Примеры решения производных


СОДЕРЖАНИЕ:

Производная функции

Вычисляет производную заданной функции.

Данный калькулятор вычисляет производную функции и затем упрощает ее.
В поле функция введите математическое выражение с переменной x, в выражении используйте стандартные операции + сложение, вычитание, / деление, * умножение, ^ — возведение в степень, а также математические функции. Полный синтаксис смотрите ниже.
Упрощение полученной производной может занять некоторое время, для сложных функций — весьма продолжительное. Если ждать до конца нет сил — нажмите кнопку остановить. У меня получался достаточно простой вариант уже после 10-15 секунд работы алгоритма упрощения.

Калькулятор производных

Производная функции

Синтаксис описания формул

В описании функции допускается использование одной переменной (обозначается как x), скобок, числа пи (pi), экспоненты (e), математических операций: + — сложение, — вычитание, * — умножение, / — деление, ^ — возведение в степень.
Допускаются также следующие функции: sqrt — квадратный корень, exp — e в указанной степени, lb — логарифм по основанию 2, lg — логарифм по основанию 10, ln — натуральный логарифм (по основанию e), sin — синус, cos — косинус, tg — тангенс, ctg — котангенс, sec — секанс, cosec — косеканс, arcsin — арксинус, arccos — арккосинус, arctg — арктангенс, arcctg — арккотангенс, arcsec — арксеканс, arccosec — арккосеканс, versin — версинус, vercos — коверсинус, haversin — гаверсинус, exsec— экссеканс, excsc — экскосеканс, sh — гиперболический синус, ch — гиперболический косинус, th — гиперболический тангенс, cth — гиперболический котангенс, sech — гиперболический секанс, csch — гиперболический косеканс, abs — абсолютное значение (модуль), sgn — сигнум (знак), logP — логарифм по основанию P, например log7(x) — логарифм по основанию 7, rootP — корень степени P, например root3(x) — кубический корень.

Примеры вычисления производных

Пример 1 . Найти производную функции

Решение . Воcпользовавшись формулой для производной сложной функции y = cos (kx + b) в случае, когда k = 2, b = 0, получим

Замечание . Очень часто школьники, а также и студенты, при решении примера 1 пишут:

Перепишем верный ответ еще раз:

Приведем также верные ответы в похожих примерах:

(sin 3x)’ = 3cos 3x ,
,

Пример 2 . Найти производную функции

Пример 3 . Найти производную функции

Пример 4 . Найти производную функции

то исходную функцию можно переписать в виде

Высшая математика

Краткий теоретический курс с примерами

Производная функции одной переменной

В этой статье мы будем учиться находить производную от функции одной переменной. Дадим ее определение, вскользь затронем геометрический смысл. Разберемся с вопросом нахождения производной от сложной функции.

Итак, дадим определение производной : пусть в некоторой окрестности точки определена функция . Производной функции в точке называется предел, если он существует,

Из школы можно вспомнить формулу для нахождения касательной к функции в точке: . То есть если говорить о геометрическом смысле производной, то обозначим производную функции в точке как угловой коэффициент или тангенс угла наклона касательной прямой к графику функции в этой точке.

Правила дифференцирования:

  1. Производная суммы равна сумме производных, то есть:
  2. Производная произведения:
  3. Вынесение константы за знак производной:
  4. Производная частного:

Прежде чем перейти к задачам, необходимо обзавестись таблицей производных. В идеале вы должны ее знать наизусть, как таблицу умножения ��

Правилами дифференцирования и таблицей вооружились, двигаемся дальше.

Рассмотрим некоторую функцию . Как видим, функция зависит не просто от переменной , а от другой функции . Будем называть такую функцию сложной . Производная сложной функции вычисляется следующим образом:

Теперь всей необходимой теорией для решения стандартных задач на нахождение производной мы обладаем, а именно: правилами дифференцирования, таблицей производных и формулой производной от сложной функции. Давайте на примерах подробно разберемся с тем, как это работает.

Пример 1. Найти производную функции

Решение : Применяем правило дифференцирования суммы функций:

Заглядываем в таблицу производных и ищем там производную от и от

Всё, производная найдена. В ответ запишем

Пример 2. Найти производную функции , где

Решение : Применяем правило дифференцирования суммы функций:

Открываем таблицу производных и находим производные от и

Производная найдена, в ответе записываем

Пример 3. Найти производную функции

Пример 4. Найти производную функции

Решение : Применим правило дифференцирования произведения:

Обращаемся к таблице производных и ищем там производные тангенса и

Пример 5. Найти производную функции

Решение : Применим правило дифференцирования произведения:

Пример 6. Найти производную функции

Это правило дифференцирования самое простое для понимания (редко у кого можно встретить здесь ошибки): мы просто выносим константу за знак производной и находим производную от оставшегося выражения.

Пример 7. Найти производную функции

Решение : Видим константу , поэтому поступаем в соответствии с нашим правилом:

Всё, задача решена �� Давайте, на всякий случай, рассмотрим еще одну такую задачу.

Пример 8. Найти производную функции

Решение : Видим дробь. Производную от дроби находить пока не умеем, но может без проблем преобразовать выражение следующим образом:

Теперь константа очевидна, выносим и находим производную:

Ничего сложно в дифференцировании дробей нет, но на практике именно здесь чаще всего возникают ошибки, поэтому остановимся на этом моменте подробнее.

Пример 9. Найти производную функции

Решение : Видим дробь. Мысленно повторяем для себя: «Производная дроби равна производной числителя, умноженной на знаменатель, минус производная знаменателя, умноженная на числитель, и всё это деленное на квадрат знаменателя«.

Числителем здесь является , а знаменателем — . Тогда, в соответствии с формулой, напишем:

Всё, производная успешно найдена.

Пример 10. Найти производную функции

Решение : Рассматриваем выражение. Числителем служит , знаменателем — . По формуле получим:

В принципе, на этом этапе можно остановиться, производная найдена. Но, взглянув на числитель, несложно заметить и применить основное тригонометрическое тождество :

Вспомнив, что отношение синуса к косинусу есть тангенс, легко проверить получившийся ответ по таблице производных.

Пример 11. Найти производную функции

Решение : Числитель здесь , знаменатель . По формуле производной для дроби запишем:

Производная найдена, но можно упростить полученное выражение, сделаем это:

Пример 12. Найти производную функции

Решение : Числитель и знаменатель . Получаем:

Заметим, что здесь необязательно было пользоваться именно формулой для дроби, так как знаменатель представляет собой константу. Эту константу можно было вынести по предыдущему правилу дифференцирования.

С правилами дифференцирования ознакомились. Переходим к дифференцированию сложной функции. Пока еще нет достаточного опыта, рекомендую на каждом шаге повторять для себя: «Производная сложной функции равна производной внешней функции на производную внутренней функции«.

Найти производную функции .

Решение : Видим обыкновенный косинус, но воспользоваться таблицей производных сразу не можем, потому что зависит косинус не просто от , а от . Применяем формулу для сложной функции.

Необходимо очень чётко уяснить вопрос с тем, что является в некотором выражении внешней функцией, а что внутренней. Для этого нужно посмотреть на функцию как бы в целом (это может быть нечто очень громоздкое), понять, что это прежде всего: произведение, степень, дробь или что-то другое.

В данной задаче всё просто. Прежде всего наше выражение — это косинус. То есть косинус является внешней функцией. Внутренней функцией будет являться аргумент косинуса . Тогда по формуле запишем:

Найти производную функции

Решение : Что выражение представляет собой прежде всего? Это степень. Но, как и в предыдущем примере, сразу воспользоваться таблицей производных невозможно, потому что в основании степени не просто , а целое выражение . Применяем формулу с учетом того, что внешняя функция , а внутренняя :

В 13 и 14 примерах для нахождения производной достаточно было применить формулу для сложной функции всего один раз . Однако на практике чаще всего имеются выражения вида «функция от функции, зависящей от еще одной функции, которая зависит функции и т.д.». В этих случаях принцип нахождения производной не изменяется — мы просто используем формулу несколько раз .

