Применение повышенной частоты для осветительных установок с разрядными лампами


СОДЕРЖАНИЕ:

Влияние цикла переключения на срок службы осветительных установок

ВВЕДЕНИЕ

Основной целью энергетической политики Республики Беларусь является поиск путей и формирование механизмов оптимального развития и функционирования отраслей ТЭК, а также техническая реализация надежного и эффективного энергообеспечения всех отраслей экономики и населения, обеспечивающих производство конкурентоспособной продукции и достижение стандартов уровня и качества жизни населения высокоразвитых европейских государств при сохранении экологически безопасной среды.

Исторически и экономически современная человеческая цивилизация имеет жёсткую зависимость от искусственного освещения. Как первая услуга, предложенная электроснабжающими компаниями, освещение сейчас является одной из сфер конечного применения, на которую приходится значительная часть глобального потребления электроэнергии. Экспертами прогнозируется, что мировой спрос на искусственное освещение к 2030 году будет на 80% выше текущего уровня. На сегодняшний день в масштабе всей планеты на долю сетевого электрического освещения приходится около 20% от общего производства электроэнергии.

Учитывая текущее состояние электроэнергетики Беларуси и постройку атомной электростанции, следует заметить, что стоимость электроэнергии в ближайшем будущем будет уменьшаться. Поэтому при эксплуатации электроосвещения необходимо обратить внимание на такие финансовые факторы, как стоимость закупки источников света, стоимость пускорегулирующей аппаратуры и затраты на утилизацию использованных ламп согласно [1].

На срок службы осветительных установок оказывают влияние многие факторы. К ним относятся отклонения питающего напряжения [2], токи высших гармоник, электромагнитные волны, тепловое воздействие, а также износ источников света и пускорегулирующей аппаратуры (ПРА).

Одним из важнейших факторов, снижающих срок службы электрических светильников, является количество коммутаций в процессе их эксплуатации. Каждая коммутация сопровождается переходными процессами импульсного характера, что негативно сказывается как на оборудовании светильника, так и непосредственно на источнике света. Особенно это актуально для газонаполненных ламп. Так в установившемся режиме эмиссионное покрытие электродов люминесцентной лампы разрушается довольно медленно. Гораздо более интенсивное распыление эмиссионного вещества происходит при её включении. Светодиоды намного менее критичны к коммутациям, чем газонаполненные лампы. Однако все светодиодные светильники, питающиеся от стандартного переменного напряжения 220 В, содержат блоки питания, которые имеют ограниченное количество циклов включения-отключения.

В данном исследовании предлагается методика эксплуатации электросветильников, основанная на определении оптимального времени их использования в рамках одного рабочего цикла с учётом количества потреблённой электроэнергии, количества циклов включения-отключения без ухудшения их рабочих свойств. В методике учитывается стоимость, как потреблённой электроэнергии, так и комплектующих системы электрического освещения, подвергающихся износу при каждом запуске.

Пример расчёта оптимального времени эксплуатации осветительной установки

Совокупность представленных способов расчёта позволяет превентивно выбрать наиболее экономичный вариант электроосветительных установок, ещё на этапе проектирования (реконструкции), с учётом того, что известны все необходимые параметры помещений, лимит капитальных вложений в осветительные установки (ОУ) и текущие стоимости комплектующих. Данная методика также может быть использована в качестве организационно-технических мероприятий по экономии в уже эксплуатируемых помещениях. Возможно, как применение только организационных мероприятий (работа ОУ по разработанному графику, время включения освещения в помещении максимально близкое к TКЧ), так и организационно-технических (включающих также установку систем автоматического включения/отключения светильников, датчиков движения и т.д.).

Принципиальная разница в определении оптимального времени включения TКЧ для гражданских зданий и промышленных объектов заключается в нескольких факторах:

— сложность (разветвлённость) электроосветительных сетей промышленных предприятий;

— различные условия эксплуатации, особенности обслуживания;

— количество источников света, задействованных на предприятиях, существенно выше, чем у бытовых потребителей.

Именно из-за последнего фактора, при расчётах TКЧ для систем электрического освещения промышленных объектов, следует учитывать расходы на утилизацию отработанных ламп Цу. Стоимость приема в собственность для последующего обезвреживания, в зависимости от количества ламп, предоставлена в [10].

Следовательно, вышеуказанные формулы расчётов затрат изменяются в зависимости от типа потребителя, получая слагаемое Цу или наоборот.

Для наглядного примера рассмотрим расчётTКЧ для различных вариантов.

Пример1: помещение с 4 электросветильниками, имеющими 2 люминесцентные лампы T5/840-28WKC (цена бел. руб с НДС Цл=3,04 BYN, mл=2000) в каждом и 3 электросветильниками, имеющими 4 люминесцентные лампы T8/840-18WКС (цена бел. руб с НДС Цл=2,08 BYN, mл=1500) в каждом. Принять затраты на монтаж и утилизацию ламп такими же, как и для ПРА: затраты на монтаж Зм=1 BYN, затраты на утилизацию Зу=0,79 BYN. Предположим, что включение всей ОУ производится с помощью одноклавишного выключателя и в качестве ПРА используются ЭПРА с холодным розжигом ламп (учитываем, как коэффициент увеличения на 1,2). Стоимость ЭПРА ЦПРА=6 BYN, mПРА=3000. Затраты финансовые на кратковременное увеличение электроэнергии в момент пуска весьма незначительные для люминесцентных ламп данного типа (учитываем, как коэффициент 1,05), тогда по формуле (9), BYN:

Пересчитаем тариф оплаты за электроэнергию на текущий курс доллара США.

где Сб – базовая стоимость электроэнергии, BYN /кВт . ч; Ктек – текущий курс доллара США по обменному курсу национального банка РБ, BYN; Кб – базовый курс доллара США по обменному курсу национального банка РБ, BYN; kНДС, – коэффициент, учитывающий увеличение стоимости электроэнергии за счёт налога на добавленную стоимость.

При соотношении курса белорусского рубля к доллару США 2,0461:1, тариф был равен 0,25197 BYN/кВт . ч. тогда текущий тариф по формуле (23):

Тогда минимальное оптимальное время включения электроосвещения данного помещения по критерию экономической эффективности по формуле (12):

Пример 2: в помещении промышленного предприятия установлены 9 электросветильников с двумя лампами T8/840-36WКС (цена с НДС 1,54 USD) в каждом. Стоимость утилизации одной лампы примем равной 0,32 USD[10]. В качестве ПРА используются электромагнитные ПРА, стоимостью 1,6 USDкаждая. Для ПРА будем учитывать влияние дополнительных факторов: kпопр.2=1,3.

Среднее нормируемое количество циклов включений-отключений для бюджетных люминесцентных ламп рассматриваемого типа примем равным 1500, а для ПРА, соответственно, 1800. Затраты на монтаж можно принять равными 30% от стоимости оборудования. Тогда при одновременном включении всех электросветильников, затраты на один пуск в соответствии с формулой (9) составят в USD:

Следовательно, при одновременном включении всех электросветильников и стоимости электроэнергии 0,1 USD за 1кВт . ч, минимальное оптимальное время включения по формуле (12) будет равно:

То есть если лампы будут находиться во включенном состоянии менее 38 минут при приблизительно равномерном графике включений-отключений, то это приведёт к дополнительным затратам, связанным с эксплуатационными расходами.Поэтому гораздо лучше будет оправдан пересмотр графика работы данных электросветильников.

Пример3: в бытовом помещении установлены 6 электросветильников с лампами накаливания 60Вт (цена бел. руб без НДС Цл=0,5 BYN). Управление СЭО осуществляется с помощью двухклавишного выключателя (1 от первой клавиши от стабилизатора, 5 – от второй, напрямую от сети). ПРА не используется. Для расчётов примем Tпуск равное 5с=1/12 минуты=1/720 ч

В этом примере требуется применить формулу (15). При включении только первой клавиши выключателя:

Тогда по формуле (12):

При включении только второй клавиши выключателя:

При включении сразу двух клавиш выключателя:

Как видно из данных расчётов, лампы накаливания, ввиду своих особенностей, имеют весьма малое значение минимального оптимального времени включения TКЧ. Таким образом, электросветильники с лампами накаливания выгоднее выключать как можно скорее, после их включения (коммутации).

ЗАКЛЮЧЕНИЕ

Предложенная методика позволяет оптимизировать работу систем освещения таким образом, что при некотором возрастании затрат электроэнергии общие затраты на эксплуатацию осветительной установки будут снижены.

Методика была успешно представлена на четырёх конференциях: XXXVII научная конференция студентов I, II ступеней и аспирантов (РБ, г. Гомель, ГГТУ им. П.О.Сухого); XVII международная научно-техническая конференция студентов, аспирантов и молодых ученых «Исследования и разработки в области машиностроения, энергетики и управления» (РБ, г. Гомель, ГГТУ им. П.О.Сухого); международная конференция «Проспект Свободный — 2020» (РФ, г. Красноярск, СФУ); международная научно-практическая конференция «Инновационные технологии в энергетике: образование, наука, производство» (Туркменистан, г. Мары, ГЭИТ).На XXXVII научной конференции студентов I, II ступеней и аспирантов был получен диплом за «лучший научный доклад.

Имеются научные публикации по материалам конференций[19], [20]. Также выполнена и ожидает публикации статья «Повышение эффективности эксплуатации электрических светильников» для журнала «Вестник ГГТУ им. П.О.Сухого».

Сформулируем основные выводы по результатам исследования.

1) Оптимальное время включения лампы по критерию экономической эффективности TКЧ зависит, преимущественно, от: мощности осветительной установки, стоимости отпуска электроэнергии, стоимости источников света и оптимального количества циклов включения/отключения лампы mл.опт, учитывающего среднестатистический срок службы данного источника света [5, п. 3.6.4.3].

2) В осветительных установках, использующих однотипные комплектующие и источники света одинаковой (суммарной) мощности, величина TКЧ будет практически одинаковой.

3) При условиях п.2 – равномерно разделённая нагрузка на два выключателя, позволяет утверждать, что величина оптимального времени включения ламп по критерию экономической эффективности TКЧ на каждой линии будет приблизительно равна.

4) Для люминесцентных ламп наиболее эффективна работа с учётом времени TКЧ, т.к. данные источники света имеют длительный полезный срок эксплуатации, при ограниченном количестве циклов коммутации, обусловленном деградацией люминофора, снижающей световой поток, и потерей электродами эмиссионной способности. Последнее может обусловливаться истощением или отравлением эмиссионного покрытия (ЭП) вольфрамовых спиралей электродов. При полной потере электродами эмиссионной способности они либо разрушаются, либо ЛЛ перестает зажигаться.

5) Для ламп накаливания, дуговых ртутных люминесцентных ламп (ДРЛ) и натриевых газоразрядных ламп (ДНаТ) эффективность работы согласно с временем TКЧ обусловлена лишь в случае с большой нагрузкой, сосредоточенной на одном устройстве управления либо наличия дорогой ПРА. В остальных случаях – электросветильники данных видов рекомендуется отключать как можно быстрее после включения (коммутации).

6) Для светодиодных ламп (СД) и индукционных ламп количество циклов включения/отключения практически не ограничено, следовательно, не принимая в расчёт ПРА и редкие виды, можно сказать, что TКЧ для них практически равен нулю.

7) Совокупность представленных способов расчёта позволяет превентивно выбрать наиболее экономичный вариант электроосветительных установок, ещё на этапе проектирования (реконструкции), с учётом того, что известны все необходимые параметры помещений, лимит капитальных вложений в ОУ и текущие стоимости комплектующих.

8) Возможно, как применение только организационных мероприятий (работа ОУ по разработанному графику, информирование персонала, время включения освещения в помещении максимально близкое к TКЧ), так и организационно-технических (установка автоматической системы управления освещением, установка датчиков движение в совокупности с таймерами отключения);

9) На основании полученных уравнений и коэффициентов можно проводить имитационное моделирование и создать программу расчёта для ЭВМ, которая будет способна рассчитать конфигурацию системы электрического освещения и выбрать вариант, имеющий наибольший экономический эффект от применения данной методики.

Степень внедрения: на основе результатов расчёта данной методики в части цеха производства пластмассовых изделий №1 ЗАО «Легпромразвитие» г. Бобруйска, а также в производственных цехах по ул. К. Маркса 27 и административно бытовой корпус было внедрено в производство рационализаторское предложение по оптимизации эксплуатации электрических светильников на основе времени оптимального включения ТКЧ, что позволило существенно увеличить срок службы источников света и уменьшить суммарные затраты на электрическое освещение суммарно на 31990 BYN, что приблизительно составляет 30% от суммарных эксплуатационных затрат на СЭО предприятия.Копия акта внедрения методики в производство находится в приложении А. На данный момент планируется внедрение данной методики на территории нескольких цехов ЗАО «Легпромразвитие», ОАО «Белшина», ОАО «Бобруйскагромаш» и РУП «БЗТДиА».

ПРИЛОЖЕНИЕ А

Акт внедрения результатов научно-исследовательской работы

ВВЕДЕНИЕ

Основной целью энергетической политики Республики Беларусь является поиск путей и формирование механизмов оптимального развития и функционирования отраслей ТЭК, а также техническая реализация надежного и эффективного энергообеспечения всех отраслей экономики и населения, обеспечивающих производство конкурентоспособной продукции и достижение стандартов уровня и качества жизни населения высокоразвитых европейских государств при сохранении экологически безопасной среды.

Исторически и экономически современная человеческая цивилизация имеет жёсткую зависимость от искусственного освещения. Как первая услуга, предложенная электроснабжающими компаниями, освещение сейчас является одной из сфер конечного применения, на которую приходится значительная часть глобального потребления электроэнергии. Экспертами прогнозируется, что мировой спрос на искусственное освещение к 2030 году будет на 80% выше текущего уровня. На сегодняшний день в масштабе всей планеты на долю сетевого электрического освещения приходится около 20% от общего производства электроэнергии.

Учитывая текущее состояние электроэнергетики Беларуси и постройку атомной электростанции, следует заметить, что стоимость электроэнергии в ближайшем будущем будет уменьшаться. Поэтому при эксплуатации электроосвещения необходимо обратить внимание на такие финансовые факторы, как стоимость закупки источников света, стоимость пускорегулирующей аппаратуры и затраты на утилизацию использованных ламп согласно [1].

На срок службы осветительных установок оказывают влияние многие факторы. К ним относятся отклонения питающего напряжения [2], токи высших гармоник, электромагнитные волны, тепловое воздействие, а также износ источников света и пускорегулирующей аппаратуры (ПРА).

Одним из важнейших факторов, снижающих срок службы электрических светильников, является количество коммутаций в процессе их эксплуатации. Каждая коммутация сопровождается переходными процессами импульсного характера, что негативно сказывается как на оборудовании светильника, так и непосредственно на источнике света. Особенно это актуально для газонаполненных ламп. Так в установившемся режиме эмиссионное покрытие электродов люминесцентной лампы разрушается довольно медленно. Гораздо более интенсивное распыление эмиссионного вещества происходит при её включении. Светодиоды намного менее критичны к коммутациям, чем газонаполненные лампы. Однако все светодиодные светильники, питающиеся от стандартного переменного напряжения 220 В, содержат блоки питания, которые имеют ограниченное количество циклов включения-отключения.

В данном исследовании предлагается методика эксплуатации электросветильников, основанная на определении оптимального времени их использования в рамках одного рабочего цикла с учётом количества потреблённой электроэнергии, количества циклов включения-отключения без ухудшения их рабочих свойств. В методике учитывается стоимость, как потреблённой электроэнергии, так и комплектующих системы электрического освещения, подвергающихся износу при каждом запуске.

Влияние цикла переключения на срок службы осветительных установок

Осветительная установка [3] представляет из себя комплексное светотехническое устройство, предназначенное для искусственного и (или) естественного освещения и состоящая из источника оптического излучения, осветительного прибора или светопропускающего устройства, освещаемого объекта или группы объектов, приемника излучения и вспомогательных элементов, обеспечивающих работу установки (проводов и кабелей, пускорегулирующих и управляющих устройств, конструктивных узлов, средств обслуживания).

В рамках данного исследования нас интересуют три составляющие типичной современной осветительной установки: источник света, пускорегулирующая аппаратура и, непосредственно, электросветильник.

Пускорегулирующая аппаратура представляет собой совокупность аппаратов для управления электрическими устройствами (в том числе – для их пуска и останова) и регулирования режима электроустановок и электрических сетей. К ПРА в электроосветительных установках относятся стартер, дроссель, сглаживающий конденсатор, электронный инвертор и т.д. В последнее время широко распространены электронные пускорегулирующие аппараты (ЭПРА, электронный балласт), которые представляют из себя электронное устройство, осуществляющее пуск и поддержание рабочего режима газоразрядных осветительных ламп. Контактные аппараты в ПРА заменяются бесконтактными, содержащими тиристорные и транзисторные ключи, логический магнитные и полупроводниковые элементы, которые уменьшают эксплуатационные затраты, существенно повышают надёжность и срок службы.

Каждый тип ПРА имеет свои особенности принципа действия и конструкции. С точки зрения разрабатываемой методики нас будут интересовать три характеристики ламп: число допустимых включений (коммутаций) до выхода из строя mПРА, коэффициент полезного действия (который влияет на потреблённое количество электроэнергии P) и цена ЦПРА.

У каждого типа ламп есть свои особенности конструкции. В этом направлении будем учитывать четыре характеристики ламп: количество часов непрерывной работы до выхода из строя Tэ число допустимых включений лампы (коммутаций) mл, электрическая мощность Pл и цена Цл.

Светодиодные, индукционные и лампы накаливания практически не имеют ограничения числа допустимых включений (коммутаций) mл, ввиду конструктивных особенностей. Напротив, наиболее распространённые в современном мире люминесцентные лампы (ЛЛ) низкого давления имеют ограниченное количество включений-отключений. Согласно результатам стендовых испытаний [4] различных люминесцентных ламп, применяющих испытания с имитацией реальных условий эксплуатации [5, п 3.9.4, п 3.9.6] (частое включение и выключение ламп), количество допустимых коммутаций лампыmл зависит от типов, конструктивных особенностей и прочего, и нивелируется от значений 1500 до 12000 включений. Поэтому далее рассматриваем исключительно расчёт для люминесцентных ламп.

Электроды люминесцентной лампы представляют собой спираль из вольфрамовой нити, покрытые пастой (активной массой) из щёлочноземельных металлов [6, с. 111]. Эта паста обеспечивает стабильный разряд. В процессе работы она постепенно осыпается с электродов, выгорает и испаряется. Особенно интенсивно она осыпается во время запуска, когда некоторое время разряд происходит не по всей площади электрода, а на небольшом участке его поверхности, что приводит к локальным перепадам температур. Поэтому люминесцентные лампы всё же имеют конечный срок службы (он зависит главным образом от качества изготовления электродов, скорости зажигания), хотя он и больший, чем у обычных ламп накаливания, у которых спираль с постоянной скоростью испаряется. Отсюда потемнение на концах лампы, которое усиливается ближе к окончанию срока службы. Когда паста выгорит полностью, напряжение на лампе возрастает скачкообразно и схема, в которой работает лампа, не может для её горения обеспечить большим напряжением.

Как правило, люминесцентные лампы подвергаются включениям-выключениям несколько раз в сутки. На количество коммутаций влияют как человеческий фактор, так и системы автоматизации освещения. Влияние цикла переключения на срок службы люминесцентных ламп различных типов в разных схемах различно. В электроосветительных системах, где происходит больше одного переключения за три часа, требуется использовать балласты с предварительным нагревом. Если переключение происходит менее часто, то могут использоваться балласты холодного запуска. Согласно [7] даже при низком количестве переключений балласты тёплого запуска дадут более высокий результат, как видно на примере ЛЛ TL-D80из рисунка 1 (в скобках на оси ординат указано количество циклов переключения за 24 часа).

Рисунок 1 -Срок службы ЛЛ TLD 80

Для систем электрического освещения (СЭО), работающих, преимущественно, в условиях частых коммутаций электросветильников, введём первый критерий для данной методики. Исходя из [8, с.307], продолжительность включения (ПВ) — понятие из области электропривода, играющее важную роль при выборе электродвигателя, работающего в повторно-кратковременном режиме, при проектировании привода различных механизмов. Таким образом, применяя данный принцип определения ПВ для сетей электроосвещения, работающих в режимах, отличных от непрерывного (24 часа в сутки), получаем следующую формулу:

где: Твкл – время работы электросветильника/линии электроосвещения (включенное состояние всех ламп) за рассматриваемый промежуток времени, ч; Тоткл – количество времени за рассматриваемый промежуток, в течении которого электросветильник/линия электроосвещения отключены, ч; Tц – общее время цикла работы электроосветительной установки, включающее среднестатистическое время в течении одного запуска СЭО и время паузы от отключения электросветильников до последующего их запуска в рамках рассматриваемого помещения, ч.

Исходя из вышесказанного, методика оптимальной эксплуатации электрических светильников по критерию минимума финансовых затрат может быть рекомендована к применению в помещениях, в которых продолжительность включения электроосвещения составляет более 50%, т.е.:

Стоит отметить, что методика применима к СЭО с любой ПВ и любым видом ламп, однако, наибольший экономический эффект будет достигаться при условии (2) для люминесцентных ламп.

Немаловажно то, что оптимальное время включения лампы по критерию экономической эффективности TКЧ зависит, преимущественно, от мощности осветительной установки, стоимости отпуска электроэнергии, стоимости источников света и оптимального количества циклов включения/отключения лампы mл.опт, учитывающего среднестатистический срок службы данного источника света [5, п. 3.6.4.3], т.е.:

где: Tср.стат – среднестатистический срок службы[5, п. 3.3.6] данного источника света, ч; Tопт.изг – оптимальное время включения лампы, согласно прогнозам предприятия-изготовителя либо расчётам специалистов-аналитиков, ч; kпопр.ср.сл – поправочный коэффициент, учитывающий актуальность (современность) представленных эмпирических показателей срока службы.

Очевидно, что сложность расчётов будет зависеть от конфигурации системы освещения. Например, будет нерационально использовать десятки электросветильников, для того чтобы обеспечить освещение прохода в цехе, над которым установлена отдельная группа из нескольких светильников. В данном исследовании планируется разработка математической системы расчёта для каждой составляющей линии электроосвещения, которая впоследствии может быть использована как для расчёта «выгодного» времени работы линии освещения, так и определения экономической эффективности того или иного графика работы электроосветительной установки.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

ПУЭ ЭЛЕКТРИЧЕСКОЕ ОСВЕЩЕНИЕ

Предисловие

Правила устройства электроустановок (ПУЭ) седьмого издания в связи с длительным сроком переработки (не менее двух лет) будет выпускаться и вводиться в действие отдельными разделами и главами по мере завершения работ по их пересмотру, согласованию и утверждению.

Настоящее издание включает разделы и главы седьмого издания, подготовленные ОАО «ВНИПИ Тяжпромэлектропроект» совместно с Ассоциацией «Росэлектромонтаж»:

Раздел 6 Электрическое освещение, в составе:

— глава 6.1. Общая часть;

— глава 6.2. Внутреннее освещение;

— глава 6.3. Наружное освещение;

— глава 6.4. Световая реклама, знаки и иллюминация;

— глава 6.5. Управление освещением;

— глава 6.6. Осветительные приборы и электроустановочные устройства.

Раздел 7. Электрооборудование специальных установок:

— глава 7.1. Электроустановки жилых, общественных, административных и бытовых зданий;

— глава 7.2. Электроустановки зрелищных предприятий, клубных учреждений и спортивных сооружений.

При подготовке указанных глав ПУЭ учтены требования государственных стандартов (в частности ГОСТ Р 50571), строительных норм и правил, рекомендации научно-технических советов ведущих электроэнергетических организаций. Проект рассмотрен рабочими группами Координационного Совета по пересмотру ПУЭ.

Раздел 6, главы 7.1. и 7.2. согласованы с Госстроем России, ГУГПС МВД России, РАО «ЕЭС России», АО «ВНИИЭ» и представлены к утверждению Департаментом государственного энергетического надзора и энергосбережения Минтопэнерго России.

Требования Правил устройства электроустановок являются обязательными для всех ведомств независимо от их организационно-правовой формы, а также для лиц, занимающихся предпринимательской деятельностью без образования юридического лица.

С 01.07.2000 утрачивают силу раздел 6, раздел 7, глава 7.1 и глава 7.2 Правил устройства электроустановок шестого издания.

Издание разделов и глав Правил устройства электроустановок седьмого издания может производиться только по разрешению Госэнергонадзора.

Замечания и предложения по содержанию глав седьмого издания Правил устройства электроустановок следует направлять в Госэнергонадзор — 103074, г. Москва, Китай-городский пр., 7

Глава 6.1

ОБЩАЯ ЧАСТЬ

Область применения. Определения

6.1.1. Настоящий раздел Правил распространяется на установки электрического освещения зданий, помещений и сооружений наружного освещения городов, поселков и сельских населенных пунктов, территорий предприятий и учреждений, на установки оздоровительного ультрафиолетового облучения длительного действия, установки световой рекламы, световые знаки и иллюминационные установки.

6.1.2. Электрическое освещение специальных установок (жилых и общественных зданий, зрелищных предприятий, клубных учреждений, спортивных сооружений, взрывоопасных и пожароопасных зон) кроме требований настоящего раздела должно удовлетворять также требованиям соответствующих глав раздела 7.

6.1.3. Питающая осветительная сеть — сеть от распределительного устройства подстанции или ответвления от воздушных линий электропередачи до ВУ, ВРУ, ГРЩ.

6.1.4. Распределительная сеть — сеть от ВУ, ВРУ, ГРЩ до распределительных пунктов, щитков и пунктов питания наружного освещения.

6.1.5. Групповая сеть — сеть от щитков до светильников, штепсельных розеток и других электроприемников.

6.1.6. Пункт питания наружного освещения — электрическое распределительное устройство для присоединения групповой сети наружного освещения к источнику питания.

6.1.7. Фаза ночного режима — фаза питающей или распределительной сети наружного освещения, не отключаемая в ночные часы.

6.1.8. Каскадная система управления наружным освещением — система, осуществляющая последовательное включение (отключение) участков групповой сети наружного освещения.

6.1.9. Провода зарядки светильника — провода, прокладываемые внутри светильника от установленных в нем контактных зажимов или штепсельных разъемов для присоединения к сети (для светильника, не имеющего внутри контактных зажимов или штепсельного разъема — провода или кабели от места присоединения светильника к сети) до установленных в светильнике аппаратов и ламповых патронов.

Общие требования

6.1.10. Нормы освещенности, ограничения слепящего действия светильников, пульсаций освещенности и другие качественные показатели осветительных установок, виды и системы освещения должны приниматься согласно требованиям СНиП 23-05-95 «Естественное и искусственное освещение» и другим нормативным документам, утвержденным или согласованным с Госстроем (Минстроем) РФ и министерствами и ведомствами Российской Федерации в установленном порядке.

Светильники должны соответствовать требованиям норм пожарной безопасности НПБ 249-97 «Светильники. Требования пожарной безопасности. Методы испытаний».

6.1.11. Для электрического освещения следует, как правило, применять разрядные лампы низкого давления (например, люминесцентные), лампы высокого давления (например, металлогалогенные типа ДРИ, ДРИЗ, натриевые типа ДНаТ, ксеноновые типов ДКсТ, ДКсТЛ, ртутно-вольфрамовые, ртутные типа ДРЛ). Допускается использование и ламп накаливания.

Применение для внутреннего освещения ксеноновых ламп типа ДКсТ (кроме ДКсТЛ) допускается с разрешения Госсанинспекции и при условии, что горизонтальная освещенность на уровнях, где возможно длительное пребывание людей, не превышает 150 лк, а места нахождения крановщиков экранированы от прямого света ламп.

При применении люминесцентных ламп в осветительных установках должны соблюдаться следующие условия для обычного исполнения светильников:

1. Температура окружающей среды не должна быть ниже плюс 5°С.

2. Напряжение у осветительных приборов должно быть не менее 90% номинального.

6.1.12. Для аварийного освещения рекомендуется применять светильники с лампами накаливания или люминесцентными.

Разрядные лампы высокого давления допускается использовать при обеспечении их мгновенного зажигания и перезажигания.

6.1.13. Для питания осветительных приборов общего внутреннего и наружного освещения, как правило, должно применяться напряжение не выше 220 В переменного или постоянного тока. В помещениях без повышенной опасности напряжение 220 В может применяться для всех стационарно установленных осветительных приборов вне зависимости от высоты их установки.

Напряжение 380 В для питания осветительных приборов общего внутреннего и наружного освещения может использоваться при соблюдении следующих условий:

1. Ввод в осветительный прибор и независимый, не встроенный в прибор, пускорегулирующий аппарат выполняется проводами или кабелем с изоляцией на напряжение не менее 660 В.

2. Ввод в осветительный прибор двух или трех проводов разных фаз системы 660/380 В не допускается.

6.1.14. В помещениях с повышенной опасностью и особо опасных при высоте установки светильников общего освещения над полом или площадкой обслуживания менее 2,5 м применение светильников класса защиты 0 запрещается, необходимо применять светильники класса защиты 2 или 3. Допускается использование светильников класса защиты 1, в этом случае цепь должна быть защищена УЗО с током срабатывания до 30 мА.

Указанные требования не распространяются на светильники, обслуживаемые с кранов. При этом расстояние от светильников до настила моста крана должно быть не менее 1,8 м или светильники должны быть подвешены не ниже нижнего пояса ферм перекрытия, а обслуживание этих светильников с кранов должно выполняться с соблюдением требований техники безопасности.

6.1.15. В установках освещения фасадов зданий, скульптур, монументов, подсвета зелени с использованием осветительных приборов, установленных ниже 2,5 м от поверхности земли или площадки обслуживания, может применяться напряжение до 380 В при степени защиты осветительных приборов не ниже 1Р54.

В установках освещения фонтанов и бассейнов номинальное напряжение питания погружаемых в воду осветительных приборов должно быть не более 12В.

6.1.16. Для питания светильников местного стационарного освещения с лампами накаливания должны применяться напряжения: в помещениях без повышенной опасности — не выше 220 В и в помещениях с повышенной опасностью и особо опасных — не выше 50 В. В помещениях с повышенной опасностью и особо опасных допускается напряжение до 220 В для светильников, в этом случае должно быть предусмотрено или защитное отключение линии при токе утечки до 30 мА, или питание каждого светильника через разделяющий трансформатор (разделяющий трансформатор может иметь несколько электрически несвязанных вторичных обмоток).

Для питания светильников местного освещения с люминесцентными лампами может применяться напряжение не выше 220 В. При этом в помещениях сырых, особо сырых, жарких и с химически активной средой применение люминесцентных ламп для местного освещения допускается только в арматуре специальной конструкции.

Лампы ДРЛ, ДРИ, ДРИЗ и ДНаТ могут применяться для местного освещения при напряжении не выше 220 В в арматуре, специально предназначенной для местного освещения.

6.1.17. Для питания переносных светильников в помещениях с повышенной опасностью и особо опасных должно применяться напряжение не выше 50 В.

При наличии особо неблагоприятных условий, а именно когда опасность поражения электрическим током усугубляется теснотой, неудобньм положением работающего, соприкосновением с большими металлическими, хорошо заземленными поверхностями (например, работа в котлах), и в наружных установках для питания ручных светильников должно применяться напряжение не выше 12 В.

Переносные светильники, предназначенные для подвешивания, настольные, напольные и т. п. приравниваются при выборе напряжения к стационарным светильникам местного стационарного освещения (6.1.16).

Для переносных светильников, устанавливаемых на переставных стойках на высоте 2,5 м и более, допускается применять напряжение до 380 В.

6.1.18. Питание светильников напряжением до 50 В должно производиться от разделяющих трансформаторов или автономных источников питания.

6.1.19. Допустимые отклонения и колебания напряжения у осветительных приборов не должны превышать указанных в ГОСТ 13109 «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения».

6.1.20. Питание силовых и осветительных электроприемников при напряжении 380/220 В рекомендуется производить от общих трансформаторов при условии соблюдения требований 6.1.19.

Аварийное освещение

6.1.21. Аварийное освещение разделяется на освещение безопасности и эвакуационное. Освещение безопасности предназначено для продолжения работы при аварийном отключении рабочего освещения.

Светильники рабочего освещения и светильники освещения безопасности в производственных и общественных зданиях и на открытых пространствах должны питаться от независимых источников.

6.1.22. Светильники и световые указатели эвакуационного освещения в производственных зданиях с естественным освещением и в общественных и жилых зданиях должны быть присоединены к сети, не связанной с сетью рабочего освещения, начиная от щита подстанции (распределительного пункта освещения), или при наличии только одного ввода, начиная от вводного распределительного устройства.

6.1.23. Питание светильников и световых указателей эвакуационного освещения в производственных зданиях без естественного освещения следует выполнять аналогично питанию светильников освещения безопасности (6.1.21).

В производственных зданиях без естественного света в помещениях, где может одновременно находиться 20 и более человек, независимо от наличия освещения безопасности должно предусматриваться эвакуационное освещение по основным проходам и световые указатели «выход», автоматически переключаемые при прекращении их питания на третий независимый внешний или местный источник (аккумуляторная батарея, дизель-генераторная установка и т. п.), не используемый в нормальном режиме для питания рабочего освещения, освещения безопасности и эвакуационного освещения, или светильники эвакуационного освещения и указатели «выход» должны иметь автономный источник питания.

6.1.24. При отнесении всех или части светильников освещения безопасности и эвакуационного освещения к особой группе первой категории по надежности электроснабжения должно предусматриваться дополнительное питание этих светильников от третьего независимого источника.

6.1.25. Светильники эвакуационного освещения, световые указатели эвакуационных и (или) запасных выходов в зданиях любого назначения, снабженные автономными источниками питания, в нормальном режиме могут питаться от сетей любого вида освещения, не отключаемых во время функционирования зданий.

6.1.26. Для помещений, в которых постоянно находятся люди или которые предназначены для постоянного прохода персонала или посторонних лиц и в которых требуется освещение безопасности или эвакуационное освещение, должна быть обеспечена возможность включения указанных видов освещения в течение всего времени, когда включено рабочее освещение, или освещение безопасности и эвакуационное освещение должно включаться автоматически при аварийном погасании рабочего освещения.

6.1.27. Применение для рабочего освещения, освещения безопасности и (или) эвакуационного освещения общих групповых щитков, а также установка аппаратов управления рабочим освещением, освещением безопасности и (или) эвакуационным освещением, за исключением аппаратов вспомогательных цепей (например, сигнальных ламп, ключей управления), в общих шкафах не допускается.

Разрешается питание освещения безопасности и эвакуационного освещения от общих щитков.

6.1.28. Использование сетей, питающих силовые электроприемники, для питания освещения безопасности и эвакуационного освещения в производственных зданиях без естественного освещения не допускается.

6.1.29. Допускается применение ручных осветительных приборов с аккумуляторами или сухими элементами для освещения безопасности и эвакуационного освещения взамен стационарных светильников (здания и помещения без постоянного пребывания людей, здания площадью застройки не более 250 м 2 ).

Выполнение и защита осветительных сетей

6.1.30. Осветительные сети должны быть выполнены в соответствии с требованиями глав 2.1-2.4, а также дополнительными требованиями, приведенными в главах 6.2-6.4 и 7.1-7.4.

6.1.31. Сечение нулевых рабочих проводников трехфазных питающих и групповых линий с лампами люминесцентными, ДРЛ, ДРИ, ДРИЗ, ДНаТ при одновременном отключении всех фазных проводов линии должно выбираться:

1. Для участков сети, по которым протекает ток от ламп с компенсированными пускорегулирующими аппаратами, равным фазному независимо от сечения.

2. Для участков сети, по которым протекает ток от ламп с некомпенсированными пускорегулирующими аппаратами, равным фазному при сечении фазных проводников менее или равном 16 мм 2 для медных и 25 мм 2 для алюминиевых проводов и не менее 50 % сечения фазных проводников при больших сечениях, но не менее 16 мм 2 для медных и 25 мм 2 для алюминиевых проводов.

6.1.32. При защите трехфазных осветительных питающих и групповых линий предохранителями или однополюсными автоматическими выключателями при любых источниках света сечение нулевых рабочих проводников следует принимать равным сечению фазных проводников.

6.1.33. Защита осветительных сетей должна выполняться в соответствии с требованиями гл. 3.1 с дополнениями, приведенными в 6.1.34-6.1.35, 6.2.9 — 6.2.11, 6.3.40, 6.4.10.

При выборе токов аппаратов зашиты должны учитываться пусковые токи при включении мощных ламп накаливания и ламп ДРЛ, ДРИ, ДРИЗ, ДНаТ.

Аппараты защиты следует располагать по возможности группами в доступных для обслуживания местах. Рассредоточенная установка аппаратов защиты допускается при питании освещения от шинопроводов (6.2.7).

