Принцип работы системы управления станком с ЧПУ


СОДЕРЖАНИЕ:

Какой принцип работы станков с ЧПУ? Обязанности, требования и обучение для работы на чпу станке

9 вещей, которые пригодятся новичкам в ЧПУ

Предположим, у вас есть рабочая машина с ЧПУ, вы только что ее приобрели, но вы мало что знаете о самом ЧПУ. Предположим также, что это фрезерный станок, и что в первую очередь вы будете заниматься резкой металла. Вероятно, вы готовы начать изготавливать детали для чоппера, конструировать устройство для смены инструментов или, может быть, с нуля собрать пистолет Colt 1911. С ЧПУ вы можете сконструировать почти все, и вы с нетерпением ждете начала работы над вашими любимыми проектами.

Не спешите! Помните, вы только что купили машину, и к тому же вы новичок. Вы еще не готовы к таким проектам.

Надо постараться максимизировать свои шансы на успех. Для этого примите к сведению 9 нижеследующих пунктов

1. Купите несколько приличных фрез

Не берите упаковку импортных китайских фрез различных размеров и неопределенного качества. Вам не нужны и зеленые космические фрезы из «Людей в черном», просто купите несколько приличных фрез у надежного поставщика по разумной цене. Можно начинать с быстрорежущей стали. В конечном во многих случаях будет необходим твердосплав, но быстрорежущая сталь дешевле и более устойчива к вибрациям. Купите себе несколько размеров:

Размеры меньше ни к чему на данном этапе, пока вы не потренируетесь на менее чувствительных фрезах. Купите 2-х или 3-заходные для алюминия и 4-заходные для стали . Чтобы лучше понять какие фрезы вам необходимы, прочтите статью Как выбрать фрезы . Вы однозначно сломаете несколько фрез, так что просто свыкнитесь с этой мыслью. На этом этапе следует не забывать надевать защитные очки!

Также купите полный набор спиральных сверл.

2. Купите стоящие тиски, комплект прихватов и набор параллелек

Закрепление заготовки — очень важный этап. Приобретите хорошие тиски для своего станка, и вы потратите деньги на ценный инструмент, который будет служить вам годами. Есть одна загвоздка, которая возникает, когда вы зажимаете заготовку в тисках . Если у вас плохие тиски, заготовка сдвинется, а вы будете гадать, что же произошло.

Вам следует закрепить ваши тиски в Т-образные слоты вашего стола, так что вы также можете приобрести комплект прихватов.

Наконец, вам понадобится набор параллельных подкладок.

3. Используйте СОЖ или туман! В работе с алюминием придется параноидально следить за отводом стружки.

Если машина не была оснащена СОЖ, подаваемой поливом, и не предназначена для такого, то вам необходимо установить генератор тумана. Можно взять качественный, например Noga, есть много разных брендов.

Перенарезка стружки вредна для фрез, а в худшем случае это приведет к поломке. «Быть параноиком» имеется в виду, что в начале надо очень пристально смотреть на область реза, и возиться с соплом вашего туманообразователя, чтобы освоить, как правильно располагать его для качественной подачи СОЖ.

4. Научитесь пользоваться вашим контроллером ЧПУ

Следующим шагом будет научиться управлять вашим ЧПУ, как если бы это был ручной станок с принудительной подачей и УЦИ на каждой оси. По ходу работы вы узнаете некоторые базовые коды G, дабы иметь представление о том, что ваша программа делает, когда вы в первый раз запускаете реальную программу в коде G (хоть это еще и далеко от правды!). Начните работать с фрезой в верхнем положении, и не пытайтесь делать какие-либо движения по оси Z, дабы не повредить режущий инструмент обо что-то. Практикуйте движения по оси X и Y до тех пор, пока шпиндель не будет двигаться туда, куда вы хотите, и вы не будете ошибаться. Еще один момент: не используйте G00, это заставляет машину двигаться в быстрых режимах на пределах ее возможностей. Используйте G01 и установите относительно низкую скорость подачи. В «G01 F20» машина будет двигаться со скоростью 20 единиц в минуту(миллиметров, метров, дюймов – в зависимости от настроек вашего контроллера). У вас будет намного больше времени на реакцию, если что-то пойдет не так.

5. Купите измерительный прибор для длины фрезы и научитесь ним пользоваться, чтобы калибровать ось Z. В придачу приобретите кромкоискатель и используйте его, чтобы забазировать шпиндель относительно детали.

Ваша машина должна знать, где находится кончик фрезы, в противном случае можно испортить оборудование. Так как вы новичок, задайте ей необходимую информацию, используя датчик длины фрезы. С его помощью машина будет точно знать, где конец фрезы относительно координаты Z. Первое, что надо сделать после установки заготовки в тиски и фрезы в шпиндель — это установить нули.

Подробнее о компенсации длины инструмента и нахождении базовых точек в статье Как найти нулевую точку станка с ЧПУ .

6. Научитесь регулировать ваш станок и тиски

Отрегулировать — отъюстировать с помощью часового индикатора. Это базовый навык, который необходим всем.

Выработайте привычку перед началом работы проверять положение ваших тисков. Позже будет понятно, действительно ли нужно делать это прям каждый раз, но поначалу придерживайтесь такй практики. К тому же, убедитесь, что знаете, как отрегулировать свои тиски, чтобы зажимные щеки были правильно выровнены с одной из осей.

7. Начните с алюминия, латуни и мягкой стали. Избегайте использования нержавеющей стали.

Поначалу следует избегать использования труднообрабатываемых материалов. Используйте алюминий или латунь.

Когда начнет получаться, можно попробовать мягкую сталь. Только после того, как вы почувствуете, что достаточно хорошо фрезеруете такие материалы, фрезы не ломаются и не изнашиваются слишком быстро, и обработанная поверхность больше не похожа на ту, на которую напала стая инфицированных бешенством бобров, лишь тогда переходите к труднообрабатываемым материалам, таким как нержавеющая сталь. Перед этим как следует изучите каталоги поставщиков металлов.

8. Сделайте себе несколько комплектов ступенчатых губок из алюминия

Возьмите пилу и вырежьте кусочки материала, размерами немного больше, чем щеки тисков. Теперь вам нужно обработать эти блоки на прямоугольник, т.е. делать фрезерные проходы до тех пор, пока все стороны не станут строго параллельны или перпендикулярны друг другу, т.е. до получения прямоугольного параллелепипеда.

Используйте концевые фрезы небольших диаметров. Несмотря на то, что для таких работ торцевые подходят лучше, их пока не стоит использовать, т.к. торцевая фреза развивает большое усилие. Шпиндель может завязнуть, заготовку может вырвать тисков и швырнуть ее через комнату, и т.п.

Обработав материал в виде квадрата, переходите к следующей задаче – обработайте его в соответствии с размерами, фрезеруя до тех пор, пока он не станет идеального размера для ваших тисков (вам понадобятся 2 прямоугольных куска, по одному на каждую зажимную губку). Последний шаг — просверлить и прозенковать монтажные отверстия.

Можно также поучиться делать Куб Тернера. Этот куб (его еще называют мета-куб), не так легко сделать, как это может показаться на первый взгляд. Говорят, что ранее, до появления станков с ЧПУ, такой хитрый кубик давали новичку токарю/фрезеровщику и предлагали аналогичный сделать. Это было тестом на владение станком. Этот куб выглядит как серия кубов с отверстиями, вложенных друг в друга, и касающихся внешнего только вершинами.

9. Изучите САПР и CAM

Итак, теперь вы знаете азы. Следующий шаг – изучить, как создавать G-код для станка. Для этого вам необходимо овладеть САПР и CAM. По возможности выберите те программы, с освоением которых вам могут помочь. В идеале, попросите вашего друга, который уже использует программное обеспечение и опытен в нем, помочь вам. Если у вас нет такого друга, рассмотрите вариант курсов. Если вам некому помочь вживую, вам придется вернуться и искать помощи в Интернете. Начните с просмотра нескольких видеороликов. По возможности, постарайтесь смотреть ролик и изучать программное обеспечение одновременно. Найдите онлайн-форумы, на которые люди обращаются за помощью в использовании этих программ.

Предположим, у вас есть рабочий станок с ЧПУ, который был только что приобретен, но пока знаний о нем недостаточно. Предположим теперь, что это фрезерный станок с ЧПУ по металлу, и что в первую очередь вам будет интересна именно фрезеровка металла, который легко поддается обработке.

Скорее всего, вам уже не терпится начать фрезерование различных интересных деталей, построить магазин для инструмента или, может быть, скомпоновать пистолет Colt 1911. С ЧПУ вы можете построить практически все, и вы полны идей для начала работы над своими любимыми проектами.

Рассмотрим для начала некоторые нюансы фрезеровки металла

Один мой знакомый уже некоторое время режет металл своим станком с Числовым Программным Управлением , имеющим рабочее поле 400х600 мм. Как он это делает? Необходимо всего лишь соблюдать такие параметры, как:

  • глубину за проход;
  • скорость подачи;
  • правильно подбирать концевую фрезу и ее охлаждение.

Впрочем, металлы можно резать и без охлаждения.

При фрезеровке металла нужно быть предельно внимательным, особенно с алюминием, этот материал начинает плавиться при температуре около 648 градусов Цельсия, а при использовании концевой фрезы, вращающейся с высокой скоростью (примерно 13 000 об / мин), она будет очень сильно греться и расплавит торец заготовки во время процесса обработки. Алюминий – легкоплавкий металл. Сравнив его со сталью, которая плавится при 1150 градусах Цельсия, некоторые операторы, обслуживающие станки с ЧПУ по металлу, скажут, что мягкую сталь резать легче, чем алюминий просто потому, что фреза может работать при более медленной подаче и «выгрызать» материал.

Способы контроля температуры режущего инструмента

  1. Первым, и наиболее широко используемым методом является подача охлаждающей жидкости на торцевую фрезу во время ее работы. Это специальное вещество, которое в сочетании с режущей жидкостью обеспечивает наилучшую эффективность резания.
  2. Второй способ заключается в том, что на фрезу может быть распылена только охлаждающая жидкость, которая обычно делается вручную. Обычно для таких целей используют изопропиловый спирт, который в то же время отлично очищает режущий инструмент.
  3. Третий способ построен на подаче струи сжатого воздуха на фрезу. Этот метод заключается в создании вихревой системы, в которой из одного сопла подается поток холодного воздуха, температура которого около -50 градусов Цельсия, а с другого подается воздух с высокой температурой (выше 100 градусов).
  4. Последний метод состоит в нахождении правильного баланса глубины за проход, скорости вращения шпинделя, скорости подачи, выбора конечной фрезы и угла наклона вихревого охлаждения для достижения сухого резания.

Достижение такого равновесия непросто, и по последнему утверждению, что промышленность движется в этом направлении, создается впечатление, что люди еще не знают, как этого добиться. Ну, на самом деле, это практикуется, но не с идеальными параметрами, и найти эти идеальные параметры – это святой Грааль резки металла.

Резка алюминия и как получить хорошие результаты

Баланс: Фрезерный станок по металлу с высокой скоростью подачи и очень малой глубиной за проход позволяет хорошо охлаждать фрезу. Она будет проходить по заготовке из алюминиевого сплава достаточно быстро, чтобы охладить себя, но, если инструмент задержится слишком долго (медленная подача и глубокая глубина за проход) в одном и том же месте, он будет нагреваться и плавить место реза на заготовке из-за трения. Следует учитывать, что фрезерные станки с ЧПУ практически любого типа могут успешно разрезать алюминий.

Рассмотрим такую аналогию: взрослый может выкопать яму довольно быстро и набирать большое количество песка в лопату за раз. Ребенок может копать песок тоже, но только царапать поверхность раз за разом, а не набирать полную лопату. Ребенок, в конце концов, достигнет такой же глубины, что и взрослый, но это займет немного больше времени.

Проблема: ребенок не использует лопату наиболее эффективно, потому что острый кончик лопаты будет затупляться быстрее, чем верхняя часть лопаты, тогда как взрослый будет равномерно работать всей лопатой. Так обстоит дело и с торцевыми фрезами. Чем глубже вы сможете пройти по заготовке фрезой, тем более равномерно она будет изнашиваться, продлевая свой срок службы.

Итак, какие же параметры должны быть соблюдены? Это важный вопрос, потому что результат может вылиться в копеечку. У нас есть хороший пример. Как уже было написано выше, используется компактный фрезерный станок по металлу с ЧПУ и вихревая система для продувки фрезы воздухом с температурой -50 градусов. Разрезаемый материал марки 6061, который является структурным сортом алюминия, а его толщина составляет 5 мм, но не важно, так как резка производится с большим количеством проходов. Чем толще материал, тем дольше потребуется времени на обработку, впрочем, это и так ясно.

Для резки используется китайский шпиндель со скоростью 13 000 оборотов в минуту. Скорость подачи (скорость, с которой концевая фреза проходит через разрез) устанавливается между 300 и 430 мм/мин. Глубина за проход – это важный параметр, который следует тщательно подбирать. Компания Onsrud, имеющая большой опыт в производстве торцевых фрез, рекомендует, чтобы глубина за проход составляла 1/2 диаметра режущей части фрезы. Для 3 мм концевой фрезы — это около 1,5 мм, но для чистовой обработки все же лучше брать глубину, равную четверти диаметра режущего инструмента.

В концевых фрезах врезка, как правило, наиболее вредна для инструмента, поэтому предпочтение отдается медленной скорости погружения в заготовку. Обычно для алюминия устанавливают скорость погружения до 150 мм/мин. Если погружение планируется на большую глубину, то лучше предварительно просверлить в этом месте отверстие при помощи сверлильного станка. При погружении в начало какого-то профиля, лучше всего сначала перейти к материалу (придав фрезе горизонтальное движение, когда ось z опускается или поднимается).

При резке металла вибрация заготовки является основной проблемой, которую необходимо устранить. В домашних условиях можно использовать самые различные способы фиксации, начиная от струбцин и заканчивая специальным вакуумным столом. Независимо от того, какой метод зажима или закрепления используется, убедитесь, что он вообще не будет двигаться и что зажим (винты, хомут) находится как можно ближе к месту реза.

Подведем итоги

Исходя из вышесказанного, можно выделить такие пункты, запомнив которые фрезеровать металл станет гораздо проще:

  1. Не торопитесь. Лучше потратить больше времени на обработку, чем убить гору недешевого инструмента и испортить не одну заготовку.
  2. Используйте твердосплавные фрезы. Именно они будут служить очень долго при правильно подобранных режимах резания. И желательно покупать фрезы проверенных производителей и в специализированных магазинах.
  3. Используйте фрезы меньшего диаметра. Лучше сделать больше проходов и получить красивое место реза, чем снять килограмм алюминия за один рез, выбросить «сгоревший» инструмент и увидеть оборванные края заготовки.
  4. Не параноить по поводу чистки мест реза. Не нужно стоять со щеткой или пылесосом над заготовкой, которую обрабатываете, достаточно в конце просто смести все отходы или собрать их магнитом (если это ферромагнитный материал).
  5. Смазывать рабочий инструмент туманом из охлаждающей жидкости. Эффект «тумана» достигается при использовании специального штуцера на подающем жидкость патрубке.
  6. Не замедляйте подачу слишком сильно. При слишком медленной подаче фреза вместо того, чтобы резать материал, начинает тереться о него и очень сильно греться, что приводит к перегреву инструмента и оплавлению места реза (если заготовка из легкоплавкого материала).
  7. Если ваши станки по металлу не имеют достаточно быстрой подачи, используйте меньшее количество проходов и увеличьте диаметр фрезы.

Рассмотрим работу станков с системой ЧПУ по упрощенной схеме (рис. 7.1), включающей основные блоки систем ЧПУ и основные элементы кинематической схемы станка. Система ЧПУ состоит из устройств ввода информации, блока запоминания информации БЗИ, блока интерполяции БИ, блока управления приводами подач в виде цифроаналоговых преобразователей ЦАПи двух следящих приводов по осям X и Vстанка. Следящие приводы состоят из усилителей мощности УМ Х и УМ У, сравнивающих устройств УС Х и УС У , датчиков обратной связи в виде вращаю­щихся трансформаторов ВТ Х и ВТ У , кинематически связанных с ходовыми винтами станка, и двигателей подач М х и М у , которые приводят во вращение ходовые винты станка. В результате вра­щения винтов перемещаются стол станка и его ползун с фрезой, совместное движение которых определяет конфигурацию изготовляемой детали согласно заложенной программе.

Все современные устройства ЧПУ выполняются на базе ка­кой-либо микроЭВМ или микропроцессоров (одного или несколь­ких), позволяющих значительно увеличить степень автоматизации станка, т.е. обеспечить: индикацию большого числа параметров на экране дисплея, быстрое диагностирование неисправностей и удобное редактирование программ, запоминание большого объема управляющих программ и т.д.

Состав системы ЧПУ

Все устройства ЧПУ имеют развитую цикловую автоматику с большим числом входов-выходов, а также связь с ЭВМ высшего уровня, необходимую при создании гибких производственных систем.

Вместе с тем наблюдается разделение устройств ЧПУ по числу управляемых координат, связанное с их назначением: для токар­ных станков обычно требуется две координаты; для обычных фре­зерных – три; для фрезерных станков, предназначенных для объемной обработки, – пять; для многооперационных станков – от четырех до восьми. В настоящее время созданы устройства ЧПУ на 10–12 координат для управления ГПМ. Число координат весьма существенно влияет на конструкцию и стоимость устрой­ства ЧПУ.

Функциональная схема типовой универсальной системы ЧПУ (рис. 7.2) состоит из двух основных устройств: устройства число­вого программного управления, конструктивно оформленного в виде отдельного шкафа или пульта и исполнитель­ных устройств с приводами и датчиками обратной связи, разме­щенными на станке. Основные блоки системы ЧПУ описаны ниже.

Рис. 7.1. Упрощенная схема станка с ЧПУ

Устройство ввода информации вводит числовую информацию с программоносителя.

Блок запоминания считанной информации. Помимо запоминания входной информации в этом блоке выполняются ее контроль и формирова­ние соответствующего сигнала в момент обнаружения ошибки. Этот блок, как правило, имеет возможность получать информацию от ЭВМ верхнего уровня, что необходимо при объединении стан­ков в ГПС.

Пульт управления и индикации служит для связи человека-оператора с системой ЧПУ. С помощью этого пульта проводится пуск системы и ее останов, переключение режимов работы с авто­матического на ручной и т.д., а также коррекция скорости подачи и размеров инструментов и изменение начального положения инструмента по всем или некоторым координатам. На этом пульте находится световая сигнализация и цифровая индикация о со­стоянии системы.

В современных ЧПУ индикация обычно осуществляется с помощью встроенного дисплея, позволяющего выводить значительно большее число параметров, а также проводить отработку про­грамм непосредственно на станке.

Блок интерполяции формирует частичную траекторию движе­ния инструмента между двумя или более заданными в программе точками. В большинстве случаев используют линейную и круговую интерполяцию, хотя иногда применяют винтовую или цилиндри­ческую интерполяцию.

Приводы подач, чаще всего следящие, служат для обеспече­ния перемещения управляемых элементов станка (столов, суппор­тов, кареток и т.п.) с необходимой скоростью и точностью при заданном моменте. Под следящим приводом будем понимать систему, состоящую из двигателя (электрического, гидравличе­ского), усилителя мощности, снабжающего этот двигатель не­обходимой энергией, которая регулируется в широких пределах, датчика обратной связи по положению, служащего для измерения фактического перемещения (или положения) управляемого объ­екта, и сравнивающего устройства, сравнивающего фактическое положение объекта с заданным и выдающего сигнал ошибки, по­ступающий на вход усилителя мощности, в результате чего угло­вая скорость вала двигателя оказывается пропорциональной ошибке системы. В процессе работы эта система перемещает управ­ляемый объект таким образом, чтобы поддерживать минимальное значение ошибки. Если ошибка по каким-либо причинам превы­шает заранее установленный допустимый предел, то система ЧПУ автоматически отключается с помощью специальных устройств защиты.

Блоки управления приводами подач служат для преобразования информации, получаемой с выхода интерполятора, в форму, пригодную для управления приводами подач, так, чтобы при поступлении каждого импульса управляемый объект перемещался на определенное расстояние, называемое ценой импульса, кото­рая обычно составляет 0,01 или 0,001 мм. В зависимости от типа приводов (замкнутые или разомкнутые, фазовые или амплитуд­ные), применяемых на станках, блоки управления существенно различаются.

В разомкнутых приводах, использующих шаговые двигатели, блоки управления представляют собой специальные кольцевые коммутаторы, на выходе которых включены мощные усилители, питающие обмотки шаговых двигателей, которые служат для циклического переключения обмоток ШД, что заставляет вра­щаться его ротор. В замкнутых приводах фазового типа, исполь­зующих датчики обратной связи в виде вращающихся трансфор­маторов (ВТ) или индуктосинов в режиме фазовращателей, блоки управления представляют собой преобразователи импульсов в фазу переменного тока и фазовые дискриминаторы, которые сравни­вают фазу сигнала на выходе фазового преобразователя с фазой датчика обратной связи и выдают разностный сигнал ошибки на усилитель мощности привода.

В этом же блоке обычно расположены усилители для питания датчиков обратной связи, а также устройства защиты, отключаю­щие приводы при превышении допустимой ошибки слежения.

Датчики обратной связи ДОС являются измерительными устройствами, служащими для определения фактического поло­жения (абсолютного значения координаты) или перемещения (от­носительного значения координаты) управляемого объекта в пре­делах шага системы. При этом суммирование шагов производит система ЧПУ. Перемещения объекта определяют как непосредственно с помощью каких-либо линейных измерительных устройств, например, индуктосинов, так и косвенно, измеряя, например, угол поворота вала двигателя подач с помощью какого-либо углового измерительного устройства, например, обычного ВТ или резольвера (точный ВТ синусно-косинусного типа, применяемый в счетно-решающих устройствах).

Помимо индуктосинов, для непосредственного измерения ли­нейных перемещений иногда используют и другие измерительные устройства, например, прецизионные зубчатые рейки с много­полюсными ВТ, или для достижения особо высокой точности – оптические штриховые измерительные шкалы с соответствующими импульсными датчиками. Обычно одно и то же устройство ЧПУ может работать с раз­личными типами ДОС.

Рис. 7.2. Функциональная схема системы ЧПУ

Блок скоростей подач обеспечивает заданную скорость подачи, а также разгон и торможение в начале и конце участков обработки по заданному закону, чаще всего – линейному. Скорость подачи задается либо номером скорости соответствующего ряда скоростей, составляющих геометрическую прогрессию со знаменателем по­рядка 1,25, либо непосредственно в миллиметрах в минуту через 1 или даже через 0,1 мм/мин. Помимо рабочих скоростей подач, составляющих обычно 5–2000 мм/мин, этот блок выполняет, как правило, и установочное движение с повышенной скоростью, на которой производится установка координат при позиционной обработке или переход инструмента из одного участка заготовки в другой при контурной обработке. Эта скорость в современных системах ЧПУ составляет 10–15 м/мин.

Блок коррекции программы вместе с пультом управления слу­жит для изменения запрограммированных параметров обработки, т.е. скорости подачи и размеров инструмента (длины и диаметра). Изменение скорости движения (обычно 5–120 %) сводится к руч­ному изменению частоты задающего генератора в блоке подач. Изменение длины инструмента (обычно от 0 до 100 мм) сводится к изменению заданного значения перемещения вдоль оси инстру­мента, без изменения его начального поло­жения.

Блок технологических команд предназначен для управления цикловой автоматикой станка, включающего поиск и смену до­статочно большого числа инструментов (до 100), смену частоты вращения шпинделя, зажим направляющих при позиционирова­нии и разжим их при движении, различные блокировки, обеспе­чивающие сохранность станка. Цикловая автоматика станка со­стоит в основном из исполнительных элементов типа пускателей, электромагнитных муфт, соленоидов и других электромагнитных механизмов, а также дискретных элементов обратной связи типа концевых и путевых выключателей, реле тока, реле давления и других элементов, контактных или бесконтактных, сигнализи­рующих о состоянии исполнительных органов. Часто эти элементы с дополнительными устройствами типа реле реализуют местные циклы (например, цикл поиска и смены инструмента), команды, на исполнение которых подаются из устройства программного управления. Современные устройства ЧПУ, как правило, осу­ществляют эти циклы внутри, выдавая сигналы на исполнитель­ные элементы станка через согласующе-усилительные устройства, которые могут находиться как в станке, так и в устройстве ЧПУ. Для этого часто используют программируемые контроллеры в виде отдельного блока, размещаемого внутри или вне устройства ЧПУ.

Блок стандартных циклов служит для облегчения программи­рования и сокращения длины программы при позиционной обра­ботке повторяющихся элементов заготовки, например, при свер­лении и растачивании отверстий, нарезании резьбы и других операций.

Помимо этих блоков, применяют блоки адаптации, которые служат для увеличения точности и производительности обработки при изменяющихся по случайному закону внешних условиях (например, припуск на обработку, твердость обрабатываемого материала, затупление инструмента). Это объясняется тем, что любая система ЧПУ является разомкнутой системой управления, так как она не «знает» результата своей работы. В системе ЧПУ с обычной обратной связью заготовка ею не охвачена; задается только перемещение инструмента относительно заготовки. В то же время на точности размеров детали сказывается, например, де­формация инструмента, которая в обычных системах ЧПУ может учитываться при программировании только тогда, когда она по­стоянна или изменяется по заранее известному закону, чего на практике нет.

Приводы подач станков с ЧПУ

В современных станках с ЧПУ применяются различные структурные схемы приводов подач. Схема с жесткой связью электродвигателя ходового винта изображена на рис. 8.1.

Рис. 8.1. Схема привода:

1 — электродвигатель; 2 – муфта; 3 −передача винт-гайка качения; 4 − винт

Схема с одноступенчатым редуктором и выборкой зазора в зубчатом зацеплении рассмотрена на рис. 8.2.

Рис. 8.2. Схема привода с редуктором:

1 − электродвигатель; 2 − зубчатая передача; 3 − винтовая передача

Схема с применением беззазорной червячной и реечной передач изображена на рис. 8.3.

Рис. 8.3. Схема привода с червячной и реечной передачами:

1 − электродвигатель; 2 − червячная передача; 3 − реечная передача

Как видно из приведенных схем, станки с ЧПУ имеют короткие кинематические схемы приводов подач, обеспечивающие более точную работу последних. Это стало возможным при применении специальных узлов и механизмов, имеющих свои отличительные особенности.

(ЧПУ) – это оборудование, предназначенное для механической обработки различных листовых материалов при помощи специального инструмента – фрезы. Фрезерованием обрабатывается самый различный материал: пластик, графит, алюминий, медь, чугун, сталь или дерево.

Фрезы — это металлические инструменты различной формы с несколькими режущими зубьями. По форме фрезы бывают:

  • конические,
  • цилиндрические,
  • концевые,
  • торцевые и других видов.

Материал, из которого изготавливается режущая часть, должен быть намного прочнее обрабатываемого материала, потому для фрез подбираются твердые сплавы быстрорежущей стали, может быть использована также минералокерамика или алмаз. Кроме того фрезы различаются по конструкции и типу зубьев: они могут быть:

  • цельные (или монолитные, так называемые «пальчиковые фрезы»),
  • со сварным режущим элементом,
  • сборным или с напаянным режущим элементом.

Вращаясь с большой скоростью, они обрабатывают материал, разрезая, высверливая, раскраивая и гравируя его в соответствии с заданной программой под контролем оператора ЧПУ.

В зависимости от расположения рабочего инструмента, фрезерование может быть горизонтальным или вертикальным . Большое распространение получили универсальные станки , дающие возможность фрезеровать сложные детали под любым углом, применяя разные фрезы.

Фреза, закрепленная в цанге, является основным элементом, находящимся в непосредственном контакте с обрабатываемым материалом. Цанга с закрепленной в ней фрезой устанавливается в шпиндель , обеспечивающий вращение фрезы. В свою очередь шпиндель с фрезой установлен на подвижной балке — портале, который перемещает шпиндель и фрезу в трех осях координат над обрабатываемым материалом, укрепленном на рабочем столе. Перемещение портала, а также перемещение шпинделя по порталу обеспечивают три микрошаговых двигателя. Портал, станина, двигатели, шпиндель и фреза представляют собой механическую часть фрезерного станка. Каждый двигатель обеспечивает перемещение портала и шпинделя по своей оси по заданной программе.

Управляющие станции фрезерных станков с ЧПУ представляют собой электронную часть оборудования и поставляются вместе со станком. Программное обеспечение станка обрабатывает векторные изображения из графических файлов, переводит их в G-коды , управляющие работой микрошаговых двигателей. Таким образом, для изготовления той или иной детали необходимо её построение в графическом редакторе такой компьютерной программы, как, например, AutoCad или Corel Draw. После установки разработанной программы в ОЗУ станка (оперативное запоминающее устройство или оперативная память), оператор может начать работу, предварительно выбрав нужные режимы и параметры в соответствии с поставленной технологической задачей и обрабатываемым материалом.

Числовое программное управление позволяет автоматизировать сложные технологические процессы по обработке тех или иных материалов. Станок с ЧПУ в процессе работы не требует никаких сложных действий от оператора. Станок работает по программе, заложенной в него до начала процесса обработки. Ввод программы осуществляется оператором с пульта, предназначенного для управления станком в ручном режиме. В случае аварийной ситуации пульт используется для отключения станка. Вся текущая информация о работе станка отображается на панели оператора, который визуально контролирует выполнение технологических операций.

Фрезерные станки с ЧПУ – это высокотехнологичное современное оборудование, способное обеспечить необходимую производительность труда и отменное качество обработки материала. Применение станков с ЧПУ повышает уровень безопасности и культуры производства и не требует от станочника виртуозности и высокого профессионализма.

Пошаговая инструкция по созданию станка с ЧПУ своими руками – подробное описание этапов сборки. Часть 1.

ЧПУ станок своими руками. Часть 1

Рабочий стол — это собственно поверхность, над которой перемещается рабочий инструмент станка (фреза, гравер и т.д.). Стол служит для закрепления обрабатываемой заготовки, и это накладывает определенные требования на его конструктивное исполнение. Стол самодельного ЧПУ станкадолжен быть достаточно ровным, и обеспечивать возможность закрепить заготовку в любом месте. Основными решениями для этого являются использование стола с Т-пазами(«Т-стол») и вакуумных столов. Стол с Т-пазами позволяет закрепить практически любую заготовку с помощью специальных зажимов. Вакуумные столы прижимают заготовку к себе за счет создания разрежения под сеткой на поверхности, поэтому они способны фиксировать только заготовки с плоской нижней частью(разнообразные листовые материалы), а также они существенно дороже. Однако вакуумные столы позволяют равномерно прижать заготовку по всей её площади, тогда как при фиксации большой плоской заготовки на Т-столе заготовка в центральной своей части может прогнуться вверх, что приведет к снижению соответствия размеров у конечной детали.

Привод станка с ЧПУ в свою очередь можно поделить на:

Двигатели — связующее звено между электронной частью системы ЧПУ и механической частью, они(точнее, их управляющие модули — драйверы) получают сигналы с контроллера ЧПУ(часто в этой роли выступает персональный компьютер) и преобразуют их во вращательное движения собственного вала. В станках с ЧПУ используются 2 вида двигателей: серводвигатели и шаговые двигатели(а также линейные двигатели — разновидность серводвигателей. Линейные двигатели одновременно являются и трансмиссией для оси). Сказанное далее будет относиться к классическим шаговым и сервоприводам. Шаговые двигатели распространены в самодельных станках с ЧПУ и бюджетных моделях промышленных гравировально-фрезерных станков, а также станков лазерной, плазменной резки и т.п. Причина — в их низкой стоимости и простоте управления. Драйверы шаговых двигателей — достаточно бюджетные устройства, широко представлены на рынке от самых простых моделей до весьма продвинутых цифровых драйверов. Платой за простоту и бюджет становится низкий КПД шаговых двигателей, их низкая удельная мощность, слабая способность к ускорению, высокие вибрации, гул и резонанс, что в сумме сильно влияет на эксплуатационные характеристики станка.
Серводвигатели — двигатели с установленным датчиком угла поворота. Это семейство представлено достаточно широко, существуют щеточные и бесщеточные двигатели, постоянного и переменного тока. В целом про серводвигатели можно сказать, что их отличает высокая плавность хода, высокий КДП, способность переносить кратковременные перегрузки. Однако управление серводвигателем гораздо сложнее, серводрайверы (см. серводрайверы Leadshine) — устройства существенно более дорогие и сложны в настройке. Существует также бюджетные варианты щеточных серводвигателей, однако из-за наличия изнашивающейся части (щеток) они менее предпочтительны, чем бесщеточные.