Найти производную функции

Решение : Имеем натуральный логарифм, который зависит от синуса, который зависит от некоторого выражения. Внешняя функция здесь сам логарифм, то есть , внутренняя — выражение под логарифмом, т.е. .

Производную первого множителя уже можем написать из таблицы производных (сделаем это позже, чтобы не возникло путаницы). Для нахождения производной второго множителя вновь используем формулу, полагая, что внешней функцией является синус, а внутренней — выражение :

Давайте для наглядности покажем на картинке процесс работы с выражением:

Функция слева от стрелки внешняя, справа внутренняя. Количество стрелок равно количеству применений формулы для сложной функции.

Найти производную функции

Решение : Нарисуем такую же картинку, как и в предыдущем примере:

Имеем три стрелки, то есть формулу для сложной функции будем последовательно применять именно три раза. На каждом шаге функция слева от стрелки — внешняя, справа — внутренняя.

Ответ получился некрасивым, но это нестрашно, потому что задания придумывал сам �� Здесь все производные мы высчитываем на последнем шаге, чтобы не запутаться. На практике же чаще всего будет удобнее это делать после каждого применения формулы (для внешних функций).

В первое время будет нелишним рисовать на черновике картинки из примеров 15 и 16 (понятно, применительно к своей задаче). Далее разберем пару примеров на комбинирование правил дифференцирования и формулы дифференцирования сложной функции.

Найти производную функции

Решение : Видим произведение, поэтому по формуле дифференцирования произведения функций запишем:

Обе полученные функции под знаком производной сложные, поэтому дифференцируем их по соответствующему правилу:

Найти производную функции

Решение : Видим дробь, поэтому по формуле дифференцирования дробей запишем:

Обе полученные функции под знаком производной сложные, поэтому дифференцируем их по соответствующему правилу:

Опять получился не очень красивый ответ, но зато правильный ��

Здесь стоит заметить, что мы могли избавиться от дроби и перейти к произведению функций с помощью перенесения арксинуса в числитель (арксинус в этом случае получает степень ).

На этом всё, спасибо за внимание!

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Производная функции. Исчерпывающее руководство (2020)

Хочешь подготовиться к ОГЭ или ЕГЭ по математике на отлично?

Хочешь проверить свои силы и узнать результат насколько ты готов к ЕГЭ или ОГЭ?

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Представим себе прямую дорогу, проходящую по холмистой местности. То есть она идет то вверх, то вниз, но вправо или влево не поворачивает.

Если ось направить вдоль дороги горизонтально, а – вертикально, то линия дороги будет очень похожа на график какой-то непрерывной функции:

Ось – это некий уровень нулевой высоты, в жизни мы используем в качестве него уровень моря. Двигаясь вперед по такой дороге, мы также движемся вверх или вниз.

Также мы можем сказать: при изменении аргумента (продвижение вдоль оси абсцисс) изменяется значение функции (движение вдоль оси ординат).

А теперь давай подумаем, как определить «крутизну» нашей дороги? Что это может быть за величина?

Очень просто: на сколько изменится высота при продвижении вперед на определенное расстояние.

Ведь на разных участках дороги, продвигаясь вперед (вдоль оси абсцисс) на один километр, мы поднимемся или опустимся на разное количество метров относительно уровня моря (вдоль оси ординат).

Продвижение вперед обозначим (читается «дельта икс»).

Греческую букву (дельта) в математике обычно используют как приставку, означающую «изменение».

То есть – это изменение величины , – изменение ; тогда что такое ? Правильно, изменение величины .

Важно: выражение – это единое целое, одна переменная. Никогда нельзя отрывать «дельту» от «икса» или любой другой буквы!

То есть, например, .

Итак, мы продвинулись вперед, по горизонтали, на . Если линию дороги мы сравниваем с графиком функции , то как мы обозначим подъем? Конечно, . То есть, при продвижении вперед на мы поднимаемся выше на .

Величину посчитать легко: если в начале мы находились на высоте , а после перемещения оказались на высоте , то . Если конечная точка оказалась ниже начальной, будет отрицательной – это означает, что мы не поднимаемся, а спускаемся.

Вернемся к «крутизне»: это величина, которая показывает, насколько сильно (круто) увеличивается высота при перемещении вперед на единицу расстояния:

Предположим, что на каком-то участке пути при продвижении на км дорога поднимается вверх на км. Тогда крутизна в этом месте равна .

А если дорога при продвижении на м опустилась на км?

Тогда крутизна равна .

А теперь рассмотрим вершину какого-нибудь холма.

Если взять начало участка за полкилометра до вершины, а конец – через полкилометра после него, видно, что высота практически одинаковая.

То есть, по нашей логике выходит, что крутизна здесь почти равна нулю, что явно не соответствует действительности.

Просто на расстоянии в км может очень многое поменяться. Нужно рассматривать более маленькие участки для более адекватной и точной оценки крутизны.

Например, если измерять изменение высоты при перемещении на один метр, результат будет намного точнее. Но и этой точности нам может быть недостаточно – ведь если посреди дороги стоит столб, мы его можем просто проскочить.

Какое расстояние тогда выберем? Сантиметр? Миллиметр? Чем меньше, тем лучше!

В реальной жизни измерять расстояние с точностью до милиметра – более чем достаточно. Но математики всегда стремятся к совершенству.

Поэтому было придумано понятие бесконечно малого, то есть величина по модулю меньше любого числа, которое только можем назвать.


Например, ты скажешь: одна триллионная! Куда уж меньше?

А ты подели это число на – и будет еще меньше. И так далее.

Если хотим написать, что величина бесконечно мала, пишем так: (читаем «икс стремится к нулю»).

Очень важно понимать, что это число не равно нулю! Но очень близко к нему. Это значит, что на него можно делить.

Понятие, противоположное бесконечно малому – бесконечно большое ( ).

Ты уже наверняка сnалкивался с ним, когда занимался неравенствами: это число по модулю больше любого числа, которое только можешь придумать.

Если ты придумал самое большое из возможных чисел, просто умножь его на два, и получится еще больше. А бесконечность еще больше того, что получится.

Фактически бесконечно большое и бесконечно малое обратны друг другу, то есть при , и наоборот: при .

Теперь вернемся к нашей дороге.

Идеально посчитанная крутизна – это куртизна, вычисленная для бесконечно малого отрезка пути, то есть:

Замечу, что при бесконечно малом перемещении изменение высоты тоже будет бесконечно мало.

Но напомню, бесконечно малое – не значит равное нулю. Если поделить друг на друга бесконечно малые числа, может получиться вполне обычное число.

Например, . То есть одна малая величина может быть ровно в раза больше другой.

Дорога, крутизна… Мы ведь не в автопробег отправляемся, а математику учим. А в математике все точно так же, только называется по-другому.

Понятие производной

Производная функции это отношение приращения функции к приращению аргумента при бесконечно малом приращение аргумента.

Приращением в математике называют изменение.

То, насколько изменился аргумент ( ) при продвижении вдоль оси , называется приращением аргумента и обозначается

Каждый электрик должен знать:  Как проверить транзистор

То, насколько изменилась функция (высота) при продвижении вперед вдоль оси на расстояние , называется приращением функции и обозначается .

Итак, производная функции – это отношение к при .

Обозначаем производную той же буквой, что и функцию, только со штрихом сверху справа: или просто .

Итак, запишем формулу производной, используя эти обозначения:

Как и в аналогии с доро́гой здесь при возрастании функции производная положительна, а при убывании – отрицательна.

А бывает ли производная равна нулю?

Конечно. Например, если мы едем по ровной горизонтальной дороге, крутизна равна нулю. И правда, высота ведь не совсем меняется. Так и с производной: производная постоянной функции (константы) равна нулю:

так как приращение такой функции равно нулю при любом .