6.1.34. Аппараты защиты независимо от требований 6.2.7 и 6.2.8 в питающей осветительной сети следует устанавливать на вводах в здания.

6.1.35. Трансформаторы, используемые для питания светильников до 50 В, должны быть защищены со стороны высшего напряжения. Защита должна быть предусмотрена также на отходящих линиях низшего напряжения.

Если трансформаторы питаются отдельными группами от щитков и аппарат защиты на щитке обслуживает не более трех трансформаторов, то установка дополнительных аппаратов защиты со стороны высшего напряжения каждого трансформатора необязательна.

6.1.36. Установка предохранителей, автоматических и неавтоматических однополюсных выключателей в нулевых рабочих проводах в сетях с заземленной нейтралью запрещается.

Защитные меры безопасности

6.1.37. Защитное заземление установок электрического освещения должно выполняться согласно требованиям главы 1.7, а также дополнительным требованиям, приведенным в 6.1.38-6.1.47, 6.4.9 и главах 7.1-7.4.

6.1.38. Защитное заземление металлических корпусов светильников общего освещения с лампами накаливания и с лампами люминесцентными, ДРЛ, ДРИ, ДРИЗ, натриевыми со встроенными внутрь светильника пускорегулирующими аппаратами следует осуществлять:

1. В сетях с заземленной нейтралью — присоединением к заземляющему винту корпуса светильника РЕ проводника.

Заземление корпуса светильника ответвлением от нулевого рабочего провода внутри светильника запрещается.

2. В сетях с изолированной нейтралью, а также в сетях, переключаемых на питание от аккумуляторной батареи — присоединением к заземляющему винту корпуса светильника защитного проводника.

При вводе в светильник проводов, не имеющих механической защиты, защитный проводник должен быть гибким.

6.1.39. Защитное заземление корпусов светильников общего освещения с лампами ДРЛ, ДРИ, ДРИЗ, ДНаТ и люминесцентными с вынесенными пускорегулирующими аппаратами следует осуществлять при помощи перемычки между заземляющим винтом заземленного пускорегулирующего аппарата и заземляющим винтом светильника.

6.1.40. Металлические отражатели светильников с корпусами из изолирующих материалов заземлять не требуется.

6.1.41. Защитное заземление металлических корпусов светильников местного освещения на напряжение выше 50 В должно удовлетворять следующим требованиям:

1. Если защитные проводники присоединяются не к корпусу светильника, а к металлической конструкции, на которой светильник установлен, то между этой конструкцией, кронштейном и корпусом светильника должно быть надежное электрическое соединение.

2. Если между кронштейном и корпусом светильника нет надежного электрического соединения, то оно должно быть осуществлено при помощи специально предназначенного для этой цели защитного проводника.

6.1.42. Защитное заземление металлических корпусов светильников общего освещения с любыми источниками света в помещениях как без повышенной опасности, так и с повышенной опасностью и особо опасных, во вновь строящихся и реконструируемых жилых и общественных зданиях, а также в административно-конторских, бытовых, проектно-конструкторских, лабораторных и т. п. помещениях промышленных предприятий (приближающихся по своему характеру к помещениям общественных зданий) следует осуществлять в соответствии с требованиями главы 7.1.

6.1.43. В помещениях без повышенной опасности производственных, жилых и общественных зданий при напряжении выше 50 В должны применяться переносные светильники класса I по ГОСТ 12.2.007.0.

Групповые линии, питающие штепсельные розетки, должны выполняться в соответствии с требованиями главы 7.1, при этом в сетях с изолированной нейтралью защитный проводник следует подключать к заземлителю.

6.1.44. Защитные проводники в сетях с заземленной нейтралью в групповых линиях, питающих светильники общего освещения и штепсельные розетки (6.1.42, 6.1.43), нулевой рабочий и нулевой защитный проводники не допускается подключать под общий контактный зажим.

6.1.45. При выполнении защитного заземления осветительных приборов наружного освещения должно выполняться также подключение железобетонных и металлических опор, а также тросов к заземлителю в сетях с изолированной нейтралью и к РЕ (PEN)-проводнику в сетях с заземленной нейтралью.

6.1.46. При установке осветительных приборов наружного освещения на железобетонных и металлических опорах электрифицированного городского транспорта в сетях с изолированной нейтралью осветительные приборы и опоры заземлять не допускается, в сетях с заземленной нейтралью осветительные приборы и опоры должны быть подсоединены к PEN-проводнику линии.

6.1.47. При питании наружного освещения воздушными линиями должна выполняться защита от атмосферных перенапряжений в соответствии с гл. 2.4.

6.1.48. При выполнении схем питания светильников и штепсельных розеток следует выполнять требования по установке УЗО, изложенные в главах 7.1. и 7.2.

6.1.49. Для установок наружного освещения: освещения фасадов зданий, монументов и т. п., наружной световой рекламы и указателей в сетях ТN-S или ТN-С-S рекомендуется установка УЗО с током срабатывания до 30 мА, при этом фоновое значение токов утечки должно быть, по крайней мере, в три раза меньше уставки срабатывания УЗО по дифференциальному току.

Глава 6.2 ВНУТРЕННЕЕ ОСВЕЩЕНИЕ

Общие требования

6.2.1. Светильники с люминесцентными лампами должны применяться с пускорегулирующими аппаратами, обеспечивающими коэффициент мощности не ниже 0,9 при светильниках на две лампы и более и 0,85 при одноламповых светильниках.

Для ламп типа ДРЛ, ДРИ, ДРИЗ, ДНаТ может применяться как групповая, так и индивидуальная компенсация реактивной мощности. При наличии технико-экономических обоснований допускается применение указанных ламп без устройства компенсации реактивной мощности. При групповой компенсации должны отключаться компенсирующие устройства одновременно с отключением ламп.

6.2.2. Питание светильника местного освещения (без понижающего трансформатора или через понижающий трансформатор) может осуществляться при помощи ответвления от силовой цепи механизма или станка, для которого предназначен светильник.

При этом может не устанавливаться отдельный защитный аппарат в осветительной цепи, если защитный аппарат силовой цепи имеет ток уставки не более 25 А.

Ответвление к светильникам местного освещения при напряжении более 50 В в пределах рабочего места должно выполняться в выполненных из негорючих материалов трубах и коробах и других механически прочных конструкциях.

6.2.3. Питание установок оздоровительного ультрафиолетового облучения должно производиться:

установок длительного действия — по отдельным групповым линиям от щитков рабочего освещения или самостоятельных групповых щитков;

установок кратковременного действия (фотариев) — по отдельным линиям от электросиловой сети или питающей сети рабочего освещения.

Питающая осветительная сеть

6.2.4. Рабочее освещение рекомендуется питать по самостоятельным линиям от распределительных устройств подстанций, щитов, шкафов, распределительных пунктов, магистральных и распределительных шинопроводов.

6.2.5. Рабочее освещение, освещение безопасности и эвакуационное освещение допускается питать от общих линий с электросиловыми установками или от силовых распределительных пунктов (исключение 6.1.28). При этом должны соблюдаться требования к допустимым отклонениям и колебаниям напряжения в осветительной сети в соответствии с ГОСТ 13109-87.

6.2.6. Линии питающей сети рабочего освещения, освещения безопасности и эвакуационного освещения, а также линии, питающие иллюминационные установки и световую рекламу, должны иметь в распределительных устройствах, от которых эти линии отходят, самостоятельные аппараты защиты и управления для каждой линии.

Допускается устанавливать общий аппарат управления для нескольких линий одного вида освещения или установок, отходящих от распределительного устройства.

6.2.7. При использовании шинопроводов в качестве линий питающей осветительной сети вместо групповых щитков могут применяться присоединяемые к шинопроводу отдельные аппараты защиты и управления для питания групп светильников. При этом должен быть обеспечен удобный и безопасный доступ к указанным аппаратам.

6.2.8. В местах присоединения линий питающей осветительной сети к линии питания электросиловых установок или к силовым распределительным пунктам (6.2.5) должны устанавливаться аппараты защиты и управления.

При питании осветительной сети от силовых распределительных пунктов, к которым присоединены непосредственно силовые электроприемники, осветительная сеть должна подключаться к вводным зажимам этих пунктов.

Групповая сеть

6.2.9. Линии групповой сети внутреннего освещения должны быть защищены предохранителями или автоматическими выключателями.

6.2.10. Каждая групповая линия, как правило, должна содержать на фазу не более 20 ламп накаливания, ДРЛ, ДРИ, ДРИЗ, ДНаТ, в это число включаются также штепсельные розетки.

В производственных, общественных и жилых зданиях на однофазные группы освещения лестниц, этажных коридоров, холлов, технических подполий и чердаков допускается присоединять до 60 ламп накаливания каждая мощностью до 60 Вт.

Для групповых линий, питающих световые карнизы, световые потолки и т. п. с лампами накаливания, а также светильники с люминесцентными лампами мощностью до 80 Вт, рекомендуется присоединять до 60 ламп на фазу; для линий, питающих светильники с люминесцентными лампами мощностью до 40 Вт включительно, может присоединяться до 75 ламп на фазу и мощностью до 20 Вт включительно — до 100 ламп на фазу.

Для групповых линий, питающих многоламповые люстры, число ламп любого типа на фазу не ограничивается.

В групповых линиях, питающих лампы мощностью 10 кВт и больше, каждая лампа должна иметь самостоятельный аппарат защиты.

6.2.11. В начале каждой групповой линии, в том числе питаемой от шинопроводов, должны быть установлены аппараты защиты на всех фазных проводниках. Установка аппаратов защиты в нулевых защитных проводниках запрещается.

6.2.12. Рабочие нулевые проводники групповых линий должны прокладываться при применении металлических труб совместно с фазными проводниками в одной трубе, а при прокладке кабелями или многожильными проводами должны быть заключены в общую оболочку с фазными проводами.

6.2.13. Совместная прокладка проводов и кабелей групповых линий рабочего освещения с групповыми линиями освещения безопасности и эвакуационного освещения не рекомендуется.

Допускается их совместная прокладка на одном монтажном профиле, в одном коробе, лотке при условии, что приняты специальные меры, исключающие возможность повреждения проводов освещения безопасности и эвакуационного при неисправности проводов рабочего освещения, в корпусах и штангах светильников.

6.2.14. Светильники рабочего освещения, освещения безопасности или эвакуационного освещения допускается питать от разных фаз одного трехфазного шинопровода при условии прокладки к шинопроводу самостоятельных линий для рабочего освещения и освещения безопасности или эвакуационного освещения.

6.2.15. Светильники, устанавливаемые в подвесные потолки из горючих материалов, должны иметь между местами их примыкания к конструкции потолка прокладки из негорючих теплостойких материалов в соответствии с требованиями НПБ 249-97.

Глава 6.3. НАРУЖНОЕ ОСВЕЩЕНИЕ

Источники света, установка осветительных приборов и опор

6.3.1. Для наружного освещения могут применяться любые источники света (см. 6.1.11).

Для охранного освещения территорий предприятий применение разрядных ламп не допускается в случаях, когда охранное освещение нормально не включено и включается автоматически от действия охранной сигнализации.

6.3.2. Осветительные приборы наружного освещения (светильники, прожекторы) могут устанавливаться на специально предназначенных для наружного освещения опорах, опорах воздушных линий до 1 кВ, опорах контактной сети электрифицированного городского транспорта всех видов токов напряжением до 600 В, стенах и перекрытиях зданий и сооружений, мачтах (в том числе мачтах отдельно стоящих молниеотводов), технологических эстакадах, площадках технологических установок и дымовых труб, парапетах и ограждениях мостов и транспортных эстакад, на металлических, железобетонных и других конструкциях зданий и сооружений независимо от отметки их расположения, могут быть подвешены на тросах, укрепленных на стенах зданий и опорах, а также установлены на уровне земли и ниже.

6.3.3. Установка светильников наружного освещения на опорах ВЛ до 1 кВ должна выполняться:

1. При обслуживании светильников с телескопической вышки с изолирующим звеном, как правило, выше проводов ВЛ или на уровне нижних проводов ВЛ при размещении светильников и проводов ВЛ с разных сторон опоры. Расстояние по горизонтали от светильника до ближайшего провода ВЛ должно быть не менее 0,6 м.

2. При обслуживании светильников иными способами — ниже проводов ВЛ. Расстояние по вертикали от светильника до провода ВЛ (в свету) должно быть не менее 0,2 м, расстояние по горизонтали от светильника до опоры (в свету) должно быть не более 0,4 м.

6.3.4. При подвеске светильников на тросах должны приниматься меры по исключению раскачивания светильников от воздействия ветра.

6.3.5. Над проезжей частью улиц, дорог и площадей светильники должны устанавливаться на высоте не менее 6,5 м.

При установке светильников над контактной сетью трамвая высота установки светильника должна быть не менее 8 м до головки рельса. При расположении светильников над контактной сетью троллейбуса — не менее 9 м от уровня проезжей части. Расстояние по вертикали от проводов линий уличного освещения до поперечин контактной сети или до подвешенных к поперечинам иллюминационных гирлянд должно быть не менее 0,5м.

6.3.6. Над бульварами и пешеходными дорогами светильники должны устанавливаться на высоте не менее 3 м.

Наименьшая высота установки осветительных приборов для освещения газонов и фасадов зданий и сооружений и для декоративного освещения не ограничивается при условии соблюдения требований 6.1.15.

Установка осветительных приборов в приямках ниже уровня земли разрешается при наличии дренажных или других аналогичных устройств по удалению воды из приямков.

6.3.7. Для освещения транспортных развязок, городских и других площадей светильники могут устанавливаться на опорах высотой 20 м и более при условии обеспечения безопасности их обслуживания (например, опускание светильников, устройство площадок, использование вышек и т. п.).

Допускается размещать светильники в парапетах и ограждениях мостов и эстакад из несгораемых материалов на высоте 0,9-1,3 м над проезжей частью при условии защиты от прикосновений к токоведущим частям светильников.

6.3.8. Опоры установок освещения площадей, улиц, дорог должны располагаться на расстоянии не менее 1 м от лицевой грани бортового камня до внешней поверхности цоколя опоры на магистральных улицах и дорогах с интенсивным транспортным движением и не менее 0,6 м на других улицах, дорогах и площадях. Это расстояние разрешается уменьшать до 0,3 м при условии отсутствия маршрутов городского транспорта и грузовых машин. При отсутствии бортового камня расстояние от кромки проезжей части до внешней поверхности цоколя опоры должно быть не менее 1,75м.

На территориях промышленных предприятий расстояние от опоры наружного освещения до проезжей части рекомендуется принимать не менее 1 м. Допускается уменьшение этого расстояния до 0,6 м.

6.3.9. Опоры освещения улиц и дорог, имеющих разделительные полосы шириной 4 м и более, могут устанавливаться по центру разделительных полос.

6.3.10. На улицах и дорогах, имеющих кюветы, допускается устанавливать опоры за кюветом, если расстояние от опоры до ближайшей границы проезжей части не превышает 4 м.

Опора не должна находиться между пожарным гидрантом и проезжей частью.

6.3.11. Опоры на пересечениях и примыканиях улиц и дорог рекомендуется устанавливать на расстоянии не менее 1,5 м от начала закругления тротуаров, не нарушая линии установки опор.

6.3.12. Опоры наружного освещения на инженерных сооружениях (мостах, путепроводах, транспортных эстакадах и т. п.) следует устанавливать в створе ограждений в стальных станинах или на фланцах, прикрепляемых к несущим элементам инженерного сооружения.

6.3.13. Опоры для светильников освещения аллей и пешеходных дорог должны располагаться вне пешеходной части.

6.3.14. Светильники на улицах и дорогах с рядовой посадкой деревьев должны устанавливаться вне крон деревьев на удлиненных кронштейнах, обращенных в сторону проезжей части улицы, или следует применять тросовую подвеску светильников.

Питание установок наружного освещения

6.3.15. Питание установок наружного освещения может выполняться непосредственно от трансформаторных подстанций, распределительных пунктов и вводно-распределительных устройств (ВРУ).

6.3.16. Для питания светильников уличного освещения, а также наружного освещения промышленных предприятий должны прокладываться, как правило, самостоятельные линии.

Питание светильников допускается выполнять от дополнительно прокладываемых для этого фазных и общего нулевого провода воздушной электрической сети города, населенного пункта, промышленного предприятия.

6.3.17. Осветительные установки городских транспортных и пешеходных тоннелей, осветительные установки улиц, дорог и площадей категории А по надежности электроснабжения относятся ко второй категории, остальные наружные осветительные установки — к третьей категории.

6.3.18. Питание светильников освещения территорий микрорайонов следует осуществлять непосредственно от пунктов питания наружного освещения или от проходящих вблизи сетей уличного освещения, исключая сети улиц категории А, в зависимости от принятой в населенном пункте системы эксплуатации. Светильники наружного освещения территорий детских яслей-садов, общеобразовательных школ, школ-интернатов, больниц, госпиталей, санаториев, пансионатов, домов отдыха, пионерлагерей могут питаться как от вводных устройств этих зданий или от трансформаторных подстанций, так и от ближайших распределительных сетей наружного освещения при условии соблюдения требований 6.5.27.

6.3.19. Освещение открытых технологических установок, открытых площадок производства работ, открытых эстакад, складов и других открытых объектов при производственных зданиях может питаться от сетей внутреннего освещения зданий, к которым эти объекты относятся.

6.3.20. Охранное освещение рекомендуется питать, как правило, по самостоятельным линиям.

6.3.21. Питание осветительных приборов подъездов к противопожарным водоисточникам (гидрантам, водоемам и др.) следует осуществлять от фаз ночного режима сети наружного освещения.

6.3.22. Светильники, установленные у входов в здания, рекомендуется присоединять к групповой сети внутреннего освещения и, в первую очередь, к сети освещения безопасности или эвакуационного освещения, которые включаются одновременно с рабочим освещением.

6.3.23. В установках наружного освещения светильники с разрядными источниками должны иметь индивидуальную компенсацию реактивной мощности. Коэффициент мощности должен быть не ниже 0,85.

6.3.24. При применении прожекторов с разрядными источниками света допускается групповая компенсация реактивной мощности.

При групповой компенсации необходимо обеспечивать отключение компенсирующих устройств одновременно с отключением компенсируемых ими установок.

Выполнение и защита сетей наружного освещения

6.3.25. Сети наружного освещения рекомендуется выполнять кабельными или воздушными с использованием самонесущих изолированных проводов. В обоснованных случаях для воздушных распределительных сетей освещения улиц, дорог, площадей, территорий микрорайонов и населенных пунктов допускается использование неизолированных проводов.

6.3.26. По опорам контактной сети электрифицированного транспорта напряжением до 600 В постоянного тока разрешается прокладка кабельных линий для питания установленных на опорах осветительных приборов наружного освещения, допускается использование самонесущих изолированных проводов.

6.3.27. Воздушные линии наружного освещения должны выполняться согласно требованиям гл. 2.4.

Пересечения линий с улицами и дорогами при пролетах не более 40 м допускается выполнять без применения анкерных опор и двойного крепления проводов.

6.3.28. Нулевые проводники сети общего пользования, выполненные неизолированными проводами, при использовании их для наружного освещения следует располагать ниже фазных проводов сети общего пользования и фазных проводов сети наружного освещения.

При использовании существующих опор, принадлежащих электросетевым организациям, не занимающимся эксплуатацией наружного освещения, допускается располагать фазные провода сети наружного освещения ниже нулевых проводников сети общего пользования.

6.3.29. В местах перехода кабельных линий к воздушным рекомендуется предусматривать отключающие устройства, установленные на опорах на высоте не менее 2,5 м. Установка отключающих устройств не требуется в местах кабельных выходов из пунктов питания наружного освещения на опоры, а также переходов дорог и обходов препятствий, выполняемых кабелем.

6.3.30. В целях резервирования распределительных кабельных линий или линий, выполненных самонесущими изолированными проводами, между крайними светильниками соседних участков для магистральных улиц городов рекомендуется предусматривать нормально отключаемые перемычки (резервные кабельные линии).

При использовании указанных перемычек, в отступление от 6.1.19, снижение напряжения у осветительных приборов допускается увеличивать до 10 % от номинального.

6.3.31. Воздушные линии наружного освещения должны выполняться без учета резервирования, а провода их могут быть разного сечения по длине линии.

6.3.32. Ответвления к светильникам от кабельных линий наружного освещения рекомендуется, как правило, выполнять без разрезания жил кабеля.

При прокладке указанных кабельных линий на инженерных сооружениях следует предусматривать меры для удобной разделки ответвлений от кабеля к опоре и возможность замены кабеля участками.

6.3.33. Ввод кабеля в опоры должен ограничиваться цоколем опоры. Цоколи должны иметь размеры, достаточные для размещения в них кабельных разделок и предохранителей или автоматических выключателей, устанавливаемых на ответвлениях к осветительным приборам, и дверцу с замком для эксплуатационного обслуживания.

Допускается использовать специальные ящики ввода, устанавливаемые на опорах.

6.3.34. Электропроводка внутри опор наружного освещения должна выполняться изолированными проводами в защитной оболочке или кабелями. Внутри совмещенных опор наружного освещения и контактных сетей электрифицированного городского транспорта должны применяться кабели с изоляцией на напряжение не менее 660 В.

6.3.35. Линии питающие светильники, подвешенные на тросах, должны выполняться кабелями, проложенными по тросу, самонесущими изолированными проводами или неизолированными проводами, проложенными на изоляторах при условии соблюдения требований раздела 2.

6.3.36. Тросы для подвески светильников и питающих линий сети допускается крепить к конструкциям зданий. При этом тросы должны иметь амортизаторы.

6.3.37. В сетях наружного освещения, питающих осветительные приборы с разрядными лампами, в однофазных цепях сечение нулевых рабочих проводников должно быть равным фазному.

В трехфазных сетях при одновременном отключении всех фазных проводов линии сечение нулевых рабочих проводников должно выбираться:

1. Для участков сети, по которым протекает ток от ламп с компенсированными пускорегулирующими аппаратами, равным фазному независимо от сечения.

2. Для участков сети, по которым протекает ток от ламп с некомпенсированными пускорегулирующими аппаратами, равным фазному при сечении фазных проводников менее или равным 16 мм 2 для медных и 25 мм 2 для алюминиевых проводов и не менее 50 % сечения фазных проводников при больших сечениях, но не менее 16 мм 2 для медных и 25мм 2 для алюминиевых проводов.

6.3.38. Прокладку линий, питающих прожекторы, светильники и другое электрооборудование, устанавливаемое на конструкциях с молниеотводами открытых распределительных устройств напряжением выше 1 кВ, следует выполнять согласно требованиям гл. 4.2.

6.3.39. Коэффициент спроса при расчете сети наружного освещения следует принимать равным 1,0.

6.3.40. На линиях наружного освещения, имеющих более 20 светильников на фазу, ответвления к каждому светильнику должны защищаться индивидуальными предохранителями или автоматическими выключателями.

Глава 6.4 СВЕТОВАЯ РЕКЛАМА, ЗНАКИ И ИЛЛЮМИНАЦИЯ

6.4.1. Для питания газосветных трубок должны применяться сухие трансформаторы в металлическом кожухе, имеющие вторичное напряжение не выше 15 кВ. Трансформаторы должны длительно выдерживать работу при коротком замыкании в цепи вторичной обмотки.

Открытые токоведущие части открыто установленных трансформаторов должны быть удалены от сгораемых материалов и конструкций не менее, чем на 50 мм.

6.4.2. Трансформаторы для питания газосветных трубок должны быть установлены по возможности в непосредственной близости от питаемых ими трубок в местах, недоступных для посторонних лиц, или в металлических ящиках, сконструированных таким образом, чтобы при открытии ящика трансформатор отключался со стороны первичного напряжения. Рекомендуется использование указанных ящиков в качестве конструктивной части самих трансформаторов.

6.4.3. В общем ящике с трансформатором допускается установка блокировочных и компенсирующих устройств, а также аппаратов первичного .напряжения при условии надежного автоматического отключения трансформатора от сети при помощи блокировочного устройства, действующего при открытии ящика.

6.4.4. Магазинные и подобные им витрины, в которых смонтированы части высшего напряжения газосветных установок, должны быть оборудованы блокировкой, действующей только на отключение установки со стороны первичного напряжения при открывании витрин, т. е. подача напряжения на установку должна осуществляться персоналом вручную при закрытой витрине.

6.4.5. Все части газосветной установки, расположенные вне витрин, снабженных блокировкой, должны находиться на высоте не менее 3 м над уровнем земли и не менее 0,5 м над поверхностью площадок обслуживания, крыш и других строительных конструкций.

6.4.6. Доступные для посторонних лиц и находящиеся под напряжением части газосветной установки должны быть ограждены в соответствии с гл. 4.2 и снабжены предупредительными плакатами.

6.4.7. Открытые токоведущие части газосветных трубок должны отстоять от металлических конструкций или частей здания на расстоянии не менее 20 мм, а изолированные токоведущие части — не менее 10 мм.

6.4.8. Расстояние между открытыми токоведущими частями газосветных трубок, не находящимися под одинаковым потенциалом, должно быть не менее 50 мм.

6.4.9. Открытые проводящие части газосветной установки на стороне высшего напряжения, а также один из выводов или средняя точка вторичной обмотки трансформаторов, питающих газосветные трубки, должны быть заземлены.

6.4.10. Трансформаторы или группа трансформаторов, питающие газосветные трубки, должны отключаться со стороны первичного напряжения во всех полюсах аппаратом с видимым разрывом, а также защищаться аппаратом, рассчитанным на номинальный ток трансформатора.

Для отключения трансформаторов допускается применять пакетные выключатели с фиксированным положением рукоятки (головки).

6.4.11. Электроды газосветных трубок в местах присоединения проводов не должны испытывать натяжения.

6.4.12. Сеть на стороне высшего напряжения установок рекламного освещения должна выполняться изолированными проводами, имеющими испытательное напряжение не менее 15 кВ.

В местах, доступных для механических воздействий или прикосновения, эти провода следует прокладывать в стальных трубах, коробах и других механически прочных несгораемых конструкциях.

Для перемычек между отдельными электродами, имеющих длину не более 0,4 м, допускается применение голых проводов при условии соблюдения расстояний, приведенных в 6.4.7.

6.4.13. Рекламные установки на улицах, дорогах и площадях, совпадающие по своей форме и цвету с формой и цветом сигналов светофоров, следует размещать на высоте не менее 8 м от поверхности дороги.

6.4.14. В пешеходных тоннелях длиной более 80 м или имеющих ответвления световые указатели направления движения должны размещаться на стенах или колоннах на высоте не менее 1,8 м от пола.

6.4.15. Световые указатели, светящиеся дорожные знаки, светильники подсвета дорожных знаков и светильники для освещения лестничных сходов и зон выходов пешеходных тоннелей должны быть присоединены к фазам ночного режима наружного освещения (исключение 6.4.17).

Информационные световые табло и указатели направления движения пешеходов в пешеходных тоннелях должны быть включены круглосуточно.

6.4.16. Питание световых указателей расположения пожарных водоисточников (гидрантов, водоемов и др.) следует осуществлять от фаз ночного режима сети наружного освещения или от сети ближайших зданий.

6.4.17. Присоединение к сетям освещения улиц, дорог и площадей, номерных знаков зданий и витрин не допускается (см. 7.1.20).

6.4.18. Установки световой рекламы, архитектурного освещения зданий следует, как правило, питать по самостоятельным линиям — распределительным или от сети зданий. Допускаемая мощность указанных установок не более 2 кВт на фазу при наличии резерва мощности сети.

Для линии должна предусматриваться защита от сверхтока и токов утечки (УЗО).

Глава 6.5 УПРАВЛЕНИЕ ОСВЕЩЕНИЕМ

Общие требования

6.5.1. Управление наружным освещением должно выполняться независимо от управления внутренним освещением.

6.5.2. В городах и населенных пунктах, на промышленных предприятиях должно предусматриваться централизованное управление наружным освещением (см. также 6.5.24, 6.5.27, 6.5.28).

Централизованное управление рекомендуется также для общего освещения больших производственных помещений (площадью несколько тысяч квадратных метров) и некоторых помещений общественных зданий.

Способы и технические средства для систем централизованного управления наружным и внутренним освещением должны определяться технико-экономическими обоснованиями.

6.5.3. При использовании в системах централизованного управления наружным и внутренним освещением средств телемеханики должны соблюдаться требования гл. 3.3.

6.5.4. Централизованное управление освещением рекомендуется производить:

наружным освещением промышленных предприятий — из пункта управления электроснабжением предприятия, а при его отсутствии — с места, где находится обслуживающий персонал;

наружным освещением городов и населенных пунктов — из пункта управления наружным освещением;

внутренним освещением — из помещения, в котором находится обслуживающий персонал.

6.5.5. Питание устройств централизованного управления наружным и внутренним освещением рекомендуется предусматривать от двух независимых источников.

Питание децентрализованных устройств управления допускается выполнять от линий, питающих осветительные установки.

6.5.6. В системах централизованного управления наружным и внутренним освещением должно предусматриваться автоматическое включение освещения в случаях аварийного отключения питания основной цепи или цепи управления и последующего восстановления питания.

6.5.7. При выполнении автоматического управления наружным и внутренним освещением, например, в зависимости от освещенности, создаваемой естественным светом, должна предусматриваться возможность ручного управления освещением без использования средств автоматики.

6.5.8. Для управления внутренним и наружным освещением могут использоваться аппараты управления, установленные в распределительных устройствах подстанций, распределительных пунктах питания, вводных распределительных устройствах, групповых щитках.

6.5.9. При централизованном управлении внутренним и наружным освещением должен предусматриваться контроль положения коммутационных аппаратов (включено, отключено), установленных в цепи питания освещения.


В каскадных схемах централизованного управления наружным освещением рекомендуется предусматривать контроль включенного (отключенного) состояния коммутационных аппаратов, установленных в цепи питания освещения.

В каскадных контролируемых схемах централизованного управления наружным освещением (6.1.8, 6.5.29) допускается не более двух неконтролируемых пунктов питания.

Управление внутренним освещением

6.5.10. При питании освещения зданий от подстанций и сетей, расположенных вне этих зданий, на каждом вводном устройстве в здание должен устанавливаться аппарат управления.

6.5.11. При питании от одной линии четырех и более групповых щитков с числом групп 6 и более на вводе в каждый щиток рекомендуется устанавливать аппарат управления.

6.5.12. В помещениях, имеющих зоны с разными условиями естественного освещения и различными режимами работы, должно предусматриваться раздельное управление освещением зон.

6.5.13. Выключатели светильников, устанавливаемых в помещениях с неблагоприятными условиями среды, рекомендуется выносить в смежные помещения с лучшими условиями среды.

Выключатели светильников душевых и раздевалок при них, горячих цехов столовых должны устанавливаться вне этих помещений.

6.5.14. В протяженных помещениях с несколькими входами, посещаемых обслуживающим персоналом (например, кабельные, теплофикационные, водопроводные тоннели), рекомендуется предусматривать управление освещением от каждого входа или части входов.

6.5.15. В помещениях с четырьмя и более светильниками рабочего освещения, не имеющих освещения безопасности и эвакуационного освещения, светильники рекомендуется распределять не менее, чем на две самостоятельно управляемые группы.

6.5.16. Управление освещением безопасности и эвакуационным освещением можно производить: непосредственно из помещения; с групповых щитков; с распределительных пунктов; с вводных распределительных устройств; с распределительных устройств подстанций; централизованно из пунктов управления освещением с использованием системы централизованного управления, при этом доступ к аппаратам управления должен быть возможен только обслуживающему персоналу.

6.5.17. Управление установками искусственного ультрафиолетового облучения длительного действия должно предусматриваться независимым от управления общим освещением помещений.

6.5.18. Светильники местного освещения должны управляться индивидуальными выключателями, являющимися конструктивной частью светильника или располагаемыми в стационарной части электропроводки. При напряжении до 50 В для управления светильниками допускается использовать штепсельные розетки.

Управление наружным освещением

6.5.19. Система управления наружным освещением должна обеспечивать его отключение в течение не более 3 мин.

Управление наружным освещением рекомендуется осуществлять из ограниченного числа мест.

6.5.20. Для небольших промышленных предприятий и населенных пунктов допускается предусматривать управление наружным освещением коммутационными аппаратами, установленными на линиях питания освещением, при условии доступа к этим аппаратам обслуживающего персонала.

6.5.21. Централизованное управление наружным освещением городов и населенных пунктов рекомендуется выполнять:

телемеханическим — при количестве жителей более 50 тысяч;

телемеханическим или дистанционным — при количестве жителей от 20 до 50 тысяч;

дистанционным — при количестве жителей до 20 тысяч.

6.5.22. При централизованном управлении наружным освещением промышленных предприятий должна обеспечиваться возможность местного управления освещением.

6.5.23. Управление освещением открытых технологических установок, открытых складов и других открытых объектов при производственных зданиях, освещение которых питается от сетей внутреннего освещения, рекомендуется производить из этих зданий или централизованно.

6.5.24. Управление наружным освещением города должно осуществляться от одного центрального диспетчерского пункта. В крупнейших городах, территории которых разобщены водными, лесными или естественными преградами рельефа местности, могут предусматриваться районные диспетчерские пункты.

Между центральным и районным диспетчерским пунктом должна выполняться прямая телефонная связь.

6.5.25. Для снижения освещения улиц и площадей городов в ночное время допускается предусматривать возможность отключения части светильников. При этом не допускается отключение двух смежных светильников.

6.5.26. Для пешеходных и транспортных тоннелей должно предусматриваться раздельное управление светильниками дневного, вечернего и ночного режима работы тоннелей. Для пешеходных тоннелей, кроме того, должна быть обеспечена возможность местного управления.

6.5.27. Управление освещением территорий школ-интернатов, гостиниц, больниц, госпиталей, санаториев, пансионатов, домов отдыха, парков, садов, стадионов и выставок и т. п. рекомендуется осуществлять от системы управления наружным освещением населенного пункта. При этом должна быть обеспечена возможность местного управления.

При питании освещения указанных объектов от сетей внутреннего освещения зданий управление наружным освещением может производиться из этих зданий.

6.5.28. Управление световым ограждением высотных сооружений (мачты, дымовые трубы и т.п.) рекомендуется предусматривать из объектов, к которым эти сооружения относятся.

6.5.29. Централизованное управление сетями наружного освещения городов, населенных пунктов и промышленных предприятий должно осуществляться путем использования коммутационных аппаратов, устанавливаемых в пунктах питания наружного освещения.

Управление коммутационными аппаратами в сетях наружного освещения городов и населенных пунктов рекомендуется производить, как правило, путем каскадного (последовательного) их включения.

В воздушно-кабельных сетях в один каскад допускается включение до 10 пунктов питания, а в кабельных — до 15 пунктов питания сети уличного освещения.

Глава 6.6 ОСВЕТИТЕЛЬНЫЕ ПРИБОРЫ И ЭЛЕКТРОУСТАНОВОЧНЫЕ УСТРОЙСТВА

Осветительные приборы

6.6.1. Осветительные приборы должны устанавливаться так, чтобы они были доступны для их монтажа и безопасного обслуживания с использованием при необходимости инвентарных технических средств.

Каждый электрик должен знать:  Как выбрать аккумулятор для автомобиля рекомендации

В производственных помещениях, оборудованных мостовыми кранами, участвующими в непрерывном производственном процессе, а также в бескрановых пролетах, в которых доступ к светильникам с помощью напольных и других передвижных средств невозможен или затруднен, установка светильников и другого оборудования и прокладка электрических сетей может производиться на специальных стационарных мостиках, выполненных из несгораемых материалов. Ширина мостиков должна быть не менее 0,6 м, они должны иметь ограждения высотой не менее 1 м.

В общественных зданиях допускается сооружение таких мостиков при отсутствии возможности использования других средств и способов доступа к светильникам.

6.6.2. Светильники, обслуживаемые со стремянок или приставных лестниц. должны устанавливаться на высоте не более 5 м (до низа светильника) над уровнем пола. При этом расположение светильников над крупным оборудованием, приямками и в других местах, где невозможна установка лестниц или стремянок, не допускается.

6.6.3. Светильники, применяемые в установках, подверженных вибрациям и сотрясениям, должны иметь конструкцию, не допускающую самоотвинчивания ламп или их выпадения. Допускается установка светильников с применением амортизирующих устройств.

6.6.4. Для подвесных светильников общего освещения рекомендуется иметь свесы длиной не более 1,5 м. При большей длине свеса должны приниматься меры по ограничению раскачивания светильников под воздействием потоков воздуха.

6.6.5. Во взрывоопасных зонах все стационарно установленные осветительные приборы должны быть жестко укреплены для исключения раскачивания.

При применении во взрывоопасных зонах щелевых световодов должны соблюдаться требования гл. 7.3.