  • Драйверы двигателей
  • Передачи осей

    Задача трансмиссии, или передачи, — превратить вращательное движение вала двигателя в поступательное перемещение по данной оси. Как правило, передача реализуется одним из 3 способов: передача винт-гайка, ШВП или зубчатая передача (шестерня-рейка или шкив-ремень). Как выбрать передачу для осей — тема отдельной статьи. Здесь достаточно указать на то, что передача вместе с видом двигателя(и его управления) определяет скорость перемещения по оси, разрешение задания позиции, а также влияет на точность. Каждый вид передачи изготавливается с определенной точностью. С помощью указанного производителем класса точности для данного элемента трансмиссии можно определить, какая погрешность будет вноситься им в работу станка.
  • Направляющие

    Направляющие обеспечивают перемещение рабочего узла станка строго по заданной траектории. Качество самих направляющих и, что очень важно, качество их установки на станину — второй по важности фактор (после станины), определяющий точность вашего станка. К выбору направляющих стоит подойти очень ответственно.

    • Шпиндель

      Вообще говоря, вместо шпинделя может быть установлен другой узел — лазерный гравер, установка плазменной или лазерной резки, экструдер. Мы рассмотрим шпиндель, как наиболее нагруженный узел. Шпиндель — как правило, это электродвигатель, особенностью которого является низкое биение вала и возможность регулировать скорость вращения в достаточно широких пределах. Вал шпинделя оканчивается конусом, в который устанавливается зажимная цанга , которая держит режущий инструмент — фрезу или гравер. Ключевыми характеристиками шпинделя являются: биение вала(как правило, измеряется биение на конусе) и мощность шпинделя(указывается в ваттах). Большинство шпинделей предназначены для обработки дерева, пластика, камня, металлообработки. Скорость вращения варьируется обычно от 6000 до 30000 оборотов в минуту. Для фрезеровки и гравировки металлов используются мощные шпиндели с низкими оборотами (2000-10000 об/мин). Многие портальные станки, предназначенные для обработки дерева и пластика, могут гравировать металлы, и даже иногда фрезеровать цветные металлы, однако в этом случае станок испытывает сильную вибрацию из-за отдачи на фрезу, которая не может быть погашена легкой станиной, и это резко снижает качество обработки и ресурс станка. Фрезеровка и гравировка металлов и некоторых видов пластика требует охлаждения режущего инструмента. В настоящее время существует множество способов охлаждения рабочей области, но основным остается подача смазывающе-охлаждающей жидкости на фрезу. Некоторые шпиндели , управляемые инвертором, позволяют контролировать скорость вращения из системы ЧПУ, путем подачи на вход инвертора (частотного преобразователя) аналогового сигнала 0..+10 В. Как выбрать шпиндель.

    Разновидности, особенности и принцип работы станков с ЧПУ для металлообработки

    Автоматизация процесса металлообработки немыслима без использования станков с ЧПУ. Оборудование такого рода увеличило производительность и облегчило процесс металлообработки. С помощью таких устройств процесс придания заготовкам из металла нужной формы и фактуры вышел на новый уровень.

    Содержание

    1. Классификация оборудование и его основные узлы.
    2. Функции и характер металлообработки.
    3. Основные узлы станков с ЧПУ.
    4. Принцип работы и преимущества станков с ЧПУ.
    5. Как работают станки с ЧПУ?
    6. Преимущества оборудования с программным управлением.
    7. Заключение.

    Классификация оборудование и его основные узлы

    Существует большое количество оборудования, оснащенное программным управлением и занятое в металлообработке. Работа на станке с ЧПУ облегчает процесс изготовления металлических деталей. Такое оборудование делится по нескольким критериям. Основными является характер выполняемых работ и уровень универсальности.

    Функции и характер металлообработки

    Согласно проводимым работам, такое оборудование делится на следующие виды:

    • Токарное. Раскручивают заготовку, которой с помощью резцов придают нужную форму. Можно использовать для резки заготовок.
    • Фрезерное. Данный вид оборудования используется для придания поверхности текстуры и формы необходимого вида.
    • Сверлильное. Применяются для изготовления отверстий в заготовке.
    • Шлифовальное. Оборудование для шлифовки металлических деталей.

    Существуют и другие типы оборудования с ЧПУ, задействованное для обработки металлических изделий. Параметры и функции которых изготавливаются под определенные параметры.

    ЧПУ станков характеристики- зависят от универсальности оборудования. По этому параметру станки делятся на:

    • Универсальные. Применяются в изготовлении больших партий продукции. Таким оборудованием оснащаются как крупные, так и небольшие предприятия.
    • Специальные. Предназначены для выпуска небольшой номенклатуры деталей, применяемых в массовом производстве.

    Основные узлы станков с ЧПУ

    Оборудование для металлообработки, оснащенное числовым программным управлением, состоит из нескольких узлов. Оснащение может отличаться в зависимости универсальности и назначения агрегата:

    • Станина. Главная деталь такого оборудования. Соединяет между собой остальные узлы станка.
    • Резцовая головка. Применяется для установки режущих элементов.
    • Шпиндельная бабка. Закрепляет и придает вращение заготовке.
    • Задняя бабка. Используется для закрепления детали и дает возможность ее обработки.
    • Привод передачи. Переносит вращательные движения от двигателя к шпиндельной бабке.
    • Панель управления. Применяется для задания режимов работы и контроля их проведения.
    • Электродвигатель. Основная силовая часть станка. В зависимости от типа оборудования, оно может оснащаться несколькими двигателями.

    Некоторые станки с ЧПУ оснащаются устройством ввода информации. Обычно предстает в виде компьютера с дисплеем. С помощью такого узла станка с ЧПУ задается режим и параметры работы. При необходимости в них можно быстро внести изменения.

    Если вы думаете, какой ЧПУ станок выбрать, то важно понимать, какую задачу вы хотите решить с помощью такого оборудования. Благодаря большому разнообразию станков, оснащенных программным управлением, вы можете найти именно то, что нужно для вашей работы.

    Принцип работы и преимущества станков с ЧПУ

    В зависимости от того, какое оборудование оснащено числовым программным управлением, зависит принцип работы устройства. Ниже мы опишем этот процесс на примере универсального оборудования.

    Как работают станки с ЧПУ?

    При работе такого оборудования его основная часть производит различные перемещения. Их совокупность называется циклом обработки заготовки. Каждый цикл обладает своим значением и последовательностью ходов. За которые отвечает активная программа такого оборудования.

    Если используется станок без ЧПУ, то за последовательность действий отвечает оператор оборудования. Что приводит к существенной потери времени и КПД. Рабочий должен сверяться с чертежом, менять настройки станка и проводить действия по изготовлению детали. Оборудование оснащенное ЧПУ лишено таких недостатков. Достаточно один раз создать чертеж или 3D-модель детали, и станок самостоятельно проведет все необходимые металлообрабатывающие действия для создания продукции.

    Управляющая таким оборудованием программа поступает через компьютер или блок управления, где задается вручную. Благодаря устройствам, задающим координаты нужных точек, блок управления станком следит, чтобы к детали были применены те параметры, которые указаны в модели. Функции ЧПУ станка зависят от типа и универсальности оборудования.

    Преимущества оборудования с программным управлением

    Такие станки обладают следующими достоинствами:

    • Высокая скорость обработки. С помощью такого оборудования можно изготавливать детали сложных форм. Это происходит благодаря возможности обрабатывать заготовки в труднодоступных для оборудования ручного управления местах.
    • Перемещение активного инструмента для обработки заготовок по самым сложным траекториям.
    • Универсальные модели содержат несколько инструментов для обработки заготовок.
    • Минимальное время холостой работы оборудования.

    Но самым важным преимуществом станков с ЧПУ является более точное соответствие заготовки размерам, указанным в модели. Ведь для ее изготовления не нужно делать скидку на профессиональную квалификацию оператора и на его душевное состояние в момент работы на станке. Техническое обслуживание и ремонт станков с ЧПУ проводится только опытными мастерами со знаниями технологии работы такого оборудования.

    Заключение

    Мировые производители станков с ЧПУ увеличивают сферу применения такого оборудования. Станки такого типа все чаще используются в тех сферах, где ранее их представить бело невозможно. Но до сегодняшнего дня именно металлообработка является той основной отраслью, где оборудование с числовым программным управлением используется наиболее активно.

    Как работают станки с чпу. ЧПУ: принцип работы станков и расшифровка понятия

    Станок с ЧПУ – оборудование станочного типа с числовым программным управлением, предназначенное для высокоточной обработки деталей. Существует множество моделей аппаратов данного типа, но принцип работы станков с ЧПУ и практически идентичны. Устройства могут работать в автоматическом или полуавтоматическом режиме под контролем .

    Конструкция

    Чтобы понять, как работать на станке с ЧПУ, необходимо предварительно разобраться в его конструкции. Отдельные модели фрезерных и токарных станков имеют незначительные отличия, но базовые элементы идентичны.

    Стандартная конструкция агрегата включает наличие:

    • станины;
    • коробки подач;
    • передней шпиндельной бабки;
    • задней бабки;
    • стержневого механизма;
    • суппорта.

    Станина представляет собой основу оборудования – к ней крепятся другие комплектующие. Коробка подач отвечает за передачу движений, которые осуществляет шпиндель. Передаваемые движения принимаются суппортом. Передняя шпиндельная бабка состоит из:

    • коробки скоростей;
    • шпинделя;
    • крепежных элементов для фиксации и вращения заготовки.

    Задняя бабка предназначена для закрепления заготовки с противоположной стороны, когда выполняется обработка на станках с ЧПУ центральной части. В качестве стержневого механизма могут выступать различные инструменты, такие как развертка или сверло. Именно этот элемент отвечает за центральную обработку заготовки. Он неразрывно связан с задней бабкой. От суппорта зависит надежность фиксации режущего инструмента и траектории его движения.

    Работая с современным оборудованием, следует знать и дополнительных комплектующих. Конструкция станков может быть дополнительно оснащена:

    • вакуумным столом;
    • улавливателем стружки;
    • системой охлаждения фрезы.

    Также для удаленного контроля агрегатом иногда могут использовать переносной пульт. По этому принципу работают в основном в узкоспециализированном производстве.

    Характеристика

    Перед тем, как , нужно разобраться в его характеристиках. Отличительной чертой станков, имеющих числовое программное управление, является высокая скорость и точность обработки. В отличие от более старого оборудования подобного типа четырехкоординатные фрезерные станки с системой числового программного управления имеют более высокий показатель надежности и удобства в использовании.

    Еще одним фактором, отличающим от его аналогов, заключается в повышенном показателе жесткости. Эта особенность обусловлена:

    • короткими кинематическими цепями;
    • сниженными потерями на трении;
    • минимальными зазорами между элементами конструкции;
    • низким количеством механических передач;
    • повышенным быстродействием.

    Подвижные элементы устойчивы к износу, а теплопотери и механическое трение сведены к минимуму. Для конструкции характерно чередование в соединении между твердыми материалами и мягкими. Так, например, стальные детали могут соединяться с пластиковыми. Работа выполняется благодаря роликам, имеющим преднатяг. Вероятность получения повреждений такими элементами крайне мала.

    Принцип работы станка с системой ЧПУ также зависит от отличий приборов. По характеристикам токарные станки отличаются:

    • диаметром обрабатываемой заготовки;
    • габаритам детали, которую возможно зафиксировать;
    • максимальным расстоянием между центрами станочного прибора.

    Обработка токарным станком на высоких скоростях и быстрое нагревание не оказывают влияния на показатель трения.

    Особенности работы

    Принцип работы фрезерного станка основывается на взаимодействии всех комплектующих. Знание связи между рабочими элементами помогает разобраться, как работать на фрезерном станке.

    Задняя бабка имеет специальное место, в которое устанавливается рабочий механизм. Затем при помощи направляющих она размещается рядом с заготовкой на расстоянии, необходимом для ее фрезерования. Между задней и передней бабкой находится суппорт. После включения с его помощью будут выполняться продольные движения по заготовке.

    Фреза выбирается в зависимости от того, из какого материала состоит обрабатываемая деталь, и какой результат нужно получить. Например, дерево обычно не требует применения жестких фрез.

    Некоторые резцовые головки способны разместить четыре резца. Четырехкоординатный станок используется повышения качества и скорости обработки. Фрезерный станок с ЧПУ работает от электродвигателя, конструкция которого включает плотные приводной ремень. Он обеспечивает крепление ступенчатого шкива с мотором.

    Чтобы фрезерование на ЧПУ станке выполнялась на высоком уровне, необходимо периодически проверять, насколько хорошо натянут ремень.

    Работа оператора

    Станки работают под контролем оператора. Он отвечает за:

    • смену и закрепление заготовок;
    • установку фрезы нужного типа;
    • запуск управляющей программы;
    • включение станка;
    • контроль за работой оборудования.

    Оператор долго учится прежде, чем приступить к выполнению своих обязанностей. Первый запуск выполняется в тестовом режиме, поскольку вероятность допустить ошибку имеется даже тогда, когда специалист научил оператора правильно. Учащемуся предоставляются точные знания, но даже на самом современном устройстве имеется погрешность. На основе тестового запуска определяется, необходимо ли вносить коррективы в работу четырехосного прибора.

    Также проверяется, подходит ли фреза для дерева или другого материала, из которого изготовлена деталь, и соответствуют ли габариты детали допустимым значением станка. На этом принципе основывается процесс работы практически всех моделей четырехкоординатных станков.

    Некоторые считают: «Если я пользуюсь станком, больше ничего знать не нужно». Но к работе рекомендуется приступать, научившись создавать управляющие программы.

    Программирование

    ЧПУ станок запускается автоматическом или полуавтоматическом режиме только при наличии числовых управляющих программ (УП). Она включает все действия и принципы, по которым будет работать четырехосной станочный прибор. При создании управляющей программы задаются:

    • количество переходов и проходов;
    • параметры обрабатываемой заготовки;
    • основные характеристики рабочего инструмента.

    Рассмотрим работу станков с системой ЧПУ по упрощенной схеме (рис. 7.1), включающей основные блоки систем ЧПУ и основные элементы кинематической схемы станка. Система ЧПУ состоит из устройств ввода информации, блока запоминания информации БЗИ, блока интерполяции БИ, блока управления приводами подач в виде цифроаналоговых преобразователей ЦАП и двух следящих приводов по осям X и V станка. Следящие приводы состоят из усилителей мощности УМ Х и УМ У, сравнивающих устройств УС Х и УС У , датчиков обратной связи в виде вращаю­щихся трансформаторов ВТ Х и ВТ У , кинематически связанных с ходовыми винтами станка, и двигателей подач М х и М у , которые приводят во вращение ходовые винты станка. В результате вра­щения винтов перемещаются стол станка и его ползун с фрезой, совместное движение которых определяет конфигурацию изготовляемой детали согласно заложенной программе.

    Все современные устройства ЧПУ выполняются на базе ка­кой-либо микроЭВМ или микропроцессоров (одного или несколь­ких), позволяющих значительно увеличить степень автоматизации станка, т.е. обеспечить: индикацию большого числа параметров на экране дисплея, быстрое диагностирование неисправностей и удобное редактирование программ, запоминание большого объема управляющих программ и т.д.

    7.1. Состав системы чпу

    Все устройства ЧПУ имеют развитую цикловую автоматику с большим числом входов-выходов, а также связь с ЭВМ высшего уровня, необходимую при создании гибких производственных систем.

    Вместе с тем наблюдается разделение устройств ЧПУ по числу управляемых координат, связанное с их назначением: для токар­ных станков обычно требуется две координаты; для обычных фре­зерных – три; для фрезерных станков, предназначенных для объемной обработки, – пять; для многооперационных станков – от четырех до восьми. В настоящее время созданы устройства ЧПУ на 10–12 координат для управления ГПМ. Число координат весьма существенно влияет на конструкцию и стоимость устрой­ства ЧПУ.

    Функциональная схема типовой универсальной системы ЧПУ (рис. 7.2) состоит из двух основных устройств: устройства число­вого программного управления, конструктивно оформленного в виде отдельного шкафа или пульта и исполнитель­ных устройств с приводами и датчиками обратной связи, разме­щенными на станке. Основные блоки системы ЧПУ описаны ниже.

    Рис. 7.1. Упрощенная схема станка с ЧПУ

    Устройство ввода информации вводит числовую информацию с программоносителя.

    Блок запоминания считанной информации. Помимо запоминания входной информации в этом блоке выполняются ее контроль и формирова­ние соответствующего сигнала в момент обнаружения ошибки. Этот блок, как правило, имеет возможность получать информацию от ЭВМ верхнего уровня, что необходимо при объединении стан­ков в ГПС.

    Пульт управления и индикации служит для связи человека-оператора с системой ЧПУ. С помощью этого пульта проводится пуск системы и ее останов, переключение режимов работы с авто­матического на ручной и т.д., а также коррекция скорости подачи и размеров инструментов и изменение начального положения инструмента по всем или некоторым координатам. На этом пульте находится световая сигнализация и цифровая индикация о со­стоянии системы.

    В современных ЧПУ индикация обычно осуществляется с помощью встроенного дисплея, позволяющего выводить значительно большее число параметров, а также проводить отработку про­грамм непосредственно на станке.

    Блок интерполяции формирует частичную траекторию движе­ния инструмента между двумя или более заданными в программе точками. В большинстве случаев используют линейную и круговую интерполяцию, хотя иногда применяют винтовую или цилиндри­ческую интерполяцию.

    Приводы подач, чаще всего следящие, служат для обеспече­ния перемещения управляемых элементов станка (столов, суппор­тов, кареток и т.п.) с необходимой скоростью и точностью при заданном моменте. Под следящим приводом будем понимать систему, состоящую из двигателя (электрического, гидравличе­ского), усилителя мощности, снабжающего этот двигатель не­обходимой энергией, которая регулируется в широких пределах, датчика обратной связи по положению, служащего для измерения фактического перемещения (или положения) управляемого объ­екта, и сравнивающего устройства, сравнивающего фактическое положение объекта с заданным и выдающего сигнал ошибки, по­ступающий на вход усилителя мощности, в результате чего угло­вая скорость вала двигателя оказывается пропорциональной ошибке системы. В процессе работы эта система перемещает управ­ляемый объект таким образом, чтобы поддерживать минимальное значение ошибки. Если ошибка по каким-либо причинам превы­шает заранее установленный допустимый предел, то система ЧПУ автоматически отключается с помощью специальных устройств защиты.

    Блоки управления приводами подач служат для преобразования информации, получаемой с выхода интерполятора, в форму, пригодную для управления приводами подач, так, чтобы при поступлении каждого импульса управляемый объект перемещался на определенное расстояние, называемое ценой импульса, кото­рая обычно составляет 0,01 или 0,001 мм. В зависимости от типа приводов (замкнутые или разомкнутые, фазовые или амплитуд­ные), применяемых на станках, блоки управления существенно различаются.

    В разомкнутых приводах, использующих шаговые двигатели, блоки управления представляют собой специальные кольцевые коммутаторы, на выходе которых включены мощные усилители, питающие обмотки шаговых двигателей, которые служат для циклического переключения обмоток ШД, что заставляет вра­щаться его ротор. В замкнутых приводах фазового типа, исполь­зующих датчики обратной связи в виде вращающихся трансфор­маторов (ВТ) или индуктосинов в режиме фазовращателей, блоки управления представляют собой преобразователи импульсов в фазу переменного тока и фазовые дискриминаторы, которые сравни­вают фазу сигнала на выходе фазового преобразователя с фазой датчика обратной связи и выдают разностный сигнал ошибки на усилитель мощности привода.

    В этом же блоке обычно расположены усилители для питания датчиков обратной связи, а также устройства защиты, отключаю­щие приводы при превышении допустимой ошибки слежения.

    Датчики обратной связи ДОС являются измерительными устройствами, служащими для определения фактического поло­жения (абсолютного значения координаты) или перемещения (от­носительного значения координаты) управляемого объекта в пре­делах шага системы. При этом суммирование шагов производит система ЧПУ. Перемещения объекта определяют как непосредственно с помощью каких-либо линейных измерительных устройств, например, индуктосинов, так и косвенно, измеряя, например, угол поворота вала двигателя подач с помощью какого-либо углового измерительного устройства, например, обычного ВТ или резольвера (точный ВТ синусно-косинусного типа, применяемый в счетно-решающих устройствах).

    Помимо индуктосинов, для непосредственного измерения ли­нейных перемещений иногда используют и другие измерительные устройства, например, прецизионные зубчатые рейки с много­полюсными ВТ, или для достижения особо высокой точности – оптические штриховые измерительные шкалы с соответствующими импульсными датчиками. Обычно одно и то же устройство ЧПУ может работать с раз­личными типами ДОС.

    Рис. 7.2. Функциональная схема системы ЧПУ

    Блок скоростей подач обеспечивает заданную скорость подачи, а также разгон и торможение в начале и конце участков обработки по заданному закону, чаще всего – линейному. Скорость подачи задается либо номером скорости соответствующего ряда скоростей, составляющих геометрическую прогрессию со знаменателем по­рядка 1,25, либо непосредственно в миллиметрах в минуту через 1 или даже через 0,1 мм/мин. Помимо рабочих скоростей подач, составляющих обычно 5–2000 мм/мин, этот блок выполняет, как правило, и установочное движение с повышенной скоростью, на которой производится установка координат при позиционной обработке или переход инструмента из одного участка заготовки в другой при контурной обработке. Эта скорость в современных системах ЧПУ составляет 10–15 м/мин.

    Блок коррекции программы вместе с пультом управления слу­жит для изменения запрограммированных параметров обработки, т.е. скорости подачи и размеров инструмента (длины и диаметра). Изменение скорости движения (обычно 5–120 %) сводится к руч­ному изменению частоты задающего генератора в блоке подач. Изменение длины инструмента (обычно от 0 до 100 мм) сводится к изменению заданного значения перемещения вдоль оси инстру­мента, без изменения его начального поло­жения.

    Блок технологических команд предназначен для управления цикловой автоматикой станка, включающего поиск и смену до­статочно большого числа инструментов (до 100), смену частоты вращения шпинделя, зажим направляющих при позиционирова­нии и разжим их при движении, различные блокировки, обеспе­чивающие сохранность станка. Цикловая автоматика станка со­стоит в основном из исполнительных элементов типа пускателей, электромагнитных муфт, соленоидов и других электромагнитных механизмов, а также дискретных элементов обратной связи типа концевых и путевых выключателей, реле тока, реле давления и других элементов, контактных или бесконтактных, сигнализи­рующих о состоянии исполнительных органов. Часто эти элементы с дополнительными устройствами типа реле реализуют местные циклы (например, цикл поиска и смены инструмента), команды, на исполнение которых подаются из устройства программного управления. Современные устройства ЧПУ, как правило, осу­ществляют эти циклы внутри, выдавая сигналы на исполнитель­ные элементы станка через согласующе-усилительные устройства, которые могут находиться как в станке, так и в устройстве ЧПУ. Для этого часто используют программируемые контроллеры в виде отдельного блока, размещаемого внутри или вне устройства ЧПУ.

    Блок стандартных циклов служит для облегчения программи­рования и сокращения длины программы при позиционной обра­ботке повторяющихся элементов заготовки, например, при свер­лении и растачивании отверстий, нарезании резьбы и других операций.

    Помимо этих блоков, применяют блоки адаптации, которые служат для увеличения точности и производительности обработки при изменяющихся по случайному закону внешних условиях (например, припуск на обработку, твердость обрабатываемого материала, затупление инструмента). Это объясняется тем, что любая система ЧПУ является разомкнутой системой управления, так как она не «знает» результата своей работы. В системе ЧПУ с обычной обратной связью заготовка ею не охвачена; задается только перемещение инструмента относительно заготовки. В то же время на точности размеров детали сказывается, например, де­формация инструмента, которая в обычных системах ЧПУ может учитываться при программировании только тогда, когда она по­стоянна или изменяется по заранее известному закону, чего на практике нет.

    Большинство производственных структур избавляются от станков обычных и приобретают прогрессивное оборудование. Их главный мотив – высочайшая точность обработки. А завершив комплектацию новой техникой, начинают искать специалистов, способных на ней работать.

    С приятным удивлением пришлось прочесть объявление в сети, в котором приглашался специалист на комплексную за биткоины. А это доказательство того, что профессия востребована и престижна. Труд грамотного специалиста ценится высоко.

    Прошли те времена, когда мастеру (токарю или фрезеровщику) приходилось самому выполнять настройку оборудования, следить за работой станочного парка. Сейчас, когда все процессы автоматизированы, работа на станке с ЧПУ требует гораздо меньше усилий, чем в прошлом, но зато повышаются требования к уровню квалификации.

    Владеть знаниями о ЧПУ

    Фрезерные, сверлильные и токарные станки с числовым программным управлением (ЧПУ) принадлежат к оборудованию, на котором можно выполнять механическую обработку любого материала (речь идёт о пластике, графите, алюминии, меди, чугуне и стали, древесине) специальными инструментами – фрезами, сверлами и резцами. Опытный , а также наладчик знает, что у материала режущей части инструмента твёрдость и прочность призвана быть выше, чем у обрабатываемой заготовки. Они подбирают сплав среди твердых и быстрорежущих, используется алмаз и минералокерамический компонент.

    Квалифицированному специалисту известны формы и типы инструментов, сфера их применения, правила ухода за ними. Помимо горизонтальных и вертикальных типов станков, распространены и универсальные. На них обрабатывать сложные детали можно выполнять под нужным углом, с применением разных инструментов.

    Быстро вращаясь, они способны обтачивать заготовки, разрезать их, раскраивать материал, сверлить отверстия, выполнять гравировку. И всеми процессами руководит программа блока ЧПУ.

    Перемещения по осям (речь идет о портале и шпинделе) обеспечиваются тремя микрошаговыми двигателями. Вместе с инструментом, они составляют механический блок устройства. А вот управление производственными операциями осуществляет электронный блок. При помощи программного обеспечения происходит обработка графических файлов, которые стают векторными изображениями, переводятся в G-код.

    Спектр умений работающего на программируемом оборудовании

    Чтобы изготовить деталь, работающий на ЧПУ станке, должен уметь:

    • построить её при помощи графического редактора (программы AutoCad, Corel Draw);
    • установить программу в ОЗУ станка то ли в оперативной памяти;
    • определиться с режимом и параметрами управления микрошаговыми двигателями, адекватные технологическому заданию и виду материалов, которые нужно обработать;
    • визуально осуществлять контроль за ходом каждой технологической операции на панели, где видно отображение текущей информации про работу оборудования.

    От операторов не требуются действия особой сложности в процессе обслуживания станков с ЧПУ, а применение программируемого оборудования одновременно решает насколько задач:

    • повышается уровень производительного труда;
    • обеспечивается отличная качественная и точная обработка;
    • улучшается решение проблем с культурой производства и безопасностью труда.

    ВНИМАНИЕ! Управляющую программу создают минимум для двух фрез. С помощью первой выполняется черновая работа с заготовкой: а вторая занимается чистовой обработкой.

    Научиться – овладеть мастерством

    Согласитесь, что токарями и фрезеровщиками не рождаются, ими становятся. И этой профессии надо учиться. Где? Как долго? Реклама в социальных сетях пестрит заголовками типа: «Научим работать на ЧПУ за 5 минут!», «Обучиться эксплуатации станка за 2 недели!». Такие заявления – не больше чем бравада. 5 минут вообще не берем в расчет. За 2 недели можно успеть прослушать определённый сжатый теоретический курс обучения.

    Каждый электрик должен знать:  Как рассчитать и выбрать сечения кабеля квартирной электросети

    А ведь для того, чтобы стать специалистом, причем, – грамотным и ответственным, достойным занять должность, которая высоко оплачивается, нужна ещё и практика.

    Самый надёжный вариант для овладения профессией – учеба в профильном учебном заведении – колледже. Там обучают по программе, где есть место и для теории, и для практики (в определённых пропорциях). Правильный подход к обучению и состоит в том, чтобы теория соединялась с практикой. Хорошо усваивать теорию, если дома, в учебном заведении, где человек получает образование, есть на чем попробовать работать самостоятельно.

    Отличный вариант, если приглашают работать на станок ЧПУ с обучением профессии. Он стоит внимания соискателя работы, так как его обучение будет проходить непосредственно на производстве. Там руководители напрямую заинтересованы в том, чтобы быстрее подготовить работника высокой квалификации.

    А как с учебой в режиме онлайн?

    Сегодня и это вполне реально. Готовы обучать работе чпу станка некоторые интернет-ресурсы. В частности, стали весьма популярными удаленные курсы в Skype онлайн. И, в общем-то, это неплохо:

    • прослушать грамотное изложение теоретических основ;
    • увидеть, как эта техника работает;
    • обратить внимание преподавателей на определенные нюансы.

    Но пока человек сам не подойдет к станку, не пощупает все своими руками и не попробует выполнить все рекомендуемые операции, – трудно считать, что он чему-то научился.

    Что хорошо на подобных курсах, так это многоразовые упражнения по (управляющих программ); приобретение навыков создания векторных изображений и пользование возможностями ArtCam, StreameLine, Мach 3 и других программ.

    Неплохо было бы просмотреть видео (их в интернет-сети создано немало), где теоретически научат обслуживанию и наладке таких станков. И затем приобрести комплекс необходимых практических навыков.

    Распределение обязанностей

    Учитывая тот факт, что сегодня программируемые станки – сложные электромеханические приборы, согласованное обслуживание осуществляют два человека: (ему вверены сложные операции, связанные с наладкой и переналадкой устройства), а оператору надлежит следить за ходом процесса и обслуживать станок.

    Наладчик, выполняя свои обязанности, занимается:

    • подбором инструментов, проверкой их заточки; введением предусмотренных технологической картой размеров;
    • установкой инструментов; проверкой, насколько надежны крепления, лентопротяжный механизм и вся система при работе в режиме холостого хода;
    • введением перфолент, анализом правильности программ;
    • закреплением в патроне заготовок, пуском режима «По программе».

    Обработав заготовку и измерив сделанную деталь, наладчик вносит поправки, и таким же образом обрабатывается еще одна заготовка. Если расхождений по размерам нет, вводится режим «Автомат» и затем свои функции исполняет оператор. Он выполняет:

    • замену масла и смазки в патронах;
    • наладку пневматических и гидравлических узлов оборудования и точных параметров;
    • очищение места, оставляющего рабочую зону;
    • тестирование на предмет работоспособности.

    Он также должен убедиться, что выполняется подача смазочной жидкости в гидросистему и другие узлы.

    Быть готовым к новому уровню требований

    Интенсивное развитие техники микропроцессорах, содействовало тому, что сейчас, через каждые 3-5 лет, существенное обновление претерпевает аппаратная часть устройств чпу, их работа.

    Сегодня в отрасли машиностроения становится всё больше роботизированных производств. Более реальной стала концепция, которая называется «безлюдное производство». Речь идёт о полной роботизации предприятий машиностроительного сектора. В идеале, нас ожидает полностью автоматическое производство, в котором не участвует человек.

    Предсказанное писателем-фантастом Айзеком Азимовым появление роботов, сейчас нашло воплощение в металле. И это породило целый ряд проблем. На полном серьезе, в кулуарах правительства Южной Кореи, идут дебаты по поводу редактирования текста «Устава этических норм для роботов».

    Но это отдалённая перспектива. А сейчас для многих молодых людей реально получить базу знаний для работы со станком ЧПУ. Это путь в одну из наиболее востребованных профессий современности.

    Оборудование, имеющее числовое программное управление, привлекает всех людей, кому интересно своими руками изготовлять качественную и нужную продукцию.

    Они имеют дело с разнообразными станками токарной и фрезерной групп. В частности, с револьверными, а также высокопроизводительными агрегатными (у различных моделей этого типа оборудования может одновременно работать в пределах 100 инструментов: фрезы, сверла, резцы).

