформациям. Над ними проезжает транспорт, а при смене времен года подвижки грунта испытывают их на прочность.

    Невнимательность, неаккуратность, несоблюдение правил безопасности тоже могут привести к КЗ. При этом дополнительно наносится вред здоровью работников.

    Перенапряжения сами по себе не являются причинами КЗ. Они лишь ускоряют их возникновение на участках с пониженной изоляцией, где рано или поздно замыкание все равно бы произошло.

    Расчет и измерение токов короткого замыкания

    При коротком замыкании вся мощность электрической сети сосредотачивается на маленьком участке. Если бы кабели, провода и коммутационные аппараты не имели бы собственных сопротивлений, ток КЗ достигал бы огромных величин. Но на самом деле он ограничивается суммарным сопротивлением линии от источника питания (трансформатора на подстанции, генераторов энергосистемы) до точки КЗ.

    При проектировании электроустановок величину этого тока обязательно рассчитывают. Для этого используются данные о сопротивлениях (активных и реактивных) всего электрооборудования, установленного на пути КЗ. Ток считается для самой удаленной от источника точки, чтобы проверить, отключит ли его защита.

    В эксплуатации или после монтажа ток КЗ измеряют специальными приборами: измерителями петли фаза-нуль . Делается это для того, чтобы удостовериться в правильности расчетов или в местах, для которых этот расчет выполнить невозможно.

    • вместо модульных выключателей с характеристикой «С» (кратность отсечки 5-10) применяют «В» (кратность 3-5);
    • увеличивают сечение питающих кабелей.

    Действие короткого замыкания на электрооборудование

    Короткое замыкание – аварийный режим работы для электрической сети. При возникновении он оказывает на электрооборудование одновременно два действия:

    Согласно законам физики, при прохождении тока по двум проводникам, расположенным рядом, они взаимодействуют друг с другом. В зависимости от направления тока они либо притягиваются, либо отталкиваются. С увеличением тока и уменьшением расстояния сила взаимодействия увеличивается.

    На этом принципе и происходит электродинамическое воздействие тока КЗ на шины, провода, обмотки электрических машин. На подстанциях и других энергообъектах, где значения токов замыкания достигают десятков и сотен тысяч ампер, после КЗ оборудование может прийти в полную негодность из-за механических разрушений. При этом само КЗ может произойти где-то в стороне.

    Термическое воздействие основано на нагревании проводников при прохождении по ним электрического тока. При этом температура иногда повышается настолько, что провода или шины расплавляются.

    В бытовых условиях ярче выражено термическое воздействие КЗ, динамическое можно не учитывать из-за небольших значений токов.

    Перегрузка сети

    Это тоже аварийный режим работы. Все электрооборудование рассчитано на номинальный ток, превышение которого недопустимо. Иначе контактные системы коммутационных аппаратов, жилы кабелей и проводов начинают нагреваться. Перегрев приводит к расплавлению или обугливанию изоляции, которое вскоре приводит к пожару или короткому замыканию.

    Причинами перегрузки является :

    • подключение нагрузки к групповой линии, превышающей ту, на которую рассчитан ее кабель и автоматический выключатель. Это либо связано с подключением мощного электроприемника или превышением суммарной мощности группы электроприемников.
    • неисправности, возникающие в одном из электроприемников. Например, витковое замыкание в электродвигателе, частичный выход из строя нагревательного элемента в калорифере.

    Стремительная электрификация жилых зданий обязывает более внимательно анализировать электроустановку (электропроводку, электроприборы, защитную и коммутационную аппаратуру) с точки зрения опасности возникновения пожара. В данной статье рассмотрим условия, при которых короткое замыкание действительно может стать причиной пожара.

    В соответствии с ПУЭ, электрическую сеть напряжением до 1 кВ в жилых, общественных, административных и бытовых зданиях требуется защищать от токов короткого замыкания и токов перегрузки.

    ПУЭ-7
    3.1.10
    Сети внутри помещений, выполненные открыто проложенными проводниками с горючей наружной оболочкой или изоляцией, должны быть защищены от перегрузки.
    Кроме того, должны быть защищены от перегрузки сети внутри помещений:
    осветительные сети в жилых и общественных зданиях, в торговых помещениях, служебно¬бытовых помещениях промышленных предприятий, включая сети для бытовых и переносных электроприемников (утюгов, чайников, плиток, комнатных холодильников, пылесосов, стиральных и швейных машин и т. п.), а также в пожароопасных зонах.

    3.1.11
    В сетях, защищаемых от перегрузок (см. 3.1.10), проводники следует выбирать по расчетному току, при этом должно быть обеспечено условие, чтобы по отношению к длительно допустимым токовым нагрузкам, приведенным в таблицах гл. 1.3, аппараты защиты имели кратность не более:
    80% для номинального тока плавкой вставки или тока уставки автоматического выключателя, имеющего только максимальный мгновенно действующий расцепитель (отсечку), – для проводников с поливинилхлоридной, резиновой и аналогичной по тепловым характеристикам изоляцией; для проводников, прокладываемых в невзрывоопасных производственных помещениях промышленных предприятий, допускается 100%;
    100% для номинального тока расцепителя автоматического выключателя с нерегулируемой обратно зависящей от тока характеристикой (независимо от наличия или отсутствия отсечки) – для проводников всех марок.

    Рис. 1. Характерная схема электроснабжения жилого здания

    Рассмотрим характерную схему (рис. 1), где источником электроснабжения служит, как правило, отдельно стоящая подстанция с распределительным щитом 10(6)/0,4/0,23 кВ. На вводе в здание ВРУ-0,4/0,23 кВ. Следующая ступень – это этажный групповой распределительный щиток, и последняя ступень – это квартирный . Вышеперечисленные распределительные устройства подключены между собой проводниками, минимально допустимые сечения которых указаны в требованиях ПУЭ. Номинальные токи аппаратов, которые защищают провода и кабели от токов коротких замыканий и от перегрузки, выбираются в соответствии с требованиями ПУЭ.

    Условия возгорания электропроводки

    Возникает вопрос, может ли при коротком замыкании произойти возгорание электропроводки, если выполнены вышеперечисленные и другие требования ПУЭ? Рассматривая данный вопрос, необходимо обратить внимание на то, что возгорание электропроводки происходит при достижении проводником определенной температуры, зависящей от типа изоляции кабеля. В настоящее время широко применяется , у которого эта температура равна: Q = 350 O С.
    Изменение температуры проводника при протекании тока короткого замыкания описывается формулами, которые приведены в . С учетом некоторых особенностей, а именно кратковременности протекания тока короткого замыкания, о чем будет рассказано далее, в рассматриваемых случаях для проводников с медными жилами можно использовать нижеследующую формулу:

    где Q кон. и Q нач. – соответственно конечная и начальная температуры токоведущей жилы проводника, О С;
    к – показатель степени:

    где t – время протекания тока короткого замыкания, с;
    S – сечение проводника, мм 2 ;
    – интеграл Джоуля или тепловой импульс, кА 2 /с.

    В общем случае ток короткого замыкания содержит периодическую и апериодическую составляющие, т.е.:

    Однако, как показывает анализ, влияние апериодической составляющей в данном случае невелико ввиду её быстрого затухания (постоянная времени затухания Т 0,003 с). В результате интегрирования на интервале времени действия защитной аппаратуры (0 — 0,02 с) получим:

    где I д – действующее значение периодической составляющей тока короткого замыкания.
    Тогда формула (1а) примет вид:

    Из вышеперечисленных формул видим, что предельные значения токов короткого замыкания, при которых возгорание проводника не произойдет, зависят от его сечения и времени отключения короткого замыкания.

    Рис. 2 (а). Времятоковые характеристики автоматических выключателей типа LSN

    Рис. 2 (б). Времятоковые характеристики автоматических выключателей типа С 60а Merlin Gerin

    Граничные значения токов короткого замыкания и минимально допустимые значения токов КЗ

    Проводя анализ защитных времятоковых характеристик автоматических выключателей (рис. 2), мы наблюдаем две области: работа отсечки, предназначенной для отключения токов короткого замыкания, и работа тепловых расцепителей, предназначенных для защиты от перегрузки. Время действия отсечки измеряется сотыми и даже тысячными долями секунды, а время действия защиты от перегрузки измеряется от нескольких секунд до нескольких минут. Понятно, что короткие замыкания должны отключаться отсечкой автоматического выключателя как можно быстрее. Если короткое замыкание будет отключаться медленнее действующей тепловой защиты, то неминуемо произойдет повреждение соседних проводников горящей дугой, на которых вследствие этого также произойдут короткие замыкания. При этом возникновение пожара неминуемо.
    Исходя из требований чувствительности, можно определить минимальные значения токов КЗ, при которых будет надежно срабатывать отсечка автоматических выключателей:

    I кзмин. = I ном · 2 · 5,

    где I ном – номинальный ток автомата;
    2 – коэффициент надежности;
    5 – кратность тока срабатывания отсечки.

    Для определения максимально допустимых значений токов КЗ, при которых в электропроводке возгорание ещё не произойдет, используем формулы (1) и (2).
    Примем начальную температуру проводника Q нач. = 30 O С. В качестве конечной требуется принять такую, при которой изоляция электропроводки ещё не теряет своих свойств и позволяет осуществлять дальнейшую эксплуатацию. Для кабелей и проводов с пластмассовой изоляцией эта температура находится в диапазоне 160 — 250 О С . Примем среднее значение Q кон. = 200 О С:

    Важную роль играет время срабатывания электромагнитных расцепителей автомата при КЗ. ГОСТ Р 50345­99 , а также аналогичные зарубежные документы, к сожалению, содержат лишь требование о том, что время действия автоматических выключателей в начальной зоне отсечки (время мгновенного расцепления) должно быть менее 0,1 с. Однако из каталожных времятоковых характеристик автоматов следует, что на самом деле время срабатывания выключателей намного меньше. Так, для автоматов типа LSN и С 60а это время не превышает 20 мс, а при больших кратностях тока короткого замыкания ещё меньше (рис. 2а и 2б). При времени отключения 20 мс предельно допустимое значение тока КЗ для медного проводника сечением 1,5 мм 2 составит:

    Задаваясь регламентированными ПУЭ минимально допустимыми значениями сечений медных проводников на разных ступенях системы электроснабжения (табл. 7.1.1), можно аналогичным образом определить максимальные и минимальные значения тока на других ступенях системы электроснабжения. Результаты расчетов приведены в табл. 1.

    Табл. 1. Граничные значения тока КЗ на различных ступенях системы электроснабжения

    Следует ещё раз подчеркнуть, что максимально допустимые значения тока КЗ в значительной мере зависят от быстродействия автоматического выключателя при КЗ.

    Если необходимо определить минимально допустимое сечение кабеля или провода при заданном токе короткого замыкания и времени его отключения, то можно использовать формулу:

    Влияние перегрузки проводников

    В большинстве случаев, перегрузка электрической сети в жилом секторе может возникнуть при использовании дополнительных обогревательных электроприборов в холодное время года, в период аварий в системе водяного отопления и т.п. Несмотря на то, что внутренние электросети жилых, общественных, административных и бытовых зданий должны быть защищены от перегрузки, в соответствии с требованиями ПУЭ, однако же защитные аппараты допускают некоторую перегрузку проводников. Это связано с тем, что надежное срабатывание предохранителей происходит при токах, превышающих 1,6I ном, а автоматов – 1,45I ном.
    Если, например, автомат выбран на основании требований ПУЭ, т.е. его номинальный ток равен длительно допустимому току проводника, то последний может длительно работать с нагрузкой 145% I доп., при этом его температура может достигать:

    Q р = Q о + (Q д – Q р) · (I пред / I р) 2 = 30 + (65 – 25) 1,45 2 = 147 O С.

    Эта величина больше длительно допустимой температуры для кабелей с пластмассовой изоляцией, указанной не только в ПУЭ и равной 65 O С, но и больше указанной в ГОСТ Р 53769-2010 и равной 70 O С.
    При возникновении короткого замыкания в процессе длительной перегрузки температура проводника превысит предельно допустимое значение 350 O С и составит для S = 1,5 мм 2 при I кз = 1550 А (1):

    Q кон. = 147 · е к + 228 (е к – 1) = 394 O С, где к = 0,506.

    На основании вышеизложенных расчетов и анализа напрашивается вывод о том, что для исключения возможного превышения допустимых температур электропроводки при перегрузках и КЗ номинальные токи защитной аппаратуры следует выбирать несколько ниже, чем требует ПУЭ, как, например, для автоматических выключателей: I ном.авт. 80% I доп.
    Обратим особое внимание на то, что действующие требования ПУЭ не обязывают выполнять проверки проводников до 1 кВ на термическую стойкость к токам КЗ. Однако в отношении жилых, общественных, административных и бытовых помещений с этим трудно согласиться с учетом возможных тяжелых последствий.