Для помещений, отнесенных к пожароопасным зонам П-IIа, должны быть использованы светильники с негорючими рассеивателями в виде сплошного силикатного стекла.

6.6.6. Для обеспечения возможности обслуживания осветительных приборов допускается их установка на поворотных устройствах при условии их жесткого крепления к этим устройствам и подводки питания гибким кабелем с медными жилами.

6.6.7. Для освещения транспортных тоннелей в городах и на автомобильных дорогах рекомендуется применять светильники со степенью защиты IР65.

6.6.8. Светильники местного освещения должны быть укреплены жестко или так, чтобы после перемещения они устойчиво сохранили свое положение.

6.6.9. Приспособления для подвешивания светильников должны выдерживать в течение 10 мин без повреждения и остаточных деформаций приложенную к ним нагрузку, равную пятикратной массе светильника, а для сложных многоламповых люстр с массой 25 кг и более — нагрузку, равную двукратной массе люстры плюс 80 кг.

6.6.10. У стационарно установленных светильников винтовые токоведущие гильзы патронов для ламп с винтовыми цоколями в сетях с заземленной нейтралью должны быть присоединены к нулевому рабочему проводнику.

Если патрон имеет нетоковедущую винтовую гильзу, нулевой рабочий проводник должен присоединяться к контакту патрона, с которым соединяется винтовой цоколь лампы.

6.6.11. В магазинных витринах допускается применение патронов с лампами накаливания мощностью не более 100 Вт при условии установки их на несгораемых основаниях. Допускается установка патронов на сгораемых, например деревянных, основаниях, обшитых листовой сталью по асбесту.

6.6.12. Провода должны вводиться в осветительную арматуру таким образом, чтобы в месте ввода они не подвергались механическим повреждениям, а контакты патронов были разгружены от механических усилий.

6.6.13. Соединение проводов внутри кронштейнов, подвесов или труб, при помощи которых устанавливается осветительная арматура, не допускается. Соединения проводов следует выполнять в местах, доступных для контроля, например в основаниях кронштейнов, в местах ввода проводов в светильники.

6.6.14. Осветительную арматуру допускается подвешивать на питающих проводах, если они предназначены для этой цели и изготовляются по специальным техническим условиям.

6.6.15. Осветительная арматура общего освещения, имеющая клеммные зажимы для присоединения питающих проводников, должна допускать подсоединение проводов и кабелей как с медными, так и с алюминиевыми жилами.

Для осветительной арматуры, не имеющей клеммных зажимов, когда вводимые в арматуру проводники непосредственно присоединяются к контактным зажимам ламповых патронов, должны применяться провода или кабели с медными жилами сечением не менее 0,5 мм 2 внутри зданий и 1 мм 2 вне зданий. При этом в арматуре для ламп накаливания мощностью 100 Вт и выше, ламп ДРЛ, ДРИ, ДРИЗ, ДНаТ должны применяться провода с изоляцией, допускающей температуру нагрева их не менее 100 °С.

Вводимые в свободно подвешиваемые светильники незащищенные провода должны иметь медные жилы.

Провода, прокладываемые внутри осветительной арматуры, должны иметь изоляцию, соответствующую номинальному напряжению сети (см. также 6.3.34).

6.6.16. Ответвления от распределительных сетей к светильникам наружного освещения должны выполняться гибкими проводами с медными жилами сечением не менее 1,5 мм 2 для подвесных светильников и не менее 1 мм 2 для консольных. Ответвления от воздушных линий рекомендуется выполнять с использованием специальных переходных ответвленных зажимов.

6.6.17. Для присоединения к сети настольных, переносных и ручных светильников, а также подвешиваемых на проводах светильников местного освещения должны применяться шнуры и провода с гибкими медными жилами сечением не менее 0,75 мм 2 .

6.6.18. Для зарядки стационарных светильников местного освещения должны применяться гибкие провода с медными жилами сечением не менее 1 мм 2 для подвижных конструкций и 0,5 мм 2 для неподвижных.

Изоляция проводов должна соответствовать номинальному напряжению сети.

6.6.19. Зарядка кронштейнов осветительной арматуры местного освещения должна соответствовать следующим требованиям:

1. Провода необходимо заводить внутрь кронштейна или защищать иным путем от механических повреждений; при напряжении не выше 50 В это требование не является обязательным.

2. При наличии шарниров провода внутри шарнирных частей не должны подвергаться натяжению или перетиранию.

3. Отверстия для проводов в кронштейнах должны иметь диаметр не менее 8 мм с допуском местных сужений до 6 мм; в местах вводов проводов должны применяться изолирующие втулки.

4. В подвижных конструкциях осветительной арматуры должна быть исключена возможность самопроизвольного перемещения или раскачивания арматуры.

6.6.20. Присоединение прожекторов к сети должно выполняться гибким кабелем с медными жилами сечением не менее 1 мм 2 длиной не менее 1,5 м. Защитное заземление прожекторов должно выполняться отдельной жилой.

Электроустановочные устройства

6.6.21. Требования, приведенные в 6.6.22-6.6.31, распространяются на устройства (выключатели, переключатели и штепсельные розетки) для номинального тока до 16 А и напряжения до 250 В, а также на штепсельные соединения с защитным контактом для номинального тока до 63 А и напряжения до 380 В.

6.6.22. Устройства, устанавливаемые скрыто, должны быть заключены в коробки, специальные кожухи или размещаться в отверстиях железобетонных панелей, образованных при изготовлении панелей на заводах стройиндустрии. Применение сгораемых материалов для изготовления крышек, закрывающих отверстия, в панелях не допускается.

6.6.23. Штепсельные розетки, устанавливаемые в запираемых складских помещениях, содержащих горючие материалы или материалы в горючей упаковке, должны иметь степень защиты в соответствии с требованиями гл. 7.4.

6.6.24. Штепсельные розетки для переносных электроприемников с частями, подлежащими защитному заземлению, должны быть снабжены защитным контактом для присоединения РЕ проводника. При этом конструкция розетки должна исключать возможность использования токоведущих контактов в качестве контактов, предназначенных для защитного заземления.

Соединение между заземляющими контактами вилки и розетки должно устанавливаться до того, как войдут в соприкосновение токоведущие контакты; порядок отключения должен быть обратным. Заземляющие контакты штепсельных розеток и вилок должны быть электрически соединены с их корпусами, если корпуса выполнены из токопроводящих материалов.

6.6.25. Вилки штепсельных соединителей должны быть выполнены таким образом, чтобы их нельзя было включать в розетки сети с более высоким номинальным напряжением, чем номинальное напряжение вилки. Конструкция розеток и вилок не должна допускать включения в розетку только одного полюса двухполюсной вилки, а также одного или двух полюсов трехполюсной вилки.

6.6.26. Конструкция вилок штепсельных соединителей должна исключать натяжение или излом присоединяемых к ним проводов в местах присоединения.

6.6.27. Выключатели и переключатели переносных электроприемников должны, как правило, устанавливаться на самих электроприемниках или в электропроводке, проложенной неподвижно. На подвижных проводах допускается устанавливать выключатели только специальной конструкции, предназначенные для этой цели.

6.6.28. В трех- или двухпроводных однофазных линиях сетей с заземленной нейтралью могут использоваться однополюсные выключатели, которые должны устанавливаться в цепи фазного провода, или двухполюсные, при этом должна исключаться возможность отключения одного нулевого рабочего проводника без отключения фазного.

6.6.29. В трех- или двухпроводных групповых линиях сетей с изолированной нейтралью или без изолированной нейтрали при напряжении выше 50 В, а также в трех- или двухпроводных двухфазных групповых линиях в сети 220/127 В с заземленной нейтралью в помещениях с повышенной опасностью и особо опасных должны устанавливаться двухполюсные выключатели.

6.6.30. Штепсельные розетки должны устанавливаться:

1. В производственных помещениях, как правило, на высоте 0,8-1 м; при подводе проводов сверху допускается установка на высоте до 1,5 м.

2. В административно-конторских, лабораторных, жилых и других помещениях на высоте, удобной для присоединения к ним электрических приборов, в зависимости от назначения помещений и оформления интерьера, но не выше 1 м. Допускается установка штепсельных розеток в (или на) специально приспособленных для этого плинтусах, выполненных из несгораемых материалов.

3. В школах и детских учреждениях (в помещениях для пребывания детей) на высоте 1,8 м.

6.6.31. Выключатели для светильников общего освещения должны устанавливаться на высоте от 0,8 до 1,7 м от пола, а в школах, детских яслях и садах в помещениях для пребывания детей — на высоте 1,8 м от пола. Допускается установка выключателей под потолком с управлением при помощи шнура.

Промышленное освещение

Ноя 25 • L[PRO]SPECTU, Статьи • 17046 Просмотров •

Промышленное освещение и его проектирование на промышленных и производственных предприятиях — задача сложная и требует от разработчика проекта максимальной концентрации. Однако помимо применения общих принципов проектирования, промышленное освещение требует так же учёта ряда особенностей при выборе осветительной техники и мест её расположения.

Ошуркова Е. С.
Технический консультант ООО «БЛ ТРЕЙД»

В целом, проектировщику промышленного освещения необходимо изучить требования довольно большого пакета существующих норм и ГОСТ, как общих, так и специфических. В настоящий момент таковыми для промышленных помещений являются:

1. СП52.13330.2011 (актуализированная редакция СНиП 23-05-95), свод правил «Естественное и искусственное освещение»;
2. СП 2.2.1.1312-03, санитарно-эпидемиологические правила „Гигиенические требования к проектированию вновь строящихся и реконструируемых промышленных предприятий“;
3. МГСН 2.06-99, «Московские городские строительные нормы. Естественное, искусственное и совмещённое освещение»;
4. ПУЭ, Правила устройства электроустановок;
5. ГОСТ 15597-82 «Светильники для производственных зданий. Общие технические условия»;
6. Отраслевые стандарты (если есть).

ЗАО «Связьстройдеталь», Москва, цех по производству работ со стекловолокном. Для местного освещения использованы светильники GALAD ДДУ71-20х1-001.

Первым шагом при проектировании освещения производственного помещения является определение разряда выполняемых зрительных работ. Далее, в зависимости от типа системы освещения — общее или комбинированное (общее + местное) — определяется необходимая горизонтальная освещённость на рабочей поверхности, максимальные показатель ослеплённости и коэффициент пульсаций освещённости.

Следующим шагом является выбор источника света — как по количественным светотехническим характеристикам (световой поток, потребляемая мощность, световая отдача), так и по качественным (спектральные характеристики, индекс цветопередачи). Пункт 7.3 СП 2.2.1.1312-03 гласит: «Для искусственного освещения следует использовать энергоэкономичные источники света, отдавая предпочтение при равной мощности источникам света с наибольшей световой отдачей и сроком службы». В пункте 10.12 того же документа указано: «При проектировании осветительных установок в помещениях, предназначенных для выполнения зрительных работ с высоким требованием к цветоразличению, следует выбирать источники света с высоким индексом цветопередачи (70 ед. ? Ra ? 90 ед.): газоразрядные источники света или светодиоды белого свечения с коррелированной цветовой температурой от 3500°K до 6000°K».

Промышленное освещение

Пульсации освещённости в самом строгом случае (при работах наивысшей точности) ограничены значением Кп не более 10%. Для их снижения в случае газоразрядных ламп рекомендуется разделение соседних светильников на три группы и подключение их к трём различным фазам электрической сети, либо включение нескольких ламп в светильнике на разные фазы, а также использование светильников с ЭПРА. Согласно СП 2.2.1.1312-03: «Коэффициент пульсации освещенности не регламентируется и не контролируется при частоте питающего переменного тока 300 Гц и выше или наличии ЭПРА, а также для помещений с периодическим пребыванием людей при отсутствии в них условий для возникновения стробоскопического эффекта». В случае применения светодиодных светильников рекомендуется уточнять у производителя величину и частоту пульсаций производимого ими светового потока. Если значение пульсации оказывается высоким на частоте 100 Гц, можно использовать приём с подключением к разным фазам питающей сети аналогично светильникамс разрядными лампами.

Помимо этого, нужно обращать внимание и на окружение рабочего места. Промышленное освещение требует соблюдения рекомендуемых соотношений яркостей рабочей и окружающих поверхностей (столов, стен, колонн). Также нужно следить за ограничением блёскости от источников света — для этого использовать светильники с подходящим защитным углом, располагать их на нужной высоте вне прямой видимости работников.

Примером положительного эффекта от правильно спроектированного освещения может послужить, например, реализация местного освещения в цехе по производству работ с оптоволокном ЗАО «Связьстройдеталь», где выпускаются претерминированные кабельные сборки, оптические патчкорды и разветвители. Для установки были выбраны светильники GALAD ДДУ71-20х1-001 с белыми светодиодами. При соблюдении требований по цветопередаче они обеспечили на рабочей поверхности горизонтальную освещённость 1000 лк. После модернизации системы освещения в компании отметили снижение количества брака, уменьшение утомляемости сотрудников и высокую энергетическую эффективность, а также удобство монтажа и эксплуатации светильников.

Выяснив все ограничения и условия, накладываемые нормативными документами, можно приступать к выбору оборудования. И здесь важно учесть ряд особенностей, характерных для промышленных помещений.

Монтаж светильника

В цехах зачастую уже имеются установленные конструкции для крепления световых приборов. В небольшом помещении это может быть обычный или подвесной потолок, в просторном — стальные фермы, трубы, тросы или крюки для подвеса. При выборе светильников необходимо выяснить, каким именно образом предполагается их монтаж.

В ассортименте промышленных светильников GALAD есть уже ставшая «классикой» модель ЖСП/ГСП51. В этом светильнике, помимо передвижного патрона позволяющего настраивать светораспределение и «подгонять» его под конкретный объект, есть ещё одна полезная особенность: универсальный узел крепления. Он позволяет одинаково легко крепить светильник на трос, трубу или крюк, что сильно расширяет возможности его применения.

Доступ к светильникам для ремонта и обслуживания

Помещения, в котором вы будете проектировать промышленное освещение, могут иметь самую разную конфигурацию: от цеха часовщиков (маленькая комната) до металлопрокатного цеха (огромный ангар). И в любом случае персонал должен иметь возможность почистить световые приборы и в случае необходимости провести замену или ремонт.

В большом цехе может быть кран-балка. Если кран-балка имеет кабину оператора (а не на радиоуправлении), то она может использоваться для обслуживания светильников с крыши кабины. Иначе, при высоте потолков более 5 м необходимо использовать специальные приспособления (вышки, туры и пр.), и выполнять обслуживание светильников по разряду высотных работ с соблюдением соответствующих мер.

Промышленное освещение на заводе «Кириешки» в Павловском Посаде, складское помещение. Использованы светильники GALAD ДСП02-120-001.

В некоторых случаях при отсутствии кран-балки или иного удобного варианта доступа к светотехническому оборудованию может быть выгодным применение светодиодных светильников. Например, в помещении с высокими потолками, но с невысокой загрязнённостью, там, где не требуется частая чистка. Светодиодные светильники имеют высокий срок службы, им не требуется замена ламп, поэтому, проектируя промышленное освещение, стоит учитывать, что количество обслуживающих операций может быть сокращено.

Промышленное освещение: условия окружающей среды

В зависимости от выполняемых в цехе работ, там могут быть крайне разнообразные климатические условия. Высокая (или наоборот, очень низкая) температура воздуха, влажность, химические испарения кислот или солей, сильная загрязнённость пылью или частичками используемого в производстве сырья (бумага, ткань, опилки и прочее) — все эти факторы могут крайне неблагоприятно отразиться на «неподготовленном» для такой жизни светильнике.

Поэтому при выборе световых приборов для промышленного освещения цеха важно обращать внимание на их конструкцию и степень защиты. Светильник должен быть защищён от попадания внутрь мелких частиц и воды, иметь соответствующее климатическое исполнение, а материалы, из которых выполнены корпус и арматура, в случае особо агрессивной среды в помещении должны быть к ней устойчивы.

Например, в среднесортном цехе ООО «ЕвразСервис-Сибирь» промышленное освещение выполнено на светильника GALAD ЖСП51-400-011. Корпус светильника изготовлен из алюминия и устойчив к окислению и коррозии, защитное стекло — силикатное закалённое термостойкое, возможна комплектация стальной никелированной защитной решёткой, чтобы исключить механическое повреждение светильника.

Промышленное освещение: особенности электросетей

При использовании в проекте светодиодных светильников необходимо так же обращать внимание на электромагнитную совместимость (ЭМС) источников питания (ИП) светодиодов, входящих в состав светильника. ГОСТ Р 53390-2009 «Совместимость технических средств электромагнитная. Низковольтные источники питания постоянного тока. Требования и методы испытаний», устанавливает требования ЭМС к ИП с выходным напряжением постоянного тока до 200 В и мощностью до 30 кВт, подключаемым к источникам переменного и постоянного тока напряжением до 600 В. Очевидно, под эти требования попадает подавляющее большинство ИП для светодиодов. Ключевым моментом в данном ГОСТ является факт наличия двух различных норм индустриальных помех для источников питания:

6.1.1 Нормы индустриальных радиопомех класса Б.

Источники питания, соответствующие нормам индустриальных радиопомех класса Б, относят к Оборудованию класса Б. Оборудование класса Б предназначено для применения в жилых зонах. Нормы индустриальных радиопомех класса Б распространяются также на источники питания, устанавливаемые в коммерческих зонах и производственных зонах с малым энергопотреблением, если оборудование непосредственно подключают к распределительным электрическим сетям общего назначения, к которым подключены жилые здания.

6.1.2 Нормы индустриальных радиопомех класса А.

Источники питания, соответствующие нормам индустриальных радиопомех класса А, относят к оборудованию класса А. Оборудование класса А предназначено для установки в коммерческих зонах, производственных зонах с малым энергопотреблением и в промышленных зонах, где оборудование не подключают непосредственно к распределительным электрическим сетям общего назначения, к которым подключены жилые здания.

Нормы класса Б значительно строже норм класса А. Поэтому если оборудование класса А (светильник с соответствующим ИП) устанавливается в производственных зонах, предназначенных для машин и аппаратов класса Б, оно может создавать индустриальные радиопомехи и нарушать их функционирование. В случае, если в проект уже заложены светильники неправильного класса, можно принять меры по снижению помех. Например, могут быть установлены внешние фильтрующие элементы. Однако, во избежание дополнительных сложностей, следует заранее обращать внимание на класс закладываемого в проект оборудования. Это не составляет особого труда, учитывая, что оборудование класса А имеет предупреждающую надпись.

Вторым важным аспектом применения светодиодных светильников в производственных помещениях является необходимость учитывать значительные резкие колебания напряжения питающей сети, а так же микросекундные импульсные помехи в результате коммутаций мощного оборудования. Наличие таких переходных процессов может привести к возникновению обратного тока в светодиодах, что негативно скажется на их сроке службы, или даже приведет к их выходу из строя. В связи с этим производители ИП для светодиодов часто приводят рекомендации по применению ИП в составе светильника, направленные на минимизацию влияния переходных процессов в сети на светодиодную нагрузку. Следует уточнять у производителя, какие меры приняты в светильнике для устранения возможности протекания обратного тока светодиодов.

Проектируя промышленное освещение любого объекта специалисты вынуждены находить баланс между качеством результата и стоимостью оборудования. Но именно в случае производственных помещений этот баланс без сомнения стоит смещать в сторону качества. Ведь выход из строя элементов системы освещения может обернуться значительными потерями — простой оборудования, особенно на крупных предприятиях и заводах обходится в очень крупные суммы. Не стоит экономить время и средства на светотехнических расчётах и выборе техники — продуманный проект (с учетом, в том числе и вышеуказанных моментов) обеспечит заказчику надёжную и эффективно работающую осветительную систему

Применение повышенной частоты для осветительных установок с разрядными лампами

КЛАССИФИКАЦИЯ СХЕМ ПРА

СТАРТЕРНЫЕ ПУСКОРЕГУЛИРУЮЩИЕ АППАРАТЫ ДЛЯ ЛЮМИНЕСЦЕНТНЫХ ЛАМП

ОДНОЛАМПОВЫЕ СТАРТЕРНЫЕ ПРА

ДВУХЛАМПОВЫЕ СТАРТЕРНЫЕ ПРА С РАСЩЕПЛЕННОЙ ФАЗОЙ

ТРЕБОВАНИЯ К СТАРТЕРНЫМ ПРА

БЕССТАРТЕРНЫЕ ПУСКОРЕГУЛИРУЮЩИЕ АППАРАТЫ ДЛЯ ЛЮМИНЕСЦЕНТНЫХ ЛАМП

КЛАССИФИКАЦИЯ БЕССТАРТЕРНЫХ ПРА

ОСНОВНЫЕ СХЕМЫ БЕССТАРТЕРНЫХ ПРА

ПУСКОРЕГУЛИРУЮЩИЕ АППАРАТЫ ДЛЯ ЛАМП ТИПОВ ДРЛ, ДРИ И ДНаТ

ЭЛЕКТРОННЫЙ ПУСКОРЕГУЛИРУЮЩИЙ АППАРАТ

ЗАЖИГАЮЩИЕ УСТРОЙСТВА ДЛЯ ЛАМП ВЫСОКОГО ДАВЛЕНИЯ

КЛАССИФИКАЦИЯ СХЕМ ПРА

Пускорегулирующий аппарат —светотехническое изделие, с помощью которого осуществляется питание разрядной лампы от электрической сети, обеспечивающее необходимые режимы зажигания, разгорания и работы лампы и конструктивно оформленное в виде единого аппарата или нескольких отдельных блоков.

Пускорегулирующий аппарат обеспечивает:

1) зажигание разрядной лампы, т. е. пробой межэлектродного промежутка и формирование в нем требуемого вида разряда. Указанная функция обычно выполняется зажигающим устройством, которое часто является составным элементом ПРА. Для надежного зажигания лампы ПРА должен иметь определенные выходные параметры в режиме холостого хода, т. е. в режиме работы схемы включения при не горящей лампе. К ним относятся форма, значение напряжения, подаваемого на электроды лампы в период ее пуска, а при необходимости значение тока предварительного подогрева электродов и др.;

2) разгорание разрядной лампы, т. е. процесс установления рабочих параметров лампы после ее зажигания. Продолжительность разгорания лампы, а также характер изменения тока в ней в течение этого процесса зависят не только от газового наполнения лампы и соотношения температур ее колбы в холодном и рабочем состоянии, но и от типа и параметров ПРА [1.1];

3) устойчивость режима работы разрядной лампы в контуре, заключающуюся в способности контура автоматически восстанавливать исходное значение тока при его флюктуационных изменениях. Наличие данной функции у ПРА, которая выполняется с помощью токоограничивающих элементов (стабилизаторов тока), связано со спецификой статических вольт-амперных характеристик ламп (ВАХ). Обеспечить устойчивый режим работы от источника напряжения без токоограничивающих элементов-балластов принципиально невозможно для разрядных ламп, имеющих падающие ВАХ.

Для ламп с возрастающими ВАХ устойчивая работа от сети возможна и без балласта. Однако при малом наклоне характеристики это не всегда экономически целесообразно из-за низкой стабильности комплекта лампа — ПРА.

Рисунок 1. Обобщённая структурная схема однолампового ПРА: ВИП- вторичный источник питания; СТ — стабилизатор; ЗУ — зажигающее устройство.

Помимо элементов ПРА, выполняющих функции, в схему аппарата может, входит и вторичный источник питания. Обобщенная структурная схема однолампового ПРА показана на рис. 1.

Кроме основных функций ПРА может подавлять радио — помехи, создаваемые лампой, снижать пульсации её светового потока, обеспечивать высокий коэффициент мощности схемы др. С учетом общеинженерных и экономически соображений к ПРА предъявляется также ряд дополнительных требований. Они заключаются в том, что аппарат должен обладать минимальными собственными потерями, массой и габаритными размерами, иметь невысокую стоимость, быть надежным, долговечным, обеспечивать минимальные эксплуатационные расходы, не создавать заметного акустического шума и т.д. Совокупность этих требований является противоречивой и поэтому имеется много схем ПРА, в которых наилучшим образом выполняются лишь некоторые из них.

Классификация схем ПРА может быть проведена по различным признакам: по типу токоограничивающего элемента, по условиям зажигания и работы лампы [1.1], по типу источника питания, по количеству ламп и т. д. Для целей анализа цепей ПРА наиболее удобна классификация по типу токоограничивающего элемента, поскольку это во многом определяет метод анализа. В соответствии с такой классификацией (рис. 2) все ПРА можно разделить на три основные группы: электромагнитные, полупроводниковые, комбинированные. К отдельной, четвертой, группе целесообразно отнести ПРА без токоограничивающего элемента для специальных так называемых без балластных ламп.

В первую группу (электромагнитные ПРА) входят аппараты с реактивными и активными токоограничивающими элементами (балластами) и их комбинациями, причем в основном силовом контуре этих ПРА находятся только токоограничивающие элементы. Источником питания является сеть промышленной или повышенной частоты. В эту группу входят такие традиционные аппараты, как индуктивный и индуктивно-емкостный ПРА, аппараты с трансформатором и автотрансформатором с большим внутренним сопротивлением.

Рисунок 2. Классификация ПРА для разрядных ламп по типу токоограничивающего элемента.

Такие ПРА могут быть со стартёрным или бесстартёрным зажиганием, иметь цепи для предварительного подогрева электродов люминесцентных ламп или цепи мгновенного перезажигания ламп высокого давления типов ДРЛ, ДРИ и т. д. (см., например, рис. 3).

Аппараты с резистивными балластами применяются при подключении разрядных ламп к сети постоянного тока или промышленной частоты. В резистивных аппаратах может быть использован балластный резистор или нелинейный резистор (вольфрамовая спираль лампы накаливания). Резистивные

Рисунок 3. Обобщенная структурная схема стартерного ПРА и бесстартерного ПРА с накальным трансформатором.

аппараты не получили широкого распространения из-за низкого КПД. Однако в последнее время для компактных люминесцентных ламп бытового назначения в ряде стран находят применение емкостно-резистивные балласты, в которых указанный выше основной недостаток ПРА резистивного типа в известной степени нивелирован.

В полупроводниковых ПРА (вторая группа) стабилизация тока лампы осуществляется с помощью полупроводниковых приборов, обычно транзисторов. На рис. 4 приведена схема полупроводникового ПРА, в котором транзистор используется в качестве нелинейного сопротивления. Схема удовлетворительно работает на постоянном токе при незначительных колебаниях напряжения источника питания. На переменном токе схемы нелинейных полупроводниковых ПРА обладают большими собственными потерями.

Рисунок 4. Схема нелинейного

Рисунок 5. Схема импульсного полупроводникового ПРА. полупроводникового ПРА.

На рис. 5 дана схема импульсного полупроводникового ПРА. Приведенная схема носит название динамического балласта. В динамическом балласте транзистор работает в режиме ключа, и стабилизация тока лампы осуществляется с использованием инерционных свойств плазмы газового разряда. На рис. 6, а показана форма напряжения на разрядной лампе. При открытом транзисторе (0≤ t ≤ T и ) напряжение на лампе приблизительно равно напряжению источника питания ( U л ≈ U п ). При закрытом транзисторе ( T и t T п ) напряжение на лампе равно нулю. На рис. 6,б показана форма тока лампы. За время импульса напряжения ток лампы возрастает от I о до I мах . За время паузы происходит частичная деионизация плазмы, возрастает ее сопротивление, и следующий импульс тока опять начинается с I о .

Рисунок 6. Осциллограммы напряжения на лампе (а) и тока лампы (б) в схеме импульсного полупроводникового ПРА.

В третьей группе (комбинированные ПРА) стабилизация тока лампы осуществляется с помощью, как реактивных элементов, так и полупроводниковых приборов. В ПРА этой группы в качестве балластов используются дроссели, конденсаторы, транзисторы, тиристоры и другие полупроводниковые приборы. В группе существует большое количество разнообразных схем. Целесообразно рассмотреть следующие из них: с высокочастотным (ВЧ) генератором, емкостно-полупроводниковые, индуктивно-полупроводниковые и схемы с преобразованием частоты.

Все схемы с ВЧ генератором построены практически по единой схеме (рис. 7). Питание лампы осуществляется от двух источников питания: силового через Балласт 1 и повышенной частоты через Балласт 2. На рис. 8 приведен вариант схемы при использовании дросселя Д р в качестве низкочастотного балласта и конденсатора С в качестве высокочастотного. Такая схема нашла применение в светорегуляторах, при работе ламп в условиях пониженного напряжения питания, а также для снижения пульсации светового потока ламп.

Рисунок 7. Обобщенная структурная схема комбинированного ПРА с ВЧ генератором.

На рис. 9 показана схема комбинированного импульсного ПРА с двумя источниками питания. Для поддержания разряда в лампе через Балласт 2 поступают ионизирующие импульсы тока.

Рисунок 8. Схема комбинированного ПРА с ВЧ генератором и индуктивным балластом.

На рис. 10, а и б показаны формы напряжения и тока лампы. Во время импульса (0≤ t ≤ T и ) ток лампы поддерживается постоянным ( i л ≈ i 2 = conts ), и за счет ионизации положительного столба разряда сопротивление лампы и напряжение на ней уменьшаются. В интервале Т и t п , ток ионизирующего генератора i 2 = 0, и ток лампы определяется только током i 1 .

Рисунок 9. Схема комбинированного ПРА с двумя источниками питания.

Рисунок 10. Осциллограммы напряжения на лампе (а) и тока лампы (б) в комбинированном импульсном ПРА.

В силу того что напряжение питания меньше напряжения горения разряда, происходит деионизация плазмы столба разряда, и ток постепенно уменьшается до I min . Затем подается импульс тока i 2 , и все процессы повторяются.

На рис. 11 и 12 приведены схемы комбинированных емкостно-полупроводникового и индуктивно-полупроводникового ПРА. В схеме рис. 11 основное падение напряжения происходит на балластном конденсаторе С, что снижает напряжение на стабилизирующем транзисторе VT и тем самым повышает КПД схемы. В схеме рис. 12 симметричный тиристор VS шунтирует вспомогательный дроссель Д р 2, что обеспечивает повышение стабильности работы лампы и КПД схемы.

Рисунок 11. Схема комбинированного емкостно-полупроводникового ПРА.

Рисунок 12. Схема комбинированного индуктивно-полупроводникового ПРА (СУ-схема управления)

На рис. 13 показана широко распространенная схема комбинированного резонансного ПРА с преобразователем частоты. Схемы с преобразователем обеспечивают питание лампы током повышенной частоты (20 50 кГц), при этом повышается световая отдача ламп, снижаются размеры балластных дросселей и конденсаторов.

Рисунок 13. Схема комбинированного резонансного ПРА с преобразователем частоты. (ПЧ-преобразователь частоты)

СТАРТЕРНЫЕ ПУСКОРЕГУЛИРУЮЩИЕ АППАРАТЫ ДЛЯ ЛЮМИНЕСЦЕНТНЫХ ЛАМП

2.1 ОДНОЛАМПОВЫЕ СТАРТЕРНЫЕ ПРА

Стартерным ПРА называют аппарат, в котором зажигание ЛЛ с предварительно нагретыми электродами осуществляется с помощью стартера с размыкающимися контактами. Собственно стартерный ПРА состоит из балластного сопротивления (индуктивного или индуктивно-емкостного) и иногда компенсирующего конденсатора и других элементов. Схема стартерного ПРА с индуктивным балластом приведена на рис. 14, а, а с индуктивно-емкостным — на рис. 14,б. Процесс зажигания ламп в обеих схемах одинаков. Пусковой ток лампы определяется полным сопротивлением балласта и электродов, а рабочий ток — полным сопротивлением балласта и сопротивлением самой лампы. Значение пускового тока определяется из условия обеспечения требуемой надежности зажигания лампы и исключения, по возможности, режима ее зажигания, с холодными или недостаточно нагретыми электродами. Поэтому он должен быть больше некоторого минимального значения.

Рисунок 14. Одноламповые стартерные ПРА: а- с индуктивным балластом; б- с индуктивно-емкостным балластом, в- ВАХ пускового режима индуктивного и индуктивно-емкостного балластов; г-зависимость ёмкости компенсирующего конденсатора от коэффициента мощности.

Вместе с тем слишком большой пусковой ток также может приводить к снижению срока службы лампы и вызывать недопустимое превышение температуры обмоток дросселя в режиме с залипшим стартером. Это требование определяется для стартерных ПРА как допустимая кратность пускового тока. В настоящее время кратность пускового тока К п =0,9÷2 номинального тока лампы.

В индуктивно-емкостных балластах дроссель включен последовательно с балластным конденсатором. На рис. 14,в приведена ВАХ дросселя 1 и последовательно соединенных дросселя и балластного конденсатора 2. Из рис. 14,в видно, что при индуктивно-емкостном балласте ВАХ отклоняется влево. Это означает, что в пусковом режиме ток лампы, включенной с индуктивным балластом, больше, чем с индуктивно-емкостным, и надежность зажигания и срок службы лампы в схеме с индуктивно-емкостным балластом ниже, чем с индуктивным.

Для увеличения пускового тока в индуктивно-емкостных схемах применяют дроссель с дополнительной обмоткой, которую включают в цепь стартера, как это показано на рис. 14, б. При этом ВАХ балласта перемещается вправо (кривая 2 на рис. 14, в).

Использование в индуктивных и индуктивно-емкостных схемах единого унифицированного балласта (без пусковой обмотки) связано с выбором емкости балластного конденсатора и полем его допуска. При этом путем использования конденсаторов с малыми отклонениями емкости можно добиться увеличения пускового тока индуктивно-емкостной ветви до значения пускового тока индуктивной ветви. В частности, при применении конденсаторов с допуском ±4 % возможно использование дросселя без пусковой обмотки. Однако при этом существенно повышаются требования к точности настройки дросселей.

Значение пускового тока может быть в некоторых пределах изменено путем настройки дросселя, о чем будет сказано ниже.

Применение в светильниках одноламповых стартерных ПРА с низким коэффициентом мощности вызывает увеличение реактивного тока, потребляемого из сети, перегрузку сети и дополнительные потери мощности в ней. Так, снижение значения cos ф с 1 до 0,5 увеличивает потребляемый из сети ток в 2 раза, а потери мощности в 4 раза.

Как было отмечено, коэффициент мощности лампы с дросселем всегда меньше единицы. Компенсировать индуктивный ток можно с помощью конденсатора, включенного параллельно напряжению сети. Такой конденсатор называют компенсирующим. На рис. 14, г показана зависимость емкости компенсирующего конденсатора С к от со s ф к , который мы хотим получить при значениях cos ф o для некомпенсированной ПРА, равных 0,3 (кривая 1) и 0,5 (кривая 2). Например, для повышения cos ф с 0,3 до 0,85 необходимо включение компенсирующего конденсатора емкостью C к1 . В этом случае cos ф носит индуктивный характер, т. е. потребляемый из сети ток отстает по фазе от напряжения сети. Если емкость конденсатора будет увеличена до С К2 , то при cos ф = 0,85 он будет иметь емкостный характер. На практике схемы с емкостным током не используют из-за необходимости увеличения емкости конденсаторов.

Компенсация реактивного тока включением на вход схемы питания лампы компенсирующего-конденсатора целесообразна для одноламповых светильников или светильников с последовательным включением ламп. В двухламповых светильниках применяют параллельное включение ламп с индуктивным и индуктивно-емкостным балластом.

2.2 ДВУХЛАМПОВЫЕ СТАРТЕРНЫЕ ПРА С РАСЩЕПЛЕННОЙ ФАЗОЙ

На рис. 15, а и б приведена распространенная схема стартерного двухлампового ПРА с расщепленной фазой и показана векторная диаграмма пускового режима. Емкость балластного конденсатора С б в таких схемах обычно несколько ниже (на 5-15 %) емкости компенсирующего конденсатора в одноламповой индуктивной схеме к лампе той же мощности. Применяя вместо двух схем с индуктивными балластами и компенсирующими конденсаторами одну схему с расщепленной фазой, можно сократить ёмкость балластного конденсатора не менее чем в 2 раза. Однако в этом случае балластный конденсатор, как это видно из рис. 15,б, должен иметь напряжение, превышающее напряжение сети.

Преимуществом схем с расщепленной фазой является также снижение пульсации светового потока в светильнике Оптимальным является случай, когда коэффициент мощности каждой из цепей включения ламп равен 0,7. В этом случае угол сдвига между кривыми световых потоков ламп составляет 90°, а коэффициент пульсации снижается в 2-4 раза по сравнению с пульсацией светового потока одной лампы. Большинство стартерных схем при работе с ЛЛ имеет cos ф=0,5 как для индуктивной, так и для емкостной цепи. В этом случае угол сдвига между кривыми световых потоков ламп в индуктивной схеме ф1 и

Рисунок 15. Двухламповая схема включения ЛЛ с расщепленной фазой: а- схема ПРА; б- векторная диаграмма рабочего режима; в- диаграмма пульсации светового потока.

