Принцип действия и устройство электродвигателя

СОДЕРЖАНИЕ:

Устройство двигателя электромобиля

Электродвигатель – устройство, которое занимается преобразованием электроэнергии в механическую. Он работает, используя принцип электромагнитной индукции.В последнее время он все сильнее популяризируется на автомобильном рынке в качестве перспективного направления развития автопромышленности. Поэтому есть смысл подробнее ознакомиться с устройством электромобиля, его двигателя, за которым может быть будущее отрасли.

Принцип работы и устройство

Электродвигатель включает в себя статор и ротор. Вращающееся магнитное поле в статоре действует на обмотку ротора и наводит в нём ток индукции, возникает вращающий момент, который приводит в движение ротор. Электроэнергия, поступающая на обмотки мотора, преобразуется в механическую энергию вращения.

Благодаря развитию технологии электродвигатели нашли применение в разных отраслях, например, автомобилестроении. Причем они способны использоваться либо отдельно, либо совместно с двигателем внутреннего сгорания (ДВС). Последний вариант – гибридные авто.

От электродвигателей, применяемых на производствах, агрегат для авто отличается малыми габаритами, но повышенной мощностью. К тому же современные разработки все больше отдаляют двигатели для автомобилей от иных подобных устройств. Характеристиками электромобилей являются не только показатели мощности, крутящего момента, но и частота вращения, ток и напряжение. Поскольку от этих данных зависит передвижение и обслуживание авто.

Чтобы лучше разобраться в многообразии, которое нам дарит авторынок, стоит рассмотреть существующие виды электродвигателей для электромобилей.

Их можно условно классифицировать по типу тока:

  • устройства переменного тока;
  • конструкции постоянного тока;
  • решения универсального образца (способны функционировать от постоянного и переменного тока).

Электродвигатели переменного тока делятся на группы:

  • асинхронные – скорость вращения магнитного поля статора выше скорости вращения ротора;
  • синхронные – частоты вращения магнитного поля статора и ротора совпадают.

С учетом используемого количества фаз, электрические устройства разделяют на: одно-, двух-, трехфазные.

Если привести реальные образцы, используемые известными автопроизводителями, то хороший пример применения трехфазного агрегата асинхронного типа – Volt от Chevrolet. Он является гибридным автомобилем. Пример трехфазного синхронного двигателя — i-MiEV от Mitsubishi. А этот автомобиль является исключительно электрическим.

Силовая установка Chevrolet Volt

Следует отметить, что у разных производителей разные двигатели, отличающиеся массой, мощностью, габаритами и прочими параметрами.

Есть еще одна классификация – по конструкции щеточно-коллекторного узла. Такие агрегаты бывают:

  • Бесколлекторными. Представляют собой замкнутую систему, в которую входят: преобразователь координат, инвертор и извещатель положения.
  • Коллекторными. Щеточно-коллекторный узел играет роль в такой конструкции одновременно и извещателя положения ротора, и переключателя тока в обмотках. В основном используется ток постоянной частоты.

В конструкциях электромобилей зачастую задействуются коллекторные моторы, хотя есть примеры и с иными моделями. Как вариант — автомобиль «Санрейсер», в котором установлен как раз бесколлекторный двигатель от компании General Motors. При массе 3,6 кг его КПД составляет 92%.

Нельзя не отметить еще один тип двигателя, который используется в некоторых современных моделях авто. Это система мотор-колесо. Пример — спорт-кар Volage. В такой конструкции предусмотрена возможность регенерации энергии торможения. Для этого используется тяговый двигатель Active Wheel. Он весит всего 7 кг, что позволяет добиться приемлемой массы колеса – 11 кг.

Самой распространенной сегодня конструкцией является решение с питанием от аккумуляторной батареи. Она нуждается в регулярной зарядке, способной реализоваться за счет внешних источников, генератора в конструкции и рекуперации энергии торможения. Генератор действует от ДВС, поэтому такая схема работы уже не относится к чисто электрическим. Подобные машины называют гибридными.

Преимущества и недостатки электродвигателей

Выделим достоинства электрических агрегатов:

  • высокий коэффициент полезного действия – до 95 процентов;
  • компактность, малый вес;
  • простота использования;
  • экологичность;
  • долговечность;
  • создается максимальный показатель крутящего момента на любой отметке скорости;
  • воздушное охлаждение;
  • способны функционировать в режиме генератора;
  • не нужна коробка передач;
  • возможность рекуперации энергии торможения.

В качестве примера удачной разработки модели с высокими характеристиками можно привести мотор от Yasa Motors. Инженеры компании создали агрегат, который при весе 25 кг способен выдавать до 650 Нм крутящего момента.

Электродвигатель Yasa Motors

Что касается недостатков непосредственно электродвигателя, то их нет. Больше вопросов вызывает питание агрегата, что, собственно, и тормозит распространение, широкое использование технологии. Поэтому на данный момент большей популярностью пользуются гибридные авто, нежели электромобили. Благодаря такой схеме увеличивается запас хода, позволительно использовать менее мощные и дорогостоящие аккумуляторные батареи.

Устройство электромобиля

Если сравнивать электромобиль с авто, где используется ДВС, он характеризуется более простой схемой, минимальным числом движущихся элементов. Следовательно, такое решение является более надежным.

Главные составляющие электромобиля:

  • непосредственно электродвигатель;
  • питающая аккумуляторная батарея разной емкости, которая связана с мощностью мотора;
  • упрощенная трансмиссия;
  • инвертор;
  • зарядное устройство на борту;
  • электронная система управления элементами конструкции;
  • преобразователь.

Питание мотора в этой схеме организовывает, конечно же, тяговая аккумуляторная батарея. Зачастую задействуется литий-ионный тип, включающий в себя несколько модулей, подключенных последовательно. На выходе аккумулятора формируется напряжение от 300 (В) постоянного тока. Это значение определяется моделью авто. Современные образцы способны создавать и 700 В. Пример – автомобили Lola-Drayson, разработанные для гонок. Они оснащаются батареями напряжением 700 (В) и емкостью 60 кВт⋅ч.

Для корректного взаимодействия емкость батареи подбирается с учетом мощности двигателя. Этот показатель в подавляющем большинстве конструкций составляет от 15 до 200 (кВт). Если сравнить электрический двигатель с ДВС, то у первого КПД составляет 95%, а у другого – 25%. Разница существенна.

Имеются примеры в автомобилестроении, когда в конструкции используется несколько агрегатов. Они могут приводить в движение определенные колеса. Такой принцип организации позволяет увеличить тяговую мощность авто. Двигатель, интегрированный в колесо, имеет массу преимуществ, однако такое устройство тягового электродвигателя характеризуется ухудшенной управляемостью транспортного средства. Поэтому разработчики продолжают вести активную деятельность в этом направлении.

Электродвигатель с редуктором (вид снизу)

Что касается трансмиссии, то у электромобиля она имеет упрощенный вид. Многие конструкции оснащены одноступенчатым редуктором. Благодаря инвертору происходит преобразование высокого напряжения постоянного тока батареи. За счет наличия в конструкции бортового зарядного устройства гарантируется зарядка аккумулятора от электросети бытового назначения.

Обеспечением зарядки дополнительной батареи на 12 (В) занимается преобразователь. Эта батарея задействуется в качестве питающего элемента различных устройств транспортного средства:

  • аудиосистемы;
  • климат-контроля;
  • освещения;
  • отопительной системы;
  • прочих элементов.

Система управления организовывает такие процессы:

  • мониторинг используемой энергии;
  • управление рекуперацией энергии торможения;
  • оценка уровня заряда;
  • управление динамикой движения;
  • обеспечение необходимого режима перемещения транспортного средства;
  • регулировка тяги;
  • управление напряжением.

Система объединяет блок управления, датчики и прочие элементы других систем авто. Благодаря датчикам оценивается уровень давления в тормозной системе, разряда батареи, а также положение селектора переключения передач, тормозной педали и педали газа. По данным этих устройств обеспечивается оптимальное перемещение электромобиля с учетом текущих условий. На панели приборов традиционно отображаются основные показатели функционирования транспортного средства.

панель приборов Tesla

Внешне электромобиль не имеет отличий от традиционного автомобиля с ДВС, однако основные расхождения находятся в области эксплуатации: высокая стоимость, необходимость длительной зарядки, ограниченный ход. Поэтому устройство электромобиля имеет определенные расхождения с составом традиционного транспортного средства.

Высокая стоимость авто формируется в основном из-за цены на аккумуляторы, которые еще и имеют небольшой срок службы – до 7 лет. Это вынуждает специалистов искать новые решения для совершенствования технологии: литий — полимерные батареи, суперконденсаторы, топливные составляющие и прочие.

Затраты на содержание электромобиля зачастую ниже, чем авто с ДВС, особенно в тех государствах, где стоимость электроэнергии низкая.

Слабым местом электромобиля является также невысокий уровень автономного функционирования, вызванный коротким километражем без подзарядки. Этот параметр определяется многими факторами:

  • стилем вождения;
  • условиями и скоростью передвижения;
  • емкостью используемых аккумуляторов;
  • уровнем использования дополнительного оборудования.

К примеру, при скорости 80 км/ч средний показатель дальности передвижения электрического транспортного средства составит около 140 км. Если же повысить скорость до 120 км/ч, этот показатель резко упадет до 80 км. Благодаря внедрению систем рекуперативного торможения степень автономности может повышаться до показателя в 300 км и более.

Как отмечалось, зарядка аккумулятора требует много времени, поэтому этот недостаток решается несколькими подходами:

  • замена батареи на заряженную (услугу могут предоставлять на специальных станциях);
  • ускоренная зарядка – за полчаса может зарядиться 80% емкости аккумулятора;
  • нормальный режим – продолжительность зарядки может составить 8 часов.

Устройство и особенности гибридных систем

Применение гибридных автомобилей не только имеет свои преимущества, например, экологические, но и преследует определенные цели действующих игроков автомобильного рынка. Компании намерены сохранить налаженное конвейерное производство двигателей внутреннего сгорания. А постоянное ужесточение норм выброса вредных веществ – лишнее тому подтверждение.

По сути, гибридные системы подразумевают использование электродвигателя как дополнительного элемента, который способствует повышению мощности и экономии топлива. Ведь все подобные машины начинают движение именно благодаря ДВС.

Гибридные системы условно можно разделить на подвиды:

  • Интегрированное содействие мотору.
  • Интегрированный генератор стартера. Система, как и предыдущая, позволяет начинать движение машине, только в этом случае используется меньший электродвигатель.
  • Система остановки/старта двигателя. Происходит отключение мотора, когда его мощность не используется, а затем он запускается моментально, как только это необходимо.

Различают также три вида «гибридов»:

  • Параллельный. В этом случае батареи передают энергию электродвигателю, а бак – топливо для ДВС. Оба агрегата способны создать условия для перемещения транспортного средства.
  • Последовательный. ДВС поворачивает генератор, который может или завести электродвигатель, или зарядить аккумуляторы.
  • Последовательно-параллельная. ДВС, электродвигатель и генератор соединены с колёсами через планетарный редуктор.

Большинство существующих сейчас гибридных автомобилей относятся к параллельным. Хорошим решением является транспортное средство с подзарядкой. Оно открывает новые эксплуатационные возможности, нивелируя недостаток ограниченности пробега. При исчерпании заряда аккумулятора в работу вступает ДВС малой мощности.

Гибридная система существенно снижает уровень выводимых газов и увеличивает продуктивность расхода топлива, что особо актуально в условиях крупного населенного пункта. А рекуперативная система аккумулирует энергию.

Управление гибридным транспортным средством похоже на управление обычным автомобилем с автоматической коробкой передач. Только в этом случае обеспечивается низкий уровень шума, лучшая управляемость и повышенная мощность. При этом не нужно специально подзаряжать аккумуляторную батарею, это происходит при работе автомобиля.