    Реальные значения токов короткого замыкания в схеме электроснабжения зданий

    Токи КЗ в системе электроснабжения напряжением до 1 кВ рассчитываются согласно методике, изложенной в ГОСТ 28249­93 . Расчет оказывается более сложным, чем для сетей напряжением 6–35 кВ, что объясняется рядом обстоятельств:

    • необходимостью учета не только реактивных, но и активных сопротивлений элементов схемы;
    • необходимостью учета сопротивлений контактных соединений;
    • необходимостью учета увеличения активных сопротивлений проводника при росте температуры;
    • необходимостью учета сопротивления дуги;
    • отсутствием точных данных по сопротивлениям нулевой последовательности некоторых элементов системы электроснабжения (кабели с непроводящей оболочкой, силовые трансформаторы со схемой соединения обмоток Y/Yн, Y/Zн).

    Однако это отдельная тема для разговора.
    Как показывают , при установке на подстанциях трансформаторов мощностью 630 кВ·А и более, токи КЗ у потребителя могут превышать указанные в табл. 1 максимально допустимые значения. С целью ограничения токов КЗ в электросети жилого помещения можно применять питающие трансформаторы со схемами соединения обмоток Y/Yн. Такие трансформаторы обладают повышенными сопротивлениями нулевой последовательности, снижающими токи однофазного КЗ . В ряде случаев следует идти на увеличение сечения проводников внутренней электропроводки по сравнению с требуемым по условиям допустимой нагрузки и минимально допустимыми значениями, указанными в ПУЭ.

    Каждый электрик должен знать:  Какие лампы сейчас используются в уличном освещении

    Из всего вышеизложенного следует, что даже при выполнении действующих нормативных требований, в результате КЗ на отдельных участках электропроводки жилых зданий могут создаться условия для возгорания. Однако в этом случае само КЗ было бы неправильно квалифицировать как причину пожара. Истинными причинами пожара являются либо неправильные технические решения, либо недостаточная надежность и быстродействие примененной защитной аппаратуры, либо превышение нормативного срока эксплуатации электрооборудования и т.п.

    1. В результате коротких замыканий, при значительных величинах тока КЗ и недостаточном быстродействии защитной аппаратуры, существует реальная опасность возгорания или серьезного ухудшения состояния изоляции внутренней электропроводки зданий.
    2. Учитывая особую опасность возгорания, целесообразно ввести нормативное требование о выполнении проверки термической стойкости электропроводки в жилых зданиях.
    3. Для исключения перегрузок внутренней электропроводки номинальные токи защитных аппаратов необходимо выбирать ниже длительно допустимых токов защищаемых проводников.
    4. При выборе защитных аппаратов особое внимание следует уделять надежным автоматическим выключателям с гарантированным быстродействием в зоне мгновенного расцепления 0,02 с и менее.

    Литература, используемая в статье

    1. Правила Устройства Электроустановок, 6-­е и 7-­е изд.
    2. Технический циркуляр №Ц­02­98(э) Департамента стратегии развития и научно­технической политики РАО «ЕЭС России».
    3. ГОСТ Р 50345­99. Автоматические выключатели для защиты от сверхтоков бытового и аналогичного назначения.
    4. ГОСТ 28249­93. Токи короткого замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением до 1 кВ.
    5. Федоровская А.И., Фишман В.С. Силовые трансформаторы 10(6)/0,4 кВ.

    КОРОТКОЕ ЗАМЫКАНИЕ В ЭЛЕКТРОПРОВОДКЕ
    Возможные причины пожара

    Владимир Фишман , главный специалист, группа компаний «Электрощит­ТМ­Самара», филиал «Энергосетьпроект­НН­СЭЩ», г. Нижний Новгород

    Если раньше основной причиной пожаров в жилых зданиях считалось «неосторожное обращение с огнем», то теперь всё чаще их причиной называют «короткое замыкание в электропроводке». Бурная электрификация жилого сектора заставляет внимательнее анализировать домашнюю электроустановку (электропроводку, электроприборы, защитную и коммутационную аппаратуру) с точки зрения опасности возникновения пожара.
    Владимир Семенович Фишман уже рассказывал об особенностях расчета процессов КЗ в низковольтных сетях («Новости ЭлектроТехники» № 2(32) 2005, № 3(33) 2005). Сегодня он рассматривает условия, при которых короткое замыкание действительно может стать причиной пожара.

    Согласно ПУЭ, электрические сети напряжением до 1 кВ жилых и общественных зданий должны защищаться от токов короткого замыкания и токов перегрузки. Приведем несколько выдержек из ПУЭ :
    п. 3.1.10. «Сети внутри помещений, выполненные открыто проложенными проводниками с горючей наружной оболочкой или изоляцией, должны быть защищены от перегрузки.
    Кроме того, должны быть защищены от перегрузки сети внутри помещений:

    • осветительные сети в жилых и общественных зданиях, в торговых помещениях, служебно­бытовых помещениях промышленных предприятий, включая сети для бытовых и переносных электроприемников (утюгов, чайников, плиток, комнатных холодильников, пылесосов, стиральных и швейных машин и т. п.), а также в пожароопасных зонах».

    п. 3.1.11. «В сетях, защищаемых от перегрузок (см. 3.1.10), проводники следует выбирать по расчетному току, при этом должно быть обеспечено условие, чтобы по отношению к длительно допустимым токовым нагрузкам, приведенным в таблицах гл. 1.3, аппараты защиты имели кратность не более:

    • 80% для номинального тока плавкой вставки или тока уставки автоматического выключателя, имеющего только максимальный мгновенно действующий расцепитель (отсечку), – для проводников с поливинилхлоридной, резиновой и аналогичной по тепловым характеристикам изоляцией; для проводников, прокладываемых в невзрывоопасных производственных помещениях промышленных предприятий, допускается 100%;
    • 100% для номинального тока расцепителя автоматического выключателя с нерегулируемой обратно зависящей от тока характеристикой (независимо от наличия или отсутствия отсечки) – для проводников всех марок».

    Рассмотрим характерную схему электроснабжения жилого здания (рис. 1). Источник питания – это, как правило, отдельно стоящая ПС со своим распределительным щитом 10(6)/0,4/0,23 кВ. На вводе в здание расположено вводно­распределительное устройство – ВРУ­0,4/0,23 кВ. Следующая ступень – этажный групповой распределительный щиток (ГРЩ), последняя ступень – квартирный распределительный щиток (КРЩ). Упомянутые распредустройства связаны между собой проводниками, минимально допустимые сечения которых указаны в ПУЭ. Номинальные токи аппаратов, защищающие кабели и провода как от токов КЗ, так и от перегрузки, выбираются в соответствии c ПУЭ.

    УСЛОВИЯ ВОЗГОРАНИЯ ЭЛЕКТРОПРОВОДКИ

    Возникает вопрос, может ли при выполнении вышеуказанных и других требований ПУЭ произойти возгорание электропроводки при коротком замыкании (КЗ)? Считается, что возгорание электропроводки происходит при достижении проводником определенной температуры, зависящей от типа изоляции кабеля . Так, для кабелей с поливинилхлоридной изоляцией, широко применяемых в настоящее время, эта температура равна: Q = 350 O С.
    Изменение температуры проводника при протекании тока КЗ описывается формулами, приведенными в . С учетом некоторых особенностей, в частности, кратковременности протекания тока КЗ (о чем будет сказано далее), в рассматриваемых случаях для проводников с медными жилами можно использовать следующую формулу:

    где Q кон. и Q нач. – соответственно конечная и начальная температуры токоведущей жилы проводника, О С;
    к – показатель степени:

    (1а)

    где t – время протекания тока КЗ, с;
    S – сечение проводника, мм 2 ;
    – интеграл Джоуля или тепловой импульс, кА 2 /с.

    В общем случае ток КЗ содержит периодическую и апериодическую составляющие, т.е.:

    Однако, как показывает анализ, влияние апериодической составляющей в данном случае невелико ввиду её быстрого затухания (постоянная времени затухания Т 0,003 с). В результате интегрирования на интервале времени действия защитной аппаратуры (0 — 0,02 с) получим:

    где I д – действующее значение периодической составляющей тока КЗ.
    Тогда формула (1а) примет вид:

    Из приведенных формул видно, что предельные значения токов КЗ, при которых возгорание проводника не произойдет, зависят от его сечения и времени отключения КЗ.

    ГРАНИЧНЫЕ ЗНАЧЕНИЯ ТОКОВ КЗ

    Минимально допустимые значения токов КЗ

    Анализируя защитные времятоковые характеристики автоматических выключателей (рис. 2), мы видим две области: область работы отсечки, предназначенной для отключения токов КЗ, и область работы тепловых расцепителей, предназначенных для защиты от перегрузки.
    Время действия отсечки измеряется сотыми и тысячными долями секунды, а время действия защиты от перегрузки – от нескольких секунд до нескольких минут. Очевидно, что КЗ должны отключаться как можно быстрее, т.е. отсечкой автоматического выключателя. Если КЗ будет отключаться медленно действующей тепловой защитой, то неминуемо произойдет повреждение горящей дугой соседних проводников, на которых вследствие этого также произойдут короткие замыкания. При этом пожар неминуем.
    Исходя из требований чувствительности, можно определить минимальные значения токов КЗ, при которых будет надежно срабатывать отсечка автоматических выключателей:

    I кзмин. = I ном · 2 · 5,

    где I ном – номинальный ток автомата;
    2 – коэффициент надежности;
    5 – кратность тока срабатывания отсечки.

    Максимально допустимые значения токов КЗ

    Для определения максимально допустимых значений токов КЗ, при которых возгорание электропроводки ещё не произойдет, используем формулы (1) и (2).
    Примем начальную температуру проводника Q нач. = 30 O С. В качестве конечной следует принять такую, при которой изоляция электропроводки ещё не теряет своих свойств и позволяет осуществлять дальнейшую эксплуатацию. Для кабелей и проводов с пластмассовой изоляцией эта температура лежит в диапазоне 160 — 250 О С . Примем среднее значение Q кон. = 200 О С:

    Важную роль играет время срабатывания электромагнитных расцепителей автомата при КЗ. ГОСТ Р 50345­99 , а также аналогичные зарубежные документы, к сожалению, содержат лишь требование о том, что время действия автоматических выключателей в начальной зоне отсечки («время мгновенного расцепления») должно быть менее 0,1 с.
    Однако из каталожных времятоковых характеристик автоматов следует, что на самом деле время срабатывания выключателей намного меньше. Так, для автоматов типа LSN и С 60а это время не превышает 20 мс, а при больших кратностях тока КЗ ещё меньше (рис. 2а и 2б). При времени отключения 20 мс предельно допустимое значение тока КЗ для медного проводника сечением 1,5 мм 2 составит:

    Задаваясь регламентированными ПУЭ минимально допустимыми значениями сечений медных проводников на разных ступенях системы электроснабжения (табл. 7.1.1), можно аналогичным образом определить максимальные и минимальные значения тока на других ступенях системы электроснабжения. Результаты расчетов приведены в табл. 1.
    Следует ещё раз подчеркнуть, что максимально допустимые значения тока КЗ в значительной мере зависят от быстродействия автоматического выключателя при КЗ.

    Если необходимо решить другую задачу – определения минимально допустимого сечения кабеля или провода при заданном токе КЗ и времени его отключения, то можно использовать формулу:

    ВЛИЯНИЕ ПЕРЕГРУЗКИ ПРОВОДНИКОВ

    Перегрузка электрической сети в быту может наступить, в частности, при использовании дополнительных обогревательных электроприборов в холодное время года, в случае аварии в системе водяного отопления и т.п.
    Несмотря на то, что согласно ПУЭ внутренние электросети жилых и административных зданий должны быть защищены от перегрузки, всё же защитные аппараты допускают некоторую перегрузку проводников. Это связано с тем, что надежное срабатывание предохранителей происходит при токах, превышающих 1,6I ном, а автоматов – 1,45I ном.
    Поэтому, если, например, автомат выбран в соответствии с требованиями ПУЭ, т.е. его номинальный ток равен длительно допустимому току проводника, то последний может длительно работать с нагрузкой 145% I доп. При этом его температура может достигать:

    Q р = Q о + (Q д – Q р) · (I пред / I р) 2 = 30 + (65 – 25) 1,45 2 = 147 O С.