    Если необходима криволинейная форма образующей поверхности, работы выполняются с помощью гидросуппорта, который управляется ЧПУ. Сегодня система ЧПУ может быть установлена и на гидроабразивных станках. Их функция – качественный раскрой листового материала: металла, пластика, натурального и искусственного камня, стекла.

    Заключение

    Работать на станках с ЧПУ сегодня престижно, поэтому и требования к уровню квалификации достаточно высокие. Опытный наладчик или оператор оборудования много должен знать и уметь, чтобы соответствовать этим квалификационным требованиям и уверенно себя чувствовать на любом этапе работы.

    Каждая компания, открывая новое предприятие, заботится о кадровом потенциале. За последние годы рабочие профессии не стали популярными. Это связано с тем, что обладателю корочки о получении профессии не всегда удается найти работу, особенно с достойной оплатой. Поэтому все больше внимания руководители предприятий уделяют обучению персонала работе на станках с числовым программным управлением.

    Почему нужно обучать операторов

    Современные производственные мощности оснащают высокоточными станками с ЧПУ. Рабочих, которые стояли у станка десять-двадцать лет назад, к ним не поставишь.

    Многие отрасли современной промышленности, в том числе металлообработка, остро нуждаются в операторах-наладчиках станков с ЧПУ. И заработную плату предлагают неплохую. Например, оператор станков с ЧПУ (СПб) получает от 40 до 70 тыс. руб. Эти специалисты настраивают и контролируют работу этих приборов, задают им программу действий, набор операций, указывают их последовательность. А обслуживать станок поручают оператору, который тоже должен разбираться в особенностях процесса.

    Те же, кто обучался рабочим профессиям, не всегда готовы работать на современном оборудовании. Программы обучения в профессиональных училищах не всегда отвечают уровню технической оснащенности современного производства. Слабая материально-техническая база не дает возможности получить нужные знания и приобрести навыки. Да и опыта работы на высокоточных станках с ЧПУ зачастую у них нет.

    Это касается не только рабочих, но и специалистов среднего звена.

    Поэтому руководители стараются обеспечить свои предприятия рабочими, обученными за их содействием.

    Роль операторов и наладчиков

    Использование станков с числовым программным управлением резко изменило характер процессов, выполняемых людьми, которые их обслуживают. На их роли в технологическом процессе отразилась высокая автоматизация, возможности быстрой переналадки оборудования.

    Современные станки работают в автоматическом цикле. Программы для их работы разрабатывают технологи. Поэтому последовательность операций и перемещение рабочих частей инструмента не зависит непосредственно от станочника.

    Что зависит от оператора

    Инструкция оператора станка с ЧПУ четко регламентирует их обязанности:

    • установка заготовки и снятие ее после обработки;
    • периодически нужно проверять размеры деталей на соблюдение стандартов;
    • наблюдение за сходом стружки в нужном направлении;
    • контроль за состоянием систем станка;
    • наблюдение за сигнальными устройствами.

    Оператор производит наладку станка и запускает его в работу. Обычно машина обрабатывает одну деталь длительное время. Поэтому оператор может обслуживать несколько станков или выполнять другие функции с различными инструментами. Это делает работу более интересной. Но вместе с тем требует умений планирования работы.

    Своевременно обнаружив неполадки в работе системы или брак, он сообщает о них. Этим он помогает сохранить оборудование и предотвратить выпуск некачественных изделий. Его наблюдения помогают технологам внести необходимые изменения в программу.

    Чтобы каждый раз не сталкиваться с одной и той же проблемой, как с новой, оператор станков с ЧПУ должен запоминать и изучать признаки различных неполадок и неисправностей, чтобы быстро исправлять их или препятствовать их возникновению.

    Устройства ЧПУ

    Сейчас на рынке представлено достаточное количество устройств числового программного управления зарубежного и русского производства.

    Из первых можно назвать немецкие Siemens и Heidenhein, японский Okuma, Mitsubishi, Fanuc Automation (или Fanuc), испанский Fagor.

    Во вторую группу входят санкт-петербургский «Балт-Систем», «Модмаш» (Нижний Новгород), московский «Альфа-Систем», ижевский «Ижпрэст», «Микрос» (Ногинск).

    Самыми популярными и распространенными считаются Siemens и Fanuc.

    Обучение в производственных центрах

    Обучающие центры создают для того, чтобы получить единую образовательную систему, включающей теорию и практику. Оператор станка с ЧПУ должен понять и осмыслить весь процесс создания готового изделия, начиная с разработки чертежей и программ, заканчивая образованием навыков работы операторов различных станков с программированием.

    В качестве экзамена или зачета будущий оператор станка с ЧПУ сам обрабатывает деталь, а специалисты центра следят за качеством его работы.

    Обучение

    Как обучается в таких центрах оператор станков с ЧПУ?

    Обучение проводят в классах, оснащенных симуляторами стоек. Программа рассчитана на то, чтобы новые знания можно было сразу реализовать на практике. Это позволяет значительно сократить время на обучения непосредственно в цехах, возле оборудования. Студенты изучают азы программирования, такие понятия, как система координат, оси координат и управление ими, знакомятся со строением программы управления, интерполяцией, постоянными циклами, подготовительными и вспомогательными функциями.

    В результате оператор станка с ЧПУ, который попадает на производство, уже готов работать.

    Непрерывное обучение

    Специалисты высокой квалификации ценятся на любом предприятии. Для того чтобы они могли идти в ногу со временем, им нужно постоянно расти и обучаться. Поэтому подготовка операторов станков и других специалистов должно быть непрерывным.

    Если в составе обучающего центра есть сервисный центр, то его специалисты помогают наладить станки, которое устанавливают на предприятии, и обучают сотрудников не только своих, но и заказчиков. В дальнейшем оператор-наладчик станков с ЧПУ будет производить обслуживание этого оборудования.

    Это выгодно и руководителям, и самим наладчикам. Первым не нужно будет искать специалистов, вторые смогут консультировать операторов дистанционно или выезжать на предприятие в любое время суток.

    Что нужно знать, чтобы стать наладчиком

    Молодые люди, которые хотят стать наладчиками станков с числовым программным управлением, должны:

    • хорошо знать математику, в том числе геометрию;
    • знать механику и электротехнику;
    • читать чертежи и техническую документацию;
    • программировать процессы обработки.

    В профессионально-технических училищах подготовка операторов станков с ЧПУ проводится на базе среднего образовании в течение 2 лет.

    Но только поработав на предприятии, молодой специалист может утверждать, что он освоил профессию, и теперь он — оператор станков с ЧПУ.

    Требования к операторам-наладчикам

    Современные станки с ЧПУ — сложные механизмы. Определение причин допущенного брака и устранение их требуют технического образа мышления у оператора-наладчика. Он должен интересоваться машинами и различными механизмами и устройствами. Только таким людям эта работа будет интересной, только они смогут достичь в ней успеха.

    Оператор станка с ЧПУ должен:

    • понимать устройство и принцип действия станков;
    • знать способы правильной установки, закрепления обрабатываемых деталей и их качественной обработки;
    • уметь настраивать станки;
    • вводить программы;
    • доводить и затачивать инструмент;
    • изготавливать детали высокого качества;
    • уметь измерять полученные детали.

    Самообразование

    Сейчас несложно найти массу литературы, которая может помочь разобраться в тонкостях работы на станках с числовым программным управлением. Многие специалисты пользуются ею для повышения своих знаний. Но это под силу далеко не каждому представителю профессии. А подрастающему поколению невозможно освоить профессию только по книжкам. Поэтому и нужна гибкая система образования, позволяющая каждому желающему освоить профессию и получить нужные ему навыки.

    Многие начинающие мастера по изготовлению мебели сталкиваются с необходимостью создания фасадов на основе плит МДФ. Причем требования к изделиям в условиях высокой конкуренции – достаточно высоки.

    Изделия должны быть качественными, отвечать современным стандартам и трендам, кроме того, чтобы иметь стабильный поток клиентов, их заказы предприниматель должен выполнять как можно быстрее. Сделать работу качественно и быстро можно лишь при условии применения технологичных приспособлений для работы. В данном случае – это станки с ЧПУ. Что они представляют собой и как работают, мы и расскажем ниже.

    Что означает данная аббревиатура?

    Расшифровка этого понятия такая: Числовое Программное Управление . То есть, станок, работающий на числовом программном управлении, способен совершать те или иные действия, которые ему задаются при помощи специальной программы. Параметры работы станка задаются посредством цифр и математических формул, после этого он выполняет работу согласно указанным программой требованиям. Программа может задавать такие параметры, как:

    • мощность;
    • скорость работы;
    • ускорение;
    • вращение и многое другое.

    Особенности станков с ЧПУ

    Техника создания мебельных деталей на современном приборе данного типа включает в себя несколько этапов работы:

    Все механические действия, которые выполняет оборудование, являются воплощением последовательности, которая прописана в управляющей программе.

    Современные станки с ЧПУ являются сложными электромеханическими приборами и требуют квалифицированного применения. В основном работа станка осуществляется посредством двух человек:

    • наладчика;
    • оператора станка с ЧПУ.

    Наладчику вверяется более сложный массив работы, он выполняет действия по наладке и переналадке прибора, а оператор должен следить за рабочим процессом и осуществлять легкую наладку.

    Действия наладчика и оператора станка с ЧПУ

    Этапы работы наладчика выглядят следующим образом:

    • подбор режущего инструмента согласно карте, проверка его целостности и заточки;
    • подбор по карте наладки заданных размеров;
    • установка режущего инструмента и зажимного патрона, проверка надежности крепления заготовки;
    • установка переключателя в положение «От станка»;
    • проверка рабочей системы на холостом ходу;
    • введение перфоленты, которое проводится после проверки лентопротяжного механизма;
    • проверка правильности заданной программы для пульта и станка ЧПУ и системы световой сигнализации;
    • крепление заготовки в патрон и установка переключателя в режим «По программе»;
    • обработка первой заготовки;
    • измерение готовой детали, внесение поправок на специальные переключатели-корректоры;
    • обработка детали в режиме « По программе» второй раз;
    • осуществление замеров;
    • перевод переключателя режима в положение «Автомат».

    На этом процесс наладки окончен и к работе приступает оператор станка ЧПУ. Он должен выполнить такие действия:

    • менять масла;
    • чистить рабочую зону;
    • смазывать патроны;
    • проверять станок на пневматику и гидравлику;
    • проверять точные параметры оборудования.

    Перед тем как приступить к работе, оператор станка ЧПУ должен проверить его на работоспособность посредством специальной тестовой программы, также ему следует убедиться в том, что подана смазочная жидкость и в том, что в гидросистеме и ограничивающих упорах присутствует масло.

    Помимо этого, он должен проверить, насколько надежно крепление всех приборов и инструментов, а также то, насколько мебельная заготовка соответствует заданному технологическому процессу станка. Далее следует провести замеры на предмет возможных отклонений от точности настройки нуля на приборе и других параметров.

    И только после этих манипуляций можно включать сам станок ЧПУ:

    • заготовку устанавливают и закрепляют;
    • потом вводится программа работы;
    • в считывающее устройство заправляется перфолента и магнитная лента;
    • нажимаем «Пуск»;
    • после того как первая деталь обработана, производятся ее замеры на предмет соответствия с заданной ранее моделью.

    Сферы применения станков с ЧПУ

    Станки на основе ЧПУ применяются в разных отраслях по оказанию услуг и производстве:

    • для обработки древесины и плит из дерева;
    • для обработки пластика;
    • камней;
    • сложных изделий из металла, включая ювелирные изделия.

    Приборы с ЧПУ имеют ряд таких функций , как:

    • фрезерование;
    • сверление;
    • гравировка;
    • распил;
    • лазерная резка.

    Некоторые модели станков с ЧПУ имеют возможность совмещать одновременно разные виды обработки материалов, тогда их называют обрабатывающими центрами на основе ЧПУ.

    Преимущества станков с ЧПУ

    Применение на производстве станков и обрабатывающих центров на основе ЧПУ позволяет вовремя выполнить такие работы, которые бы без их использования были неосуществимыми. Например, при производстве таким способом мебельных фасадов из МДФ, можно выполнить сложные рельефные декоры , которые вручную сделать просто невозможно. Так, благодаря специальным графическим программам для проектирования можно воплотить самые смелые дизайнерские решения.

    Кроме того, массовое производство фасадов МДФ с помощью широкоформатных станков с ЧПУ возможно без необходимости предварительно раскраивать плиты и позволяет делать полный цикл их обработки, это значительно экономит время и рабочую силу.

    Цена оборудования на основе ЧПУ такова, что нужно перед его покупкой хорошо подумать, будет ли это экономически выгодно конкретно для ваших производственных мощностей. Если у вас есть стабильный поток клиентов, и они готовы платить за оригинальные дизайнерские решения, то можете смело вкладывать средства в такое оборудование.

    Особенность станков на основе ЧПУ – это их надежность и возможность бесперебойной работы в течение многих лет. Но при работе с ними нужно соблюдать все правила безопасности, а также подбирать только квалифицированных операторов и наладчиков. Некачественная работа персонала может вывести прибор из строя раньше положенного срока.

    Принцип работы станка с ЧПУ и подготовка информации

    Содержание

    Стр.
    Предисловие
    1 Принцип работы станка с ЧПУ и подготовка информации для управляющих программ
    1.1 Подготовка информации для управляющих программ
    2.1 Кодирование информации УП
    2.2 Запись УП на перфоленту
    2.3 Элементная база
    3 Классификация ЧПУ по технологическим признакам
    3.1 Система позиционного числового программного управления
    3.2 Система непрерывного числового программного управления
    4 Структурно-информационный анализ УЧПУ разных классов
    4.1 Классификация систем с ЧПУ (по архитектуре)
    4.2 Системы классов CNC, DNC, HNC и VNC
    5 Разомкнутые системы. Дискретный (шаговый) двигатель подачи
    5.1 Дискретный (шаговый) двигатель подачи
    6 Замкнутые системы ЧПУ
    7 Импульсные системы ЧПУ.
    7.1 Импульсные датчики обратной связи
    8 Фазовые системы ЧПУ
    8.1 Фазовые датчики обратной связи
    9 Блок схема NC, работа и назначение блоков
    10 Интерполяция
    11 Система координат станков с ЧПУ
    12 Программирование перемещении и коррекция инструмента
    12.1 Формирование УП
    12.2 Коррекции при программировании
    12.3 Программирование в полярной системе координат
    13 Эксплуатация и диагностика систем ЧПУ
    14 Система координат инструмента
    15 Связь систем координат
    16 Наладка и настройка токарных станков с ЧПУ
    17 Наладка фрезерных станков с ЧПУ
    17.1 Методы установки рабочих органов станков в исходное положение
    18 Системы управления ПР
    19 ЧПУ на основе микро ЭВМ
    20 Организация и технические средства микропроцессорных УЧПУ
    20.1 Организация программного обеспечения
    20.2 Информационный обмен между ЭВМ и СПУ
    20.3 Принципы построения и структуры
    21 Программируемые контроллеры
    22 Элементы памяти систем ЧПУ
    23 Автоматизация подготовки УП
    24 Диалоговые методы программирования на УЧПУ
    25 Система циклового программного управления
    26 Управление автоматическими линиями
    27 Управление ГПС
    28 Диагностика в ГПС
    Список литературы

    Предисловие

    Уважаемый читатель, данный учебник предназначен для студентов, обучающихся по специальности инженера-механика, в области металлообработки резанием. Рассматриваются такие системы числового программного управления оборудованием как «черный ящик» и поясняется их работа большей частью в режиме пользователя. В настоящее время, как в России, так и за рубежом выпускается большое разнообразие систем управления технологическим оборудованием. В основном это системы, построенные на базе микропроцессорной техники. На заводах до сих пор эксплуатируется достаточное количество станков с устаревшими системами ЧПУ. Постараемся рассмотреть систему ЧПУ как по функциональному назначению, так и конструктивным особенностям. Так, например, имеются группы станков, где используются различные датчики обратной связи. Причем одни и те же модели станков (например, ИР500 «Россия») могут быть оснащены как фазовыми, так и импульсными системами ЧПУ. Комплектовать участки станков с ЧПУ желательно с однотипными системами ЧПУ, это дешевле обходится в эксплуатации и содержании станочного парка (запасные части для систем управления, специализация, а значит меньший состав обслуживающего персонала систем управления и т.д.). Заказывают оборудование технологические службы, специалисты должны представлять, какие могут возникнуть проблемы при эксплуатации приобретаемого оборудования.

    Основная задача инженера-технолога – подготовка производства на станках с ЧПУ. Это решение технологических задач, разработка управляющих программ, анализ погрешностей, возникающих при обработке. Подход к разработке управляющих программ большей части систем ЧПУ одинаковый, но каждая система ЧПУ может иметь свои особенности, особенно современные системы ЧПУ управления сложными многофункциональными станками типа «обрабатывающий центр». Для работы с такими системами ЧПУ требуется специальная подготовка.

    В данном учебном пособии рассмотрим общий подход к разработке управляющих программ. Это даст будущему специалисту представление о порядке составления управляющих программ и документации подготовки производства на станках с ЧПУ.

    В принципе программное управление обработкой появилось очень давно, с появлением автоматов, где движение инструмента определяется формой кулачков, копировальные станки, где форма обрабатываемой детали определяется формой копира и т.д. Кулачок, копир несет в себе информацию – программу, заложенную технологом, по которой необходимо получить форму и размеры детали. Здесь программа закладывается жестко, и изменить ее практически невозможно. Необходимо изготовить другие кулачки, копир и т.п.

    Расстановка кулачков путевой автоматики при наладке станка на определенный ход исполнительных механизмов также можно отнести к приему программирования работы станка, но это выполняется при наладке станков для обработки простых поверхностей, где большая часть операций по наладке станка осуществляется вручную.

    В станках с числовым программным управлением форма, размеры обрабатываемых поверхностей, режимы обработки и т.п. задаются в виде комбинации определенных чисел, определенной системе исчисления (как правило, двоичной), поэтому эти станки называют станками с числовым программным управлением.

    Для облегчения понимания материала по управлению станками, рассмотрим принцип работы станка с числовым программным управлением на примере токарного станка.

    Как видно из приведенной схемы, рис.1 на станке с числовым программным управлением нет жестких кинематических связей. Привод как поперечной, так и продольной подачи осуществляется от отдельных двигателей ДПх и ДПz. Шпиндель имеет привод от отдельного, регулируемого по скорости двигателя. ЧПУ управляет двигателями подачи согласно управляющей программе, вводимой в систему ЧПУ по направлению, скорости и закону их взаимного движения. Для обеспечения заданной подачи или нарезания резьбы, когда движение инструмента должно быть строго согласовано с вращением шпинделя, имеется специальный датчик резьбонарезания ДРН. Датчик резьбонарезания подает в систему ЧПУ информацию об угловом положении шпинделя, на основании которой определенный блок ЧПУ вырабатывает согласно программе информацию для управления двигателями приводов подачи.

    Рис.1 Кинематическая схема токарного станка

    На стадии зарождения станков с ЧПУ программу для управления обработкой на станке записывали на магнитную ленту. Информация записывалась в унитарном коде. Понятие унитарный код проще пояснить для импульсных систем. На определенных дорожках управления соответствующими приводами записывались серии импульсов, число которых соответствовало величине перемещения исполнительного механизма, частота записи, скорости движения, знак сигнала, направление. Направление движения, как правило, определялось соответствующей дорожкой записи электрических импульсов. Каждому импульсу соответствовало строгое перемещение привода подачи. Перемещение исполнительного механизма на один командный сигнал является важнейшей характеристикой станка с ЧПУ. Обычно ее называют ценой импульса или дискретой приводов подачи станков с ЧПУ. Дискретность приводов подачи современных станков с ЧПУ составляет 1 мкм, и уже появились разработки с ценой импульса 0,1 мкм. Первоначальная информация для управления обработкой на станке с ЧПУ все равно составлялось в каком-то буквенно-числовом коде, в основном в коде БЦК-5, затем в специальной электронной машине (называемой интерполятором) переводилось в унитарный код для записи на магнитную ленту, позже стали применять код ИСО-7 бит. Бит – это двоичное состояние какого-то элемента. Так в любой цифровой вычислительной машине любое число или команда записывается в виде комбинации 1 и 0, которые, например, соответствуют состоянию электронного элемента, открыт или закрыт, есть зарядка конденсатора или нет и т.п. то же самое запись на перфоленте, наличие отверстия соответствует «1», отсутствие — «0». Комбинация «1» и «0» определяет какое-то выражение (число — команду).

    Буквенно-цифровой код БЦК-5 (нормаль станкостроения Э68-1) предназначен для записи информации на пятидорожечной перфоленте. Для кодирования использован двоично-десятичный код 8421, в котором выражены десятичные цифры 0, 1,2, . 9 и буквы Е, Д, Т, К, П, Ш, С, В, Я, Н. Для записи букв используются те же комбинации, что и для записи цифр, но признаком буквы является запись символа 1 на пятой дорожке.

    Рис. 2 Буквенно-цифровой код ИСО-7 бит;

    а – кодирование цифр; б – кодирование букв P — Z; в — кодирование букв А — О

    В современных УЧПУ код БЦК-5 применяют лишь для управления простым оборудованием, в частности газорезательными машинами, так как он малоемкий.

    Семиразрядный буквенно-цифровой код ИСО-7 бит является основным для всех отечественных современных станков с ЧПУ. Значение букв и символов в терминах ЧПУ у этого кода должно соответствовать ГОСТ 20999—83 (СТ СЭВ 3585—82). Код предназначен для записи информации на восьмидорожечной перфоленте и позволяет кодировать 128 символов. Первым четырем дорожкам (1—4) приписаны веса двоично-десятичного кода 8421, что обеспечивает 16 кодовых комбинаций, выражающих в двоичном счислении десятичные цифры 0 — 15. Дорожки 5, 6 и 7 являются определяющими (дорожки признаков). Перфорирование отверстий на дорожках 5 и 6 (рис. 3.19, а) является признаком десятичных цифр 0 — 9. Буквы латинского алфавита от А до О, выражаемые комбинациями десятичных цифр 0—15, определяются перфорированием дорожки 7 (рис. 3.19, в). Признак букв Р — Z — отверстия на дорожках 5 и 7 (рис. 3.19,6).

    Таким образом, в коде ИСО-7 бит одним и тем же комбинациям первых четырех дорожек с весами 8421 соответствуют разные символы, различить которые можно по наличию отверстий на определяющих дорожках.

    Например (рис. 3), пробивка дорожек 1 и 2 (0011) соответствует десятичной цифре 3, дорожек 1, 2 и 3 (0111) — цифре 7, а дорожек 4 и 1 (1001) — цифре 9, если перфорированы дорожки 5 и 6. Если перфорированы отверстия на дорожках 5 и 7, то комбинацией 0011 закодирована буква S, комбинацией 0111 -буква W, а комбинацией 1001 — буква Y. При наличии отверстия на дорожке 7 кодовая комбинация ООП определяет букву С, комбинация 0111 —букву G, комбинация 1001 — букву I и т. д.

    Рис.3 Пример кодирования некоторых символов и их представления на перфоленте:

    а — комбинация 0011; б — комбинация 0111; в — комбинация 1001

    Кодовое выражение некоторых символов на перфоленте показано на рис.3. В коде ИСО-7 бит для служебных символов признаком является отверстие на дорожке 6 или отсутствие отверстий на определяющих дорожках.

    Помехозащищенность в коде ИСО-7 бит осуществляется построчным контролем на четность, которая обеспечивается введением отверстия на восьмой дорожке, если на семи предыдущих число отверстий нечетное. Например, десятичная цифра 2 обозначается пробивкой отверстий на дорожках 2, 5 и 6 (110010);

    отверстие на дорожке 8 дополнит количество отверстий в строке до четного (1110010) и т. д. Таким образом, в коде ИСО-7 бит на каждой строке перфоленты должно находиться и считываться четное число отверстий.

    Рис. 4 Изображение некоторых символов в коде ИСО-7 бит:

    а, б — служебные символы; в — дополнительные символы

    Такая подготовка производства удлиняла срок внедрения управляющих программ, для исправления программы требовалось исправление перфоленты, затем перезапись на магнитную ленту и ряд других неудобств. Появились системы ЧПУ со встроенным интерполятором, это позволило вводить программу в систему ЧПУ непосредственно перфоленты. Как рассмотрено ниже, это также не соответствовало оперативному запуску управляющих программ и не обеспечивало надежность управления обработкой. В современных системах ЧПУ, построенных на базе микропроцессорной техники, управляющая программа хранится в памяти, построенной на электронных элементах, и водится в общем случае как с клавиатуры пульта управления системы ЧПУ, так и в некоторых случаях с перфоленты, аудиокассеты, диска и также голоса.

    Принцип работы станка с ЧПУ и подготовка информации

    Принцип работы токарного станка с чпу

    Металлорежущим станком называют технологическую машину, на которой путем снятия стружки с заготовки получают деталь с заданными размерами, формой, расположением и шероховатостью отверстий.

    Токарные станки — самый распространенный тип металлообрабатывающего оборудования. Токарное оборудование, предназначенное для обработки металла, бывает разных типов: напольное, настольное — в зависимости от целей использования. Кроме того различают станки с ЧПУ и без него.

    Любой металлообрабатывающий токарный станок (включая современные центры по обработке металлов) работает в соответствии с принципом: заготовка, предназначенная для обработки, жестко закрепляется в патроне, закрепленном на шпинделе, вращающимся посредством приводного механизма с заданной частотой.

    В зависимости от массы различают станки легкие (до 1 т), средние (до 10 т) и тяжелые (свыше 10т).
    Резание металла (снятие металлической стружки с заготовки) осуществляется при помощи высокопрочного резца со сменными пластинками (или с напайкой и заточкой под определенным углом). Закрепленный в резцедержателе резец обрабатывает поверхность заготовки, перемещаясь вдоль и поперек оси вращения этой заготовки. Устройство токарных станков должно обеспечить не только соответствующую мощность механизма привода и механизма продольной подачи, но и статичность резца и заготовки.

    Двумя главными параметрами любых токарных станков по металлу являются наибольший диаметр обрабатываемой детали над станиной и наибольшее расстояние между центрами (крайними точками, через которые проходит ось вращения детали). Эти два параметра задают максимальные габариты деталей, с которыми способен работать токарный станок.
    Для изготовления на станках требуемой детали рабочим органам станка необходимо сообщить определенный, иногда достаточно сложный комплекс согласованных движений, при которых с заготовки снимается в виде стружки избыточный материал (припуск).
    В процессе развития промышленности технологии и методы металлообработки, в том числе токарной, постоянно совершенствуются. На сегодняшний день наиболее актуальными и перспективным является выпуск токарных станков и обрабатывающих центров с числовым-программным управлением (ЧПУ). Данные станки предназначены для обработки деталей по всему спектру операций от черновых до чистовых при обработке наружных и внутренних цилиндрических поверхностей, сверления, зенкерования, развертывания осевых отверстий, точения конусов, нарезки наружной и внутренней резьбы.

    Токарные станки с ЧПУ

    Отечественные токарные станки с ЧПУ специально разработаны для высокопроизводительной обработки широкой номенклатуры материалов (Токарные станки с ЧПУ). Станки одинаково эффективны при выполнении как черновой, так и чистовой обработки с точностью до 7 квалитета. На станках с ЧПУ рабочие органы перемещаются по программе, и влияние человека сводится к отладке этой программы и привязке режущего инструмента.
    На этих токарных станках выполняют широкий спектр технологических задач:
    • обточку и расточку цилиндрических, конических и фасонных поверхностей;
    • нарезание метрической, дюймовой, торцевой и конусной резьбы;
    • подрезку и обработку торцов;
    • вытачивание канавок;
    • сверление, зенкерование и развёртывание отверстий.
    Высокая точность обработки обеспечивается:
    • точностью позиционирования поперечного и продольного суппорта с дискретностью 1 мкм;
    • стабильностью положения режущего инструмента в револьверной головке при автоматической смене;
    • высокой жесткостью суппортов;
    • высокой жесткостью шпинделя, выполненного на прецизионных опорах качения, позволяющих совмещать предварительные и финишные операции. Класс точности станков — Н (В и П — специсполнение).
    Высокая производительность станка может достигаться за счет:
    • использования гидравлического патрона и податчика прутка,
    • возможности предварительной и финишной обработки большого количества поверхностей за один установ с использованием всех позиций револьверной головки (до 12-ти позиций),
    • компенсации износа инструмента посредством электронной коррекции (например при применении системы HPMA от Renishaw).
    Также современные токарные станки с ЧПУ предусматривают возможность многостаночного обслуживания (1 оператор на несколько станков).
    Данные станки подразделяют на:
    • Вертикальные — применяются для обработки заготовок с большой массой и габаритами. Они в свою очередь бывают
    • Одностоечные.
    • Двухстоечные.
    • Горизонтальные.

    Строение токарного станка с ЧПУ. Прямая станина

    Станина — несущий элемент станка, предназначенный для установки всех элементов оборудования и обеспечения жесткости системы. Чаще всего представляет собой стабилизированную и шлифованную чугунную отливку с оребрением. Относительно нее ориентируются и перемещаются подвижные детали и узлы.
    Прямая станина — самый распространенный на данный момент тип токарного станка (например, ТС1625Ф3). В современных станках для обеспечения высокой жесткости конструкции ширина станины и направляющих увеличены.
    Направляющие являются опорными поверхностями, обеспечивающими требуемое взаимное расположение и возможность относительного перемещения узлов, несущих инструмент и заготовку. Направляющие изготавливаются преимущественно из серого чугуна как одно целое со станиной. Накладные направляющие практически не применяются. Обрабатываемая заготовка получает вращение от шпинделя станка, а режущий инструмент закрепляется в резцедержке на суппорте и осуществляет формообразующие движения по двум координатным направлениям X и Z. Ось Z совпадает с направлением оси шпинделя, а ось X перпендикулярна ей. По оси Z чаще всего применяют V-образные, по оси Х — ласточкин хвост.
    Направляющие на станках с наклонной станиной — прямоугольные скольжения или роликовые качения.
    Шпиндельная бабка
    Обеспечивает передачу момента от электродвигателя к шпинделю. Чаще всего в корпусе шпиндельной бабки размещена зубчатая коробка скоростей. Она может иметь несколько диапазонов скоростей для обеспечения оптимальных режимов обработки различных материалов. Изменение скорости вращения шпинделя может быть ступенчатым или бесступенчатым внутри диапазона:
    • Ступенчатое вращение осуществляется через зубчатую коробку скоростей от асинхронного мотора (чаще двухскоростного)+ручное переключение диапазонов+муфты. Реализует ограниченное количество скоростей вращения шпинделя. Обычно 12 неизменяемых позиций.
    • Бесступенчатое вращение (в том числе внутри диапазона) осуществляется асинхронным двигателем и частотным преобразователем или сервоприводом шпинделя; дискретность изменения — 1 об/мин (ТС16А20Ф3, ТС16К20Ф3). Бесступенчатые приводы обеспечивают возможность плавной настройки режимов обработки без останова станка с высокой точностью. Применение бесступенчатого привода позволяет повысить производительность путем выбора наиболее целесообразного режима обработки и сохранить постоянную скорость резания при поперечном точении (при увеличении или уменьшении диаметра обрабатываемой заготовки). Управление гидроприводом или с механическими вариаторами практически не применяется. Возможность переключения 2-3 диапазонов позволяет получать различные диапазоны скорости вращения и вращающего момента.
    Широкий диапазон регулирования частоты вращения шпинделя обеспечивается за счет применения в качестве главного привода — электродвигателя переменного тока с частотным преобразователем.
    Переключение диапазонов скоростей может быть ручным или автоматическим. Способ переключения диапазонов (передач) в основном определяется назначением станка, частотой переключений и длительностью рабочих перемещений. Для станков с бесступенчатым регулированием величина скорости внутри диапазона является вторичным условием выбора станка, т.к. переключения достаточно редки.