Перспективы применения электродвигателей в автомобилях

Судя по текущим тенденциям, мировые лидеры автомобильной промышленности, политики и другие влиятельные лица всерьез взялись за то, чтобы развивать отрасль производства электрических автомобилей. Это видно по регулярно внедряемым нормам, которые постоянно повышают планку по выбросу максимального уровня вредных газов в атмосферу, и по мощной рекламной кампании, которая развернулась в медиапространстве в поддержку такого типа транспортных средств. В развитых странах с каждым годом растет количество заправочных станций, обеспечивающих зарядку электромобилей.

Поэтому открываются большие возможности инженерам для развития отрасли. И для этого есть два основных направления – адаптировать серийные автотранспортные средства или вести разработку новых моделей. Конечно, менее затратным мероприятием является усовершенствование существующих моделей.

Как раз европейские специалисты и занимаются улучшением нынешних гибридных двигателей, в то время как японские компании занялись совершенствованием обычного двигателя. Им удалось увеличить степень сжатия. При этом состав топлива остался неизменным.

В свою очередь, немецкие разработчики установили небывалый рекорд. Созданному электромобилю удалось проехать без подзарядки целых 600 км. Для автомобилей с ДВС это не показатель, однако электромобили могут похвастаться теперь и такими возможностями.

Дело в том, что даже Tesla, ведущий участник рынка, ещё не создал легкий аккумулятор, который смог вытянуть это расстояние. А в этом случае разработчикам удалось достичь показателя в 600 км.

Автомобиль проехал расстояние между двумя немецкими городами – Мюнхеном и Берлином. Его средняя скорость передвижения по трассе составила около 90 км/ч. Установление подобного рекорда стало возможным благодаря плодотворной работе предприятия DBM Energy, которое в тесном сотрудничестве с Lekker Energie создало такое решение.

В электромобиле была установлена аккумуляторная батарея емкостью 115 кВт/ч. Благодаря этому транспортное средство способно увеличивать мощность до 55 кВт, что отвечает приблизительно объему 1,4 Л для бензинового двигателя. Эффективность такой батареи доказывает установка в погрузчик, который способен увеличить время своей работы в четыре раза, если сравнивать действия с обычным аккумулятором. Именно этот емкостный агрегат был установлен на немецкий автомобиль Audi A2.

Может сложиться впечатление, что автомобиль «пустой», однако это не так. Организаторы эксперимента оснастили его всем необходимым: кондиционером, усилителем руля, аудиосистемами, системами безопасности и даже подогревом сидений. Поэтому потребление энергии, кроме перемещения, требовалось для выполнения и других функций.

Как стало известно, подобная технология находится на рассмотрении министерства экономики Германии, поэтому вполне возможно, что уже в скором времени эта отрасль получит новый толчок. Уже есть планы, по которым к 2020 году правительство страны намеревается достичь показателя в один миллион электрических автомобилей на европейских дорогах. Причем это не только транспортные средства личного пользования, но и другого назначения.

К тому же один из менеджеров компании Lekker Energie сообщил, что используемый аккумулятор на автомобиле А2 способен обеспечить общий пробег на уровне 500 тысяч километров.

Есть и еще один рекорд в этом направлении, поставленный Japan Electric Vehicle Club. Однако он касается чистого эксперимента. Это значит, что для повседневного использования такой электрокар не приспособлен. В результате японцам удалось побить рекорд – 1 тыс. км без подзарядки.

Какие бы разработки не велись в этой области, они сводятся к тому, что их должны поддержать гиганты автомобильной промышленности. Только им под силу внедрить достойное новшество, распространяя его по всему миру, создавая необходимую инфраструктуру, сервис и прочие необходимые средства. Все это требует больших затрат, поэтому предложенная идея может быть воплощена в жизнь, если расчеты по ее реализации дадут действительно существенную прибыль и установят новую планку стандартов на мировом рынке.

Тем не менее, учитывая текущее положение вещей, вряд ли стоит предполагать, что уже очень быстро электромобили займут свою большую нишу в автомобилестроении. И важный фактор, притормаживающий прогресс — психология человека. Очень непросто переубедить автомобилистов пересесть с бензиновых и дизельных автомобилей на электрические. Это особенно сложно сделать тем, кто занимается автогонками или является любителем динамичной езды.

Электромобиль Tesla Model S

Но тенденция к изменению отношения к такому явлению, как электрокар, уже проявляется. Сегодня все больше подобных автомобилей можно встретить на дорогах не только Европы, но и России. Пусть их еще немного, но их дополняют бесплатные зарядные станции в некоторых странах, позволяющие перемещаться на большие расстояния. Поэтому электрический транспорт постепенно становится естественным участником дорожного движения, закладывая фундамент новой эры машиностроения.

Электрический двигатель

Содержание

Принцип действия

В основу работы подавляющего числа электрических машин положен принцип электромагнитной индукции. Электрическая машина состоит из неподвижной части — статора (для асинхронных и синхронных машин переменного тока) или индуктора (для машин постоянного тока) и подвижной части — ротора (для асинхронных и синхронных машин переменного тока) или якоря (для машин постоянного тока). В роли индуктора на маломощных двигателях постоянного тока очень часто используются постоянные магниты.

Ротор асинхронного двигателя может быть:

  • короткозамкнутым;
  • фазным (с обмоткой) — используются там, где необходимо уменьшить пусковой ток и регулировать частоту вращения асинхронного электродвигателя. В большинстве случаев это крановые электродвигатели серии МТН, которые повсеместно используются в крановых установках.

Якорь — это подвижная часть машин постоянного тока (двигателя или генератора) или же работающего по этому же принципу так называемого универсального двигателя (который используется в электроинструменте). По сути универсальный двигатель — это тот же двигатель постоянного тока (ДПТ) с последовательным возбуждением (обмотки якоря и индуктора включены последовательно). Отличие только в расчётах обмоток. На постоянном токе отсутствует реактивное (индуктивное или ёмкостное) сопротивление. Поэтому любая «болгарка», если из неё извлечь электронный блок, будет вполне работоспособна и на постоянном токе, но при меньшем напряжении сети.

Принцип действия трехфазного асинхронного электродвигателя

При включении в сеть в статоре возникает круговое вращающееся магнитное поле, которое пронизывает короткозамкнутую обмотку ротора и наводит в ней ток индукции. Отсюда, следуя закону Ампера (на проводник с током, помещенный в магнитное поле, действует отклоняющая сила), ротор приходит во вращение. Частота вращения ротора зависит от частоты питающего напряжения и от числа пар магнитных полюсов.

Разность между частотой вращения магнитного поля статора и частотой вращения ротора характеризуется скольжением. Двигатель называется асинхронным, так как частота вращения магнитного поля статора не совпадает с частотой вращения ротора.

Синхронный двигатель имеет отличие в конструкции ротора. Ротор выполняется либо постоянным магнитом, либо электромагнитом, либо имеет в себе часть беличьей клетки (для запуска) и постоянные магниты или электромагниты. В синхронном двигателе частота вращения магнитного поля статора и частота вращения ротора совпадают. Для запуска используют вспомогательные асинхронные электродвигатели, либо ротор с короткозамкнутой обмоткой.

Асинхронные двигатели нашли широкое применение во всех отраслях техники. Особенно это касается простых по конструкции и прочных трехфазных асинхронных двигателей с коротко-замкнутыми роторами, которые надежнее и дешевле всех электрических двигателей и практически не требуют никакого ухода. Название «асинхронный» обусловлено тем, что в таком двигателе ротор вращается не синхронно с вращающимся полем статора. Там, где нет трехфазной сети, асинхронный двигатель может включаться в сеть однофазного тока.

Статор асинхронного электродвигателя состоит, как и в синхронной машине, из пакета, набранного из лакированных листов электротехнической стали толщиной 0,5 мм, в пазах которого уложена обмотка. Три фазы обмотки статора асинхронного трехфазного двигателя, пространственно смещенные на 120°, соединяются друг с другом звездой или треугольником.

На рисунке показана принципиальная схема двухполюсной машины — по четыре паза на каждую фазу. При питании обмоток статора от трехфазной сети получается вращающееся поле, так как токи в фазах обмотки, которые смещены в пространстве на 120° друг относительно друга сдвинуты по фазе друг относительно друга на 120°.

Для синхронной частоты вращения nc поля электродвигателя с р парами полюсов справедливо при частоте тока f <\displaystyle f>: n c = 60 f p <\displaystyle n_=<\frac <60f>

>>

Ротор асинхронного электродвигателя также состоит из листов электротехнической стали и может быть выполнен в виде короткозамкнутого ротора (с «беличьей клеткой») или ротора с контактными кольцами (фазный ротор).

В короткозамкнутом роторе обмотка состоит из металлических стержней (медь, бронза или алюминий), которые расположены в пазах и соединяются на концах закорачивающими кольцами (рис. 1). Соединение осуществляется методом пайки твердым припоем или сваркой. В случае применения алюминия или алюминиевых сплавов стержни ротора и закорачивающие кольца, включая лопасти вентилятора, расположенные на них, изготавливаются методом литья под давлением.

У ротора электродвигателя с контактными кольцами в пазах находится трехфазная обмотка, похожая на обмотку статора, включенную, например, звездой; начала фаз соединяются с тремя контактными кольцами, закрепленными на валу. При пуске двигателя и для регулировки частоты вращения можно подключить к фазам обмотки ротора реостаты (через контактные кольца и щетки). После успешного разбега контактные кольца замыкаются накоротко, так что обмотка ротора двигателя выполняет те же самые функции, что и в случае короткозамкнутого ротора.

Классификация электродвигателей

По принципу возникновения вращающего момента электродвигатели можно разделить на гистерезисные и магнитоэлектрические. У двигателей первой группы вращающий момент создается вследствие гистерезиса при перемагничивании ротора. Данные двигатели не являются традиционными и не широко распространены в промышленности.

Наиболее распространены магнитоэлектрические двигатели, которые по типу потребляемой энергии подразделяется на две большие группы — на двигатели постоянного тока и двигатели переменного тока (также существуют универсальные двигатели, которые могут питаться обоими видами тока).

Двигатели постоянного тока

Двигатель постоянного тока — двигатель, переключение фаз в котором осуществляется прямо в самом двигателе. Благодаря этому такой двигатель может питаться постоянным током, но так же и переменным.

Данная группа двигателей в свою очередь разделяется по способу переключения фаз и наличию обратной связи подразделяется на:

Щёточно-коллекторный узел обеспечивает электрическое синхронное переключение цепей вращающейся части машины и является наиболее ненадежным и сложным в обслуживании конструктивным элементом. [1]

По типу возбуждения коллекторные двигатели можно разделить на:

  1. Двигатели с независимым возбуждением от электромагнитов и постоянных магнитов;
  2. Двигатели с самовозбуждением.

Двигатели с самовозбуждением делятся на:

  1. Двигатели с параллельным возбуждением (обмотка якоря включается параллельно обмотке возбуждения);
  2. Двигатели последовательного возбуждения (обмотка якоря включается последовательно обмотке возбуждения);
  3. Двигатели смешанного возбуждения (часть обмотки возбуждения включается последовательно с якорем, а вторая часть — параллельно обмотке якоря или последовательно соединённым обмотке якоря и первой обмотки возбуждения, в зависимости от требуемой нагрузочной характеристики).

Бесколлекторные двигатели (вентильные двигатели) — электродвигатели в котором переключение фаз осуществляется с помощью специального электронного блока (инвертора), могут быть с обратной связью с использованием датчика положения ротора, либо без обратной связи, фактически аналог асинхронного.