    Эта величина больше длительно допустимой температуры для кабелей с пластмассовой изоляцией, указанной в ПУЭ и равной 65 O С.
    При возникновении КЗ в процессе длительной перегрузки температура проводника превысит предельно допустимое значение 350 O С и составит для S = 1,5 мм 2 при I кз = 1550 А (1):

    Q кон. = 147 · е к + 228 (е к – 1) = 394 O С, где к = 0,506.

    На основании вышеизложенного напрашивается вывод о том, что для исключения возможного превышения допустимых температур электропроводки при перегрузках и КЗ номинальные токи защитной аппаратуры следует выбирать несколько ниже, чем требует ПУЭ, как, например, для автоматических выключателей: I ном.авт. 80% I доп.
    Обратим внимание на то, что действующие ПУЭ не требуют проверки проводников до 1 кВ на термическую стойкость к токам КЗ. Однако в отношении жилых и административных помещений с этим трудно согласиться с учетом возможных тяжелых последствий.

    РЕАЛЬНЫЕ ЗНАЧЕНИЯ ТОКОВ КЗ В СХЕМЕ ЭЛЕКТРОСНАБЖЕНИЯ ЗДАНИЙ

    Токи КЗ в системе электроснабжения напряжением до 1 кВ рассчитываются согласно методике, изложенной в ГОСТ 28249­93 . Расчет оказывается более сложным, чем для сетей напряжением 6–35 кВ, что объясняется рядом обстоятельств:

    • необходимостью учета не только реактивных, но и активных сопротивлений элементов схемы;
    • необходимостью учета сопротивлений контактных соединений;
    • необходимостью учета увеличения активных сопротивлений проводника при росте температуры;
    • необходимостью учета сопротивления дуги;
    • отсутствием точных данных по сопротивлениям нулевой последовательности некоторых элементов системы электроснабжения (кабели с непроводящей оболочкой, силовые трансформаторы со схемой соединения обмоток Y/Yн, Y/Zн).

    Однако это отдельная тема для разговора.
    Как показывают расчеты, при установке на подстанциях трансформаторов мощностью 630 кВ·А и более, токи КЗ у потребителя могут превышать указанные в табл. 1 максимально допустимые значения. С целью ограничения токов КЗ в электросети жилого помещения можно применять питающие трансформаторы со схемами соединения обмоток Y/Yн. Такие трансформаторы обладают повышенными сопротивлениями нулевой последовательности, снижающими токи однофазного КЗ . В ряде случаев следует идти на увеличение сечения проводников внутренней электропроводки по сравнению с требуемым по условиям допустимой нагрузки и минимально допустимыми значениями, указанными в ПУЭ.
    Из всего вышеизложенного следует, что даже при выполнении действующих нормативных требований, в результате КЗ на отдельных участках электропроводки жилых зданий могут создасться условия для возгорания. Однако в этом случае само КЗ было бы неправильно квалифицировать как причину пожара. Истинными причинами пожара являются либо неправильные технические решения, либо недостаточная надежность и быстродействие примененной защитной аппаратуры, либо превышение нормативного срока эксплуатации электрооборудования и т.п.

    Табл. 1. Граничные значения тока КЗ на различных ступенях системы электроснабжения

    1. В результате коротких замыканий, при значительных величинах тока КЗ и недостаточном быстродействии защитной аппаратуры, существует реальная опасность возгорания или серьезного ухудшения состояния изоляции внутренней электропроводки зданий.
    2. Учитывая особую опасность возгорания, целесообразно ввести нормативное требование о выполнении проверки термической стойкости электропроводки в жилых зданиях.
    3. Для исключения перегрузок внутренней электропроводки номинальные токи защитных аппаратов необходимо выбирать ниже длительно допустимых токов защищаемых проводников.
    4. При выборе защитных аппаратов особое внимание следует уделять надежным автоматическим выключателям с гарантированным быстродействием в зоне мгновенного расцепления 0,02 с и менее.

    1. Правила Устройства Электроустановок, 6­е и 7­е изд.
    2. Технический циркуляр №Ц­02­98(э) Департамента стратегии развития и научно­технической политики РАО «ЕЭС России».
    3. ГОСТ Р 50345­99. Автоматические выключатели для защиты от сверхтоков бытового и аналогичного назначения.
    4. ГОСТ 28249­93. Токи короткого замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением до 1 кВ.
    5. Федоровская А.И., Фишман В.С. Силовые трансформаторы 10(6)/0,4 кВ. Области применения различных схем соединения обмоток // Новости ЭлектроТехники. – 2006. – № 5.

    Короткие замыкания

    Наиболее частой причиной возникновения аварийных переходных процессов являются короткие замыкания.

    Что значит «короткие»? А что есть «длинные» замыкания? А есть ли просто замыкание, и хороши ли это? На самом деле замкнуть цепь необходимо чтобы протекал ток, пичем как аварийный, так и ток нормального режима. То есть замыкание в нормальных режимах это необходимое мероприятие и вместо слова «замыкание» говорят просто «включить нагрузку».

    Плохим оказывается непреднамеренное замыкание.

    В нормальном режиме ток под действием эдс протекает в электрическом смысле по длинному (но так не принято говорить) пути: по генераторным цепям, далее по элементам элетричекой сети и, наконец, через цепи элеткроприемников. При этом он обратно пропорционален всему сопортивлению цепи, которое в сумме давольно большое.

    Если теперь, в результате каких-то причин замыкание происходит не в конце цепи, а где-то на ее элементах, то отсекается (шунтируется) часть сопротивлений этой цепи и ток возрастает. Таким образом, можно сказать, что для протекания тока цепь в электрическом смысле укоротилась и замыкание можно назвать «коротким».

    Однако есть и термин «простое» замыкание на землю. Дело в том, что если режим нейтрали сети не предполагает ее заземление, то замыкание одной фазы на землю не вызывает больших токов и не называется коротким. Но речь об этом пойдет в другой главе.

    Итак, короткое замыкание — это непредусмотренное нормальными условиями эксплуатации замыкание между фазами или между фазами и землей.

    В местах замыкания часто образуется электрическая дуга, сопротивление которой имеет нелинейный характер. Учет влияния дуги на ток КЗ представляет собой сложную задачу и рассматривается отдельно. Кроме сопротивления дуги в месте КЗ возникает переходное сопротивление, вызываемое загрязнением, наличием остатков изоляции и т. п.

    В случае, когда переходное сопротивление и сопротивление дуги малы, ими пренебрегают. Такое замыкание называют «металлическим».

    Расчет максимально возможных токов проводится именно для «металлических» коротких хамыканий.

    Виды коротких замыканий

    В электрических системах, работающих с заземленной нейтралью, различают четыре вида КЗ:

    • Трехфазное (3) симметричное КЗ (cредняя вероятность возникновения трехфазного короткого замыкания в электрической сети для разных классов напряжений составляет 5%),

    • Двухфазное (2) КЗ (вероятность 10%),

    • Однофазное (1) (вероятность 65%),

    • Двухфазное (1,1) КЗ на землю (вероятность 20%).

    Условные обозначения видов КЗ:

    Вероятность междуфазных замыканий уменьшается с увеличением напряжения сети. Это связано с увеличением междуфазного расстояния (в среднем 0,7 м в сети 6–10 кВ, около

    14 м в сети 500 кВ).

    Тем не менее, иногда в процессе развития аварии первоначальный вид короткого замыкания переходит в другой, более сложный (например, однофазное КЗ — в двухфазное на землю).

    Несимметричные КЗ, а также несимметричные нагрузки образуют в системе поперечную несимметрию. Нарушение симметрии какого-либо промежуточного элемента трехфазной сети (например, отключение одной фазы линии электропередачи) вызывает продольную несимметрию. Повреждения, сопровождающиеся многократной несимметрией (например, обрыв фазы с ее коротким замыканием), называются сложными.

    В данном курсе переходных процессов будут рассмотрены трехфазное замыкание и поперечная несимметрия в сети.

    Причины возникновения коротких замыканий

    Из всего многообразия причин возникновения КЗ можно выделить несколько основных:

    • нарушение изоляции электрооборудования, вызываемое ее старением, загрязнением поверхности изоляторов, механическими повреждениями;

    • механические повреждения элементов электрической сети (обрыв провода линии электропередачи и т. п.);

    • перекрытие токоведущих частей животными и птицами;

    • ошибки персонала подстанций при проведении переключений;

    • преднамеренные КЗ, вызываемые действием короткозамыкателей.

    Преднамеренные КЗ как средство управления предусматривалось на некоторых подстанциях невысоких классов напряжений с целью экономии выключателей. Специально созданное КЗ отключалось РЗ и выключателем на питающей подстанции и, как следствие, снимало напряжение и прекращало электропередачу. Сейчас такая технология не применяется.

    Уменьшение количества КЗ в электрических системах связано со строгим соблюдением Правил технической эксплуатации электроустановок и повышением качества продукции электротехнической промышленности.

    Последствия коротких замыканий

    Можно выделить несколько последствий КЗ:

    1. Системная авария, вызванная нарушением устойчивости системы. Это наиболее опасное последствие, способное привести к значительному технико-экономическому ущербу.

    2. Термическое повреждение электрооборудования, связанное с его недопустимым нагревом токами КЗ.

    3. Механическое повреждение электрооборудования, вызываемое воздействием больших электромагнитных сил между токоведущими частями.

    4. Ухудшение условий работы потребителей. При понижении напряжения, например до 60–70 % от номинального, в течение 1 с и более возможна остановка двигателей промышленных предприятий, что, в свою очередь, может вызвать нарушение технологического процесса, приводящее к экономическому ущербу.

    5. Наведение при несимметричных КЗ в соседних линиях связи и сигнализации ЭДС, опасных для обслуживающего персонала.

    Наибольшая опасность при коротком замыкании угрожает элементам системы, прилегающим к месту его возникновения. В зависимости от места и продолжительности КЗ его последствия могут иметь местный характер (удаленное от источников питания КЗ) или отражаться на функционировании всей системы.

    Цели расчетов коротких замыканий

    Результаты расчетов КЗ могут быть использованы для различных целей, основные среди которых следующие:

    • проектирования и настройки устройств релейной защиты и автоматики;

    • проектирования станций, подстанций; сопоставления, оценки и выбора схемы электрических соединений сетей, в том числе выбора аппаратов и проводников и их проверки по условиям электродинамической и термической стойкости и т. п.;

    • определения режимов работы ЭС (например, выбор числа заземленных нейтралей и их размещения в ЭС);

    • определения условий работы потребителей в аварийных режимах;

    • определения электромагнитной совместимости.

    Порядок расчетов коротких замыканий

    Расчет любого КЗ выполняют по одному несложному алгоритму:

    Первоначально выполняют составление схемы (или схем) замещения. Топология схемы замещения отличается от принципиальной тем, что на ней в однолинейном изображении показываются только те элементы, по которым возможно протекание аварийных токов или их составляющих.

    После составления схемы замещения рассчитывают ее параметры в именованных или относительных единицах, затем полученные значения приводятся к основной ступени напряжения.

    Далее схема эквивалентируется и приводится к простому виду одно- или многолучевой звезды, с помощью которой достаточно просто определить ток каждого луча по закону Ома:

    Зная протекающий ток КЗ, можно рассчитать напряжения в промежуточных точках, постепенно разворачивая схему замещения обратно.

    Расчет часто выполняют в так называемой системе относительных единиц.

    Сайт о телевидении

    Явление короткого замыкания. Причины возникновения и последствия коротких замыканий. Виды короткого замыкания

    Ток короткого замыкания

    На рисунке 1 показана схема включения электрической лампы накаливания в электрическую сеть. Если сопротивление этой лампы r л = 240 Ом, а напряжение сети U = 120 В, то по закону Ома ток в цепи лампы будет:

    Рисунок 1. Схема короткого замыкания на зажимах рубильника

    Разберем случай, когда провода, идущие к лампе накаливания, оказались замкнутыми через очень малое сопротивление, например толстый металлический стержень с сопротивлением r = 0,01 Ом, случайно попавший на два провода. В этом случае ток сети, проходя к точке А , будет разветвляться по двум путям: одна большая его часть, пойдет по металлическому стержню – пути с малым сопротивлением, а другая, небольшая часть тока, будет проходить по пути с большим сопротивлением – лампе накаливания.

    Аварийный режим работы сети, когда вследствие уменьшения ее сопротивления ток в ней резко увеличивается против нормального, называется коротким замыканием .