Давай вспомним пример с вершиной холма. Там получалось, что можно так расположить концы отрезка по разные стороны от вершины, что высота на концах оказывается одинаковой, то есть отрезок располагается параллельно оси :

Но большие отрезки – признак неточного измерения. Будем поднимать наш отрезок вверх параллельно самому себе, тогда его длина будет уменьшаться.

В конце концов, когда мы будем бесконечно близко к вершине, длина отрезка станет бесконечно малой.

Но при этом он остался параллелен оси , то есть разность высот на его концах равна нулю (не стремится, а именно равна).

Понять это можно так: когда мы стоим на самой вершине, меленькое смещение влево или вправо изменяет нашу высоту ничтожно мало.

Есть и чисто алгебраическое объяснение: левее вершины функция возрастает, а правее – убывает.

Как мы уже выяснили ранее, при возрастании функции производная положительна, а при убывании – отрицательна.

Но меняется она плавно, без скачков (т.к. дорога нигде не меняет наклон резко).

Поэтому между отрицательными и положительными значениями обязательно должен быть . Он и будет там, где функция ни возрастает, ни убывает – в точке вершины.

То же самое справедливо и для впадины (область, где функция слева убывает, а справа – возрастает):

Немного подробнее о приращениях.

Итак, мы меняем аргумент на величину . Меняем от какого значения? Каким он (аргумент) теперь стал?

Можем выбрать любую точку, и сейчас будем от нее плясать.

Рассмотрим точку с координатой . Значение функции в ней равно .

Затем делаем то самое приращение: увеличиваем координату на .

Чему теперь равен аргумент?

А чему теперь равно значение функции?

Куда аргумент, туда и функция: .

А что с приращением функции?

Ничего нового: это по-прежнему величина, на которую изменилась функция:

Потренируйся находить приращения:

  1. Найди приращение функции в точке при приращении аргумента, равном .
  2. То же самое для функции в точке .

Решения:

В разных точках при одном и том же приращении аргумента приращение функции будет разным. Значит, и производная в каждой точке своя (это мы обсуждали в самом начале – крутизна дороги в разных точках разная). Поэтому когда пишем производную, надо указывать, в какой точке:

«Ну ладно, ладно, уже давно понятно, что такое производная! Но как ее применить на практике? Давайте уже возьмем и вычислим какую-нибудь производную, в конце концов!» – скажешь ты. Щас все будет.

Вычисление производных

Начнем с простого.

Константа.

Это мы уже обсуждали: если функция , где – некое постоянное число, то каким бы ни было приращение аргумента , функция нисколько не изменяется: . А значит,

То есть, произвоная от константы равна нулю:

Степенная функция.

Степенной называют функцию, где аргумент в какой-то степени (логично, да?).

Причем – в любой степени: .

Простейший случай – это когда показатель степени :

Найдем ее производную в точке . Вспоминаем определение производной:

Итак, аргумент меняется с до . Каково приращение функции?

Приращение – это . Но функция в любой точке равна своему аргументу. Поэтому:

Производная от равна :

b) Теперь рассмотрим квадратичную функцию ( ): .

А теперь вспомним, что . Это значит, что значением приращения можно пренебречь, так как оно бесконечно мало, и поэтому незначительно на фоне другого слагаемого:

Итак, у нас родилось очередное правило:

c) Продолжаем логический ряд: .

Это выражение можно упростить по-разному: раскрыть первую скобку по формуле сокращенного умножения куб суммы, или же разложить все выражение на множители по формуле разности кубов. Попробуй сделать это сам любым из предложенных способов.

Итак, у меня получилось следующее:

И снова вспомним, что . Это значит, что можно пренебречь всеми слагаемыми, содержащими :

d) Аналогичные правила можно получить и для больших степеней:

e) Оказывается, это правило можно обобщить для степенной функции с произвольным показателем, даже не целым:

Можно сформулировать правило словами: «степень выносится вперед как коэффициент, а потом уменьшается на ».

Докажем это правило позже (почти в самом конце). А сейчас рассмотрим несколько примеров. Найди производную функций:

  1. ;
  2. (двумя способами: по формуле и используя определение производной – посчитав приращение функции);
  3. .
  1. . Не поверишь, но это степенная функция. Если у тебя возникли вопросы типа «Как это? А где же степень?», вспоминай тему «Степень и ее свойства»!
    Да-да, корень – это тоже степень, только дробная: .
    Значит, наш квадратный корень – это всего лишь степень с показателем :
    .
    Производную ищем по недавно выученной формуле:

    Если в этом месте снова стало непонятно, повторяй тему «Степень и ее свойства». (про степень с отрицательным показателем)

  2. . Теперь показатель степени :

    А теперь через определение (не забыл еще?):
    ;
    .
    Теперь, как обычно, пренебрегаем слагаемым, содержащим :
    .

  3. . Комбинация предыдущих случаев: .

Тригонометрические функции.

Здесь будем использовать один факт из высшей математики:

Доказательство ты узнаешь на первом курсе института (а чтобы там оказаться, надо хорошо сдать ЕГЭ). Сейчас только покажу это графически:

Видим, что при функция не существует – точка на графике выколота. Но чем ближе к значению , тем ближе функция к . Это и есть то самое «стремится».

Впредь будем считать, что при это выражение равно : .

Дополнительно можешь проверить это правило с помощью калькулятора. Да-да, не стесняйся, бери калькулятор, мы ведь не на ЕГЭ еще.

Не забудь перевести калькулятор в режим «Радианы»!

Попробуй теперь сам для и так далее.

и т.д. Видим, что чем меньше , тем ближе значение отношения к .

Убедился? Идем дальше.

a) Рассмотрим функцию . Как обычно, найдем ее приращение:

Превратим разность синусов в произведение. Для этого используем формулу (вспоминаем тему «Формулы тригонометрии»): .

Сделаем замену: . Тогда при бесконечно малом также бесконечно мало: . Выражение для принимает вид:

А теперь вспоминаем, что при выражение . А также, что если бесконечно малой величиной можно пренебречь в сумме (то есть при ).

Итак, получаем следующее правило: производная синуса равна косинусу:

b) Теперь косинус: . Здесь будем использовать формулу разности косинусов: :

Значит, производная косинуса равна минус синусу:

Это базовые («табличные») производные. Вот они одним списком:

Позже мы к ним добавим еще несколько, но эти – самые важные, так как используются чаще всего.

Потренируйся:

  1. Найди производную функции в точке ;
  2. Найди производную функции в точке ;
  3. Найди производную функции .

Решения:

  1. Сперва найдем производную в общем виде, а затем подставим вместо его значение:
    ;
    .
  2. Тут у нас что-то похожее на степенную функцию. Попробуем привести ее к
    нормальному виду:
    .
    Отлично, теперь можно использовать формулу:
    .
    .
  3. . Ээээээ….. Что это.

Ладно, ты прав, такие производные находить мы еще не умеем. Здесь у нас комбинация нескольких типов функций. Чтобы работать с ними, нужно выучить еще несколько правил:

Экспонента и натуральный логарифм.

Есть в математике такая функция, производная которой при любом равна значению самой функции при этом же . Называется она «экспонента», и является показательной функцией

Основание этой функции – константа – это бесконечная десятичная дробь, то есть число иррациональное (такое как ). Его называют «число Эйлера», поэтому и обозначают буквой .

Запомнить очень легко.

Ну и не будем далеко ходить, сразу же рассмотрим обратную функцию. Какая функция является обратной для показательной функции? Логарифм:

В нашем случае основанием служит число :

Такой логарифм (то есть логарифм с основанием ) называется «натуральным», и для него используем особое обозначение : вместо пишем .

Чему равен ? Конечно же, .

Производная от натурального логарифма тоже очень простая:

Примеры:

  1. Найди производную функции .
  2. Чему равна производная функции ?

Ответы: Экспонента и натуральный логарифм – функции уникально простые с точки зрения производной. Показательные и логарифмические функции с любым другим основанием будут иметь другую производную, которую мы с тобой разберем позже, после того как пройдем правила дифференцирования.

