Примеры решения интегралов

Примеры решения задач с интегралами

Интеграл функции является основным понятием интегрального исчисления. Интеграл широко используется при решении целого ряда задач по математике, физике и в других науках. Именно поэтому мы собрали на сайте более 100 примеров решения интегралов и постоянно добавляем новые! Список тем находится в правом меню.

Перед изучением примеров вычисления интегралов советуем вам прочитать теоретический материал по теме: определения, свойства и таблицу интегралов, методы их вычисления и другой материал по интегралам.

Каждый электрик должен знать:  Как проверить конденсатор на работоспособность мультиметром

Таблица интегралов

Задание. Вычислить неопределенный интеграл

Решение. Для решения данного интеграла не нужно использовать свойства неопределенных интегралов, достаточно формулы интеграла степенной функции:

В нашем случае , тогда искомый интеграл равен:

Ответ.

Метод непосредственного интегрирования

Задание. Вычислить неопределенный интеграл

Решение. Преобразуем подынтегральное выражение. Для этого вынесем из знаменателя за знак интеграла

далее, используя таблицу интегралов (Формула №11), получим

Каждый электрик должен знать:  Подключение генератора к одной из фаз трехфазной сети в доме

Ответ.

Внесение под знак дифференциала

Задание. Вычислить неопределенный интеграл

Решение. Распишем подынтегральную сумму, используя тригонометрические функции (определение котангенса)

Внесем под знак дифференциала:

Полученный интеграл можно вычислить, используя табличный интеграл

В результате получим

Ответ.

Интегрирование заменой переменной

Задание. Найти неопределенный интеграл

Решение. Введем замену и полученный интеграл находим как интеграл от степенной функции:

Сделаем обратную замену

Ответ.

Интегрирование по частям

Задание. Найти неопределенный интеграл

Решение. Воспользуемся методом интегрирования по частям. Для этого положим

Подставим это в формулу для интегрирования по частям, затем воспользуемся формулой интеграла косинуса из таблицы интегралов

Каждый электрик должен знать:  Приведение пассивного четырехполюсника к Т-схеме замещения

Ответ.

Метод неопределенных коэффициентов

Задание. Разложить рациональную дробь на простые дроби.

Решение. Так как корнями знаменателя являются значения , , то его можно разложить на множители следующим образом:

Искомое разложение имеет вид:

Приводим к общему знаменателю в правой части равенства и приравниваем числители:

Приравнивая коэффициенты, при соответствующих степенях, получаем:

Отсюда, искомое разложение:

Ответ.

Интегрирование тригонометрических функций

Задание. Найти неопределенный интеграл

Решение. Для вычисления исходного интеграла введем тригонометрическую замену , тогда

Добавить комментарий