    Определим какова сила тока короткого замыкания, текущего по металлическому стержню:

    На самом деле в случае короткого замыкания напряжение сети будет меньше 120 В, так как большой ток создаст в сети большое падение напряжения и поэтому ток, протекающий по металлическому стержню, будет меньше 12 000 А. Но все же этот ток будет во много раз превышать ток, потреблявшийся ранее лампой накаливания.

    Мощность короткого замыкания при токе I кз = 12 000 А составит:

    P кз = U × I кз = 120 ×12 000 = 1 440 000 Вт = 1 440 кВт.

    Ток, проходя по проводнику, выделяет тепло, и проводник нагревается. В нашем примере сечение проводов электрической цепи было рассчитано на небольшой ток – 0,5 А. При замыкании проводов по цепи будет протекать очень большой ток – 12 000 А. Такой ток вызовет выделение громадного количества тепла, что безусловно приведет к обугливанию и сгоранию изоляции проводов, расплавлению материала проводов, порче электроизмерительных приборов, оплавлению контактов выключателей, ножей рубильников и так далее. Источник электрической энергии, питающий такую цепь, также может быть поврежден. Перегрев проводов может вызвать пожар.

    Каждая электрическая сеть рассчитывается на свой, нормальный для нее ток.

    Ввиду опасных, разрушительных, а иногда и непоправимых последствий короткого замыкания необходимо соблюдать определенные условия при монтаже и эксплуатации электрических установок, чтобы исключить причины короткого замыкания. Основные из них следующие:
    1) изоляция проводов должна соответствовать своему назначению (напряжению сети и условиям ее работы);
    2) сечение проводов должно быть таково, чтобы нагревание их при существующих условиях работы не достигало опасной величины;
    3) проложенные провода должны быть надежно защищены от механических повреждений;
    4) места соединений и ответвлений должны быть так же надежно изолированы, как и сами провода;
    5) скрещивание проводов должно быть выполнено так, чтобы провода не касались друг друга;
    6) через стены, потолки и полы провода должны быть проложены так, чтобы они были защищены от сырости, механических и химических повреждений и хорошо изолированы.

    Защита от токов короткого замыкания

    Чтобы избежать внезапного, опасного увеличения тока в электрической цепи при ее коротком замыкании, цепь защищают плавкими предохранителями или автоматическими выключателями.

    Плавкие предохранители представляют собой легкоплавкую проволочку, включенную последовательно в сеть. При увеличении тока сверх определенной величины проволочка предохранителя нагревается и плавится, в результате чего электрическая цепь автоматически разрывается и ток в ней прекращается.

    Автоматический выключатель более сложный и дорогостоящий аппарат защиты нежели плавкий предохранитель. Однако в отличии от плавкого предохранителя он рассчитан на многократные срабатывания при защите цепей при аварийных режимах работы. Конструктивно автоматический выключатель выполнен в диэлектрическом корпусе со встроенным внутрь механизмом расцепления. Механизм расцепления имеет неподвижный и подвижный контакты. Подвижный контакт подпружинен, пружина обеспечивает усилие для быстрого расцепления контактов. Механизм расцепления приводится в действие одним из двух расцепителей: тепловым или магнитным.

    Тепловой расцепитель представляет собой биметаллическую пластину, нагреваемую протекающим током. При протекании тока выше допустимого значения биметаллическая пластина изгибается и приводит в действие механизм расцепления. Время срабатывания зависит от тока (времятоковая характеристика) и может изменяться от секунд до часа. В отличие от плавкого предохранителя, автоматический выключатель готов к следующему использованию после остывания пластины.

    Электромагнитный расцепитель – расцепитель мгновенного действия, представляет собой соленоид (катушку выполненную из медного проводника), подвижный сердечник которого также может приводить в действие механизм расцепления. Ток, проходящий через выключатель, течет по обмотке соленоида и вызывает втягивание сердечника при превышении заданного порога тока. Мгновенный расцепитель, в отличие от теплового, срабатывает очень быстро (доли секунды), но при значительно большем превышении тока: в 2 ÷ 14 раз от номинального тока.

    Видео 1. Короткое замыкание

    Короткое замыкание — одна из опасностей техносферы

    Даже человек, далекий от электричества, хоть раз в жизни, но сталкивался с явлением, которое получило название «короткое замыкание». Для того чтобы обезопасить себя, своих близких, а также свое жилье и электроприборы от этого процесса, следует тщательно разобраться в его природе, причинах возникновения и разновидностях.

    Понятие и характеристика короткого замыкания

    Короткое замыкание с точки зрения электротехники представляет собой явление, при котором сопротивление электрической цепи, состоящей из нескольких проводов, крайне незначительно, и его вполне можно сопоставить с сопротивлением самих проводов. В этом случае согласно закону Ома сила тока превысит свое номинальное значение сразу в несколько раз, причем произойдет это практически в одно мгновение. Это, в свою очередь, приведет к тому, что электрическая цепь разорвется намного раньше, чем произойдет критическое увеличение температуры проводов.

    Основные причины короткого замыкания

    Как показывает практика, короткое замыкание возникает чаще всего из-за того, что по каким-либо причинам оказывается нарушенной внешняя изоляция проводов или электрического оборудования. Это, в свою очередь, может быть связано и с постепенным старением основных элементов электрической цепи, и с ее механическими повреждениями, и даже с ударом молнии. Кроме того, в последние годы на предприятиях участились случаи, когда короткое замыкание становилось следствием недобросовестного обслуживания электрооборудования со стороны соответствующих служб.

    Искусственное замыкание

    Впрочем, в работе фабрик и заводов может наступить такой момент, когда возникнет потребность вызвать это явление искусственным путем. В частности, преднамеренное короткое замыкание достаточно часто используют в цепи трансформаторных подстанций, которые действуют на понижении тока. Для этого используется специальное оборудование — короткозамыкатели, выполняющие роль своеобразных контролеров. В том случае, если на линии или в самом трансформаторе возникнет какое-либо повреждение, то этот прибор искусственно вызовет короткое замыкание, цепь окажется разорванной и никаких тяжелых последствий (например пожара) не будет.

    Последствия короткого замыкания

    Данное явление приводит к весьма серьезным последствиям. Во-первых, достаточно часто оно сопровождается выходом из строя электроустановок и возникновением в них пожаров. Во-вторых, из-за резкого увеличения силы тока в цепи отдельные части кабеля могут быть подвергнуты механическому воздействию, в результате чего появятся механические и термические повреждения. В-третьих, достаточно часто короткое замыкание сопровождается значительным падением напряжения в цепи или на отдельных ее участках. Это, в свою очередь, ведет к ухудшению работы электрооборудования. Наконец, в-четвертых, это явление оказывает крайне негативное влияние на находящиеся поблизости приборы, провода и другое электрическое оборудование.

    Способы защиты от короткого замыкания

    Защита от короткого замыкания включает в себя целый комплекс мер, исходным пунктом в которых является профилактика повреждений линий электропередач и оборудования. Кроме того, чтобы предотвратить возникновение пожара, используют специальные приборы — плавкие ставки, которые при замыкании сгорают и размыкают электрическую цепь.

    Выполнение правил техники безопасности как основной способ профилактики короткого замыкания

    Мощность короткого замыкания зависит от множества факторов, главным из которых является сила тока в цепи. В то же время следует помнить, что любое подобное явление представляет собой потенциальную опасность для человека, поэтому при работе с электричеством следует четко придерживаться правил техники безопасности.

    Наверняка многие слышали такое словосочетание как короткое замыкание, но мало кто понимает, из-за чего возникает данное явление, чем оно опасно и какие процессы происходят во время КЗ. В этой статье мы подробно рассмотрим данный вопрос, так как «коротыш в проводке» — это достаточно частая ситуация, которая является очень опасной и может привести к неблагоприятным последствиям. Итак, причины возникновения короткого замыкания, способы предотвращения и последствия мы рассмотрели ниже.

    Что это такое?

    Электрическая цепь — это, как правило, два проводника с разноименным потенциалом и подключенным потребителем тока. Каждый конечный потребитель имеет свое внутреннее сопротивление, которое сопротивляется току и ограничивает, тем самым дозируя его количество и плотность в проводнике, заставляя производить работу.

    В момент, когда сопротивление резко уменьшается до статической погрешности сопротивления проводников, электрический ток, ничем практически не ограниченный, возрастает до такой величины, что сечение проводников становится малым и проходя через них, разогревает жилы до температуры разрушения и плавления. Поэтому частый спутник короткого замыкания — это огонь, расплавленный металл проводников и вспомогательных механизмов.

    Признаками замыкания в проводке являются запах гари, искрение и возгорание проводов, а также отключение электричества на определенном участке или же во всей сети.

    Как возникает КЗ?

    Итак, рассмотрим основные причины возникновения короткого замыкания в электропроводке и электроустановках.

    Высокое напряжение . В момент выше допустимых параметров, присутствует возможность электрического пробоя изоляции проводника или электрической схемы. В результате развивается утечка тока до размеров КЗ, с созданием кратковременного стабильного дугового разряда.

    Старая изоляция . Жилые и промышленные фонды, не проводившие замену электрической проводки — это первые претенденты на спонтанные КЗ. Любая изоляция, используемая в электропроводке, имеет свой ресурс. Со временем она разрушается под воздействием внешних факторов, что и приводит к возникновению замыкания.

    Внешнее механическое воздействие. Снятие изоляции с провода, ее перетирание и прочее воздействие на защитную оболочку, ослабляющее ее свойства, рано или поздно вызовут возгорание и КЗ. К примеру, в быту часто причиной возникновения короткого замыкания является повреждение проводки при сверлении стен. О том, читайте в нашей статье.

    Посторонние предметы . Сюда относится пыль различного происхождения, мелкие животные, детали с соседних узлов, волей случая попавших на электрические проводники, вызвав и развив таким образом КЗ.

    Прямой удар молнии. Происходит тоже, что и при (смотри выше).

    Пример последствия от возникновения КЗ в электроустановке демонстрируется на видео:

    Последствия короткого замыкания — это выгоревшие участки проводки и ее возгорание!

    Виды явлений

    Самое распространенное — это замыкание на землю, когда либо одна фаза взаимодействует с землей, либо две фазы взаимодействует с землей, на одном или нескольких участках. Короткое замыкание на землю, встречается в системах с глухозаземленной нейтралью и составляют до 70% всех случаев.

    Существует также межфазное КЗ, когда происходит взаимодействие двух фаз между собой. Происходит в следствии нарушении изоляции в трехфазном оборудовании.

    Ну и последний вид КЗ — трехфазное, когда взаимодействуют все три фазы. На схеме ниже изображены основные виды коротких замыканий:

    Способы предотвращения

    Для предотвращения развития КЗ и защиты электрических устройств и линий электроснабжения самым эффективным методом является или же плавких предохранителей. Автомат (на фото ниже) при возникновении «коротыша» своевременно отключит питание, тем самым предотвратит возникновение опасной ситуации.

    Еще один способ предотвратить возникновение короткого замыкания — своевременная , благодаря которой можно визуально определить место оплавления изоляции и перейти к устранению неполадки.

    Короткое замыкание представляет собой электрическое соединение различных фаз, которые являются нетипичными для нормального режима работы. Вследствие этого в проводнике резко увеличивается сила тока, что приводит к неблагоприятным последствиям. Рассмотрим, что такое короткое замыкание, классификацию явления, потенциальные угрозы и способы предотвращения КЗ.

    КЗ делится в зависимости от фазы сети. В однофазной системе выделяют следующую классификацию:

    • фаза и ноль – наиболее распространенный тип в быту. Замыкание случается, если использовать электрические приборы, которые не рассчитаны на стандартную величину токов или если в розетке находится плохой контакт. В результате этого наблюдается перегрев, и изоляция проводов нарушается;
    • фаза и заземление – ситуация, в которой фазный провод начинает контактировать с заземленным корпусом другого оборудования.

    КЗ может происходить в трехфазной системе:

    • однофазное – рассмотрено выше;
    • двухфазное – в процессе принимает участие две системы. Подобная ситуация часто случается с воздушными линиями электропередач. Чаще всего это происходит во время сильного ветра, когда линии проводов пересекаются между собой и образуют замыкание;
    • трехфазное и земля – одновременный контакт трех системы с землей;
    • трехфазное – одновременный контакт трех системы, спровоцированный соединением между собой токопроводящего предмета.

    Основные причины, провоцирующие возникновение КЗ:

    • нарушение целостности изоляции, что может возникать вследствие износа электрооборудования, в связи с загрязнением поверхности приборов, а так же механическими повреждениями;
    • механическое нарушение целостности элементов сети (к примеру, обрыв линии передачи);
    • скачки напряжения – пробой изоляции проводника, что приводит к развитию утечки тока и созданию дугового кратковременного разряда;
    • удар молнии;
    • попадание животных и птиц на токоведущие части;
    • человеческий фактор – ошибки персонала при проведении работ по переключению;
    • преднамеренное КЗ с использованием короткозамыкателей – используются с целью экономии выключателей. Сегодня данная технология не применяется и является запрещенной.