Каждый электрик должен знать:  Потеря напряжения в трехфазной линии с нагрузкой на конце

Двигатели пульсирующего тока

Двигатель пульсирующего тока — электрический двигатель, питание которого осуществляется пульсирующим электрическим током. По конструкции очень близок к двигателю постоянного тока. Его конструктивными отличиями от двигателя постоянного тока являются шихтованные вставки в остове, шихтованные дополнительные полюса, большее число пар полюсов, наличие компенсационной обмотки. Применяется на электровозах с установками для выпрямления переменного тока [2]

Двигатели переменного тока

Двигатель переменного тока — электрический двигатель, питание которого осуществляется переменным током. По принципу работы эти двигатели разделяются на синхронные и асинхронные двигатели. Принципиальное различие состоит в том, что в синхронных машинах первая гармоника магнитодвижущей силы статора движется со скоростью вращения ротора (благодаря чему сам ротор вращается со скоростью вращения магнитного поля в статоре), а у асинхронных — всегда есть разница между скоростью вращения ротора и скоростью вращения магнитного поля в статоре (поле вращается быстрее ротора).

Синхронный электродвигатель — электродвигатель переменного тока, ротор которого вращается синхронно с магнитным полем питающего напряжения.

Синхронные электродвигатели подразделяются на [3] :

  • синхронный двигатель с обмотками возбуждения. Данные двигатели обычно используются при больших мощностях (от сотен киловатт и выше). [4]
  • синхронный двигатель с постоянными магнитами;
  • синхронный реактивный двигатель;
  • гистерезисный двигатель;
  • шаговый двигатель;
  • гибридный синхронный реактивный двигатель с постоянными магнитами;
  • реактивно-гистерезисный двигатель.

Существуют синхронные двигатели с дискретным угловым перемещением ротора — шаговые двигатели. У них заданное положение ротора фиксируется подачей питания на соответствующие обмотки. Переход в другое положение осуществляется путём снятия напряжения питания с одних обмоток и передачи его на другие. Ещё один вид синхронных двигателей — вентильный реактивный электродвигатель, питание обмоток которого формируется при помощи полупроводниковых элементов.

Асинхронный электродвигатель — электродвигатель переменного тока, в котором частота вращения ротора отличается от частоты вращающего магнитного поля, создаваемого питающим напряжением. Эти двигатели наиболее распространены в настоящее время.

По количеству фаз двигатели переменного тока подразделяются на:

Универсальный коллекторный электродвигатель

Универсальный коллекторный электродвигатель — коллекторный электродвигатель, который может работать и на постоянном, и на переменном токе. Изготавливается только с последовательной обмоткой возбуждения на мощности до 200 Вт. Статор выполняется шихтованным из специальной электротехнической стали. Обмотка возбуждения включается частично при переменном токе и полностью при постоянном. Для переменного тока номинальные напряжения 127, 220 В, для постоянного 110, 220 В. Применяется в бытовых аппаратах, электроинструментах. Двигатели переменного тока с питанием от промышленной сети 50 Гц не позволяют получить частоту вращения выше 3000 об/мин. Поэтому для получения высоких частот применяют коллекторный электродвигатель, который к тому же получается легче и меньше двигателя переменного тока той же мощности или применяют специальные передаточные механизмы, изменяющие кинематические параметры механизма до необходимых нам (мультипликаторы). При применении преобразователей частоты или наличии сети повышенной частоты (100, 200, 400 Гц) двигатели переменного тока оказываются легче и меньше коллекторных двигателей (коллекторный узел иногда занимает половину пространства). Ресурс асинхронных двигателей переменного тока гораздо выше, чем у коллекторных, и определяется состоянием подшипников и изоляции обмоток.

Синхронный двигатель с датчиком положения ротора и инвертором является электронным аналогом коллекторного двигателя постоянного тока. Строго говоря, универсальный коллекторный двигатель является коллекторным электродвигателем постоянного тока с последовательно включенными обмотками возбуждения (статора), оптимизированным для работы на переменном токе бытовой электрической сети. Такой тип двигателя независимо от полярности подаваемого напряжения вращается в одну сторону, так как за счёт последовательного соединения обмоток статора и ротора смена полюсов их магнитных полей происходит одновременно и результирующий момент остаётся направленным в одну сторону. Для возможности работы на переменном токе применяется статор из магнитно-мягкого материала, имеющего малый гистерезис (сопротивление перемагничиванию). Для уменьшения потерь на вихревые токи статор выполняют наборным из изолированных пластин. Особенностью (в большинстве случаев — достоинством) работы такого двигателя именно на переменном токе (а не на постоянном такого же напряжения) является то, что в режиме малых оборотов (пуск и перегрузка) индуктивное сопротивление обмоток статора ограничивает потребляемый ток и соответственно максимальный момент двигателя (оценочно) до 3—5 от номинального (против 5—10 при питании того же двигателя постоянным током). Для сближения механических характеристик у двигателей общего назначения может применяться секционирование обмоток статора — отдельные выводы (и меньшее число витков обмотки статора) для подключения переменного тока.

Синхронный электродвигатель возвратно-поступательного движения

Принцип его работы заключается в том, что подвижная часть двигателя представляет собой постоянные магниты, закреплённые на штоке. Через неподвижные обмотки пропускается переменный ток и постоянные магниты под действием магнитного поля, создаваемого обмотками, перемещают шток возвратно-поступательным образом. [5]

История

Принцип преобразования электрической энергии в механическую энергию электромагнитным полем был продемонстрирован британским учёным Майклом Фарадеем в 1821 и состоял из свободно висящего провода, окунающегося в ртуть. Постоянный магнит был установлен в середине ванны со ртутью. Когда через провод пропускался ток, провод вращался вокруг магнита, показывая, что ток вызывал циклическое магнитное поле вокруг провода [6] . Этот двигатель часто демонстрируется на школьных уроках физики, вместо токсичной ртути используют электролит. Это — самый простой вид из класса электрических двигателей. Последующим усовершенствованием является Колесо Барлоу. Оно было демонстрационным устройством, непригодным в практических применениях из-за ограниченной мощности.

Изобретатели стремились создать электродвигатель для производственных нужд. Они пытались заставить железный сердечник двигаться в поле электромагнита возвратно-поступательно, то есть так, как движется поршень в цилиндре паровой машины. Русско-прусский ученый Б.С. Якоби пошёл иным путём. В 1834 г. он создал первый в мире практически пригодный электродвигатель с вращающимся якорем и опубликовал теоретическую работу «О применении электромагнетизма для приведения в движение машины». Б.С. Якоби писал, что его двигатель несложен и «дает непосредственно круговое движение, которое гораздо легче преобразовать в другие виды движения, чем возвратно-поступательное».

Вращательное движение якоря в двигателе Якоби происходило вследствие попеременного притяжения и отталкивания электромагнитов. Неподвижная группа U-образных электромагнитов питалась током непосредственно от гальванической батареи, причем направление тока в этих электромагнитах оставалось неизменным. Подвижная группа электромагнитов была подключена к батарее через коммутатор, с помощью которого направление тока в каждом электромагните изменялось восемь раз за один оборот диска. Полярность электромагнитов при этом соответственно изменялась, а каждый из подвижных электромагнитов попеременно притягивался и отталкивался соответствующим неподвижным электромагнитом: вал двигателя начинал вращаться. Мощность такого двигателя составляла всего 15 Вт. Впоследствии Якоби довел мощность электродвигателя до 550 Вт. Этот двигатель был установлен сначала на лодке, а позже на железнодорожной платформе.

В 1839 г. Якоби построил лодку с электромагнитным двигателем, который от 69 элементов Грове развивал 1 лошадиную силу и двигал лодку с 14 пассажирами по Неве против течения. Это было первое применение электромагнетизма к передвижению в больших размерах.

Электродвигатель у бактерий

Электродвигатель из нескольких белковых молекул преобразует энергию электрического тока в виде движения протонов во вращение жгутика, используемого для передвижения некоторыми видами бактерий. [7] [8]

6.3.4. Принцип действия и устройство электрических машин переменного тока

Как и машины постоянного тока, электрические машины переменного тока состоят из статора и ротора. По способу образования магнитного поля статора и ротора машины переменного тока делятся на две группы: асинхронные и синхронные. В основе работы асинхронных и синхронных машин лежит образование вращающегося магнитного поля.

Обмотки статора обычно присоединяются к сети переменного тока и создают вращающееся магнитное поле, поэтому устройство этой части асинхронных и синхронных машин получается одинаковым.

Получение вращающегося магнитного поля. В асинхронных и синхронных машинах вращающееся магнитное поле статора образуется при протекании трехфазного тока в трех обмотках, оси которых сдвинуты в пространстве на 120°/р, где р — число пар полюсов обмотки. При р = 1 получается двухполюсное вращающееся магнитное поле, образование которого можно пояснить с помощью рис. 6.27.

Расположим три одинаковые катушки AX, BY, CZ так, что их оси смещены на 120° по отношению друг к другу (рис. 6.27а). Присоединим катушки к симметричной трехфазной системе ЭДС. Пусть токи входят в начало катушек А, В, С и изменяются следующим образом:

Графическое изменение этих токов во времени показано на рис. 6.27б.

Каждый из токов будет создавать пульсирующее поле, направленное вдоль оси своей катушки. Положительное направление магнитной индукции поля первой катушки в соответствии с правилом буравчика обозначим (ток направлен от начала катушки А к ее концу X), второй — , третьей — . Индукцию первой катушки обозначим ВА, второй – ВB, третьей — ВC.

Изобразим мгновенные значения ВА, ВB, ВС и результирующую индукцию Врез для моментов времени (рис. 6.27в, г, д, е).

Очевидно, что с течением времени вектор результирующей магнитной индукции, оставаясь по величине неизменным, вращается в направлении от начала первой катушки с током к началу второй катушки с отстающим током . Если поменять токи двух любых катушек местами, направление вращения поля изменится на обратное.

Таким образом, полный оборот результирующий вектор магнитной индукции двухполюсного магнитного поля совершит за время, равное периоду переменного тока обмотки, т.е. частота вращения двухполюсного магнитного поля (об/мин), где — частота питающей сети.

Токи в трехфазной обмотке могут возбуждать не только двухполюсное, но и многополюсное вращающееся магнитное поле. Для этого количество катушек в фазе увеличивается в число раз, равное требуемому числу пар полюсов магнитного поля, а размеры катушек уменьшаются в такое же число раз.

Скорость вращения магнитного поля, образующего две пары полюсов, будет в два раза меньше, чем скорость вращения двухполюсного поля, так как за один период изменения токов полюсы поворачиваются на пространственный угол, равный 180 о .

где — число пар полюсов магнитного поля.

Из выражения (6.3.) видно, что при принятой в нашей стране и многих других странах мира промышленной частоте 50 Гц частота вращения магнитных полей статора с трехфазной обмоткой при различном числе пар полюсов составит:

Принцип действия и устройство асинхронного двигателя. Вращающееся поле статора пересекает проводники обмотки ротора и индуцирует в них ЭДС. При замкнутой обмотке ротора под действием ЭДС в обмотке возникают токи, направление которых определяется по правилу правой руки (рис. 6.28.).

Взаимодействие этих токов с полем статора создает действующие на проводники электромагнитные силы F, направление которых определяется по правилу левой руки. Как видно из рис. 6.28, эти силы стремятся повернуть ротор в направлении вращения магнитного поля статора. Совокупность сил F, приложенных к отдельным проводникам, создает на роторе электромагнитный момент M, приводящий его в движение с частотой вращения .

Относительную разность и принято характеризовать безразмерной величиной, называемой скольжением . Важнейшим свойством асинхронной машины является то, что при ее работе магнитное поле статора и ротор перемещаются с разными частотами вращения, не синхронно (асинхронно), что и получило отражение в наименовании этой машины.

Скольжение асинхронного двигателя может изменяться в пределах . При этом соответствует режиму холостого хода, когда ротор не испытывает противодействующих моментов, а соответствует неподвижному ротору( ) — режим короткого замыкания или пуска. Обычно в номинальном режиме асинхронного двигателя величина скольжения составляет 0,01. 0,06.