    Шпиндель — обычно полый цилиндр — обеспечивает возможность фиксации по средствам оснастки и обработки прутковых заготовок.
    Для обеспечения необходимой точности обработки в течение заданного срока службы шпиндели должны обладать жесткостью, стабильностью положения оси при вращении, износостойкостью опорных, посадочных и базирующих поверхностей, виброустойчивостью. Для соответствия указанным требованиям шпиндели, как правило, изготавливаются из стали и подвергаются термической обработке (цементации, азотированию, объемной и поверхностной закалке, отпуску).
    На шпинделе или на промежуточном валу, вращающемся с той же скоростью, устанавливается датчик скорости вращения шпинделя. Это позволяет получать данные о реальной скорости вращения шпинделя, осуществлять синхронизацию осей для нарезания резьбы.
    Примечание:
    Для станков с высокой и повышенной степени точности рекомендовано применять шестеренчатую зубчатую коробку с раздельным приводом. Коробка скоростей соединяется со шпинделем ременной передачей и лишена недостатков встроенной зубчатой коробки. Нагрев во время работы, вибрации от зацепления зубьев оказывают меньшее воздействие на шпиндель. Этих недостатков также лишены станки с наклонной станиной.
    Резцедержка
    Может иметь 4, 6, 8 или 12 позиций в зависимости от максимального диаметра обработки. Большее количество инструментов необходимо при изготовлении сложных деталей, точении труднообрабатываемых материалов, когда инструменты имеют малый период стойкости или при частой переналадке для обработки разнотипных деталей и т. п.
    Электрооборудование
    В процессе эволюции электрооборудование станка занимает все меньшую площадь и обеспечивает большие возможности автоматизации. Плавное изменение оборотов вращения шпинделя, поддержание постоянства скорости резания, увеличение количества одновременно интерполируемых осей и точности позиционирования, возможность подключения дополнительного оборудования.
    Электромагнитные или механические муфты в коробках станков применяются все реже.
    В станках с ЧПУ при любом конструктивном решении привода подач для перемещения рабочего органа по каждой из координат предусмотрен самостоятельный привод. В основном применяются сервоприводы с точным датчиком обратной связи по положению. Шаговые привода используются на хоббийных станках. Электро-гидравлические приводы, приводы с электромагнитными муфтами, гидрокопиры и приводы постоянного тока в новых станках практически не применяются.
    Система СОЖ и смазки
    Система смазывания предназначена для подачи, дозирования и распределения смазочного материала, а также контроля и управления смазыванием. От эффективности действия системы смазывания зависят такие важнейшие показатели качества работы станков, как точность, долговечность, экономичность, бесшумность.
    Система смазки шпиндельной бабки, централизованная смазка направляющих и ШВП, система подачи СОЖ в зону резания увеличивают срок эксплуатации станка и помогают обеспечить режимы резания, обеспечить отвод тепла и чистоту поверхности.
    Смазка подшипников и шестерен шпиндельной бабки на современных станках осуществляется принудительным поливом.
    Оснастка
    Для закрепления заготовок на токарном станке применяют: патроны, планшайбы, цанги, центры, хомутики, люнеты, оправки. Оснастка на станках с ЧПУ может применяться и с универсальных станков, но за счет более высокой точности и больших скоростей вращения рекомендуется подбирать специализированные оправки. Более подробно об этом можно прочитать здесь: Оправки для токарных станков, Токарные патроны для станков. Для контроля точности обработки деталей токарь может использовать штангенциркули, микрометры, калибры, шаблоны, угломеры и другие измерительные инструменты, но системы контроля процессов обработки, такие как HPPA от Renishaw, позволят максимально автоматизировать производственный процесс и существенно снизить трудозатраты.
    Оси подач
    Сервоприводы по заданию ЧПУ осуществляют перемещение осей и контроль позиции. Сервомотор, вращаясь через муфту, передает вращение на ШВП. ШВП перемещает механические узлы выбранной координаты.
    Винтовые пары качения имеют низкие потери на трение, достаточно высокую жесткость и технологическую надежность. Устранение зазоров в резьбовом шариковом соединении между рабочими поверхностями резьбы винта и гайки и шариками и создание предварительного натяга производится за счет взаимного сближения полугаек, их осевого перемещения или взаимного поворота. Высокая работоспособность и точность передачи винт-гайка качения обеспечивается высокой твердостью рабочих поверхностей.
    Защита зоны резания
    Кабинетная защита и раздвижные двери уменьшают разлет стружки и СОЖ при интенсивных режимах обработки, а также защищает оператора от возможного вылета детали.

    Резцы
    Различают следующие типы токарных резцов:
    • проходные — для обтачивания наружных цилиндрических и конических поверхностей;
    • расточные (проходные и упорные) — для растачивания глухих и сквозных отверстий (с расточными станками в продаже от компании СтанкоМашКомплекс можно ознакомится по ссылке);
    • отрезные/канавочные — для отрезания заготовок и обработки канавок;
    • резьбовые — для нарезания наружных и внутренних резьб;
    • фасонные — для обработки фасонных поверхностей;
    • прорезные — для протачивания кольцевых канавок;
    • галтельные — для обтачивания переходных поверхностей между ступенями валов по радиусу.
    Виды токарных резцов по характеру обработки:
    • черновые,
    получистовые,
    • чистовые.
    По направлению обработки:
    • левые,
    • правые.
    По конструкции:
    • цельные,
    • с приваренной пластиной,
    • со сменными пластинами.

    Люнеты
    Люнеты бывают подвижные, неподвижные, открытые и служат для поддержки длинных деталей в процессе обработки.

    Строение токарного станка с ЧПУ. Наклонная станина

    Станки с наклонной станиной (ТС1720Ф3) предназначены для обработки деталей по всему спектру операций и представляют собой жесткую конструкцию для высокоскоростной и высокоточной токарной обработки широкой номенклатуры деталей.

    Отличия от прямой станины
    • высокие обороты шпинделя (до 5000 об/мин), возможность «жесткого точения»;
    • большая степень автоматизации (гидравдический патрон, пиноль задней бабки, податчик прутка);
    • большое количество позиций резцедержки (8, 10, 12);
    • закрытые направляющие зоны резания, высокая скорость подачи по осям;
    • отвод стружки под действием силы тяжести, подачи СОЖ, подачи СОЖ под давлением, имеется стружкосборник.
    Задняя бабка
    Имеет отдельные направляющие для перемещения вдоль оси шпинделя.
    Защита направляющих
    Предохраняет рабочие поверхности от попадания на них пыли, стружки, грязи и уменьшает смывание масляной пленки. Обычно представляет собой телескопическую конструкцию, рассчитанную в сложенном и полностью раскрытом состоянии на максимальные перемещения по осям. Шпиндельная бабка
    Не имеет зубчатой коробки скоростей, шпиндель вращается бесступенчато на всем диапазоне работы станка. Вращение может обеспечиваться через поликлиновой ремень от серводвигателя шпинделя или напрямую от моторшпинделя. Для обеспечения повышения момента используют ведущий и ведомый шкивы разного диаметра. Опционально применяют отдельную двухдиапазонную Z коробку с редукцией 1:1 и 1:4 (1:6), устанавливаемую на вал двигателя шпинделя.

    Токарные обрабатывающие центры

    Обрабатывающий центр (ТС1720Ф4) совмещает функции токарного и фрезерного станков и предназначены для комплексной обработки деталей типа тел вращения с высокой долей автоматизации. Высокая точность обработки обеспечивается конструкцией станка (высокоточные подшипники, линейные направляющие качения, активные измерительные системы контроля инструмента, жесткость и виброустойчивость базовых корпусных деталей и др.). Подобные станки предназначены прежде всего для производства сложных деталей, требующих как операции точения, так и фрезерования.
    Особенности:
    • позиционирование шпинделя на заданный угол,
    • одновременная интерполяция 3х и более осей,
    • приводной инструмент,
    • противошпиндель,
    • ось Y,
    • дополнительная резцедержка и прочие средства автоматизации.
    Задняя бабка может перемещаться вручную, зацеплением за суппорт Z или иметь отдельный привод. Пиноль может заменяться на противошпинделе.

    Точность станков и качество обработки

    Качество обработки на станке непосредственно связано с его точностью, которая характеризует степень влияния различных погрешностей станка (геометрических, кинематических, упругих, температурных и динамических) на точность изготовляемых деталей.
    Геометрические погрешности зависят от точности изготовления деталей, сборки и установки станка, а также износа узлов в процессе эксплуатации. Они влияют на точность взаимного расположения режущего инструмента и заготовки в процессе формообразования.
    Кинематические погрешности определяются ошибками в передаточных числах различных передач кинематической цепи, возникающими вследствие погрешностей отдельных элементов станка (зубчатых колес, червяков, винтовых пар и др.).
    Упругие погрешности связаны с деформациями станка, которые вызывают изменение взаимного расположения инструмента и заготовки под действием сил резания и характеризуются жесткостью станка (станины), т.е. его способностью сопротивляться образованию деформации.
    Температурные погрешности возникают главным образом вследствие неравномерного нагрева/охлаждения различных элементов станка в процессе его работы (что приводит к изменению начальной геометрической точности) и оказывают существенное влияние на качество обработки деталей, особенно высокоточных.
    Динамические погрешности связаны с относительными колебаниями инструмента и заготовки. Они ухудшают качество обработки, могут снижать стойкость режущего инструмента и долговечность станка.
    Кроме указанных погрешностей станка на качество обработки значительное влияние оказывают погрешности режущего инструмента, возникающие при его изготовлении и установке на станке, а также износ режущей части в процессе эксплуатации.

    Условия приобретения и заказ

    Купить станок, посмотреть его в работе, ознакомиться со складом станков — Вы можете, связавшись с нашими менеджерами

    Также Вы можете подобрать и приобрести режущий инструмент и оснастку к станку, производства Тайваня, Израиля

    Станок с ЧПУ – оборудование станочного типа с числовым программным управлением, предназначенное для высокоточной обработки деталей. Существует множество моделей аппаратов данного типа, но принцип работы станков с ЧПУ и практически идентичны. Устройства могут работать в автоматическом или полуавтоматическом режиме под контролем оператора агрегата.

    Конструкция

    Чтобы понять, как работать на станке с ЧПУ, необходимо предварительно разобраться в его конструкции. Отдельные модели фрезерных и токарных станков имеют незначительные отличия, но базовые элементы идентичны.

    Стандартная конструкция агрегата включает наличие:

    • станины,
    • коробки подач,
    • передней шпиндельной бабки,
    • задней бабки,
    • стержневого механизма,
    • суппорта.

    Станина представляет собой основу оборудования – к ней крепятся другие комплектующие. Коробка подач отвечает за передачу движений, которые осуществляет шпиндель. Передаваемые движения принимаются суппортом. Передняя шпиндельная бабка состоит из:

    • коробки скоростей,
    • шпинделя,
    • крепежных элементов для фиксации и вращения заготовки.

    Задняя бабка предназначена для закрепления заготовки с противоположной стороны, когда выполняется обработка на станках с ЧПУ центральной части. В качестве стержневого механизма могут выступать различные инструменты, такие как развертка или сверло. Именно этот элемент отвечает за центральную обработку заготовки. Он неразрывно связан с задней бабкой. От суппорта зависит надежность фиксации режущего инструмента и траектории его движения.

    Работая с современным оборудованием, следует знать и дополнительных комплектующих. Конструкция станков может быть дополнительно оснащена:

    • вакуумным столом,
    • улавливателем стружки,
    • системой охлаждения фрезы.

    Также для удаленного контроля агрегатом иногда могут использовать переносной пульт. По этому принципу работают в основном в узкоспециализированном производстве.

    Характеристика

    Перед тем, как научиться работать на станке, нужно разобраться в его характеристиках. Отличительной чертой станков, имеющих числовое программное управление, является высокая скорость и точность обработки. В отличие от более старого оборудования подобного типа четырехкоординатные фрезерные станки с системой числового программного управления имеют более высокий показатель надежности и удобства в использовании.

    Еще одним фактором, отличающим токарный станок по дереву с числовым программным управлением от его аналогов, заключается в повышенном показателе жесткости. Эта особенность обусловлена:

    • короткими кинематическими цепями,
    • сниженными потерями на трении,
    • минимальными зазорами между элементами конструкции,
    • низким количеством механических передач,
    • повышенным быстродействием.

    Подвижные элементы устойчивы к износу, а теплопотери и механическое трение сведены к минимуму. Для конструкции характерно чередование в соединении между твердыми материалами и мягкими. Так, например, стальные детали могут соединяться с пластиковыми. Работа выполняется благодаря роликам, имеющим преднатяг. Вероятность получения повреждений такими элементами крайне мала.

    Принцип работы станка с системой ЧПУ также зависит от отличий приборов. По характеристикам токарные станки отличаются:

    • диаметром обрабатываемой заготовки,
    • габаритам детали, которую возможно зафиксировать,
    • максимальным расстоянием между центрами станочного прибора.

    Обработка токарным станком на высоких скоростях и быстрое нагревание не оказывают влияния на показатель трения.

    Особенности работы

    Принцип работы фрезерного станка основывается на взаимодействии всех комплектующих. Знание связи между рабочими элементами помогает разобраться, как работать на фрезерном станке.

    Задняя бабка имеет специальное место, в которое устанавливается рабочий механизм. Затем при помощи направляющих она размещается рядом с заготовкой на расстоянии, необходимом для ее фрезерования. Между задней и передней бабкой находится суппорт. После включения фрезерного станка с ЧПУ с его помощью будут выполняться продольные движения по заготовке.

    Фреза выбирается в зависимости от того, из какого материала состоит обрабатываемая деталь, и какой результат нужно получить. Например, дерево обычно не требует применения жестких фрез.

    Некоторые резцовые головки способны разместить четыре резца. Четырехкоординатный станок используется повышения качества и скорости обработки. Фрезерный станок с ЧПУ работает от электродвигателя, конструкция которого включает плотные приводной ремень. Он обеспечивает крепление ступенчатого шкива с мотором.

    Чтобы фрезерование на ЧПУ станке выполнялась на высоком уровне, необходимо периодически проверять, насколько хорошо натянут ремень.

    Работа оператора

    Станки работают под контролем оператора. Он отвечает за:

    • смену и закрепление заготовок,
    • установку фрезы нужного типа,
    • запуск управляющей программы,
    • включение станка,
    • контроль за работой оборудования.

    Оператор долго учится прежде, чем приступить к выполнению своих обязанностей. Первый запуск выполняется в тестовом режиме, поскольку вероятность допустить ошибку имеется даже тогда, когда специалист научил оператора правильно. Учащемуся предоставляются точные знания, но даже на самом современном устройстве имеется погрешность. На основе тестового запуска определяется, необходимо ли вносить коррективы в работу четырехосного прибора.

    Также проверяется, подходит ли фреза для дерева или другого материала, из которого изготовлена деталь, и соответствуют ли габариты детали допустимым значением станка. На этом принципе основывается процесс работы практически всех моделей четырехкоординатных станков.

    Некоторые считают: «Если я пользуюсь станком, больше ничего знать не нужно». Но к работе рекомендуется приступать, научившись создавать управляющие программы.

    Программирование

    ЧПУ станок запускается автоматическом или полуавтоматическом режиме только при наличии числовых управляющих программ (УП). Она включает все действия и принципы, по которым будет работать четырехосной станочный прибор. При создании управляющей программы задаются:

    • количество переходов и проходов,
    • параметры обрабатываемой заготовки,
    • основные характеристики рабочего инструмента.

    УП создается на компьютере при помощи специальных приложений для работы со станками. Учимся работать на программах:

    На перечисленном программном обеспечении создаются трехмерные примеры, на основе которых изготовляются реальные детали. После этого указывается, какими работами будет реализовываться поставленная задача. Если Вы научитесь создавать управляющие программы, со станочным оборудованием будет работать легче.

    Огромные технологические возможности по производству качественных деталей из металла, отличающихся высокой точностью своих геометрических параметров, предоставляет современный токарный станок с ЧПУ. Такие станки, выпускаемые отечественными, а также зарубежными производителями, характеризуются высокой эффективностью и исключительной надежностью.

    Токарный станок с ЧПУ с револьверной головкой на 12 позиций

    Конструктивные особенности станков

    Токарные станки с ЧПУ, используемые в наше время на многих производственных предприятиях, — это современное оборудование, позволяющее выполнять обработку деталей из металла, характеризующуюся высокой точностью. Это обеспечивается следующими конструктивными особенностями такого оборудования:

    • в передаточных устройствах привода подобных станков практически полностью отсутствуют зазоры;
    • все несущие элементы, узлы и механизмы, входящие в конструкцию токарного станка с ЧПУ обладают высокой жесткостью;
    • кинематические цепи оборудования специально разработаны таким образом, чтобы их длина была минимальной, а также чтобы минимальным было количество механических передач, которые их составляют;
    • в конструкции токарных агрегатов предусмотрены специальные сигнализаторы, отвечающие за обратную связь;
    • такие устройства отличаются повышенной устойчивостью против вибрационных нагрузок, обязательно возникающих в процессе их работы;
    • гидравлические, а также другие узлы токарного оборудования перед началом работы предварительно разогреваются при помощи специальных систем, что минимизирует риск возникновения тепловых деформаций в процессе выполнения обработки.

    На токарные станки с ЧПУ устанавливаются направляющие, характеризующиеся повышенной износостойкостью и пониженным коэффициентом трения, что очень важно для обеспечения высокой точности выполнения токарных работ по металлу. Благодаря таким характеристикам направляющих агрегата снижается уровень рассогласования в его контролирующей системе, и все подвижные механизмы перемещаются по заданным параметрам с максимальной точностью.

    Направляющие узлы токарного станка, где предусмотрены элементы качения, в качестве которых преимущественно используются ролики, разработаны и изготовлены так, чтобы при работе на высоких скоростях и при их интенсивном нагреве коэффициент трения в них оставался неизменным.

    Закаленные направляющие станины станка TRENS-SE-520

    Естественно, направляющие токарных станков, на которых обработка деталей из металла выполняется на высоких скоростях, должны отличаться повышенной жесткостью. Обеспечивается это требование благодаря тому, что направляющие подвергаются предварительному натягу, который выполняют с помощью специальных регулирующих механизмов. Для снижения сил трения в направляющих узлах суппорта агрегата и его станины, работающих по принципу скольжения, их изготавливают на основе пар материалов: качественный износостойкий пластик (как правило, фторопласт) плюс чугун или сталь.

    Направляющие токарных станков, оснащенных системами ЧПУ, могут располагаться в горизонтальной, вертикальной или наклонной плоскостях. В зависимости от этого модели агрегатов причисляют к определенной категории.

    Чтобы обеспечить высокую жесткость несущим элементам токарного оборудования с ЧПУ, их выполняют в коробчатой форме с обязательными поперечными и продольными внутренними ребрами. Для изготовления данных элементов используют технологии литья и сварки. Если раньше для выполнения несущих элементов токарных станков по металлу использовали только чугун или сталь, то сейчас многие зарубежные производители выполняют колонны, станины, а также салазки таких агрегатов из бетона с добавлением полимеров или искусственного гранита, что придает им высокую жесткость и повышенную устойчивость к вибрационным нагрузкам.

    Важнейшим элементом любого металлорежущего оборудования, в том числе и токарной группы, является шпиндельный узел, испытывающий значительные нагрузки в процессе работы. Именно поэтому все базовые и посадочные поверхности такого узла, а также его шейки, должны отличаться повышенной износоустойчивостью. Подшипники, которые устанавливаются в опоры узла, обеспечивают точность его вращения, к ним предъявляют повышенные требования по степени их износоустойчивости.

    Передняя бабка с патроном станка SN-500

    На токарных станках, оснащенных системой ЧПУ, шпиндельный узел характеризуется более сложной конструкцией.

    Объясняется это тем, что в данный элемент устанавливают ряд дополнительных: зажимные механизмы для рабочих приспособлений, работающие в автоматическом режиме, индикаторы, отвечающие за автодиагностику оборудования и за адаптивный контроль над процессом выполнения обработки. На токарных станках данной категории шпиндельный узел (по оси его вращения) может быть расположен в горизонтальной, а также в вертикальной плоскости.

    Маркировка токарного оборудования с ЧПУ

    Система автоматизированного управления станков токарной группы может быть организована по трем основным схемам.

    Данная схема предполагает программирование траектории перемещения (криволинейной в том числе) рабочего инструмента и контроль над правильностью осуществления данной процедуры.

    При реализации такой схемы программируются координаты точек, в которых должен оказаться рабочий инструмент после выполнения определенной технологической операции.

    Данная схема предполагает совмещение принципов работы двух предыдущих.

    По маркировке отечественного токарного оборудования, оснащенного ЧПУ, достаточно просто определить категорию такого устройства.

    Буквенно-цифровое обозначение, стоящее в конце маркировки, как раз и указывает на то, по какой системе в данном станке организовано числовое программное управление:

    • Ф1 — станки, в которых рабочий инструмент перемещается по предварительно заданным координатам, при этом в них предусмотрена цифровая индикация;
    • Ф2 — модели, где перемещение инструмента реализовано по позиционной схеме;
    • Ф3 — токарное оборудование, в котором реализована контурная схема управления движением инструмента;
    • Ф4 — модели токарных станков с ЧПУ с адаптивной (универсальной) системой управления.

    Маркировка токарных станков с ЧПУ

    В маркировке некоторых моделей токарных станков с ЧПУ можно встретить буквенно-цифровое обозначение С1-С5, которое говорит о том, что такое оборудование отличается особыми технологическими возможностями. В частности, модели, в маркировке которых присутствуют обозначения С1 и С2, обладают невысоким пределом подач и небольшим диапазоном их регулировки. А вот агрегаты, в маркировке которых есть символы С3, С4 и С5Т, наоборот, имеют увеличенный диапазон подач и отличаются широкими возможностями по их регулировке.

    Благодаря своим расширенным возможностям модели станков, в чьей маркировке присутствуют символы С4 и С5, можно использовать для эффективного выполнения многих технологических операций, например, нарезания наружной и внутренней резьбы, обработки заготовок, имеющих цилиндрическую, коническую и фасонную форму, в том числе и ступенчатую. Стоит отметить, что обрабатывать на таких станах можно как наружные, так и внутренние поверхности, отличающиеся сложностью своей конфигурации.

    Особенности программирования станков

    Чтобы использование токарных станков, оснащенных системой ЧПУ, было максимально эффективным, необходимо тщательно разработать технологический процесс обработки, а также составить программу, которая будет управлять работой оборудования. При решении этих вопросов надо учитывать ряд важных параметров: необходимость увязки систем координат оборудования, расположения на нем обрабатываемой заготовки и исходного положения рабочего инструмента с его дальнейшими перемещениями, которые он должен автоматически совершать в процессе работы.

    Принцип числового программного управления токарным станком

    При составлении программы для такого станка принимают во внимание, что рабочий инструмент перемещается по координатным осям обрабатываемой детали, которая находится в неподвижном состоянии. Что важно, он перемещается в прямолинейном направлении по осям, параллельным осям обрабатываемой заготовки.

    Суть программирования отдельной технологической операции, выполняемой на таком станке, заключается в том, что компьютерной программой описывается маршрут, который должен пройти режущий инструмент, чтобы сформировать деталь с заданными геометрическими параметрами.

    При составлении такой программы придерживаются следующего алгоритма.

    • Технологический процесс делится на три этапа: черновая, чистовая и отделочная обработка. Чтобы повысить производительность выполнения работ и снизить их трудоемкость, черновые и чистовые операции стараются объединить.
    • Чтобы минимизировать погрешности фиксации и базирования обрабатываемой детали, ее технологические и конструкторские базы совмещают по определенным правилам.
    • Полную обточку детали желательно выполнить с минимальным количеством ее установок.
    • Необходимо придерживаться рационального подхода к вопросам обработки заготовок. Это предполагает, к примеру, обточку частей цилиндрических и конических заготовок с небольшой жесткостью только после того, как выполнена обработка их участков, отличающихся достаточной жесткостью.

    В технологическом процессе, который предполагает использование для обработки токарных станков, оснащенных ЧПУ, под отдельной операцией понимается обработка, выполняемая на одном станке. При этом такие операции могут разделяться на отдельные переходы, подразделяемые на самостоятельные проходы.

    Переходы, которые может выполнять токарный станок, оснащенный ЧПУ, делятся на позиционные, элементарные, инструментальные и вспомогательные.

    Существуют определенные правила разработки программ последовательности работы с обрабатываемой заготовкой, придерживаясь которых можно обеспечить высокое качество готового изделия. В соответствии с этими правилами, в компьютерной программе для токарного станка задаются следующие параметры: число переходов и проходов, общее количество установок, вид обработки, которой подвергают заготовку, количество режущих элементов и их типоразмеры. Если технические возможности оборудования позволяют, то желательно все инструменты, участвующие в работе, помещать в один резцедержатель.

    Револьверная головка SAUTER для токарного станка с ЧПУ

    Но не всегда резцедержатели агрегата позволяют установить в них все элементы, которые участвуют в обработке. В таких случаях, не являющейся большой редкостью, в управляющей программе предусматривают приостановку работы, которая необходима для замены инструмента. Кроме того, при использовании таких станков можно разбить процесс обработки на несколько частей, чтобы не приостанавливать его для замены инструмента. Большая часть моделей токарных станков с системами ЧПУ оснащена резцедержателями, в которых можно зафиксировать ограниченный набор режущих инструментов. В большинстве случаев для работы таких устройств используют инструмент, оснащенный многогранными режущими пластинами. Чтобы быстро привести его в порядок, если режущая грань износилась, достаточно просто повернуть пластину и продолжить работу.

    Среди наиболее распространенных инструментов, которыми оснащаются токарные агрегаты с ЧПУ, можно отметить следующие: для растачивания — резцы, режущие пластины которых наплавлены или закреплены механическим способом; для нарезания резьбы — трехгранные сборные резцы; для обработки отверстий и выполнения подрезки — ромбические резцы с твердосплавными пластинами. Все инструменты устанавливаются в резцедержателе в той последовательности, в которой они участвуют в обработке. Точкой отсчета, задаваемой в компьютерной программе управления, является закругление при вершине резца или сама его вершина.

    Токарный станок с ЧПУ DMTG модель CKE6150Z

    Приводы и вспомогательные устройства

    В токарных станках с ЧПУ невысокой и значительной мощности используют различные типы электродвигателей, которые служат приводом главного движения. В первом случае преимущественно используют электродвигатели постоянного тока, во втором — переменного. Отечественные производители, выпускающие станки данной категории, оснащают их электродвигателями асинхронного типа с четырьмя полюсами, которые способны без сбоев работать даже в самых сложных условиях: при наличии в окружающей атмосфере частичек масла, металлической пыли и мелкой стружки. Не страшны таким электродвигателям и критические перегрузки, которые они успешно переносят.

    Приводной механизм настольного токарного станка D250x550 CNC

    Для привода механизма подач токарных станков с ЧПУ применяются электродвигатели синхронного и асинхронного типа, но чаще всего используют двигатели первого типа, оснащенные индикаторами обратной связи, тормозными элементами, а также магнитами, изготовленными из редкоземельных химических элементов. Для управления такими двигателями в электрической схеме токарных станков используются цифровые преобразователи.

    В том случае, если на оборудовании установлен асинхронный двигатель, для управления им необходим частотный преобразователь, собранный на микропроцессорах. При использовании таких электродвигателей на станках устанавливается специальный программатор, оснащенный экраном графического или цифрового типа.

    Панель управления токарного станка Trens

    На токарных станках, управляемых компьютерными программами, обязательно устанавливаются вспомогательные устройства, к которым относятся:

    • загрузочные механизмы;
    • механизмы, обеспечивающие зажим заготовки;
    • смазывающие устройства;
    • устройства, предназначенные для уборки стружки, которая образовывается в процессе обработки;
    • механизмы, предназначенные для быстрой смены инструментов.

    В отличие от подобных приспособлений, использующихся на обычных станках, данные устройства отличаются высокой производительностью и надежностью своей работы.

    Наиболее популярные модели станков

    Одной из наиболее популярных моделей токарного станка, оснащенного системой ЧПУ, которая активно используется отечественными производителями, является 16А20Ф3. В качестве управляющей системы на таких станках установлена система Электроника НЦ-31 или 2Р-22. На станках данной модели устанавливается частотно-регулируемый двигатель асинхронного типа, автоматическая головка на 6-12 позиций, шпиндельный узел с тремя скоростями вращения, привод и датчик, которые используются для нарезания резьбы.

    Станок токарный серии 16А20Ф3, предназначенный для полуавтоматической обработки металлических деталей

    Еще одной популярной моделью является станок МК6713С5, относящийся к категории высокоточного патронного оборудования. В конструкции данного токарного агрегата следует выделить крестообразный суппорт и шпиндель, в держателе которого можно зафиксировать одновременно шесть инструментов. Используя данный токарно-винторезный станок, оснащенный системой ЧПУ, можно эффективно выполнять следующие работы по металлу: нарезать резьбу, точить и растачивать заготовки, выполнять обработку деталей дискового типа.

    Представлены на отечественном рынке и подобные токарные станки зарубежных моделей, к наиболее популярным из которых можно отнести следующие.

    TRENS SBL300 CNC — токарное оборудование с ЧПУ двухшпиндельного типа. Станок данной модели отличается широкой функциональностью, кроме стандартных токарных операций по металлу, на нем можно выполнять обработку различных валов, фланцев, деталей сложной конфигурации, осуществлять фрезерные операции. Шпиндельный узел этого станка оснащен подшипниками радиально-упорного типа, что позволяет работать на нем на высоких скоростях и получать изделия, отличающиеся высоким качеством. Программное управление станком предусматривает жесткую привязку его координатной системы к геометрии режущего инструмента при помощи специального комплекса подстройки, работающего по контактной схеме. Благодаря этому нет необходимости в четком ориентировании рабочего инструмента по отношению к обрабатываемой заготовке.

    Противошпиндель ROXM, устанавливаемый на токарных станках TRENS

    Vturn-V760 — станок с вертикальным расположением шпиндельного узла, в качестве конструктивных особенностей которого выделяются следующие: восьмипозиционная рабочая головка, двенадцатидюймовый патрон гидравлического типа, устройство для удаления стружки конвейерного типа, автоматизированный смазочный механизм, резцедержатели различных типов. Кроме того, станок может оснащаться дополнительными технологическими приспособлениями, значительно расширяющими его функциональные возможности. Для удобства управления, которое обеспечивается при помощи системы Fanuc 0i-T, токарный станок данной модели оснащен цветным монитором графического типа.

    Каждый электрик должен знать:  Подключение инвертора к аккумулятору

    Шпиндель и револьверная инструментальная головка вертикального токарного станка Vturn-760

    LS360 CNC (компания-производитель MetalMaster) — токарный станок, станина которого расположена в наклонной плоскости. На станке данной модели, где установлена система управления Siemens 808D, можно обрабатывать детали, выполненные из обычной и нержавеющей стали, медных и алюминиевых сплавов. Среди конструктивных особенностей данного агрегата стоит выделить надежную гидравлическую систему от японской компании Yuken, восьмипозиционную рабочую головку, импульсную смазочную систему, работающую в автоматическом режиме.

    Естественно, на отечественном рынке широко представлена продукция и других зарубежных производителей, среди которой каждый сможет выбрать именно тот станок для токарных работ, какой удовлетворит его по всем параметрам.

    Основные режимы работы станка с ЧПУ

    Читайте также:

    1. Flybox EFC-P, назначение, состав и принцип работы
    2. I Экономика как наука и основные проблемы экономики
    3. I. Мегауровень ценностей социальной работы
    4. II. Макроуровень ценностей социальной работы
    5. II. Основные подходы к проектированию ИС
    6. II. Режимы работы СОД.
    7. II.Основные определения, понятия компьютерного моделирования.
    8. III. Мезоуровень ценностей социальной работы
    9. III. Основные представители гуманистической психологии.
    10. V. Основные методы проектирования ИС
    11. V. Основные представители когнитивной психологии.
    12. V.Формы работы над развитием внутреннего слуха.

    1. Режим автоматического управления

    Этот режим является основным для станка с ЧПУ. Именно в этом режиме производится обработка детали по программе. Для запуска УП на выполнение необходимо сначала выбрать активную программу и затем нажать кнопку «Старт цикла». В режиме автоматического управления оператор может влиять на запрограммированную скорость подачи и частоту вращения шпинделя. Рукоятка коррекции ускоренного хода позволяет изменять скорость холостых перемещений исполнительных органов станка обычно в диапазоне от 0 до 150 процентов.