    Какие могут быть последствия?

    Во время замыканий наблюдается резкое увеличение силы тока, что приводит к расплавлению металлов. «Брызги» могут разноситься во все стороны, приводя к воспламенению предметов вокруг и пожарам. Это особенно опасно для домашних условий, так как КЗ может стать причиной потери имущества и жилья. Последствиями на предприятиях является аварийная ситуация, повреждение техники и риск того, что могут пострадать люди.

    Замыкание, в зависимости от места его образования, может привести к системой аварии, последствиями которой станет экономический и технический урон. Оборудование, которое находилось под действием усиленной силы тока, выходит из стоя или получает серьезные повреждения.

    Еще одним последствием замыкания является ухудшение условий работы персонала и потребителей – резкое понижение давления приводит к остановке производственных мощностей и экономическому ущербу. Наибольший урон наносится тому месту, в котором непосредственно возникло замыкание.

    Способы защиты

    Наиболее надежным и действенным способом предотвращения КЗ является установка автоматических выключателей. Альтернативой служат плавкие предохранители. Автомат своевременно улавливает возникновение замыкания и отключает питание, благодаря чему возникновение аварийной ситуации является невозможным.

    Прочие меры предосторожности:

    • регулярная ревизия электропроводных каналов – визуальное определение слабых мест кабеля, где изнашивается изоляция и своевременное устранение проблемы;
    • использование электрических реакторов, которые регулируют подачу тока;
    • использование специальных электроцепей, которые в случае необходимости отключают секционные выключатели;
    • использование понижающих трансформаторов, которые оснащены расщепляемой обмоткой низкого напряжения.

    Совет: для домашнего использования рекомендуется устанавливать автоматические выключатели. Они рассчитаны на определенный ток, после превышения величины которого, разрывается цепь. Прочие меры в основном указаны для промышленного использования.

    В чем заключается угроза КЗ?

    Замыкание в первую очередь представляет угрозу здоровью и жизни человека. Это связано с пожарной опасностью: возгорание изоляции проводов, воспламенение окружающих предметов, способность изоляции распространять горение. Так же изменение силы тока может быть губительным для используемых устройств и приборов, приводя к катастрофическим последствиям. КЗ может стать причиной экономического убытка Поэтому важно использовать меры профилактики возникновения явления и прибегать к установке методов защиты.

    Одной из главных причин возникновения пожара является короткое замыкание. Это словосочетание постоянно на слуху, но что же оно означает?

    Это соединение провода заземления или нулевого с фазовым либо двух фазовых проводов. Получается взаимодействие двух проводников с отличающимися потенциалами. Коротким контакт называется, потому что он произошел без электроприбора.

    При соединении таких проводов происходит маленький взрыв. Объясняется это резким скачком силы тока, достигающей неприемлемого значения. Такое стремительное увеличение силы тока приводит к перегреву проводов и получению электрической дуги между ними, температура которой достигает 5000 градусов С.

    Особо зрелищным получается замыкание фазных проводов в трехфазной электросети. Если человек замкнет фазы отверткой, его может отшвырнуть на несколько метров, он может получить серьезные увечья, ожоги. Отвертка при этом просто испарится. В бытовых условиях большого взрыва может и не быть, но оплавление провода и изоляции гарантировано, а это уже прямой путь к возгоранию предметов, которые окажутся поблизости.

    Важно помнить, что при обрыве линии электропередачи (ЛЭП) из-за короткого замыкания, может случиться реальный взрыв с электромагнитным ударом. Поэтому ни в коем случае нельзя подходить к месту обрыва линии.

    Причины возникновения короткого замыкания известны: старая или поврежденная электропроводка, монтаж, выполненный с нарушениями (это свойственно любителям, плохо разбирающимся в электрике), изоляция с дефектами, электроприборы, не отвечающие условиям электробезопасности (опять же старые или испорченные), ослабление мест соединения проводов, случайные обрывы линии.

    Со всеми перечисленными причинами можно успешно бороться, если соблюдать некоторые правила:

    1. Не использовать старые провода с несоответствующей изоляцией.

    2. Быть внимательным при проведении электромонтажных работ. Не сверлить, не штробить, не резать стены в тех местах, где проложен силовой кабель.

    3. Снимать изоляцию при монтаже крайне аккуратно, не резать провод ножом вдоль жил.

    4. Следить за тем, чтобы сеть была отключена при работах с ней. На щитке нужно вывешивать табличку «идут работы, электричество не включать» или оставить дежурить человека.

    5. Устанавливать защитные устройства отключения — автомат ические выключатели , устройства защитного отключения, дифавтоматы.

    6. Регулярно следить за состоянием электрических точек — розеток и выключателей. При необходимости сразу же их заменять.

    7. Не эксплуатировать поврежденные электроприборы, от которых летят искры, за исключением некоторых инструментов, например, в которых есть угольные щетки — они при работе немного искрят (такое бывает в дрели, электролобзике и других инструментах).

    8. При монтаже проводки не вести провода одним большим пучком, лучше пустить их параллельно рядом или использовать специальные короба.

    Выполнение этих несложных правил позволит существенно сократить риск возникновения короткого замыкания и пожара. И важно помнить, что работу с электричеством лучше доверить профессиональному электрику. Тогда и жить будет спокойней и безопасней!

    Короткое замыкание. Причины возникновения и как его избежать. Короткое замыкание: причины, классификация, защита

    Наверняка многие слышали такое словосочетание как короткое замыкание, но мало кто понимает, из-за чего возникает данное явление, чем оно опасно и какие процессы происходят во время КЗ. В этой статье мы подробно рассмотрим данный вопрос, так как «коротыш в проводке» — это достаточно частая ситуация, которая является очень опасной и может привести к неблагоприятным последствиям. Итак, причины возникновения короткого замыкания, способы предотвращения и последствия мы рассмотрели ниже.

    Что это такое?

    Электрическая цепь — это, как правило, два проводника с разноименным потенциалом и подключенным потребителем тока. Каждый конечный потребитель имеет свое внутреннее сопротивление, которое сопротивляется току и ограничивает, тем самым дозируя его количество и плотность в проводнике, заставляя производить работу.

    В момент, когда сопротивление резко уменьшается до статической погрешности сопротивления проводников, электрический ток, ничем практически не ограниченный, возрастает до такой величины, что сечение проводников становится малым и проходя через них, разогревает жилы до температуры разрушения и плавления. Поэтому частый спутник короткого замыкания — это огонь, расплавленный металл проводников и вспомогательных механизмов.

    Признаками замыкания в проводке являются запах гари, искрение и возгорание проводов, а также отключение электричества на определенном участке или же во всей сети.

    Как возникает КЗ?

    Итак, рассмотрим основные причины возникновения короткого замыкания в электропроводке и электроустановках.

    Высокое напряжение . В момент выше допустимых параметров, присутствует возможность электрического пробоя изоляции проводника или электрической схемы. В результате развивается утечка тока до размеров КЗ, с созданием кратковременного стабильного дугового разряда.

    Старая изоляция . Жилые и промышленные фонды, не проводившие замену электрической проводки — это первые претенденты на спонтанные КЗ. Любая изоляция, используемая в электропроводке, имеет свой ресурс. Со временем она разрушается под воздействием внешних факторов, что и приводит к возникновению замыкания.

    Внешнее механическое воздействие. Снятие изоляции с провода, ее перетирание и прочее воздействие на защитную оболочку, ослабляющее ее свойства, рано или поздно вызовут возгорание и КЗ. К примеру, в быту часто причиной возникновения короткого замыкания является повреждение проводки при сверлении стен. О том, читайте в нашей статье.

    Каждый электрик должен знать:  Основные соотношения

    Посторонние предметы . Сюда относится пыль различного происхождения, мелкие животные, детали с соседних узлов, волей случая попавших на электрические проводники, вызвав и развив таким образом КЗ.

    Прямой удар молнии. Происходит тоже, что и при (смотри выше).

    Пример последствия от возникновения КЗ в электроустановке демонстрируется на видео:

    Последствия короткого замыкания — это выгоревшие участки проводки и ее возгорание!

    Виды явлений

    Самое распространенное — это замыкание на землю, когда либо одна фаза взаимодействует с землей, либо две фазы взаимодействует с землей, на одном или нескольких участках. Короткое замыкание на землю, встречается в системах с глухозаземленной нейтралью и составляют до 70% всех случаев.

    Существует также межфазное КЗ, когда происходит взаимодействие двух фаз между собой. Происходит в следствии нарушении изоляции в трехфазном оборудовании.

    Ну и последний вид КЗ — трехфазное, когда взаимодействуют все три фазы. На схеме ниже изображены основные виды коротких замыканий:

    Способы предотвращения

    Для предотвращения развития КЗ и защиты электрических устройств и линий электроснабжения самым эффективным методом является или же плавких предохранителей. Автомат (на фото ниже) при возникновении «коротыша» своевременно отключит питание, тем самым предотвратит возникновение опасной ситуации.

    Еще один способ предотвратить возникновение короткого замыкания — своевременная , благодаря которой можно визуально определить место оплавления изоляции и перейти к устранению неполадки.

    Каждый день, будь то дома или на работе мы замыкаем электрическую цепь, и ничего взрывоопасного не происходит. Замыкая цепь с помощью штепсельной вилки электроприбора, электроэнергия превращается:

    • — в механическую энергию — двигатели насосов, пылесосов и различных электрических приспособлений.
    • — в тепловую энергию — горячий воздух фена, кипяток электрического чайника, тепловое излучение электрического конвектора.

    Это хорошее замыкание, назовем ее условно в противопоставлении короткому, “длинное” замыкание электрической цепи.

    Короткое замыкание имеет отрицательный результат, то есть, энергия позиционирует себя в виде искр, хлопка, часто возгорание проводки и легко возгораемых материалов — пожар.

    Что же такое короткое замыкание?

    Пример: Локомотив должен доставить груз, допустим из города Нижний Новгород в такой мегаполис как Москва. Путь состава должен быть длинным. Локомотив, таща за собой 50 вагонов угля, набирает большую скорость. Но вдруг, в городе Владимир диспетчер совершает роковую ошибку, переключив стрелку на путь, где находится другой состав — аварии не миновать.

    Состав набравший большую скорость быстро не остановить. Наглядный пример может показаться примитивным, но хочется показать принцип лежащий в основе – это сила, мощь, использованная не по назначению, несущая разрушение. Путь следования локомотива с множеством вагонов оказался коротким, не завершенным, не достиг цели.

    Именно СИЛА тока производит разрушение, при коротком замыкании ток увеличивается в 20 раз, количество тепла возрастает примерно в 400 раз.

    Вот еще одно яркое объяснение, что такое короткое замыкание.

    Известно, что неисправная электропроводка приводит к короткому замыканию, от него чаще всего и возникает возгорание. Об этом частенько упоминается в пожарных отчетах. Что же такое короткое замыкание, чем оно опасно?

    В нормальном режиме работы ток в проводке между фазным и нулевым проводами протекает через нагрузку, которая этот ток ограничивает на безопасном для проводки уровне. При разрушении изоляции ток протекает, минуя нагрузку, сразу между проводами. Такой контакт, называется коротким, поскольку происходит помимо электроприбора.

    Вспомним закон Ома: I = U/R, что словами, обычно, произносится так: «Ток в цепи прямо пропорционален напряжению, и обратно пропорционален СОПРОТИВЛЕНИЮ». Именно на СОПРОТИВЛЕНИЕ здесь и стоит обратить внимание.

    Сопротивление ТПЖ электропроводки, как правило, невелико, поэтому им можно пренебречь, считать его равным нулю. Согласно законам математики деление на ноль невозможно, а результат будет стремиться к бесконечности. В случае короткого замыкания к этой самой бесконечности будет стремиться ток в цепи.

    Конечно, это не совсем так, провода имеют какое-то конечное сопротивление, поэтому до бесконечности ток, конечно же, не дойдет, но будет достаточной силы, чтобы произвести разрушительное действие, достаточно мощный взрыв. Возникает вольтова дуга, температура которой достигает 5000 градусов по Цельсию.

    Причины короткого замыкания

    • Ошибки персонала обслуживающего электрические сети.
    • Из-за износа (устаревшей) электропроводки.
    • Неправильный монтаж электропроводки.
    • Плохой контакт в соединениях проводки и электроприборов
    • Из-за перегрузки электрической цепи.
    • Может возникнуть по причине механического повреждения проводов.
    • КЗ могут спровоцировать грызуны.