емкостной ф2 возрастает до 120° (рис. 15, в) и коэффициент пульсации несколько больше. Для ламп, рассчитанных на работу от напряжения 127 В и имеющих cos ф≈0,3, при их включении в сеть напряжением 220 В применение двухламповых схем с расщепленной фазой не дает ощутимого эффекта по снижению пульсации светового потока. Поэтому такие лампы включают в сеть по схеме последовательного включения, обеспечивая снижение пульсации светового потока только для четырехламповых светильников.

Применение двухламповых схем последовательного включения в основном преследует две цели: создать наилучшие условия для ЛЛ, которые при включении в сеть с повышенным напряжением могут зажигаться в режиме с холодными или недогретыми электродами; повысить экономичность ПРА, т. е. снизить его массу, габаритные размеры, стоимость и потери мощности. Кроме того, применяя схемы последовательного включения, можно унифицировать некоторые ПРА, что будет показано ниже.

На рис. 16 приведена наиболее простая схема включения двух ЛЛ с двумя стартерами. Каждый из стартеров выбирается на то напряжение, для которого предназначена лампа.

Рисунок 16. Схема последовательного включения двух ЛЛ с двумя стартерами.

Преимуществом такой схемы помимо её простоты является возможность использовать один и тот же дроссель для включения одной лампы или двух ламп той же суммарной мощностью. Например, дроссель к лампе мощностью 40 Вт можно применять для включения двух ламп мощностью по 20 Вт. Надежность зажигания ламп в последовательных схемах повышается при шунтировании одной из ламп конденсатором небольшой емкости (0,05 мкФ), что обеспечивает пробой сначала незашунтированной лампы, а затем шунтированной. Схемы последовательного включения с индуктивно-емкостным балластом выполняют как сочетание дросселя и последовательно включенного с ним балластного конденсатора, а также с дросселем с дополнительной обмоткой, которая включается в цепь незашунтированного стартера. Этим достигается увеличение тока подогрева лампы и повышение, как надежности зажигания, так и срока службы ламп.

Рассмотренная схема, как и все схемы последовательного включения, обладает тем недостатком, что включение и работа ламп взаимосвязаны. При не зажигании одной лампы не зажигается и вторая, при выходе из строя одной лампы погаснет вторая. Поэтому разработаны многочисленные схемы последовательного включения ламп, лишенные в той или иной степени этого недостатка.

2.3 ТРЕБОВАНИЯ К СТАРТЕРНЫМ ПРА

Перечислим основные требования к параметрам стартерных ПРА для ЛЛ:

1. Пусковой ток должен находиться в определенных пределах при допустимых значениях-сети (обычно ±10 % номинального напряжения сети) и изменениях параметров ПРА. Для большинства ЛЛ пусковой ток должен находиться в пределах от 0,9 до номинальных токов лампы.

2. Рабочий ток лампы должен находиться в определенных пределах. В ГОСТ 16809-78 нормируется значение рабочего тока не непосредственно, а как отношение тока номинальной лампы, включенной с данным стартерным ПРА и с образцовым-измерительным дросселем (ДОИ). Значение рабочего тока номинальной лампы, включенной с данными ПРА, при номинальном напряжении сети не должно превышать 1,15 тока этой же лампы, включенной с ДОИ на номинальное для него напряжение. Люминесцентные лампы при их включении со стартерными ПРА имеют разброс рабочих токов в пределах 2030 % номинального значения.

3. Мощность лампы нормируется не непосредственно, а как отношение мощности номинальной лампы, включенной с данным ПРА, к мощности этой же лампы, включенной с ДОИ. Стартерный ПРА должен обеспечить мощность номинальной лампы в определенных пределах при напряжении питания, равном 0,9 и 1,1 номинального напряжения сети. При напряжении 0,9 номинального стартерный ПРА должен обеспечивать относительную мощность лампы не ниже 0,85, а при напряжении 1,1 номинального — не выше 1,15 мощности номинальной лампы, включенной с ДОИ на такое же напряжение.

4. Коэффициент амплитуды тока лампы, работающей со стартерным ПРА, не должен превышать 1,7.

Нормирование перечисленных выше параметров обусловлено требованием обеспечить нормальную работу и срок службы ЛЛ в стартёрных схемах. Параметры стартеров для таких схем также должны обеспечивать максимальный срок службы ламп и надежность их зажигания. Кроме того, ПРА должны отвечать ряду дополнительных требований, связанных с работой, сроком службы самого ПРА и экономичностью применения ЛЛ. Прежде всего, это требование к ограничению потерь мощности в ПРА.

Потери мощности в ПРА формируют как отношение активной мощности, рассеиваемой в ПРА, к мощности лампы при номинальном напряжении сети. Значение потерь мощности ПРА определяется конструкцией, уровнем шума, массой магнитопровода, параметрами обмотки. Потери в дросселях обратно пропорциональны габаритным размерам, чем меньше размеры дросселя, тем выше потери в них. Так, ПРА к лампам мощностью 30 Вт имеет потери в пределах 2331, мощностью 40 Вт1828, мощностью 65 Вт – 2026 %, причем минимальные значения потерь относятся к индуктивным ПРА, а максимальные — к индуктивно-емкостным. Наличие, потерь в ПРА снижает общую световую отдачу ламп плюс комплекта ПРА, т. е. чем больше потери мощности в ПРА тем больше тратится электроэнергии на создание того же светового потока.

Элементы ПРА должны удовлетворять требованиям по электрической прочности и сопротивлению изоляции. Эти требования часто называют параметрами элсктробезопасности, так как они обеспечивают безопасность людей от поражения электрическим током и гарантируют отсутствие коротких замыканий в ПРА, т. е. обеспечивают также пожаробезопасности ПРА.

Важным требованием является требование к тепловому режиму. Тепловой режим ПРА определяется потерями мощности в обмотке и магнитопроводе, габаритными размерами и условиями охлаждения. Нормирование тепловых параметров связано с необходимостью обеспечить длительный срок службы ПРА (около 10 лет) без изменения ее электрических параметров. Тепловой режим ПРА нормируется двумя значениями — температурой нагрева обмотки и превышением температуры нагрева корпусов ПРА и конденсаторов.

Допустимую температуру нагрева обмотки t w устанавливают в зависимости от термостойкости изоляции обмоточного провода, но не менее чем на два класса ниже по температурной шкале. Значения t w выбирают из того же ряда температур, что и температуру классов термостойкости, т. е. 105, 120, 130°С и т. д. Таким образом, для проводов с допустимой температурой изоляции 130°С значение t w не должно превышать 105 °С. Конструкция ПРА должна обеспечивать превышение температуры обмотки в номинальном рабочем режиме не выше чем 55°С для встраиваемых аппаратов и 45°С для аппаратов независимого исполнения. Значения превышения температуры в аномальном, т. е. длительном, пусковом режиме не должны превышать значений, приведенных ниже.

Превышение температуры обмоток ПРА в рабочем режиме проверяется при номинальном напряжении сети, в аномальном — при 1,1 номинального напряжения сети.

Требование по ограничению содержания высших гармоник в токе лампы связано с возможностью перегрузки нулевого провода трехфазной питающей сети токами высших гармоник, кратных трем, которые появляются в токе лампы.

Пускорегулирующий аппарат при своей работе является источником акустических шумов. Основной причиной шума является вибрация пластин магнитопровода под действием электромагнитных сил, возникающих в магнитном поле, и магнитострикция, или изменение размеров ферромагнитного материала при наличии магнитного поля. Уровень шума ПРА нормируют по значению звуковой мощности, создаваемой при их включении на напряжение сети, равное 1,1 номинального, в определенных частотных полосах от 125 до 8000 Гц, что соответствует полосе частот, воспринимаемых ухом человека. Уровень шума измеряют в специальной реверберациониой камере, менее точные измерения в процессе производства ПРА производят в звукомерной камере при условии обеспечения определенного уровня внешних акустических помех.

БЕССТАРТЕРНЫЕ ПУСКОРЕГУЛИРУЮЩИЕ АППАРАТЫ ДЛЯ ЛЮМИНЕСЦЕНТНЫХ ЛАМП

3.1 КЛАССИФИКАЦИЯ БЕССТАРТЕРНЫХ ПРА

пускорегулирующий разрядная электрическая лампа

Наряду со стартерным ПРА для зажигания ЛЛ применение находят схемы, в которых зажигание ламп обеспечивается за счет синусоидального напряжения без использования стартеров. Такие схемы принято выделять в самостоятельную группу бесстартерных ПРА.

Бесстартерные ПРА по конструкции значительно сложнее стартерных, имеют большие потери мощности и большие габаритные размеры, но в основном обеспечивают повышенную надежность зажигания и высокий срок службы ламп. Поэтому расходы на эксплуатацию осветительных установок с бссстартерной ПРА в определенных условиях могут оказаться существенно ниже, чем со стартерными.

Различие состоит в том, что в бесетартерных схемах зажигание осуществляется синусоидальным, питающим напряжением. В процессе зажигания ламп в бесетартерных схемах определяющую роль играет распространение плазменного фронта по длине трубки от зажигающего электрода к заземленному и возникновение тлеющего разряда. Скорость распространения фронта ионизации составляет около 10 3 м/с и определяется скоростью нарастания напряжения, подаваемого на лампу, распределенной емкостью стенок лампы и проводимостью плазменного столба, образующегося за фронтом ионизации.

В связи с тем, что зажигание ЛЛ в бесстартёрных схемах осуществляется синусоидальным напряжением определенной амплитуды, для надежного зажигания ламп большое значение имеют факторы, облегчающие зажигание и стабилизирующие напряжение зажигания на определенном уровне при изменении условий окружающей среды. Кроме предварительного нагрева электродов, существенную роль играет наличие на колбе лампы токопроводящей полосы. Особенно эффективно сказывается на снижении напряжения зажигания соединение полосы с одним из электродов лампы, с землей, а также подача на полосу определенного электрического потенциала. Использование в бесстартерных схемах обычных ЛЛ, предназначенных для работы в стартерных схемах, снижает надежность зажигания ламп и в значительной степени лишает смысла применение бесетартерных ПРА.

Бесстартерные ПРА принято делить на две группы: ПРА быстрого зажигания, в которых осуществляются предварительный нагрев электродов ЛЛ и затем зажигание ее под действием синусоидального напряжения источника питания (значение напряжения зажигания определяется конструкцией и условиями работы ламп), и ПРА мгновенного зажигания, в которых ЛЛ с холодными электродами зажигается при подаче на нее повышенного напряжения.

Зажигание ламп в схемах мгновенного зажигания происходит под действием электростатической эмиссии, что отрицательно сказывается на сроке службы электродов. Поэтому для таких схем включения выпускаются специальные лампы с усиленными электродами. Применение обычных стартерных ЛЛ в схемах мгновенного зажигания снижает срок их службы на 5070 %, и поэтому в нашей стране схемы мгновенного зажигания, как правило, не используют. В дальнейшем мы рассмотрим схемы первой группы и будем относить к ним название «бесстартерные схемы».

Независимо от электрической схемы бесстартерные ПРА должны обеспечивать:

1) предварительный нагрев электродов лампы в пусковом режиме до температуры, интенсивной термоэлектронной эмиссии с катода и снижения напряжения зажигания;

2) подачу на лампу зажигающего напряжения, которое применительно к ПРА называют напряжением холостого хода. За напряжение холостого хода U хх бесстартерных ПРА принимают напряжение, которое создаёт аппарат на зажимах не горящей лампы.

3) компенсацию при необходимости напряжения предварительного нагрева электродов, т.е. снижение напряжения нагрева электродов в рабочем режиме по сравнению с пусковым. Это требование обусловлено стремлением обеспечить максимальный срок службы ламп. В последнее время наметилась тенденция выпуска ЛЛ с триспиральными электродами с низким сопротивлением. Такие электроды требуют для своего нагрева напряжения около 3,6 4,4 В, которое при значительном запасе на катоде оксидного слоя обеспечивает длительный срок службы ламп даже в схемах без компенсации напряжения предварительного нагрева электродов;

4) стабилизацию рабочего режима ламп в определенных пределах, так же как и стартерные ПРА.

Бесстартерные ПРА, обеспечивающие зажигание ЛЛ с предварительным нагревом электродов, можно разделить на следующие три основные группы:

1) резонансные, в которых предварительный нагрев электродов осуществляется током резонансного контура, состоящего из балластных и пусковых индуктивных и емкостных элементов, а требуемое напряжение холостого хода обеспечивается на одном из реактивных резонансных элементов, параллельно которому включена ЛЛ;

2) с накальным трансформатором для предварительного нагрева электродов. Увеличение напряжения холостого хода может быть достигнуто путем, как усложнения накального трансформатора, так и применения специальных пусковых конденсаторов;

3) с автотрансформаторами с рассеянием. В таких схемах повышенное напряжение холостого хода, требуемое для зажигания лампы, обеспечивается выбором числа витков вторичной обмотки. Конструкция магнитной системы обеспечивает стабилизацию тока лампы в рабочем режиме.

3.2 ОСНОВНЫЕ СХЕМЫ БЕССТАРТЕРНЫХ ПРА

Известно множество схем бесетартерных ПРА. Рассмотрим только простейшие, характеризующие сущность физических процессов. На рис. 16, а приведена простейшая схема резонансного ПРА с балластным дросселем и пусковым конденсатором. При напряжении сети лампа с холодными электродами не зажигается, так как напряжение ее холодного зажигания выше, чем напряжение сети и напряжение, возникающее на пусковом конденсаторе С п резонансной цепи. По цепи дроссель — первый электрод — пусковой конденсатор — второй электрод начинает протекать пусковой ток I П , который нагревает электроды лампы

Рисунок16. Схема резонансных ПРА и автотрансформатора с рассеянием: а- простейшая, б- с дополнительной обмоткой; в- с двумя дросселями; г- с автотрансформатором.

Простейшая резонансная схема ПРА на промышленной частоте не приценяется, так как значение емкости пускового конденсатора получается большим, что искажает форму кривой тока лампы и вызывает появление пауз в токе и увеличение коэффициента амплитуды до 22,5 вместо нормируемого 1,7.

Отключением пусковой цепочки после зажигания лампы с помощью различных автоматических устройств типа разрядников либо усложнением схемы путем использования дополнительных элементов можно избежать указанных недостатков. Для ПРА, применяемых в светильниках общего и местного освещения, преимущественно используют схему с дополнительной обмоткой на дросселе. Одна из схем приведена на рис. 16,б. В пусковую цепь включена дополнительная обмотка балластного дросселя н . При настройке цепи в режим, близкий к резонансному, можно получить увеличение значения пускового тока. В пусковом режиме ток проходит по основной и добавочной обмоткам дросселя, включенным согласно, в результате чего индуктивность схемы снижается, и напряжение холостого хода определяется повышенным напряжением на пусковом конденсаторе. После зажигания лампы токи, протекающие по балластной и добавочной обмоткам, становятся различными по значениям и фазе, резонанс нарушается, и ток лампы стабилизируется балластной обмоткой.

Более распространенной модификацией резонансной схемы является схема, приведенная на рис. 16,в. Схема содержит два дросселя Д р 1 и Д р 2, один из которых имеет обмотки н для нагрева электродов. В пусковом режим ток протекает через дроссель Д р 1 и конденсатор, что при настройке этой цепи на резонанс обеспечивает увеличенное напряжение на конденсаторе и лампе.

Рисунок 17. Бесстартерные ПРА с нахальным трансформатором: а- включенным параллельно лампе и векторная диаграмма пускового режима; б- с дополнительной обмоткой; в- с пусковым конденсатором и векторная диаграмма пускового режима;

После зажигания лампы конденсатор С п служит для увеличения коэффициента мощности схемы. Применением одного дросселя с отводом можно достигнуть дополнительного увеличения напряжения во второй обмотке.

На рис. 16,г показана схема с автотрансформатором с магнитным рассеянием с обмотками н для предварительного нагрева электродов. При применении дополнительных обмоток (на рисунке не показаны) можно получить глубокую компенсацию напряжения предварительного нагрева и тем самым снизить потери в ПРА. Схемы с автотрансформатором находят применение в случаях, когда для осветительных, установок используется напряжение сети 100-110 В.

На рис. 17 приведены простые схемы бесстартерного ПРА с накальным трансформатором, используемым для предварительного нагрева электродов. Первичная обмотка трансформатора включена параллельно лампе, что обеспечивает после зажигания лампы компенсацию напряжения предварительного нагрева за счет снижения напряжения на первичной обмотке, начиная со значения напряжения холостого хода до напряжения на горящей лампе. На рис. 17 , а дана векторная диаграмма пускового режима. Напряжение холостого хода U хх является векторной суммой напряжений на первичной и вторичных обмотках трансформатора. Напряжение на первичной обмотке U др , п ниже напряжения сети U c за счет падения напряжения в обмотке дросселя. Полное сопротивление дросселя в таких схемах ниже на порядок, чем у трансформатора, в результате чего напряжение на первичной обмотке трансформатора в пусковом режиме составляет 0,9-0,95 сетевого. В результате напряжение холостого хода таких схем находится на уровне напряжения сети, а в схемах для ламп с низкоомными электродами при напряжении предварительного нагрева электродов 3,6 -4,4 В — несколько ниже сетевого. Поэтому они могут применяться только для ламп, напряжение которых ниже напряжения сети.

Увеличение напряжения холостого хода достигается применением дополнительной обмотки на накальном трансформаторе (рис. 17,б ) либо по схеме с дополнительным пусковым конденсатором С п (рис. 17, в). Емкость пускового конденсатора С п составляет для ПРА к лампам мощностью 40—80 Вт около 1 мкФ. Пусковой ток в данной схеме имеет емкостный характер. На рис. 17,в приведена векторная диаграмма пускового режима. Выбором параметров элементов пусковая цепь может быть настроена в режим резонанса или близкий к нему при определенном значении напряжения сети. Однако резонансные схемы чувствительны к колебаниям этого напряжения, поэтому на практике параметры указанных схем выбирают исходя из режима со слабо выраженным резонансом.

По схеме рис. 17 , в выпускают ПРА для ламп мощностью 80 Вт.

ПУСКОРЕГУЛИРУЮЩИЕ АППАРАТЫ ДЛЯ ЛАМП ТИПОВ ДРЛ, ДРИ И ДНаТ

Пускорегулирующие аппараты для ламп типа ДРЛ делятся на три группы:

1) балластные дроссели для четырехэлектродных ламп, которые зажигаются от сети промышленной частоты при включении*на фазное или линейное напряжение;

2) аппараты импульсного зажигания, состоящие из балластного дросселя и специального зажигающего устройства. Такие аппараты предназначены для работы с двух-электродными лампами, а также лампами типов ДРИ и ДНаТ;

3) аппараты мгновенного зажигания, выполненные по схемам автотрансформатора с рассеянием, в которых зажигание ламп происходит под действием повышенного синусоидального напряжения промышленной частоты. Такие аппараты применяют для зажигания ламп в условиях отрицательных температур вместо ПРА первой группы.

Основным элементом схем первых двух групп является балластный дроссель, аналогичный дросселям стартерных ПРА. Требования к его параметрам такие же, как к дросселям стартерных ПРА, за исключением требования к току предварительного нагрева электродов (пусковой ток), так как лампы высокого давления зажигаются с холодными электродами. Расшифровка условного обозначения типа ПРА для ламп высокого давления и стартерных ПРА аналогична, но после цифры, указывающей мощность лампы, приводится обозначение типа лампы ДРЛ, ДНаТ или ДРИ. Дроссели, предназначенные для включения ламп типа ДРЛ, нельзя применять для включения ламп типа ДНаТ, так как последние имеют напряжение горения на 3040 В, ниже чем напряжение горения ламп ДРЛ.

Схемы с автотрансформатором применяют для ламп, у которых напряжение горения больше 0,7 номинального напряжения сети. Автотрансформаторные схемы включения газоразрядных ламп находят применение в сетях напряжением 100110 В.

Лампы типа ДРИ мощностью 400 Вт включаются с дросселем от ламп типа ДРЛ и универсальным зажигающим устройством типа УИЗУ.

Для включения газоразрядных ламп могут быть использованы также резонансные схемы, аналогичные схемам для ЛЛ. Зажигание ламп высокого давления с холодными электродами, т. е. по схеме мгновенного зажигания, существенно облегчает возможность согласования пускового н рабочего режимов резонансного ПРА, в результате чего можно получить достаточно высокие значения напряжения холостого хода, в 2,53 раза превышающие напряжение питающей сети.

ЭЛЕКТРОННЫЙ ПУСКОРЕГУЛИРУЮЩИЙ АППАРАТ

Электронный пускорегулирующий аппарат (ЭПРА) обеспечивает работу трубчатых люминесцентных ламп со щадящими режимами пуска. ЭПРА с полумостовым инвертором разработан для управления стандартной лампой Philips TLD58W или лампами аналогичных типов. Схема оптимизирована для ламп мощностью 50 Вт при номинальном напряжении сети 230 В и частоте 50. 60 Гц. Щадящий режим пуска увеличивает срок службы лампы. Постоянство мощности лампы обеспечено автоматическим управлением. Предусмотрены защита от емкостного режима работы и защита от удаления лампы.

ЭПРА работоспособен в диапазоне напряжений сети 185. 265 В при частоте 50. 60 Гц. Автоматическое управление поддерживает мощность горения лампы в пределах 47,6. 50,3 Вт при изменении напряжения сети в пределах 200. 260 В. Одним из основных компонентов является высоковольтная ИМС UBA2021, предназначенная для управления, как компактными люминесцентными лампами, так и трубчатыми лампами. Микросхема UBA2021, включающая высоковольтный драйвер со схемой запуска, генератор и таймер, обеспечивает управление режимами пуска, подогрева, зажигания и горения лампы, а также защиту от емкостного режима и удаления лампы. UBA2021 управляет работой мощных полевых МОП-транзисторов PHX3N50E, являющихся ключами полумостового инвертора, который питается от сети с номинальным напряжением 230 В и частотой 50. 60 Гц. При этом обеспечивается необходимый сдвиг уровней питания полевых транзисторов, осуществляющий защиту от емкостного режима работы. Основными достоинствами этого изделия являются малое число компонентов и низкая стоимость, что достигнуто благодаря применению ИМС UBA2021, которая способна обеспечить максимальную гибкость разработки при минимальном числе периферийных элементов.

Блок-схема устройства приведена на рис.18, полная электрическая схема — на рис.19. Напряжение сети переменного тока преобразуется в питающее полумостовой инвертор напряжение постоянного тока с помощью мостового выпрямителя на четырех диодах и сглаживающего конденсатора. Помехоподавляющий сетевой фильтр (рис.18) препятствует проникновению помех в сеть. Полумостовой инвертор относится к группе высокочастотных резонансных преобразователей напряжения, которые удобны для управления газоразрядными лампами. Используемый принцип переключения двух мощных МОП-транзисторов при нулевом напряжении позволяет уменьшить потери на их переключение и обеспечивает высокий КПД аппарата.

Рисунок18 Блок схема устройства

После подачи сетевого напряжения люминесцентная лампа сначала подогревается. Это называется мягким пуском и обеспечивает надежную и долговечную работу лампы. Величина тока подогрева регулируется микросхемой UBA2021. Этот ток, проходящий через нити накала лампы, разогревает электроды лампы до температуры, обеспечивающей достаточную эмиссию электронов. Достаточный подогрев позволяет уменьшить напряжение зажигания лампы, что снижает ударные электрические нагрузки на элементы схемы. Автоматическое управление в значительной степени стабилизирует излучаемый лампой световой поток в широком диапазоне вариаций напряжения сети.

Рисунок 19 Полная электрическая схема устройства

После включения выпрямленное напряжение сети поступает на буферный конденсатор С4 через резистор R1 (рис.19), ограничивающий бросок тока. Конденсатор сглаживает пульсации напряжения с удвоенной частотой сети. Полученное высоковольтное напряжение U HV постоянного тока является питающим для полумостового инвертора, в состав силовых компонентов которого входят транзисторы VT1, VT2, катушка L1, конденсаторы С5, С6, С7 и лампа, подключаемая к разъемам Р2 и РЗ.

На этапе пуска ток от высоковольтного конденсатора С4 проходит через резистор R2, нить накала лампы, резистор R4, выводы 13 и 5 микросхемы UBA2021, соединенные между собой в период пуска внутренним ключом, и заряжает конденсаторы низковольтного питания С9, СЮ и С13. Как только напряжение питания Vs на С13 достигнет величины 5,5 В, происходит переключение UBA2021, в результате которого транзистор VT2 открывается, а транзистор VT1 запирается. Это позволяет зарядиться пусковому конденсатору С12 через внутреннюю цепь микросхемы. Напряжение питания Vs продолжает увеличиваться, и при Vs > 12 В схема начинает генерировать. Величина тока потребления ИМС внутренне фиксируется на уровне порядка 14 мА. Далее происходит переход к этапу подогрева.

При отсутствии лампы пуск автоматически блокируется, т.к. в этом случае оказывается разорванной цепь зарядки пускового конденсатора.

На этапе подогрева МОП-транзисторы VT1 и VT2 поочередно переводятся в проводящее состояние. Это генерирует переменное напряжение прямоугольной формы относительно средней точки полумоста с амплитудой VHV. Стартовая частота колебаний составляет 98 кГц. В этих условиях цепь, состоящая из С8, VD5, VD6, С9 и СЮ, оказывается способной выполнить функцию источника низковольтного питания, которая во время пуска обеспечивалась током через вывод 13 ИМС.

В течение интервала времени, примерно равного 1,8 с (время подогрева t PRE ), продолжительность которого определяется номиналами С17 и R7, система находится в режиме подогрева, когда через нити накала лампы проходит ток контролируемой величины. Это позволяет оптимальным образом разогреть оба электрода лампы. Нагретые электроды эмиттируют в лампу большое число электронов, и в этом состоянии для ее зажигания требуются значительно меньшие напряжения, что минимизирует ударные электрические нагрузки на элементы схемы и лампу в момент зажигания. Подогрев электродов весьма важен для обеспечения большого срока службы лампы.

После возникновения генерации небольшой переменный ток начинает протекать от средней точки полумоста через нити накала лампы, L1 и С7. Частота колебаний постепенно снижается, что приводит к соответствующему росту величины тока. Скорость снижения частоты определяется емкостью конденсатора С14 и внутренним источником тока ИМС. Частота прекращает падать, как только будет достигнуто определенное значение напряжения переменного тока на резисторах R5 и R6, являющихся датчиками тока подогрева. Это происходит примерно через 3 мс после включения. UBA2021 стабилизирует ток через нити накала, отслеживая величину падения напряжения на R5 и R6.

В течение всего этапа подогрева частота работы полумостового инвертора остается выше резонансной частоты цепочки L1, С7 (55,6 кГц), и в силу этого напряжение на С7 еще мало для зажигания лампы. Весьма важно удержать это напряжение достаточно малым: ведь преждевременное, так называемое холодное, зажигание приводит к потемнению концов лампы.

Величина индуктивности балластной катушки L1 определяется необходимым током через лампу, емкостью конденсатора поджига С7 и рабочей частотой в режиме горения. Минимальная величина емкости С7 определяется индуктивностью L1, величиной не приводящего к зажиганию напряжения на лампе при данном токе подогрева и минимальным напряжением сети. В результате оптимальным для подогрева оказывается значение емкости С7, равное 8,2 нФ.

После окончания этапа подогрева UBA2021 возобновляет дальнейшее снижение частоты переключений полумоста вплоть до низшей частоты f н (39 кГц). Однако теперь понижение частоты осуществляется гораздо медленнее, чем это происходило в стадии подогрева. Частота переключений смещается к резонансной частоте последовательной цепочки, состоящей из индуктивности L1 и суммарной емкости конденсатора С7 и электродов лампы (55,6 кГц), причем сопротивления блокирующих постоянный ток конденсаторов С5 и С6 достаточно малы.

Максимальная величина напряжения зажигания в наихудшем случае (когда и светильник, и схема ЭПРА подключены к защитному заземлению сети) для лампы TLD58W при низких температурах составляет примерно 600 В.

Сочетание балластной катушки индуктивности L1 и конденсатора поджига С7 подобрано таким образом, чтобы напряжение на лампе могло превысить эти необходимые для надежного зажигания 600 В. Величина напряжения зажигания определяет максимальное значение емкости С7 при заданной индуктивности L1, выбранной исходя из нижней частоты f н UBA2021. Нижняя частота f н задается величинами R7, С15 и С16. Максимально возможная продолжительность этапа зажигания T IGN равна 1,7 с (15/16-ых от T PRE ), она устанавливается подбором С17 и R7.

В предположении, что лампа зажглась в ходе понижения частоты, частота уменьшается до минимального значения f н . UBA2021 может осуществить переход к этапу горения двумя путями: 1 — при снижении частоты до f н , и 2 — если частота f н не достигнута, но переход происходит по истечении максимально возможной продолжительности этапа зажигания T IGN .

На этапе горения частота колебаний в схеме обычно снижается до f н (39 кГц), которая может использоваться в качестве номинальной рабочей частоты. Однако, в силу применения в ЭПРА автоматического управления, частота колебаний зависит от величины тока, протекающего через вывод 13 (вывод RHV) ИМС UBA2021. Автоматическое управление начинает функционировать после достижения f н .

Во время этапа пуска конденсаторы низковольтного питания С9, С10 и С13 заряжаются током, протекающим от высоковольтного конденсатора С4 через R2, нить накала лампы, R4 и внутренне соединенные выводы 13 и 5 UBA2021. На этапе горения происходит перекоммутация. Вместо вывода 5 к выводу 13 оказывается подключенным вывод 8. Теперь ток, протекающий через резисторы R2 и R4, используется в качестве информационного параметра в системе автоматического управления частотой переключений силового инвертора, так как сила этого тока пропорциональна уровню выпрямленного напряжения сети. Пульсации с удвоенной частотой сети (100. 120 Гц) фильтруются конденсатором С17. В результате излучаемый лампой световой поток остается почти постоянным при изменении напряжения сети в пределах от 200 до 260 В.

Применение повышенной частоты для осветительных установок с разрядными лампами

Общие требования

6.1.10. Нормы освещенности, ограничения слепящего действия светильников, пульсаций освещенности и другие качественные показатели осветительных установок, виды и системы освещения должны приниматься согласно требованиям СНиП 23-05-95 «Естественное и искусственное освещение» и другим нормативным документам, утвержденным или согласованным с Госстроем (Минстроем) РФ и министерствами и ведомствами Российской Федерации в установленном порядке.
Светильники должны соответствовать требованиям норм пожарной безопасности НПБ 249-97 «Светильники. Требования пожарной безопасности. Методы испытаний».

6.1.11. Для электрического освещения следует, как правило, применять разрядные лампы низкого давления (например, люминесцентные), лампы высокого давления (например, металлогалогенные типа ДРИ, ДРИЗ, натриевые типа ДНаТ, ксеноновые типов ДКсТ, ДКсТЛ, ртутно-вольфрамовые, ртутные типа ДРЛ). Допускается использование и ламп накаливания.
Применение для внутреннего освещения ксеноновых ламп типа ДКсТ (кроме ДКсТЛ) допускается с разрешения Госсанинспекции и при условии, что горизонтальная освещенность на уровнях, где возможно длительное пребывание людей, не превышает 150 лк, а места нахождения крановщиков экранированы от прямого света ламп.
При применении люминесцентных ламп в осветительных установках должны соблюдаться следующие условия для обычного исполнения светильников:
1. Температура окружающей среды не должна быть ниже плюс 5°С.
2. Напряжение у осветительных приборов должно быть не менее 90% номинального.

6.1.12. Для аварийного освещения рекомендуется применять светильники с лампами накаливания или люминесцентными.
Разрядные лампы высокого давления допускается использовать при обеспечении их мгновенного зажигания и перезажигания.

6.1.13. Для питания осветительных приборов общего внутреннего и наружного освещения, как правило, должно применяться напряжение не выше 220 В переменного или постоянного тока. В помещениях без повышенной опасности напряжение 220 В может применяться для всех стационарно установленных осветительных приборов вне зависимости от высоты их установки.
Напряжение 380 В для питания осветительных приборов общего внутреннего и наружного освещения может использоваться при соблюдении следующих условий:
1. Ввод в осветительный прибор и независимый, не встроенный в прибор, пускорегулирующий аппарат выполняется проводами или кабелем с изоляцией на напряжение не менее 660 В.
2. Ввод в осветительный прибор двух или трех проводов разных фаз системы 660/380 В не допускается.

6.1.14. В помещениях с повышенной опасностью и особо опасных при высоте установки светильников общего освещения над полом или площадкой обслуживания менее 2,5 м применение светильников класса защиты 0 запрещается, необходимо применять светильники класса защиты 2 или 3. Допускается использование светильников класса защиты 1, в этом случае цепь должна быть защищена УЗО с током срабатывания до 30 мА.
Указанные требования не распространяются на светильники, обслуживаемые с кранов. При этом расстояние от светильников до настила моста крана должно быть не менее 1,8 м или светильники должны быть подвешены не ниже нижнего пояса ферм перекрытия, а обслуживание этих светильников с кранов должно выполняться с соблюдением требований техники безопасности.

6.1.15. В установках освещения фасадов зданий, скульптур, монументов, подсвета зелени с использованием осветительных приборов, установленных ниже 2,5 м от поверхности земли или площадки обслуживания, может применяться напряжение до 380 В при степени защиты осветительных приборов не ниже 1Р54.
В установках освещения фонтанов и бассейнов номинальное напряжение питания погружаемых в воду осветительных приборов должно быть не более 12В.

6.1.16. Для питания светильников местного стационарного освещения с лампами накаливания должны применяться напряжения: в помещениях без повышенной опасности — не выше 220 В и в помещениях с повышенной опасностью и особо опасных — не выше 50 В. В помещениях с повышенной опасностью и особо опасных допускается напряжение до 220 В для светильников, в этом случае должно быть предусмотрено или защитное отключение линии при токе утечки до 30 мА, или питание каждого светильника через разделяющий трансформатор (разделяющий трансформатор может иметь несколько электрически несвязанных вторичных обмоток).
Для питания светильников местного освещения с люминесцентными лампами может применяться напряжение не выше 220 В. При этом в помещениях сырых, особо сырых, жарких и с химически активной средой применение люминесцентных ламп для местного освещения допускается только в арматуре специальной конструкции.
Лампы ДРЛ, ДРИ, ДРИЗ и ДНаТ могут применяться для местного освещения при напряжении не выше 220 В в арматуре, специально предназначенной для местного освещения.

6.1.17. Для питания переносных светильников в помещениях с повышенной опасностью и особо опасных должно применяться напряжение не выше 50 В.
При наличии особо неблагоприятных условий, а именно когда опасность поражения электрическим током усугубляется теснотой, неудобньм положением работающего, соприкосновением с большими металлическими, хорошо заземленными поверхностями (например, работа в котлах), и в наружных установках для питания ручных светильников должно применяться напряжение не выше 12 В.
Переносные светильники, предназначенные для подвешивания, настольные, напольные и т. п. приравниваются при выборе напряжения к стационарным светильникам местного стационарного освещения (6.1.16).
Для переносных светильников, устанавливаемых на переставных стойках на высоте 2,5 м и более, допускается применять напряжение до 380 В.

6.1.18. Питание светильников напряжением до 50 В должно производиться от разделяющих трансформаторов или автономных источников питания.

6.1.19. Допустимые отклонения и колебания напряжения у осветительных приборов не должны превышать указанных в ГОСТ 13109 «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения».

6.1.20. Питание силовых и осветительных электроприемников при напряжении 380/220 В рекомендуется производить от общих трансформаторов при условии соблюдения требований 6.1.19.

Каждый электрик должен знать:  Электронные промышленные устройства

Освещенность, пульсация и яркость.

Содержание:

•••► КУПИТЬ ПРИБОРЫ ДЛЯ ИЗМЕРЕНИЯ ПУЛЬСАЦИИ — ПУЛЬСМЕТРЫ ◄•••

Что такое пульсации освещённости и яркости. Формула для расчёта пульсаций.

Коэффициент пульсаций освещённости характеризует колебания во времени светового потока, падающего на единицу поверхности. Коэффициент пульсаций освещённости определяется отношением амплитуды колебаний освещённости к их среднему значению и вычисляются по формуле:

где Емакс – максимальное значение освещённости за период её колебания, Емин – минимальное значение освещённости за период её колебания, Еср – среднее значение освещённости за тот же период.