Как и все электрические машины, асинхронные двигатели обратимы, т. е. они могут работать в режиме генератора, отдающего энергию в трехфазную сеть. Для этого внешними силами ротор необходимо раскрутить до частоты вращения , большей чем , при этом . Токи обмотки ротора создают свое собственное магнитное поле. Анализ показывает, что независимо от частоты вращения ротора, магнитное поле его токов перемещается в пространстве с той же частотой вращения , что и магнитное поле статора, т.е. в любом режиме асинхронной машины магнитные поля статора и ротора взаимно неподвижны друг относительно друга. Этим и обеспечивается электромеханическое преобразование энергии в асинхронной машине.

Рассмотренный принцип работы асинхронных машин определяет и их конструкцию, состоящую из статора и ротора. Статоры трехфазных асинхронных двигателей устроены одинаково, а роторы конструктивно отличаются друг от друга.

Основными частями статора являются корпус, сердечник и трехфазная обмотка. С корпусом прочно соединены два боковых подшипниковых щита с подшипниками, в которых вращается вал ротора.

Начала и концы фаз асинхронных машин состоят из пакета магнитопровода цилиндрической формы, набранного из стальных дисков с пазами, в которых располагаются обмотки. Пакет магнитопровода с обмоткой расположен на валу. Между пакетом ротора и пакетом сердечника статора имеется равномерный зазор.

Различают два типа обмоток ротора. Обмотки первого типа содержат медные или алюминиевые стержни, вставляемые или заливаемые в пазы ротора без изоляции. Эти стержни замыкаются накоротко по обоим торцам пакета ротора медными или алюминиевыми кольцами соответственно. Двигатель с ротором такого типа называют короткозамкнутым или с «беличьей клеткой» (рис. 6.29а). Ротор также называется короткозамкнутым (рис. 6.29б).

На рис. 6.29а обозначено: 1 — корпус статора; 2 — коробка выводов; 3 — обмотка статора; 4 — сердечник статора; 5 — ротор; 6 — подшипниковый щит.

На рис. 6.29б обозначено: 1 — замыкающие кольца; 2 вентиляционные лопасти; 3 — вал; 4 — пакет ротора; 5 — стержни обмотки.

В пазы обмоток второго типа укладывается трехфазная обмотка, как и на статоре. Фазы обмотки соединяются звездой и три свободных ее конца присоединяются к трем изолированным контактным кольцам, насаженным на вал (рис. 6.30а).

На рис. 6.30а обозначено: 1 — вал; 2 — подшипниковый щит; 3 — щеткодержатель; 4 — крышка люка; 5 — обмотка статора; 6 — сердечник статора; 7 — кожух вентилятора; 8 — сердечник ротора; 9 — обмотка ротора; 10 — контактные кольца; 11 — крышка подшипника.

На рис. 6.30б обозначено: 1 — обмотка; 2 — контактные кольца; 3 – вал.

На боковом подшипниковом щите укрепляется щеткодержатель, причем так, чтобы расположенные в нем три группы щеток надежно соприкасались с контактными кольцами ротора. Ротор с катушечной трехфазной обмоткой и контактными кольцами называют фазным (рис. 6.30б). Машины с контактными кольцами допускают подключение внешней цепи к цепи ротора для изменения характеристик двигателя в процессе управления.

Асинхронные двигатели являются самыми распространенными электрическими машинами в промышленности и сельском хозяйстве.

Принцип действия и устройство синхронных машин. Синхронной называется такая машина переменного тока, частота вращения ротора которой равна частоте вращения магнитного поля статора, определяемой выражением (6.3).

Ротор такой машины представляет электромагнит, возбуждаемый постоянным током. В синхронных машинах малой мощности вместо обмотки на роторе могут использоваться постоянные магниты.

В режиме генератора ротор синхронной машины приводится во вращение первичным двигателем с номинальной скоростью, которая поддерживается постоянной автоматическим регулятором. После этого генератор возбуждается подачей постоянного тока в обмотку ротора. Вращающийся с постоянной скоростью поток полюсов (рис. 6.31а), пересекая трехфазную обмотку статора, наводит в ней ЭДС, одинаковые по амплитуде и частоте, сдвинутые по фазе относительно друг друга на угол 120° (рис. 6.31б).

На рис. 6.32 изображено устройство трехфазной синхронной машины.

На рис. 6.33 обозначено: 1 – сердечник статора; 2 – трехфазная обмотка статора; 3 – полюсы ротора с обмоткой постоянного тока; 4 – кольца для соединения обмотки ротора с источником постоянного тока; 5 – вентиляторы.

По устройству ротора различают два типа синхронной машины: машина с явнополюсным ротором, в которой катушки обмотки постоянного тока размещены на выступающих полюсах (рис. 6.33а), и машина с неявнополюсным ротором, в котором распределенная обмотка постоянного тока уложена в пазы ротора (рис. 6.33б).

Явнополюсная синхронная машина изготовляется для скорости вращения до 1500 об/мин и используется в качестве генератора или двигателя. Наиболее крупные синхронные машины устанавливаются на гидроэлектростанциях и приводятся во вращение водяными турбинами со скоростью до 300 об/мин.

Неявнополюсная синхронная машина используется в основном как генератор на тепловых электростанциях и приводится во вращение паровой турбиной со скоростью обычно 3000 об/мин (при частоте 50 Гц).

ЭДС в обмотках машин переменного тока. Вращающееся магнитное поле статора асинхронных и синхронных машин индуцирует в фазных обмотках статора ЭДС, пропорциональную магнитной индукции магнитного потока Ф полюса вращающегося магнитного поля и относительной скорости перемещения проводника обмотки относительно поля. Последняя пропорциональна частоте вращения магнитного поля и, следовательно, частоте сети (6.3), поэтому действующее значение ЭДС фазы статора определяется по формуле

где , — конструктивный коэффициент, зависящий от геометрических размеров машины, типа и параметров обмотки статора.

В синхронной машине ротор вращается синхронно с полем статора, т.е. по отношению к вращающемуся полю, обмотка ротора неподвижна и в ее проводниках ЭДС не индуцируется.

Напротив, в асинхронной машине частоты вращения магнитного поля статора и ротора неодинаковы. Поэтому обмотка ротора перемещается относительно вращающегося поля статора с частотой скольжения .

В соответствии с этим ЭДС ротора асинхронной машины вращающегося со скольжением определяется по формуле , где — конструктивный коэффициент обмотки ротора.

Принцип работы электродвигателей

Электродвигатель является одним из ключевых изобретений человечества. Именно благодаря электрическим моторам нам удалось добиться такого высокого развития нашей цивилизации. Основные принципы работы этого устройства изучаются уже в школе. Современный электродвигатель может выполнять множеств различных задач. В основе его работы лежит передача вращения электроприводного вала на другие виды движения. В этой статье мы подробно рассмотрим, как работает это устройство.

Характеристики электродвигателей

Электромотор, по сути, представляет собой прибор, при помощи которого электрическая энергия переходит в механическую. В основе этого явления лежит магнетизм. Соответственно, в конструкцию электродвигателя входят постоянные магниты и электрические магниты, а также различные другие материалы, обладающие притягивающими свойствами. Сегодня этот прибор используется практически повсеместно. Например, электромотор является ключевой деталью часов, стиральных машин, кондиционеров, миксеров, фенов, вентиляторов, кондиционеров и других бытовых приборов. Вариантов использования электродвигателя в промышленности бесчисленное множество. Их размеры тоже варьируются от головки спички до двигателя на поездах.

Виды электромоторов

В настоящее время производится множество разновидностей электромоторов, которые разделяются по типу конструкции и электропитания.

По принципу электропитания все модели можно разделить на:

  1. устройства переменного тока, которые в качестве питания используют электросеть;
  2. приборы постоянного тока, работающие от блоков питания, пальчиковых батареек, аккумуляторов и других подобных источников.

По механизму работы все электродвигатели разделяются на:

  1. синхронные, имеющие роторные обмотки и щеточный механизм, использующийся для подачи на обмотки электрического тока;
  2. асинхронные, отличающиеся более простой конструкцией без щеток и роторных обмоток.

Принцип работы этих электромоторов существенно отличается. Синхронный двигатель вращается с той же скоростью, что и магнитное поле, которое его вращает. В то же время, асинхронный мотор вращается с меньшей скоростью, чем электромагнитное поле.

Классы электродвигателей (различаются в зависимости от используемого тока):

  • класс AC (Alternating Current) — работает от переменного источника тока;
  • класс DC (Direct Current) — использует для работы постоянный ток;
  • универсальный класс, который может использовать для работы любой источник тока.

Кроме того, электрические двигатели могут отличаться не только по типу конструкции, но и также по способам контроля скорости вращений. При этом, во всех устройствах независимо от типа используется один и тот же принцип преобразования электрической энергии в механическую.

Принцип работы агрегата на постоянном токе

Этот тип электромотора работает на основе принципа, разработанного Майклом Фарадеем в далеком 1821 году. Его открытие заключается в том, что при взаимодействии электрического импульса с магнитом есть вероятность возникновения постоянного вращения. То есть, если в магнитном поле разметить вертикальную рамку и пропустить по ней электрический ток, то вокруг проводника может возникнуть электромагнитное поле. Оно будет непосредственно контактировать с полюсами магнитов. Получается, что к одному из магнитов рамка будет притягиваться, а от другого отталкиваться. Соответственно, она повернется из вертикального положения в горизонтальное, в котором влияние магнитного поля на проводник будет нулевым. Получается, что для продолжения движения нужно будет дополнить конструкцию еще одной рамкой под углом или же поменять направление тока в первой рамке. В большинстве приборов это достигается за счет двух полуколец, к которым присоединяются контактные пластинки от аккумулятора. Они способствуют быстрому изменению полярности, в результате чего движение продолжается.

Современные электромоторы не имеют постоянных магнитов, так как их место занимаю электрические магниты и катушки индуктивности. То есть, если вы разберете любой такой двигатель, то увидите витки проволоки, покрытые изоляционным составом. По сути, они и представляют собой электромагнит, который еще называется обмоткой возбуждения. Постоянные магниты в конструкции электродвигателей применяются только в небольших детских игрушках, работающих от пальчиковых батареек. Все остальные более мощные электродвигатели оснащаются только электрическими магнитами или же обмотками. При этом, вращающаяся деталь получила название ротор, а статичная — статор.

Как работает асинхронный электромотор

Корпус асинхронного двигателя вмещает в себя обмотки статора, благодаря которым и создается вращающееся поле магнита. Концы для подключения обмоток выводят через специальную клеммную колодку. Охлаждение осуществляется за счет вентилятора, размещенного на вале в торце электрического двигателя. Ротор плотно соединен с валом, изготовленным из металлических стержней. Эти короткозамкнутые стержни замыкаются между собой с обеих сторон. За счет такой конструкции, двигатель не нуждается в периодическом обслуживании, так как здесь нет необходимости время от времени менять токоподающие щетки. Именно поэтому, асинхронные моторы считаются более надежными и долговечными, чем синхронные. В основном причиной поломки асинхронных двигателей является изнашивание подшипников, на которых осуществляется вращение вала.

Для работы асинхронных двигателей необходимо, чтобы вращение ротора осуществлялось медленнее, чем вращение электромагнитного поля статора. Именно за счет этого в роторе и возникает электрический ток. Если бы вращение осуществлялось с одинаковой скоростью, то по закону индукции ЭДС не образовывалось бы, и отсутсвовало вращение в целом. Однако, в настоящей жизни за счет трения подшипников и повышенной нагрузки на вал ротор будет крутиться медленнее. Магнитные полюса регулярно вращаются в обмотках ротора, за счет чего постоянно изменяется направление тока в роторе.