    Как не допустить короткое замыкание?

    Для предупреждения короткого замыкания необходимо.

    • Грамотно монтировать и эксплуатировать электроустановки.
    • Подбирать электропроводку в соответствии с величиной тока.
    • Регулярно проводить плановые осмотры и измерения сопротивления изоляции;
    • Правильно выбирать автоматику защиты, которые предназначены отключать поврежденный участок.
    • Прежде чем производить работы с проводкой ее необходимо обесточить.

    Польза короткого замыкания

    На основе короткого замыкания зародилась дуговая сварка, которая используется на производстве. Точка контакта стержня и металлическая поверхность нагревается до температуры плавления, металлическая конструкция соединяется в единое целое. Например, современные кузова автомобилей скреплены именно посредством короткого замыкания – дуговой сварки.

    Как мы увидели, короткое замыкание может приносить разрушения, если сила тока используется не по назначению. Если правильно управлять энергией, можно достичь отличных технических достижений.

    КЗ образуется вследствие замыкания двух проводов цепи, которые подсоединены к разным контактам (это плюс и минус). В данном случае происходит это через маленькое сопротивление, которое можно сравнить с сопротивлением самого провода. При этом ток может превысить номинальное значение в несколько раз. Чтобы предотвратить возгорание, электрическая цепь должна быть разорвана до того, как провода нагреются до критической температуры.

    Что такое короткое замыкание?

    Ежедневно, где бы мы не находились, мы осуществляем замыкание электрической цепи. При этом ничего опасного не происходит, так как при подсоединении вилки электрооборудования в розетку электрическая энергия превращается в:

    • механическую энергию;
    • тепловую мощность.

    Данные виды замыкания можно условно назвать «длинными». Короткое замыкание — это, говоря простым языком, такой вид энергии, которая выражается в виде искры, хлопка или возгорания. Это такое состояние, когда сопротивление самой нагрузки становится меньше сопротивления источника питания. При коротком замыкании мгновенно увеличивается сила тока, которая приводит к сильному выделению тепла. Это — в свою очередь — может привести к расплавлению проводки и её последующему возгоранию. Такое КЗ способно не только нарушить работоспособность элемента электрической цепи, но и привести к снижению входного напряжения у других потребителей.

    В нормальном рабочем режиме ток между фазным и нулевым проводом протекает лишь в том случае, когда подсоединена нагрузка, которая и осуществляет его ограничение на безопасном уровне для электрической проводки. Как происходит короткое замыкание? В тех случаях, когда появляется нарушение изоляционного покрытия, приводящее к замыканию плюса и минуса, ток минует нагрузку и течёт между этими проводами. Данный вид контакта называется «коротким», в связи с тем, что минует электрические приборы.

    Металлическое короткое замыкание — это такое замыкание, в котором не учитывается переходное сопротивление. Оно возможно только в случае его специальной подготовки при помощи болтового соединения токоведущих частей.

    Ток короткого замыкания — это такой ток, который появляется вследствие повреждения изоляции токоведущих частей, обладающих различным электрическим потенциалом. Возникнуть он может и просто при случайном соединении проводящих частей с теми же потенциалами.

    Ударный ток короткого замыкания — это максимальная величина тока, которая возникает при трёхфазном КЗ.

    Режим короткого замыкания — это такое состояние двухполюсника, когда его выходы соединены между собой при помощи проводника с нулевым сопротивлением. В данном режиме вторичная обмотка замыкается накоротко. При проведении такого опыта можно определить величину потерь в обмотках самого трансформатора.

    Также стоит знать, что напряжение короткого замыкания трансформатора — это такое напряжение, которое необходимо подать на обмотку, когда вторая замкнута. И тогда в последней обмотке начнёт протекать номинальный ток.

    Как его обнаружить и предотвратить?

    Можно вспомнить всем известный закон Ома, который гласит: «Ток в цепи прямо пропорционален напряжению и обратно пропорционален сопротивлению». Как раз на последнее и стоит обращать в данном случае пристальное внимание. В связи с тем, что сопротивление проводки очень мало, его принято считать равным «0». В случае с КЗ его величина — наоборот — очень велика, так как в замкнутой цепи начинает течь ток.

    Для того чтобы предотвратить короткое замыкание, необходимо периодически производить замеры сопротивления проводки. Если вы самостоятельно не можете это делать, то стоит обратиться за помощью к специалистам. Они на профессиональном уровне проведут все измерения, касающиеся проводки, а также помогут провести испытание измерительных трансформаторов тока, что также убережет ваше оборудование и повысит пожарную безопасность.

    Однажды одной даме, не очень сведущей в электротехнике, монтер сообщил причину пропадания света в ее квартире. Это оказалось короткое замыкание, и женщина потребовала немедленно его удлинить. Над этой историей можно посмеяться, но лучше все же рассмотреть эту неприятность подробнее. Специалистам-электрикам и без этой статьи известно, что это за явление, чем оно грозит и как рассчитать ток короткого замыкания. Изложенная ниже информация адресована людям, не имеющим технического образования, но, как и все прочие, не застрахованным от неприятностей, связанных с эксплуатацией техники, машин, производственного оборудования и самых обычных бытовых приборов. Каждому человеку важно знать, что такое короткое замыкание, каковы его причины, возможные последствия и методы его предотвращения. Не обойтись в этом описании и без знакомства с азами электротехнической науки. Не знающий их читатель может заскучать и не дочитать статью до конца.

    Популярное изложение закона Ома

    Независимо от того, каков характер тока электрической цепи, он возникает только в том случае, если существует разница потенциалов (или напряжение, это то же самое). Природа этого явления может быть объяснена на примере водопада: если есть разность уровней, вода течет в каком-то направлении, а когда нет — она стоит на месте. Даже школьникам известен закон Ома, согласно которому, ток тем больше, чем выше напряжение, и тем меньше, чем выше сопротивление, включенное в нагрузку:

    I — величина тока, которую иногда называют «силой тока», хотя это не совсем грамотный перевод с немецкого языка. Измеряется в Амперах (А).

    На самом деле силой (то есть причиной ускорения) ток сам по себе не обладает, что как раз и проявляется во время короткого замыкания. Этот термин уже стал привычным и употребляется часто, хотя преподаватели некоторых вузов, услышав из уст студента слова «сила тока» тут же ставят «неуд». «А как же огонь и дым, идущие от проводки во время короткого замыкания? — спросит настырный оппонент, — Это ли не сила?» Ответ на это замечание есть. Дело в том, что идеальных проводников не существует, и нагрев их обусловлен именно этим фактом. Если предположить, что R=0, то и тепло бы не выделялось, как ясно из закона Джоуля-Ленца, приведенного ниже.

    U — та самая разница потенциалов, называемая также напряжением. Измеряется в Вольтах (у нас В, за границей V). Его также называют электродвижущей силой (ЭДС).

    R — электрическое сопротивление, то есть способность материала препятствовать прохождению тока. У диэлектриков (изоляторов) оно большое, хотя и не бесконечное, у проводников — малое. Измеряется в Омах, но оценивается в качестве удельной величины. Само собой, что чем толще провод, тем он лучше проводит ток, а чем он длиннее, тем хуже. Поэтому удельное сопротивление измеряется в Омах, умноженных на квадратный миллиметр и деленных на метр. Кроме этого, на его величину влияет температура, чем она выше, тем больше сопротивление. Например, золотой проводник длиной в 1 метр и сечением в 1 кв. мм при 20 градусах Цельсия обладает общим сопротивлением 0,024 Ома.

    Есть еще формула закона Ома для полной цепи, в нее введено внутреннее (собственное) сопротивление источника напряжения (ЭДС).

    Две простых, но важных формулы

    Понять причину, по которой возникает ток короткого замыкания, невозможно без усвоения еще одной нехитрой формулы. Мощность, потребляемая нагрузкой, равна (без учета реактивных составляющих, но о них позже) произведению тока на напряжение.

    P — мощность, Ватт или Вольт-Ампер;

    U — напряжение, Вольт;

    Мощность бесконечной не бывает, она всегда чем-то ограничена, поэтому при ее фиксированной величине при увеличении тока напряжение уменьшается. Зависимость этих двух параметров рабочей цепи, выраженная графически, называется вольт-амперной характеристикой.

    И еще одна формула, необходимая для того, чтобы произвести расчет токов короткого замыкания, это закон Джоуля-Ленца. Она дает представление о том, сколько тепла выделяется при сопротивлении нагрузке, и очень проста. Проводник будет греться с интенсивностью, пропорциональной величинам напряжения и квадрата тока. И, конечно же, формула не обходится без времени, чем дольше раскаляется сопротивление, тем больше оно выделит тепла.

    Что происходит в цепи при коротком замыкании

    Итак, читатель может считать, что освоил все главные физические закономерности для того, чтобы разобраться в том, какой может быть величина (ладно, пусть будет сила) тока короткого замыкания. Но сначала следует определиться с вопросом о том, что, собственно, это такое. КЗ (короткое замыкание) — это ситуация, при которой сопротивление нагрузки близко к нулю. Смотрим на формулу закона Ома. Если рассматривать его вариант для участка цепи, несложно понять, что ток будет стремиться к бесконечности. В полном варианте он будет ограничен сопротивлением источника ЭДС. В любом случае ток короткого замыкания очень велик, а по закону Джоуля-Ленца, чем он больше, тем сильнее греется проводник, по которому он идет. Причем зависимость не прямая, а квадратичная, то есть, если I увеличится стократно, то тепла выделится в десять тысяч раз больше. В этом и состоит опасность явления, приводящего порой к пожарам.

    Провода накаляются докрасна (или добела), они передают эту энергию стенам, потолкам и другим предметам, которых касаются, и поджигают их. Если фаза в каком-то приборе касается нулевого проводника, возникает ток короткого замыкания источника, замкнутого на самого себя. Горючее основание электропроводки — страшный сон инспекторов пожарной охраны и причина многих штрафов, налагаемых на безответственных собственников зданий и помещений. И всему виной, конечно же, не законы Джоуля-Ленца и Ома, а пересохшая от старости изоляция, неаккуратно или безграмотно произведенный монтаж, повреждения механического характера или перегрузка проводки.

    Однако и ток короткого замыкания, каким бы он ни был большим, также не бесконечен. На размеры бед, которые он может натворить, влияет продолжительность нагрева и параметры схемы электроснабжения.

    Цепи переменного тока

    Рассмотренные выше ситуации имели общий характер или касались цепей постоянного тока. В большинстве случаев электроснабжение и жилых, и промышленных объектов производится от сети переменного напряжения 220 или 380 Вольт. Неприятности с проводкой, рассчитанной на постоянный ток, чаще всего случаются в автомобилях.

    Между этими двумя основными типами электропитания есть разница, и существенная. Дело в том, что прохождению переменного тока препятствуют дополнительные составляющие сопротивления, называемые реактивными и обусловленные волновой природой возникающих в них явлений. На переменный ток реагируют индуктивности и емкости. Ток короткого замыкания трансформатора ограничивается не только активным (или омическим, то есть таким, которое можно измерить карманным приборчиком-тестером) сопротивлением, но и его индуктивной составляющей. Второй тип нагрузки — емкостный. Относительно вектора активного тока векторы реактивных составляющих отклонены. Индуктивный ток отстает, а емкостный опережает его на 90 градусов.

    Примером разницы поведения нагрузки, обладающей реактивной составляющей, может служить обычный динамик. Его некоторые любители громкой музыки перегружают до тех пор, пока диффузор магнитное поле не выбивает вперед. Катушка слетает с сердечника и тут же сгорает, потому что индуктивная составляющая ее напряжения уменьшается.

    Виды КЗ

    Ток короткого замыкания может возникать в разных цепях, подключенных к различным источникам постоянного или переменного тока. Проще всего дело обстоит с обычным плюсом, который вдруг соединился с минусом, минуя полезную нагрузку.

    А вот с переменным током вариантов больше. Однофазный ток короткого замыкания возникает при соединении фазы с нейтралью или ее заземлении. В трехфазной сети может возникнуть нежелательный контакт между двумя фазами. Напряжение в 380 или более (при передаче энергии на большие расстояния по ЛЭП) вольт также может вызвать неприятные последствия, в том числе и дуговую вспышку в момент коммутации. Замкнуть может и все три (или четыре, вместе с нейтралью) провода одновременно, и ток трехфазного короткого замыкания будет течь по ним до тех пор, пока не сработает защитная автоматика.