В случае, когда анализируются пульсации от источников света, питающихся от сети переменного тока, т.е. форма пульсаций близка к синусоидальной, можно использовать упрощённую формулу для расчёта пульсаций:

В формуле (2) в качестве среднего берется среднеарифметическое значение. При использовании для расчёта пульсаций формулы (2), коэффициент пульсаций, очевидно, никогда не может превысить значение 100%. Если же при расчёте пульсаций в качестве среднего брать, например, среднеквадратичное значение, то, при наличии в измеряемом световом потоке коротких по времени, но больших по амплитуде пульсаций, рассчитанный по формуле (1) коэффициент пульсаций может значительно превысить 100%. Что, надо сказать, вполне допустимо. В недавно принятом новом ГОСТ Р 54945-2012 «Здания и сооружения. Методы измерения коэффициента пульсации освещенности» приведена общая формула для расчета коэффициента пульсации освещенности:

Таким образом, расчёт пульсаций по формуле (2) допустим только для светового потока, колебания которого близки к гармоническим. При наличии в световом потоке значительной импульсной составляющей необходимо для расчёта коэффициента пульсаций применять формулу (3). В общем случае, формулу (2) для расчета коэффициента пуьсации освещенности или яркости можно применять только при прямом подключении источника света к сети переменного тока или при использовании ЭМПРА. При использовании ЭПРА, электронных драйверов, регуляторов мощности (диммеров), а также при измерении коэффициента пульсации яркости мониторов, для расчета коэффициента пульсации следует применять формулу (3).

Влияние пульсаций на здоровье человека. Частота пульсаций. Частотный спектр пульсаций.

Широко распространено мнение, что человеческий глаз чувствует световые пульсации частота которых не превышает нескольких десятков Герц. На этом допущении построено воспроизведение видеоизображений в кино и телевидении – там частота смены кадров составляет 25 Гц, 50Гц и более, что воспринимается глазом человека как целостное во времени, плавно изменяющееся изображение. Дело в том, что мозг человека перестает успевать полноценно обрабатывать ту часть поступающей ему от органов зрения информации, которая изменяется с частотой выше нескольких десятков Герц.

Иными словами, если в воспринимаемой органами зрения человека информации присутствует пульсация освещённости или яркости, частотой ниже указанных, то она воздействует непосредственно на сетчатку глаза человека, затем поступает в зрительный тракт и уже через наружное коленчатое тело, зрительную радиацию, анализируется в первичной зрительной коре. В результате, мы можем описать условия получения зрительной информации: яркость и контраст изображения, цвета и оттенки, есть ли пульсации яркости или освещённости. Если же параметры изображения нас не устраивают, то мы пытаемся как-то приспособиться к их восприятию и, в конце концов, сознательно ограничиваем время визуального восприятия этой информации ввиду дискомфорта.

Однако медицинские исследования показали, что органы зрения и мозг человека продолжают воспринимать и реагировать на изменения воспринимаемой зрительной информации вплоть до частоты 300Гц. Такие изменения в воспринимаемой органами зрения информации оказывают уже невизуальное воздействие. В этом случае, свет, попадающий в глаз, проделывает путь к супрахиазматическим клеткам и паравентрикулярным ядрам гипоталамуса, а также к шишковидной железе. И тогда свет управляет уже нашим гормональным фоном, который влияет на циркадные (суточные) ритмы, эмоциональную сферу, работоспособность и многие другие аспекты жизнедеятельности. Многие, наверное, уже сталкивались с таким невизуальным воздействием пульсаций искусственного освещения в виде ощущения необъяснимого чувства дискомфорта, усталости или недомогания во, вроде бы, хорошо и ярко освещённых помещениях или при работе с компьютером.

Самое опасное в невизуальном воздействии света – это то, что мы не чувствуем напрямую его влияния на наш организм и не можем принять меры для уменьшения опасных последствий такого воздействия на наше здоровье. Невизуальное воздействие света может приводить к расстройству биологических ритмов человека и к «циркадным стрессам», которые, в свою очередь, могут приводить к развитию таких заболеваний, как депрессии, бессонница, паталогии сердечно-сосудистой системы и рак. По-видимому, невизуальное воздействие света на организм человека, заметно более глубокое, чем визуальное, хотя, , оно ещё очень мало изучено.

Для светового потока, пульсация которого превышает частоту 300Гц, какого-либо заметного воздействия на организм человека выявлено не было, ввиду того, что на такие быстрые изменения интенсивности светового потока перестает уже реагировать сетчатка глаза человека.

Нормативные акты, устанавливающие требования к уровню пульсаций искусственного освещения

В СНиП 23-05-95 «Естественное и искусственное освещение» указывается, что коэффициент пульсаций освещённости рабочей поверхности рабочего места не должны превышать 10% — 20% (в зависимости от степени напряжённости работы), при этом нормируются только те пульсации, частота которых ниже 300Гц.

В ГОСТ 17677-82 «Светильники. Общие технические условия» приведены требования к рабочей частоте пускорегулирующей аппаратуры (ПРА) светильников с люминесцентными лампами. Она должна быть не ниже 400Гц.

В СанПиН 2.2.2/2.4.1340-03 «Гигиенические требования к персональным электронно-вычислительным машинам и организации работы» указывается, что коэффициент пульсаций освещения при работе на ПЭВМ не должен превышать 5%.

С 01.01.2013г. введен в действие новый ГОСТ Р 54945-2012 «Здания и сооружения. Методы измерения коэффициента пульсации освещенности». В нем прямо указывается, что «коэффициент пульсации освещенности учитывает пульсацию светового потока до 300 Гц. Частота пульсации свыше 300 Гц. . не оказывает влияния на общую и зрительную работоспособность». Также, в ГОСТ Р 54945-2012 сформулированы требования к условиям проведения измерения, и методика расчета коэффициента пульсации освещенности.Кроме того, в новом документе приведен перечень рекомендованных люксметров-пульсметров для проведения измерений пульсаций освещенности. Удовлетворить требованиям нового ГОСТ Р 54945-2012 и войти в этот список смогли лишь несколько приборов, среди которых рекомендованы к применению люксметры-пульсметры ТКА-ПКМ модель 08, Аргус-07, Эколайт-01 и Эколайт-02, так же рекомендуем Вам обратить внимание на люксметр-пульсметр и яркомер ТКА-ПКМ модель 09.

Измерения коэффициента пульсаций искусственного освещения.

Производители современных качественных светильников стараются удовлетворить требованиям нормативных документов, устанавливающих допустимые нормы коэффициента пульсаций освещённости и яркости. Однако, на рынке присутствует большое количество некачественных, контрафактных и несертифицированных должным образом светильников, в которых коэффициент пульсаций яркости намного превышает установленные нормы.

Таким образом, мы видим, что качественный пульсметр должен иметь хорошо сформированную частотную характеристику, чтобы обеспечить измерение коэффициента пульсации светового потока любых сигналов с частотами до 300 Гц и, одновременно, не реагировать на пульсации светового потока, частотой выше 300Гц, на которых работают качественные ПРА. Такую качественную частотную фильтрацию измеряемого светового потока можно осуществить цифровой обработкой сигнала, которая, например, реализована в фотоголовке ФГ-01, входящей в состав люксметров-пульсметров-яркомеров серии «Эколайт». Амплитудно-частотная характеристика фотоголовки ФГ-01 приведена на Рис.1

Источники пульсаций. Типы ламп, ЭПРА. Причины пульсаций ламп. Методы борьбы с пульсациями.

Наличие пульсаций освещённости вызвано исключительно источниками искусственного света. Основными источниками искусственного света являются различные осветительные приборы, которые могут быть построены на различных типах ламп. На данный момент времени, в основном, используются три типа ламп — лампы накаливания, люминесцентные лампы и светодиодные лампы или светильники. Рассмотрим все три типа ламп с точки зрения уровня пульсаций света, ислучаемого ими.

Лампы накаливания — самый распространённый и давно известный тип осветительных приборов. Обычно работают напрямую от осветительной сети переменного тока напряжением 220 Вольт и частотой 50Гц. Ввиду того, что лампа накаливания излучает свет на обеих полуволнах переменного напряжения сети, её яркость изменяется с частотой 100Гц. Уровень пульсаций яркости лампы накаливания зависит от инерционности нити накаливания — т.е. того, насколько эта нить успевает нагреться и остыть в течение каждого полупериода питающего напряжения. В общем случае, чем выше мощность лампы накаливания, тем ниже значение коэффициента пульсации её яркости ввиду более массивной и, следовательно, инерционной нити накаливания.

К обычным лампам накаливания можно также отнести так называемые «галогенные» лампы, в которых в качестве светоизлучателя также выступает нить накаливания, а колба лампы заполнена инертным газом, улучшающим её характеристики. В таких лампах та же природа пульсаций светового потока, что и в обычных лампах накаливания, но есть некоторые особенности, связанные с разнообразием конструкций таких ламп и нет возможности указать прямую зависимость мощности галогенной лампы и значения коэффициента пульсаций её светового потока. Несколько результатов измерений коэффициента пульсаций яркости ламп накаливания приведены в Таблице 1.

Необходимо отметить, что лампы накаливания, в том числе и галогенные, допускают питание постоянным током (при условии соблюдения заявленных параметров мощности ламп). В случае питания ламп накаливания постоянным током, пульсация яркости у них отсутствуют.

Газоразрядные (люминесцентные) лампы в качестве источника света используют электрический разряд в газовой среде, энергия которого затем преобразуется в видимый свет при помощи специального состава (люминофора), нанесённого на стенки колбы люминесцентной лампы. В отличие от ламп накаливания, люминесцентные лампы могут работать только от переменного напряжения питания, необходимого для формирования электрического разряда. Поэтому, при работе люминесцентных ламп всегда присутствует пульсация света. Люминофор, нанесённый на стенки колбы лампы , в зависимости от своего состава, обладает некоторой инерционностью, которая в большей или меньшей степени сглаживает пульсации от электрического разряда в колбе люминесцентной лампы.

Большое значение для уровня пульсаций люминесцентной лампы имеет электрическая схема, управляющая работой люминесцентной лампы. В старых и дешёвых схемах с электромагнитными пускорегулирующими аппаратами (ЭмПРА) люминесцентные лампы получают питание из осветительной сети напряжением 220 Вольт и частотой 50 Гц. Поэтому яркость этих ламп пульсирует с частотой 100 Гц (т.к. люминесцентная лампа светит каждый полупериод питающего напряжения, частотой 50 Гц). В качественных современных светильниках на люминесцентных лампах используют электронные пускорегулирующие автоматы (ЭПРА), которые, при питании люминесцентных ламп, преобразуют входную частоту питающей сети в частоты выше тех, которые чувствует человек (т.е. больше 300 Гц). В малогабаритных люминесцентных лампах со стандартным цоколем, предназначенными для замены ламп накаливания, ЭПРА обычно входит в состав такой лампы.

Качественные ЭПРА обеспечивают оптимальные условия работы люминесцентных ламп, значительно уменьшая не только коэффициент пульсации света, излучаемого лампой, но и заметно повышая долговечность и эффективность работы люминесцентных ламп. Однако качество разных ЭПРА может сильно отличаться как в плане долговременной надёжности работы, так и по значению коэффициента пульсаций света, излучаемого подключённой лампой . Несколько результатов измерения коэффициента пульсаций яркости люминесцентных ламп приведены в Таблице 1.

Светодиодные лампы и светильники в качестве светоизлучающего элемента используют кристалл полупроводника. Физические принципы работы светодиода позволяют излучать им свет только одной длины волны, т.е. только одного определённого цвета, в зависимости от типа используемого полупроводника — от ближнего ультрафиолета, практически любой цвет видимого диапазона и до инфракрасного диапазона. Для создания светодиодных светильников белого цвета используют либо комбинированные многоцветные светодиоды, либо светодиоды, кристалл полупроводника которых покрыт слоем люминофора, переизлучающего белый свет.

Светодиоды могут работать как от переменного, так и постоянного питающего напряжения. При работе от постоянного питающего напряжения, пульсация излучаемого света у светодиодов отсутствует. При этом, светодиод излучает свет только при положительном напряжении между анодом и катодом. Это означает, что при подаче на светодиод напряжения частотой 50 Гц, он будет излучать свет только в положительные периоды питающего напряжения. Таким образом, частота пульсаций яркости светодиода составит 50Гц (Рис.2).

Примечание. Все изображения формы (осциллограммы) пульсаций и их частотных характеристик выполнены при помощи фотоголовки ФГ-01 и бесплатно распространяемого ПО анализатора пульсаций светового потока «Эколайт-АП».

Одиночный светодиод начинает излучать свет, когда напряжение между его анодом и катодом достигает от 1,5 до 3 Вольт, т.е. при подключении одиночных или цепочек светодиодов к осветительной сети, напряжением 220 Вольт и частотой 50 Гц необходимо использовать понижающие преобразователи напряжения. Качественный преобразователь напряжения в светодиодном светильнике может обеспечить надёжную и экономичную работу светодиодного светильника без пульсаций светового потока. Однако часто встречаются некачественные преобразователи напряжения для светодиодных светильников, в результате которых светодиодные светильники не только работают плохо и недолговечно, но и обладают высокими значениями коэффициента пульсаций излучаемого света.

Влияние регуляторов мощности ламп (диммеров) на значение коэффициента пульсации.

Необходимо упомянуть о негативном влиянии на значение коэффициента пульсаций ламп устройств регулировки мощности (или яркости). Чаще всего в этом качестве используются тиристорные регуляторы (или диммеры). Их принцип работы основан на том, что питающее синусоидальное напряжение сети подается на лампу не непрерывно, а частями. Чем выше установлена яркость лампы, тем большая часть полупериода синусоидального питающего напряжения на нее подается, а чем ниже установлена яркость лампы, тем меньшая часть полупериода синусоидального питающего напряжения подается на лампу. Использование диммеров для регулировки яркости ламп приводит к увеличению коэффициента пульсаций. Вид пульсаций светового потока лампы накаливания при использовании диммера приведён на Рис.3.

Примечание. Все изображения формы (осциллограммы) пульсаций и их частотных характеристик выполнены при помощи фотоголовки ФГ-01 и бесплатно распространяемого ПО анализатора пульсаций светового потока «Эколайт-АП».

Необходимо отметить, что использование диммера с лампами накаливания приводит только к увеличению коэффициента пульсаций яркости за счёт того, что, её нить успевает сильнее остыть за время отсутствия напряжения. При этом, для люминесцентных и светодиодных ламп с ЭПРА применение диммера вообще недопустимо, ввиду того, что он задает ЭПРА нештатный режим работы, что приводит не только к значительному увеличению коэффициента пульсаций яркости, но и к работе всего светильника в нештатном режиме, которая может закончится его поломкой.

В Таблице 1 приведены несколько типов ламп, которые были протестированы с помощью фотоголовки ФГ-01 люксметра-пульсметра-яркомера «Эколайт» на уровень коэффициента пульсаций. Мощность ламп регулировалась при помощи диммера. Хорошо видно, что использование диммера существенно ухудшает характеристики люминесцентных ламп. Максимальный уровень коэффициента пульсаций яркости светодиодной лампы объясняется, по-видимому, отсутствием в её конструкции качественного преобразователя напряжения.

Таблица 1. Зависимость коэффициента пульсаций яркости ламп разного типа от регулировки уровня их выходной мощности при помощи диммера.

Тип, мощность, описание лампы


Кп, % (мощность 100%)

Кп, % (мощность 50%)

Накаливания, 75 Вт 10,8 15 Накаливания, 60 Вт 11 15 Накаливания, 40 Вт 15,4 20 Галогенная, 60 Вт 13 16 Люминесцентная, цоколь, 9 Вт, тип 1 4,7 43,2 Люминесцентная, цоколь, 9 Вт, тип 2 4,5 15,9 Люминесцентная, цоколь, 11 Вт 7,3 15,8 Люминесцентная, ЛБ-40, 40 Вт, ЭмПРА 41,5 — Люминесцентная, PL-9W, 9 Вт, ЭмПРА 42,2 — Светодиодная, 1,5 Вт 100 100
Пульсации яркости мониторов. Причины наличия у мониторов пульсаций яркости. Пульсации ЭЛТ и ЖК мониторов. Биения. Методы борьбы с пульсациями мониторов.

Существующие санитарно-гигиенические нормативы содержат нормы на коэффициент пульсаций только для освещенности рабочего места. Однако нельзя не упомянуть о пульсациях яркости электронных средств отображения информации – в первую очередь о пульсациях яркости экранов, дисплеев и мониторов компьютеров, телевизоров, игровых приставок, терминалов, рекламных и информационных табло, пультов управления машинами и установками и т.п. Также пульсацией яркости обладают проекционные изображения от проекторов, на экранах кинотеатров и т.д. Необходимо отметить, что пульсация яркости устройств отображения информации оказывает намного более негативное влияние на самочувствие и здоровье человека, чем пульсация общей освещенности рабочего места по той причине, что человек вынужден внимательно вглядываться и вчитываться в представляемую на них информацию. Наличие пульсаций яркости у мониторов, дисплеев и т.п. приводит к быстрой утомляемости органов зрения и отделов мозга, отвечающих за восприятие и анализ зрительной информации. Воздействие пульсаций яркости экранов дисплеев и мониторов в течение длительного времени может привести к хроническим заболеваниям органов зрения

Природа пульсаций яркости экранов мониторов, дисплеев и других устройств отображения информации зависит от их конструкции. Наиболее распространены устройства на электронно-лучевых трубках (ЭЛТ) и плоскопанельные устройства на жидких кристаллах (ЖК, LCD, TFT и т.п.), светодиодах (LED, OLED и т.п.), «электронных чернилах» (E-Ink и т.п.).

В ЭЛТ-мониторах изображение создается пучком электронов, который построчно сканирует всю плоскость экрана монитора и формирует изображение, последовательно засвечивая пиксели люминофора, покрывающего внутреннюю поверхность ЭЛТ- экрана. Пульсация яркости у ЭЛТ-монитора вызвана тем фактом, что электронный пучок засвечивает текущую точку люминофора лишь на короткое время, после чего переходит к засветке следующей точки.

В следующий раз данная точка экрана ЭЛТ-монитора будет засвечена только после того, как электронный пучок просканирует весь кадр изображения. Таким образом, частота пульсаций яркости ЭЛТ- монитора равна частоте кадровой развёртки. Уровень коэффициента пульсаций яркости ЭЛТ-мониторов обычно очень близок к 100% (Рис.4).

Примечание. Все изображения формы (осциллограммы) пульсаций и их частотных характеристик выполнены при помощи фотоголовки ФГ-01 и бесплатно распространяемого ПО анализатора пульсаций светового потока «Эколайт-АП».

Это по сути означает, что ЭЛТ-мониторы нельзя использовать для постоянной длительной работы, в компьютерных классах для обучения детей, в качестве устройств отображения информации для операторов опасных производств, диспетчеров на транспорте и авиации и прочих рабочих местах с повышенными требованиями к уровню внимания и реакции оператора.

В плоскопанельных мониторах, в отличие от ЭЛТ-мониторов, изображение практически всегда формируется статическим образом. То есть сформированный пиксель изображения постоянно сохраняет своё состояние до момента, когда это состояние требуется изменить. Таким образом, сам принцип формирования изображения в основной массе плоскопанельных дисплеев исключает появление пульсаций. Однако, в большинстве плоскопанельных устройств, используются системы задней подсветки. Эти системы подсветки представляют из себя системы специализированных газоразрядных ламп либо светодиодов со всеми особенностями работы, описанными в разделах про газоразрядные и светодиодные лампы. То есть, в зависимости от схемы управления подсветкой, может возникать значительная пульсация яркости подсветки. Необходимо заметить, что во всех моделях плоскопанельных дисплеев есть функция регулировки яркости задней подсветки. Наши исследования показали, что очень часто для регулировки яркости подсветки плоскопанельного дисплея используется импульсная модуляция, т.е. лампы подсветки периодически включаются на время, пропорциональное установленной яркости подсветки. Это приводит к появлению пульсаций яркости ламп подсветки у плоскопанельных мониторов. Причём в некоторых измеренных нами экземплярах мониторов компьютеров и ноутбуков коэффициент пульсации ламп подсветки при средних значениях яркости достигал 80% при частоте пульсаций 30Гц.

В отличие от ЭЛТ-мониторов, коэффициент пульсации ламп подсветки плоскопанельных дисплеев можно существенно снизить, выставив яркость подсветки экрана близкую к максимальной. Для установки комфортных значений яркости можно задействовать программные регулировки, не влияющие на лампы подсветки плоскопанельного монитора. К сожалению, программная регулировка яркости доступна только в компьютерах.

Пример пульсации ламп подсветки мониторов при разных уровнях выставленной яркости приведены на Рис.5 и Рис.6.

Примечание. Все изображения формы (осциллограммы) пульсаций и их частотных характеристик выполнены при помощи фотоголовки ФГ-01 и бесплатно распространяемого ПО анализатора пульсаций светового потока «Эколайт-АП».

Нами были проведены измерения коэффициента пульсаций яркости мониторов у сотрудников нашей компании. Там, где были обнаружены пульсации яркости подсветки мониторов, и там, где была возможность, мы провели регулировку яркости ламп подсветки до уровней, когда коэффициент пульсации яркости подсветки минимален. После этих мероприятий все сотрудники отметили улучшение своего самочувствия, снижение утомляемости и повышение работоспособности при работе с монитором компьютера.

Наложение пульсаций. При оценке коэффициента пульсации яркости мониторов, необходимо помнить об эффекте наложения пульсаций от устройства отображения информации и пульсаций от источников искусственного освещения. Поскольку, свет от разных источников суммируется в каждой точке пространства и создает на поверхности экрана определённую освещенность, то от экрана монитора буде исходить суммарный световой поток (излучённый и отражённый) с пульсациями, частоты которых будут равны суммарной и разностной частотам пульсаций искусственного освещения и пульсациям от экрана монитора. Могут возникать, так называемые биения уровня яркости, выражающиеся в появлении низкочастотных пульсаций яркости монитора.

8 Электрическое наружное освещение

8. Электрическое наружное освещение

Светильники наружного освещения

Светильником называется устройство, состоящее из источника света (лампы) и осветительной арматуры, служащей для распределения светового потока, защиты глаз от слепящего действия источника света, защиты лампы от воздействия окружающей среды.

Светильники для наружного освещения классифицируются по светотехническим и конструктивным характеристикам. К светотехническим характеристикам относят светораспределение, типы кривой силы света и защитный угол.

Для наружного освещения производятся светильники с лампами ртутными разрядными лампами ДРЛ, натриевыми лампами ДНаТ, компактными фигурными люминесцентными лампами.

В зависимости от применяемых ламп и способа установки светильники имеют буквенное обозначение:

РКУ – с ртутной лампой ДРЛ консольный;

РТУ – с ртутной лампой ДРЛ торшерный;

ЖКУ – с натриевой лампой ДНаТ консольный;

ЖКУ – с натриевой лампой ДНаТ торшерный;

ЛКУ – с компактной люминесцентной лампой консольный.

На рис. 8.1 приведен внешний вид светильника с компактной люминесцентной лампой.

Рис. 8.1. Внешний вид светильника с компактными лампами серии ЛКУ 01-42 и ЛКУ 01-2х57

Прожектор является осветительным прибором дальнего действия, предназначенным для наружного освещения открытых пространств, например территорий заводов, складов, железнодорожных станций, строительных площадок, площадей, стадионов, а также фасадов зданий, памятников и других сооружений.

Основные части каждого прожектора – источник света и оптическое устройство, размещенные внутри металлического кожуха. Для их защиты от механических повреждений, загрязнений и воздействия внешней среды корпус с лицевой стороны закрывается плоским стеклом.

Принцип прожектора заключается в том, что световой поток, излучаемый источником света с помощью оптического устройства, перераспределяется и концентрируется в направленный пучок света. Этим достигается большая сила света в данном направлении при небольшой мощности источника света.

Основными источниками, применяемыми в прожекторах, являются лампы накаливания, галогенные лампы, лампы ДРЛ, ДНаТ. В прожекторах общего назначения (заливного света) для получения более широкого пучка света применяют обычные лампы накаливания общего назначения, а при необходимости получения сконцентрированного пучка света – специальные прожекторные лампы накаливания.

В осветительной технике наиболее распространены прожекторы заливного света серии ПЗС (рис. 8.2). Эти прожекторы имеют стеклянные серебряные параболические отражатели. Прожекторы серии ПЗС комплектуются патронами с цоколем Е27 или Е40. В прожекторах устанавливаются лампы накаливания ЛОН500, ЛОН1000, а также лампы типа ДРВ 160/250 Вт, ДРЛ 150/250 Вт, ДНаТ 150/250 Вт.

На рисунке 8.2 представлен внешний вид прожектора серии ПЗС с лампой накаливания.

Рис. 8.2. Прожектор с лампой накаливания серии ПЗС

Рис. 8.3. Прожектор серии ИО

Прожекторы с галогенными лампами серии ИО (рис. 8.3). Применяются для освещения фасадов зданий, архитектурных сооружений, территорий промышленных предприятий, строительных и спортивных площадок и других открытых пространств. Комплектуются трубчатыми галогенными лампами мощность, 150, 500, 1000, 1500 Вт. Корпус и отражатель изготовлены из алюминия. Отражатель может иметь гладкую полированную, микрорельеф, обеспечивающие разную ширину светового пучка.

На рис. 8.3 представлен внешний вид прожектора серии ИО с галогенной лампой

В зависимости от типа применяемых ламп прожекторы имеют обозначение:

ИО – с галогенной лампой;

РО – с ртутной лампой ДРЛ;

ЖО – с натриевой лампой ДНаТ;

ГО – с металлогалогенной лампой ДРИ.

Выбор светильников для наружного освещения производится по условиям окружающей среды и светотехническим характеристикам.

В зависимости от типа применяемых источников света, светильников, геометрического размещения их относительно освещаемой территории, высоты установки, интенсивности движения автотранспорта и людей, светотехнических характеристик дорожных покрытий применяется электрическое освещение территории промышленных предприятий, проездов, дорог и может выполняться различными способами с применением осветительных приборов с лампами накаливания и разрядными лампами. Светильники наружного освещения закрепляются на опорах, которые устанавливаются вдоль проездов, пешеходных проходов, по периметру территории предприятий, площадей, вдоль улиц.

В зависимости от ширины проезжей части улицы могут применяться различные схемы расположения светильников (рис. 8.4):
а) – однорядная, рекомендуемая при ширине проезжей части до 12 м; б) – двухрядная – свыше 12 м.

В большинстве случаев дорожное покрытие выполнено из асфальтобетона, которое характеризуется светоотражением, и подразделяются на гладкие и шероховатые. Гладкие – покрытия с пониженным содержанием щебня, имеющие среднюю высоту выступающих частей меньше 0,5 мм, а шероховатые поверхности – более 0,5 мм.

Рис. 8.1. Схемы расположения светильников:
а) – однорядная; б) – двухрядная

Расчет наружного освещения

Расчет наружного освещения заключается в определении расстояния между светильниками (шага светильников). Светотехнический расчет выполняется по методу коэффициента использования светового потока по формуле

где L – нормируемая яркость покрытия, кд/м 2 ;

– коэффициент запаса (принимается 1,3 – для ламп накаливания и 1,5 – для разрядных ламп);

– коэффициент использования светового потока (определяется по табл. 6.1 в зависимости от типа ламп, угла наклона светильника, характеристики покрытия, отношения ширины дороги к высоте к высоте установки светильников).

Значение коэффициента использования светильников

Угол наклона светильника, град

Коэффициент использования светильников по яркости hL при отношении ширины дороги к высоте установки светильника, b/h

По рассчитанному световому потоку Ф и световому потоку, предварительно выбранных ламп, определяется расстояние между светильниками

где S – площадь, которую могут осветить лампы, м 2 ;

b – ширина проезда (улицы), м.

Пример 1. Выполнить расчет электрического освещения проезжей части территории промышленного предприятия с шероховатым покрытием. Определить шаг светильников типа РКУ01-250 с лампой ДРЛ-250.

Исходные данные. Ширина проезжей части – 6 м; Высота установки светильников 9 м. Нормируемая яркость покрытия – 0,4 кд/м 2 .

Отношение ширины проезжей части к высоте установки светильников

Определим коэффициент использования светового потока по табл. 8.1.

Определим световой поток по формуле 6.1:

При двухрядном расположении светильников площадь, которую могут осветить лампы, равна

Тогда шаг светильников равен

Для наружного освещения проездов, проходов промышленных предприятий, улиц и площадей при средней яркости покрытия 0,4…1,6 , рекомендуется применять высокоэкономичные разрядные источники света высокого давления: ртутные лампы ДРЛ; натриевые лампы ДНаТ.

Определение расхода электроэнергии на освещение

Годовой расход электроэнергии на искусственное освещение можно определить расчетным путем по выражению

где – расчетная нагрузка освещения, кВт;

– годовое число испльзования максимума осветительной нагрузки, значения которого для географической широты Республики Беларусь приведены в таблице 8.2.

Годовое число использования максимума осветительной
нагрузки наружного освещения

При отсутствии фактических данных работы осветительных приборов годовое число часов использования максимума нагрузки можно определить по выражению

где – длительность включения освещения в наиболее продолжительную зимнюю ночь (21 декабря), ч;

– продолжительность включения освещения в наиболее короткую летнюю ночь (21 июня), ч;

– дополнительная продолжительность включения электрического освещения в пасмурные дни. Дополнительное число часов освещения принимается равным 2…5% от числа часов включения.

Проектирование установок наружного освещения

Сущность проектирования осветительной установки сводится к обоснованию выбора типов осветительных устройств, нахождение вариантов оптимального их размещения и определению мощности источников света, обеспечивающих необходимые световые параметры для заданных условий.

Разработка проекта наружного освещения имеет следующие взаимосвязанные этапы: ознакомление с объектом проектирования; выбор норм освещенности; выбор системы освещения; выбор источников света и типа осветительных приборов; разработку вариантов размещения осветительных приборов; расчет осветительной установки; электротехническую часть проекта.

Для освещения наружных пространств применяются светильники и прожекторы. Прожекторы создают возможность освещения больших открытых пространств без установки на них большого числа мачт, а также значительно сокращают протяженность сети электроснабжения. С другой стороны, при применении прожекторов создается повышенное слепящее действие.

При освещении дорог, проездов и территории предприятий и организаций светильники рационально применять с натриевыми лампами ДНаТ или с фигурными люминесцентными лампами.

Выбор высоты установки светильников и прожекторов

Для ограничения слепящего действия установок наружного освещения на площадках промышленных предприятий высота установки светильников выбирается: для светильников с защитным углом меньше 15º – не менее значений указанных в табл. 8.3; для светильников с защитным углом больше ил равно 15º – не менее 3,5 м при любых источниках света.

При применении прожекторов и наклонно установленных отношение осевой силы света прожекторов и светильников к квадрату высоты их установки, обозначаемой буквой с, в зависимости от нормируемой освещенности регламентируется значениями от100 до 3500.

Исходя из этого, минимально допустимую высоту установки прожекторов можно выразить формулой

где – осевая сила света прожекторов и светильников прожекторного света, кд;

с – квадрат высоты установки прожекторов.

Высота установки светильников наружного освещения

Наибольший световой поток ламп в светильниках, установленных на одной опоре

Наименьшая высота установки
светильников, м

Электронные пускорегулирующие аппараты для разрядных ламп высокого давления

Классификация пускорегулирующих аппаратов — светотехнических изделий, с помощью которых осуществляется питание разрядной лампы от электрической сети. Стартерные и бесстартерные ПРА для люминесцентных ламп. Зажигающие устройства для ламп высокого давления.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 02.05.2011
Размер файла 434,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. КЛАССИФИКАЦИЯ СХЕМ ПРА

2. СТАРТЕРНЫЕ ПУСКОРЕГУЛИРУЮЩИЕ АППАРАТЫ ДЛЯ ЛЮМИНЕСЦЕНТНЫХ ЛАМП

2.1 ОДНОЛАМПОВЫЕ СТАРТЕРНЫЕ ПРА

2.2 ДВУХЛАМПОВЫЕ СТАРТЕРНЫЕ ПРА С РАСЩЕПЛЕННОЙ ФАЗОЙ

2.3 ТРЕБОВАНИЯ К СТАРТЕРНЫМ ПРА

3. БЕССТАРТЕРНЫЕ ПУСКОРЕГУЛИРУЮЩИЕ АППАРАТЫ ДЛЯ ЛЮМИНЕСЦЕНТНЫХ ЛАМП

3.1 КЛАССИФИКАЦИЯ БЕССТАРТЕРНЫХ ПРА

3.2 ОСНОВНЫЕ СХЕМЫ БЕССТАРТЕРНЫХ ПРА

4. ПУСКОРЕГУЛИРУЮЩИЕ АППАРАТЫ ДЛЯ ЛАМП ТИПОВ ДРЛ, ДРИ И ДНаТ

5. ЭЛЕКТРОННЫЙ ПУСКОРЕГУЛИРУЮЩИЙ АППАРАТ

6. ЗАЖИГАЮЩИЕ УСТРОЙСТВА ДЛЯ ЛАМП ВЫСОКОГО ДАВЛЕНИЯ

1. КЛАССИФИКАЦИЯ СХЕМ ПРА

Пускорегулирующий аппарат—светотехническое изделие, с помощью которого осуществляется питание разрядной лампы от электрической сети, обеспечивающее необходимые режимы зажигания, разгорания и работы лампы и конструктивно оформленное в виде единого аппарата или нескольких отдельных блоков.

Пускорегулирующий аппарат обеспечивает:

1) зажигание разрядной лампы, т. е. пробой межэлектродного промежутка и формирование в нем требуемого вида разряда. Указанная функция обычно выполняется зажигающим устройством, которое часто является составным элементом ПРА. Для надежного зажигания лампы ПРА должен иметь определенные выходные параметры в режиме холостого хода, т. е. в режиме работы схемы включения при не горящей лампе. К ним относятся форма, значение напряжения, подаваемого на электроды лампы в период ее пуска, а при необходимости значение тока предварительного подогрева электродов и др.;

2) разгорание разрядной лампы, т. е. процесс установления рабочих параметров лампы после ее зажигания. Продолжительность разгорания лампы, а также характер изменения тока в ней в течение этого процесса зависят не только от газового наполнения лампы и соотношения температур ее колбы в холодном и рабочем состоянии, но и от типа и параметров ПРА [1.1];

3) устойчивость режима работы разрядной лампы в контуре, заключающуюся в способности контура автоматически восстанавливать исходное значение тока при его флюктуационных изменениях. Наличие данной функции у ПРА, которая выполняется с помощью токоограничивающих элементов (стабилизаторов тока), связано со спецификой статических вольт-амперных характеристик ламп (ВАХ). Обеспечить устойчивый режим работы от источника напряжения без токоограничивающих элементов-балластов принципиально невозможно для разрядных ламп, имеющих падающие ВАХ.

Для ламп с возрастающими ВАХ устойчивая работа от сети возможна и без балласта. Однако при малом наклоне характеристики это не всегда экономически целесообразно из-за низкой стабильности комплекта лампа — ПРА.

Рисунок 1. Обобщённая структурная схема однолампового ПРА: ВИП- вторичный источник питания; СТ — стабилизатор; ЗУ — зажигающее устройство.

Помимо элементов ПРА, выполняющих функции, в схему аппарата может, входит и вторичный источник питания. Обобщенная структурная схема однолампового ПРА показана на рис. 1.

Кроме основных функций ПРА может подавлять радио — помехи, создаваемые лампой, снижать пульсации её светового потока, обеспечивать высокий коэффициент мощности схемы др. С учетом общеинженерных и экономически соображений к ПРА предъявляется также ряд дополнительных требований. Они заключаются в том, что аппарат должен обладать минимальными собственными потерями, массой и габаритными размерами, иметь невысокую стоимость, быть надежным, долговечным, обеспечивать минимальные эксплуатационные расходы, не создавать заметного акустического шума и т.д. Совокупность этих требований является противоречивой и поэтому имеется много схем ПРА, в которых наилучшим образом выполняются лишь некоторые из них.

Классификация схем ПРА может быть проведена по различным признакам: по типу токоограничивающего элемента, по условиям зажигания и работы лампы [1.1], по типу источника питания, по количеству ламп и т. д. Для целей анализа цепей ПРА наиболее удобна классификация по типу токоограничивающего элемента, поскольку это во многом определяет метод анализа. В соответствии с такой классификацией (рис. 2) все ПРА можно разделить на три основные группы: электромагнитные, полупроводниковые, комбинированные. К отдельной, четвертой, группе целесообразно отнести ПРА без токоограничивающего элемента для специальных так называемых без балластных ламп.

В первую группу (электромагнитные ПРА) входят аппараты с реактивными и активными токоограничивающими элементами (балластами) и их комбинациями, причем в основном силовом контуре этих ПРА находятся только токоограничивающие элементы. Источником питания является сеть промышленной или повышенной частоты. В эту группу входят такие традиционные аппараты, как индуктивный и индуктивно-емкостный ПРА, аппараты с трансформатором и автотрансформатором с большим внутренним сопротивлением.