По этому же принципу работает и круговая пила, так как наибольшие обороты она набирает без нагрузки. Когда пила начинает резать доску, ее скорость вращения снижается и одновременно ротор начинает вращаться медленнее по отношению к электромагнитному полю. Соответственно, по законам электротехники в нем начинает возникать еще большая величина ЭДС. После этого возрастает потребляемый мотором ток и он начинает работу на полной мощности. При нагрузке, при которой мотор застопорится, может возникнуть разрушение короткозамкнутого ротора. Это возникает из-за того, что в двигателе возникает максимальная величина ЭДС. Именно поэтому необходимо подбирать электромотор необходимой мощности. Если взять двигатель слишком большой мощности, то это может привести к неоправданным затратам энергии.

Каждый электрик должен знать:  Системы охлаждения компьютера

Скорость, с которой вращается ротор, в данном случае зависит от количества полюсов. Если в устройстве имеется два полюса, то скорость вращения будет соответствовать скорости вращения магнитного поля. Максимально асинхронный электрический двигатель может развивать до 3 тысяч оборотов в секунду. Частота сети при этом может составлять до 50 Гц. Для уменьшения скорости в два раза вам придется повысить количество полюсов в статоре до 4 и так далее. Единственный недостаток асинхронных моторов — это то, что они могут поддаваться регулировке скорости вращения вала только посредством изменения частоты электрического тока. Кроме того, в асинхронном моторе вы не сможете добиться постоянной частоты вращения вала.

Как работает синхронный электрический двигатель переменного тока

Синхронный электрический двигатель применяется в тех случаях, когда нужна постоянная скорость вращения и возможность ее быстрой регулировки. Кроме того, синхронный мотор используется там, где нужно добиться скорости вращения более 3 тысяч оборотов, что является пределом для асинхронного двигателя. Поэтому, такой тип электродвигателя преимущество используется в бытовой технике, такой как пылесос, электрический инструментарий, стиральная машина и так далее.

Корпус синхронного мотора переменного тока содержит обмотки, которые наматываются на якорь и ротор. Их контакты припаиваются к секторам токосъемного коллектора и кольца, на которые посредством графитовых щеток подают напряжение. Выводы здесь располагаются так, чтобы щетки всегда подавали напряжения только на одну пару. Из недостатков синхронного мотора можно отметить их меньшую надежность, по сравнению асинхронными двигателями.

Самые частые поломки синхронных двигателей:

  • Преждевременный износ щеток или нарушение их контакта из-за ослабления пружины.
  • Загрязнение коллектора, который чистится при помощи спирта или нулевой наждачной бумаги.
  • Изнашивание подшипников.

Принцип работы синхронного мотора

Вращающий момент в таком электродвигателе создается путем взаимодействия между магнитным полем и током якоря, которые контактируют между собой в обмотке возбуждения. По мере направления переменного тока будет изменяться и направление магнитного потока, что обеспечивает вращение в только в одну сторону. Скорость вращения регулируется путем изменения силы подаваемого напряжения. Изменение скорости напряжения чаще всего используется в пылесосах и дрелях, где для этой цели применяется переменное сопротивление или реостат.

Механизм работы отдельных типов двигателя

Промышленные электродвигатели могут работать как на постоянном, так и на переменном токе. В основе их конструкции лежит статор, который представляет собой электромагнит, создающий магнитное поле. Промышленный электромотор содержит обмотки, которые поочередно подключаются к источнику питания при помощи щеток. Они попеременно поворачивают ротор на определенный угол, что приводит его в движение.

Самый простой электродвигатель для детских игрушек может работать только при помощи постоянного тока. То есть, он может получать ток от пальчиковой батарейки или аккумулятора. Ток при этом проходит по рамке, находящейся между полюсами магнита постоянного типа. Благодаря взаимодействию магнитных полей рамки с магнитом она начинает вращаться. По завершению каждого полуоборота, коллектор переключает контакты в рамке, которые проходят к батарейке. В результате этого рамка совершает вращательные движения.

Таким образом, на сегодняшний день существует большое количество электродвигателей разнообразного предназначения, которые имеют один принцип работы.

БЛОГ ЭЛЕКТРОМЕХАНИКА

Студенческий блог для электромеханика. Обучение и практика, новости науки и техники. В помощь студентам и специалистам

18.03.2015

Устройство и принцип действия асинхронных электродвигателей

Асинхронные электродвигатели просты по конструкции, экономичны и надежны в работе. На судах асинхронные двигатели применяют для привода различных машин, механизмов и устройств; они составляют 80—90% общего числа устанавливаемых на судне электродвигателей.

Принцип действия асинхронного трехфазного двигателя основан на использовании вращающегося магнитного поля. На рис. 1,а представлена модель, поясняющая работу двигателя. При вращении постоянного магнита с частотой n1 в неподвижном замкнутом витке индуктируется э. д. с. Е и протекает ток I, направление которых определяется правилом правой руки.

Устройство и принцип действия синхронного двигателя

Принцип действия синхронного двигателя примерно такой же, как и у асинхронного. Но есть несколько отличий, которые имеют ключевое значение при выборе мотора для той или иной конструкции. В промышленности получили широкое распространение асинхронные машины – их доля достигает 96% от общего количества электрических двигателей. Но это вовсе не говорит о том, что отсутствуют другие типы электрических агрегатов.

Отличие от асинхронного мотора

Главное отличие синхронной машины заключается в том, что скорость вращения якоря такая же, как и аналогичная характеристика магнитного потока. И если в асинхронных моторах используется короткозамкнутый ротор, то в синхронных имеется на нем проволочная обмотка, к которой подводится переменное напряжение. В некоторых конструкциях используются постоянные магниты. Но это делает двигатель дороже.

Если увеличивать нагрузку, подключаемую к ротору, частота вращения его не изменится. Это одна из ключевых особенностей такого типа машин. Обязательное условие – у движущегося магнитного поля должно быть столько же пар полюсов, сколько у электромагнита на роторе. Именно это гарантирует постоянную угловую скорость вращения этого элемента двигателя. И она не будет зависеть от момента, приложенного к нему.

Конструкция мотора

Устройство и принцип действия синхронных двигателей несложны. Конструкция включает в себя такие элементы, как:

  1. Неподвижная часть – статор. На ней находится три обмотки, которые соединяются по схеме «звезда» или «треугольник». Статор собран из пластин электротехнической стали с высокой степенью проводимости.
  2. Подвижная часть – ротор. На нем тоже имеется обмотка. При работе на нее подается напряжение.

Между ротором и статором имеется прослойка воздуха. Она обеспечивает нормальное функционирование двигателя и позволяет магнитному полю беспрепятственно воздействовать на элементы агрегата. В конструкции присутствуют подшипники, в которых вращается ротор, а также клеммная коробка, расположенная в верхней части мотора.

Как работает двигатель

Если кратко, принцип действия синхронного двигателя, как и любого другого, заключается в преобразовании одного вида энергии в другой. А конкретно – электрической в механическую. Работает мотор таким образом:

  1. На статорные обмотки подается переменное напряжение. Оно создает магнитное поле.
  2. На обмотки ротора также подается переменное напряжение, создающее поле. Если используются постоянные магниты, то это поле уже по умолчанию имеется.
  3. Два магнитных поля взаимопересекаются, противодействуют друг другу – одно толкает другое. Из-за этого двигается ротор. Именно он установлен на шарикоподшипниках и способен свободно вращаться, дать ему нужно только толчок.

Вот и все. Теперь остается только использовать полученную механическую энергию в нужных целях. Но требуется знать, как правильно вывести в нормальный режим синхронный двигатель. Принцип работы у него отличается от асинхронного. Поэтому требуется придерживаться определенных правил.

Для этого электродвигатель подключают к оборудованию, которое необходимо привести в движение. Обычно это механизмы, которые должны работать практически без остановок – вытяжки, насосы и прочее.

Синхронные генераторы

Обратная конструкция – синхронные генераторы. В них процессы протекают немного иначе. Принцип действия синхронного генератора и синхронного двигателя отличаются, но не существенно:

  1. На обмотку статора не подается напряжение. С нее оно снимается.
  2. На обмотку ротора подается переменное напряжение, которое необходимо для создания магнитного поля. Потребление электроэнергии крайне маленькое.
  3. Ротор электрогенератора раскручивается при помощи дизельного или бензинового двигателя либо же силой воды, ветра.
  4. Вокруг ротора имеется магнитное поле, которое двигается. Поэтому в обмотке статора индуцируется ЭДС, а на концах появляется разность потенциалов.

Но в любом случае требуется стабилизировать напряжение на выходе генераторной установки. Для этого достаточно запитать роторную обмотку от источника, напряжение которого постоянно и не изменяется при колебаниях частоты вращения.

Полюсы обмоток двигателя

В конструкции ротора имеются постоянные или электрические магниты. Их обычно называют полюсами. На синхронных машинах (двигателях и генераторах) индукторы могут быть двух типов:

Они различаются между собой только взаимным расположением полюсов. Для уменьшения сопротивления со стороны магнитного поля, а также улучшения условий для проникновения потока, используются сердечники, изготовленные из ферромагнетиков.

Эти элементы располагаются как в роторе, так и в статоре. Для изготовления используются только сорта электротехнической стали. В ней очень много кремния. Это отличительная особенность такого вида металла. Это позволяет существенно уменьшить вихревые токи, повысить электрическое сопротивление сердечника.

Воздействие полюсов

В основе конструкции и принципа действия синхронных двигателей лежит обеспечение влияния пар полюсов ротора и статора друг на друга. Для обеспечения работы нужно разогнать индуктор до определенной скорости. Она равна той, с которой вращается магнитное поле статора. Именно это позволяет обеспечить нормальную работу в синхронном режиме. В момент, когда происходит запуск, магнитные поля статора и ротора взаимно пересекаются. Это называется «вход в синхронизацию». Ротор начинает вращаться со скоростью, как у магнитного поля статора.

Запуск электродвигателей синхронного типа

Самое сложное в работе синхронного мотора – это его запуск. Именно поэтому его используют крайне редко. Ведь конструкция усложняется за счет системы запуска. На протяжении долгого времени работа синхронного двигателя зависела от разгонного асинхронника, механически соединенным с ним. Что это значит? Второй тип двигателя (асинхронный) позволял разогнать ротор синхронной машины до подсинхронной частоты. Обычные асинхронники не требуют специальных устройств для запуска, достаточно только подать рабочее напряжение на обмотки статора.

После того, как будет достигнута требуемая скорость, происходит отключение разгонного двигателя. Магнитные поля, которые взаимодействуют в электрическом моторе, сами выводят его на работу в синхронном режиме. Для разгона потребуется другой двигатель. Его мощность должна составлять примерно 10-15 % от аналогичной характеристики синхронной машины. Если нужно вывести в режим электродвигатель 1 кВт, для него потребуется разгонный мотор мощностью 100 Вт. Этого вполне достаточно, чтобы машина смогла работать как в режиме холостого хода, так и с незначительной нагрузкой на валу.

Более современный способ разгона

Стоимость такой машины оказывалась намного выше. Поэтому проще использовать обычный асинхронный мотор, пусть и много у него недостатков. Но именно его принцип работы и был использован для уменьшения габаритов и стоимости всей установки. При помощи реостата производится замыкание обмоток на роторе. В итоге двигатель становится асинхронным. А запустить его оказывается намного проще – просто подается напряжение на обмотки статора.

Во время выхода на подсинхронную скорость возможно раскачивание ротора. Но это не происходит за счет работы его обмотки. Напротив, она выступает в качестве успокоителя. Как только частота вращения будет достаточной, производится подача постоянного напряжения на обмотку индуктора. Двигатель выводится в синхронный режим. Но такой способ можно воплотить только в том случае, если используются моторы с обмоткой на роторе. Если там применяется постоянный магнит, придется устанавливать дополнительный разгонный электродвигатель.