Правила дифференцирования

Правила чего? Опять новый термин, опять.

Дифференцирование – это процесс нахождения производной.

Только и всего. А как еще назвать этот процесс одним словом? Не производнование же. Дифференциалом математики называют то самое приращение функции при . Происходит этот термин от латинского differentia — разность. Вот.

При выводе всех этих правил будем использовать две функции, например, и . Нам понадобятся также формулы их приращений:

Всего имеется 5 правил.

Константа выносится за знак производной.


Если – какое-то постоянное число (константа), тогда.

Это правило употребляется чаще всех. Докажем его:

Пусть , или проще .

Пример: Найдите производную функции в точке .

Решение:

Ты сперва сам попробуй решить, а потом посмотри решение.

Итак, константа здесь – это , функция – :

Производная суммы.

Производная суммы равна сумме производных:

Очевидно, это правило работает и для разности: .

Докажем. Пусть , или проще .

Примеры.

Найдите производные функций:

Решения:

  1. (производная одинакова во всех точках, так как это линейная функция, помнишь?);
  2. ;
  3. ;
  4. .

Производная произведения

Хм, все сложнее и сложнее. Ну, давай разбираться.

Снова введем новую функцию: , или проще .

Вспомним, о чем говорили в самом начале этого раздела:

Но при приращение любой функции тоже бесконечно мало: . Поэтому последним слагаемым в выражении для производной можно пренебречь:

Примеры:

  1. Докажи правило 0 с помощью правила 2;
  2. Найди производную выражения ;
  3. Найди производную функции .

Решения:

Производная частного.

Здесь все аналогично: введем новую функцию и найдем ее приращение:

Примеры:

  1. Найдите производные функций и ;
  2. Найдите производную функции в точке .

Решения:

Производная показательной функции

Теперь твоих знаний достаточно, чтобы научиться находить производную любой показательной функции, а не только экспоненты (не забыл еще, что это такое?).

Итак, , где – это какое-то число 0,\text< >a\ne 1 \right)»> .

Мы уже знаем производную функции , поэтому давай попробуем привести нашу функцию к новому основанию :

Для этого воспользуемся простым правилом: . Тогда:

Ну вот, получилось. Теперь попробуй найти производную, и не забудь, что эта функция – сложная.

Вот, проверь себя:

Формула получилась очень похожая на производную экспоненты: как было , так и осталось, появился только множитель , который является просто числом, но не переменной.

Примеры:
Найди производные функций:

Ответы:

– это просто число, которое невозможно посчитать без калькулятора, то есть никак не записать в более простом виде. Поэтому в ответе его в таком виде и оставляем.

Заметим, что здесь частное двух функций, поэтому применим соответствующее правило дифференцирования:

В этом примере произведение двух функций:

Производная логарифмической функции

Здесь аналогично: ты уже знаешь производную от натурального логарифма:

Поэтому, чтобы найти произвольную от логарифма с другим основанием, например, :

Нужно привести этот логарифм к основанию . А как поменять основание логарифма? Надеюсь, ты помнишь эту формулу:

Только теперь вместо будем писать :

В знаменателе получилась просто константа (постоянное число, без переменной ). Производная получается очень просто:

Производные показательной и логарифмической функций почти не встречаются в ЕГЭ, но не будет лишним знать их.

Производная сложной функции.

Что такое «сложная функция»? Нет, это не логарифм, и не арктангенс. Данные функции может быть сложны для понимания (хотя, если логарифм тебе кажется сложным, прочти тему «Логарифмы» и все пройдет), но с точки зрения математики слово «сложная» не означает «трудная».

Представь себе маленький конвейер: сидят два человека и проделывают какие-то действия с какими-то предметами. Например, первый заворачивает шоколадку в обертку, а второй обвязывает ее ленточкой. Получается такой составной объект: шоколадка, обернутая и обвязанная ленточкой. Чтобы съесть шоколадку, тебе нужно проделать обратные действия в обратном порядке.

Давай создадим подобный математический конвейер: сперва будем находить косинус числа, а затем полученное число возводить в квадрат. Итак, нам дают число (шоколадка), я нахожу его косинус (обертка), а ты затем возводишь то, что у меня получилось, в квадрат (обвязываешь ленточкой). Что получилось? Функция . Это и есть пример сложной функции: когда для нахождения ее значения мы проделываем первое действие непосредственно с переменной, а потом еще второе действие с тем, что получилось в результате первого.

Другими словами, сложная функция – это функция, аргументом которой является другая функция : .

Для нашего примера , .

Мы вполне можем проделывать те же действия и в обратном порядке: сначала ты возводишь в квадрат, а я затем ищу косинус полученного числа: . Несложно догадаться, что результат будет почти всегда разный. Важная особенность сложных функций: при изменении порядка действий функция меняется.

Второй пример: (то же самое). .

Действие, которое делаем последним будем называть «внешней» функцией, а действие, совершаемое первым – соответственно «внутренней» функцией (это неформальные названия, я их употребляю только для того, чтобы объяснить материал простым языком).

Попробуй определить сам, какая функция является внешней, а какая внутренней:

Ответы:Разделение внутренней и внешней функций очень похоже на замену переменных: например, в функции

  1. Первым будем выполнять какое действие? Сперва посчитаем синус, а только потом возведем в куб. Значит, внутренняя функция , а внешняя .
    А исходная функция является их композицией: .
  2. Внутренняя: ; внешняя: .
    Проверка: .
  3. Внутренняя: ; внешняя: .
    Проверка: .
  4. Внутренняя: ; внешняя: .
    Проверка: .
  5. Внутренняя: ; внешняя: .
    Проверка: .

производим замену переменных и получаем функцию .

Ну что ж, теперь будем извлекать нашу шоколадку – искать производную. Порядок действий всегда обратный: сначала ищем производную внешней функции, затем умножаем результат на производную внутренней функции. Применительно к исходному примеру это выглядит так:

Итак, сформулируем, наконец, официальное правило:

Алгоритм нахождения производной сложной функции:

Алгоритм Пример:
1.Определяем «внутреннюю» функцию, находим ее производную. Внутренняя функция: .
2.Определяем «внешнюю» функцию, находим ее производную. Внешняя функция: .
3. Умножаем результаты первого и второго пунктов. .

Вроде бы всё просто, да?

Проверим на примерах:

Решения:

(только не вздумай теперь сократить на ! Из под косинуса ничего не выносится, помнишь?)

Сразу видно, что здесь трёхуровневая сложная функция: ведь – это уже сама по себе сложная функция, а из нее еще извлекаем корень, то есть выполняем третье действие (шоколадку в обертке и с ленточкой кладем в портфель). Но пугаться нет причин: все-равно «распаковывать» эту функцию будем в том же порядке, что и обычно: с конца.

То есть сперва продифференцируем корень, затем косинус, и только потом выражение в скобках. А потом все это перемножим.

В таких случаях удобно пронумеровать действия. То есть, представим, что нам известен . В каком порядке будем совершать действия, чтобы вычислить значение этого выражения? Разберем на примере :

1. Сначала – действие в скобках
Это будет функция
2. Затем считаем косинус полученного числа
Это будет функция
3. Ну и, наконец, вычисляем корень
Это будет функция

Чем позже совершается действие, тем более «внешней» будет соответствующая функция. Последовательность действий – как и раньше:

Здесь вложенность вообще 4-уровневая. Давай определим порядок действий.

1. Подкоренное выражение. .

5. Собираем все в кучу:

Прямо сейчас рекомендую перейти к теме «Уравнение касательной к графику функции». Там ты разберешь геометрический смысл производной, что поспособствует лучшему ее пониманию.

ПРОИЗВОДНАЯ. КОРОТКО О ГЛАВНОМ

Производная функции — отношение приращения функции к приращению аргумента при бесконечно малом приращении аргумента:

Константа выносится за знак производной:

Производная сложной функции:

Алгоритм нахождения производной от сложной функции:

  1. Определяем «внутреннюю» функцию, находим ее производную.
  2. Определяем «внешнюю» функцию, находим ее производную.
  3. Умножаем результаты первого и второго пунктов.