Рисунок 2. Классификация ПРА для разрядных ламп по типу токоограничивающего элемента.

Такие ПРА могут быть со стартёрным или бесстартёрным зажиганием, иметь цепи для предварительного подогрева электродов люминесцентных ламп или цепи мгновенного перезажигания ламп высокого давления типов ДРЛ, ДРИ и т. д. (см., например, рис. 3).

Аппараты с резистивными балластами применяются при подключении разрядных ламп к сети постоянного тока или промышленной частоты. В резистивных аппаратах может быть использован балластный резистор или нелинейный резистор (вольфрамовая спираль лампы накаливания). Резистивные

Рисунок 3. Обобщенная структурная схема стартерного ПРА и бесстартерного ПРА с накальным трансформатором.

аппараты не получили широкого распространения из-за низкого КПД. Однако в последнее время для компактных люминесцентных ламп бытового назначения в ряде стран находят применение емкостно-резистивные балласты, в которых указанный выше основной недостаток ПРА резистивного типа в известной степени нивелирован.

В полупроводниковых ПРА (вторая группа) стабилизация тока лампы осуществляется с помощью полупроводниковых приборов, обычно транзисторов. На рис. 4 приведена схема полупроводникового ПРА, в котором транзистор используется в качестве нелинейного сопротивления. Схема удовлетворительно работает на постоянном токе при незначительных колебаниях напряжения источника питания. На переменном токе схемы нелинейных полупроводниковых ПРА обладают большими собственными потерями.

Рисунок 4. Схема нелинейного

Рисунок 5. Схема импульсного полупроводникового ПРА. полупроводникового ПРА.

На рис. 5 дана схема импульсного полупроводникового ПРА. Приведенная схема носит название динамического балласта. В динамическом балласте транзистор работает в режиме ключа, и стабилизация тока лампы осуществляется с использованием инерционных свойств плазмы газового разряда. На рис. 6, а показана форма напряжения на разрядной лампе. При открытом транзисторе (0?t?Tи) напряжение на лампе приблизительно равно напряжению источника питания (Uл?Uп). При закрытом транзисторе (Tи 3 м/с и определяется скоростью нарастания напряжения, подаваемого на лампу, распределенной емкостью стенок лампы и проводимостью плазменного столба, образующегося за фронтом ионизации.

В связи с тем, что зажигание ЛЛ в бесстартёрных схемах осуществляется синусоидальным напряжением определенной амплитуды, для надежного зажигания ламп большое значение имеют факторы, облегчающие зажигание и стабилизирующие напряжение зажигания на определенном уровне при изменении условий окружающей среды. Кроме предварительного нагрева электродов, существенную роль играет наличие на колбе лампы токопроводящей полосы. Особенно эффективно сказывается на снижении напряжения зажигания соединение полосы с одним из электродов лампы, с землей, а также подача на полосу определенного электрического потенциала. Использование в бесстартерных схемах обычных ЛЛ, предназначенных для работы в стартерных схемах, снижает надежность зажигания ламп и в значительной степени лишает смысла применение бесетартерных ПРА.

Бесстартерные ПРА принято делить на две группы: ПРА быстрого зажигания, в которых осуществляются предварительный нагрев электродов ЛЛ и затем зажигание ее под действием синусоидального напряжения источника питания (значение напряжения зажигания определяется конструкцией и условиями работы ламп), и ПРА мгновенного зажигания, в которых ЛЛ с холодными электродами зажигается при подаче на нее повышенного напряжения.

Зажигание ламп в схемах мгновенного зажигания происходит под действием электростатической эмиссии, что отрицательно сказывается на сроке службы электродов. Поэтому для таких схем включения выпускаются специальные лампы с усиленными электродами. Применение обычных стартерных ЛЛ в схемах мгновенного зажигания снижает срок их службы на 5070 %, и поэтому в нашей стране схемы мгновенного зажигания, как правило, не используют. В дальнейшем мы рассмотрим схемы первой группы и будем относить к ним название «бесстартерные схемы».

Независимо от электрической схемы бесстартерные ПРА должны обеспечивать:

1) предварительный нагрев электродов лампы в пусковом режиме до температуры, интенсивной термоэлектронной эмиссии с катода и снижения напряжения зажигания;

2) подачу на лампу зажигающего напряжения, которое применительно к ПРА называют напряжением холостого хода. За напряжение холостого хода Uхх бесстартерных ПРА принимают напряжение, которое создаёт аппарат на зажимах не горящей лампы.

3) компенсацию при необходимости напряжения предварительного нагрева электродов, т.е. снижение напряжения нагрева электродов в рабочем режиме по сравнению с пусковым. Это требование обусловлено стремлением обеспечить максимальный срок службы ламп. В последнее время наметилась тенденция выпуска ЛЛ с триспиральными электродами с низким сопротивлением. Такие электроды требуют для своего нагрева напряжения около 3,64,4 В, которое при значительном запасе на катоде оксидного слоя обеспечивает длительный срок службы ламп даже в схемах без компенсации напряжения предварительного нагрева электродов;

4) стабилизацию рабочего режима ламп в определенных пределах, так же как и стартерные ПРА.

Бесстартерные ПРА, обеспечивающие зажигание ЛЛ с предварительным нагревом электродов, можно разделить на следующие три основные группы:

1)резонансные, в которых предварительный нагрев электродов осуществляется током резонансного контура, состоящего из балластных и пусковых индуктивных и емкостных элементов, а требуемое напряжение холостого хода обеспечивается на одном из реактивных резонансных элементов, параллельно которому включена ЛЛ;

2) с накальным трансформатором для предварительного нагрева электродов. Увеличение напряжения холостого хода может быть достигнуто путем, как усложнения накального трансформатора, так и применения специальных пусковых конденсаторов;

3) с автотрансформаторами с рассеянием. В таких схемах повышенное напряжение холостого хода, требуемое для зажигания лампы, обеспечивается выбором числа витков вторичной обмотки. Конструкция магнитной системы обеспечивает стабилизацию тока лампы в рабочем режиме.

3.2 ОСНОВНЫЕ СХЕМЫ БЕССТАРТЕРНЫХ ПРА

Известно множество схем бесетартерных ПРА. Рассмотрим только простейшие, характеризующие сущность физических процессов. На рис. 16, а приведена простейшая схема резонансного ПРА с балластным дросселем и пусковым конденсатором. При напряжении сети лампа с холодными электродами не зажигается, так как напряжение ее холодного зажигания выше, чем напряжение сети и напряжение, возникающее на пусковом конденсаторе Сп резонансной цепи. По цепи дроссель — первый электрод — пусковой конденсатор — второй электрод начинает протекать пусковой ток IП, который нагревает электроды лампы

Рисунок16. Схема резонансных ПРА и автотрансформатора с рассеянием: а- простейшая, б- с дополнительной обмоткой; в- с двумя дросселями; г- с автотрансформатором.

Простейшая резонансная схема ПРА на промышленной частоте не приценяется, так как значение емкости пускового конденсатора получается большим, что искажает форму кривой тока лампы и вызывает появление пауз в токе и увеличение коэффициента амплитуды до 22,5 вместо нормируемого 1,7.

Отключением пусковой цепочки после зажигания лампы с помощью различных автоматических устройств типа разрядников либо усложнением схемы путем использования дополнительных элементов можно избежать указанных недостатков. Для ПРА, применяемых в светильниках общего и местного освещения, преимущественно используют схему с дополнительной обмоткой на дросселе. Одна из схем приведена на рис. 16,б. В пусковую цепь включена дополнительная обмотка балластного дросселя н. При настройке цепи в режим, близкий к резонансному, можно получить увеличение значения пускового тока. В пусковом режиме ток проходит по основной и добавочной обмоткам дросселя, включенным согласно, в результате чего индуктивность схемы снижается, и напряжение холостого хода определяется повышенным напряжением на пусковом конденсаторе. После зажигания лампы токи, протекающие по балластной и добавочной обмоткам, становятся различными по значениям и фазе, резонанс нарушается, и ток лампы стабилизируется балластной обмоткой.

Более распространенной модификацией резонансной схемы является схема, приведенная на рис. 16,в. Схема содержит два дросселя Др1 и Др2, один из которых имеет обмотки н для нагрева электродов. В пусковом режим ток протекает через дроссель Др1 и конденсатор, что при настройке этой цепи на резонанс обеспечивает увеличенное напряжение на конденсаторе и лампе.

Рисунок 17. Бесстартерные ПРА с нахальным трансформатором: а- включенным параллельно лампе и векторная диаграмма пускового режима; б- с дополнительной обмоткой; в- с пусковым конденсатором и векторная диаграмма пускового режима;

После зажигания лампы конденсатор Сп служит для увеличения коэффициента мощности схемы. Применением одного дросселя с отводом можно достигнуть дополнительного увеличения напряжения во второй обмотке.

На рис. 16,г показана схема с автотрансформатором с магнитным рассеянием с обмотками н для предварительного нагрева электродов. При применении дополнительных обмоток (на рисунке не показаны) можно получить глубокую компенсацию напряжения предварительного нагрева и тем самым снизить потери в ПРА. Схемы с автотрансформатором находят применение в случаях, когда для осветительных, установок используется напряжение сети 100-110 В.

На рис. 17 приведены простые схемы бесстартерного ПРА с накальным трансформатором, используемым для предварительного нагрева электродов. Первичная обмотка трансформатора включена параллельно лампе, что обеспечивает после зажигания лампы компенсацию напряжения предварительного нагрева за счет снижения напряжения на первичной обмотке, начиная со значения напряжения холостого хода до напряжения на горящей лампе. На рис. 17, а дана векторная диаграмма пускового режима. Напряжение холостого хода Uхх является векторной суммой напряжений на первичной и вторичных обмотках трансформатора. Напряжение на первичной обмотке Uдр,п ниже напряжения сети Uc за счет падения напряжения в обмотке дросселя. Полное сопротивление дросселя в таких схемах ниже на порядок, чем у трансформатора, в результате чего напряжение на первичной обмотке трансформатора в пусковом режиме составляет 0,9-0,95 сетевого. В результате напряжение холостого хода таких схем находится на уровне напряжения сети, а в схемах для ламп с низкоомными электродами при напряжении предварительного нагрева электродов 3,6-4,4 В — несколько ниже сетевого. Поэтому они могут применяться только для ламп, напряжение которых ниже напряжения сети.

Увеличение напряжения холостого хода достигается применением дополнительной обмотки на накальном трансформаторе (рис. 17,б) либо по схеме с дополнительным пусковым конденсатором Сп (рис. 17, в). Емкость пускового конденсатора Сп составляет для ПРА к лампам мощностью 40—80 Вт около 1 мкФ. Пусковой ток в данной схеме имеет емкостный характер. На рис. 17,в приведена векторная диаграмма пускового режима. Выбором параметров элементов пусковая цепь может быть настроена в режим резонанса или близкий к нему при определенном значении напряжения сети. Однако резонансные схемы чувствительны к колебаниям этого напряжения, поэтому на практике параметры указанных схем выбирают исходя из режима со слабо выраженным резонансом.

По схеме рис. 17, в выпускают ПРА для ламп мощностью 80 Вт.

4. ПУСКОРЕГУЛИРУЮЩИЕ АППАРАТЫ ДЛЯ ЛАМП ТИПОВ ДРЛ, ДРИ И ДНаТ

Пускорегулирующие аппараты для ламп типа ДРЛ делятся на три группы:

1) балластные дроссели для четырехэлектродных ламп, которые зажигаются от сети промышленной частоты при включении*на фазное или линейное напряжение;

2) аппараты импульсного зажигания, состоящие из балластного дросселя и специального зажигающего устройства. Такие аппараты предназначены для работы с двух-электродными лампами, а также лампами типов ДРИ и ДНаТ;

3) аппараты мгновенного зажигания, выполненные по схемам автотрансформатора с рассеянием, в которых зажигание ламп происходит под действием повышенного синусоидального напряжения промышленной частоты. Такие аппараты применяют для зажигания ламп в условиях отрицательных температур вместо ПРА первой группы.

Основным элементом схем первых двух групп является балластный дроссель, аналогичный дросселям стартерных ПРА. Требования к его параметрам такие же, как к дросселям стартерных ПРА, за исключением требования к току предварительного нагрева электродов (пусковой ток), так как лампы высокого давления зажигаются с холодными электродами. Расшифровка условного обозначения типа ПРА для ламп высокого давления и стартерных ПРА аналогична, но после цифры, указывающей мощность лампы, приводится обозначение типа лампы ДРЛ, ДНаТ или ДРИ. Дроссели, предназначенные для включения ламп типа ДРЛ, нельзя применять для включения ламп типа ДНаТ, так как последние имеют напряжение горения на 3040 В, ниже чем напряжение горения ламп ДРЛ.

Схемы с автотрансформатором применяют для ламп, у которых напряжение горения больше 0,7 номинального напряжения сети. Автотрансформаторные схемы включения газоразрядных ламп находят применение в сетях напряжением 100110 В.

Лампы типа ДРИ мощностью 400 Вт включаются с дросселем от ламп типа ДРЛ и универсальным зажигающим устройством типа УИЗУ.

Для включения газоразрядных ламп могут быть использованы также резонансные схемы, аналогичные схемам для ЛЛ. Зажигание ламп высокого давления с холодными электродами, т. е. по схеме мгновенного зажигания, существенно облегчает возможность согласования пускового н рабочего режимов резонансного ПРА, в результате чего можно получить достаточно высокие значения напряжения холостого хода, в 2,53 раза превышающие напряжение питающей сети.

5. ЭЛЕКТРОННЫЙ ПУСКОРЕГУЛИРУЮЩИЙ АППАРАТ

Электронный пускорегулирующий аппарат (ЭПРА) обеспечивает работу трубчатых люминесцентных ламп со щадящими режимами пуска. ЭПРА с полумостовым инвертором разработан для управления стандартной лампой Philips TLD58W или лампами аналогичных типов. Схема оптимизирована для ламп мощностью 50 Вт при номинальном напряжении сети 230 В и частоте 50. 60 Гц. Щадящий режим пуска увеличивает срок службы лампы. Постоянство мощности лампы обеспечено автоматическим управлением. Предусмотрены защита от емкостного режима работы и защита от удаления лампы.

ЭПРА работоспособен в диапазоне напряжений сети 185. 265 В при частоте 50. 60 Гц. Автоматическое управление поддерживает мощность горения лампы в пределах 47,6. 50,3 Вт при изменении напряжения сети в пределах 200. 260 В. Одним из основных компонентов является высоковольтная ИМС UBA2021, предназначенная для управления, как компактными люминесцентными лампами, так и трубчатыми лампами. Микросхема UBA2021, включающая высоковольтный драйвер со схемой запуска, генератор и таймер, обеспечивает управление режимами пуска, подогрева, зажигания и горения лампы, а также защиту от емкостного режима и удаления лампы. UBA2021 управляет работой мощных полевых МОП-транзисторов PHX3N50E, являющихся ключами полумостового инвертора, который питается от сети с номинальным напряжением 230 В и частотой 50. 60 Гц. При этом обеспечивается необходимый сдвиг уровней питания полевых транзисторов, осуществляющий защиту от емкостного режима работы. Основными достоинствами этого изделия являются малое число компонентов и низкая стоимость, что достигнуто благодаря применению ИМС UBA2021, которая способна обеспечить максимальную гибкость разработки при минимальном числе периферийных элементов.

Блок-схема устройства приведена на рис.18, полная электрическая схема — на рис.19. Напряжение сети переменного тока преобразуется в питающее полумостовой инвертор напряжение постоянного тока с помощью мостового выпрямителя на четырех диодах и сглаживающего конденсатора. Помехоподавляющий сетевой фильтр (рис.18) препятствует проникновению помех в сеть. Полумостовой инвертор относится к группе высокочастотных резонансных преобразователей напряжения, которые удобны для управления газоразрядными лампами. Используемый принцип переключения двух мощных МОП-транзисторов при нулевом напряжении позволяет уменьшить потери на их переключение и обеспечивает высокий КПД аппарата.

Рисунок18 Блок схема устройства

После подачи сетевого напряжения люминесцентная лампа сначала подогревается. Это называется мягким пуском и обеспечивает надежную и долговечную работу лампы. Величина тока подогрева регулируется микросхемой UBA2021. Этот ток, проходящий через нити накала лампы, разогревает электроды лампы до температуры, обеспечивающей достаточную эмиссию электронов. Достаточный подогрев позволяет уменьшить напряжение зажигания лампы, что снижает ударные электрические нагрузки на элементы схемы. Автоматическое управление в значительной степени стабилизирует излучаемый лампой световой поток в широком диапазоне вариаций напряжения сети.

Рисунок 19 Полная электрическая схема устройства

После включения выпрямленное напряжение сети поступает на буферный конденсатор С4 через резистор R1 (рис.19), ограничивающий бросок тока. Конденсатор сглаживает пульсации напряжения с удвоенной частотой сети. Полученное высоковольтное напряжение UHV постоянного тока является питающим для полумостового инвертора, в состав силовых компонентов которого входят транзисторы VT1, VT2, катушка L1, конденсаторы С5, С6, С7 и лампа, подключаемая к разъемам Р2 и РЗ.

На этапе пуска ток от высоковольтного конденсатора С4 проходит через резистор R2, нить накала лампы, резистор R4, выводы 13 и 5 микросхемы UBA2021, соединенные между собой в период пуска внутренним ключом, и заряжает конденсаторы низковольтного питания С9, СЮ и С13. Как только напряжение питания Vs на С13 достигнет величины 5,5 В, происходит переключение UBA2021, в результате которого транзистор VT2 открывается, а транзистор VT1 запирается. Это позволяет зарядиться пусковому конденсатору С12 через внутреннюю цепь микросхемы. Напряжение питания Vs продолжает увеличиваться, и при Vs > 12 В схема начинает генерировать. Величина тока потребления ИМС внутренне фиксируется на уровне порядка 14 мА. Далее происходит переход к этапу подогрева.

При отсутствии лампы пуск автоматически блокируется, т.к. в этом случае оказывается разорванной цепь зарядки пускового конденсатора.

На этапе подогрева МОП-транзисторы VT1 и VT2 поочередно переводятся в проводящее состояние. Это генерирует переменное напряжение прямоугольной формы относительно средней точки полумоста с амплитудой VHV. Стартовая частота колебаний составляет 98 кГц. В этих условиях цепь, состоящая из С8, VD5, VD6, С9 и СЮ, оказывается способной выполнить функцию источника низковольтного питания, которая во время пуска обеспечивалась током через вывод 13 ИМС.

В течение интервала времени, примерно равного 1,8 с (время подогрева tPRE), продолжительность которого определяется номиналами С17 и R7, система находится в режиме подогрева, когда через нити накала лампы проходит ток контролируемой величины. Это позволяет оптимальным образом разогреть оба электрода лампы. Нагретые электроды эмиттируют в лампу большое число электронов, и в этом состоянии для ее зажигания требуются значительно меньшие напряжения, что минимизирует ударные электрические нагрузки на элементы схемы и лампу в момент зажигания. Подогрев электродов весьма важен для обеспечения большого срока службы лампы.

После возникновения генерации небольшой переменный ток начинает протекать от средней точки полумоста через нити накала лампы, L1 и С7. Частота колебаний постепенно снижается, что приводит к соответствующему росту величины тока. Скорость снижения частоты определяется емкостью конденсатора С14 и внутренним источником тока ИМС. Частота прекращает падать, как только будет достигнуто определенное значение напряжения переменного тока на резисторах R5 и R6, являющихся датчиками тока подогрева. Это происходит примерно через 3 мс после включения. UBA2021 стабилизирует ток через нити накала, отслеживая величину падения напряжения на R5 и R6.

В течение всего этапа подогрева частота работы полумостового инвертора остается выше резонансной частоты цепочки L1, С7 (55,6 кГц), и в силу этого напряжение на С7 еще мало для зажигания лампы. Весьма важно удержать это напряжение достаточно малым: ведь преждевременное, так называемое холодное, зажигание приводит к потемнению концов лампы.

Величина индуктивности балластной катушки L1 определяется необходимым током через лампу, емкостью конденсатора поджига С7 и рабочей частотой в режиме горения. Минимальная величина емкости С7 определяется индуктивностью L1, величиной не приводящего к зажиганию напряжения на лампе при данном токе подогрева и минимальным напряжением сети. В результате оптимальным для подогрева оказывается значение емкости С7, равное 8,2 нФ.

После окончания этапа подогрева UBA2021 возобновляет дальнейшее снижение частоты переключений полумоста вплоть до низшей частоты fн (39 кГц). Однако теперь понижение частоты осуществляется гораздо медленнее, чем это происходило в стадии подогрева. Частота переключений смещается к резонансной частоте последовательной цепочки, состоящей из индуктивности L1 и суммарной емкости конденсатора С7 и электродов лампы (55,6 кГц), причем сопротивления блокирующих постоянный ток конденсаторов С5 и С6 достаточно малы.

Максимальная величина напряжения зажигания в наихудшем случае (когда и светильник, и схема ЭПРА подключены к защитному заземлению сети) для лампы TLD58W при низких температурах составляет примерно 600 В.

Сочетание балластной катушки индуктивности L1 и конденсатора поджига С7 подобрано таким образом, чтобы напряжение на лампе могло превысить эти необходимые для надежного зажигания 600 В. Величина напряжения зажигания определяет максимальное значение емкости С7 при заданной индуктивности L1, выбранной исходя из нижней частоты fн UBA2021. Нижняя частота fн задается величинами R7, С15 и С16. Максимально возможная продолжительность этапа зажигания TIGN равна 1,7 с (15/16-ых от TPRE), она устанавливается подбором С17 и R7.

В предположении, что лампа зажглась в ходе понижения частоты, частота уменьшается до минимального значения fн. UBA2021 может осуществить переход к этапу горения двумя путями: 1 — при снижении частоты до fн, и 2 — если частота fн не достигнута, но переход происходит по истечении максимально возможной продолжительности этапа зажигания TIGN.

На этапе горения частота колебаний в схеме обычно снижается до fн (39 кГц), которая может использоваться в качестве номинальной рабочей частоты. Однако, в силу применения в ЭПРА автоматического управления, частота колебаний зависит от величины тока, протекающего через вывод 13 (вывод RHV) ИМС UBA2021. Автоматическое управление начинает функционировать после достижения fн.

Во время этапа пуска конденсаторы низковольтного питания С9, С10 и С13 заряжаются током, протекающим от высоковольтного конденсатора С4 через R2, нить накала лампы, R4 и внутренне соединенные выводы 13 и 5 UBA2021. На этапе горения происходит перекоммутация. Вместо вывода 5 к выводу 13 оказывается подключенным вывод 8. Теперь ток, протекающий через резисторы R2 и R4, используется в качестве информационного параметра в системе автоматического управления частотой переключений силового инвертора, так как сила этого тока пропорциональна уровню выпрямленного напряжения сети. Пульсации с удвоенной частотой сети (100. 120 Гц) фильтруются конденсатором С17. В результате излучаемый лампой световой поток остается почти постоянным при изменении напряжения сети в пределах от 200 до 260 В.

Научный

Опыт
Инновации
Качество

Министерство топлива и энергетики Российской Федерации

ПРАВИЛА УСТРОЙСТВА ЭЛЕКТРОУСТАНОВОК

УТВЕРЖДЕНО
Министром топлива и энергетики
Российской Федерации
06 октября 1999 г.

Оглавление

Глава 6.1. Общая часть

Глава 6.2. Внутреннее освещение

Глава 6.3. Наружное освещение

Глава 6.4. Световая реклама, знаки и иллюминация

Глава 6.5. Управление освещением

Глава 6.6. Осветительные приборы и электроустановочные устройства

Глава 6.1

ОБЩАЯ ЧАСТЬ
Область применения. Определения

6.1.1. Настоящий раздел Правил распространяется на установки электрического освещения зданий, помещений и сооружений наружного освещения городов, поселков и сельских населенных пунктов, территорий предприятий и учреждений, на установки оздоровительного ультрафиолетового облучения длительного действия, установки световой рекламы, световые знаки и иллюминационные установки.

6.1.2. Электрическое освещение специальных установок (жилых и общественных зданий, зрелищных предприятий, клубных учреждений, спортивных сооружений, взрывоопасных и пожароопасных зон) кроме требований настоящего раздела должно удовлетворять также требованиям соответствующих глав разд. 7.

6.1.3. Питающая осветительная сеть — сеть от распределительного устройства подстанции или ответвления от воздушных линий электропередачи до ВУ, ВРУ, ГРЩ.

6.1.4. Распределительная сеть — сеть от ВУ, ВРУ, ГРЩ до распределительных пунктов, щитков и пунктов питания наружного освещения.

6.1.5. Групповая сеть — сеть от щитков до светильников, штепсельных розеток и других электроприемников.

6.1.6.Пункт питания наружного освещения — электрическое распределительное устройство для присоединения групповой сети наружного освещения к источнику питания.

6.1.7. Фаза ночного режима — фаза питающей или распределительной сети наружного освещения, не отключаемая в ночные часы.

6.1.8. Каскадная система управления наружным освещением — система, осуществляющая последовательное включение (отключение) участков групповой сети наружного освещения.

6.1.9. Провода зарядки светильника — провода, прокладываемые внутри светильника от установленных в нем контактных зажимов или штепсельных разъемов для присоединения к сети (для светильника, не имеющего внутри контактных зажимов или штепсельного разъема, — провода или кабели от места присоединения светильника к сети) до установленных в светильнике аппаратов и ламповых патронов.

Общие требования

6.1.10. Нормы освещенности, ограничения слепящего действия светильников, пульсации освещенности и другие качественные показатели осветительных установок, виды и системы освещения должны приниматься согласно требованиям СНиП 23-05-95 “Естественное и искусственное освещение” и другим нормативным документам, утвержденным или согласованным с Госстроем (Минстроем) РФ и министерствами и ведомствами Российской Федерации в установленном порядке.

Светильники должны соответствовать требованиям норм пожарной безопасности НПБ 249-97 “Светильники. Требования пожарной безопасности. Методы испытаний”.

6.1.11. Для электрического освещения следует, как правило, применять разрядные лампы низкого давления (например люминесцентные), лампы высокого давления (например ме-таллогалогенные типа ДРИ, ДРИЗ, натриевые типа ДНаТ, ксеноновые типов ДКсТ, ДКсТЛ, ртутно-вольфрамовые, ртутные типа ДРЛ). Допускается использование и ламп накаливания.

Применение для внутреннего освещения ксеноновых ламп типа ДКсТ (кроме ДКсТЛ) допускается с разрешения Госсан-инспекции и при условии, что горизонтальная освещенность на уровнях, где возможно длительное пребывание людей, не превышает 150 лк, а места нахождения крановщиков экранированы от прямого света ламп.

При применении люминесцентных ламп в осветительных установках должны соблюдаться следующие условия для обычного исполнения светильников:

1. Температура окружающей среды не должна быть ниже 5°С.

2. Напряжение у осветительных приборов должно быть не менее 90% номинального.

6.1.12. Для аварийного освещения рекомендуется применять светильники с лампами накаливания или люминесцентными.

Разрядные лампы высокого давления допускается использовать при обеспечении их мгновенного зажигания и перезажигания.

6.1.13. Для питания осветительных приборов общего внутреннего и наружного освещения, как правило, должно применяться напряжение не выше 220 В переменного или постоянного тока. В помещениях без повышенной опасности напряжение 220 В может применяться для всех стационарно установленных осветительных приборов вне зависимости от высоты их установки.

Напряжение 380 В для питания осветительных приборов общего внутреннего и наружного освещения может использоваться при соблюдении следующих условий:

1. Ввод в осветительный прибор и независимый, не встроенный в прибор, пускорегулирующий аппарат выполняется проводами или кабелем с изоляцией на напряжение не менее 660 В.

2. Ввод в осветительный прибор двух или трех проводов разных фаз системы 660/380 В не допускается.

6.1.14. В помещениях с повышенной опасностью и особо опасных при высоте установки светильников общего освещения над полом или площадкой обслуживания менее 2,5 м применение светильников класса защиты 0 запрещается, необходимо применять светильники класса защиты 2 или 3. Допускается использование светильников класса защиты 1, в этом случае цепь должна быть защищена устройством защитного отключения (УЗО) с током срабатывания до 30 мА.

Указанные требования не распространяются на светильники, обслуживаемые с кранов. При этом расстояние от светильников до настила моста крана должно быть не менее 1,8 м или светильники должны быть подвешены не ниже нижнего пояса ферм перекрытия, а обслуживание этих светильников с кранов должно выполняться с соблюдением требований техники безопасности.

6.1.15. В установках освещения фасадов зданий, скульптур, монументов, подсвета зелени с использованием осветительных приборов, установленных ниже 2,5 м от поверхности земли или площадки обслуживания, может применяться напряжение до 380 В при степени защиты осветительных приборов не ниже IP54.

В установках освещения фонтанов и бассейнов номинальное напряжение питания погружаемых в воду осветительных приборов должно быть не более 12В.

6.1.16. Для питания светильников местного стационарного освещения с лампами накаливания должны применяться напряжения: в помещениях без повышенной опасности — не выше 220 Вив помещениях с повышенной опасностью и особо опасных — не выше 50 В. В помещениях с повышенной опасностью и особо опасных допускается напряжение до 220 В для светильников, в этом случае должно быть предусмотрено или защитное отключение линии при токе утечки до 30 мА, или питание каждого светильника через разделяющий трансформатор (разделяющий трансформатор может иметь несколько электрически не связанных вторичных обмоток).

Для питания светильников местного освещения с люминесцентными лампами может применяться напряжение не выше

220 В. При этом в помещениях сырых, особо сырых, жарких и с химически активной средой применение люминесцентных ламп для местного освещения допускается только в арматуре специальной конструкции.

Лампы ДРЛ, ДРИ, ДРИЗ и ДНаТ могут применяться для местного освещения при напряжении не выше 220 В в арматуре, специально предназначенной для местного освещения.

6.1.17. Для питания переносных светильников в помещениях с повышенной опасностью и особо опасных должно применяться напряжение не выше 50 В.

При наличии особо неблагоприятных условий, а именно когда опасность поражения электрическим током усугубляется теснотой, неудобным положением работающего, соприкосновением с большими металлическими, хорошо заземленными поверхностями (например работа в котлах), и в наружных установках для питания ручных светильников должно применяться напряжение не выше 12 В.

Переносные светильники, предназначенные для подвешивания, настольные, напольные и т.п. приравниваются при выборе напряжения к стационарным светильникам местного стационарного освещения (п. 6.1.16).

Для переносных светильников, устанавливаемых на переставных стойках на высоте 2,5 м и более, допускается применять напряжение до 380 В.

6.1.18. Питание светильников напряжением до 50 В должно производиться от разделяющих трансформаторов или автономных источников питания.

6.1.19. Допустимые отклонения и колебания напряжения у осветительных приборов не должны превышать указанных в ГОСТ 13109-87 “Электрическая энергия. Требования к качеству электрической энергии в электрических сетях общего назначения”.

6.1.20. Питание силовых и осветительных электроприемников при напряжении 380/220 В рекомендуется производить от общих трансформаторов при условии соблюдения требований п. 6.1.19.

Аварийное освещение

6.1.21. Аварийное освещение разделяется на освещение безопасности и эвакуационное.

Освещение безопасности предназначено для продолжения работы при аварийном отключении рабочего освещения.

Светильники рабочего освещения и светильники освещения безопасности в производственных и общественных зданиях и на открытых пространствах должны питаться от независимых источников.

6.1.22. Светильники и световые указатели эвакуационного освещения в производственных зданиях с естественным освещением и в общественных и жилых зданиях должны быть присоединены к сети, не связанной с сетью рабочего освещения, начиная от щита подстанции (распределительного пункта освещения) или, при наличии только одного ввода, начиная от вводного распределительного устройства.

6.1.23. Питание светильников и световых указателей эвакуационного освещения в производственных зданиях без естественного освещения следует выполнять аналогично питанию светильников освещения безопасности (п. 6.1.21).

В производственных зданиях без естественного света в помещениях, где может одновременно находиться 20 человек и более, независимо от наличия освещения безопасности должно предусматриваться эвакуационное освещение по основным проходам и световые указатели “выход”, автоматически переключаемые при прекращении их питания на третий независимый внешний или местный источник (аккумуляторная батарея, дизель-генераторная установка и т.п.), не используемый в нормальном режиме для питания рабочего освещения, освещения безопасности и эвакуационного освещения, или светильники эвакуационного освещения и указатели “выход” должны иметь автономный источник питания.

6.1.24. При отнесении всех или части светильников освещения безопасности и эвакуационного освещения к особой группе первой категории по надежности электроснабжения необходимо предусматривать дополнительное питание этих светильников от третьего независимого источника.

6.1.25. Светильники эвакуационного освещения, световые указатели эвакуационных и (или) запасных выходов в зданиях любого назначения, снабженные автономными источниками питания, в нормальном режиме могут питаться от сетей любого вида освещения, не отключаемых во время функционирования зданий.

6.1.26. Для помещений, в которых постоянно находятся люди или которые предназначены для постоянного прохода персонала или посторонних лиц и в которых требуется освещение безопасности или эвакуационное освещение, должна быть обеспечена возможность включения указанных видов освещения в течение всего времени, когда включено рабочее освещение, или освещение безопасности и эвакуационное освещение должны включаться автоматически при аварийном погасании рабочего освещения.

6.1.27. Применение для рабочего освещения, освещения безопасности и (или) эвакуационного освещения общих групповых щитков, а также установка аппаратов управления рабочим освещением, освещением безопасности и (или) эвакуационным освещением, за исключением аппаратов вспомогательных цепей (например сигнальных ламп, ключей управления), в общих шкафах не допускается.

Разрешается питание освещения безопасности и эвакуационного освещения от общих щитков.

6.1.28. Использование сетей, питающих силовые электроприемники, для питания освещения безопасности и эвакуационного освещения в производственных зданиях без естественного освещения не допускается.

6.1.29. Допускается применение ручных осветительных приборов с аккумуляторами или сухими элементами для освещения безопасности и эвакуационного освещения взамен стационарных светильников (здания и помещения без постоянного пребывания людей, здания площадью застройки не более 250м 2 ).

Выполнение и защита осветительных сетей

6.1.30. Осветительные сети должны быть выполнены в соответствии с требованиями гл. 2.1-2.4, а также дополнительными требованиями, приведенными в гл. 6.2-6.4 и 7.1-7.4.

6.1.31. Сечение нулевых рабочих проводников трехфазных питающих и групповых линий с лампами люминесцентными, ДРЛ, ДРИ, ДРИЗ, ДНаТ при одновременном отключении всех фазных проводов линии должно выбираться:

1. Для участков сети, по которым протекает ток от ламп с компенсированными пускорегулирующими аппаратами, равным фазному независимо от сечения.

2. Для участков сети, по которым протекает ток от ламп с некомпенсированными пускорегулирующими аппаратами, равным фазному при сечении фазных проводников менее или равном 16 мм 2 для медных и 25 мм 2 для алюминиевых проводов и не менее 50% сечения фазных проводников при больших сечениях, но не менее 16 мм 2 для медных и 25 мм 2 для алюминиевых проводов.

6.1.32. При защите трехфазных осветительных питающих и групповых линий предохранителями или однополюсными автоматическими выключателями при любых источниках света сечение нулевых рабочих проводников следует принимать равным сечению фазных проводников.

6.1.33. Защита осветительных сетей должна выполняться в соответствии с требованиями гл. 3.1 с дополнениями, приведенными в пп. 6.1.34-6.1.35, 6.2.9-6.2.11, 6.3.40, 6.4.10.

При выборе токов аппаратов защиты должны учитываться пусковые токи при включении мощных ламп накаливания и ламп ДРЛ, ДРИ, ДРИЗ, ДНаТ.

Аппараты защиты следует располагать по возможности группами в доступных для обслуживания местах. Рассредоточенная установка аппаратов защиты допускается при питании освещения от шинопроводов (п. 6.2.7).

6.1.34. Аппараты защиты независимо от требований пп. 6.2.7 и 6.2.8 в питающей осветительной сети следует устанавливать на вводах в здания.

6.1.35. Трансформаторы, используемые для питания светильников до 50 В, должны быть защищены со стороны высшего напряжения. Защита должна быть предусмотрена также на отходящих линиях низшего напряжения.

Если трансформаторы питаются отдельными группами от щитков и аппарат защиты на щитке обслуживает не более трех трансформаторов, то установка дополнительных аппаратов защиты со стороны высшего напряжения каждого трансформатора необязательна.

6.1.36. Установка предохранителей, автоматических и неавтоматических однополюсных выключателей в нулевых рабочих проводах в сетях с заземленной нейтралью запрещается.