    2. Режим редактирования

    В этом режиме оператор станка может вводить новую или редактировать существующую программу обработки вручную, используя клавиатуру УЧПУ. Возможности по редактированию УП у разных стоек ЧПУ могут значительно отличаться. Простейшие системы позволяют вставлять, удалять и копировать слова данных. Самые современные СЧПУ имеют функции поиска и замены данных (аналогично текстовым редакторам на ПК), копирования, удаления и переноса определенного программного диапазона, способны редактировать УП в фоновом режиме.

    Функция фонового редактирования данных позволяет оператору станка создавать или редактировать одну программу при одновременном выполнении другой программы. Для фонового редактирования систему управления необходимо переключить в автоматический режим.

    Обычно в режиме редактирования осуществляется ввод/вывод УП с персонального компьютера или другого внешнего устройства. Здесь же можно проверить размер свободной памяти СЧПУ и количество зарегистрированных программ.

    3. Режим ручного ввода данных MDI

    Режим ручного ввода данных MDI позволяет оператору ввести и выполнить один или несколько кадров, не записанных в памяти СЧПУ. Обычно этот режим используется для ввода отдельных G и М кодов, например, для смены инструмента или включения оборотов шпинделя. Введенные команды и слова данных после выполнения или сброса удаляются.

    4. Толчковый режим

    Толчковый (старт-стопный) режим обеспечивает ручное перемещение исполнительных органов станка при нажатии на соответствующие клавиши на панели УЧПУ.

    5. Режим управления ручным генератором импульсов или маховиками

    В этом режиме осуществляется перемещение исполнительных органов станка при помощи ручного генератора импульсов, который похож на пульт дистанционного управления или при помощи специальных маховиков на панели УЧПУ. Оператор станка может задавать шаг и направление перемещения при помощи специальных переключателей.

    6. Режим возврата в нулевую точку

    Возврат исполнительных органов в нулевую точку является стандартной процедурой при включении станка. В этом случае происходит синхронизация станка и системы управления.

    7. Режим прямого числового управления DNC

    Режим DNC позволяет выполнять программу обработки прямо из компьютера или другого внешнего устройства, не записывая ее в память системы. Обычно в этом режиме выполняются УП большого размера, которые не могут поместиться в памяти СЧПУ.

    8. Режим редактирования параметров

    В этом режиме производят редактирование параметров системы ЧПУ. Пользовательские параметры отвечают за настройку текущей даты и времени, работу в различных режимах и т.д. Системные параметры влияют на функционирование станка в целом. Не рекомендуется самостоятельно изменять значения системных параметров. Иногда вход в область параметров заблокирован и для редактирования требуется ввести специальный код, установленный производителем станка.

    9. Тестовые режимы

    У любого станка с ЧПУ есть определенное количество тестовых функций. К ним, например, относятся пробный прогон и покадровая отработка УП. Некоторые системы ЧПУ позволяют осуществлять графическую проверку траектории.

    Индикация системы координат

    Во время выполнения обработки по программе или ручного перемещения исполнительных органов станка существует возможность наблюдать за их текущим положением в различных координатных системах:

    Таблица 1 – Индикация текущего положения органов станка

    ABSOLUTE Абсолютное положение в рабочей системе координат (G54-G59)
    MACHINE Текущее положение относительно нуля станка
    DISTANCE TO GO Оставшееся расстояние перемещения в кадре

    По координатам регистров ABSOLUTE и MACHINE можно судить о правильности перемещения по программе. Координаты регистра MACHINE обычно используются оператором станка для нахождения нуля детали и установления рабочей системы координат.

    Дата добавления: 2014-01-06 ; Просмотров: 4108 ; Нарушение авторских прав? ;

    Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

    Как работать на станке с чпу. Какой принцип работы станков с ЧПУ? А как с учебой в режиме онлайн

    В последнее время каждый третий человек имеет представление о том, что такое станок с ЧПУ. Все видели элементарный 3D-принтер. Принцип его работы аналогичен конструкции современного оборудования. Электронная начинка практически не отличается, у них разные механические узлы.

    Тип оборудования

    Ещё 10 лет назад мало кому было интересно, что такое станок с ЧПУ. Но в настоящее время практически каждое второе изделие для быта и промышленности производится при помощи программного управления: смартфоны, телевизоры, игрушки, металлические детали. Даже процесс производства пластиковых бутылок контролируется машинами.

    Расшифровывается ЧПУ следующим образом:

    • Ч — числовое. Внесение параметров в память станка производится в понятном оператору виде. Пересчёт значений в машинный код происходит автоматически.
    • П — программное. Работа со станком производится через интуитивно понятные приложения. На некоторых моделях присутствует возможность 3D-реализации технологического процесса.
    • У — управление. Весь цикл после загрузки программы осуществляется автоматически.

    Один оператор станков с ЧПУ способен выпускать до нескольких сотен деталей в день. Ранее это было возможно только при слаженной работе целой команды. Посредством «человеко-машинного интерфейса» моментально загружаются управляющие коды в контроллер. Устанавливается заготовка, и далее участие человека не требуется до конца цикла.

    Широко известны на основе ЧПУ плазморезы, станки фрезерные, токарные, для обработки дерева, координатно-прошивные прессы, плазменной резки. Существует огромный список станков, отличающихся по назначению, конструкции.

    Станок под управлением ЧПУ — это наиболее универсальный варинат обработки материалов в автоматическом режиме. Аббревиатура расшифровывается как числовое программное управление. В конструкции станка заложен контроллер, отвечающий за перемещение инструмента и детали.

    Виды оборудования

    Токарные станки прошлого поколения управлялись вручную посредством маховичков. Ранее и не знали, что такое станок с ЧПУ. Многим это оборудование было просто не по карману.

    По конструкции станки делятся на:

    • Токарные.
    • Фрезерные.
    • Токарно-фрезерные.
    • Координатные, портальные.
    • Вертикальные и горизонтальные.

    Рассматривая, что такое станок с ЧПУ, можно сказать — это всегда многоосевые системы. Присутствует вертикальное и горизонтальное перемещение. Также каждая установка оснащается мощным узлом — шпинделем.

    Последовательность запуска

    Создание кодов управляющей программы начинается с переноса размеров чертежа в окна стандартных циклов. Команды прописываются в процессе компиляции и сохранения введённых значений. Задача оператора — задать точку привязки инструмента. Это положение старта движения фрезы.

    Более точное значение стартовой точки вымеряется датчиками бесконтактных систем. Известными производителями последних являются фирмы Heidenhain и Renishaw. После введения необходимых величин достаточно нажать кнопку пуска автоматического цикла.

    В процессе реза оператор контролирует целостность инструмента и соответствие получаемой детали чертежу. Любой станок с ЧПУ по металлу имеет функцию паузы для удаления стружки и иных посторонних включений из зоны реза. Все управление интуитивно понятно. Изучив подробно одну систему, быстро осваивают работу на других.

    Одинаковый принцип управления систем получился благодаря истории развития ЧПУ. Изначально существовало простейшее управляющее железо компании Fanuc. Идея первооткрывателей удобного способа работы со станками была доработана многими фирмами и усовершенствована. Такая компания, как Siemens, является последователем легендарных систем ЧПУ.

    Работа с листовым материалом

    При работе с листовым материалом требуются наиболее простые системы ЧПУ. Фрезерный станок по дереву может управляться от настольного компьютера. Но для контроля осей потребуется плата расширения. Стоимость последней невысока, диапазон цен начинается с 3 тысяч рублей.

    Дешевизна конструкции и простота системы управления позволила многим пользоваться программами для ЧПУ-станков, которые имеются у многих в собственном гараже. Комплектующие заказывают через Интернет. Эту продукцию выбирают мебельные фабрики, мастерские. ЧПУ-система помогает получать оригинальные рисунки, разделывать листы с высокой точностью.

    Металлообработка

    Токарные и фрезерные станки для раскроя и обработки металла — это самая большая группа оборудования, построенная на базе ЧПУ. Пятиосевых систем движения инструмента оказывается вполне достаточно для получения самых сложных контуров детали. Остальные оси являются вспомогательными.


    При обработке металлов контролируется скорость реза, глубина врезания инструмента, износ кромок. Автоматически вносятся коррекции при отклонении значений от установленных. Программно реализуется дробление стружки для оптимального её отвода из зоны обработки.

    Подача охлаждающей жидкости осуществляется одновременно с врезанием в заготовку и заканчивается при отводе фрезы. Как минимум одна ось является вращающейся. В ней располагается сама деталь либо режущий инструмент.

    Основные узлы оборудования

    Общение оператора с машиной происходит через пульт управления. Вычислительные операции осуществляет плата с ЧПУ-процессором. На панели имеются разъёмы стандартных интерфейсов для загрузки и выгрузки программ, создания аварийных архивов.

    Проводная техника устанавливается на радиаторе охлаждения совместно с модулем ЧПУ и электрически связана с ним по шине. Устанавливаются стандартные интерфейсы типа RS232, RS432, USB, может монтироваться разъём для SD-карты.

    Жёсткий диск встраиваемого компьютера служит резервным местом для копирования оперативной памяти. В других случаях для этого используется флеш-карта. Чтобы обеспечивать высокую точность позиционирования, станки оснащаются современными серводвигателями со встроенными датчиками положения. Кроме того, добавляются ещё и линейные датчики с разрешением 0,01 микрона.

    9 вещей, которые пригодятся новичкам в ЧПУ

    Предположим, у вас есть рабочая машина с ЧПУ, вы только что ее приобрели, но вы мало что знаете о самом ЧПУ. Предположим также, что это фрезерный станок, и что в первую очередь вы будете заниматься резкой металла. Вероятно, вы готовы начать изготавливать детали для чоппера, конструировать устройство для смены инструментов или, может быть, с нуля собрать пистолет Colt 1911. С ЧПУ вы можете сконструировать почти все, и вы с нетерпением ждете начала работы над вашими любимыми проектами.

    Не спешите! Помните, вы только что купили машину, и к тому же вы новичок. Вы еще не готовы к таким проектам.

    Надо постараться максимизировать свои шансы на успех. Для этого примите к сведению 9 нижеследующих пунктов

    1. Купите несколько приличных фрез

    Не берите упаковку импортных китайских фрез различных размеров и неопределенного качества. Вам не нужны и зеленые космические фрезы из «Людей в черном», просто купите несколько приличных фрез у надежного поставщика по разумной цене. Можно начинать с быстрорежущей стали. В конечном во многих случаях будет необходим твердосплав, но быстрорежущая сталь дешевле и более устойчива к вибрациям. Купите себе несколько размеров:

    Размеры меньше ни к чему на данном этапе, пока вы не потренируетесь на менее чувствительных фрезах. Купите 2-х или 3-заходные для алюминия и 4-заходные для стали . Чтобы лучше понять какие фрезы вам необходимы, прочтите статью Как выбрать фрезы . Вы однозначно сломаете несколько фрез, так что просто свыкнитесь с этой мыслью. На этом этапе следует не забывать надевать защитные очки!

    Также купите полный набор спиральных сверл.

    2. Купите стоящие тиски, комплект прихватов и набор параллелек

    Закрепление заготовки — очень важный этап. Приобретите хорошие тиски для своего станка, и вы потратите деньги на ценный инструмент, который будет служить вам годами. Есть одна загвоздка, которая возникает, когда вы зажимаете заготовку в тисках . Если у вас плохие тиски, заготовка сдвинется, а вы будете гадать, что же произошло.

    Вам следует закрепить ваши тиски в Т-образные слоты вашего стола, так что вы также можете приобрести комплект прихватов.

    Наконец, вам понадобится набор параллельных подкладок.

    3. Используйте СОЖ или туман! В работе с алюминием придется параноидально следить за отводом стружки.

    Если машина не была оснащена СОЖ, подаваемой поливом, и не предназначена для такого, то вам необходимо установить генератор тумана. Можно взять качественный, например Noga, есть много разных брендов.

    Перенарезка стружки вредна для фрез, а в худшем случае это приведет к поломке. «Быть параноиком» имеется в виду, что в начале надо очень пристально смотреть на область реза, и возиться с соплом вашего туманообразователя, чтобы освоить, как правильно располагать его для качественной подачи СОЖ.

    4. Научитесь пользоваться вашим контроллером ЧПУ

    Следующим шагом будет научиться управлять вашим ЧПУ, как если бы это был ручной станок с принудительной подачей и УЦИ на каждой оси. По ходу работы вы узнаете некоторые базовые коды G, дабы иметь представление о том, что ваша программа делает, когда вы в первый раз запускаете реальную программу в коде G (хоть это еще и далеко от правды!). Начните работать с фрезой в верхнем положении, и не пытайтесь делать какие-либо движения по оси Z, дабы не повредить режущий инструмент обо что-то. Практикуйте движения по оси X и Y до тех пор, пока шпиндель не будет двигаться туда, куда вы хотите, и вы не будете ошибаться. Еще один момент: не используйте G00, это заставляет машину двигаться в быстрых режимах на пределах ее возможностей. Используйте G01 и установите относительно низкую скорость подачи. В «G01 F20» машина будет двигаться со скоростью 20 единиц в минуту(миллиметров, метров, дюймов – в зависимости от настроек вашего контроллера). У вас будет намного больше времени на реакцию, если что-то пойдет не так.

    5. Купите измерительный прибор для длины фрезы и научитесь ним пользоваться, чтобы калибровать ось Z. В придачу приобретите кромкоискатель и используйте его, чтобы забазировать шпиндель относительно детали.

    Ваша машина должна знать, где находится кончик фрезы, в противном случае можно испортить оборудование. Так как вы новичок, задайте ей необходимую информацию, используя датчик длины фрезы. С его помощью машина будет точно знать, где конец фрезы относительно координаты Z. Первое, что надо сделать после установки заготовки в тиски и фрезы в шпиндель — это установить нули.

    Подробнее о компенсации длины инструмента и нахождении базовых точек в статье Как найти нулевую точку станка с ЧПУ .

    6. Научитесь регулировать ваш станок и тиски

    Отрегулировать — отъюстировать с помощью часового индикатора. Это базовый навык, который необходим всем.

    Выработайте привычку перед началом работы проверять положение ваших тисков. Позже будет понятно, действительно ли нужно делать это прям каждый раз, но поначалу придерживайтесь такй практики. К тому же, убедитесь, что знаете, как отрегулировать свои тиски, чтобы зажимные щеки были правильно выровнены с одной из осей.

    7. Начните с алюминия, латуни и мягкой стали. Избегайте использования нержавеющей стали.

    Поначалу следует избегать использования труднообрабатываемых материалов. Используйте алюминий или латунь.

    Когда начнет получаться, можно попробовать мягкую сталь. Только после того, как вы почувствуете, что достаточно хорошо фрезеруете такие материалы, фрезы не ломаются и не изнашиваются слишком быстро, и обработанная поверхность больше не похожа на ту, на которую напала стая инфицированных бешенством бобров, лишь тогда переходите к труднообрабатываемым материалам, таким как нержавеющая сталь. Перед этим как следует изучите каталоги поставщиков металлов.

    8. Сделайте себе несколько комплектов ступенчатых губок из алюминия

    Возьмите пилу и вырежьте кусочки материала, размерами немного больше, чем щеки тисков. Теперь вам нужно обработать эти блоки на прямоугольник, т.е. делать фрезерные проходы до тех пор, пока все стороны не станут строго параллельны или перпендикулярны друг другу, т.е. до получения прямоугольного параллелепипеда.

    Используйте концевые фрезы небольших диаметров. Несмотря на то, что для таких работ торцевые подходят лучше, их пока не стоит использовать, т.к. торцевая фреза развивает большое усилие. Шпиндель может завязнуть, заготовку может вырвать тисков и швырнуть ее через комнату, и т.п.

    Обработав материал в виде квадрата, переходите к следующей задаче – обработайте его в соответствии с размерами, фрезеруя до тех пор, пока он не станет идеального размера для ваших тисков (вам понадобятся 2 прямоугольных куска, по одному на каждую зажимную губку). Последний шаг — просверлить и прозенковать монтажные отверстия.

    Можно также поучиться делать Куб Тернера. Этот куб (его еще называют мета-куб), не так легко сделать, как это может показаться на первый взгляд. Говорят, что ранее, до появления станков с ЧПУ, такой хитрый кубик давали новичку токарю/фрезеровщику и предлагали аналогичный сделать. Это было тестом на владение станком. Этот куб выглядит как серия кубов с отверстиями, вложенных друг в друга, и касающихся внешнего только вершинами.

    9. Изучите САПР и CAM

    Итак, теперь вы знаете азы. Следующий шаг – изучить, как создавать G-код для станка. Для этого вам необходимо овладеть САПР и CAM. По возможности выберите те программы, с освоением которых вам могут помочь. В идеале, попросите вашего друга, который уже использует программное обеспечение и опытен в нем, помочь вам. Если у вас нет такого друга, рассмотрите вариант курсов. Если вам некому помочь вживую, вам придется вернуться и искать помощи в Интернете. Начните с просмотра нескольких видеороликов. По возможности, постарайтесь смотреть ролик и изучать программное обеспечение одновременно. Найдите онлайн-форумы, на которые люди обращаются за помощью в использовании этих программ.

    Если вы хоть раз задавались вопросом «что можно сделать на ЧПУ фрезерного станка», тогда эта статья для вас. На сегодняшний день интересные товары ручной работы очень высоко ценятся и пользуются большим спросом.

    Изделия на продажу, или для собственного пользования могут быть качественно и быстро изготовлены с помощью .

    На выходе можно получить разнообразную продукцию из дерева:

    • предметы декора;
    • мебель;
    • сувениры и другие изделия.

    Также на сайте у нас выложена статья о , которая может быть полезна при производстве такого вида изделий. Для данного производства необходимо лишь определенное оборудование и некоторый опыт работы на нем.
    И, кстати, это довольно хороший способ заработка. Ведь такие изделия всегда пользуются спросом и имеют высокую цену.

    Подготовка сырья для продукции

    В качестве сырья можно использовать почти все твердые материалы:

    • древесину (включая фанеру, ДВП, ДСП, МДФ);
    • различные виды пластика (акрил, ПВХ);
    • металлы;
    • поликарбонаты;
    • пенопласт;
    • полистирол и другие материалы, поддающиеся механической обработке.

    Очень популярна сейчас , так как с ее помощью делают модные детали интерьера, предметы быта и многие другие изделия для дома.

    Древесина – это наиболее распространенное сырье для обработки на станках с числовым программным управлением.

    Оптимальным вариантом будет использование таких пород:

    • Ясень: имеет много общего с дубом. Однако степень сопротивления к деформации, вязкость, ударная стойкость выше у данного вида древесины. Ясеневая порода высоко ценится в производстве мебели, там ее приравнивают к красному дереву.
    • Сосна : отличается смолистостью, прочностью и твердостью, стойкостью к гниению и поражению грибком, отлично подходит для обработки. Высоко ценится из-за малого количества сучков и небольшого изменения диаметра по длине ствола.
    • Лиственница: для нее характерна высокая прочность, стойкость к внешним воздействиям, приятный цвет и структура.

    Выбор породы зависит от изделий. Особое внимание следует обратить на такие характеристики дерева, как влажность и прочность. Поскольку они сильно влияют на качество готового продукта.

    Преимущества работы с фрезерным станком ЧПУ

    У фрезеров достаточно большое количество плюсов, среди которых:

    • возможность изготавливать самые разнообразные изделия из совершенно непохожих между собой материалов (которые невозможно обработать другим путем);
    • точность и ровность реза, благодаря чему изделие получается аккуратным и красивым;
    • возможность делать нужную форму, глубину и даже фасонные резы;
    • работа может проводится как на вертикальной, горизонтальной, так и наклонной поверхности;
    • высокая скорость работы;
    • большое разнообразие деталей: плоские, объемные, и даже 3D;
    • повторяемость большего количества изделий, что практически невозможно при других методах обработки;
    • возможность резать, делать черновую калибровку, фрезеровать пазы и другие виды соединений, используемых при сборке изделия.

    Основные изделия

    На сегодняшний день существует огромное количество предметов, которые можно сделать с помощью станка ЧПУ, таких как:

    1. Уникальная мебель из различных материалов, включая ценные породы дерева.
    2. Сувениры: различные шкатулочки, рамочки для фото, статуэтки и прочее.
    3. Рекламная продукция: красивые массивные буквы, таблички и т.д.

    Давайте более детально разберем каждый из предложенных вариантов.

    Дизайнерская мебель. Она окружает нас повсюду: спальные комнаты, кухня, детская. Современное мебельное производство очень продумано и имеет высокую точность.

    Шаги для создания изделия на станке ЧПУ:

    1. Разработка эскиза. Для данного пункта существует большое количество программ, которые помогают виртуально моделировать обстановку. Для того, чтобы создать 3х мерный макет рисунка используйте вычислительные программы, такие как САПР. Подготовленные компьютерные файлы дадут возможность получить мебельное изделие на фрезерном станке ЧПУ.
    2. Подготовка модели для станка. Готовый эскиз в 3D – базисе для изготовления любого комплекта деталей. К данному эскизу необходимо добавить функцию луча (вектор, который будет отвечать за направление фрезы относительно заготовочной детали). Существует также автоматическая формировка модели, которая является достаточно удобной и поможет сэкономить ваше время. Современное оборудование упрощает процесс изготовления, и передает даже самые маленькие и трудные линии.
    3. Подборка типа режущих инструментов, настройка мощности и режима обработки.
    4. Загрузка файлов в память машины, установка инструмента для резки, закрепление заготовки и запуск производства. Дальнейшую работу фрезерный станок ЧПУ делает самостоятельно по уже заданной программе.
    5. Окончательная сборка. Займет незначительное количество времени, нет надобности подгонки деталей.

    Сувенирная продукция. Это могут быть следующие сувениры:

    • шкатулочки из дерева, которые можно украсить орнаментом;
    • коробки для бисера или швейных принадлежностей;
    • ящички для украшений;
    • иконы и многое другое.

    Наиболее популярными продуктами среди сувениров являются те изделия, которые изготовлены по 3D или 2D векторным рисункам.

    Также сейчас массово внедряются в производство многошпиндельные станки (2-16 шпинделей).

    Рекламная продукция. Ее создание – это актуальный на сегодняшний день вид деятельности, в котором большую популярность имеет применение фрезерных станков с числовым программным управлением. Такие машины отлично справляются с такими задачами, как производство световых коробов, стендов, панна, фигурных надписей и наружных рекламных вывесок, а также с приготовлением конструкций для выставок.

    ЧПУ станок помогает выполнять следующие операции, которые связаны с рекламной продукцией:

    • раскрой дерева, акрила и прочих материалов;
    • гравировка/вырезка массивных надписей;
    • создание логотипа, эмблемы;
    • изготовление табличек, подставок и др.

    Подводя итоги, можно сказать, что количество изделий, который можно сделать на фрезерном ЧПУ станке огромное количество. От вас лишь требуется оборудование, желание работать и небольшой опыт.

    Каждая компания, открывая новое предприятие, заботится о кадровом потенциале. За последние годы рабочие профессии не стали популярными. Это связано с тем, что обладателю корочки о получении профессии не всегда удается найти работу, особенно с достойной оплатой. Поэтому все больше внимания руководители предприятий уделяют обучению персонала работе на станках с числовым программным управлением.

    Почему нужно обучать операторов

    Современные производственные мощности оснащают высокоточными станками с ЧПУ. Рабочих, которые стояли у станка десять-двадцать лет назад, к ним не поставишь.

    Многие отрасли современной промышленности, в том числе металлообработка, остро нуждаются в операторах-наладчиках станков с ЧПУ. И заработную плату предлагают неплохую. Например, оператор станков с ЧПУ (СПб) получает от 40 до 70 тыс. руб. Эти специалисты настраивают и контролируют работу этих приборов, задают им программу действий, набор операций, указывают их последовательность. А обслуживать станок поручают оператору, который тоже должен разбираться в особенностях процесса.

    Те же, кто обучался рабочим профессиям, не всегда готовы работать на современном оборудовании. Программы обучения в профессиональных училищах не всегда отвечают уровню технической оснащенности современного производства. Слабая материально-техническая база не дает возможности получить нужные знания и приобрести навыки. Да и опыта работы на высокоточных станках с ЧПУ зачастую у них нет.

    Это касается не только рабочих, но и специалистов среднего звена.

    Поэтому руководители стараются обеспечить свои предприятия рабочими, обученными за их содействием.

    Роль операторов и наладчиков

    Использование станков с числовым программным управлением резко изменило характер процессов, выполняемых людьми, которые их обслуживают. На их роли в технологическом процессе отразилась высокая автоматизация, возможности быстрой переналадки оборудования.

    Современные станки работают в автоматическом цикле. Программы для их работы разрабатывают технологи. Поэтому последовательность операций и перемещение рабочих частей инструмента не зависит непосредственно от станочника.

    Что зависит от оператора

    Инструкция оператора станка с ЧПУ четко регламентирует их обязанности:

    • установка заготовки и снятие ее после обработки;
    • периодически нужно проверять размеры деталей на соблюдение стандартов;
    • наблюдение за сходом стружки в нужном направлении;
    • контроль за состоянием систем станка;
    • наблюдение за сигнальными устройствами.

    Оператор производит наладку станка и запускает его в работу. Обычно машина обрабатывает одну деталь длительное время. Поэтому оператор может обслуживать несколько станков или выполнять другие функции с различными инструментами. Это делает работу более интересной. Но вместе с тем требует умений планирования работы.

    Своевременно обнаружив неполадки в работе системы или брак, он сообщает о них. Этим он помогает сохранить оборудование и предотвратить выпуск некачественных изделий. Его наблюдения помогают технологам внести необходимые изменения в программу.

    Чтобы каждый раз не сталкиваться с одной и той же проблемой, как с новой, оператор станков с ЧПУ должен запоминать и изучать признаки различных неполадок и неисправностей, чтобы быстро исправлять их или препятствовать их возникновению.

    Устройства ЧПУ

    Сейчас на рынке представлено достаточное количество устройств числового программного управления зарубежного и русского производства.

    Из первых можно назвать немецкие Siemens и Heidenhein, японский Okuma, Mitsubishi, Fanuc Automation (или Fanuc), испанский Fagor.

    Во вторую группу входят санкт-петербургский «Балт-Систем», «Модмаш» (Нижний Новгород), московский «Альфа-Систем», ижевский «Ижпрэст», «Микрос» (Ногинск).

    Самыми популярными и распространенными считаются Siemens и Fanuc.

    Обучение в производственных центрах

    Обучающие центры создают для того, чтобы получить единую образовательную систему, включающей теорию и практику. Оператор станка с ЧПУ должен понять и осмыслить весь процесс создания готового изделия, начиная с разработки чертежей и программ, заканчивая образованием навыков работы операторов различных станков с программированием.

    В качестве экзамена или зачета будущий оператор станка с ЧПУ сам обрабатывает деталь, а специалисты центра следят за качеством его работы.

    Обучение

    Как обучается в таких центрах оператор станков с ЧПУ?

    Обучение проводят в классах, оснащенных симуляторами стоек. Программа рассчитана на то, чтобы новые знания можно было сразу реализовать на практике. Это позволяет значительно сократить время на обучения непосредственно в цехах, возле оборудования. Студенты изучают азы программирования, такие понятия, как система координат, оси координат и управление ими, знакомятся со строением программы управления, интерполяцией, постоянными циклами, подготовительными и вспомогательными функциями.

    В результате оператор станка с ЧПУ, который попадает на производство, уже готов работать.

    Непрерывное обучение

    Специалисты высокой квалификации ценятся на любом предприятии. Для того чтобы они могли идти в ногу со временем, им нужно постоянно расти и обучаться. Поэтому подготовка операторов станков и других специалистов должно быть непрерывным.

    Если в составе обучающего центра есть сервисный центр, то его специалисты помогают наладить станки, которое устанавливают на предприятии, и обучают сотрудников не только своих, но и заказчиков. В дальнейшем оператор-наладчик станков с ЧПУ будет производить обслуживание этого оборудования.

    Это выгодно и руководителям, и самим наладчикам. Первым не нужно будет искать специалистов, вторые смогут консультировать операторов дистанционно или выезжать на предприятие в любое время суток.

    Что нужно знать, чтобы стать наладчиком

    Молодые люди, которые хотят стать наладчиками станков с числовым программным управлением, должны:

    • хорошо знать математику, в том числе геометрию;
    • знать механику и электротехнику;
    • читать чертежи и техническую документацию;
    • программировать процессы обработки.

    В профессионально-технических училищах подготовка операторов станков с ЧПУ проводится на базе среднего образовании в течение 2 лет.

    Но только поработав на предприятии, молодой специалист может утверждать, что он освоил профессию, и теперь он — оператор станков с ЧПУ.

    Требования к операторам-наладчикам

    Современные станки с ЧПУ — сложные механизмы. Определение причин допущенного брака и устранение их требуют технического образа мышления у оператора-наладчика. Он должен интересоваться машинами и различными механизмами и устройствами. Только таким людям эта работа будет интересной, только они смогут достичь в ней успеха.

    Оператор станка с ЧПУ должен:

    • понимать устройство и принцип действия станков;
    • знать способы правильной установки, закрепления обрабатываемых деталей и их качественной обработки;
    • уметь настраивать станки;
    • вводить программы;
    • доводить и затачивать инструмент;
    • изготавливать детали высокого качества;
    • уметь измерять полученные детали.

    Самообразование

    Сейчас несложно найти массу литературы, которая может помочь разобраться в тонкостях работы на станках с числовым программным управлением. Многие специалисты пользуются ею для повышения своих знаний. Но это под силу далеко не каждому представителю профессии. А подрастающему поколению невозможно освоить профессию только по книжкам. Поэтому и нужна гибкая система образования, позволяющая каждому желающему освоить профессию и получить нужные ему навыки.

    Рассмотрим работу станков с системой ЧПУ по упрощенной схеме (рис. 7.1), включающей основные блоки систем ЧПУ и основные элементы кинематической схемы станка. Система ЧПУ состоит из устройств ввода информации, блока запоминания информации БЗИ, блока интерполяции БИ, блока управления приводами подач в виде цифроаналоговых преобразователей ЦАП и двух следящих приводов по осям X и V станка. Следящие приводы состоят из усилителей мощности УМ Х и УМ У, сравнивающих устройств УС Х и УС У , датчиков обратной связи в виде вращаю­щихся трансформаторов ВТ Х и ВТ У , кинематически связанных с ходовыми винтами станка, и двигателей подач М х и М у , которые приводят во вращение ходовые винты станка. В результате вра­щения винтов перемещаются стол станка и его ползун с фрезой, совместное движение которых определяет конфигурацию изготовляемой детали согласно заложенной программе.

    Все современные устройства ЧПУ выполняются на базе ка­кой-либо микроЭВМ или микропроцессоров (одного или несколь­ких), позволяющих значительно увеличить степень автоматизации станка, т.е. обеспечить: индикацию большого числа параметров на экране дисплея, быстрое диагностирование неисправностей и удобное редактирование программ, запоминание большого объема управляющих программ и т.д.

    7.1. Состав системы чпу

    Все устройства ЧПУ имеют развитую цикловую автоматику с большим числом входов-выходов, а также связь с ЭВМ высшего уровня, необходимую при создании гибких производственных систем.

    Вместе с тем наблюдается разделение устройств ЧПУ по числу управляемых координат, связанное с их назначением: для токар­ных станков обычно требуется две координаты; для обычных фре­зерных – три; для фрезерных станков, предназначенных для объемной обработки, – пять; для многооперационных станков – от четырех до восьми. В настоящее время созданы устройства ЧПУ на 10–12 координат для управления ГПМ. Число координат весьма существенно влияет на конструкцию и стоимость устрой­ства ЧПУ.

    Функциональная схема типовой универсальной системы ЧПУ (рис. 7.2) состоит из двух основных устройств: устройства число­вого программного управления, конструктивно оформленного в виде отдельного шкафа или пульта и исполнитель­ных устройств с приводами и датчиками обратной связи, разме­щенными на станке. Основные блоки системы ЧПУ описаны ниже.

    Рис. 7.1. Упрощенная схема станка с ЧПУ

    Устройство ввода информации вводит числовую информацию с программоносителя.

    Блок запоминания считанной информации. Помимо запоминания входной информации в этом блоке выполняются ее контроль и формирова­ние соответствующего сигнала в момент обнаружения ошибки. Этот блок, как правило, имеет возможность получать информацию от ЭВМ верхнего уровня, что необходимо при объединении стан­ков в ГПС.