P.S. ПОСЛЕДНИЙ БЕСЦЕННЫЙ СОВЕТ 🙂

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для успешной сдачи ОГЭ или ЕГЭ, для перехода в 10-й класс или поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это — не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю.

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время.

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте — нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Я рекомендую использовать для этих целей наш учебник «YouClever» (который ты сейчас читаешь, но без ограничений) и решебник и программу подготовки «100gia».

Условия их приобретения изложены здесь: кликните по этой ссылке, приобретите доступ к YouClever и 100gia и начните готовиться прямо сейчас!

Подготовка к ОГЭ и ЕГЭ по математике с YouClever и 100gia

И в заключение.

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” — это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Комментарии

Исправьте формулы. Часть формул не отображается(смотрел через Google chrome)

Сергей, очистите кэш, пожалуйста: Ctrl + F5. Должно помочь. Если не поможет дайте знать.

Возникла такая же проблема. Обновил и всё в порядке. Правда, я через Яндекс.

Да, Степа, можно просто обновить. Если не сработает, тогда Ctrl + F5

Добрый день, есть ли у вас теория об интегралах на сайте?

Добрый день, Нина. К сожалению пока нет.

Огромное спасибо. Единственное, что в решении примера №2 из раздела «Производная частного» вместо -11x^2 должно быть -6x^2, следовательно, правильный ответ: 37/64.

Кирилл и тебе спасибо. Особенно за внимательность, то, что находишь ошибки.

Спасибо, помогли повторить основы дифференцирования.

Сергей, спасибо и тебе. Всегда приятно слышать!

У вас ошибка в коде.Это выводится на экран: $\Delta f=f\left( x+\Delta x \right)-f\left( x \right)=\underbrace<<<\left( x+\Delta x \right)>^<3>>>_-\underbrace<<^<3>>>_.$


Это не ошибка в коде, qwer. Нужно просто почистить кэш на вашем компьютере: Ctr +F5

Решение задач по математике онлайн

kor.giorgio@gmail.com Выход

Калькулятор онлайн.
Найти (с решением) производную функции.

Этот математический калькулятор онлайн поможет вам если нужно найти производную функции. Программа решения производной не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс решения производной функции.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Вы можете посмотреть теорию о производной функции и правила дифференцирования и таблицу производных, т.е. список формул для нахождения производных от некоторых элементарных функций.

Если вам нужно найти уравнение касательной к графику функции, то для этого у нас есть задача Уравнение касательной к графику функции.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
С 9 января 2020 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> Введите выражение функции Найти производную функции f(x)

В решении ошибка
Если вы считаете, что задача решена не правильно, то нажмите на эту кнопку.

Немного теории.

Определение производной

Определение. Пусть функция \( y = f(x) \) определена в некотором интервале, содержащем внутри себя точку \( x_0 \). Дадим аргументу приращение \( \Delta x \) такое, чтобы не выйти из этого интервала. Найдем соответствующее приращение функции \( \Delta y \) (при переходе от точки \( x_0 \) к точке \( x_0 + \Delta x \) ) и составим отношение \( \frac<\Delta y> <\Delta x>\). Если существует предел этого отношения при \( \Delta x \rightarrow 0 \), то указанный предел называют производной функции \( y=f(x) \) в точке \( x_0 \) и обозначают \( f'(x_0) \).

Для обозначения производной часто используют символ y’. Отметим, что y’ = f(x) — это новая функция, но, естественно, связанная с функцией y = f(x), определенная во всех точках x, в которых существует указанный выше предел. Эту функцию называют так: производная функции у = f(x).

Геометрический смысл производной состоит в следующем. Если к графику функции у = f(x) в точке с абсциссой х=a можно провести касательную, непараллельную оси y, то f(a) выражает угловой коэффициент касательной:
\( k = f'(a) \)

Поскольку \( k = tg(a) \), то верно равенство \( f'(a) = tg(a) \) .

А теперь истолкуем определение производной с точки зрения приближенных равенств. Пусть функция \( y = f(x) \) имеет производную в конкретной точке \( x \):
$$ \lim_ <\Delta x \to 0>\frac<\Delta y> <\Delta x>= f'(x) $$
Это означает, что около точки х выполняется приближенное равенство \( \frac<\Delta y> <\Delta x>\approx f'(x) \), т.е. \( \Delta y \approx f'(x) \cdot \Delta x \). Содержательный смысл полученного приближенного равенства заключается в следующем: приращение функции «почти пропорционально» приращению аргумента, причем коэффициентом пропорциональности является значение производной в заданной точке х. Например, для функции \( y = x^2 \) справедливо приближенное равенство \( \Delta y \approx 2x \cdot \Delta x \). Если внимательно проанализировать определение производной, то мы обнаружим, что в нем заложен алгоритм ее нахождения.

Как найти производную функции у = f(x) ?

1. Зафиксировать значение \( x \), найти \( f(x) \)
2. Дать аргументу \( x \) приращение \( \Delta x \), перейти в новую точку \( x+ \Delta x \), найти \( f(x+ \Delta x) \)
3. Найти приращение функции: \( \Delta y = f(x + \Delta x) — f(x) \)
4. Составить отношение \( \frac<\Delta y> <\Delta x>\)
5. Вычислить $$ \lim_ <\Delta x \to 0>\frac<\Delta y> <\Delta x>$$
Этот предел и есть производная функции в точке x.

Если функция у = f(x) имеет производную в точке х, то ее называют дифференцируемой в точке х. Процедуру нахождения производной функции у = f(x) называют дифференцированием функции у = f(x).

Обсудим такой вопрос: как связаны между собой непрерывность и дифференцируемость функции в точке.

Пусть функция у = f(x) дифференцируема в точке х. Тогда к графику функции в точке М(х; f(x)) можно провести касательную, причем, напомним, угловой коэффициент касательной равен f'(x). Такой график не может «разрываться» в точке М, т. е. функция обязана быть непрерывной в точке х.

Это были рассуждения «на пальцах». Приведем более строгое рассуждение. Если функция у = f(x) дифференцируема в точке х, то выполняется приближенное равенство \( \Delta y \approx f'(x) \cdot \Delta x \). Если в этом равенстве \( \Delta x \) устремить к нулю, то и \( \Delta y \) будет стремиться к нулю, а это и есть условие непрерывности функции в точке.

Итак, если функция дифференцируема в точке х, то она и непрерывна в этой точке.

Обратное утверждение неверно. Например: функция у = |х| непрерывна везде, в частности в точке х = 0, но касательная к графику функции в «точке стыка» (0; 0) не существует. Если в некоторой точке к графику функции нельзя провести касательную, то в этой точке не существует производная.

Еще один пример. Функция \( y=\sqrt[3] \) непрерывна на всей числовой прямой, в том числе в точке х = 0. И касательная к графику функции существует в любой точке, в том числе в точке х = 0. Но в этой точке касательная совпадает с осью у, т. е. перпендикулярна оси абсцисс, ее уравнение имеет вид х = 0. Углового коэффициента у такой прямой нет, значит, не существует и \( f'(0) \)

Итак, мы познакомились с новым свойством функции — дифференцируемостью. А как по графику функции можно сделать вывод о ее дифференцируемости?

Ответ фактически получен выше. Если в некоторой точке к графику функции можно провести касательную, не перпендикулярную оси абсцисс, то в этой точке функция дифференцируема. Если в некоторой точке касательная к графику функции не существует или она перпендикулярна оси абсцисс, то в этой точке функция не дифференцируема.

Правила дифференцирования

Операция нахождения производной называется дифференцированием. При выполнении этой операции часто приходится работать с частными, суммами, произведениями функций, а также с «функциями функций», то есть сложными функциями. Исходя из определения производной, можно вывести правила дифференцирования, облегчающие эту работу. Если C — постоянное число и f=f(x), g=g(x) — некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования:

Производная функции от одной переменной

Введите функцию, для которой необходимо вычислить производную

Сервис предоставляет ПОДРОБНОЕ решение производной.