Защитные меры безопасности

6.1.37. Защитное заземление установок электрического освещения должно выполняться согласно требованиям гл. 1.7, а также дополнительным требованиям, приведенным в пп. 6.1.38-6.1.47, 6.4.9 и гл. 7.1-7.4.

6.1.38. Защитное заземление металлических корпусов светильников общего освещения с лампами накаливания и с лампами люминесцентными, ДРЛ, ДРИ, ДРИЗ, натриевыми со встроенными внутрь светильника пускорегулирующими аппаратами следует осуществлять:

1. В сетях с заземленной нейтралью — присоединением к заземляющему винту корпуса светильника РЕ проводника.

Заземление корпуса светильника ответвлением от нулевого рабочего провода внутри светильника запрещается.

2. В сетях с изолированной нейтралью, а также в сетях, переключаемых на питание от аккумуляторной батареи, — присоединением к заземляющему винту корпуса светильника защитного проводника.

Каждый электрик должен знать:  Связь взаимной индуктивности и векторного потенциала

При вводе в светильник проводов, не имеющих механической защиты, защитный проводник должен быть гибким.

6.1.39. Защитное заземление корпусов светильников общего освещения с лампами ДРЛ, ДРИ, ДРИЗ, ДНаТ и люминесцентными с вынесенными пускорегулирующими аппаратами следует осуществлять при помощи перемычки между заземляющим винтом заземленного пускорегулирующего аппарата и заземляющим винтом светильника.

6.1.40. Металлические отражатели светильников с корпусами из изолирующих материалов заземлять не требуется.

6.1.41. Защитное заземление металлических корпусов светильников местного освещения на напряжение выше 50 В должно удовлетворять следующим требованиям:

1. Если защитные проводники присоединяются не к корпусу светильника, а к металлической конструкции, на которой светильник установлен, то между этой конструкцией, кронштейном и корпусом светильника должно быть надежное электрическое соединение.

2. Если между кронштейном и корпусом светильника нет надежного электрического соединения, то оно должно быть осуществлено при помощи специально предназначенного для этой цели защитного проводника.

6.1.42. Защитное заземление металлических корпусов светильников общего освещения с любыми источниками света в помещениях как без повышенной опасности, так и с повышенной опасностью и особо опасных, во вновь строящихся и реконструируемых жилых и общественных зданиях, а также в административно-конторских, бытовых, проектно-конструкторских, лабораторных и т.п. помещениях промышленных предприятий (приближающихся по своему характеру к помещениям общественных зданий) следует осуществлять в соответствии с требованиями гл. 7.1.

6.1.43. В помещениях без повышенной опасности производственных, жилых и общественных зданий при напряжении выше 50 В должны применяться переносные светильники класса I по ГОСТ 12.2.007.0-75 “ССБТ. Изделия электротехнические. Общие требования безопасности”.

Групповые линии, питающие штепсельные розетки, должны выполняться в соответствии с требованиями гл. 7.1, при этом в сетях с изолированной нейтралью защитный проводник следует подключать к заземлителю.

6.1.44. Защитные проводники в сетях с заземленной нейтралью в групповых линиях, питающих светильники общего освещения и штепсельные розетки (пп. 6.1.42, 6.1.43), нулевой рабочий и нулевой защитный проводники не допускается подключать под общий контактный зажим.

6.1.45. При выполнении защитного заземления осветительных приборов наружного освещения должно выполняться также подключение железобетонных и металлических опор, а также тросов к заземлителю в сетях с изолированной нейтралью и к РЕ (PEN) проводнику в сетях с заземленной нейтралью.

6.1.46. При установке осветительных приборов наружного освещения на железобетонных и металлических опорах электрифицированного городского транспорта в сетях с изолированной нейтралью осветительные приборы и опоры заземлять не допускается, в сетях с заземленной нейтралью осветительные приборы и опоры должны быть подсоединены к PEN проводнику линии.

6.1.47. При питании наружного освещения воздушными линиями должна выполняться защита от атмосферных перенапряжений в соответствии с гл. 2.4.

6.1.48. При выполнении схем питания светильников и штепсельных розеток следует выполнять требования по установке У 30, изложенные в гл. 7.1 и 7.2.

6.1.49. Для установок наружного освещения: освещения фасадов зданий, монументов и т.п., наружной световой рекла-

мы и указателей в сетях TN-S или TN-C-S рекомендуется установка УЗО с током срабатывания до 30 мА, при этом фоновое значение токов утечки должно быть, по крайней мере, в 3 раза меньше уставки срабатывания УЗО по диф-ференци-альному току.

Глава 6.2

ВНУТРЕННЕЕ ОСВЕЩЕНИЕ
Общие требования

6.2.1. Светильники с люминесцентными лампами должны применяться с пускорегулирующими аппаратами, обеспечивающими коэффициент мощности не ниже 0,9 при светильниках на две лампы и более и 0,85 при одноламповых светильниках.

Для ламп типа ДРЛ, ДРИ, ДРИЗ, ДНаТ может применяться как групповая, так и индивидуальная компенсация реактивной мощности. При наличии технико-экономических обоснований допускается применение указанных ламп без устройства компенсации реактивной мощности. При групповой компенсации должны отключаться компенсирующие устройства одновременно с отключением ламп.

6.2.2. Питание светильника местного освещения (без понижающего трансформатора или через понижающий трансформатор) может осуществляться при помощи ответвления от силовой цепи механизма или станка, для которых предназначен светильник.

При этом может не устанавливаться отдельный защитный аппарат в осветительной цепи, если защитный аппарат силовой цепи имеет ток уставки не более 25 А.

Ответвление к светильникам местного освещения при напряжении более 50 В в пределах рабочего места должно выполняться в трубах и коробах из негорючих материалов и других механически прочных конструкциях.

6.2.3. Питание установок оздоровительного ультрафиолетового облучения должно производиться: установок длительного действия — по отдельным групповым линиям от щитков рабочего освещения или самостоятельных групповых щитков;

установок кратковременного действия (фотариев) — по отдельным линиям от электросиловой сети или питающей сети рабочего освещения.

Питающая осветительная сеть

6.2.4. Рабочее освещение рекомендуется питать по самостоятельным линиям от распределительных устройств подстанций, щитов, шкафов, распределительных пунктов, магистральных и распределительных шинопроводов.

6.2.5. Рабочее освещение, освещение безопасности и эвакуационное освещение допускается питать от общих линий с электросиловыми установками или от силовых распределительных пунктов (исключение п. 6.1.28). При этом должны соблюдаться требования к допустимым отклонениям и колебаниям напряжения в осветительной сети в соответствии с ГОСТ 13109-87.

6.2.6. Линии питающей сети рабочего освещения, освещения безопасности и эвакуационного освещения, а также линии, питающие иллюминационные установки и световую рекламу, должны иметь в распределительных устройствах, от которых эти линии отходят, самостоятельные аппараты защиты и управления для каждой линии.

Допускается устанавливать общий аппарат управления для нескольких линий одного вида освещения или установок, отходящих от распределительного устройства.

6.2.7. При использовании шинопроводов в качестве линий питающей осветительной сети вместо групповых щитков могут применяться присоединяемые к шинопроводу отдельные аппараты защиты и управления для питания групп светильников. При этом должен быть обеспечен удобный и безопасный доступ к указанным аппаратам.

6.2.8. В местах присоединения линий питающей осветительной сети к линии питания электросиловых установок или к силовым распределительным пунктам (п. 6.2.5) должны устанавливаться аппараты защиты и управления.

При питании осветительной сети от силовых распределительных пунктов, к которым присоединены непосредственно силовые электроприемники, осветительная сеть должна подключаться к вводным зажимам этих пунктов.

Групповая сеть

6.2.9. Линии групповой сети внутреннего освещения должны быть защищены предохранителями или автоматическими выключателями.

6.2.10. Каждая групповая линия, как правило, должна содержать на фазу не более 20 ламп накаливания, ДРЛ, ДРИ, ДРИЗ, ДНаТ, в это число включаются также штепсельные розетки.

В производственных, общественных и жилых зданиях на однофазные группы освещения лестниц, этажных коридоров, холлов, технических подполий и чердаков допускается присоединять до 60 ламп накаливания каждая мощностью до 60 Вт.

Для групповых линий, питающих световые карнизы, световые потолки и т.п. с лампами накаливания, а также светильники с люминесцентными лампами мощностью до 80 Вт, рекомендуется присоединять до 60 ламп на фазу; для линий, питающих светильники с люминесцентными лампами мощностью до 40 Вт включительно, может присоединяться до 75 ламп на фазу и мощностью до 20 Вт включительно — до 100 ламп на фазу.

Для групповых линий, питающих многоламповые люстры, число ламп любого типа на фазу не ограничивается.

В групповых линиях, питающих лампы мощностью 10 кВт и больше, каждая лампа должна иметь самостоятельный аппарат защиты.

6.2.11. В начале каждой групповой линии, в том числе питаемой от шинопроводов, должны быть установлены аппараты защиты на всех фазных проводниках. Установка аппаратов защиты в нулевых защитных проводниках запрещается.

6.2.12. Рабочие нулевые проводники групповых линий должны прокладываться при применении металлических труб совместно с фазными проводниками в одной трубе, а при прокладке кабелями или многожильными проводами должны быть заключены в общую оболочку с фазными проводами.

6.2.13. Совместная прокладка проводов и кабелей групповых линий рабочего освещения с групповыми линиями освещения безопасности и эвакуационного освещения не рекомендуется.

Допускается их совместная прокладка на одном монтажном профиле, в одном коробе, лотке при условии, что приняты специальные меры, исключающие возможность повреждения проводов освещения безопасности и эвакуационного при неисправности проводов рабочего освещения, в корпусах и штангах светильников.

6.2.14. Светильники рабочего освещения, освещения безопасности или эвакуационного освещения допускается питать от разных фаз одного трехфазного шинопровода при условии прокладки к шинопроводу самостоятельных линий для рабочего освещения и освещения безопасности или эвакуационного освещения.

6.2.15. Светильники, устанавливаемые в подвесные потолки из горючих материалов, должны иметь между местами их примыкания к конструкции потолка прокладки из негорючих теплостойких материалов в соответствии с требованиями НПБ 249-97.

Глава 6.3

НАРУЖНОЕ ОСВЕЩЕНИЕ
Источники света, установка осветительных приборов и опор

6.3.1. Для наружного освещения могут применяться любые источники света (см. п. 6.1.11).


Для охранного освещения территорий предприятий применение разрядных ламп не допускается в случаях, когда охранное освещение нормально не включено и включается автоматически от действия охранной сигнализации.

6.3.2. Осветительные приборы наружного освещения (светильники, прожекторы) могут устанавливаться на специально предназначенных для такого освещения опорах, а также на опорах воздушных линий до 1 кВ, опорах контактной сети электрифицированного городского транспорта всех видов токов напряжением до 600 В, стенах и перекрытиях зданий и сооружений, мачтах (в том числе мачтах отдельно стоящих молниеотводов), технологических эстакадах, площадках технологических установок и дымовых труб, парапетах и ограждениях мостов и транспортных эстакад, на металлических, железобетонных и других конструкциях зданий и сооружений независимо от отметки их расположения, могут быть подвешены на тросах, укрепленных на стенах зданий и опорах, а также установлены на уровне земли и ниже.

6.3.3. Установка светильников наружного освещения на опорах ВЛ до 1 кВ должна выполняться:

1. При обслуживании светильников с телескопической вышки с изолирующим звеном, как правило, выше проводов ВЛ или на уровне нижних проводов ВЛ при размещении светильников и проводов ВЛ с разных сторон опоры. Расстояние по горизонтали от светильника до ближайшего провода ВЛ должно быть не менее 0,6 м.

2. При обслуживании светильников иными способами — ниже проводов ВЛ. Расстояние по вертикали от светильника до провода ВЛ (в свету) должно быть не менее 0,2 м, расстояние по горизонтали от светильника до опоры (в свету) должно быть не более 0,4 м.

6.3.4. При подвеске светильников на тросах должны приниматься меры по исключению раскачивания светильников от воздействия ветра.

6.3.5. Над проезжей частью улиц, дорог и площадей светильники должны устанавливаться на высоте не менее 6,5 м.

При установке светильников над контактной сетью трамвая высота установки светильников должна быть не менее 8 м до головки рельса. При расположении светильников над контактной сетью троллейбуса — не менее 9 м от уровня проезжей части. Расстояние по вертикали от проводов линий уличного освещения до поперечин контактной сети или до подвешенных к поперечинам иллюминационных гирлянд должно быть не менее 0,5 м.

6.3.6. Над бульварами и пешеходными дорогами светильники должны устанавливаться на высоте не менее 3 м.

Наименьшая высота установки осветительных приборов для освещения газонов и фасадов зданий и сооружений и для декоративного освещения не ограничивается при условии соблюдения требований п. 6.1.15.

Установка осветительных приборов в приямках ниже уровня земли разрешается при наличии дренажных или других аналогичных устройств по удалению воды из приямков.

6.3.7. Для освещения транспортных развязок, городских и других площадей светильники могут устанавливаться на опорах высотой 20 м и более при условии обеспечения безопасности их обслуживания (например опускание светильников, устройство площадок, использование вышек и т.п.).

Допускается размещать светильники в парапетах и ограждениях мостов и эстакад из негорючих материалов на высоте 0,9-1,3 м над проезжей частью при условии защиты от прикосновений к токоведущим частям светильников.

6.3.8. Опоры установок освещения площадей, улиц, дорог должны располагаться на расстоянии не менее 1 м от лицевой грани бортового камня до внешней поверхности цоколя опоры на магистральных улицах и дорогах с интенсивным транспортным движением и не менее 0,6 м на других улицах, дорогах и площадях. Это расстояние разрешается уменьшать до 0,3 м при условии отсутствия маршрутов городского транспорта и грузовых машин. При отсутствии бортового камня расстояние от кромки проезжей части до внешней поверхности цоколя опоры должно быть не менее 1,75 м.

На территориях промышленных предприятий расстояние от опоры наружного освещения до проезжей части рекомендуется принимать не менее 1 м. Допускается уменьшение этого расстояния до 0,6 м.

6.3.9. Опоры освещения улиц и дорог, имеющих разделительные полосы шириной 4 м и более, могут устанавливаться по центру разделительных полос.

6.3.10. На улицах и дорогах, имеющих кюветы, допускается устанавливать опоры за кюветом, если расстояние от опоры до ближайшей границы проезжей части не превышает 4 м.

Опора не должна находиться между пожарным гидрантом и проезжей частью.

6.3.11. Опоры на пересечениях и примыканиях улиц и дорог рекомендуется устанавливать на расстоянии не менее 1,5 м от начала закругления тротуаров, не нарушая линии установки опор.

6.3.12. Опоры наружного освещения на инженерных сооружениях (мостах, путепроводах, транспортных эстакадах и т.п.) следует устанавливать в створе ограждений в стальных станинах или на фланцах, прикрепляемых к несущим элементам инженерного сооружения.

6.3.13. Опоры для светильников освещения аллей и пешеходных дорог должны располагаться вне пешеходной части.

6.3.14. Светильники на улицах и дорогах с рядовой посадкой деревьев должны устанавливаться вне крон деревьев на

удлиненных кронштейнах, обращенных в сторону проезжей части улицы, или следует применять тросовую подвеску светильников.

Питание установок наружного освещения

6.3.15. Питание установок наружного освещения может выполняться непосредственно от трансформаторных подстанций, распределительных пунктов и вводно-распределительных устройств (ВРУ).

6.3.16. Для питания светильников уличного освещения, а также наружного освещения промышленных предприятий должны прокладываться, как правило, самостоятельные линии.

Питание светильников допускается выполнять от дополнительно прокладываемых для этого фазных и общего нулевого провода воздушной электрической сети города, населенного пункта, промышленного предприятия.

6.3.17. Осветительные установки городских транспортных и пешеходных тоннелей, осветительные установки улиц, дорог и площадей категории А по надежности электроснабжения относятся ко второй категории, остальные наружные осветительные установки — к третьей категории.

6.3.18. Питание светильников освещения территорий микрорайонов следует осуществлять непосредственно от пунктов питания наружного освещения или от проходящих вблизи сетей уличного освещения (исключая сети улиц категории А) в зависимости от принятой в населенном пункте системы эксплуатации. Светильники наружного освещения территорий детских яслей-садов, общеобразовательных школ, школ-интернатов, больниц, госпиталей, санаториев, пансионатов, домов отдыха, пионерлагерей могут питаться как от вводных устройств этих зданий или трансформаторных подстанций, так и от ближайших распределительных сетей наружного освещения при условии соблюдения требований п. 6.5.27.

6.3.19. Освещение открытых технологических установок, открытых площадок производства работ, открытых эстакад, складов и других открытых объектов при производственных зданиях может питаться от сетей внутреннего освещения зданий, к которым эти объекты относятся.

6.3.20. Охранное освещение рекомендуется питать, как правило, по самостоятельным линиям.

6.3.21. Питание осветительных приборов подъездов к противопожарным водоисточникам (гидрантам, водоемам и др.) следует осуществлять от фаз ночного режима сети наружного освещения.

6.3.22. Светильники, установленные у входов в здания, рекомендуется присоединять к групповой сети внутреннего освещения и в первую очередь к сети освещения безопасности или эвакуационного освещения, которые включаются одновременно с рабочим освещением.

6.3.23. В установках наружного освещения светильники с разрядными источниками должны иметь индивидуальную компенсацию реактивной мощности. Коэффициент мощности должен быть не ниже 0,85.

6.3.24. При применении прожекторов с разрядными источниками света допускается групповая компенсация реактивной мощности.

При групповой компенсации необходимо обеспечивать отключение компенсирующих устройств одновременно с отключением компенсируемых ими установок.

Выполнение и защита сетей наружного освещения

6.3.25. Сети наружного освещения рекомендуется выполнять кабельными или воздушными с использованием самонесущих изолированных проводов. В обоснованных случаях для воздушных распределительных сетей освещения улиц, дорог, площадей, территорий микрорайонов и населенных пунктов допускается использование неизолированных проводов.

6.3.26. По опорам контактной сети электрифицированного транспорта напряжением до 600 В постоянного тока разрешается прокладка кабельных линий для питания установленных на опорах осветительных приборов наружного освещения, допускается использование самонесущих изолированных проводов.

6.3.27. Воздушные линии наружного освещения должны выполняться согласно требованиям гл. 2.4.

Пересечения линий с улицами и дорогами при пролетах не более 40 м допускается выполнять без применения анкерных опор и двойного крепления проводов.

6.3.28. Пулевые проводники сети общего пользования, выполненные неизолированными проводами, при использовании их для наружного освещения следует располагать ниже фазных проводов сети общего пользования и фазных проводов сети наружного освещения.

При использовании существующих опор, принадлежащих электросетевым организациям, не занимающимся эксплуатацией наружного освещения, допускается располагать фазные провода сети наружного освещения ниже нулевых проводников сети общего пользования.

6.3.29. В местах перехода кабельных линий к воздушным рекомендуется предусматривать отключающие устройства, установленные на опорах на высоте не менее 2,5 м. Установка отключающих устройств не требуется в местах кабельных выходов из пунктов питания наружного освещения на опоры, а также переходов дорог и обходов препятствий, выполняемых кабелем.

6.3.30. В целях резервирования распределительных кабельных линий или линий, выполненных самонесущими изолированными проводами, между крайними светильниками соседних участков для магистральных улиц городов рекомендуется предусматривать нормально отключаемые перемычки (резервные кабельные линии).

При использовании указанных перемычек, в отступление от п. 6.1.19, снижение напряжения у осветительных приборов допускается увеличивать до 10% номинального.

6.3.31. Воздушные линии наружного освещения должны выполняться без учета резервирования, а их провода могут быть разного сечения по длине линии.

6.3.32. Ответвления к светильникам от кабельных линий наружного освещения рекомендуется выполнять, как правило, без разрезания жил кабеля.

При прокладке указанных кабельных линий на инженерных сооружениях следует предусматривать меры для удобной разделки ответвлений от кабеля к опоре и возможность замены кабеля участками.

6.3.33. Ввод кабеля в опоры должен ограничиваться цоколем опоры. Цоколи должны иметь размеры, достаточные для размещения в них кабельных разделок и предохранителей или автоматических выключателей, устанавливаемых на ответвлениях к осветительным приборам, и дверцу с замком для эксплуатационного обслуживания.

Допускается использовать специальные ящики ввода, устанавливаемые на опорах.

6.3.34. Электропроводка внутри опор наружного освещения должна выполняться изолированными проводами в защитной оболочке или кабелями. Внутри совмещенных опор наружного освещения и контактных сетей электрифицированного городского транспорта должны применяться кабели с изоляцией на напряжение не менее 660 В.

6.3.35. Линии, питающие светильники, подвешенные на тросах, должны выполняться кабелями, проложенными по тросу, самонесущими изолированными проводами или неизолированными проводами, проложенными на изоляторах при условии соблюдения требований разд. 2.

6.3.36. Тросы для подвески светильников и питающих линий сети допускается крепить к конструкциям зданий. При этом тросы должны иметь амортизаторы.

6.3.37. В сетях наружного освещения, питающих осветительные приборы с разрядными лампами, в однофазных цепях сечение нулевых рабочих проводников должно быть равным фазному.

В трехфазных сетях при одновременном отключении всех фазных проводов линии сечение нулевых рабочих проводников должно выбираться:

1. Для участков сети, по которым протекает ток от ламп с компенсированными пускорегулирующими аппаратами, равным фазному независимо от сечения.

2. Для участков сети, по которым протекает ток от ламп с некомпенсированными пускорегулирующими аппаратами, равным фазному при сечении фазных проводников менее или равным 16 мм 2 для медных и 25 мм 2 для алюминиевых проводов и не менее 50% сечения фазных проводников при больших сечениях, но не менее 16 мм 2 для медных и 25 мм 2 для алюминиевых проводов.

6.3.38. Прокладку линий, питающих прожекторы, светильники и другое электрооборудование, устанавливаемое на конструкциях с молниеотводами открытых распределительных устройств напряжением выше 1 кВ, следует выполнять согласно требованиям гл. 4.2.

6.3.39. Коэффициент спроса при расчете сети наружного освещения следует принимать равным 1,0.

6.3.40. На линиях наружного освещения, имеющих более 20 светильников на фазу, ответвления к каждому светильнику должны защищаться индивидуальными предохранителями или автоматическими выключателями.

Глава 6.4

СВЕТОВАЯ РЕКЛАМА, ЗНАКИ И ИЛЛЮМИНАЦИЯ

6.4.1. Для питания газосветных трубок должны применяться сухие трансформаторы в металлическом кожухе, имеющие вторичное напряжение не выше 15 кВ. Трансформаторы должны длительно выдерживать работу при коротком замыкании в цепи вторичной обмотки.

Открытые токоведущие части открыто установленных трансформаторов должны быть удалены от горючих материалов и конструкций не менее чем на 50 мм.

6.4.2. Трансформаторы для питания газосветных трубок должны быть установлены по возможности в непосредственной близости от питаемых ими трубок в местах, недоступных для посторонних лиц, или в металлических ящиках, сконструированных таким образом, чтобы при открытии ящика трансформатор отключался со стороны первичного напряжения. Рекомендуется использование указанных ящиков в качестве конструктивной части самих трансформаторов.

6.4.3. В общем ящике с трансформатором допускается установка блокировочных и компенсирующих устройств, а также аппаратов первичного напряжения при условии надежного автоматического отключения трансформатора от сети при помощи блокировочного устройства, действующего при открывании ящика.

6.4.4. Магазинные и подобные им витрины, в которых смонтированы части высшего напряжения газосветных установок, должны быть оборудованы блокировкой, действующей только на отключение установки со стороны первичного напряжения при открывании витрин, т.е. подача напряжения на установку должна осуществляться персоналом вручную при закрытой витрине.

6.4.5. Все части газосветной установки, расположенные вне витрин, снабженных блокировкой, должны находиться на высоте не менее 3 м над уровнем земли и не менее 0,5 м над поверхностью площадок обслуживания, крыш и других строительных конструкций.

6.4.6. Доступные для посторонних лиц и находящиеся под напряжением части газосветной установки должны быть ограждены в соответствии с гл. 4.2 и снабжены предупредительными плакатами.

6.4.7. Открытые токоведущие части газосветных трубок должны отстоять от металлических конструкций или частей здания на расстоянии не менее 20 мм, а изолированные части — не менее 10 мм.

6.4.8. Расстояние между открытыми токоведущими частями газосветных трубок, не находящимися под одинаковым потенциалом, должно быть не менее 50 мм.

6.4.9. Открытые проводящие части газосветной установки на стороне высшего напряжения, а также один из выводов или средняя точка вторичной обмотки трансформаторов, питающих газосветные трубки, должны быть заземлены.

6.4.10. Трансформаторы или группа трансформаторов, питающие газосветные трубки, должны отключаться со стороны первичного напряжения во всех полюсах аппаратом с видимым разрывом, а также защищаться аппаратом, рассчитанным на номинальный ток трансформатора.

Для отключения трансформаторов допускается применять пакетные выключатели с фиксированным положением рукоятки (головки).

6.4.11. Электроды газосветных трубок в местах присоединения проводов не должны испытывать натяжения.

6.4.12. Сеть на стороне высшего напряжения установок рекламного освещения должна выполняться изолированными проводами, имеющими испытательное напряжение не менее 15 кВ. В местах, доступных для механического воздействия или прикосновения, эти провода следует прокладывать в стальных трубах, коробах и других механически прочных негорючих конструкциях.

Для перемычек между отдельными электродами, имеющих длину не более 0,4 м, допускается применение голых проводов при условии соблюдения расстояний, приведенных в п. 6.4.7.

6.4.13. Рекламные установки на улицах, дорогах и площадях, совпадающие по своей форме и цвету с формой и цветом сигналов светофоров, следует размещать на высоте не менее 8 м от поверхности дороги.

6.4.14. В пешеходных тоннелях длиной более 80 м или имеющих ответвления световые указатели направления движения должны размещаться на стенах или колоннах на высоте не менее 1,8 м от пола.

6.4.15. Световые указатели, светящиеся дорожные знаки, светильники подсвета дорожных знаков и светильники для освещения лестничных сходов и зон выходов пешеходных тоннелей должны быть присоединены к фазам ночного режима наружного освещения (исключение п. 6.4.17).

Информационные световые табло и указатели направления движения пешеходов в пешеходных тоннелях должны быть включены круглосуточно.

6.4.16. Питание световых указателей расположения пожарных водоисточников (гидрантов, водоемов и др.) следует осуществлять от фаз ночного режима сети наружного освещения или от сети ближайших зданий.

6.4.17. Присоединение к сетям освещения улиц, дорог и площадей номерных знаков зданий и витрин не допускается (см. п. 7.1.20).

6.4.18. Установки световой рекламы, архитектурного освещения зданий следует, как правило, питать по самостоятельным линиям — распределительным или от сети зданий. Допускаемая мощность указанных установок не более 2 кВт на фазу при наличии резерва мощности сети.

Для линии должна предусматриваться защита от сверхтока и токов утечки (У 30).

Глава 6.5

УПРАВЛЕНИЕ ОСВЕЩЕНИЕМ
Общие требования

6.5.1. Управление наружным освещением должно выполняться независимым от управления внутренним освещением.

6.5.2. В городах и населенных пунктах, на промышленных предприятиях должно предусматриваться централизованное управление наружным освещением (см. также пп. 6.5.24, 6.5.27, 6.5.28).

Централизованное управление рекомендуется также для общего освещения больших производственных помещений (площадью несколько тысяч квадратных метров) и некоторых помещений общественных зданий.

Способы и технические средства для систем централизованного управления наружным и внутренним освещением должны определяться технико-экономическими обоснованиями.

6.5.3. При использовании в системах централизованного управления наружным и внутренним освещением средств телемеханики должны соблюдаться требования гл. 3.3.

6.5.4. Централизованное управление освещением рекомендуется производить:

— наружным освещением промышленных предприятий — из пункта управления электроснабжением предприятия, а при его отсутствии — с места, где находится обслуживающий персонал;

— наружным освещением городов и населенных пунктов — из пункта управления наружным освещением;

— внутренним освещением — из помещения, в котором находится обслуживающий персонал.

6.5.5. Питание устройств централизованного управления наружным и внутренним освещением рекомендуется предусматривать от двух независимых источников.

Питание децентрализованных устройств управления допускается выполнять от линий, питающих осветительные установки.

6.5.6. В системах централизованного управления наружным и внутренним освещением должно предусматриваться автоматическое включение освещения в случаях аварийного отключения питания основной цепи или цепи управления и последующего восстановления питания.

6.5.7. При автоматическом управлении наружным и внутренним освещением, например, в зависимости от освещенности, создаваемой естественным светом, должна предусматриваться возможность ручного управления освещением без использования средств автоматики.

6.5.8. Для управления внутренним и наружным освещением могут использоваться аппараты управления, установленные в распределительных устройствах подстанций, распределительных пунктах питания, вводных распределительных устройствах, групповых щитках.

6.5.9. При централизованном управлении внутренним и наружным освещением должен предусматриваться контроль положения коммутационных аппаратов (включено, отключено), установленных в цепи питания освещения.

В каскадных схемах централизованного управления наружным освещением рекомендуется предусматривать контроль включенного (отключенного) состояния коммутационных аппаратов, установленных в цепи питания освещения .

В каскадных контролируемых схемах централизованного управления наружным освещением (пп. 6.1.8, 6.5.29) допускается не более двух неконтролируемых пунктов питания.

Управление внутренним освещением

6.5.10. При питании освещения зданий от подстанций и сетей, расположенных вне этих зданий, на каждом вводном устройстве в здание должен устанавливаться аппарат управления.

6.5.11. При питании от одной линии четырех и более групповых щитков с числом групп 6 и более на вводе в каждый щиток рекомендуется устанавливать аппарат управления.

6.5.12. В помещениях, имеющих зоны с разными условиями естественного освещения и различными режимами работы, должно предусматриваться раздельное управление освещением зон.

6.5.13. Выключатели светильников, устанавливаемых в помещениях с неблагоприятными условиями среды, рекомендуется выносить в смежные помещения с лучшими условиями среды.

Выключатели светильников душевых и раздевалок при них, горячих цехов столовых должны устанавливаться вне этих помещений.

6.5.14. В протяженных помещениях с несколькими входами, посещаемых обслуживающим персоналом (например кабельные, теплофикационные, водопроводные тоннели), рекомендуется предусматривать управление освещением от каждого входа или части входов.

6.5.15. В помещениях с четырьмя и более светильниками рабочего освещения, не имеющих освещения безопасности и эвакуационного освещения, светильники рекомендуется распределять не менее чем на две самостоятельно управляемые группы.

6.5.16. Управление освещением безопасности и эвакуационным освещением можно производить: непосредственно из помещения; с групповых щитков; с распределительных пунктов; с вводных распределительных устройств; с распределительных устройств подстанций; централизованно из пунктов управления освещением с использованием системы централизованного управления, при этом аппараты управления должны быть доступны только обслуживающему персоналу.

6.5.17. Управление установками искусственного ультрафиолетового облучения длительного действия должно предусматриваться независимым от управления общим освещением помещений.

6.5.18. Светильники местного освещения должны управляться индивидуальными выключателями, являющимися конструктивной частью светильника или располагаемыми в стационарной части электропроводки. При напряжении до 50 В для управления светильниками допускается использовать штепсельные розетки.

Управление наружным освещением

6.5.19. Система управления наружным освещением должна обеспечивать его отключение в течение не более 3 мин.

Управление наружным освещением рекомендуется осуществлять из ограниченного числа мест.

6.5.20. Для небольших промышленных предприятий и населенных пунктов допускается предусматривать управление наружным освещением коммутационными аппаратами, установленными на линиях питания освещения, при условии доступа обслуживающего персонала к этим аппаратам.

6.5.21. Централизованное управление наружным освещением городов и населенных пунктов рекомендуется выполнять:

— телемеханическим — при количестве жителей более 50 тыс.;

— телемеханическим или дистанционным — при количестве жителей от 20 до 50 тыс.;

— дистанционным — при количестве жителей до 20 тыс.

6.5.22. При централизованном управлении наружным освещением промышленных предприятий должна обеспечиваться возможность местного управления освещением.

6.5.23. Управление освещением открытых технологических установок, открытых складов и других открытых объектов при производственных зданиях, освещение которых питается от сетей внутреннего освещения, рекомендуется производить из этих зданий или централизованно.

6.5.24. Управление наружным освещением города должно осуществляться от одного центрального диспетчерского пункта. В крупнейших городах, территории которых разобщены водными, лесными или естественными преградами рельефа местности, могут предусматриваться районные диспетчерские пункты.

Между центральным и районным диспетчерскими пунктами необходима прямая телефонная связь.

6.5.25. Для снижения освещения улиц и площадей городов в ночное время необходимо предусмотреть возможность отключения части светильников. При этом не допускается отключение двух смежных светильников.

6.5.26. Для пешеходных и транспортных тоннелей должно предусматриваться раздельное управление светильниками дневного, вечернего и ночного режимов работы тоннелей. Для пешеходных тоннелей, кроме того, необходимо обеспечить возможность местного управления.

6.5.27. Управление освещением территорий школ-интернатов, гостиниц, больниц, госпиталей, санаториев, пансионатов, домов отдыха, парков, садов, стадионов и выставок и т.п. рекомендуется осуществлять от системы управления наружным освещением населенного пункта. При этом должна быть обеспечена возможность местного управления.

При питании освещения указанных объектов от сетей внутреннего освещения зданий управление наружным освещением может производиться из этих зданий.

6.5.28. Управление световым ограждением высотных сооружений (мачты, дымовые трубы и т.п.) рекомендуется предусматривать из объектов, к которым эти сооружения относятся.

6.5.29. Централизованное управление сетями наружного освещения городов, населенных пунктов и промышленных предприятий должно осуществляться путем использования коммутационных аппаратов, устанавливаемых в пунктах питания наружного освещения.

Управление коммутационными аппаратами в сетях наружного освещения городов и населенных пунктов рекомендуется производить, как правило, путем каскадного (последовательного) их включения.

В воздушно-кабельных сетях допускается включение в один каскад до 10 пунктов питания, а в кабельных — до 15 пунктов питания сети уличного освещения.

Глава 6.6

ОСВЕТИТЕЛЬНЫЕ ПРИБОРЫ И ЭЛЕКТРОУСТАНОВОЧНЫЕ УСТРОЙСТВА
Осветительные приборы

6.6.1. Осветительные приборы должны устанавливаться так, чтобы они были доступны для их монтажа и безопасного обслуживания с использованием при необходимости инвентарных технических средств.

В производственных помещениях, оборудованных мостовыми кранами, участвующими в непрерывном производственном процессе, а также в бескрановых пролетах, в которых доступ к светильникам с помощью напольных и других передвижных средств невозможен или затруднен, установка светильников и другого оборудования и прокладка электрических сетей могут производиться на специальных стационарных мостиках, выполненных из негорючих материалов. Ширина мостиков должна быть не менее 0,6 м, они должны иметь ограждения высотой не менее 1 м.

В общественных зданиях допускается сооружение таких мостиков при отсутствии возможности использования других средств и способов доступа к светильникам.

6.6.2. Светильники, обслуживаемые со стремянок или приставных лестниц, должны устанавливаться на высоте не более 5 м (до низа светильника) над уровнем пола. При этом расположение светильников над крупным оборудованием, приямками и в других местах, где невозможна установка лестниц или стремянок, не допускается.

6.6.3. Светильники, применяемые в установках, подверженных вибрациям и сотрясениям, должны иметь конструкцию, не допускающую самоотвинчивания ламп или их выпадения. Допускается установка светильников с применением амортизирующих устройств.

6.6.4. Для подвесных светильников общего освещения рекомендуется иметь свесы длиной не более 1,5 м. При большей длине свеса должны приниматься меры по ограничению раскачивания светильников под воздействием потоков воздуха.

6.6.5. Во взрывоопасных зонах все стационарно установленные осветительные приборы должны быть жестко укреплены для исключения раскачивания.

При применении во взрывоопасных зонах щелевых световодов должны соблюдаться требования гл. 7.3.

Для помещений, отнесенных к пожароопасным зонам П-Па, должны быть использованы светильники с негорючими рассеивателями в виде сплошного силикатного стекла.

6.6.6. Для обеспечения возможности обслуживания осветительных приборов допускается их установка на поворотных устройствах при условии их жесткого крепления к этим устройствам и подводки питания гибким кабелем с медными жилами.

6.6.7. Для освещения транспортных тоннелей в городах и на автомобильных дорогах рекомендуется применять светильники со степенью защиты IP65.

6.6.8. Светильники местного освещения должны быть укреплены жестко или так, чтобы после перемещения они устойчиво сохраняли свое положение.