    Пульт управления и индикации служит для связи человека-оператора с системой ЧПУ. С помощью этого пульта проводится пуск системы и ее останов, переключение режимов работы с авто­матического на ручной и т.д., а также коррекция скорости подачи и размеров инструментов и изменение начального положения инструмента по всем или некоторым координатам. На этом пульте находится световая сигнализация и цифровая индикация о со­стоянии системы.

    В современных ЧПУ индикация обычно осуществляется с помощью встроенного дисплея, позволяющего выводить значительно большее число параметров, а также проводить отработку про­грамм непосредственно на станке.

    Блок интерполяции формирует частичную траекторию движе­ния инструмента между двумя или более заданными в программе точками. В большинстве случаев используют линейную и круговую интерполяцию, хотя иногда применяют винтовую или цилиндри­ческую интерполяцию.

    Приводы подач, чаще всего следящие, служат для обеспече­ния перемещения управляемых элементов станка (столов, суппор­тов, кареток и т.п.) с необходимой скоростью и точностью при заданном моменте. Под следящим приводом будем понимать систему, состоящую из двигателя (электрического, гидравличе­ского), усилителя мощности, снабжающего этот двигатель не­обходимой энергией, которая регулируется в широких пределах, датчика обратной связи по положению, служащего для измерения фактического перемещения (или положения) управляемого объ­екта, и сравнивающего устройства, сравнивающего фактическое положение объекта с заданным и выдающего сигнал ошибки, по­ступающий на вход усилителя мощности, в результате чего угло­вая скорость вала двигателя оказывается пропорциональной ошибке системы. В процессе работы эта система перемещает управ­ляемый объект таким образом, чтобы поддерживать минимальное значение ошибки. Если ошибка по каким-либо причинам превы­шает заранее установленный допустимый предел, то система ЧПУ автоматически отключается с помощью специальных устройств защиты.

    Блоки управления приводами подач служат для преобразования информации, получаемой с выхода интерполятора, в форму, пригодную для управления приводами подач, так, чтобы при поступлении каждого импульса управляемый объект перемещался на определенное расстояние, называемое ценой импульса, кото­рая обычно составляет 0,01 или 0,001 мм. В зависимости от типа приводов (замкнутые или разомкнутые, фазовые или амплитуд­ные), применяемых на станках, блоки управления существенно различаются.

    В разомкнутых приводах, использующих шаговые двигатели, блоки управления представляют собой специальные кольцевые коммутаторы, на выходе которых включены мощные усилители, питающие обмотки шаговых двигателей, которые служат для циклического переключения обмоток ШД, что заставляет вра­щаться его ротор. В замкнутых приводах фазового типа, исполь­зующих датчики обратной связи в виде вращающихся трансфор­маторов (ВТ) или индуктосинов в режиме фазовращателей, блоки управления представляют собой преобразователи импульсов в фазу переменного тока и фазовые дискриминаторы, которые сравни­вают фазу сигнала на выходе фазового преобразователя с фазой датчика обратной связи и выдают разностный сигнал ошибки на усилитель мощности привода.

    В этом же блоке обычно расположены усилители для питания датчиков обратной связи, а также устройства защиты, отключаю­щие приводы при превышении допустимой ошибки слежения.

    Датчики обратной связи ДОС являются измерительными устройствами, служащими для определения фактического поло­жения (абсолютного значения координаты) или перемещения (от­носительного значения координаты) управляемого объекта в пре­делах шага системы. При этом суммирование шагов производит система ЧПУ. Перемещения объекта определяют как непосредственно с помощью каких-либо линейных измерительных устройств, например, индуктосинов, так и косвенно, измеряя, например, угол поворота вала двигателя подач с помощью какого-либо углового измерительного устройства, например, обычного ВТ или резольвера (точный ВТ синусно-косинусного типа, применяемый в счетно-решающих устройствах).

    Помимо индуктосинов, для непосредственного измерения ли­нейных перемещений иногда используют и другие измерительные устройства, например, прецизионные зубчатые рейки с много­полюсными ВТ, или для достижения особо высокой точности – оптические штриховые измерительные шкалы с соответствующими импульсными датчиками. Обычно одно и то же устройство ЧПУ может работать с раз­личными типами ДОС.

    Рис. 7.2. Функциональная схема системы ЧПУ

    Блок скоростей подач обеспечивает заданную скорость подачи, а также разгон и торможение в начале и конце участков обработки по заданному закону, чаще всего – линейному. Скорость подачи задается либо номером скорости соответствующего ряда скоростей, составляющих геометрическую прогрессию со знаменателем по­рядка 1,25, либо непосредственно в миллиметрах в минуту через 1 или даже через 0,1 мм/мин. Помимо рабочих скоростей подач, составляющих обычно 5–2000 мм/мин, этот блок выполняет, как правило, и установочное движение с повышенной скоростью, на которой производится установка координат при позиционной обработке или переход инструмента из одного участка заготовки в другой при контурной обработке. Эта скорость в современных системах ЧПУ составляет 10–15 м/мин.

    Блок коррекции программы вместе с пультом управления слу­жит для изменения запрограммированных параметров обработки, т.е. скорости подачи и размеров инструмента (длины и диаметра). Изменение скорости движения (обычно 5–120 %) сводится к руч­ному изменению частоты задающего генератора в блоке подач. Изменение длины инструмента (обычно от 0 до 100 мм) сводится к изменению заданного значения перемещения вдоль оси инстру­мента, без изменения его начального поло­жения.

    Блок технологических команд предназначен для управления цикловой автоматикой станка, включающего поиск и смену до­статочно большого числа инструментов (до 100), смену частоты вращения шпинделя, зажим направляющих при позиционирова­нии и разжим их при движении, различные блокировки, обеспе­чивающие сохранность станка. Цикловая автоматика станка со­стоит в основном из исполнительных элементов типа пускателей, электромагнитных муфт, соленоидов и других электромагнитных механизмов, а также дискретных элементов обратной связи типа концевых и путевых выключателей, реле тока, реле давления и других элементов, контактных или бесконтактных, сигнализи­рующих о состоянии исполнительных органов. Часто эти элементы с дополнительными устройствами типа реле реализуют местные циклы (например, цикл поиска и смены инструмента), команды, на исполнение которых подаются из устройства программного управления. Современные устройства ЧПУ, как правило, осу­ществляют эти циклы внутри, выдавая сигналы на исполнитель­ные элементы станка через согласующе-усилительные устройства, которые могут находиться как в станке, так и в устройстве ЧПУ. Для этого часто используют программируемые контроллеры в виде отдельного блока, размещаемого внутри или вне устройства ЧПУ.

    Блок стандартных циклов служит для облегчения программи­рования и сокращения длины программы при позиционной обра­ботке повторяющихся элементов заготовки, например, при свер­лении и растачивании отверстий, нарезании резьбы и других операций.

    Помимо этих блоков, применяют блоки адаптации, которые служат для увеличения точности и производительности обработки при изменяющихся по случайному закону внешних условиях (например, припуск на обработку, твердость обрабатываемого материала, затупление инструмента). Это объясняется тем, что любая система ЧПУ является разомкнутой системой управления, так как она не «знает» результата своей работы. В системе ЧПУ с обычной обратной связью заготовка ею не охвачена; задается только перемещение инструмента относительно заготовки. В то же время на точности размеров детали сказывается, например, де­формация инструмента, которая в обычных системах ЧПУ может учитываться при программировании только тогда, когда она по­стоянна или изменяется по заранее известному закону, чего на практике нет.

    Глава 21. ОСОБЕННОСТИ ОБРАБОТКИ ДЕТАЛЕЙ НА ОБОРУДОВАНИИ С ЧПУ

    21.1. Принцип действия станков с ЧПУ

    В предыдущих главах были рассмотрены технологические процессы изготовления деталей с позиции использования для этого определенных физических механизмов воздействия (пластического деформирования, механической обработки, электрофизических методов и др.); изложены принципы работы технологического оборудования; дано описание применяемого инструмента и др. Выше в ряде примеров было приведено оборудование, оснащенное системами с числовым программным управлением (ЧПУ). Однако в этих главах не ставилась задача характеризовать оборудование с ЧПУ, указать на его отличительные особенности или сопоставить с обычным оборудованием с ручным управлением.

    В данной главе делается акцент на выявлении особенностей как собственно станков и оборудования с ЧПУ, гак и методов обработки деталей на них.

    Появление в 50-х гг. XX в. станков с ЧПУ было обусловлено необходимостью повышения производительности труда (при одновременном обеспечении стабильного качества) на производствах с массовым и крупносерийным выпуском продукции, так как продолжение использования человека в качестве основного элемента системы управления станком стало сдерживать рост производительности оборудования. Последующий более чем полувековой опыт применения станков (а в более широком плане оборудования) с ЧПУ не только подтвердил правильность исходных целей, но и существенно дополнил и продолжает дополнять их многочисленные преимущества по сравнению со станками с ручным управлением или механическими полуавтоматами и автоматами. Современное машиностроительное производство в экономически развитых странах уже немыслимо без максимально широкого использования станков и оборудования, а также обрабатывающих центров с ЧПУ.

    Повсеместное применение оборудования с ЧПУ стало возможным благодаря тому, что за последние годы заметно стерлась граница между требованиями к технологическому оборудованию для массового, серийного и единичного производства. Это обусловлено многими причинами. Во-первых, спросом рынка, требующего частой сменяемости объекта производства. Во-вторых, развитием методологии проектирования сложных технических объектов, появлением новых материалов и технологий. В-третьих, революционным развитием средств управления технологическим оборудованием на базе использования достижений микроэлектроники и информационных технологий и методов бесконтактного контроля различных параметров заготовки и инструмента.

    Основной особенностью оборудования с ЧПУ является то, что информация о заданном законе движения его управляемых (исполнительных) элементов представляется в виде управляющей программы. Управляющая программа – это совокупность команд на языке программирования, соответствующая заданному алгоритму функционирования станка при обработке конкретной заготовки. Совокупность команд представляет некоторую последовательность чисел, цифр, букв и других знаков, занесенных в закодированном виде на какой-либо программоноситель. В качестве программоносителя на моделях станков первого поколения были использованы перфоленты, перфокарты, на моделях второго поколения – магнитные ленты. Для современных моделей 4–5-го поколений информация записывается на жестких дисках промышленных компьютеров, встроенных в оборудование, дисках CD-R, флеш-картах и иных носителях информации. Управляющая программа физически не связана с размерами и точностью изготовляемой детали, как в случаях применения шаблонов, кулачков или других носителей аналоговой информации в традиционных механических автоматах. Программой, вводимой в устройство ЧПУ станка или уже хранящейся в его памяти, задается закон движения, как приводов подач, так и приводов главного движения и вспомогательных устройств, обеспечивающих изготовление заданной детали.

    Во многих случаях готовые решения на типовые детали из традиционных материалов и конструкций содержатся в программах и базах данных на материалы, инструменты, режимы обработки, записанных в память компьютера производителем станка или специализирующейся на создании программного обеспечения фирмой. Оператору необходимо лишь ввести на клавиатуре пульта управления (рис. 21.1) конкретные исходные данные о геометрии, требуемой точности обработки, применяемом материале и др., а система управления сама рассчитает и оптимизирует режимы обработки, траектории движений, подберет необходимые инструменты и пр.

    Рис. 21.1. Современные варианты исполнения пульта управления станка с ЧПУ

    Современный интерфейс панели управления (см. рис. 21.1) удобен и прост в работе. В тех же случаях, когда необходимо изготовить деталь из редко применяемого материала, например молибденового сплава ММП-1, либо деталь должна быть сложной пространственной формы с малой жесткостью, управляющую программу необходимо создать, используя разработанные математические методы программирования на персональных компьютерах технологического бюро, и дополнительную информацию, выявленную из других источников. По и в этом случае переналаживание оборудования с ЧПУ произойдет быстрее и дешевле, чем при изготовлении новых шаблонов и кулачков. Кроме этого, преимущество компьютерного управления перед механическими (аналоговыми) автоматами заключается в существенном повышении точности обработки, поскольку исключается влияние факторов точности изготовления шаблонов, кулачков, их последующего износа, а также следствий деформаций кинематических цепей.

    ЧПУ применяется в станках всех групп и является универсальным средством автоматизации управления технологическим оборудованием. На рис. 21.2 приведено несколько примеров использования станков для различных технологических процессов.

    Шлифовальный станок Helitronic Power Diamond, показанный на рис. 21.2, а, обеспечивает высокие качество шлифования (Rа = 0,2 мкм) и стабильность, автоматическую систему измерения и позиционирования инструментов. Новое поколение системы управления станка НМС 600 и удобное программное обеспечение Walter Window Mode WWM с простыми текстовыми и графическими сообщениями создают отличную среду для оператора.

    Электроэрозионный вырезной станок Agiecut Vertex, показанный на рис. 21.2, б, обеспечивает получение высочайшего качества поверхности, обладает автоматической заправкой проволок-инструментов, имеет систему управления для диалога человека с машиной. Диаметр стартового отверстия в заготовке определяется диаметром проволоки плюс 50 мкм.

    Рис. 21.2. Общий вид оборудования различного назначения с ЧПУ:

    а – шлифовальный станок Helitronic Power Diamond; б – электроэрозионный станок Agiecut Vertex; в – гидроабразивная установка резки WaterJet; г – станок сверлильно-фрезерный модели 630 H; д – гидравлический координатно-пробивной пресс с однопозиционной головкой Finn Power; e – установка Cemsa для роликовой контактной сварки

    Программное обеспечение гидроабразивной установки WaterJet (рис. 21.2, в) позволяет программировать вырезание любых контуров по чертежам, созданным в системах AutoCad. Для широты охвата и наглядности на рис. 21.2, г показан сверлильно-фрезерный станок модели 630 Н; а на рис. 21.2, д – листогибочный центр Finn Power с автоматической загрузкой заготовок и последующей их автоматической гибкой.

    Применение станков с ЧПУ позволяет качественно изменить технологические процессы в машиностроении, повысить культуру производства, уменьшить производственные площади, исключить влияние на качество продукции субъективных факторов, сократить время изготовления, использовать производственную стратегию «точно вовремя» и в результате добиться большого экономического эффекта.

    Как можно заработать с помощью станка на ЧПУ управлении? Какой принцип работы станков с ЧПУ

    Пошаговая инструкция по созданию станка с ЧПУ своими руками – подробное описание этапов сборки. Часть 1.

    ЧПУ станок своими руками. Часть 1

    Рабочий стол — это собственно поверхность, над которой перемещается рабочий инструмент станка (фреза, гравер и т.д.). Стол служит для закрепления обрабатываемой заготовки, и это накладывает определенные требования на его конструктивное исполнение. Стол самодельного ЧПУ станкадолжен быть достаточно ровным, и обеспечивать возможность закрепить заготовку в любом месте. Основными решениями для этого являются использование стола с Т-пазами(«Т-стол») и вакуумных столов. Стол с Т-пазами позволяет закрепить практически любую заготовку с помощью специальных зажимов. Вакуумные столы прижимают заготовку к себе за счет создания разрежения под сеткой на поверхности, поэтому они способны фиксировать только заготовки с плоской нижней частью(разнообразные листовые материалы), а также они существенно дороже. Однако вакуумные столы позволяют равномерно прижать заготовку по всей её площади, тогда как при фиксации большой плоской заготовки на Т-столе заготовка в центральной своей части может прогнуться вверх, что приведет к снижению соответствия размеров у конечной детали.

    Привод станка с ЧПУ в свою очередь можно поделить на:

    Двигатели — связующее звено между электронной частью системы ЧПУ и механической частью, они(точнее, их управляющие модули — драйверы) получают сигналы с контроллера ЧПУ(часто в этой роли выступает персональный компьютер) и преобразуют их во вращательное движения собственного вала. В станках с ЧПУ используются 2 вида двигателей: серводвигатели и шаговые двигатели(а также линейные двигатели — разновидность серводвигателей. Линейные двигатели одновременно являются и трансмиссией для оси). Сказанное далее будет относиться к классическим шаговым и сервоприводам. Шаговые двигатели распространены в самодельных станках с ЧПУ и бюджетных моделях промышленных гравировально-фрезерных станков, а также станков лазерной, плазменной резки и т.п. Причина — в их низкой стоимости и простоте управления. Драйверы шаговых двигателей — достаточно бюджетные устройства, широко представлены на рынке от самых простых моделей до весьма продвинутых цифровых драйверов. Платой за простоту и бюджет становится низкий КПД шаговых двигателей, их низкая удельная мощность, слабая способность к ускорению, высокие вибрации, гул и резонанс, что в сумме сильно влияет на эксплуатационные характеристики станка.
    Серводвигатели — двигатели с установленным датчиком угла поворота. Это семейство представлено достаточно широко, существуют щеточные и бесщеточные двигатели, постоянного и переменного тока. В целом про серводвигатели можно сказать, что их отличает высокая плавность хода, высокий КДП, способность переносить кратковременные перегрузки. Однако управление серводвигателем гораздо сложнее, серводрайверы (см. серводрайверы Leadshine) — устройства существенно более дорогие и сложны в настройке. Существует также бюджетные варианты щеточных серводвигателей, однако из-за наличия изнашивающейся части (щеток) они менее предпочтительны, чем бесщеточные.

  • Драйверы двигателей
  • Передачи осей

    Задача трансмиссии, или передачи, — превратить вращательное движение вала двигателя в поступательное перемещение по данной оси. Как правило, передача реализуется одним из 3 способов: передача винт-гайка, ШВП или зубчатая передача (шестерня-рейка или шкив-ремень). Как выбрать передачу для осей — тема отдельной статьи. Здесь достаточно указать на то, что передача вместе с видом двигателя(и его управления) определяет скорость перемещения по оси, разрешение задания позиции, а также влияет на точность. Каждый вид передачи изготавливается с определенной точностью. С помощью указанного производителем класса точности для данного элемента трансмиссии можно определить, какая погрешность будет вноситься им в работу станка.
  • Направляющие

    Направляющие обеспечивают перемещение рабочего узла станка строго по заданной траектории. Качество самих направляющих и, что очень важно, качество их установки на станину — второй по важности фактор (после станины), определяющий точность вашего станка. К выбору направляющих стоит подойти очень ответственно.

    • Шпиндель

      Вообще говоря, вместо шпинделя может быть установлен другой узел — лазерный гравер, установка плазменной или лазерной резки, экструдер. Мы рассмотрим шпиндель, как наиболее нагруженный узел. Шпиндель — как правило, это электродвигатель, особенностью которого является низкое биение вала и возможность регулировать скорость вращения в достаточно широких пределах. Вал шпинделя оканчивается конусом, в который устанавливается зажимная цанга , которая держит режущий инструмент — фрезу или гравер. Ключевыми характеристиками шпинделя являются: биение вала(как правило, измеряется биение на конусе) и мощность шпинделя(указывается в ваттах). Большинство шпинделей предназначены для обработки дерева, пластика, камня, металлообработки. Скорость вращения варьируется обычно от 6000 до 30000 оборотов в минуту. Для фрезеровки и гравировки металлов используются мощные шпиндели с низкими оборотами (2000-10000 об/мин). Многие портальные станки, предназначенные для обработки дерева и пластика, могут гравировать металлы, и даже иногда фрезеровать цветные металлы, однако в этом случае станок испытывает сильную вибрацию из-за отдачи на фрезу, которая не может быть погашена легкой станиной, и это резко снижает качество обработки и ресурс станка. Фрезеровка и гравировка металлов и некоторых видов пластика требует охлаждения режущего инструмента. В настоящее время существует множество способов охлаждения рабочей области, но основным остается подача смазывающе-охлаждающей жидкости на фрезу. Некоторые шпиндели , управляемые инвертором, позволяют контролировать скорость вращения из системы ЧПУ, путем подачи на вход инвертора (частотного преобразователя) аналогового сигнала 0..+10 В. Как выбрать шпиндель.

    Каждая компания, открывая новое предприятие, заботится о кадровом потенциале. За последние годы рабочие профессии не стали популярными. Это связано с тем, что обладателю корочки о получении профессии не всегда удается найти работу, особенно с достойной оплатой. Поэтому все больше внимания руководители предприятий уделяют обучению персонала работе на станках с числовым программным управлением.

    Почему нужно обучать операторов

    Современные производственные мощности оснащают высокоточными станками с ЧПУ. Рабочих, которые стояли у станка десять-двадцать лет назад, к ним не поставишь.

    Многие отрасли современной промышленности, в том числе металлообработка, остро нуждаются в операторах-наладчиках станков с ЧПУ. И заработную плату предлагают неплохую. Например, оператор станков с ЧПУ (СПб) получает от 40 до 70 тыс. руб. Эти специалисты настраивают и контролируют работу этих приборов, задают им программу действий, набор операций, указывают их последовательность. А обслуживать станок поручают оператору, который тоже должен разбираться в особенностях процесса.

    Те же, кто обучался рабочим профессиям, не всегда готовы работать на современном оборудовании. Программы обучения в профессиональных училищах не всегда отвечают уровню технической оснащенности современного производства. Слабая материально-техническая база не дает возможности получить нужные знания и приобрести навыки. Да и опыта работы на высокоточных станках с ЧПУ зачастую у них нет.

    Это касается не только рабочих, но и специалистов среднего звена.

    Поэтому руководители стараются обеспечить свои предприятия рабочими, обученными за их содействием.

    Роль операторов и наладчиков

    Использование станков с числовым программным управлением резко изменило характер процессов, выполняемых людьми, которые их обслуживают. На их роли в технологическом процессе отразилась высокая автоматизация, возможности быстрой переналадки оборудования.

    Современные станки работают в автоматическом цикле. Программы для их работы разрабатывают технологи. Поэтому последовательность операций и перемещение рабочих частей инструмента не зависит непосредственно от станочника.

    Что зависит от оператора

    Инструкция оператора станка с ЧПУ четко регламентирует их обязанности:

    • установка заготовки и снятие ее после обработки;
    • периодически нужно проверять размеры деталей на соблюдение стандартов;
    • наблюдение за сходом стружки в нужном направлении;
    • контроль за состоянием систем станка;
    • наблюдение за сигнальными устройствами.

    Оператор производит наладку станка и запускает его в работу. Обычно машина обрабатывает одну деталь длительное время. Поэтому оператор может обслуживать несколько станков или выполнять другие функции с различными инструментами. Это делает работу более интересной. Но вместе с тем требует умений планирования работы.

    Своевременно обнаружив неполадки в работе системы или брак, он сообщает о них. Этим он помогает сохранить оборудование и предотвратить выпуск некачественных изделий. Его наблюдения помогают технологам внести необходимые изменения в программу.

    Чтобы каждый раз не сталкиваться с одной и той же проблемой, как с новой, оператор станков с ЧПУ должен запоминать и изучать признаки различных неполадок и неисправностей, чтобы быстро исправлять их или препятствовать их возникновению.

    Устройства ЧПУ

    Сейчас на рынке представлено достаточное количество устройств числового программного управления зарубежного и русского производства.

    Из первых можно назвать немецкие Siemens и Heidenhein, японский Okuma, Mitsubishi, Fanuc Automation (или Fanuc), испанский Fagor.

    Во вторую группу входят санкт-петербургский «Балт-Систем», «Модмаш» (Нижний Новгород), московский «Альфа-Систем», ижевский «Ижпрэст», «Микрос» (Ногинск).

    Самыми популярными и распространенными считаются Siemens и Fanuc.

    Обучение в производственных центрах

    Обучающие центры создают для того, чтобы получить единую образовательную систему, включающей теорию и практику. Оператор станка с ЧПУ должен понять и осмыслить весь процесс создания готового изделия, начиная с разработки чертежей и программ, заканчивая образованием навыков работы операторов различных станков с программированием.

    В качестве экзамена или зачета будущий оператор станка с ЧПУ сам обрабатывает деталь, а специалисты центра следят за качеством его работы.

    Обучение

    Как обучается в таких центрах оператор станков с ЧПУ?

    Обучение проводят в классах, оснащенных симуляторами стоек. Программа рассчитана на то, чтобы новые знания можно было сразу реализовать на практике. Это позволяет значительно сократить время на обучения непосредственно в цехах, возле оборудования. Студенты изучают азы программирования, такие понятия, как система координат, оси координат и управление ими, знакомятся со строением программы управления, интерполяцией, постоянными циклами, подготовительными и вспомогательными функциями.

    В результате оператор станка с ЧПУ, который попадает на производство, уже готов работать.

    Непрерывное обучение

    Специалисты высокой квалификации ценятся на любом предприятии. Для того чтобы они могли идти в ногу со временем, им нужно постоянно расти и обучаться. Поэтому подготовка операторов станков и других специалистов должно быть непрерывным.

    Если в составе обучающего центра есть сервисный центр, то его специалисты помогают наладить станки, которое устанавливают на предприятии, и обучают сотрудников не только своих, но и заказчиков. В дальнейшем оператор-наладчик станков с ЧПУ будет производить обслуживание этого оборудования.

    Это выгодно и руководителям, и самим наладчикам. Первым не нужно будет искать специалистов, вторые смогут консультировать операторов дистанционно или выезжать на предприятие в любое время суток.

    Что нужно знать, чтобы стать наладчиком

    Молодые люди, которые хотят стать наладчиками станков с числовым программным управлением, должны:

    • хорошо знать математику, в том числе геометрию;
    • знать механику и электротехнику;
    • читать чертежи и техническую документацию;
    • программировать процессы обработки.

    В профессионально-технических училищах подготовка операторов станков с ЧПУ проводится на базе среднего образовании в течение 2 лет.

    Но только поработав на предприятии, молодой специалист может утверждать, что он освоил профессию, и теперь он — оператор станков с ЧПУ.

    Требования к операторам-наладчикам

    Современные станки с ЧПУ — сложные механизмы. Определение причин допущенного брака и устранение их требуют технического образа мышления у оператора-наладчика. Он должен интересоваться машинами и различными механизмами и устройствами. Только таким людям эта работа будет интересной, только они смогут достичь в ней успеха.

    Оператор станка с ЧПУ должен:

    • понимать устройство и принцип действия станков;
    • знать способы правильной установки, закрепления обрабатываемых деталей и их качественной обработки;
    • уметь настраивать станки;
    • вводить программы;
    • доводить и затачивать инструмент;
    • изготавливать детали высокого качества;
    • уметь измерять полученные детали.

    Самообразование

    Сейчас несложно найти массу литературы, которая может помочь разобраться в тонкостях работы на станках с числовым программным управлением. Многие специалисты пользуются ею для повышения своих знаний. Но это под силу далеко не каждому представителю профессии. А подрастающему поколению невозможно освоить профессию только по книжкам. Поэтому и нужна гибкая система образования, позволяющая каждому желающему освоить профессию и получить нужные ему навыки.

    В последнее время каждый третий человек имеет представление о том, что такое станок с ЧПУ. Все видели элементарный 3D-принтер. Принцип его работы аналогичен конструкции современного оборудования. Электронная начинка практически не отличается, у них разные механические узлы.

    Тип оборудования

    Ещё 10 лет назад мало кому было интересно, что такое станок с ЧПУ. Но в настоящее время практически каждое второе изделие для быта и промышленности производится при помощи программного управления: смартфоны, телевизоры, игрушки, металлические детали. Даже процесс производства пластиковых бутылок контролируется машинами.

    Расшифровывается ЧПУ следующим образом:

    • Ч — числовое. Внесение параметров в память станка производится в понятном оператору виде. Пересчёт значений в машинный код происходит автоматически.
    • П — программное. Работа со станком производится через интуитивно понятные приложения. На некоторых моделях присутствует возможность 3D-реализации технологического процесса.
    • У — управление. Весь цикл после загрузки программы осуществляется автоматически.

    Один оператор станков с ЧПУ способен выпускать до нескольких сотен деталей в день. Ранее это было возможно только при слаженной работе целой команды. Посредством «человеко-машинного интерфейса» моментально загружаются управляющие коды в контроллер. Устанавливается заготовка, и далее участие человека не требуется до конца цикла.

    Широко известны на основе ЧПУ плазморезы, станки фрезерные, токарные, для обработки дерева, координатно-прошивные прессы, плазменной резки. Существует огромный список станков, отличающихся по назначению, конструкции.

    Станок под управлением ЧПУ — это наиболее универсальный варинат обработки материалов в автоматическом режиме. Аббревиатура расшифровывается как числовое программное управление. В конструкции станка заложен контроллер, отвечающий за перемещение инструмента и детали.

    Виды оборудования

    Токарные станки прошлого поколения управлялись вручную посредством маховичков. Ранее и не знали, что такое станок с ЧПУ. Многим это оборудование было просто не по карману.

    По конструкции станки делятся на:

    • Токарные.
    • Фрезерные.
    • Токарно-фрезерные.
    • Координатные, портальные.
    • Вертикальные и горизонтальные.

    Рассматривая, что такое станок с ЧПУ, можно сказать — это всегда многоосевые системы. Присутствует вертикальное и горизонтальное перемещение. Также каждая установка оснащается мощным узлом — шпинделем.

    Последовательность запуска

    Создание кодов управляющей программы начинается с переноса размеров чертежа в окна стандартных циклов. Команды прописываются в процессе компиляции и сохранения введённых значений. Задача оператора — задать точку привязки инструмента. Это положение старта движения фрезы.

    Более точное значение стартовой точки вымеряется датчиками бесконтактных систем. Известными производителями последних являются фирмы Heidenhain и Renishaw. После введения необходимых величин достаточно нажать кнопку пуска автоматического цикла.

    В процессе реза оператор контролирует целостность инструмента и соответствие получаемой детали чертежу. Любой станок с ЧПУ по металлу имеет функцию паузы для удаления стружки и иных посторонних включений из зоны реза. Все управление интуитивно понятно. Изучив подробно одну систему, быстро осваивают работу на других.

    Одинаковый принцип управления систем получился благодаря истории развития ЧПУ. Изначально существовало простейшее управляющее железо компании Fanuc. Идея первооткрывателей удобного способа работы со станками была доработана многими фирмами и усовершенствована. Такая компания, как Siemens, является последователем легендарных систем ЧПУ.

    Работа с листовым материалом

    При работе с листовым материалом требуются наиболее простые системы ЧПУ. Фрезерный станок по дереву может управляться от настольного компьютера. Но для контроля осей потребуется плата расширения. Стоимость последней невысока, диапазон цен начинается с 3 тысяч рублей.

    Каждый электрик должен знать:  Нужно соединить провода наушников, помогите пожалуйста срочно!

    Дешевизна конструкции и простота системы управления позволила многим пользоваться программами для ЧПУ-станков, которые имеются у многих в собственном гараже. Комплектующие заказывают через Интернет. Эту продукцию выбирают мебельные фабрики, мастерские. ЧПУ-система помогает получать оригинальные рисунки, разделывать листы с высокой точностью.

    Металлообработка

    Токарные и фрезерные станки для раскроя и обработки металла — это самая большая группа оборудования, построенная на базе ЧПУ. Пятиосевых систем движения инструмента оказывается вполне достаточно для получения самых сложных контуров детали. Остальные оси являются вспомогательными.

    При обработке металлов контролируется скорость реза, глубина врезания инструмента, износ кромок. Автоматически вносятся коррекции при отклонении значений от установленных. Программно реализуется дробление стружки для оптимального её отвода из зоны обработки.

    Подача охлаждающей жидкости осуществляется одновременно с врезанием в заготовку и заканчивается при отводе фрезы. Как минимум одна ось является вращающейся. В ней располагается сама деталь либо режущий инструмент.

    Основные узлы оборудования

    Общение оператора с машиной происходит через пульт управления. Вычислительные операции осуществляет плата с ЧПУ-процессором. На панели имеются разъёмы стандартных интерфейсов для загрузки и выгрузки программ, создания аварийных архивов.

    Проводная техника устанавливается на радиаторе охлаждения совместно с модулем ЧПУ и электрически связана с ним по шине. Устанавливаются стандартные интерфейсы типа RS232, RS432, USB, может монтироваться разъём для SD-карты.

    Жёсткий диск встраиваемого компьютера служит резервным местом для копирования оперативной памяти. В других случаях для этого используется флеш-карта. Чтобы обеспечивать высокую точность позиционирования, станки оснащаются современными серводвигателями со встроенными датчиками положения. Кроме того, добавляются ещё и линейные датчики с разрешением 0,01 микрона.