Преимущества и недостатки синхронных моторов

Основное преимущество (если сравнивать с асинхронными машинами) – за счет независимого питания роторной обмотки агрегаты могут работать и при высоком коэффициенте мощности. Также можно выделить такие достоинства, как:

  1. Снижается ток, потребляемый электродвигателем, увеличивается КПД. Если сравнивать с асинхронным мотором, то эти характеристики у синхронной машины оказываются лучше.
  2. Момент вращения прямо пропорционален напряжению питания. Поэтому даже если снижается напряжение в сети, нагрузочная способность оказывается намного выше, нежели у асинхронных машин. Надежность устройств такого типа существенно выше.

Но вот имеется один большой недостаток – сложная конструкция. Поэтому при производстве и последующих ремонтах затраты окажутся выше. Кроме того, для питания обмотки ротора обязательно требуется наличие источника постоянного тока. А регулировать частоту вращения ротора можно только с помощью преобразователей – стоимость их очень высокая. Поэтому синхронные моторы используются там, где нет необходимости часто включать и отключать агрегат.

Однофазный асинхронный двигатель: устройство и принцип действия

Двигатель однофазный функционирует за счёт переменчивого электротока и подключается к сети с одной фазой. Линия должна иметь напряжённость 220 В и частоту 50 Гц.

Выпускаются модификации с мощностью от 5 Вт — 10 кВт.

Электромоторы этого вида находят применение в маломощных аппаратах:

  • бытовой технике;
  • вентиляторах;
  • насосах;
  • станках и т. п.

Значения КПД, силы и отправного момента у однофазных двигателей значительно ниже, нежели у трехфазных приборов тех же объёмов. Перегрузочная способность, кроме того, больше у моторов с 3 фазами. Таким образом, мощность однофазного приспособления не превосходит 70% силы трехфазного того же объёма.

Устройство однофазного двигателя

По сути, имеет 2 фазы, однако, работу осуществляет лишь один из них, по этой причине двигатель именуют однофазным. Как и все без исключения электромашины, однофазный двигатель складывается из 2 элементов: неподвижной (статор) и мобильной (ротор). Предполагает собой асинхронный электромотор, неподвижной частью которого является одна основная работающая обмотка, подключаемая к источнику переменного тока. К мощным граням двигателя этого вида можно причислить несложность системы, представляющую собой ротор с замкнутой обмоткой. К минусам — низкие значения отправного момента и КПД.

Главный недостаток однофазного тока — невозможность генерации им магнитного поля, исполняющего вращение. По этой причине однофазный электромотор не запустится сам при подсоединении к сети.

В теории электромашин функционирует принцип: чтобы появилось магнитное поле, крутящее ротор, в статоре должно быть 2 обмотки (фазы). Необходимо, кроме того, смещение одной обмотки на определённый ракурс относительно другой.

В период работы совершается обтекание обмоток неустойчивыми электрическими полями:

  1. В неподвижном месте однофазного двигателя находится так именуемая отправная электрообмотка. Она смещена на 90 градусов по отношению к основной рабочей.
  2. Сдвиг токов можно приобрести, включив в цепь фазосдвигающий элемент. Для этого могут применяться активные резисторы, катушки индукции и конденсаторы.
  3. В качестве основы для статоров и роторов применяется электротехническая сталь — 2212.

Неверно называть монофазными такие электродвигатели, которые по собственному строению считаются 2- и 3-фазными, однако, подсоединяются к однофазному источнику посредством методик согласования (конденсаторные электромоторы). Эти две фазы таких приборов считаются рабочими и включены все время.

Разновидности и применение

Моторы однофазные 220 В обширно применяются в разнообразном промышленном и бытовом оснащении.

Существуют 2 наиболее востребованных разновидности данных приборов:

Последние по собственной конструкции наиболее просты, но обладают рядом недочётов, из числа которых можно выделить трудности с переменой частоты и направления верчения ротора. Мощность этого мотора зависит от конструктивных отличительных черт и может колебаться от 5 до 10 кВт. Его ротор предполагает короткозамкнутую обмотку — алюминиевые или медные стержни, которые замкнуты с торцов.

Как правило, электромотор асинхронный однофазный снабжён 2-мя смещёнными на 90 ° друг к другу обмотками. При этом основная обмотка захватывает существенную часть пазов, а дополнительная (пусковая) захватывает оставшийся участок. Своё наименование электродвигатель асинхронный приобрёл лишь потому, что он содержит только лишь одну рабочую обмотку.

Протекающий по основной обмотке переменный электроток формирует магнитное меняющееся поле. Оно складывается из 2 слоёв равной амплитуды, вращение которых совершается навстречу друг другу. По закону индукции, изменяющийся в закрытых витках электромагнитный поток в роторах образует индукционный ток, который действует с полем, порождающим его. В случае если ротор в неподвижном состоянии, моменты сил на него равны и в результате он остаётся недвижимым.

При вращении ротора нарушится равенство момента сил, таким образом, движение его витков по отношению к крутящимся магнитным полям будет разным. Таким образом, функционирующая на роторные витки от непосредственного магнитного поля сила Ампера будет значительно больше, чем с края противоположного поля.

Схема запуска

В витках ротора индуктивный электроток может появляться только вследствие пересечения ими насильственных направлений магнитного поля. Их вращение должно реализоваться с быстротой чуть менее частоты верчения поля. Непосредственно отсюда и вышло название — асинхронный электродвигатель. Вследствие повышения механической перегрузки уменьшается быстрота верчения, увеличивается индуктивный электроток в роторных витках. А кроме того, увеличивается механическая мощность мотора и переменного тока, который он употребляет.

Принцип действия:

  1. Благодаря току появляется импульсное магнитное поле в статоре электромотора. Это поле возможно рассматривать как 2 различных поля, которые вращаются разнонаправленно и имеют похожие амплитуды и частоты.
  2. Если ротор располагается в неподвижном состоянии, данные поля приводят к появлению одинаковых по модулю, но разнонаправленных факторов.
  3. Если у двигателя отсутствуют особые начальные механизмы, в этом случае при старте результирующий момент станет равный нулю, а, следовательно — двигатель не будет вертеться.
  4. Если же ротор приведён в обращение в любую сторону, в таком случае соответствующий момент приступает доминировать, а следовательно, ось двигателя продолжит вертеться в определённом направлении.

Пуск выполняется магнитным полем, что крутит мобильную часть двигателя. Оно формируется 2 обмотками: основной и дополнительной. Заключительная обмотка имеет минимальный объем и считается пусковой. Она подключается к главной электрической сети через имеющуюся ёмкость или индуктивность. Подсоединение осуществляется только лишь в период запуска. В моторах с невысокой мощностью отправная фаза замкнута накоротко.

Запуск мотора осуществляют удержанием пусковой клавиши на несколько секунд, вследствие чего совершается разгон ротора. В период отпускания пусковой клавиши электродвигатель с двухфазного режима передаётся в однофазовый режим и его работа удерживается нужной компонентой переменчивого магнитного поля.

Отправная фаза рассчитана на временную работу — как правило, до 3 с. Более продолжительное время пребывания под нагрузкой может послужить причиной к перегреву, возгоранию изоляции и неисправности приспособления. Поэтому немаловажно своевременно освободить пусковую клавишу. С целью увеличения надёжности в корпус двигателей встраивают центробежный коммутатор и термическое реле.

Роль центробежного выключателя состоит в выключении пусковой фазы, если ротор наберёт скорость. Это происходит автоматом — без вмешательства. Тепловое реле отключает фазы обмотки, если они нагреваются свыше допустимого.

Работа механизма

Для работы устройства необходима 1 фаза с усилием 220 В. Это значит, что подсоединить его можно в домашнюю розетку. Непосредственно в этом причина известности двигателя среди населения. В абсолютно всех домашних устройствах, от соковыжималки до шлифующей машины, установлены механизмы такого типа.

Имеется 2 вида электромоторов: с пусковой обмоткой и с конденсатором.

  1. В первом виде приборов отправная обмотка функционирует с помощью конденсатора только в период старта. Уже после достижения техникой обычной скорости она выключается, и деятельность продолжается с 1 обмоткой.
  2. Во втором случае для двигателей с рабочим конденсатором, дополнительная электрообмотка подключена через конденсатор все время.

Электродвигатель может быть взят с одного устройства и включён к другому. К примеру, надёжный однофазный двигатель от стиральной машины либо пылесоса может применяться для работы газонокосилки, станка и т. д.

Схема подключения однофазного асинхронного двигателя:

  1. В 1 схеме работа запускающей обмотки производится с помощью конденсатора и только лишь в период пуска.
  2. 2 модель также учитывает временное подсоединение, но оно совершается через сопротивление, а не через холодильник.
  3. 3 модель считается наиболее популярной. В рамках этой схемы холодильник постоянно подключен к источнику электричества, а не только лишь в период старта.

Подключение мотора с пусковым противодействием

Дополнительная обмотка подобных приборов имеет высокое интенсивное противодействие. Для пуска электромашины этого вида может быть применён пусковой резистор. Его необходимо поочерёдно подсоединить к пусковой обмотке. Подобным способом можно приобрести сдвиг фаз в 30° меж токами обмоток, чего станет абсолютно достаточно для старта приспособления.

Помимо этого, сдвиг фаз может быть приобретён посредством применения пусковой фазы с огромным значением противодействия и наименьшей индуктивностью. У такого рода обмотки меньшее число витков и тоньше кабель.

Подключение двигателя с конденсаторным пуском

У этих электромашин отправная цепь включает конденсатор и вводится только лишь в период старта.

Для свершения наибольшего значения отправного момента необходимо циркулярное магнитное поле, что осуществляет оборот. Для того чтобы оно появилось, токи обмоток должны быть направлены на 90° друг к другу. Подобные фазосдвигающие компоненты, как резистор и дроссель, не гарантируют нужный сдвиг фаз. Только лишь вовлечение в цепь конденсатора даёт возможность приобрести сдвиг фаз 90°, если верно выбрать ёмкость.

Определить нужные провода и то, к какой обмотке они причисляются, можно посредством замера противодействия. У рабочей обмотки значение противодействия постоянно меньше (12 Ом), чем у пусковой обмотки (30 Ом). В соответствии с этим сечение провода основной обмотки больше, чем у пусковой.

Конденсатор подбирается согласно употребляемому двигателем току. К примеру, в случае если ток равен 1,4 А, то нужен конденсатор 6 мкФ.

Контроль функциональности

Ниже перечислены все дефекты, говорящие о вероятных проблемах с мотором, их причиной могла быть некорректная эксплуатация либо перегруженность:

  1. Неисправная опора или монтажные щели.
  2. В середине двигателя потемнела окраска (показывает на перегрев).
  3. Через щели в корпусе внутрь аппарата втянуты сторонние вещества.

Чтобы проконтролировать функциональность двигателя, необходимо включить его сначала на 1 минуту, а потом предоставить потрудиться приблизительно 15 минут.

Если уже после этого мотор окажется тёплым, то:

  • вероятно, подшипники загрязнились, зажались либо попросту износились;
  • причина может быть в очень повышенной ёмкости конденсатора.

Отключите конденсатор и опустите мотор вручную: в случае если он прекратит прогреваться — следует сократить конденсаторную ёмкость.

Онлайн журнал электрика

Статьи по электроремонту и электромонтажу

Устройство и принцип действия асинхронных электродвигателей

Электронные машины, модифицирующие электронную энергию переменного тока в механическую энергию, именуются
электродвигателями переменного тока.

В индустрии наибольшее распространение получили асинхронные движки трехфазного тока.
Разглядим устройство и принцип деяния этих движков.

Принцип деяния асинхронного мотора основан на использовании вращающегося магнитного поля.

Для уяснения работы такового мотора проделаем последующий опыт.

Укрепим подковообразный магнит на оси таким макаром, чтоб его можно было крутить за ручку. Меж полюсами магнита расположим на оси медный цилиндр, способный свободно крутиться.