    Но и это еще не все. В роторах и статорах электрических машин (двигателей и генераторов) и трансформаторах порой случается такое неприятное явление, как межвитковое замыкание, при котором соседние петли провода образуют своеобразное кольцо. Этот замкнутый контур обладает крайне низким сопротивлением в сети переменного тока. Сила тока короткого замыкания в витках растет, это становится причиной нагрева всей машины. Собственно, если такая беда произошла, не следует ждать, пока оплавится вся изоляция и электромотор задымится. Обмотки машины нужно перематывать, для этого необходимо специальное оборудование. Это же касается и тех случаев, когда из-за «межвиткового» возник ток короткого замыкания трансформатора. Чем меньше обгорит изоляция, тем проще и дешевле будет перемотка.

    Расчет величины тока при коротком замыкании

    Каким бы ни было катастрофичным то или иное явление, для инженерной и прикладной науки важна его количественная оценка. Формула тока короткого замыкания очень похожа на закон Ома, просто к ней требуются некоторые пояснения. Итак:

    I к.з.=Uph / (Zn + Zt),

    I к.з. — величина тока короткого замыкания, А;

    Uph — фазное напряжение, В;

    Zn — полное (включая реактивную составляющую) сопротивление короткозамкнутой петли;

    Zt — полное (включая реактивную составляющую) сопротивление трансформатора питания (силового), Ом.

    Полные сопротивления определяются как гипотенуза прямоугольного треугольника, катеты которого представляют собой величины активного и реактивного (индуктивного) сопротивления. Это очень просто, нужно пользоваться теоремой Пифагора.

    Несколько чаще, чем формула тока короткого замыкания, на практике используются экспериментально выведенные кривые. Они представляют собой зависимости величины I к.з. от длины проводника, сечения провода и мощности силового трансформатора. Графики представляют собой совокупность нисходящих по экспоненте линий, из которых остается лишь выбрать подходящую. Метод дает приблизительные результаты, но его точность вполне отвечает практическим потребностям инженеров по энергоснабжению.

    Как проходит процесс

    Кажется, что все происходит мгновенно. Что-то загудело, свет померк и тут же погас. На самом деле, как любое физическое явление, процесс можно мысленно растянуть, замедлить, проанализировать и разбить на фазы. До наступления аварийного момента цепь характеризуется установившимся значением тока, находящимся в пределах номинального режима. Внезапно полное сопротивление резко уменьшается до величины, близкой к нулю. Индуктивные составляющие (электродвигатели, дроссели и трансформаторы) нагрузки при этом как бы замедляют процесс роста тока. Таким образом, в первые микросекунды (до 0,01 сек) сила тока короткого замыкания источника напряжения остается практически неизменной и даже несколько снижается за счет начала переходного процесса. ЭДС его при этом постепенно достигает нулевого значения, затем проходит через него и устанавливается в каком-то стабилизированном значении, обеспечивающем протекание большого I к.з. Сам ток в момент переходного процесса представляет собой сумму из периодической и апериодической составляющих. Форма графика процесса анализируется, в результате чего можно определить постоянную величину времени, зависящую от угла наклона касательной к кривой разгона в точке ее перегиба (первой производной) и времени запаздывания, определяемого величиной реактивной (индуктивной) составляющей суммарного сопротивления.

    Ударный ток КЗ

    В технической литературе часто встречается термин «ударный ток короткого замыкания». Не следует пугаться этого понятия, оно вовсе не такое страшное и к поражению электричеством прямого отношения не имеет. Понятие это означает максимальное значение I к.з. в цепи переменного тока, достигающее своей величины обычно через полпериода после того, как возникла аварийная ситуация. При частоте 50 Гц период составляет 0,2 секунды, а его половина — соответственно 0,1 сек. В этот момент взаимодействие проводников, расположенных вблизи друг относительно друга, достигает наибольшей интенсивности. Ударный ток короткого замыкания определяется по формуле, которую в этой статье, предназначенной не для специалистов и даже не для студентов, приводить не имеет смысла. Она доступна в специальной литературе и учебниках. Само по себе это математическое выражение не представляет особой сложности, но требует довольно объемных комментариев, углубляющих читателя в теорию электроцепей.

    Полезное КЗ

    Казалось бы, очевидный факт состоит в том, что короткое замыкание — явление крайне скверное, неприятное и нежелательное. Оно может привести в лучшем случае к обесточиванию объекта, отключению аварийной защитной аппаратуры, а в худшем — к выгоранию проводки и даже пожару. Следовательно, все силы нужно сосредоточить на том, чтобы избежать этой напасти. Однако расчет токов короткого замыкания имеет вполне реальный и практический смысл. Изобретено немало технических средств, работающих в режиме высоких токовых значений. Примером может служить обычный сварочный аппарат, особенно дуговой, замыкающий в момент эксплуатации практически накоротко электрод с заземлением. Другой вопрос состоит в том, что режимы эти носят кратковременный характер, а мощность трансформатора позволяет выдерживать эти перегрузки. При сварке в точке касания окончания электрода проходят огромные токи (они измеряются в десятках ампер), в результате чего выделяется достаточно тепла для местного расплавления металла и создания прочного шва.

    Методы защиты

    В первые же годы бурного развития электротехники, когда человечество еще отважно экспериментировало, внедряя гальванические приборы, изобретало различные виды генераторов, двигателей и освещения, возникла проблема защиты этих устройств от перегрузок и токов короткого замыкания. Самое простое ее решение состояло в последовательной с нагрузкой установке плавких элементов, которые разрушались под воздействием резистивного тепла, в случае если ток превышал установленное значение. Такие предохранители служат людям и сегодня, их главные достоинства состоят в простоте, надежности и дешевизне. Но есть у них и недостатки. Сама простота «пробки» (так назвали держатели плавких ставок за их специфическую форму) провоцирует пользователей после ее перегорания не мудрствовать лукаво, а заменять вышедшие из строя элементы первыми попавшимися под руку проволочками, скрепками, а то и гвоздями. Стоит ли упоминать о том, что такая защита от токов короткого замыкания не выполняет своей благородной функции?

    На промышленных предприятиях для обесточивания перегруженных цепей автоматические выключатели начали использовать раньше, чем в квартирных щитках, но в последние десятилетия «пробки» были в основном заменены ими. «Автоматы» намного удобнее, их можно не менять, а включить, устранив причину КЗ и дождавшись, когда тепловые элементы остынут. Контакты у них иногда подгорают, в этом случае их лучше заменить и не пытаться почистить или починить. Более сложные дифференциальные автоматы при высокой стоимости не служат дольше обычных, но функционально их нагрузка шире, они отключают напряжение в случае минимальной утечки тока «на сторону», например при поражении человека током.

    В обыденной же жизни экспериментировать с коротким замыканием не рекомендуется.

    Короткое замыкание представляет собой электрическое соединение различных фаз, которые являются нетипичными для нормального режима работы. Вследствие этого в проводнике резко увеличивается сила тока, что приводит к неблагоприятным последствиям. Рассмотрим, что такое короткое замыкание, классификацию явления, потенциальные угрозы и способы предотвращения КЗ.

    КЗ делится в зависимости от фазы сети. В однофазной системе выделяют следующую классификацию:

    • фаза и ноль – наиболее распространенный тип в быту. Замыкание случается, если использовать электрические приборы, которые не рассчитаны на стандартную величину токов или если в розетке находится плохой контакт. В результате этого наблюдается перегрев, и изоляция проводов нарушается;
    • фаза и заземление – ситуация, в которой фазный провод начинает контактировать с заземленным корпусом другого оборудования.

    КЗ может происходить в трехфазной системе:

    • однофазное – рассмотрено выше;
    • двухфазное – в процессе принимает участие две системы. Подобная ситуация часто случается с воздушными линиями электропередач. Чаще всего это происходит во время сильного ветра, когда линии проводов пересекаются между собой и образуют замыкание;
    • трехфазное и земля – одновременный контакт трех системы с землей;
    • трехфазное – одновременный контакт трех системы, спровоцированный соединением между собой токопроводящего предмета.

    Основные причины, провоцирующие возникновение КЗ:

    • нарушение целостности изоляции, что может возникать вследствие износа электрооборудования, в связи с загрязнением поверхности приборов, а так же механическими повреждениями;
    • механическое нарушение целостности элементов сети (к примеру, обрыв линии передачи);
    • скачки напряжения – пробой изоляции проводника, что приводит к развитию утечки тока и созданию дугового кратковременного разряда;
    • удар молнии;
    • попадание животных и птиц на токоведущие части;
    • человеческий фактор – ошибки персонала при проведении работ по переключению;
    • преднамеренное КЗ с использованием короткозамыкателей – используются с целью экономии выключателей. Сегодня данная технология не применяется и является запрещенной.

    Какие могут быть последствия?

    Во время замыканий наблюдается резкое увеличение силы тока, что приводит к расплавлению металлов. «Брызги» могут разноситься во все стороны, приводя к воспламенению предметов вокруг и пожарам. Это особенно опасно для домашних условий, так как КЗ может стать причиной потери имущества и жилья. Последствиями на предприятиях является аварийная ситуация, повреждение техники и риск того, что могут пострадать люди.

    Замыкание, в зависимости от места его образования, может привести к системой аварии, последствиями которой станет экономический и технический урон. Оборудование, которое находилось под действием усиленной силы тока, выходит из стоя или получает серьезные повреждения.

    Еще одним последствием замыкания является ухудшение условий работы персонала и потребителей – резкое понижение давления приводит к остановке производственных мощностей и экономическому ущербу. Наибольший урон наносится тому месту, в котором непосредственно возникло замыкание.

    Способы защиты

    Наиболее надежным и действенным способом предотвращения КЗ является установка автоматических выключателей. Альтернативой служат плавкие предохранители. Автомат своевременно улавливает возникновение замыкания и отключает питание, благодаря чему возникновение аварийной ситуации является невозможным.

    Прочие меры предосторожности:

    • регулярная ревизия электропроводных каналов – визуальное определение слабых мест кабеля, где изнашивается изоляция и своевременное устранение проблемы;
    • использование электрических реакторов, которые регулируют подачу тока;
    • использование специальных электроцепей, которые в случае необходимости отключают секционные выключатели;
    • использование понижающих трансформаторов, которые оснащены расщепляемой обмоткой низкого напряжения.

    Совет: для домашнего использования рекомендуется устанавливать автоматические выключатели. Они рассчитаны на определенный ток, после превышения величины которого, разрывается цепь. Прочие меры в основном указаны для промышленного использования.

    В чем заключается угроза КЗ?

    Замыкание в первую очередь представляет угрозу здоровью и жизни человека. Это связано с пожарной опасностью: возгорание изоляции проводов, воспламенение окружающих предметов, способность изоляции распространять горение. Так же изменение силы тока может быть губительным для используемых устройств и приборов, приводя к катастрофическим последствиям. КЗ может стать причиной экономического убытка Поэтому важно использовать меры профилактики возникновения явления и прибегать к установке методов защиты.

    Как происходит короткое замыкание. Причины возникновения короткого замыкания

    Каждый день, будь то дома или на работе мы замыкаем электрическую цепь, и ничего взрывоопасного не происходит. Замыкая цепь с помощью штепсельной вилки электроприбора, электроэнергия превращается:

    • — в механическую энергию — двигатели насосов, пылесосов и различных электрических приспособлений.
    • — в тепловую энергию — горячий воздух фена, кипяток электрического чайника, тепловое излучение электрического конвектора.

    Это хорошее замыкание, назовем ее условно в противопоставлении короткому, “длинное” замыкание электрической цепи.

    Короткое замыкание имеет отрицательный результат, то есть, энергия позиционирует себя в виде искр, хлопка, часто возгорание проводки и легко возгораемых материалов — пожар.

    Что же такое короткое замыкание?

    Пример: Локомотив должен доставить груз, допустим из города Нижний Новгород в такой мегаполис как Москва. Путь состава должен быть длинным. Локомотив, таща за собой 50 вагонов угля, набирает большую скорость. Но вдруг, в городе Владимир диспетчер совершает роковую ошибку, переключив стрелку на путь, где находится другой состав — аварии не миновать.

    Состав набравший большую скорость быстро не остановить. Наглядный пример может показаться примитивным, но хочется показать принцип лежащий в основе – это сила, мощь, использованная не по назначению, несущая разрушение. Путь следования локомотива с множеством вагонов оказался коротким, не завершенным, не достиг цели.

    Именно СИЛА тока производит разрушение, при коротком замыкании ток увеличивается в 20 раз, количество тепла возрастает примерно в 400 раз.