    Прежде чем понять принцип работы ЧПУ систем, для начала стоит почитать техническое описание автоматизированных систем. Подробно о принципе ЧПУ внутри статьи.

    Основы числового программного управления

    Для более четкого понимания всех возможных проблем, связанных с успешным применением данных, для выполнения механической обработки или резания с применением станков с ЧПУ, вам необходимо иметь представление о процессе и принципах числового программного управления. Надеемся, что этот небольшой справочный материал поможет вам понять принцип работы станков с ЧПУ.

    Для начала — несколько определений

    ЧПУ — Числовое Программное Управление. Принцип ЧПУ заключается в получении оцифрованных данных, после чего компьютер или САМ-программа обеспечивает управление, автоматизацию и мониторинг движений элементов машины. В роли машины может выступать токарный или фрезерный станок , роутер, сварочный автомат, шлифовальный станок, установка лазерной или водоструйной резки, листоштамповочный автомат, робот либо оборудование других типов. На крупногабаритных промышленных станках в качестве встроенного устройства управления обычно выступает компьютер. Но на большинстве станков любительского уровня или некоторых модернизированных моделях устройством управления может являться отдельный персональный компьютер. Контроллер ЧПУ функционирует совместно с электродвигателями и Настольный ЧПУ станок бывает нескольких разновидностей, предназначенных для любителей/макетчиков/моделистов. Такие станки имеют меньшую массу и уровень прочности, точности обработки и скорости работы и, кроме того, они дешевле своих промышленных аналогов, но при этом могут хорошо справляться с механической обработкой различных предметов, изготовленных из мягких материалов (пластик, пенопласт, воск). Работа некоторых настольных станков с ЧПУ может во многом напоминать работу принтера. Другие же имеют собственную замкнутую систему управления или даже встроенную специализированную CAM-программу. Некоторые модели также могут принимать данные в виде стандартного g-кода. Существуют промышленные станки настольного типа, предназначенные для выполнения мелких работ, требующих особой точности обработки, оснащенные специализированными устройствами числового программного управления.

    CAM — автоматизированная механическая обработка или автоматизированное производство. Данный термин относится к применению различных пакетов ПО для управления траекторией движения режущего инструмента и генерации управляющей программы для работы станков с ЧПУ, основанных на использовании данных, получаемых путем компьютерного 3D-моделирования (CAD-файлы). В случаях когда два описанных понятия используются вместе, обычно применяется сокращение CAD/CAM.

    Примечание: CAM-программа фактически не управляет станком с ЧПУ, а только создает программный код, которому следует станок.

    Также это не автоматическая операция, которая импортирует 3D-модель и генерирует корректную управляющую программу. CAM-программирование, как и 3D-моделирование, требует наличия определенных знаний и опыта использования ПО такого типа, разработки технологий механической обработки, а также знаний о том, какие виды инструментов и технологических операций необходимо применять в той или иной ситуации для достижения наилучших результатов. Существует ряд несложных программ, позволяющих начинающим пользователям начать работать с ними без особых затруднений. Но есть и более сложные версии, которые требуют вложений времени и финансов для достижения максимальной эффективности их использования.

    Управляющая программа — особый относительно простой машинный язык, который может понимать и исполнять станок с ЧПУ. Чтобы понимать принцип работы ЧПУ, очень важно понимать как подобная система управляется. Такие машинные языки изначально разрабатывались для непосредственного программирования обработки деталей путем ввода команд с клавиатуры станка без использования CAM-программ. Они указывают станку, какие движения он должен совершать, одно за другим, также осуществляют контроль выполнения станком других его функций, таких как скорость подачи, частота вращения шпинделя, подача СОЖ. Наиболее распространенным языком подобного рода является G-код или ISO-код — простой буквенно-цифровой язык программирования, разработанный в начале 1970-х годов для первых станков с ЧПУ. Подробнее о G-кодах в статье «Описание G»

    Постпроцессор. В то время как g-код рассматривается в качестве стандартного машинного языка для станков с ЧПУ, любой производитель может изменять отдельные его части, такие как использование дополнительных функций, создавая ситуации, при которых g-код, разработанный для одного станка, может не работать для другого. Существует также множество производителей станков, разработавших собственные языки программирования. В связи с этим, для перевода данных траекторий движения инструмента, рассчитанных внутри CAM-программы, в особый код управляющей программы с тем, чтобы станок с ЧПУ мог понимать эти данные, существует связующее программное обеспечение, называемое постпроцессором. Постпроцессор, единожды сконфигурированный должным образом, генерирует соответствующий код для выбранного станка, который, по крайней мере теоретически, позволяет управлять любым станком с помощью любой CAM-программы. Принцип работы ЧПУ станков позволяет поставлять постпроцессоры вместе с CAM-программой бесплатно либо за отдельную плату.

    Общие сведения о станках с ЧПУ

    Станки с ЧПУ могут иметь несколько осей перемещения, а сами движения могут быть линейными либо поворотными. Многие станки совмещают в себе оба вида движения. Станки, предназначенные для резки, такие как установки лазерной или водоструйной резки, как правило, имеют всего две линейные оси — X и Y. Фрезерные станки обычно имеют как минимум три оси — X, Y и Z, а также могут иметь дополнительные поворотные оси. Фрезерный станок, имеющий пять осей перемещения — это станок с тремя линейными и двумя поворотными осями, позволяющий фрезе совершать технологические операции под углом 180º (в полусфере), а иногда и под большими углами. Также существуют установки лазерной резки, имеющие пять осей перемещения. Робот-манипулятор может иметь более пяти осей.

    Некоторые ограничения для станков с ЧПУ

    В зависимости от возраста и сложности конструкции, станки с ЧПУ могут иметь определенные ограничения в части функциональных возможностей систем управления и приводных систем. Большинство контроллеров ЧПУ понимают только движения строго по прямой линии или по кругу. Во многих станках перемещения по кругу ограничены главными плоскостями координатных осей XYZ. Перемещения по поворотной оси могут восприниматься контроллерами как линейные перемещения, только вместо расстояния будут использоваться градусы. Для создания перемещений по круговой дуге или линейных перемещений, проходящих под углом по отношению к главным координатным осям, две или более оси должны интерполироваться (их движения должны быть точно синхронизированы) между собой. Линейные и поворотные оси могут также одновременно интерполироваться. В случае использования станка, имеющего пять координатных осей, все пять осей должны быть идеально синхронизированы друг с другом, что является непростой задачей.

    Скорость, с которой контроллер станка способен получать и обрабатывать входящие данные, передавать команды на драйверы, а также отслеживать скорость и положение рабочих органов, является критически важным показателем. Более старые и бюджетные модели станков, очевидно, обладают менее высокими показателями, что во многом схоже с тем, насколько менее производительными являются старые модели компьютеров в части выполнения требуемых операций по сравнению с их более современными аналогами.

    Сначала интерпретируйте данные 3D-моделей и сплайнов

    Наиболее часто возникающая проблема заключается в организации файлов и кода CAM-программы таким образом, чтобы станок, выполняющий обработку заготовок, работал с заложенными в него данными плавно и эффективно. Так как многие контроллеры ЧПУ понимают только формы дуги и прямой линии, любую другую геометрическую форму, которую невозможно описать в данном языке программирования, необходимо конвертировать в более применимую. Обычно конвертации подвергаются сплайны, то есть общие неоднородные рациональные B-сплайны, которые не являются дугами или линиями, а представляют собой трехмерные поверхности. Некоторые станки настольного типа также не способны воспринимать дуги окружности, поэтому все подобные фигуры необходимо конвертировать в полилинии.

    Сплайны могут быть разбиты на ряд линейных сегментов, касательных дуг или их сочетание. Вы можете представить себе первый вариант в виде серии хорд на вашем сплайне, касающихся его концами и имеющих определенное отклонение в середине. Другим способом конвертации является преобразование вашего сплайна в полилинию. Чем меньше сегментов вы используете в процессе преобразования сплайна, тем грубее будет аппроксимация, а результат преобразования будет состоять из отрезков большего размера. Использование более мелкого масштаба сглаживает аппроксимацию, но при этом значительно увеличивается и количество сегментов. Представьте себе, что серия дуг могла бы сгладить ваш сплайн в пределах допустимых значений с использованием небольшого количества длинных отрезков. Данный факт является главной причиной того, что преобразование сплайнов в дуги предпочтительнее, нежели преобразование в полилинии, особенно в если вы работаете на станках старых моделей. С более современными моделями станков в этом плане возникает меньше проблем.

    Представьте себе поверхности с тем же уровнем аппроксимации сплайнов, только многократно увеличенные и с разрывом между ними (обычно называемым перемещением инструмента между проходами). Обычно поверхности создаются с применением только линейных сегментов, но бывают ситуации, при которых могут также использоваться дуги или сочетания прямых линий и дуг.

    Размер и количество сегментов определяются требуемым уровнем точности обработки, а также применяемым методом, и напрямую влияют на качество обработки. Слишком большое количество коротких сегментов может привести к сбою в работе станков старых моделей, а слишком малое — к появлению на заготовке слишком больших граней. CAM-программы обычно применяются в тех случаях, когда необходим подобный уровень аппроксимации. У опытных операторов станков, понимающих требования к детали и знающих, какие операции способен выполнить станок, обычно не возникает с этим проблем. Но некоторые CAM-программы не способны выполнить обработку тех или иных сплайнов или определенных типов поверхностей, поэтому вам может понадобиться предварительное конвертирование данных в CAD-программе (Rhino) перед использованием CAM-программы. Процесс перевода данных из CAD-программы в CAM-программу (посредством использования нейтрального файлового формата — IGES, DXF и т.д.) также может вызвать определенные проблемы, в зависимости от качества функций импорта/экспорта самих программ.

    Общепринятые термины, используемые при описании станков с ЧПУ

    Поняв принцип ЧПУ, следует убедиться, что вы имеете представление об основных терминах, часто использующихся в станкооборудовании. Следует понимать, что ваш проект может быть:

    2-осевым, в случае если резание производится в одной плоскости. В данном случае инструмент не имеет возможности двигаться по плоскости оси Z (вертикальной). В целом координатные оси X и Y могут быть одновременно интерполированы между собой для формирования линий и дуг окружностей.

    2,5-осевым, если резание производится в плоскостях, параллельных главной плоскости, но необязательно на той же высоте и глубине. При этом для изменения уровня инструмент может двигаться по плоскости оси Z (вертикальной), но не одновременно с перемещением по осям X и Y. Исключение могут составлять случаи, когда траектория движения инструмента может интерполироваться спирально, то есть описывать круг в плоскостях X и Y, одновременно двигаясь по оси Z для создания винтовой линии (например, при резьбофрезеровании).

    Разновидностью вышеуказанного способа интерполяции является способ, при котором станок может интерполировать движение в двух любых плоскостях одновременно, но не в трех. Данный способ интерполяции позволяет проводить обработку ограниченного количества разновидностей трехмерных объектов, напрмиер, путем фрезерования в плоскостях XZ или YZ, но является более ограниченным по сравнению с трехосевой интерполяцией.

    3-осевым , если для необходимой технологической операции требуется одновременное управляемое перемещение режущего инструмента в трех координатных осях — X,Y,Z, что необходимо для обработки большинства поверхностей произвольной формы.

    4-осевым, если он включает в себя перемещение по трем осям, указанным выше, плюс перемещение по одной поворотной оси. Тут есть два варианта: одновременная 4-осевая интерполяция (полноценная 4-я ось) либо только позиционирование по 4-й оси, при котором 4-я ось может менять положение заготовки, перемещая ее между тремя координатными осями, фактически не перемещаясь в процессе обработки. 5-осевым, если он включает в себя перемещение по трем осям, указанным выше, плюс перемещение по двум поворотным осям. Кроме полноценной обработки в 5 осях (5 осей перемещаются одновременно), в вашем распоряжении часто есть вариант обработки с применением 3-х осей плюс еще 2 дополнительные оси или 3-осевая механическая обработка + позиционирование с помощью 2-х независимых осей. Также в редких случаях есть вариант обработки с применением 4-х осей плюс одной дополнительной оси или непрерывная механическая обработка по 4 осям + позиционирование по 5-й оси. Звучит запутанно, не правда ли?

    ШАГ 1. Подключение контроллера.

    1.1 Произвести подключение контролера шаговых двигателей к станку, согласно имеющейся маркировки на проводах и табличке над клеммниками контроллера. Рисунок 1.

    Рисунок 1.подключение контролера шаговых двигателей

    1.2 Подключить контроллер шаговых двигателей к компьютеру.

    Рисунок 2 -подключение контроллера шаговых двигателей к LPT- порту компьютера.

    1.3 При использовании переходника USB-LPT произвести подключение согласно рисункам 3 и 4.

    ШАГ 2. Подготовка шпинделя .

    Если станок со шпинделем жидкостного охлаждения, произведите сборку системы охлаждения, согласно приложения в руководстве по эксплуатации. Скачать руководство по эксплуатации можно со странички товара на нашем сайте.

    Если, используется коллекторный шпиндель воздушного охлаждения Kress 1050FME, установите сетевой провод.

    ШАГ 3. Подготовка ПК .

    3 .1 ВНИМАНИЕ ВАЖНО! Для управления станком непосредственно через LPT порт нельзя использовать компьютеры с многоядерными процессорами INTEL .

    (системные платы Intell имеют в себе средство изменения рабочей частоты процессора при изменении нагрузки на него. При этом все порты тоже испытывают флуктуацию по частоте — как результат, сигнал «плавает», то есть при работе Mach3 происходит изменение частоты сигнала step, что приводит к неравномерности движения рабочего органа станка- дерганью, ударам и даже остановкам)

    Для проверки LPT порта 3-4 раза производим переезд в режиме ручного перемещения (с использованием клавиш ← → и↓) на полную длину рабочего стола. Движение должно происходить плавно с постоянной скоростью, без дерганья, рывков, ударов и остановок. Если при перемещении происходит локальные изменения скорости движения и/или остановка в процессе движения портала, то для проверки необходимо в пункте меню Config →MotorTuning изменить параметр Velocity уменьшив его в 10 раз. Если изменения скорости движения уменьшатся, а остановки прекратятся, но при этом удары и толчки сохранятся, то данная материнская плата не пригодна для управления станком через LPT-порт.

    Для работы непосредственно через LPT порт подходят:

    А) только компьютеры с одноядерными процесорами INTEL и любые компьютеры с процессором AMD и только 32 разрядные версии операционной системы windows

    Б) любые компьютеры с операционной системой LinuxCNC.

    3.2 При работе со станком через USB переходник или Ethernet переходник можно использовать любые компьютеры и любые версии операционной системы Windows. USB переходник и должны быть только специализированные, с драйвером под программу Mach3.

    3.3 Компьютер для управления станком должен быть отдельно выделенный, без лишних программ. Не устанавливать антивирусы! Оперативной памяти не менее 1ГГб, если видеокарта встроенная то не менее 1,5Гб, процессор от 1ГГц. Перед установкой mach3 переустановите операционную систему , обязательно установите все необходимые системе драйвера , отключите брандмауэр , отключите гашение экрана в настройках электропитания , отключите экранные заставки , отключите файлы подкачки с жестких дисков .

    Отключение антивирусов и брандмауэра в Windows XP:

    3.3.1 Зайдите в Меню пуск, откройте Панель управления.

    3.3.2 Откройте Центр обеспечение Безопасности.

    3.3.3 Щелкните по Брандмауэр Windows.

    3.3.4 В появившемся окне переставьте переключатель на Выключить (не рекомендуется) и нажимаем ОК.

    3.3.5 Для отключения предупреждений Windows о безопасности нажмите в окне Центра Обеспечения безопасности windows по ссылке Изменить Способ Оповещения Центром обеспечения безопасности. В появившемся окне уберите все галочки после чего нажмите ОК.

    Отключение антивирусов и брандмауэра в Windows 7:

    3.3.6 Для отключения брандмауэра его необходимо открыть, что бы его найти воспользуйтесь поиском Windows 7. Откройте меню Пуск и напишите «бра» и выберите простой брандмауэр Windows.

    3.3.7 В левой части окошка выбирите Включение и отключение брандмауэра Windows.

    3.3.8 В открывшемся окошке вы можете отключить брандмауэр для всех сетей сразу.

    3.3.9 После, необходимо выключить службу Брандмауэр Windows. Воспользуйтесь поиском из меню Пуск.

    3.3.10 В открывшемся окошке найдите службу Брандмауэр Windows и дважды кликните по ней левой кнопкой мышки. В открывшемся окошке Свойства нажмите Остановить. Затем в поле Тип запуска из выпадающего меню выберите Отключена. Нажмите ОК.

    3.3.11 Отредактируйте конфигурацию системы. Откройте Пуск и напишите «кон». Выберите Конфигурация системы. В открывшемся окошке перейдите на вкладку Службы, найдите Брандмауэр Windows. Снимите галочку и нажмите ОК.

    ШАГ 4. Установка, проверка корректности работы программы, генерирующей G-код.

    4.1 Установите на компьютере Mach3.

    4.2 Скопируйте в папку Mach 3 расположенную на диске С: профиль станка (файл настроек), присланный по электронной почте, переданный на носителе информации (флешке) или скачанный с сайта.

    4.3 Если используется переходник USB-LPT, произведите установку драйверов и плагина согласно статье Подключение контроллера с использованием переходника USB-LPT или руководству по эксплуатации на переходник.

    4.4 При использовании платы расширения PCI-LPT, порядок действий также описан в статье «Подключение контроллера с использованием карты PCI LPT».

    4.5 Для запуска программы потребуется ярлык «Mach3 Loader», остальные ярлыки можно удалить.

    4.6 В открывшемся окне рисунок 7 выберите профиль станка и жмем OK.

    4.7 Выберите источник управления, рисунок 8 при работе с LPT портом или рисунок 9 при работе с переходником USB-LPT.

    4.8 Загружается главное окно программы Mach3, Рисунок 10.

    4.9 Включите питание контроллера шаговых двигателей. В главном окне программы MACH3 нажимаем клавишу «Cброс» (Reset) (1), чтобы рамка вокруг неё не мигала и светилась зеленым цветом, рисунок 10. В этот момент шаговые двигатели должны зафиксировать свое положение (послышится щелчок) и слегка зашуметь.
    Теперь нажимая на клавиатуре стрелки (влево вправо вверх вниз) наблюдаем на станке перемещения по осям, а на экране изменение координат в полях X Y слева вверху, для перемещения по оси Z кнопки PageUP, PageDown. Также можно вызвать экранный пульт управления перемещением, клавишей «Tab» на клавиатуре вашего компьютера, рисунок 11.

    4.10 Если перемещения не происходит, то п роверьте корректность установки программы и драйверов.

    4.10.1 Если используется подключение через LPT- порт, то откройте «Панель управления» — «Диспетчер устройств»- находим Mach3 X Pulsing Engines-свойства. Корректно установленный драйвер — рисунок 12.

    4.10.2 Если используется переходник USB-LPT, то откройте «Панель управления» — «Диспетчер устройств»- найдите CNCDevicesClass-свойства. Корректная установка драйверов и правильное обнаружение операционной системой адаптера -рисунок 13.

    4.11 При несовпадение направления перемещения портала станка с направлением стрелок клавиатуры, например при нажатии клавиши «←» инструмент движется в право, изменить направление можно в меню Сonfig->Port and pins->Motor outputs установив галочку в поле DirLowActive напротив нужной оси, рисунок 12.

    ШАГ 5 Проверка правильности перемещения рабочего инструмента.

    Для проверки правильности перемещения рабочего инструмента, необходимо положить на стол линейку и, управляя перемещением с клавиатуры стрелками, проконтролировать совпадение пройденного расстояния по линейке с показаниями в окнах отображения координат MACH3.

    5.1 Установите единицами измерения «по умолчанию» -миллиметры: открываем Config->Select Native Units. Mach3 выведет на экран окно с предупреждением о необходимости совпадения единиц измерения установленных в программе и используемых в G-коде. Нажимаем ОК и переходим к окну установки единиц измерения, рисунок 14.

    5.2 Для вступления в силу настроек перезагрузите программу. Если далее не планируется использовать при создании управляющих G-кодов дюймовую систему измерения, оставляем метрическую систему для постоянного использования.

    Ниже приведён пример проверки настроек для оси Y. Аналогично следует проверить все оси.

    5.3 Перемещаем портал и каретку станка до упора на себя и влево -рисунок 15.

    5.4 Обнуляем показания цифровых полей с координатами положения портала -нажатием кнопок Zero X, Zero Y, Zero Z, устанавливаем линейку по оси Y, рисунок 16.

    5.5 Клавишей перемещаем портал на 100 мм по координате цифрового поля. Далее сверяем с фактическим перемещением по линейке — рисунок 17.

    5.6 В случае несовпадения реального перемещения с координатами в Mach3, проводим калибровку для соответствующей оси перемещения, как описано в документации программы Mach3.

    5.7 Закрываем Mach3 и отключаем питание станка.

    ШАГ 6. Установка фрезы.

    6.1 У станков с использованием шпинделей Kress для установки фрезы используется ключ 17. При установке производится удержание вала нажатием кнопки фиксатора, рисунок 18.

    Вращением гайки против часовой стрелки отпускаем цангу, вставляем фрезу и производим зажим хвостовика фрезы в цанге вращением гайки по часовой стрелке. Установленная фреза — рисунок 19.

    6.2 Для станков с использованием шпинделей жидкостного охлаждения с цангой ER11 установка фрезы производится с использованием ключей на 13 и 17 рисунки 20..22. Для установки фрезы удерживаем вал шпинделя за лыску на валу ключём на отпускаем зажимную гайку цанги, вставляем фрезу, и производим зажим хвостовика фрезы.

    ШАГ 7. Установка заготовки.

    7.1 Установка заготовки на рабочий стол станка из профиля с Т-пазом осуществляется металлическими прижимами -рисунок 23.

    7.2 При использовании станка с фанерным столом или жертвенным столом из фанеры:

    7.2.1 наиболее простой вариант крепления с помощью винтов «саморезов» рисунок 24.

    Рисунок 25. Мебельная резьбовая втулка

    Рисунок 26. Установленные резьбовые втулки по углам стола

    Рисунок 27. Установленные прижимы

    Рисунок 28. Закрепленная прижимами заготовка

    Рисунок 29. Заготовка закрепленная стандартными стальными станочными прижимами

    Рисунок 30 Установка дополнительных планок для крепления заготовок любого размера в любом месте стола

    ШАГ 8. Установка рабочего органа станка в начальную точку резки.

    8.1 Включаем питание станка, запускаем Mach3 и выводим каретку станка в начальную точку резки (как правило это левый нижний угол (вы стоите лицом к передней части станка)) с использованием стрелок на клавиатуре и кнопок “PageUP” и “PageDown”(или виртуальным пультом управления -вызывается кнопкой Tab).
    Начальная точка резки определяется при создании проекта -например новой модели в ArtCam, рисунок 31.

    8.2 Если имеется в наличии только G-код, то начальную точку можно определить в окне Mach3, загрузив исполняемый файл: File→Load G-Kode. Обнуляем показания цифровых полей с координатами положения портала -нажатием кнопок Zero X, Zero Y, Zero Z курсор в окне визуализации устанавливается в начальную точку.

    8.3 Управляя вертикальным перемещением шпинделя касаемся нижним торцом фрезы материала заготовки.
    Нажатием кнопок Zero X, Zero Y, Zero Z обнуляем программные координаты, рисунки 33, 34.

    8.4 Нажатием кнопки “PgUp” поднимаем шпиндель на безопасную высоту -10…15мм над заготовкой.

    ШАГ 9. Загружаем G-код: (File→Load G-Kode). Станок готов к запуску.

    ШАГ 10. Производим запуск шпинделя .

    10.1 При использовании шпинделя воздушного охлаждения Kress выставляем регулятор оборотов на нужную позицию- рисунок 35.

    Обороты вала шпинделя соответствующие цифрам движка регулятора указаны в руководстве по эксплуатации на шпиндель или на шильде наклеенном на корпус шпинделя, рисунки 36 и 37.

    Рисунок 37 -шильд наклеенный на корпус Kress 1050FME1.

    10.2 Нажатием кнопки осуществляем запуск шпинделя, рисунок 38.

    10.2 При работе со шпинделем жидкостного охлаждения рисунок 39:
    — запускаем систему жидкостного охлаждения шпинделя (включаем насос).
    — включаем частотный преобразователь.
    — вращением потенциометра на лицевой панели частотного преобразователя устанавливаем необходимые обороты вращения шпинделя.
    — нажатием кнопки RUN производим запуск шпинделя.

    11.Активация концевых датчиков

    Если концевые датчики на станке установлены, но не активированы, то для включение концевых датчиков в меню программы Mach3

    config->Port and Pins->Input Signal установить галочки как показано на рисунках 41 и 42

    Рисунок 41. Активация концевых выключателей для станков с установленными индуктивными датчиками

    Рисунок 42. Активация концевых выключателей для станков с установленными механическими датчиками

    Примечание.
    Если на станке установлены концевые выключатели баз, то поиск нулевой точки машинных координат осуществляется нажатием кнопки “Ref All Home”, рисунок 43.

    Если концевых выключателей нет, то при нажатии на кнопку “Ref All Home”, происходит обнуление машинных координат.
    Ели концевые выключатели отсутствуют, то настройки для входов “Home” представлены на рисунке 44.

    При работе с адаптером Моделист USB-LPT при отсутствии концевых выключателей порядок обнуления машинных координат выглядит следующим образом:
    -клавишами ← и ↓ установите каретку станка в левый нижний угол.
    — клавишей и PgUp поднимите шпиндель вверх до упора.
    — нажмите кнопку “RESET” на главном экране Mach3.
    — извлеките шнур переходника из USB-порта компьютера (не забудьте перед извлечением отключить устройство в системе, так же как обычную флешку)
    — на главном экране Mach3 переключитесь на отображение машинных координат, для чего нажмите кнопку “Machine Coord’s’, о том что вы находитесь в режиме отображения машинных координат будет сигнализировать красная рамка вокруг кнопки, рисунок 45.

    Подключите шнур адаптера к USB-порту и подождите 10-15 секунд, пока Windows обнаружит адаптер.
    -нажмите кнопку “RESET” и машинные координаты обнулятся.
    — перейдите в режим отображения программных координат, для чего ещё раз нажмите кнопку “Machine Coord’s’, красная рамка вокруг кнопки должна погаснуть.

    Металлообработка: особенности станка с ЧПУ, его виды, основные элементы оборудования

    Современный технологический прогресс позволил усовершенствовать металлообрабатывающую отрасль, а также уменьшить риски для человека при работе с металлом.

    Устройство станка с ЧПУ: его основные узлы, классификация, особенности

    Использование числового программного управления на станках по обработке металла, дает возможность изготавливать детали в соответствии к заданным размерам. Кроме того, эта система уменьшает количество брака в готовом изделии, а также дает хорошее качество на выходе.

    Устройство станка с ЧПУ и его основные узлы представляют собой металлообрабатывающий станок, на котором установлено числовое программное управление, с помощью которого минимизируется вмешательство человека в работу машины при изготовлении детали.

    Виды и классификация станков с ЧПУ

    Существует большое количество агрегатов с ЧПУ, которым отделена определенная роль.

    Функции и характер работ

    Станки делятся на виды согласно своим функциям и характера работ:

    • Токарные. Предназначены для обработки заготовок, путем вращения и резания металла;
    • Фрезерные станки. Используются для обработки плоских и фасонных поверхностей, деревянных, металлических, а также иных заготовок;
    • Сверлильные. Служит для сверления глухих и сквозных отверстий в цельном изделии, закручивании или раскручивания и так далее;
    • Шлифовальные. Используют для шлифовки изделия;
    • Другие.

    Классификация механических устройств с числовым программным управлением происходит в зависимости от их качеств и характеристик, различие которых довольно существенно.

    Масса

    Исходя из массы, станок с ЧПУ может быть:

    • Легкий (вес до 1 т);
    • Средний (вес до 10т);
    • Тяжелый (вес до 100т);
    • Уникабельный (вес более 100т).

    Степень точности

    Агрегаты с числовым программным управлением обладают высокой жесткостью и точностью, что дает возможность обеспечить высокое качество обработки изделия. По степени точности металлообрабатывающие машины делятся:

    • Н – нормальной точности;
    • П – повышенной точности;
    • В – высокой точности;
    • А – особо высокой точности;
    • С – особо точные (мастер — станки).

    Уровень универсальности

    Область применения устройств, на которых применяется числовое программное управление довольно обширна. Они используются для изготовления, как единичных изделий, так и массового производства. Исходя из этого, можно выделить еще одну категорию классификации по уровню универсальности машины:

    • Универсальные. Они используются для изготовления небольших партий деталей или одной единицы продукта, имеют широкое распространение на небольших предприятиях;
    • Специализированные. Этот вид станков используют на специализированных предприятиях, так как они изготавливают детали одного типа большими партиями;
    • Специальные. Эти станки производят одну деталь, как правило, используют для массового производства.

    Расположение шпинделя

    Еще одной важной особенностью, по которой можно классифицировать металлообрабатывающие устройства – это расположение шпинделя. Оно бывает:

    • Горизонтальное;
    • Вертикальное;
    • Наклонное;
    • Комбинированное.

    Приведенная классификация не является исчерпывающей, приборы классифицируют еще по типоразмерам, назначением, но представленное описание даст вам оптимальное представление о разновидностях станков с чпу.

    Основные узлы станков с ЧПУ

    Вся конструкция оборудования в основном состоит из узлов, задача которых выполнять положенную на них определенную функцию. В зависимости от ее вида возможно наличие дополнительных узлов, что обеспечивает индивидуальные особенности агрегата.

    На примере токарного станка, рассмотрим, какими основными узлами обладают машины с ЧПУ. Основной задачей токарных станков является обработка заготовок, путем вращения и резания металла.

    Среди основных узлов токарного станка с ЧПУ выделяют:

    1. Основание.
    2. Станина.
    3. Шпиндельная бабка.
    4. Резцовая головка автомат.
    5. Приводы передач.
    6. Задняя бабка.
    7. Датчик нарезания резьбы.
    8. Панель управления.

    Следует подробней поговорить об этих узлах токарного станка.

    • Основание. Представляет собой литую прямоугольную форму, которая в паре с сатиной обеспечивает крепкую конструкцию и виброустойчивость;
    • Станина. Выступает главной деталью токарного станка. Она соединяет остальные узлы и механизмы устройства. Состоит из двух стенок, соединение между которыми осуществляется благодаря поперечным элементам, обеспечивающих жесткость и крепость. На сатину крепятся бабка, коробка передач, а также специальные направляющие, которые в зависимости от вида металлообрабатывающего устройства, перемещают заднюю бабку и суппорт с фартуком;
    • Шпиндельная бабка. В ней находится шпиндельный подшипниковый узел, который фиксирует и вращает установленную заготовку;
    • Резцовая головка автомат. Последовательно устанавливает режущие инструменты в рабочее положение;
    • Приводы подач (главного движения, продольной и поперечной подачи). Электромоторы преобразующие вращательное перемещению ротора в линейное движение узлов с помощью шарико-винтовых пар;
    • Задняя бабка. Ее задача, удерживать в центрах обрабатываемой заготовки;
    • Датчик нарезания резьбы. Специальный датчик, установлен на шпиндельной бабке. Он предназначен для нарезания резьбы;
    • Панель управления. В токарный станок встроено несколько панелей, для комфортной работы и контролирования процесса изготовления деталей. Они размещены как в рабочей зоне, так и иных системах ЧПУ.

    В сравнении с токарным станком другие металлообрабатывающие машины могут иметь другую комплектацию.

    Знание устройства станка с ЧПУ и его основных узлов, позволит быстро включиться в работу с агрегатом, а в случае чего, устранить неполадки, или объяснить мастеру суть проблемы.

    Особенности металлорежущих станков

    Металлорежущие станки представляют собой машины для обработки заготовок в точно заданный размер удалением слоя припуска с образованием стружки.

    Для работы в основном используется абразивный либо лезвийный режущий инструмент. Станки также выполняют выглаживание поверхности, обкатку роликами и другие операции.