Набросок 1. Простая модель для получения вращающегося магнитного поля

Каждый электрик должен знать:  Где и почему используется постоянный ток

Начнем крутить магнит за ручку по часовой стрелке. Поле магнита также начнет крутиться и при вращении будет пересекать своими силовыми линиями медный цилиндр. В цилиндре, по закону электрической индукции, возникнут вихревые токи, которые создадут свое собственное магнитное поле — поле цилиндра. Это поле будет вести взаимодействие с магнитным полем неизменного магнита, в итоге чего цилиндр начнет крутиться в ту же сторону, что и магнит.

Установлено, что скорость вращения цилиндра несколько меньше скорости вращения поля магнита.

Вправду, если цилиндр крутится с той же скоростью, что и магнитное поле, то магнитные силовые полосы не пересекают его, а как следует, в нем не появляются вихревые токи, вызывающие вращение цилиндра.

Скорость вращения магнитного поля принято именовать синхронной , потому что она равна скорости вращения магнита, а скорость вращения цилиндра — асинхронной (несинхронной). Потому сам движок получил заглавие
асинхронного мотора . Скорость вращения цилиндра (ротора) отличается от синхронной скорости вращения магнитного поля на маленькую величину, именуемую скольжением.

Обозначив скорость вращения ротора через
n1 и скорость вращения поля через n мы можем
подсчитать величину скольжения в процентах по формуле:

В приведенном выше опыте крутящееся магнитное поле и вызванное им вращение цилиндра мы получали благодаря вращению неизменного магнита, потому такое устройство еще не является электродвигателем . Нужно вынудить электронный ток создавать крутящееся магнитное поле и использовать его для вращения ротора. Задачку эту
в свое время искрометно разрешил М. О. Доливо-Добровольский. Он предложил использовать для этой цели трехфазный ток.

Устройство асинхронного электродвигателя М. О.
Доливо-Добровольского

Набросок 2. Схема асинхронного электродвигателя
Доливо-Добровольского

На полюсах стального сердечника кольцевой формы, именуемого статором электродвигателя , помещены три обмотки,
сети трехфазного тока 0
расположенные одна относительно другой под углом 120°.

Снутри сердечника укреплен на оси железный цилиндр, именуемый ротором электродвигателя.

Если обмотки соединить меж собой так, как показано на рисунке, и подключить их к сети трехфазного тока, то общий магнитный поток, создаваемый 3-мя полюсами, окажется вращающимся.

На рисунке 3 показан график конфигурации токов в обмотках мотора и процесс появления вращающегося магнитного поля.

Разглядим — подробнее этот процесс.

Набросок 3. Получение вращающегося магнитного поля

В положении «А» на графике ток в первой фазе равен нулю, во
2-ой фазе он отрицателен, а в третьей положителен. Ток по катушкам полюсов
потечет в направлении, обозначенном на рисунке стрелками.

Определив по правилу правой руки направление сделанного током магнитного потока, мы убедимся, что на внутреннем конце полюса (обращенном к ротору) третьей катушки будет сотворен южный полюс (Ю), а на полюсе 2-ой катушки — северный полюс (С). Суммарный магнитный поток будет ориентирован от полюса 2-ой катушки через ротор к полюсу третьей катушки.

В положении «Б» на графике ток во 2-ой фазе равен нулю, в первой фазе он положителен, а в третьей отрицателен. Ток, протекая по катушкам полюсов, делает на конце первой катушки южный полюс (Ю), на конце третьей катушки северный полюс (С). Суммарный магнитный поток сейчас будет ориентирован от третьего полюса через ротор к первому полюсу, т. е. полюсы при всем этом переместятся на 120°.

В положении «В» на графике ток в третьей фазе равен нулю, во 2-ой фазе он положителен, а в первой отрицателен. Сейчас ток, протекая по первой и 2-ой катушкам, создаст на конце полюса первой катушки — северный полюс (С), а на конце полюса 2-ой катушки — южный полюс (Ю), т. е. полярность суммарного магнитного поля переместится еще на 120°. В положении «Г» на графике магнитное поле переместится еще на 120°.

Таким макаром, суммарный магнитный поток будет поменять свое направление с конфигурацией направления тока в обмотках статора (полюсов).

При всем этом за один период конфигурации тока в обмотках магнитный поток сделает полный оборот. Крутящийся магнитный поток будет увлекать за собой цилиндр, и мы получим таким макаром асинхронный электродвигатель.

Напомним, что на рисунке 3 обмотки статора соединены «звездой», но крутящееся магнитное поле появляется и при соединении их «треугольником».

Если мы поменяем местами обмотки 2-ой и третьей фаз, то магнитный поток изменит направление собственного вращения на оборотное.

Того же результата можно достигнуть, не меняя местами обмотки статора, а направляя ток 2-ой фазы сети в третью фазу статора, а третью фазу сети — во вторую фазу статора.

Таким макаром, поменять направление вращения магнитного поля можно переключением 2-ух всех фаз.

Мы разглядели устройство асинхронного мотора, имеющего на статоре три обмотки . В данном случае крутящееся магнитное поле двухполюсное и число его оборотов в секунду равно числу периодов конфигурации тока в секунду.

Если на статоре расположить по окружности 6 обмоток, то будет сотворено четырехполюсное крутящееся магнитное поле . При 9 обмотках поле будет шестиполюсным.

При частоте трехфазного тока f , равной 50 периодам за секунду, либо 3000 за минуту, число оборотов n вращающегося поля за минуту будет:

при двухполюсном статоре
n = (50 х 60
) / 1 = 3000 об/мин,

при четырехполюсном статоре n = (50
х 60 ) / 2 =
1500 об/мин,

при шестиполюсном статоре n = (50 х
60 ) / 3 =
1000 об/мин,

при числе пар полюсов статора, равном
p : n = (f х
60 ) / p ,

Итак, мы установили скорость вращения магнитного поля и зависимость ее от числа обмоток на статоре мотора.

Ротор же мотора будет, как нам понятно, несколько отставать в собственном вращении.

Но отставание ротора очень маленькое. Так, к примеру, при холостом ходе мотора разность скоростей составляет всего 3%, а при нагрузке 5
— 7%. Как следует, обороты асинхронного мотора при изменении нагрузки меняются в очень маленьких границах, что является одним из его плюсов.

Разглядим сейчас устройство асинхронных электродвигателей

Статор современного асинхронного электродвигателя имеет невыраженные полюсы, т. е. внутренняя поверхность статора изготовлена совсем гладкой.

Чтоб уменьшить утраты на вихревые токи, сердечник статора набирают из тонких штампованных
железных листов.

Собранный сердечник статора закрепляют в железном корпусе.

В пазы статора закладывают обмотку из медной проволоки. Фазовые обмотки статора электродвигателя соединяются «звездой» либо «треугольником», зачем все начала и концы обмоток выводятся на корпус — на особый изоляционный щиток. Такое устройство статора очень комфортно, потому что позволяет включать его обмотки на различные стандартные напряжения.

Ротор асинхронного мотора , подобно статору, набирается из штампованных листов стали. В пазы ротора закладывается обмотка.

Зависимо от конструкции ротора асинхронные электродвигатели делятся на движки с короткозамкнутым ротором и фазным ротором .

Обмотка короткозамкнутого ротора изготовлена из медных стержней, закладываемых в пазы ротора. Торцы стержней соединены с помощью медного кольца. Такая обмотка именуется обмоткой
типа «беличьей клетки». Заметим, что медные стержни в пазах не изолируются.

В неких движках «беличью клетку» подменяют литым
ротором.

Асинхронный движок с фазным ротором (с контактными кольцами) применяется обычно в электродвигателях большой мощности и в тех случаях; когда нужно, чтоб электродвигатель создавал огромное усилие при трогании с места. Достигается это тем, что в обмотки фазного мотора врубается пусковой реостат.

Короткозамкнутые асинхронные движки пускаются в ход 2-мя методами:

1) Конкретным подключением трехфазного напряжения сети к статору мотора. Этот метод самый обычный
и более пользующийся популярностью.

2) Понижением напряжения, подводимого к обмоткам статора. Напряжение понижают,
к примеру, переключая обмотки статора со «звезды» на «треугольник».

Запуск мотора в ход происходит при соединении обмоток статора «звездой», а когда ротор достигнет обычного числа оборотов, обмотки статора переключаются на соединение «треугольником».

Ток в подводящих проводах при всем этом методе запуска мотора миниатюризируется в 3 раза по сопоставлению с тем током, который появился бы при пуске мотора прямым включением в сеть с обмотками статора, соединенными «треугольником». Но этот метод подходящ только в этом случае, если статор рассчитан для обычной работы при соединении его обмоток
«треугольником».

Более обычным, дешевеньким и надежным является асинхронный электродвигатель с короткозамкнутым ротором , но этот движок обладает некими недочетами — малым усилием при трогании с места и огромным пусковым током. Эти недочеты в значимой мере устраняются применением фазного ротора, но применение такового ротора существенно удорожает движок и просит пускового реостата.

Как работает и как устроен электродвигатель?

Выполнение механической работы — это главный процесс в нашем материальном мире. По этой причине появление электродвигателей стало важнейшим событием в развитии человеческой цивилизации. Именно эти устройства понесли на себе весь груз промышленного производства. Это и обеспечило, в конце концов, так называемую научно-техническую революцию. В любых электрических движках в основу конструкции положено открытие взаимодействия проводов с проходящим по ним электрическим током.

О том, какие результаты были достигнуты за время, прошедшее с этого открытия, и будет рассказано нашим читателям. Напомним, что взаимодействие запитанных электротоком проводов обнаружил Андре Ампер в 1820 году. После этого события была создана конструкция, способная усилить это взаимодействие — соленоид. Катушка с ферромагнитным сердечником при сближении с постоянным магнитом или другой аналогичной катушкой воздействовала на них со значительным усилием. Поэтому оставалось только придумать такое конструктивное решение, которое позволит максимально увеличить взаимодействие соленоидов и придаст ему необходимое направление.

Превращение электроэнергии в механическую работу

Два соленоида могут либо притягиваться, либо отталкиваться. Их взаимодействие определяется полюсами. Одноименные — отталкиваются, разноименные — притягиваются. Поэтому не составляет особого труда догадаться о конструктивном решении, позволяющем получить вращение вала:

  • Вал и соленоид объединяются в жесткую конструкцию. Соленоид располагается так, чтобы создаваемые силовые линии магнитного поля были перпендикулярны оси вращения вала. Полученный элемент двигателя называется ротором, а также индуктором.
  • Вокруг ротора располагаются несколько других соленоидов для его притяжения. Чтобы направление было явно задано, а вращение равномерно, их должно быть как минимум три. Полученный элемент движка называется статором.
  • Статор или ротор в разных конструкциях моторов могут также иметь название якорь. Суть якоря электрического двигателя заключена в его сходстве со своим корабельным тезкой. Для корабельного якоря характерна прикрепленная цепь, соединяющая его с кораблем. А строение якоря электрического движка включает в себя либо ротор, либо статор, а также присоединенный к нему электрический шнур. Он используется для подключения к источнику питания. То есть вместо якоря с цепью получается ротор или статор со шнуром питания — в этом и заключено их сходство и происхождение названия элемента движка.
  • Статор состоит из стальных пластин, которые уменьшают потери электроэнергии, создаваемые вихревыми токами. В результате получается конструкция из обмоток с сердечниками, охватывающая ротор. Они образуют отверстие цилиндрической формы. В него входит цилиндрический ротор с некоторым зазором относительно статора. Такая конструкция электрических двигателей самая распространенная.

Однако для решения некоторых задач необходимо применение иных конструкций. Это может быть, например, расположение ротора снаружи статора или отсутствие вала по причине линейного перемещения элементов двигателя относительно друг друга.