6.6.9. Приспособления для подвешивания светильников должны выдерживать в течение 10 мин без повреждения и остаточных деформаций приложенную к ним нагрузку, равную пятикратной массе светильника, а для сложных многоламповых люстр массой 25 кг и более — нагрузку, равную двукратной массе люстры плюс 80 кг.

6.6.10. У стационарно установленных светильников винтовые токоведущие гильзы патронов для ламп с винтовыми цоколями в сетях с заземленной нейтралью должны быть присоединены к нулевому рабочему проводнику.

Если патрон имеет нетоковедущую винтовую гильзу, нулевой рабочий проводник должен присоединяться к контакту патрона, с которым соединяется винтовой цоколь лампы.

6.6.11. В магазинных витринах допускается применение патронов с лампами накаливания мощностью не более 100 Вт при условии установки их на негорючих основаниях. Допускается установка патронов на горючих, например деревянных, основаниях, обшитых листовой сталью по асбесту.

6.6.12. Провода должны вводиться в осветительную арматуру таким образом, чтобы в месте ввода они не подвергались механическим повреждениям, а контакты патронов были разгружены от механических усилий.

6.6.13. Соединение проводов внутри кронштейнов, подвесов или труб, при помощи которых устанавливается осветительная арматура, не допускается. Соединения проводов следует выполнять в местах, доступных для контроля, например в основаниях кронштейнов, в местах ввода проводов в светильники.

6.6.14. Осветительную арматуру допускается подвешивать на питающих проводах, если они предназначены для этой цели и изготовляются по специальным техническим условиям.

6.6.15. Осветительная арматура общего освещения, имеющая клеммные зажимы для присоединения питающих проводников, должна допускать подсоединение проводов и кабелей как с медными, так и алюминиевыми жилами.

Для осветительной арматуры, не имеющей клеммных зажимов, когда вводимые в арматуру проводники непосредственно присоединяются к контактным зажимам ламповых патронов, должны применяться провода или кабели с медными жилами сечением не менее 0,5 мм 2 внутри зданий и 1 мм 2 вне зданий. При этом в арматуре для ламп накаливания мощностью 100 Вт и выше, ламп ДРЛ, ДРИ, ДРИЗ, ДНаТ должны применяться провода с изоляцией, допускающей температуру их нагрева не менее 100 °С.

Вводимые в свободно подвешиваемые светильники незащищенные провода должны иметь медные жилы.

Провода, прокладываемые внутри осветительной арматуры, должны иметь изоляцию, соответствующую номинальному напряжению сети (см. также п. 6.3.34).

6.6.16. Ответвления от распределительных сетей к светильникам наружного освещения должны выполняться гибкими проводами с медными жилами сечением не менее 1,5 мм 2 для подвесных светильников и не менее 1 мм 2 для консольных. Ответвления от воздушных линий рекомендуется выполнять с использованием специальных переходных ответвительных зажимов.

6.6.17. Для присоединения к сети настольных, переносных и ручных светильников, а также подвешиваемых на проводах светильников местного освещения должны применяться шнуры и провода с гибкими медными жилами сечением не менее 0,75 мм 2 .

6.6.18. Для зарядки стационарных светильников местного освещения должны применяться гибкие провода с медными жилами сечением не менее 1 мм 2 для подвижных конструкций и не менее 0,5 мм 2 для неподвижных.

Изоляция проводов должна соответствовать номинальному напряжению сети.

6.6.19. Зарядка кронштейнов осветительной арматуры местного освещения должна соответствовать следующим требованиям:

1. Провода необходимо заводить внутрь кронштейна или защищать иным путем от механических повреждений;

при напряжении не выше 50 В это требование не является обязательным.

2. При наличии шарниров провода внутри шарнирных частей не должны подвергаться натяжению или перетиранию.

3. Отверстия для проводов в кронштейнах должны иметь диаметр не менее 8 мм с допуском местных сужений до 6 мм; в местах вводов проводов должны применяться изолирующие втулки.

4. В подвижных конструкциях осветительной арматуры должна быть исключена возможность самопроизвольного перемещения или раскачивания арматуры.

6.6.20. Присоединение прожекторов к сети должно выполняться гибким кабелем с медными жилами сечением не менее 1 мм 2 длиной не менее 1,5 м. Защитное заземление прожекторов должно выполняться отдельной жилой.

Электроустановочные устройства

6.6.21. Требования, приведенные в пп. 6.6.22-6.6.31, распространяются на устройства (выключатели, переключатели и штепсельные розетки) для номинального тока до 16 А и напряжения до 250 В, а также на штепсельные соединения с защитным контактом для номинального тока до 63 А и напряжения до 380 В.

6.6.22. Устройства, устанавливаемые скрыто, должны быть заключены в коробки, специальные кожухи или размещаться в отверстиях железобетонных панелей, образованных при изготовлении панелей на заводах стройиндустрии. Применение горючих материалов для изготовления крышек, закрывающих отверстия в панелях, не допускается.

6.6.23. Штепсельные розетки, устанавливаемые в запираемых складских помещениях, содержащих горючие материалы или материалы в горючей упаковке, должны иметь степень защиты в соответствии с требованиями гл. 7.4.

6.6.24. Штепсельные розетки для переносных электроприемников с частями, подлежащими защитному заземлению, должны быть снабжены защитным контактом для присоединения РЕ проводника. При этом конструкция розетки должна исключать возможность использования токоведущих контактов в качестве контактов, предназначенных для защитного заземления.

Соединение между заземляющими контактами вилки и розетки должно устанавливаться до того, как войдут в соприкосновение токоведущие контакты; порядок отключения должен быть обратным. Заземляющие контакты штепсельных розеток и вилок должны быть электрически соединены с их корпусами, если они выполнены из токопроводящих материалов.

6.6.25. Вилки штепсельных соединителей должны быть выполнены таким образом, чтобы их нельзя было включать в розетки сети с более высоким номинальным напряжением, чем номинальное напряжение вилки. Конструкция розеток и вилок не должна допускать включения в розетку только одного полюса двухполюсной вилки, а также одного или двух полюсов трехполюсной вилки.

6.6.26. Конструкция вилок штепсельных соединителей должна исключать натяжение или излом присоединяемых к ним проводов в местах присоединения.

6.6.27. Выключатели и переключатели переносных электроприемников должны, как правило, устанавливаться на самих электроприемниках или в электропроводке, проложенной неподвижно. На подвижных проводах допускается устанавливать выключатели только специальной конструкции, предназначенные для этой цели.

6.6.28. В трех- или двухпроводных однофазных линиях сетей с заземленной нейтралью могут использоваться однополюсные выключатели, которые должны устанавливаться в цепи фазного провода, или двухполюсные, при этом должна исключаться возможность отключения одного нулевого рабочего проводника без отключения фазного.

6.6.29. В трех- или двухпроводных групповых линиях сетей с изолированной нейтралью или без изолированной нейтрали при напряжении выше 50 В, а также в трех- или двухпроводных двухфазных групповых линиях в сети 220/127 В с заземленной нейтралью в помещениях с повышенной опасностью и особо опасных должны устанавливаться двухполюсные выключатели.

6.6.30. Штепсельные розетки должны устанавливаться:

1. В производственных помещениях, как правило, на высоте 0,8-1 м; при подводе проводов сверху допускается установка на высоте до 1,5 м.

2. В административно-конторских, лабораторных, жилых и других помещениях на высоте, удобной для присоединения к ним электрических приборов, в зависимости от назначения помещений и оформления интерьера, но не выше 1 м. Допускается установка штепсельных розеток в (на) специально приспособленных для этого плинтусах, выполненных из негорючих материалов.

3. В школах и детских учреждениях (в помещениях для пребывания детей) на высоте 1,8 м.

6.6.31. Выключатели для светильников общего освещения должны устанавливаться на высоте от 0,8 до 1,7 м от пола, а в школах, детских яслях и садах в помещениях для пребывания детей — на высоте 1,8 м от пола. Допускается установка выключателей под потолком с управлением при помощи шнура.

Применение повышенной частоты для осветительных установок с разрядными лампами

Об актуальных изменениях в КС узнаете, став участником программы, разработанной совместно с ЗАО «Сбербанк-АСТ». Слушателям, успешно освоившим программу выдаются удостоверения установленного образца.

В рамках круглого стола речь пойдет о Всероссийской диспансеризации взрослого населения и контроле за ее проведением; популяризации медосмотров и диспансеризации; всеобщей вакцинации и т.п.

Программа, разработана совместно с ЗАО «Сбербанк-АСТ». Слушателям, успешно освоившим программу, выдаются удостоверения установленного образца.

Постановление Правительства РФ от 10 ноября 2020 г. № 1356 “Об утверждении требований к осветительным устройствам и электрическим лампам, используемым в цепях переменного тока в целях освещения” (не вступило в силу)

В соответствии с Федеральным законом «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации» Правительство Российской Федерации постановляет:

1. Утвердить прилагаемые требования к осветительным устройствам и электрическим лампам, используемым в цепях переменного тока в целях освещения.

2. Признать утратившим силу постановление Правительства Российской Федерации от 20 июля 2011 г. № 602 «Об утверждении требований к осветительным устройствам и электрическим лампам, используемым в цепях переменного тока в целях освещения» (Собрание законодательства Российской Федерации, 2011, № 31, ст. 4760).

Председатель Правительства
Российской Федерации
Д. Медведев

УТВЕРЖДЕНЫ
постановлением Правительства
Российской Федерации
от 10 ноября 2020 г. № 1356

Требования
к осветительным устройствам и электрическим лампам, используемым в цепях переменного тока в целях освещения

I. Основные положения

1. Настоящий документ устанавливает требования к осветительным устройствам и электрическим лампам, используемым в цепях переменного тока в целях освещения.

2. Используемые в настоящем документе понятия означают следующее:

«лампа или светильник общего назначения» — электрическая лампа или осветительные устройства, предназначенные для целей освещения помещений, пространств и расположенных в их пределах сооружений и предметов при пребывании в них людей, не относящиеся к лампам или светильникам специального назначения (не имеющие определенной в технической документации исключительной области применения в производственных процессах и отдельных видах продукции, основное назначение которых не связано с обеспечением освещения, а также при создании специального освещения, связанного с особенностями использования отдельных видов помещений и пространств);

«светильник» — осветительное устройство, содержащее одну или несколько электрических ламп или иных источников света, а также технические элементы, обеспечивающие перераспределение света электрической лампы (электрических ламп или источников света) и (или) преобразование его структуры, крепление электрической лампы (ламп или источников света), ее подключение к системе питания, защиту лампы (ламп или источников света) от механических повреждений и ее изоляцию от окружающей среды;

«нормированное (номинальное) значение» — количественное значение параметра при заданных рабочих условиях. Если не указано иного, все требования соответствуют нормированным (номинальным) значениям.

3. Применение требований к осветительным устройствам и электрическим лампам, используемым в цепях переменного тока в целях освещения, осуществляется в два этапа (этап 1 — с 1 июля 2020 г. по 31 декабря 2020 г., этап 2 — с 1 января 2020 г.):

на этапах 1 и 2 лампы и светильники общего назначения должны соответствовать требованиям к энергетической эффективности и эксплуатационным характеристикам, предусмотренным настоящим документом;

на этапе 2 уровень потерь активной мощности в пуско-регулирующей аппаратуре светильников для общественных и производственных помещений с люминесцентными или индукционными лампами не должен превышать 8 процентов.

II. Требования к энергетической эффективности ламп общего назначения

4. Требования к энергетической эффективности ламп общего назначения устанавливаются в зависимости от вида ламп и их номинальной мощности.

5. К люминесцентным лампам со встроенным пускорегулирующим аппаратом (далее — компактные люминесцентные лампы) и светодиодным лампам устанавливаются следующие требования:

а) минимальные нормированные значения световой отдачи ( ) компактных люминесцентных ламп ненаправленного света с общим индексом цветопередачи менее 90 составляют:

Номинальная мощность лампы, Вт , лм/Вт
этап 1 этап 2
5 50 65
7 50 65
11 55 70
15 55 70
20 60 75
24 65 75
26 65 75
30 65 75
45 70 80;

б) компактные люминесцентные лампы ненаправленного света с общим индексом цветопередачи не менее 90 должны соответствовать минимальным нормированным значениям световой отдачи, указанным в подпункте «а» настоящего пункта, не менее чем на 90 процентов;

в) минимальные нормированные значения световой отдачи ( ) светодиодных ламп ненаправленного света со встроенными устройствами управления составляют:

Номинальная мощность лампы, Вт , лм/Вт
одноцокольные (кроме филаментных) одноцокольные филаментные с коррелированной цветовой температурой линейные двухцокольные
этап 1 этап 2 этап 1 этап 2 этап 1 этап 2
1 80 95 115 136 80 100
2 80 95 110 130 80 100
3 80 95 107 127 80 100
4 80 95 105 124 80 100
5 80 95 103 122 80 100
6 80 95 101 119 80 100
7 80 95 99 117 80 100
8 80 95 97 115 80 100
9 80 95 95 112 80 100
10 80 95 93 110 80 100
11 80 95 93 110 80 100
12 80 95 92 109 80 100
14 80 95 92 108 80 100
15 80 95 92 108 80 100
18 80 95 92 107 80 100
19 80 95 91 106 80 100
20 80 95 90 106 80 100
24 80 95 90 90 80 100
25 80 95 90 90 80 100
30 80 95 90 90 80 100
45 80 95 90 90 80 100;

г) филаментные светодиодные лампы с коррелированной цветовой температурой более 3000 K и до 4000 К включительно должны соответствовать минимальным нормированным значениям световой отдачи, указанным в подпункте «в» настоящего пункта, умноженным на коэффициент 1,05, а филаментные светодиодные лампы с коррелированной цветовой температурой более 4000 К должны соответствовать минимальным нормированным значениям световой отдачи, указанным в подпункте «в» настоящего пункта, умноженным на коэффициент 1,1.

Филаментные светодиодные лампы с опаловыми и молочными колбами должны соответствовать минимальным нормированным значениям световой отдачи, указанным в подпункте «в» настоящего пункта, не менее чем на 90 и 80 процентов соответственно.

Светодиодные лампы без встроенных устройств управления должны соответствовать минимальным нормированным значениям световой отдачи, указанным в подпункте «в» настоящего пункта, умноженным на коэффициент 1,1.

Светодиодные лампы с индексом цветопередачи не менее 90 должны соответствовать минимальным нормированным значениям световой отдачи, указанным в подпункте «в» настоящего пункта, не менее чем на 90 процентов.

Светодиодные лампы с возможностью регулирования светового потока должны соответствовать минимальным нормированным значениям световой отдачи, указанным в подпункте «в» настоящего пункта, не менее чем на 90 процентов;

д) минимальные нормированные значения световой отдачи ( ) компактных люминесцентных ламп направленного света и светодиодных ламп направленного света со встроенными устройствами управления составляют:

Номинальная мощность лампы, Вт , лм/Вт
компактные люминесцентные лампы светодиодные лампы
этап 1 этап 2 этап 1 этап 2
5 50 60 65 80
10 55 65 65 80
15 55 65 65 80
45 60 70 65 80;

е) компактные люминесцентные и светодиодные лампы направленного света со встроенными устройствами управления с общим индексом цветопередачи не менее 90 должны соответствовать минимальным нормированным значениям световой отдачи, указанным в подпункте «д» настоящего пункта, не менее чем на 90 процентов.

Светодиодные лампы направленного света со встроенными устройствами управления с возможностью регулирования светового потока вне зависимости от значений общего индекса цветопередачи должны соответствовать минимальным нормированным значениям световой отдачи, указанным в подпункте «д» настоящего пункта, не менее чем на 90 процентов.

6. Люминесцентные лампы без встроенных пускорегулирующих аппаратов должны соответствовать следующим требованиям:

а) минимальные нормированные значения световой отдачи ( ) для двухцокольных люминесцентных ламп с общим индексом цветопередачи менее 90 при 25°С для этапов 1 и 2 составляют:

Номинальная мощность лампы, Вт , лм/Вт
15 60
18 75
25 75
30 80
36 90
38 90
58 90
70 90;

б) требования, указанные в подпункте «а» настоящего пункта, должны применяться ко всем типам двухцокольных люминесцентных ламп, за исключением люминесцентных ламп T5 (диаметр 16 мм). При этом применяются те минимальные нормированные значения световой отдачи, которые соответствуют значениям номинальной мощности, наиболее близким к мощности соответствующей лампы.

Если номинальная мощность лампы превышает максимальное из указанных в подпункте «а» настоящего пункта значений номинальной мощности, то лампа должна соответствовать требованию к световой отдаче, указанному в подпункте «а» настоящего пункта, установленному к максимальному значению номинальной мощности;

в) минимальные нормированные значения световой отдачи ( ) для двухцокольных люминесцентных ламп T5 (диаметр 16 мм) с общим индексом цветопередачи менее 90 при 25°С для этапов 1 и 2 составляют:

T5 (диаметр 16 мм), высокая световая отдача T5 (диаметр 16 мм), высокий световой поток
номинальная мощность лампы, Вт , лм/Вт номинальная мощность лампы, Вт , лм/Вт
14 86 24 73
21 90 39 79
28 93 54 82
35 94 49 88
80 77;

г) требования, предусмотренные подпунктами «а» — «в» настоящего пункта, не применяются к двухцокольным люминесцентным лампам со следующими характеристиками:

диаметр не более 7 мм (T2);

диаметр 16 мм (T5), номинальная мощность не более 13 Вт или более 80 Вт;

д) минимальные нормированные значения световой отдачи ( ) одноцокольных люминесцентных ламп для этапов 1 и 2 составляют:

Лампа двухканальная с цоколем G23 (2-штырьковый) или 2G7 (4-штырьковый) Лампа четырехканальная с цоколем G24d (2-штырьковый) или G24q (4-штырьковый) Лампа шестиканальная с цоколем GХ24d (2-штырьковый) или GХ24q (4-штырьковый)
номинальная мощность, Вт , лм/Вт номинальная мощность, Вт , лм/Вт номинальная мощность, Вт , лм/Вт
5 48 10 60 13 62
7 57 13 69 18 67
9 67 18 67 26 66;
11 76 26 66
Лампа прямоугольная в одной плоскости с цоколем 2G10 (4-штырьковый) Лампа двухканальная длинная с цоколем 2G11 (4-штырьковый)
номинальная мощность, Вт , лм/Вт номинальная мощность, Вт , лм/Вт
18 61 18 67
24 71 24 75
36 78 34 82
36 81;
Лампа шестиканальная с цоколем GХ24q (4-штырьковый) Лампа четырехканальная с цоколем GХ24q (4-штырьковый) Лампа двухканальная длинная с цоколем 2G11 (4-штырьковый)
номинальная мощность, Вт , лм/Вт номинальная мощность, Вт , лм/Вт номинальная мощность, Вт , лм/Вт
32 75 55 75 40 85
42 75 70 75 55 80
80 75;

е) минимальные нормированные значения световой отдачи ( ) одноцокольных люминесцентных ламп квадратной формы для этапов 1 и 2 составляют:

Лампа плоская квадратной формы с цоколем GR8 (2-штырьковый), GR10q (4-штырьковый) или GRY10q3 (4-штырьковый) Лампа четырех- или шестиканальная с цоколем 2G8 (4-штырьковый) повышенной мощности
номинальная мощность, Вт , лм/Вт номинальная мощность, Вт , лм/Вт
10 65 60 65
16 65 82 75
21 65 85 70
28 70 120 75;
38 70
55 70

ж) минимальные нормированные значения световой отдачи ( ) кольцевых ламп T9 (диаметр 29 мм) и T5 (диаметр 16 мм) для этапов 1 и 2 составляют:

Лампа кольцевая T9 (диаметр 29 мм) с цоколем G10q и двухцокольные лампы спиральной формы с трубкой равной или большей Т5 (диаметр 16 мм) Лампа кольцевая T5 (диаметр 16 мм) с цоколем 2GX13
номинальная мощность, Вт , лм/Вт номинальная мощность, Вт , лм/Вт
22 50 22 75
32 65 40 80
40 70 55 75
60 60 60 80;

з) указанные в подпунктах «а» — «ж» настоящего пункта минимальные нормированные значения световой отдачи для одноцокольных и двухцокольных люминесцентных ламп с высокой коррелированной цветовой температурой, и (или) с высоким индексом цветопередачи, и (или) с внешней оболочкой применяются со следующим уменьшением:

Параметры лампы Допустимое уменьшение световой отдачи при 25°C, %
Коррелированная цветовая температура более 5000 K — 10
Общий индекс цветопередачи — 20
Общий индекс цветопередачи — 30
Лампа с внешней оболочкой — 10.

При наличии двух или более указанных параметров значение допустимого уменьшения световой отдачи определяется путем суммирования значений допустимых уменьшений световой отдачи, установленных для соответствующих параметров лампы.

Одноцокольные и двухцокольные люминесцентные лампы, оптимальная температура для работы которых отлична от 25°C, должны соответствовать указанным в подпунктах «а» — «ж» настоящего пункта требованиям к минимальным нормированным значениям световой отдачи и при определенной в технической документации оптимальной температуре для их работы.

7. К лампам высокого давления устанавливаются следующие требования:

а) минимальные нормированные значения световой отдачи ( ) натриевых ламп высокого давления с цоколями E27, E40, RX7s, PGZ12 составляют:

Номинальная мощность лампы, Вт , лм/Вт
этап 1 этап 2
50 65 80
70 70 90
100 85 100
150 95 105
250 105 120
400 115 130
600 120 135
1000 120 130;

б) минимальные нормированные значения световой отдачи ( ) металлогалогенных ламп высокого давления с цоколями E27, E40, RХ7s, G12, G22 составляют:

Номинальная мощность лампы, Вт , лм/Вт
этап 1 этап 2
35 70 85
50 70 90
70 70 90
100 70 95
150 70 95
250 70 90
400 70 90
700 75 90
1000 90 90
2000 90 90
3500 90 90;

в) металлогалогенные лампы высокого давления с коррелированной цветовой температурой более 5000 K должны соответствовать минимальным нормированным значениям световой отдачи, указанным в подпункте «б» настоящего пункта, не менее чем на 90 процентов;

г) натриевые и металлогалогенные лампы высокого давления с непрозрачной колбой должны соответствовать минимальным нормированным значениям световой отдачи, указанным в подпунктах «а» и «б» настоящего пункта, не менее чем на 90 процентов, натриевые и металлогалогенные лампы высокого давления с зеркальной колбой — не менее чем на 80 процентов;

д) минимальные нормированные значения световой отдачи ( ) ртутных ламп высокого давления составляют:

Номинальная мощность лампы, Вт , лм/Вт
этап 1 этап 2
125 60 90
250 60 90
400 50 90
700 50 90
1000 50 90.

8. Индукционные люминесцентные лампы должны соответствовать следующим требованиям:

а) минимальные нормированные значения световой отдачи ( ) индукционных люминесцентных ламп ненаправленного света с коррелированной цветовой температурой не более 6500 К и общим индексом цветопередачи не менее 80 составляют:

Номинальная мощность лампы, Вт Световая отдача, лм/Вт
этап 1 этап 2
70 70 90
100 75 100
150 75 100
250 75 100;

б) компактные индукционные люминесцентные лампы с цоколем Е27 или Е40 должны соответствовать минимальным нормированным значениям световой отдачи, указанным в подпункте «а» настоящего пункта, не менее чем на 90 процентов.

9. К лампам накаливания общего назначения устанавливаются следующие требования:

а) минимальные нормированные значения световой отдачи ламп накаливания вольфрамовых составляют не менее 7 лм/Вт;

б) минимальные нормированные значения световой отдачи ламп накаливания вольфрамовых галогенных составляют не менее 15 лм/Вт.

10. Применение требований, предусмотренных пунктами 5 — 8 настоящего документа, осуществляется с учетом следующих условий:

если в технической документации не указано иное, то значения параметров световой отдачи должны соответствовать указанным требованиям после 100 часов работы для любых газоразрядных ламп и после 0 часов работы для светодиодных ламп или ламп накаливания общего назначения;

если номинальная мощность лампы отличается от указанной в пунктах 5 — 8 настоящего документа, то лампа должна иметь световую отдачу, определяемую методом линейной интерполяции;

если номинальная мощность лампы превышает значение, максимальное из указанных в пунктах 5 — 8 настоящего документа значений номинальной мощности, то требования к ее световой отдаче определяются исходя из значений, соответствующих такому максимальному значению номинальной мощности;

если номинальная мощность лампы меньше значения, минимального из указанных в пунктах 5 — 8 настоящего документа значений мощности, то требования к ее световой отдаче определяются исходя из значений, соответствующих такому минимальному значению номинальной мощности.

III. Требования к эксплуатационным характеристикам ламп общего назначения

11. Требования к эксплуатационным характеристикам ламп общего назначения устанавливаются в зависимости от вида ламп.

12. К эксплуатационным характеристикам компактных люминесцентных и светодиодных ламп устанавливаются следующие требования:

а) требования к эксплуатационным характеристикам компактных люминесцентных ламп:

Характеристика Этап 1 Этап 2
Время зажигания не более 2 секунд для ламп с номинальной мощностью менее 10 Вт — не более 1,5 секунды; для ламп с номинальной мощностью не менее 10 Вт — не более 1 секунды.
Время разгорания до достижения 60 процентов установившегося светового потока менее 60 секунд (менее 120 секунд для ламп, которые содержат амальгаму ртути) менее 40 секунд (менее 100 секунд для ламп, которые содержат амальгаму ртути)
Коэффициент мощности лампы для ламп номинальной мощностью менее 25 Вт — не менее 0,5; для ламп номинальной мощностью не менее 25 Вт — не менее 0,9 для ламп номинальной мощностью менее 25 Вт — не менее 0,5; для ламп номинальной мощностью не менее 25 Вт — не менее 0,9
Общий индекс цветопередачи не менее 80 не менее 80
Коэффициент пульсации светового потока не устанавливается не более 10 процентов;

б) требования к эксплуатационным характеристикам светодиодных ламп ненаправленного и направленного света:

Характеристика Требования на этапах 1 и 2
Общий индекс цветопередачи не менее 80
Коэффициент мощности лампы для ламп со встроенными устройствами управления для ламп с номинальной мощностью менее 2 Вт — нет требований; для ламп с номинальной мощность не более 5 Вт — более 0,5; для ламп с номинальной мощностью не более 25 Вт — более 0,7; для ламп с номинальной мощностью более 25 Вт — более 0,9
Коэффициент пульсации светового потока для ламп со встроенными устройствами управления не более 10%.

13. К эксплуатационным характеристикам люминесцентных ламп без встроенных пускорегулирующих аппаратов и металлогалогенных ламп устанавливаются следующие требования:

этап 1 — люминесцентные лампы без встроенных пускорегулирующих аппаратов, требования к энергетической эффективности которых указаны в пункте 6 настоящего документа, должны иметь общие индексы цветопередачи не менее 80;

этап 2 — металлогалогенные лампы должны иметь общие индексы цветопередачи не менее 80.

IV. Требования к энергетической эффективности светильников общего назначения

14. Светильники с двухцокольными люминесцентными лампами и индукционными люминесцентными лампами должны соответствовать следующим требованиям:

а) минимальные нормированные значения световой отдачи ( ) светильников с двухцокольными люминесцентными и индукционными люминесцентными лампами различной мощности (P) на этапах 1 и 2 составляют:

для светильников, предназначенных к использованию в общественных помещениях:

Лампы \ Конструкция Люминесцентные Т8 Люминесцентные Т5 (диаметр 16 мм) (высокая световая отдача) Люминесцентные Т5 (диаметр 16 мм) (высокий световой поток) Индукционные люминесцентные
P, Вт , лм/Вт P,Вт , лм/Вт P, Вт , лм/Вт P, Вт , лм/Вт
Зеркальный отражатель и диффузный рассеиватель 18 45 14 50 не используются 70 45
21 50 100 50
36 50 28 55 150 50
58 50 35 55 250 50
Зеркальный отражатель и призматический рассеиватель 18 50 14 55 не используются 70 50
21 55 100 55
36 55 28 60 150 55
58 55 35 60 250 55
Зеркальный отражатель и открытое выходное отверстие 18 55 14 60 24 55 70 55
36 60 21 60 39 60 100 60
28 65 49 60 150 60
58 60 35 65 54 60 250 60;
80 60

для светильников, предназначенных к использованию в производственных помещениях:

Лампы \ Конструкция Люминесцентные Т8 Люминесцентные Т5 (диаметр 16 мм) (высокая световая отдача) Люминесцентные Т5 (диаметр 16 мм) (высокий световой поток) Индукционные люминесцентные
P, Вт , лм/Вт P, Вт , лм/Вт P, Вт , лм/Вт P, Вт , лм/Вт
Зеркальный отражатель и диффузный рассеиватель 18 45 14 50 не используются 70 45
36 50 21 50 100 50
58 50 28 55 150 50
35 55 250 50
Зеркальный отражатель и призматический рассеиватель 18 50 14 55 не используются 70 50
36 55 21 55 100 55
58 55 28 60 150 55
35 60 250 55
Зеркальный отражатель и открытое выходное отверстие 18 55 14 60 24 55 70 55
36 60 21 60 39 60 100 60
49 60
58 60 28 70 54 60 150 60
35 70 80 60 250 60;

для светильников, предназначенных к использованию в целях наружного утилитарного освещения:

Лампы \ Конструкция Индукционные люминесцентные
P, Вт , лм/Вт
Зеркальный отражатель и прозрачный рассеиватель (защитное стекло) 70 50
100 55
150 55
250 55;

б) требования, которым должны соответствовать светильники с двухцокольными люминесцентными лампами Т8, должны применяться ко всем светильникам с люминесцентными лампами, за исключением светильников с двухцокольными люминесцентными лампами Т5 (диаметр 16 мм).

15. К светильникам с натриевыми лампами высокого давления устанавливаются следующие требования:

а) минимальные нормированные значения световой отдачи светильников с натриевыми лампами высокого давления на этапах 1 и 2 составляют:

Назначение Конструкция Номинальная мощность лампы, Вт , лм/Вт
Светильники для производственных помещений зеркальный отражатель и диффузный рассеиватель 70 65
100 65
150 65
250 70
400 70
зеркальный отражатель и призматический рассеиватель 70 75
100 75
150 75
250 80
400 80
зеркальный отражатель и открытое выходное отверстие 70 85
100 85
150 85
250 90
400 90
Светильники для наружного утилитарного освещения зеркальный отражатель и прозрачный рассеиватель (защитное стекло) 70 75
100 75
150 75
250 85
400 85
600 85;

б) светильники с лампами в непрозрачной колбе должны соответствовать минимальным нормированным значениям световой отдачи, установленным в подпункте «а» настоящего пункта, не менее чем на 90 процентов.

16. К светильникам с металлогалoгенными лампами устанавливаются следующие требования:

а) минимальные нормированные значения световой отдачи ( ) светильников с металлогалoгенными лампами на этапах 1 и 2 составляют:

Назначение Конструкция Номинальная мощность лампы, Вт , лм/Вт
Светильники для общественных помещений зеркальный отражатель и диффузный рассеиватель 70 55
100 55
150 60
250 65
400 65
зеркальный отражатель и призматический рассеиватель 70 65
100 65
150 65
250 70
400 70
зеркальный отражатель и открытое выходное отверстие 70 70
100 70
150 70
250 75
400 75
Светильники для производственных помещений зеркальный отражатель и диффузный рассеиватель 70 50
100 50
150 50
250 55
не менее 400 55
зеркальный отражатель и призматический рассеиватель 70 60
100 60
150 60
250 65
не менее 400 65
зеркальный отражатель и открытое выходное отверстие 70 65
100 65
150 65
250 70
не менее 400 70
Светильники для наружного утилитарного освещения зеркальный отражатель и прозрачный рассеиватель (защитное стекло) 70 60
100 60
150 60
250 65
не менее 400 65;

б) светильники с лампами в непрозрачной колбе должны соответствовать минимальным нормированным значениям световой отдачи, указанным в подпункте «а» настоящего пункта, не менее чем на 90 процентов.

17. К светильникам с ртутными лампами высокого давления устанавливаются следующие требования:

а) минимальные нормированные значения световой отдачи ( ) светильников с ртутными лампами высокого давления на этапе 1 составляют:

Назначение Конструкция Номинальная мощность лампы, Вт , лм/Вт
Светильники для производственных помещений зеркальный отражатель и диффузный рассеиватель 125 50
250 50
не менее 400 35
зеркальный отражатель и призматический рассеиватель 125 60
250 60
не менее 400 40
зеркальный отражатель и открытое выходное отверстие 125 60
250 60
не менее 400 45
Светильники для наружного утилитарного освещения зеркальный отражатель и прозрачный рассеиватель (защитное стекло) 125 60
250 60
не менее 400 60;

б) на этапе 2 минимальное нормированное значение световой отдачи для любых светильников с ртутными лампами высокого давления должно быть не менее 60 лм/Вт.

18. Светильники с двумя и более разрядными лампами, с экранирующими элементами, создающими защитный угол, превышающий 40 градусов, с диффузным отражателем или с защитной сеткой должны соответствовать минимальным нормированным значениям световой отдачи, установленным в пунктах 14 — 17 настоящего документа, не менее чем на 95 процентов.

При наличии одновременно нескольких указанных конструктивных особенностей светильники должны соответствовать минимальным нормированным значениям световой отдачи, установленным в пунктах 14 — 17 настоящего документа, не менее чем на 90 процентов.

19. К минимальным нормированным значениям световой отдачи ( ) светильников со светодиодами устанавливаются следующие требования:

Назначение Конструкция Номинальная мощность, Вт , лм/Вт
этап 1 этап 2
Светильники для общественных и производственных помещений диффузный рассеиватель не более 25 75 95
более 25 85 105
прозрачный (призматический) рассеиватель не более 25 80 100
более 25 85 105
с открытым выходным отверстием не более 25 80 100
более 25 90 110
типа Downlight более 5 60 75
Светильники для наружного утилитарного освещения прозрачный рассеиватель (защитное стекло) без ограничений 90 110;

20. Применение требований, предусмотренных пунктами 14 — 19 настоящего документа, осуществляется с учетом следующих условий:

если в технической документации не указано иное, то значения параметров световой отдачи должны соответствовать указанным требованиям после 100 часов работы для светильников с газоразрядными лампами и после 0 часов работы для светильников со светодиодными лампами или светодиодными источниками света;

если номинальная мощность светильника (используемой в нем лампы или источника света) отличается от указанной в пунктах 14 — 19 настоящего документа, то светильник должен иметь световую отдачу, определяемую методом линейной интерполяции;

если номинальная мощность светильника (используемой в нем лампы или источника света) превышает значение, максимальное из указанных в пунктах 14 — 19 настоящего документа значений номинальной мощности, то требования к световой отдаче светильника определяются исходя из значений, соответствующих максимальному значению номинальной мощности;

если номинальная мощность светильника (используемой в нем лампы или источника света) меньше значения, минимального из указанных в пунктах 14 — 19 настоящего документа значений номинальной мощности, то требования к световой отдаче светильника определяются исходя из значений, соответствующих минимальному значению номинальной мощности.

V. Требования к эксплуатационным характеристикам светильников общего назначения

21. К коэффициенту мощности светильников устанавливаются следующие минимальные требования:

Вид светильника Коэффициент мощности, не менее
этап 1 этап 2
С люминесцентными лампами 0,9 0,95
С натриевыми лампами высокого давления, с металлогалагенными лампами или с ртутными лампами высокого давления 0,85 0,85
Со светодиодами при потребляемой мощности не более 8 Вт 0,7 0,75
Со светодиодами при потребляемой мощности от 8 до 20 Вт включительно 0,85 0,9
Со светодиодами при потребляемой мощности более 20 Вт 0,9 0,95.

22. Коэффициент пульсации светового потока светильника со светодиодами на этапе 1 должен составлять не более 10 процентов, на этапе 2 — не более 5 процентов.

23. Снижение светового потока светильников со светодиодами за время стабилизации светового потока составляет на этапе 1 не более 8 процентов, на этапе 2 — не более 6 процентов.

24. Общий индекс цветопередачи светильников со светодиодами для общественных помещений на этапах 1 и 2 должен быть не менее 80, светильников со светодиодами для производственных помещений — не менее 70.

Обзор документа

Установлены новые требования к осветительным устройствам и электролампам, используемым для освещения в цепях переменного тока (далее — лампы и светильники общего назначения).

Предусматриваются 2 этапа: этап 1 — с 01.07.2020 по 31.12.2020, этап 2 — с 01.01.2020.

На этапах 1 и 2 лампы и светильники должны соответствовать установленным требованиям к энергоэффективности и эксплуатационным характеристикам. На этапе 2 уровень потерь активной мощности в пуско-регулирующей аппаратуре светильников для общественных и производственных помещений с люминесцентными или индукционными лампами не должен превышать 8%.

Добавить комментарий