    Вот еще одно яркое объяснение, что такое короткое замыкание.

    Известно, что неисправная электропроводка приводит к короткому замыканию, от него чаще всего и возникает возгорание. Об этом частенько упоминается в пожарных отчетах. Что же такое короткое замыкание, чем оно опасно?

    В нормальном режиме работы ток в проводке между фазным и нулевым проводами протекает через нагрузку, которая этот ток ограничивает на безопасном для проводки уровне. При разрушении изоляции ток протекает, минуя нагрузку, сразу между проводами. Такой контакт, называется коротким, поскольку происходит помимо электроприбора.

    Вспомним закон Ома: I = U/R, что словами, обычно, произносится так: «Ток в цепи прямо пропорционален напряжению, и обратно пропорционален СОПРОТИВЛЕНИЮ». Именно на СОПРОТИВЛЕНИЕ здесь и стоит обратить внимание.

    Сопротивление ТПЖ электропроводки, как правило, невелико, поэтому им можно пренебречь, считать его равным нулю. Согласно законам математики деление на ноль невозможно, а результат будет стремиться к бесконечности. В случае короткого замыкания к этой самой бесконечности будет стремиться ток в цепи.

    Конечно, это не совсем так, провода имеют какое-то конечное сопротивление, поэтому до бесконечности ток, конечно же, не дойдет, но будет достаточной силы, чтобы произвести разрушительное действие, достаточно мощный взрыв. Возникает вольтова дуга, температура которой достигает 5000 градусов по Цельсию.

    Причины короткого замыкания

    • Ошибки персонала обслуживающего электрические сети.
    • Из-за износа (устаревшей) электропроводки.
    • Неправильный монтаж электропроводки.
    • Плохой контакт в соединениях проводки и электроприборов
    • Из-за перегрузки электрической цепи.
    • Может возникнуть по причине механического повреждения проводов.
    • КЗ могут спровоцировать грызуны.

    Как не допустить короткое замыкание?

    Для предупреждения короткого замыкания необходимо.

    • Грамотно монтировать и эксплуатировать электроустановки.
    • Подбирать электропроводку в соответствии с величиной тока.
    • Регулярно проводить плановые осмотры и измерения сопротивления изоляции;
    • Правильно выбирать автоматику защиты, которые предназначены отключать поврежденный участок.
    • Прежде чем производить работы с проводкой ее необходимо обесточить.

    Польза короткого замыкания

    На основе короткого замыкания зародилась дуговая сварка, которая используется на производстве. Точка контакта стержня и металлическая поверхность нагревается до температуры плавления, металлическая конструкция соединяется в единое целое. Например, современные кузова автомобилей скреплены именно посредством короткого замыкания – дуговой сварки.

    Приветствую всех на своем блоге! Знаете, что такое короткое замыкание , причины возникновения, последствия и какая бывает защита? Уверен, знаете. Нового ничего не расскажу, поэтому можете дальше не читать))) Шутка. Поговорим о явлении — короткое замыкание.

    Те, кто хоть иногда почитывают мой блог знают, что недавно со мной произошел несчастный случай. Этому рассказу я посвятил пост « ». Почитайте.

    Статья получила большую популярность в интернете. Живой пример всетаки. На основе нее один «Электрошаман» написал интересную статью про « ВЗРЫВпакетники ».

    Что же произошло, каковы причины? Читал предположения в комментариях.

    Ответ таиться в слове — замыкание . Я конечно на 100% не уверен, все произошло быстро, но так написано в акте о несчастном случае. Цитирую коротко:

    При протягивании произошло короткое замыкание между контактной группой и корпусом пакетного выключателя через жало отвертки, которую АЗ держал правой руке.

    Скоро расскажу подробнее об этом акте, что там, как, подписывайтесь на новости , чтобы не пропустить. Итак:

    Что такое короткое замыкание?

    Это не предусмотренное конструкцией соединение двух точек электрической цепи с разными потенциалами.

    • Однофазные,
    • Двухфазные,
    • Трехфазноеые,
    • Межвитковые,
    • На металлический корпус.

    Последствия короткого замыкания:

    Сопровождаются большим выделением тепла, электромагнитным полем, расплавлением токоведущих частей, возгоранием, что приводит к пожарам, скачкам напряжения, нарушениям функциональности электрической цепи, системным авариям в энергосетях итд.

    Думаю каждый из вас знает случай пожара, который произошел из за короткого замыкания электропроводки дома, квартиры. Частое явление.

    Электрическая дуга также может возникнуть от короткого замыкания, как в моем случае. Кстати, как обещал, фото того самого электрощита, после аварии:

    Темновато, но видно вроде.

    Причины короткого замыкания:

    Могут быть вызваны перегрузкой, разными неполадками, например: неисправность в выключателе или штепсельной розетке, непрочное соединение в осветительной коробке, механическое повреждение изоляции кабеля, неисправность бытовых приборов без системной защиты .

    Неисправности и повреждения могут образоваться как из-за неосторожного обращения, так и при физическом износе элементов системы. Например если у выключателя сломалась пружинящая контактная пластина или образовалась трещина на крышке, его необходимо заменить.

    Причины можно долго перечислять, если у кого-то есть уникальные случаи, поделитесь историей в комментариях, интересно.

    Короткое замыкание в нашей жизни, наверное, видел каждый человек. Это когда два проводника, например, фазный провод и нулевой или провод фазы А и провод фазы В, без какого-либо сопротивления, напрямую соединяются. Сила тока повышается в сотни раз, в результате чего возникает искра или электрическая дуга, зависит от напряжения, нагрузки в сети. Происходит . Очень опасная штука, приносящая огромный вред вашему электрохозяйству.

    Из-за чего происходит короткое замыкание

    Короткое замыкание чаще всего связано с такими явлениями, как нагрузка и перегрузка электрического тока. Нагрузка — это прохождение тока по проводнику. Чем больше нагрузка, тем сильнее проводник нагревается и быстрее приходит в негодность (нагрев проводника также зависит от его сопротивления, иначе говоря, из какого материала сделан проводник). По этому поводу можете заглянуть на . Пока температура держится в пределах нормы, изоляция справляется с нагрузкой, короткое замыкание не произойдет.

    Если происходит постоянный перегрев провода, значит изоляция быстрее придет в негодность и может произойти короткое замыкание. Резина ссыхается и лопается, бумага и пряжа обугливаются, пластмасса плавится.

    Перегрузка — это уже ток, который вызывает очень сильный нагрев проводника. Соответственно, чем сильнее перегрузка, тем быстрее выйдет из строя изоляция и произойдет короткое замыкание. Если пропала изоляция, произошло короткое замыкание и цепь не разъединилась, тогда может возникнуть возгорание изоляции.

    Что происходит и частые причины короткого замыкания

    Короткое замыкание приводит к тому, что сгорают ближайшие или отключаются . Очень часто короткое замыкание происходит в момент включения электроприбора в сеть. Я могу вам посоветовать поискать причину короткого замыкания в неисправности самого прибора.

    По моему опыту, я могу назвать несколько причин короткого замыкания. Во-первых, это механическое повреждение провода; во-вторых, неаккуратное обращение с оголенными проводами; в-третьих, закорачивание металлическими предметами , штифтов , внутренних частей патрона; в-четвертых, перетирание изоляции в местах, где провода перегибаются; в-пятых, изгибание под прямым углом и т.д.

    Как избежать короткого замыкания

    Избегаем короткое замыкание при . Для этого восстанавливаем трассу, то есть виртуально соединяем разветвительные коробки, розетки, выключатели и светильники. Получившиеся линии будут указывать на то, где проходит провод. В этих местах я вам не советую сверлить или что-нибудь забивать, чтобы не произошло короткого замыкания. Так же, надо правильно установить защиту, во избежании короткого замыкания.

    Ну вот в принципе всё, что сегодня я хотел вам поведать о таком вредители как короткое замыкание. Буду рад вновь видеть вас на моем . Много полезного, связанного с электромонтажными работами и электротехникой, можете найти на . Пишите комментарии, всего доброго.

    ЭлектрО

    ВИДЫ, ПРИЧИНЫ И ПОСЛЕДСТВИЯ КОРОТКИХ ЗАМЫКАНИЙ

    Коротким замыканием (КЗ) называется нарушение нормальной работы электрической установки, вызванное замыканием фаз между собой, а также замыканием фаз на землю в сетях с глухозаземленными нейтралями.

    Причинами КЗ обычно являются нарушения изоляции, вызванные ее механическими повреждениями, старением, набросами посторонних тел на провода линий электропередачи, проездом под линиями негабаритных механизмов (кранов с поднятой стрелой и т.п.), прямыми ударами молнии, перенапряжениями, неудовлетворительным уходом за оборудованием. Часто причной повреждений в электроустановках, сопровождающихся короткими замыканиями, являются неправильные действия обслуживающего персонала. Примерами таких действий являются ошибочные отключения разъединителем цепи с током, включения разъединителей на закоротку, ошибочные действия при переключениях в главных схемах и в схемах релейной защиты и автоматики.

    При КЗ токи в поврежденных фазах увеличиваются в несколько раз по сравнению с их нормальным значением, а напряжения снижаются, особенно вблизи места повреждения. Протекание больших токов КЗ вызывает повышенный нагрев проводников, а это ведет к увеличению потерь электроэнергии, ускоряет старение и разрушение изоляции, может привести к потере механической прочности токоведущих частей и электрических аппаратов.

    Снижение уровня напряжения при КЗ в сети ведет к уменьшению вращающего момента электродвигателей, их торможению, снижению производительности и даже к полному останову.

    Резкое снижение напряжения при КЗ может привести к нару­шению устойчивости параллельной работы генераторов электро­станций и частей электрической системы, возникновению си­стемных аварий.

    Рис. 1. Виды коротких замыканий:

    а – трехфазное КЗ; б – двухфазное КЗ; в – двухфазное КЗ на землю; г – однофазное КЗ.

    Виды КЗ в трехфазной сети и их обозначения приведены на рис. 1.

    Трехфазные и двухфазные КЗ возможны в любых трехфазных сетях.

    Для прохождения тока при однофазном или двухфазном КЗ на землю необходимо, чтобы на участке сети, где произошло по­вреждение, была хотя бы одна заземленная нулевая точка (нейт­раль) трансформатора, электрически связанная с местом КЗ (см. рис. 1, в, г ). Чем больше будет заземленных нейтралей, тем больше будет ток КЗ при этих видах повреждений.

    Важным фактором является относительная частота возникнове­ния различных видов КЗ. По усредненным данным она составля­ет, %: трехфазные — 5; двухфазные — 10; однофазные — 65; двух­фазные КЗ на землю — 20. Иногда один вид замыканий переходит в другой (например, в кабельных линиях 6—10 кВ замыкание од­ной фазы на землю часто переходит в междуфазные КЗ).

    Как правило, в месте КЗ возникает электрическая дуга, кото­рая образует вместе с сопротивлениями элементов пути тока КЗ переходное сопротивление. Иногда возникают металлические КЗ без переходного сопротивления.

    Для обеспечения надежной работы энергосистем и предотвра­щения повреждений оборудования при КЗ необходимо быстро отключать поврежденный участок, что достигается применением устройств релейной зашиты с минимальными выдержками времени и быстродействующих отключающих аппаратов (выключа­телей). Немаловажную роль играют устройства АРВ и быстродей­ствующей форсировки возбуждения (УВФ) синхронных генера­торов, которые увеличивают ток возбуждения синхронных генераторов при коротких замыканиях, благодаря чему меньше пони­жается напряжение в различных звеньях сети, а после отключе­ния КЗ напряжение быстрее восстанавливается до нормального.

    К мерам, уменьшающим опасность развития аварий, относят­ся: выбор рациональной схемы сети, правильный выбор аппаратов по условиям КЗ, применение токоограничивающих устройств и т.п.

    Для осуществления указанных мероприятий необходимо уметь определить токи КЗ и учитывать характер их изменения во вре­мени.

    Причины возникновения и последствия коротких замыканий

    VGA (Video Graphics Array ) — стандарт, разработанный для видеоадаптеров и мониторов. Стандарт был создан компанией IBM в 1987 году, предназначался для компьютеров PS/2 Model 50, а также более старшей линейки. Стандарту VGA следовало большинство производ

    Управление симисторами в схемах на микроконтроллере

    Иногда нужно слабым сигналом с микроконтроллера включить мощную нагрузку, например лампу в комнате. Особенно эта проблема актуальна перед разработчиками умного дома . Первое что приходит на ум — реле . Но не спешите, есть способ лучше:) В самом деле, рел

  • Добавить комментарий