Простейшим линейным двигателем является электромагнит с втягивающимся сердечником. Для того чтобы более точно управлять перемещением подвижной части линейного движка, в нем используется необходимое число взаимодействующих магнитных элементов. Электромагнитами могут быть либо все, либо их часть — это постоянные магниты.

Как видно из рассмотренных примеров, принцип работы электродвигателя использует магнитные поля. Они — следствие как постоянного тока, так и переменного. Но в любом случае принцип действия электродвигателя — это переход электроэнергии в энергию движения.

Далее рассмотрим, как работает электродвигатель, изготовленный соответственно напряжению электропитания — постоянному или переменному.

Электропитание источником переменного напряжения

Двигатель переменного тока наиболее широко используется. Это обусловлено переменным напряжением в большинстве электросетей. Электродвигатели переменного тока подключаются к ним с использованием минимального количества дополнительных устройств. Для любого из приборов надежность и долговечность являются главными качествами. Для этого конструкция должна иметь минимум потенциально уязвимых элементов. Наиболее значимыми из них являются контакты. Меньше контактов — больше надежности.

Устройство и принцип работы электродвигателя с максимальной надежностью основаны на явлении электромагнитной индукции. Это явление используется в трансформаторах. Создание гальванически развязанных электрических цепей — это их важнейшее назначение. Аналогично создаются гальванически развязанные статорные и роторные цепи. Под напряжением пребывают только обмотки статора. Возникающая в роторе электромагнитная индукция приводит к взаимодействию магнитных полей. Но принцип работы электродвигателя переменного тока — это не только индукция. Кроме нее должно существовать условие, обеспечивающее возникновение однонаправленной силы, без которой вращение невозможно. Для этого необходимо пространственное перемещение электромагнитного поля.

С этой целью устройство электродвигателя переменного тока предусматривает одно из следующих конструктивных решений:

  • использование однофазного источника переменного напряжения с фазосдвигающим элементом с двумя парами полюсов;
  • подключение к трехфазному источнику питания обмоток статора с тремя парами полюсов;
  • применение коммутатора, переключающего взаимодействующие обмотки.

Движимые перемещающимся магнитным полем

Электродвигатель, принцип работы которого определяет электромагнитная индукция, работает следующим образом. В его роторе отсутствуют контакты. Переменное магнитное поле с максимумом, перемещающимся вокруг ротора, вызывает в нем токи, создающие собственное электромагнитное поле. Существование этих токов возможно только при отставании ротора от движущегося максимума электромагнитного поля статора.

Иначе не получится электромагнитной индукции, условием которой является пересечение силовых линий и проводника. Движки, в которых скорости перемещения поля статора и ротора отличаются друг от друга, называются асинхронными. Асинхронный электродвигатель, устройство которого показано далее, в основном имеет одинаковую конструкцию статора, но разные варианты исполнения ротора.

Самыми распространенными являются короткозамкнутый ротор и другая его конструкция, именуемая «беличьей клеткой». В последнем варианте ротора получается более эффективная индукция. Однако и конструкция при этом менее технологичная. Но в этих двух разновидностях асинхронного двигателя лишь один недостаток — большой пусковой ток.

Чтобы регулировать процесс пуска, потребовалась третья конструкция ротора, называемая «фазной». Но если где-то прибыло, значит, где-то и убыло. У фазного ротора появились контакты — кольца и щетки. А контакты — главная проблема электротехники. Выигрывая в экономичности, проигрываем в долговечности и эксплуатационных расходах. За щетками и кольцами необходим уход и периодическая замена, в результате чего фазный ротор применяется намного реже. Появление мощных полупроводниковых приборов делает возможным регулировку любого асинхронного двигателя в пределах коммутационных возможностей этих приборов. Поэтому сегодня фазный ротор — это архаичная конструкция.

Но если ротор изготовить из специального материала, который обладает некоторой остаточной намагниченностью, скорости поля статора и вращения ротора станут одинаковыми. Под воздействием статора в роторе такого движка из-за свойств его материала не могут возникать токи с величиной, достаточной для движения. Но это и не нужно. Материал способен многократно усиливать внешнее электромагнитное поле и становиться постоянным магнитом. И такой магнитный ротор будет тянуться за электромагнитным полем статора. Такой двигатель называется синхронно-гистерезисным.

К сожалению, гистерезисный ротор имеет высокую себестоимость материала. А поскольку мощность движка напрямую связана с его размерами, большие и мощные синхронные двигатели с гистерезисным ротором из-за его высокой цены не производятся. Вместо этого делается постоянный электромагнит с питанием через кольца. Так менее надежно, но гораздо дешевле.

Скорость вращения синхронных и асинхронных движков определяет частота напряжения питания и число пар полюсов. Эта особенность — их большой недостаток. Ведь частота электросети составляет 50–60 Гц, и без применения дополнительного оборудования, через которое придется подключать двигатель, изменить ее невозможно. А это значительно усложняет и удорожает установку. По этой причине в управляемом электроприводе для возможности широкого диапазона регулирования оборотов применяется другой двигатель, о котором будет рассказано далее.

Коллекторные двигатели

Чтобы разобраться в том, как работает электромотор с коллектором, надо обратиться к опытам с рамкой, расположенной между полюсами магнитов. Это классический опыт для демонстрации взаимодействия проводника с током и магнитного поля. На изображениях далее наглядно показан результат этого взаимодействия.

Но сила, вращающая рамку, зависит от ее положения относительно полюсов. По мере вращения она постепенно уменьшается. И по этой причине рамка останавливается. Чтобы вращение продолжалось, для конкретной конструкции рамки с магнитами потребуется больше рамок. При этом каждая из них подключается к своей паре скользящих контактов. Они образуются парой щеток и парой пластин — ламелей.

Движок, в котором реализован принцип вращения рамки в магнитном поле, содержит ротор с большим числом обмоток — рамок. Ламели собраны в специальном конструктивном элементе — коллекторе. Если магнитное поле создается постоянными магнитами, вращение возможно только при постоянном напряжении на щетках коллектора. Это и есть двигатель постоянного тока (сокращенно ДПТ).

Скорость вращения ротора этого движка зависит только от напряжения на щетках коллектора. Если вместо постоянного магнита применить электромагнит, получится универсальный мотор, способный работать как при постоянном, так и при переменном напряжении. Полярность статора и ротора будет изменяться одновременно, сохраняя направление действия силы, вращающей ротор. Универсальный мотор — это тот самый движок, который широко применяется в регулируемых приводах.

Разновидностью ДПТ и универсального двигателя можно считать униполярный движок. У его конструкции нет коллектора, но есть щетки. Появление мощных полупроводниковых приборов позволило создавать роторы без колец и коллекторов. Но при этом принцип работы электродвигателя не изменился.

Асинхронный электродвигатель. Устройство и принцип действия.

Асинхронный электродвигатель имеет две основные части – статор и ротор. Неподвижная часть двигателя называется статор. С внутренней стороны статора сделаны пазы, куда укладывается трехфазная обмотка, питаемая трехфазным током. Вращающаяся часть машины называется ротор, в пазах его тоже уложена обмотка. Статор и ротор собираются из отдельных штампованных листов электротехнической стали толщиной 0,35-0,5 мм. Отдельные листы стали изолируются один от другого слоем лака. Воздушный зазор между статором и ротором делается как можно меньше (0,3-0,35 мм в машинах малой мощности и 1-1,5 мм в машинах большой мощности).
В зависимости от конструкции ротора асинхронные двигатели бывают с короткозамкнутым и с фазным роторами. Наибольшее распространение получили двигатели с короткозамкнутым ротором, они просты по устройству и удобны в эксплуатации.
Трехфазная обмотка статора помещается в пазы и состоит из ряда катушек, соединенных между собой. Каждая катушка сделана из одного или нескольких витков, изолированных между собой и от стенок паза.

Рис. 1. Различные виды обмотки статора асинхронных электродвигателей

На рис. 1, а) показана обмотка статора асинхронного электродвигателя. У этой обмотки каждая катушка состоит из двух проводников. Обмотка, состоящая из трех катушек, создает магнитное поле с двумя полюсами. За один период трехфазного тока магнитное поле сделает один оборот. При частоте 50 Гц это будет соответствовать 50 об/сек, или 3000 об/мин.
На рис. 1, б) показана обмотка, у которой каждая сторона катушки состоит из двух проводников.
Скорость вращения магнитного поля четырехполюсного статора вдвое меньше скорости вращения поля двухполюсного статора, т. е. 1500 об/мин (при 50 Гц). Обмотка четырехполюсного статора с одним проводником на полюс и фазу показана на рис. 1, в), а с двумя проводниками на полюс и фазу – на рис. 1, г). Магнитное поле шестиполюсного статора имеет втрое меньшую скорость, чем двухполюсного, т. е. 1000 об/мин (при 50 Гц). Обмотка шестиполюсного статора с одним проводником на полюс и фазу представлена на рис. 1, д). Число всех пазов на статоре равно утроенному произведению числа полюсов статора на число пазов, приходящееся на полюс и фазу.

Асинхронный электродвигатель с короткозамкнутым ротором является самым распространенным из электрических двигателей, применяемых в промышленности. Рассмотрим его устройство. На неподвижной части двигателя – статоре 1 – размещается трехфазная обмотка 2 (рис. 2), питаемая трехфазным током. Начала трех фаз этой обмотки выводятся на общий щиток, укрепленный снаружи на корпусе электродвигателя.

Рис. 2. Асинхронный электродвигатель с короткозамкнутым ротором
Собранный сердечник статора укрепляют в чугунном корпусе 3 двигателя. Вращающуюся часть двигателя – ротор 4 – собирают также из отдельных листов стали. В пазы ротора закладывают медные стержни, которые с двух сторон припаивают к медным кольцам

Рис. 3. Короткозамкнутый ротор
а — ротор с короткозамкнутой обмоткой, б — «беличье колесо»,
в — короткозамкнутый ротор, залитый алюминием;
1 — сердечник ротора, 2 — замыкающие кольца, 3 — медные стержни,
4 — вентиляционные лопатки
Таким образом, все стержни оказываются замкнутыми с двух сторон накоротко. Если представить себе отдельно обмотку такого ротора, то она по внешнему виду будет напоминать «беличье колесо». В настоящее время у всех двигателей мощностью до 100 кВт «беличье колесо» делается из алюминия путем заливки его под давлением в пазы ротора. Вал 6 вращается в подшипниках, закрепленных в подшипниковых щитах 7 и 8. Щиты при помощи болтов крепятся к корпусу двигателя. На один конец вала ротора насаживается шкив для передачи вращения рабочим машинам или станкам.
Устройство статора асинхронного двигателя с фазным ротором и его обмотка не отличаются от устройства статора двигателя с короткозамкнутым ротором. Различие между этими электродвигателями заключается в устройстве ротора.

Рис. 4. Разрез асинхронного двигателя с фазным ротором
1 — вал двигателя, 2 — ротор, 3 — обмотка ротора, 4 — статор, 5 — обмотка статора, 6 — корпус, 7 — подшипниковые крышки, 8 — вентилятор, 9 — контактные кольца
Фазный ротор имеет три фазные обмотки, соединенные между собой звездой (реже треугольником). Концы фазных обмоток ротора присоединяют к трем медным кольцам, укрепленным на валу ротора и изолированным как между собой, так и от стального сердечника ротора, вследствие чего этот двигатель получил также название двигателя с контактными кольцами. Три кольца жестко насажены на вал ротора (через изоляционные прокладки). На кольца накладываются щетки, которые размещены в щеткодержателях, укрепленных на одной из подшипниковых крышек.
Щетки, скользящие по поверхности колец ротора, все время имеют с ними хороший электрический контакт и соединены, таким образом, с обмотками ротора. Щетки соединены с трехфазным реостатом.

Источник: Кузнецов М. И. Основы электротехники. Учебное пособие.
Изд. 10-е, перераб. «Высшая школа», 1970.

Добавить комментарий