Найдём производную функции f(x) — дифференциал функции.

Примеры

С применением степени
(квадрат и куб) и дроби

С применением синуса и косинуса

Гиберболические синус и косинус

Гиберболические тангенс и котангенс

Гиберболические арксинус и арккосинус

Гиберболические арктангенс и арккотангенс

Правила ввода выражений и функций

© Контрольная работа РУ — калькуляторы онлайн

Как найти производную по определению?

Составить отношение и вычислить предел .

Откуда появилась таблица производных и правила дифференцирования? Благодаря единственному пределу . Кажется волшебством, но в действительности – ловкость рук и никакого мошенничества. На уроке Что такое производная? я начал рассматривать конкретные примеры, где с помощью определения нашёл производные линейной и квадратичной функции. В целях познавательной разминки продолжим тревожить таблицу производных, оттачивая алгоритм и технические приёмы решения:

Найти производную функции , пользуясь определением производной

По сути, требуется доказать частный случай производной степенной функции, который обычно фигурирует в таблице: .

Решение технически оформляется двумя способами. Начнём с первого, уже знакомого подхода: лесенка начинается с дощечки, а производная функция – с производной в точке.

Рассмотрим некоторую (конкретную) точку , принадлежащую области определения функции , в которой существует производная. Зададим в данной точке приращение (разумеется, не выходящее за рамки о/о-я) и составим соответствующее приращение функции:

Неопределённость 0:0 устраняется стандартным приёмом, рассмотренным ещё в первом веке до нашей эры. Домножим числитель и знаменатель на сопряженное выражение :

Техника решения такого предела подробно рассмотрена на вводном уроке о пределах функций.

Поскольку в качестве можно выбрать ЛЮБУЮ точку интервала , то, осуществив замену , получаем:

Ответ: по определению производной:

В который раз порадуемся логарифмам:

Найти производную функции , пользуясь определением производной

Решение: рассмотрим другой подход к раскрутке той же задачи. Он точно такой же, но более рационален с точки зрения оформления. Идея состоит в том, чтобы в начале решения избавиться от подстрочного индекса и вместо буквы использовать букву .

Рассмотрим произвольную точку , принадлежащую области определения функции (интервалу ), и зададим в ней приращение . А вот здесь, кстати, как и в большинстве случаев, можно обойтись без всяких оговорок, поскольку логарифмическая функция дифференцируема в любой точке области определения.

Тогда соответствующее приращение функции:

Простота оформления уравновешивается путаницей, которая может возникнуть у начинающих (да и не только). Ведь мы привыкли, что в пределе изменяется буква «икс»! Но тут всё по-другому: – античная статуя, а – живой посетитель, бодро шагающий по коридору музея. То есть «икс» – это «как бы константа».

Устранение неопределённости закомментирую пошагово:

(1) Используем свойство логарифма .

(2) В скобках почленно делим числитель на знаменатель.

(3) В знаменателе искусственно домножаем и делим на «икс» чтобы воспользоваться замечательным пределом , при этом в качестве бесконечно малой величины выступает .

Ответ: по определению производной:

Предлагаю самостоятельно сконструировать ещё две табличные формулы:

Найти производную по определению

В данном случае составленное приращение сразу же удобно привести к общему знаменателю. Примерный образец оформления задания в конце урока (первый способ).

Пример 3:Решение: рассмотрим некоторую точку , принадлежащую области определения функции . Зададим в данной точке приращение и составим соответствующее приращение функции:

Найдём производную в точке :

Так как в качестве можно выбрать любую точку области определения функции , то и
Ответ: по определению производной

Найти производную по определению

А тут всё необходимо свести к замечательному пределу . Решение оформлено вторым способом.

Аналогично выводится ряд других табличных производных. Полный список можно найти в школьном учебнике, или, например, 1-м томе Фихтенгольца. Не вижу особого смысла переписывать из книг и доказательства правил дифференцирования – они тоже порождены формулой .

Пример 4:Решение: рассмотрим произвольную точку , принадлежащую , и зададим в ней приращение . Тогда соответствующее приращение функции:

Найдём производную:

Используем замечательный предел

Ответ: по определению

Найти производную функции , используя определение производной

Решение: используем первый стиль оформления. Рассмотрим некоторую точку , принадлежащую , изададим в ней приращение аргумента . Тогда соответствующее приращение функции:

Возможно, некоторые читатели ещё не до конца поняли принцип, по которому нужно составлять приращение . Берём точку (число) и находим в ней значение функции: , то есть в функцию вместо «икса» следует подставить . Теперь берём тоже вполне конкретное число и так же подставляем его в функцию вместо «икса»: . Записываем разность , при этом необходимо полностью взять в скобки.

Составленное приращение функции бывает выгодно сразу же упростить. Зачем? Облегчить и укоротить решение дальнейшего предела.

Используем формулы , раскрываем скобки и сокращаем всё, что можно сократить:

Индейка выпотрошена, с жаркое никаких проблем:

Поскольку в качестве можно выбрать любое действительное число, то проведём замену и получим .

Ответ: по определению.

В целях проверки найдём производную с помощью правил дифференцирования и таблицы:

Всегда полезно и приятно знать правильный ответ заранее, поэтому лучше мысленно либо на черновике продифференцировать предложенную функцию «быстрым» способом в самом начале решения.

Найти производную функции по определению производной

Это пример для самостоятельного решения. Результат лежит на поверхности:

Пример 6:Решение: рассмотрим некоторую точку , принадлежащую , и зададим в ней приращение аргумента . Тогда соответствующее приращение функции:

Вычислим производную:

Таким образом:
Поскольку в качестве можно выбрать любое действительное число, то и
Ответ: по определению.

Вернёмся к стилю №2:

Пользуясь определением, найти производную функции

Давайте немедленно узнаем, что должно получиться. По правилу дифференцирования сложной функции:

Решение: рассмотрим произвольную точку , принадлежащую , зададим в ней приращение аргумента и составим приращение функции:

(1) Используем тригонометрическую формулу .

(2) Под синусом раскрываем скобки, под косинусом приводим подобные слагаемые.

(3) Под синусом сокращаем слагаемые, под косинусом почленно делим числитель на знаменатель.

(4) В силу нечётности синуса выносим «минус». Под косинусом указываем, что слагаемое .

(5) В знаменателе проводим искусственное домножение, чтобы использовать первый замечательный предел . Таким образом, неопределённость устранена, причёсываем результат.

Ответ: по определению

Как видите, основная трудность рассматриваемой задачи упирается в сложность самого предела + небольшое своеобразие упаковки. На практике встречаются и тот и другой способ оформления, поэтому я максимально подробно расписываю оба подхода. Они равноценны, но всё-таки, по моему субъективному впечатлению, чайникам целесообразнее придерживаться 1-го варианта с «икс нулевым».

Пользуясь определением, найти производную функции

Пример 8:Решение: рассмотрим произвольную точку , принадлежащую , зададим в ней приращение и составим приращение функции:

Найдём производную:

Используем тригонометрическую формулу и первый замечательный предел:

Ответ: по определению

Разберём более редкую версию задачи:

Найти производную функции в точке , пользуясь определением производной.

Во-первых, что должно получиться в сухом остатке? Число

Вычислим ответ стандартным способом:

Решение: с точки зрения наглядности это задание значительно проще, так как в формуле вместо рассматривается конкретное значение.

Зададим в точке приращение и составим соответствующее приращение функции:

Вычислим производную в точке:

Используем весьма редкую формулу разности тангенсов и в который раз сведём решение к первому замечательному пределу:

Ответ: по определению производной в точке.

Задачу не так трудно решить и «в общем виде» – достаточно заменить на или просто в зависимости от способа оформления. В этом случае, понятно, получится не число, а производная функция.