    Металлообрабатывающее оборудование позволяет вести обработку металлических и неметаллических материалов.

    Например, капрона, текстолита, различных видов пластиков и дерева, но для обработки твердых материалов (керамики или стекло) предназначены специальные станки.

    Основное деление массива металлорежущих станков происходит по технологическому способу обработки, способу перемещения механизмов и виду применяемого инструмента.

    Различают 10 групп станков:

    • Первая группа – токарные агрегаты. Они составляют порядка 30% станочного парка. Используются для обработки точением деталей вращения. Движением резания для группы является вращение заготовки.
    • Вторая – сверлильные и расточные агрегаты. Их доля составляет 20%, используются для обработки отверстий различными способами. Вращение инструмента и его подача при неподвижной детали являются главными движениями резания. У расточных аппаратов добавляется ход стола с деталью.
    • Третья – шлифовальные, полировальные, заточные и доводочные аппараты. Составляют 20% от общего числа подобного оборудования. Работают абразивным инструментом. В полировальных и доводочных агрегатах применяется абразивная паста и порошок, шлифовальные ленты и бруски.
    • Четвертая – аппараты для физико-химической обработки и комбинированные. К этой группе относятся, например, агрегат для электроэрозионной обработки.
    • Пятая группа – зубообрабатывающие и резьбообрабатывающие аппараты. Составляют 6% всего парка. Используются для нарезания разных видов зубчатых колес и резьбы. Они выполняют черновые и финишные операции.
    • Шестая – фрезерные аппараты. Насчитывают 15% от общего числа оборудования. Рабочим инструментом являются многолезвийные фрезы разных конструкций.
    • Седьмая группа – строгальные, протяжные, долбежные станки. На их долю приходится 4% станков. Имеют прямолинейное рабочее движение стола. У долбежных станков главное движение – возвратно-поступательное перемещение резца. Протяжные станки используются для обработки отверстий и пазов с помощью многолезвийного инструмента – протяжки.
    • Восьмая – разрезные станки. Служат для разрезания заготовок типа круга, уголков, прутков.
    • Девятая группа – разные станки. В эту группу входят станки для балансировки, правки и других операций.
    • Десятая – резервная. Многоцелевые станки вроде оборудования с ЧПУ и обрабатывающих центров позволяют реализовывать ряд способов механообработки. В соответствии с видом выполняемой операции включаются в одну из станочных групп.

    Классификация по типам

    В пределах каждой из 10 групп происходит разделение на 10 типов в соответствии со следующими критериями:

    • компоновка базовых узлов;
    • способ обработки и используемого инструмента;
    • уровень автоматизации и прочих технологических особенностей.

    К примеру, в группу шлифовальных и полировальных аппаратов входят кругло и плоскошлифовальные станки, продольно-шлифовальные и притирочные. В группе строгальных и долбежных станков – продольно-строгальные одностоечные, поперечно-строгальные и долбежные.

    В пределах одного типа происходит деление на 10 типоразмеров.

    Классификация металлорежущих станков по совокупности технологических параметров наглядно представлена в таблице.

    Классификация металлорежущих станков по классу точности

    Весь парк станков для механической обработки поделен на 10 групп. В каждой группе присутствует деление из 10 типов, а каждый еще поделен на 10 типоразмеров.

    Критерием группы является общность технологического способа обработки либо сходство назначения. Например, строгальные и протяжные, зубообрабатывающие и резьбообрабатывающие.

    Каждый тип объединяет степень универсальности, количество основных рабочих органов, назначение, конструктивное исполнение. Внутри типа оборудование различается по шести техническим параметрам.

    В резервную группу 0 относят станки, работающие с применением новейших технологических методов.

    Систематизация по базовому размеру

    Стандартами регламентируются базовые параметры оборудования, характерные этому типу. Для группы токарных и круглошлифовальных станков это максимальный размер детали под обработку.

    У фрезерных станков основным считается габарит рабочего стола для установки заготовок и оснастки. Для поперечно-строгальных станков базовым является величина хода ползуна.

    Совокупность станков для одного вида обработки, с похожей кинематикой, устройством, но отличающихся главными размерами, называется размерным рядом. Например, согласно нормативам у зубофрезерных станков различают 12 типоразмеров с максимальным диаметром заготовки для обработки от 80 мм до 12,5 тыс. мм.

    Дополнительная классификация

    Существует дополнительное разделение станков:

    • по степени универсальности металлорежущее оборудование бывает универсальное и стандартное;
    • для выполнения многих видов операций, обработки широкой номенклатуры изделий по размерам и форме: широкого назначения и узкопрофильное;
    • для конкретного вида работ по изготовлению разных деталей существует специализированное оборудование;
    • для четко указанных работ – предназначено для обработки одинаковых по конфигурации деталей, но с отличающимися размерами, например, коленвалов, корпусов редукторов.
    • специальное – выполняет определенные операции с четко заданным видом детали по форме и незначительным колебанием размеров.

    Универсальное станочное оборудование применяется в мелкосерийном производстве. Специализированные и специальные станки с высоким уровнем автоматизации востребованы в крупносерийном и массовом производствах, где изготавливаются крупные партии деталей.

    Градация по весу

    В соответствии с весом и размерами обрабатываемых заготовок станки делятся на следующие виды:

    • особо тяжелые или уникальные (вес более 100 тонн);
    • тяжелые (30–100 тонн);
    • крупные (16–30 тонн);
    • средние (1–10 тонн);
    • легкие (до 1 тонны).

    Разделение по классам точности

    Все разнообразие металлообрабатывающих станков подразделяется по классу точности:

    • нормальная – H;
    • повышенная – П;
    • высокая – B;
    • особо высокая – A;
    • особо точная (мастер-станки) – C.

    Основная часть станочного оборудования предусматривает обработку по 6–9 квалитету точности. Станки, относящиеся к классу A, B и C имеют повышенные требования к условиям эксплуатации, это связано с их очень высокой точностью. Для их установки необходимы отдельные помещения с неизменной температурой и влажностью.

    Металлорежущие станки не могут существовать без маркировки. Буква обозначения класса точности, кроме станков нормальной точности H, добавляется в маркировку. Например, 16К20П.

    По степени автоматизации

    Часто металлорежущие станки производят с дополнительной функцией автоматизации. В зависимости от степени автоматизации станки разделяются на такие виды:

    • ручное управление;
    • полуавтоматы, когда цикл обработки ведется автоматически, а оператор меняет заготовку и включает станок;
    • автоматы, где непрерывно происходит множество рабочих циклов автоматически, без оператора, включая замену инструмента, загрузку и выгрузку деталей;
    • станки с ЧПУ, они производятся с функцией быстрого изменения режимов работы корректировкой программы.

    Современные металлорежущие станки производят с дополнительным оснащением, это ускоряет процесс обработки материала. Увеличить степень автоматизации в мелкосерийном производстве мастера могут при условии большего использования станков с числовым (цикловым) программным управлением (ЧПУ). В их маркировке присутствует буква Ф (Ц).

    Цифровое обозначение за буквой указывает на тип управляющей системы:

    • цифровая индикация Ф1 – система позволяет делать предварительный набор координат, цифровая индикация отображает в числовом выражении настоящее положение и перемещение подвижного узла станка;
    • прямоугольная или позиционная система Ф2;
    • контурная Ф3;
    • универсальная Ф4 – объединяет контурную и позиционную обработку детали.

    Принцип обозначения

    Модели металлорежущих станков имеют оригинальное обозначение, в виде сочетания букв и цифр.

    Установлен следующий порядок маркировки:

    • начальная цифра – это принадлежность станка к группе;
    • следующая составляющая показывает его тип;
    • третья и четвертая обозначают характерный параметр (размер заготовки, габарит стола).

    Буква за первой или второй цифрой указывает на модернизацию по основным параметрам. Любая буква, завершающая маркировку кроме A, C, B, H, M, П и Ф показывает проведенную модификацию с изменением конструкции узлов.

    Буквы A, C, П, B являются обозначением класса точности. При появлении у станка инструментального магазина добавляется буква М.

    Современные типы металлорежущих станков бывают разные. Для обозначения станков с ЧПУ используется Ф, ну а где есть револьверная головка, присутствует в конце маркировки Р.

    Такие металлорежущие станки пользуются огромной популярностью у мастеров.

    К примеру, обозначение 2Н135 говорит о том, что это вертикально-сверлильный станок второй группы, 1 типа с модернизацией Н. Предельный диаметр устанавливаемого сверла 35 мм.

    Чпу станки: особенности устройства и работы

    Повышение спроса на мелкосерийное изготовление деталей различной сложности налагает особые требования на токарное оборудование. Всё большую популярность в России обретает металлообработка ЧПУ, так как она позволяет ускорить производственный процесс, минимизировать количество брака и соблюсти предельную точность даже при изготовлении мелких деталей.

    Под аббревиатурой ЧПУ скрывается формулировка «числовое программное управление». Это ни что иное, как компьютерная система, управляющая приводами станка и контролирующая процесс изготовления детали на всех этапах.

    Такая система может самостоятельно передвигать суппорт, направлять головку, регулировать скорость вращения шпинделя и даже самостоятельно менять рабочий инструмент. Такой подход позволяет существенно ускорить работу, а также минимизировать участие человека в процессе. Такой станок может быть использован как для изготовления одной сложной детали, так и в серийном производстве.

    В этом сегменте он конкурирует с токарными полуавтоматами, постепенно вытесняя их за счёт простоты обслуживания и лучшего качества металлообработки.

    Изготовление деталей на станках с ЧПУ включает в себя множество видов обработки, начиная от точения и заканчивая шлифовкой. Все эти процедуры выполняются без участия оператора, равно как и переключение между ними.

    Повышенная точность при изготовлении достигается не только числовым программным управлением, но и жёсткостью самого станка. Все кинематические цепи оборудования производитель старается сделать как можно более короткими. Все приводы отличаются высочайшим быстродействием.

    Очень удобно организована загрузка в станок заготовок и извлечение из него готовых деталей. Это позволяет использовать удобные погрузочные манипуляторы.

    Особенности конструкции

    Изготовление ЧПУ станков имеет множество особенностей в сравнении с производством обычного токарного оборудования.

    Первое, чему уделяют внимание производители — это ликвидация просветов в передаточных механизмах всех приводов. Именно это позволяет добиться высокой точности проводимых станком манипуляций.

    Каким бы совершенным не был ЧПУ модуль станка, при наличии зазоров в передаточных механизмах он не сможет изготовить деталь сложной конфигурации.

    Уменьшение тепловых деформаций — ещё одна важная задача, стоящая перед производителем ЧПУ станков. С этой целью в работу приводов подач вносится корректировка, зависящая от показателей температурных датчиков. Анализ температур и корректировка действий механизмов происходят «на лету» без каких-либо задержек в работе.

    С целью уменьшения влияния температурных погрешностей на процесс изготовления деталей, производители ЧПУ станков нередко оснащают их функцией предварительного прогрева. Это позволяет выйти оборудованию на оптимальный температурный режим и минимизировать вероятность допуска погрешности.

    Изготовление деталей на станках с ЧПУ требует очень жёсткой конструкции основания. Для этого станина и другие базовые элементы в подобных станках всегда дополняются рёбрами жёсткости.

    То же самое касается и подвижных элементов конструкции (салазок, суппортов). В качестве материала для изготовления базовых элементов выбирается искусственный гранит или полимерный бетон.

    Такой подход позволяет снизить вибрации и обеспечить повышенную точность работ.

    Снижение трения — ещё один фактор, позволяющий добиться высокой точности ЧПУ обработки. Производители станков стараются компоновать скользящие элементы в виде пары сталь + фторопласт.

    Направляющие с низкой силой трения позволяют снять часть нагрузки со следящего привода, повысить точность манипуляций и снизить износ. Наибольший эксплуатационный цикл имеют направляющие качения.

    Вне зависимости от скорости движения, коэффициент трения в их случае остаётся очень низким.

    Приводы и цифровые преобразователи

    Токарные работы ЧПУ требуют большого количества манипуляций. Они осуществляются небольшими электродвигателями, управляемыми отдельными цифровыми блоками, соединёнными с центральным процессорным модулем.

    В качественном оборудовании применяются синхронные вентильные двигатели с постоянным магнитом и тормозным механизмом. Доступны также модели с асинхронными электродвигателями. Они отличаются очень малым тепловыделением, высоким КПД, низким временем раскрутки и торможения, а также сниженным трением.

    Такой двигатель может работать в очень широком диапазоне скоростей, делая ЧПУ обработку очень быстрой и качественной.

    Шпиндели

    ЧПУ обработка требует наличия в станке жёстких, надёжных шпинделей. Кроме того, конструкция этих элементов очень усложняется из-за возложенных на них функций автоматического зажима рабочего инструмента и встроенных датчиков для диагностики.

    Опоры шпинделей

    Эти элементы также очень важны, так как отвечают за точность вращения шпинделей при динамично меняющихся условиях работы и постоянной вибрации.

    В них устанавливаются надёжные подшипники качения с увеличенным количеством шариков и предварительной обкаткой. В более дешёвых моделях могут быть применены подшипники скольжения.

    В более дорогих станках для ЧПУ обработки — особые аэростатические подшипники, в которых износ сводится к минимуму за счёт закачанного внутрь сжатого воздуха.

    Позиционирующий привод

    Этот привод отвечает за позиционирование рабочего инструмента, а потому должен отличаться предельно жёсткой фиксацией и очень плавным перемещением при любых скоростях.

    Головка револьвера

    При изготовлении деталей сложных конфигураций часто требуется задействовать несколько различных инструментов. Головка револьвера обеспечивает быструю и простую их смену. В одной головке может быть закреплено до десяти различных инструментов сразу. Однажды установив все необходимые для ЧПУ обработки инструменты, оператору станка больше не придётся заботиться об этом аспекте.

    Приспособления для автоматической замены рабочего инструмента

    За переключение между типами обработки в процессе изготовления детали отвечает несколько устройств: автооператоры, магазины и головки. Своей слаженной работой они обеспечивают быструю смену рабочего инструмента без прерывания рабочего процесса. При этом гарантируется стабильное положение инструмента и фиксированный вылет при быстрых повторных сменах.

    Вспомогательные приспособления и механизмы

    В этот перечень устройств входят загрузчики заготовок, смазочное оборудование, зажимы и т. д. С началом применения числовых блоков управления в станках, резко появилась необходимость в подобных элементах.

    Так, к примеру, из-за существенно возросшей в сравнении с ручным методом скорости обработки сильно повысилось количество отделяемой стружки. Это заставило инженеров спроектировать специальное приспособление для её своевременного отвода, чтобы она не мешала токарным работам.

    То же самое касается и загрузки заготовок: в процессе изготовления деталей на станках ЧПУ их подача должна осуществляться непрерывно, для чего и были спроектированы загрузочные устройства.

    Как вы можете убедиться, одно лишь наличие компьютерной системы управления не превращает токарный станок в высокоточное, производительное оборудование. Именно перечисленные конструктивные особенности делают ЧПУ обработку возможной.

    Общие сведения о станках ЧПУ

    При обработке заготовки на металлообрабатывающем станке инструмент совершает относительные перемещения (ходы). Совокупность перемещений, повторяющихся при изготовлении каждой детали, называется циклом обработки.

    Каждый цикл характеризуется величиной ходов и их последовательностью. В общем случае программа управления станком — это последовательность команд, обеспечивающих заданное функционирование его рабочих органов станка.

    Программа содержит размерную информацию и команды.

    При ручном управлении станком необходимую последовательность команд задает рабочий, который, изучив чертеж и техническую документацию, составляет программу работ, обрабатывает заготовку, контролирует деталь, сравнивает ее с чертежом и при наличии рассогласования устраняет возникшие неточности.

    При автоматическом управлении станком необходимая последовательность команд задается профаммоносителем, который может быть выполнен в виде материального аналога (кулачков, копиров, упоров и т. д.).

    Однако при смене объекта производства нужно изготовить новый программоноситель и осуществить переналадку станка.

    Станки с таким программным управлением (ПУ) обладают высокой производительностью, но время их переналадки достаточно велико.

    Наибольшей гибкостью и быстротой переналадки обладают станки с ПУ, управляемые системами, задающими профамму работ в алфавитно-цифровом коде.

    Управляющая программа (УП) может быть записана на программоносителях в виде перфоленты, перфокарты, гибких магнитных дисков, магнитной ленты. УП можно вводить и вручную, посредством клавишных панелей.

    Указанные программоносители позволяют автоматизировать процесс подготовки УП и снизить затраты на изготовление программоносителей.

    По виду управления станки с ПУ подразделяют на станки с системами циклового программного управления (ЦПУ) и станки с системами числового программного управления (ЧПУ).

    Отдельную группу составляют станки с цифровой индикацией и преднабором координат. В таких станках имеется электронное устройство, которому задаются координаты нужных точек (преднабор координат) и крестовый стол, снабженный датчиком положения.

    Стол выводится в требуемую позицию. При этом на экране электронного устройства высвечивается каждое мгновенное положение стола (цифровая индикация). В таких станках могут использоваться или преднабор координат или цифровая индикация.

    УП работой станка задается станочником.

    Первое поколение станков с ПУ в нашей стране было создано на базе серийно выпускаемых универсальных станков. Их выпуск началсяв 1959 г. От базовых моделей станки с ЧПУ отличались только автоматизацией привода подач. Устройство ЧПУ (УЧПУ) выполнялось на электронных лампах и позволяло получать заданные размеры обрабатываемой заготовки при регулируемой подаче.

    Системы управления станков с ЧПУ второго поколения выполнялись на полупроводниковых приборах. Такие системы могли изменять в автоматическом цикле не только скорость подачи, но и частоту вращения шпинделя, давать команды на автоматическую смену инструмента, зажим заготовки, подачу СОЖ и т. д.

    Такой этап развития станков с ПУ характеризуется качественным изменением системы ЧПУ (СЧПУ). Для управления станками используют мини-ЭВМ.

    Это дает возможность создавать станки с высоким уровнем автоматизации и широкими технологическими возможностями — многоцелевые станки. Из станков с ЧПУ компонуются автоматизированные участки с управлением от ЭВМ.

    На таких участках при их широком оснащении промышленными роботами (ПР) и другими средствами автоматизации появляется возможность реализации «безлюдной» технологии.

    Конструктивная сложность изготовляемой детали и серийность производства во многом определяют использование того или другого вида оборудования. Чем меньше объем выпуска, тем большей технологической гибкостью должен обладать станок.

    В единичном производстве при изготовлении деталей малыми партиями (1—5 штук) можно использовать станки с преднабором координат и цифровой индикацией. При изготовлении сложных деталей в единичном и мелкосерийном производстве наиболее эффективны станки с ЧПУ. В среднесерийном и переналаживаемом крупносерийном производстве целесообразно применение станков как с ЦПУ, так и с ЧПУ.

    В ряде случаев при изготовлении деталей с сложными пространственными профилями применение станков с ЧПУ является единственным техническим решением.

    Для станков с ЧПУ стандартизованы направления перемещения и их символика. Стандартом ISO-R841 принято за положительное направление перемещения элемента станка считать то, при котором инструмент или заготовка отходят один от другого.

    Исходной осью (ось Z) является ось рабочего шпинделя. Если эта ось поворотная, то ее положение выбирают перпендикулярно плоскости крепления детали. Положительно направление оси Z-от устройства крепления детали к инструменту.

    Тогда оси X и Y расположены так, как это показано на рис.ЧПУ.1.

    Преимуществами станков с ЧПУ являются:

      1. Высокая производительность (в 2—5 раз выше по сравнению с аналогичными станками с ручным управлением). 2. Сочетание точности и производительности станка-автомата с гибкостью универсального оборудования, что создает возможность для комплексной автоматизации единичного и серийного производства. 3. Подготовка производства переносится в сферу инженерного труда, что снижает потребность в высококвалифицированных рабочих-станочниках. 4. Детали, изготовленные по одной УП, являются взаимозаменяемыми, что сокращает затраты времени на пригоночные работы при сборке. 5. Благодаря централизованной подготовке УП и более простой, и универсальной технологической оснастке значительно сокращаются сроки перехода на изготовление новых деталей. 6. Сокращается продолжительность цикла изготовления деталей и уменьшается запас незавершенного производства.7. Машиностроение качественно переоснащается новым оборудованием на базе современной электроники и вьгчислительной техники.

    Все выпускаемое оборудование с ПУ ориентировано на обеспечение его максимального использования в гибких производственных системах (ГПС) различного назначения и минимальное участие человека в процессе производства. Оборудование с ПУ выпускается для реализации всех видов технологических процессов машиностроения.

    В отдельную группу выделяют станки с цифровой индикацией и преднабором координат.

    В этих станках имеется электронное устройство для задания координат нужных точек (преднабором координат) и крестовый стол, снабженный датчиками положения, который дает команды на перемещение до необходимой позиции.

    При этом на экране высвечивается каждое текущее положение стола (цифровая индикация). В таких станках можно применять или преднабор координат или цифровую индикацию; исходную программу работы задает станочник.

    В моделях станков с ПУ для обозначения степени автоматизации добавляется буква Ф с цифрой: Ф1 — станки с цифровой индикацией и преднабором координат; Ф2-станки с позиционными и прямоугольными системами чпу; Ф3-станки с контурными системами ЧПУ и Ф4-станки с универсальной системой ЧПУ для позиционной и контурной обработки. Особую группу составляют станки, имеющие ЧПУ для многоконтурной обработки, например бесцентровые круглошлифовальные станки. Для станков с цикловыми системами ПУ в обозначении модели введен индекс Ц, с оперативными системами — индекс Т (например, 16К2Т1).

    Использование конкретного вида оборудования с ЧПУ зависит от сложности изготовления детали и серийности производства. Чем меньше серийность производства, тем большую технологическую гибкость должен иметь станок с ЧПУ.

    При изготовлении деталей со сложными пространственными профилями в единичном и мелкосерийном производстве использование станков с ЧПУ является почти единственным технически оправданным решением.

    Это оборудование целесообразно применять в случае, если невозможно быстро изготовить оснастку. В серийном производстве также целесообразно использовать станки с ЧПУ.

    В последнее время широко используют автономные станки с ЧПУ или системы из таких станков в условиях переналаживаемого крупносерийного производства.

    Принципиальная особенность станка с ЧПУ — это работа по управляющей программе (УП), на которой записаны цикл работы оборудования для обработки конкретной детали и технологические режимы.

    Классификация и конструктивные особенности станков с чпу

    По технологическим признакам и возможностям станки с ЧПУ (рис. 76) классифицируются практически так же, как и универсальные станки (см. табл. 1), на базе которых изготовляется большинство станков с ЧПУ.

    Токарные станки с ЧПУ предназначены для обработки наружных и внутренних поверхностей заготовок деталей типа тел вращения, а также для нарезания наружной и внутренней резьбы.

    Фрезерные станки с ЧПУ предназначенные для обработки загото­вок плоских и пространственных корпусных деталей, осуществляют следующие операции: плоское, ступенчатое и контурное фрезерование с нескольких сторон и под различными углами, сверление, растачива­ние, развертывание, нарезание резьбы и др. Сверлильно-расточные станки с ЧПУ, предназначенные для обработки отверстий, выполняют сверление, рассверливание, зенкерование, растачивание, развертыва­ние, обтачивание торцов, фрезерование, нарезание резьбы и др.

    Шлифовальные станки с ЧПУ предназначены для шлифования наружных, внутренних и торцевых поверхностей деталей, имеющих прямолинейную и криволинейную формы образующей.

    Электроэрозионные станки с ЧПУ предназначены для вырезания методом электроэрозии деталей сложного контура из токопроводящих материалов, обработка которых другими способами затруднена или невозможна. Обработка осуществляется непрерывно перемещающим­ся электродом-проволокой (из латуни, меди, молибдена, вольфрама) в среде керосина или вводы с антикоррозионными присадками.

    В зависимости от типа управления станки с ЧПУ оснащаются различными СЧПУ: позиционными, контурными или комбинируемы­ми (позиционно-контурными).

    Различают станки низкого, среднего и высокого уровней автома­тизации. В станках с низким уровнем автоматизации программируются только перемещения исполнительных органов, управляемых от УЧПУ.

    Для таких станков характерно небольшое число технологических ко­манд, поступающих от УЧПУ к исполнительным органам станка.

    Эти команды хранятся в кодированном виде в УЧПУ, не требуют перера­ботки и передаются на исполнительные органы непосредственно или через силовые реле устройства электроавтоматики станка.

    В станках со средним уровнем автоматизации используется большое число технологических команд.

    Эти команды требуют переработки, которая осуществляется, как правило, устройством электроавтоматики, размещенным в специальном шкафу и состоящим из релейных или электронных схем.

    Переработка команд заключается в их дешифровке, при которой код команды, поступающей на УЧПУ, преобразуется в сигналы, управляющие исполнительными органами станка.

    Помимо дешифровки устройство электроавтоматики управляет различными автоматическими циклами (смена инструмента, сверление и т. д.).

    В станках с высоким уровнем автоматизации переработку техноло­гических команд осуществляет УЧПУ.

    По способу смены инструмента станки с ЧПУ подразделяются на следующие типы: с ручной сменой инструмента и его ручным закреп­лением; с ручной сменой инструмента и его механическим закрепле­нием; с автоматической сменой инструмента в револьверной головке; с автоматической сменой (манипулятором) инструмента, хранящегося в инструментальном магазине.

    Показатели, характеризующие станки с ЧПУ, следующие: 1) класс точности: Н; П; В; А; С; 2) вид системы ЧПУ: Ф1; Ф2; ФЗ; Ф4; 3) выполняемые технологические операции; 4) основные параметры: наибольший диаметр изделия, устанавливаемого над станиной; наи­больший диаметр обработки при установке изделия над станиной (для патронных станков); наибольший диаметр обработки при установке изделия над суппортом (для центровых и патронных станков); наи­больший диаметр отрабатываемого прутка (для прутковых станков); ширина рабочей поверхности стола или его диаметр, наибольший условный диаметр сверления; диаметр шпинделя и др.; 5) величина перемещений исполнительных органов станка: суппорта по двум ко­ординатам; выдвижение шпинделя; перемещение стола по двум коор­динатам и т. д.; 6) дискретность СЧПУ; 7) точность и повторяемость позиционирования по управляемым координатам; 8) главный привод: вид и модель; мощность; частота вращения и ее регулирование (сту­пенчатое или бесступенчатое); числа рабочих скоростей и автоматиче­
    ски переключаемых скоростей и т. д.; 9) привод подач: вид и модель; мощность, пределы и числа рабочих подач; скорость быстрого перемещения и т. д.; 10) число инструментов в резцедержателе, револь­верной головке или в инструментальном магазине; 11) способ смены инструмента;

    12) число управляемых координат и число одновременно управляемых координат;

    13) обозначение координатных осей и на­правление движения исполнительных ор­ганов; 14) тип и модель УЧПУ; 5) вид интерполяции: линейная; линейно-кру­говая и т. д.; 16) вид программоносителя и код программирования; 17) габариты и масса станка.

    Система координат и направление движений исполнительных органов станков с ЧПУ. Работа станка с ЧПУ и программирование процесса обработки связаны с системами координат. Для станков с ЧПУ на­правление перемещений и их символика стандартизованы. Координат­ные оси расположены параллельно направляющим станка.

    Единой системой координат для всех станков с ЧПУ является правая система (рис. 77), в которой координатные оси X, Y и Z (сплошные линии) указывают положительное направление перемещений инструмента от­носительно неподвижных частей станка.

    Координатные оси X, Y* и Z (пунктирные линии) направлены противоположно осям X, Y и Z, указывают положительные направления перемещений заготовки отно­сительно неподвижных частей станка.

    Ось X всегда расположена горизонтально, ось Z совмещается с осью вращения инструмента (на токарных станках — с осью вращения шпинделя). Положительными всегда являются такие движения, при которых инструмент и заготовка взаимно удаляются.

    Круговые перемещения инструмента (например, поворот оси шпинделя фрезерного станка) обозначают буквами А (вокруг оси X), В (вокруг оси Y) и С (вокруг оси Z). Круговые перемещения заготовки (например, управляемые по программе пово­рота стола на расточном станке) обозначаются соответственно А’, В С.

    Для программирования обработки необходимо, чтобы направление перемещения каждого исполнительного органа станка обозначалось определенной буквой, которая указывает в УП на тот исполнительный орган, который необходимо включить.

    При перемещении трех исполнительных органов вдоль одного направления используют тре­тичные оси: Р, Qm R. Примеры расположения и буквенных обозначе­ний координатных осей на различных станках с ЧПУ представлены на рис. 76.

    Способы и начало отсчета координат. При настройке станка с ЧПУ каждый ИО устанавливается в некоторое исходное положение, из которого он перемещается при обработке заготовки на строго опреде­ленные расстояния, поэтому инструмент проходит через заданные опорные точки траектории.

    Конструктивные особенности станков с ЧПУ. Станки с ЧПУ должны обеспечивать высокую точность и скорость отработки перемещений заданных УП, а также сохранять эту точность в заданных пределах при длительной эксплуатации.

    Конструкция станков с ЧПУ, как правило, обеспечивает совмещение различных видов обработки, автоматизацию загрузки заготовок и выгрузки деталей, автоматическое или дистанци­онное управление сменой инструмента, возможность встройки в об­щую автоматическую систему управления. Высокая точность обработки определяется точностью изготовления и жесткостью станка.

    В конст­рукциях станков с ЧПУ используют короткие кинематические цепи, что повышает статическую и динамическую жесткость станков. Для всех исполнительных органов применяют автоматические приводы с минимально возможным числом механических передач. Эти приводы должны иметь высокое быстродействие.

    Точность станков с ЧПУ повышается в результате устранения зазоров передаточных механизмов приводов, уменьшения потерь на трение в направляющих и механиз­мах, повышения виброустойчивости, снижения тепловых деформаций.

    Узлы, входящие в состав станков с ЧПУ, подразделяются на следующие основные группы: 1) базовые (станина, стойки, колонны, поперечины), определяющие относительное расположение остальных узлов; 2) узлы, несущие заготовку и определяющие характер ее движе­ния в процессе обработки (стол, передняя и задняя бабки, ползун); 3) узлы, несущие инструмент и определяющие его положение относи­тельно заготовки (суппорт, револьверная головка, бабка инструмен­тального шпинделя); 4) приводы СЧПУ.

    В конструкциях современных станков применяют следующие уни­фицированные узлы, использование которых снижает стоимость изго­товления, эксплуатации и ремонта станков; автоматические коробки скоростей; комплексные электроприводы с асинхронными электро­двигателями и электродвигателями постоянного тока; механические вариаторы; электромагнитные и тормозные муфты; беззазорные редук­торы; передачи винт-гайка качения; гидростатические передачи; гид­ропанели; инструментальные головки и блоки; резцедержатели; револьверные головки; системы подачи СОЖ; УЧПУ и др.

    Ских кнопок, переключателей, тумблеров. Обычно станок с ЧПУ оснащен двумя или тремя пультами управления; один размещен на УЧПУ, второй (оперативный) — вблизи исполнительных органов стан­ка, третий, предназначенный для включения станка и его основных систем, может быть расположен вдали от станка.

    Приводы подач станков с ЧПУ содержат зубчато-реечные, зубча­то-червячные и шариковинтовые передачи с автоматической выборкой зазоров.

    ДОС как устройство обратной связи (выдающее информацию о величине фактического перемещения, положения и скорости ИО станка) входит в систему путевого контроля, включенную в измери­тельную схему и схему формирования выходного сигнала. Эти схемы являются устройствами согласования ДОС с основными узлами УЧПУ. ДОС подразделяют на абсолютные и циклические (рис. 78). В отече­ственных станках с ЧПУ в качестве циклических ДОС применяют преобразователи, измеряющие

    К вспомогательным механизмам относятся устройства смены инс­трумента, уборки стружки, смазывания, зажимные приспособления, загрузочные устройства и т. д. Для уборки стружки используют винто­вые конвейеры, магнитные сепараторы и т. д.

    Для сокращения потерь времени при загрузке применяют приспособления, позволяющие од­новременно устанавливать заготовку и снимать деталь во время обра­ботки другой заготовки (столы с двумя позициями, маятниковые столы и др.).

    К устройствам автоматической смены инструмента относятся магазины, автооператоры, револьверные головки.

  • Добавить комментарий