Используя определение, найти производную функции в точке

Пример 10:Решение: Зададим приращение в точке . Тогда приращение функции:

Вычислим производную в точке:

Умножим числитель и знаменатель на сопряженное выражение:

Ответ: по определению производной в точкеЗаключительная бонус-задача предназначена, прежде всего, для студентов с углубленным изучением математического анализа, но и всем остальным тоже не помешает:

Будет ли дифференцируема функция в точке ?

Решение: очевидно, что кусочно-заданная функция непрерывна в точке , но будет ли она там дифференцируема?

Алгоритм решения, причём не только для кусочных функций, таков:

1) Находим левостороннюю производную в данной точке: .

2) Находим правостороннюю производную в данной точке: .

3) Если односторонние производные конечны и совпадают: , то функция дифференцируема в точке и геометрически здесь существует общая касательная (см. теоретическую часть урока Определение и смысл производной). Если получены два разных значения: (одно из которых может оказаться и бесконечным), то функция не дифференцируема в точке .

Если же обе односторонние производные равны бесконечности (пусть даже разных знаков), то функция не дифференцируема в точке , но там существует бесконечная производная и общая вертикальная касательная к графику (см. Пример 5 урока Уравнение нормали).

! Примечание: таким образом, между вопросами «Будет ли дифференцируема функция в точке?» и «Существует ли производная в точке?» есть разница!

Всё очень просто!

1) При нахождении левосторонней производной приращение аргумента отрицательно: , а слева от точки расположена парабола , поэтому приращение функции равно:

И соответствующий левосторонний предел численно равен левосторонней производной в рассматриваемой точке:

2) Справа от точки находится график прямой и приращение аргумента положительно: . Таким образом, приращение функции:

Правосторонний предел и правосторонняя производная в точке:

3) Односторонние производные конечны и различны:


Ответ: функция не дифференцируема в точке .

Ещё легче доказывается книжный случай недифференцируемости модуля в точке , о котором я в общих чертах уже рассказал на теоретическом уроке о производной.

Некоторые кусочно-заданные функции дифференцируемы и в точках «стыка» графика, например, котопёс обладает общей производной и общей касательной (ось абсцисс) в точке . Кривой, да дифференцируемый на ! Желающие могут убедиться в этом самостоятельно по образцу только что решённого примера.

Производная функции

Правила ввода функции, заданной в явном виде

  1. Примеры
    ≡ x^2/(x+2)
    cos 2 (2x+π) ≡ (cos(2*x+pi))^2
    ≡ x+(x-1)^(2/3)

Правила ввода функции, заданной в неявном виде

  1. Примеры
    ≡ x^2/(1+y)
    cos 2 (2x+y) ≡ (cos(2*x+y))^2
    ≡ 1+(x-y)^(2/3)

Правила ввода функции, заданной в параметрическом виде

  1. Все переменные выражаются через t
  2. Примеры
    ≡ t^2/(1+t)
    cos 2 (t) ≡ cos(t)^2
    ≡ 1+(t-1)^(2/3)

Правила ввода функции, заданной в параметрическом виде

  1. Все переменные выражаются через t
  2. Примеры
    ≡ t^2/(1+t)
    cos 2 (t) ≡ cos(t)^2
    ≡ 1+(t-1)^(2/3)

Вместе с этим калькулятором также используют следующие:
Точки разрыва функции

Как найти производную, исходяя из ее определения?

Правила нахождения производных

Пример 2 . Найти производную функции
.

Пример 3 . Найти производную функции
.
Решение.
Применим метод логарифмического дифференцирования. Рассмотрим функцию

Пример 4 . Найти производную функции y=x e x
Решение.
;
.

Производная

Теория к заданию 7 из ЕГЭ по математике (профильной)

Производной функции $y = f(x)$ в данной точке $х_0$ называют предел отношения приращения функции к соответствующему приращению его аргумента при условии, что последнее стремится к нулю:

Дифференцированием называют операцию нахождения производной.

Таблица производных некоторых элементарных функций

Функция Производная
$c$ $0$
$x$ $1$
$x^n$ $nx^$
$<1>/$ $-<1>/$
$√x$ $<1>/<2√x>$
$e^x$ $e^x$
$lnx$ $<1>/$
$sinx$ $cosx$
$cosx$ $-sinx$
$tgx$ $<1>/$
$ctgx$ $-<1>/$

Основные правила дифференцирования

1. Производная суммы (разности) равна сумме (разности) производных

Найти производную функции $f(x)=3x^5-cosx+<1>/$

Производная суммы (разности) равна сумме (разности) производных.

2. Производная произведения

Найти производную $f(x)=4x·cosx$

3. Производная частного

4. Производная сложной функции равна произведению производной внешней функции на производную внутренней функции

Физический смысл производной

Если материальная точка движется прямолинейно и ее координата изменяется в зависимости от времени по закону $x(t)$, то мгновенная скорость данной точки равна производной функции.

Точка движется по координатной прямой согласно закону $x(t)= 1,5t^2-3t + 7$, где $x(t)$ — координата в момент времени $t$. В какой момент времени скорость точки будет равна $12$?

1. Скорость – это производная от $x(t)$, поэтому найдем производную заданной функции

$v(t) = x'(t) = 1,5·2t -3 = 3t -3$

2. Чтобы найти, в какой момент времени $t$ скорость была равна $12$, составим и решим уравнение:

Геометрический смысл производной

Напомним, что уравнение прямой, не параллельной осям координат, можно записать в виде $y = kx + b$, где $k$ – угловой коэффициент прямой. Коэффициент $k$ равен тангенсу угла наклона между прямой и положительным направлением оси $Ох$.

Производная функции $f(x)$ в точке $х_0$ равна угловому коэффициенту $k$ касательной к графику в данной точке:

Следовательно, можем составить общее равенство:

На рисунке касательная к функции $f(x)$ возрастает, следовательно, коэффициент $k > 0$. Так как $k > 0$, то $f'(x_0) = tgα > 0$. Угол $α$ между касательной и положительным направлением $Ох$ острый.

На рисунке касательная к функции $f(x)$ убывает, следовательно, коэффициент $k 0$

Для того, чтобы найти $f'(x_0)$, найдем тангенс угла наклона между касательной и положительным направлением оси $Ох$. Для этого достроим касательную до треугольника $АВС$.

Найдем тангенс угла $ВАС$. (Тангенсом острого угла в прямоугольном треугольнике называется отношение противолежащего катета к прилежащему катету.)

$f'(x_0) = tg ВАС = 0,25$

Производная так же применяется для нахождения промежутков возрастания и убывания функции:

Если $f'(x) > 0$ на промежутке, то функция $f(x)$ возрастает на этом промежутке.

Производная сложной функции. Примеры решений

На данном уроке мы научимся находить производную сложной функции. Урок является логическим продолжением занятия Как найти производную?, на котором мы разобрали простейшие производные, а также познакомились с правилами дифференцирования и некоторыми техническими приемами нахождения производных. Таким образом, если с производными функций у Вас не очень или какие-нибудь моменты данной статьи будут не совсем понятны, то сначала ознакомьтесь с вышеуказанным уроком. Пожалуйста, настройтесь на серьезный лад – материал не из простых, но я все-таки постараюсь изложить его просто и доступно.

На практике с производной сложной функции приходится сталкиваться очень часто, я бы даже сказал, почти всегда, когда Вам даны задания на нахождение производных.

Смотрим в таблицу на правило (№5) дифференцирования сложной функции:

Разбираемся. Прежде всего, обратим внимание на запись . Здесь у нас две функции – и , причем функция , образно говоря, вложена в функцию . Функция такого вида (когда одна функция вложена в другую) и называется сложной функцией.

Функцию я буду называть внешней функцией, а функцию – внутренней (или вложенной) функцией.

! Данные определения не являются теоретическими и не должны фигурировать в чистовом оформлении заданий. Я применяю неформальные выражения «внешняя функция», «внутренняя» функция только для того, чтобы Вам легче было понять материал.

Для того, чтобы прояснить ситуацию, рассмотрим:

Найти производную функции

Под синусом у нас находится не просто буква «икс», а целое выражение , поэтому найти производную сразу по таблице не получится. Также мы замечаем, что здесь невозможно применить первые четыре правила, вроде бы есть разность, но дело в том, что «разрывать на части» синус нельзя:

В данном примере уже из моих объяснений интуитивно понятно, что функция – это сложная функция, причем многочлен является внутренней функцией (вложением), а – внешней функцией.

Первый шаг, который нужно выполнить при нахождении производной сложной функции состоит в том, чтобы разобраться, какая функция является внутренней, а какая – внешней.

В случае простых примеров вроде понятно, что под синус вложен многочлен . А как же быть, если всё не очевидно? Как точно определить, какая функция является внешней, а какая внутренней? Для этого я предлагаю использовать следующий прием, который можно проводить мысленно или на черновике.

Представим, что нам нужно вычислить на калькуляторе значение выражения при (вместо единицы может быть любое число).

Что мы вычислим в первую очередь? В первую очередь нужно будет выполнить следующее действие: , поэтому многочлен и будет внутренней функцией :

Во вторую очередь нужно будет найти , поэтому синус – будет внешней функцией:

После того, как мы РАЗОБРАЛИСЬ с внутренней и внешней функциями самое время применить правило дифференцирования сложной функции .

Начинаем решать. С урока Как найти производную? мы помним, что оформление решения любой производной всегда начинается так – заключаем выражение в скобки и ставим справа вверху штрих:

Сначала находим производную внешней функции (синуса), смотрим на таблицу производных элементарных функций и замечаем, что . Все табличные формулы применимы и в том, случае, если «икс» заменить сложным выражением, в данном случае:

Обратите внимание, что внутренняя функция не изменилась, её мы не трогаем.

Ну и совершенно очевидно, что

Результат применения формулы в чистовом оформлении выглядит так:

Далее мы берем производную внутренней функции, она очень простая:

Постоянный множитель обычно выносят в начало выражения:

Если осталось какое-либо недопонимание, перепишите решение на бумагу и еще раз прочитайте объяснения.

Найти производную функции

Это пример для самостоятельного решения (ответ в конце урока).

Найти производную функции

Как всегда записываем:

Разбираемся, где у нас внешняя функция, а где внутренняя. Для этого пробуем (мысленно или на черновике) вычислить значение выражения при . Что нужно выполнить в первую очередь? В первую очередь нужно сосчитать чему равно основание: , значит, многочлен – и есть внутренняя функция:

И, только потом выполняется возведение в степень , следовательно, степенная функция – это внешняя функция:

Согласно формуле , сначала нужно найти производную от внешней функции, в данном случае, от степени. Разыскиваем в таблице нужную формулу: . Повторяем еще раз: любая табличная формула справедлива не только для «икс», но и для сложного выражения. Таким образом, результат применения правила дифференцирования сложной функции следующий:

Снова подчеркиваю, что когда мы берем производную от внешней функции , внутренняя функция у нас не меняется:

Теперь осталось найти совсем простую производную от внутренней функции и немного «причесать» результат:

Найти производную функции

Это пример для самостоятельного решения (ответ в конце урока).

Для закрепления понимания производной сложной функции приведу пример без комментариев, попробуйте самостоятельно разобраться, порассуждать, где внешняя и где внутренняя функция, почему задания решены именно так?

а) Найти производную функции

б) Найти производную функции

Найти производную функции

Здесь у нас корень, а для того, чтобы продифференцировать корень, его нужно представить в виде степени . Таким образом, сначала приводим функцию в надлежащий для дифференцирования вид:

Анализируя функцию, приходим к выводу, что сумма трех слагаемых – это внутренняя функция, а возведение в степень – внешняя функция. Применяем правило дифференцирования сложной функции :

Степень снова представляем в виде радикала (корня), а для производной внутренней функции применяем простое правило дифференцирования суммы:

Готово. Можно еще в скобках привести выражение к общему знаменателю и записать всё одной дробью. Красиво, конечно, но когда получаются громоздкие длинные производные – лучше этого не делать (легко запутаться, допустить ненужную ошибку, да и преподавателю будет неудобно проверять).

Найти производную функции

Это пример для самостоятельного решения (ответ в конце урока).

Интересно отметить, что иногда вместо правила дифференцирования сложной функции можно использовать правило дифференцирования частного , но такое решение будет выглядеть как извращение забавно. Вот характерный пример:

Найти производную функции

Здесь можно использовать правило дифференцирования частного , но гораздо выгоднее найти производную через правило дифференцирования сложной функции:

Подготавливаем функцию для дифференцирования – выносим минус за знак производной, а косинус поднимаем в числитель:

Косинус – внутренняя функция, возведение в степень – внешняя функция.
Используем наше правило :

Находим производную внутренней функции, косинус сбрасываем обратно вниз:

Готово. В рассмотренном примере важно не запутаться в знаках. Кстати, попробуйте решить его с помощью правила , ответы должны совпасть.

Найти производную функции

Это пример для самостоятельного решения (ответ в конце урока).

До сих пор мы рассматривали случаи, когда у нас в сложной функции было только одно вложение. В практических же заданиях часто можно встретить производные, где, как матрешки, одна в другую, вложены сразу 3, а то и 4-5 функций.

Найти производную функции

Разбираемся во вложениях этой функции. Пробуем вычислить выражение с помощью подопытного значения . Как бы мы считали на калькуляторе?

Сначала нужно найти , значит, арксинус – самое глубокое вложение:

Затем этот арксинус единицы следует возвести в квадрат :

И, наконец, семерку возводим в степень :

То есть, в данном примере у нас три разные функции и два вложения, при этом, самой внутренней функцией является арксинус, а самой внешней функцией – показательная функция.

Согласно правилу сначала нужно взять производную от внешней функции. Смотрим в таблицу производных и находим производную показательной функции: Единственное отличие – вместо «икс» у нас сложное выражение , что не отменяет справедливость данной формулы. Итак, результат применения правила дифференцирования сложной функции следующий:

Под штрихом у нас снова сложная функция! Но она уже проще. Легко убедиться, что внутренняя функция – арксинус, внешняя функция – степень. Согласно правилу дифференцирования сложной функции сначала нужно взять производную от степени:

Теперь все просто, находим по таблице производную арксинуса и немного «причесываем» выражение:

Найти производную функции

Это пример для самостоятельного решения (ответ в конце урока).

На практике правило дифференцирования сложной функции почти всегда применяется в комбинации с остальными правилами дифференцирования.

Найти производную функции

Сначала используем правило дифференцирования суммы , заодно в первом слагаемом выносим постоянный множитель за знак производной по правилу :

В обоих слагаемых под штрихами у нас находится произведение функций, следовательно, нужно дважды применить правило :

Замечаем, что под некоторыми штрихами у нас находятся сложные функции , . Каламбур, но это простейшие из сложных функций, и при определенном опыте решения производных Вы будете легко находить их устно.
А пока запишем подробно, согласно правилу , получаем:

! Обратите внимание на приоритет (порядок) применения правил: правило дифференцирования сложной функции применяется в последнюю очередь.

Найти производную функции

Это пример для самостоятельного решения (ответ в конце урока).

Пожалуй, хватит на сегодня. Хочется еще привести пример с дробью и сложной функцией, но такой пример принципиально ничем не отличается от двух последних заданий, единственное отличие – вместо правила применяем правило .

Для закрепления темы рекомендую статью Сложные производные. Логарифмическая производная. Помимо рассмотрения дополнительных примеров, есть и новый материал! После изучения третьего урока вы будете очень уверенно себя чувствовать в ходе дальнейшего изучения математического анализа. Если задания покажутся слишком трудными (у всех разный уровень подготовки), то сначала посетите страницу Простейшие типовые задачи с производной, там рассмотрено ещё порядка 15-ти производных.

Пример 4: Указание: перед дифференцированием необходимо перенести степень наверх, сменив у показателя знак .

Добавить комментарий