Разделение электрических сетей по режиму работы нейтрали


СОДЕРЖАНИЕ:

РЕЖИМЫ НЕЙТРАЛИ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ

Нейтралью в трехфазных электрических сетях называют общую точку соединенных в звезду обмоток (элементов) электрооборудования (трансформаторов, генераторов и др.).

Нейтрали трансформаторов трехфазной сети могут быть либо заземлены непосредственно или через сопротивления, либо изолированы от земли. Нейтрали генераторов также заземляются или изолируются от земли.

Глухозаземленной нейтралью называется нейтраль трансформатора или генератора, присоединенная к заземляющему устройству (совокупности заземлителя и заземляющих проводников).

Изолированной нейтралью называют нейтраль трансформатора или генератора, не присоединенную к заземляющему устройству.

Электрической сетью с эффективно заземленной нейтралью является трехфазная электрическая сеть напряжением выше 1 кВ, в которой коэффициент замыкания на землю не превышает 1,4.

Коэффициент замыкания на землю в трехфазной электрической сети — это отношение разности потенциалов между неповрежденной фазой и землей в точке замыкания на землю поврежденной фазы или двух других фаз к разности потенциалов между фазой и землей в этой точке до замыкания.

Для управления взаимодействием с землей нейтрали в сетях среднего напряжения могут заземляться через настраиваемую индуктивность, которая во много раз больше суммарной индуктивности электрической сети. Такие сети называются сетями с компенсированной нейтралью.

При однофазном коротком замыкании на землю нарушается симметрия электрической системы: изменяются напряжения фаз относительно земли, появляются токи короткого замыкания, возникают перенапряжения в сетях. Степень изменения симметрии зависит от режима нейтрали, т. е. от способа ее заземления.

Выбор режима нейтрали в электрических сетях напряжением до 1000 В определяется главным образом безопасностью обслуживания сетей, а в высоковольтных сетях, кроме того, бесперебойностью электроснабжения, надежностью работы и экономичностью электроустановок.

Электроустановки по электробезопасности подразделяются:

  • 1) на электроустановки напряжением до 1000 В в сетях:
    • • с глухозаземленной нейтралью;
    • • с изолированной нейтралью;
  • 2) электроустановки напряжением выше 1000 В в сетях:
    • • с глухозаземленной или эффективно заземленной нейтралью;
    • • с изолированной или заземленной через дугогасящий реактор или резистор нейтралью.

Системы заземления TN-S, TN-C, TNC-S, TT, IT

При проектировании, монтаже и эксплуатации электроустановок, промышленного и бытового электрооборудования, а также электрических сетей освещения, одним из основополагающих факторов обеспечения их функциональности и электробезопасности является точно спроектированное и правильно выполненное заземление. Основные требования к системам заземления содержатся в пункте 1.7 Правил устройства электроустановок (ПУЭ). В зависимости от того, каким образом, и с каким заземляющими конструкциями, устройствами или предметами соединены соответствующие провода, приборы, корпуса устройств, оборудование или определенные точки сети, различают естественное и искусственное заземление.

Естественными заземлителями являются любые металлические предметы, постоянно находящиеся в земле: сваи, трубы, арматура и другие токопроводящие изделия. Однако, ввиду того, что электрическое сопротивление растеканию в земле электротока и электрических зарядов от таких предметов плохо поддается контролю и прогнозированию, использовать естественное заземление при эксплуатации электрооборудования запрещается. В нормативной документации предусмотрено использование только искусственного заземления, при котором все подключения производятся к специально созданным для этого заземляющим устройствам.

Основным нормируемым показателем, характеризующим, насколько качественно выполнено заземление, является его сопротивление. Здесь контролируется противодействие растеканию тока, поступающего в землю через данное устройство — заземлитель. Величина сопротивления заземления зависит от типа и состояния грунта, а также особенностей конструкции и материалов, из которых изготовлено заземляющее устройство. Определяющим фактором, влияющих на величину сопротивления заземлителя, является площадь непосредственного контакта с землей составляющих его пластин, штырей, труб и других электродов.

Виды систем искусственного заземления

Основным документом, регламентирующим использование различных систем заземления в России, является ПУЭ (пункт 1.7), разработанный в соответствии с принципами, классификацией и способами устройства заземляющих систем, утвержденных специальным протоколом Международной электротехнической комиссии (МЭК). Сокращенные названия систем заземления принято обозначать сочетанием первых букв французских слов: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также английских: «combined» и «separated» — комбинированный и раздельный.

  • T — заземление.
  • N — подключение к нейтрали.
  • I — изолирование.
  • C — объединение функций, соединение функционального и защитного нулевых проводов.
  • S — раздельное использование во всей сети функционального и защитного нулевых проводов.

В приведенных ниже названиях систем искусственного заземления по первой букве можно судить о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя. Принято различать TN, TT и IT системы заземления. Первая из которых, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S. Для понимания различий и способов устройства перечисленных систем заземления следует рассмотреть каждую из них более детально.

1. Системы с глухозаземлённой нейтралью (системы заземления TN)

Это обозначение систем, в которых для подключения нулевых функциональных и защитных проводников используется общая глухозаземленная нейтраль генератора или понижающего трансформатора. При этом все корпусные электропроводящие детали и экраны потребителей следует подключить к общему нулевому проводнику, соединенному с данной нейтралью. В соответствии с ГОСТ Р50571.2-94 нулевые проводники различного типа также обозначают латинскими буквами:

  • N — функциональный «ноль»;
  • PE — защитный «ноль»;
  • PEN — совмещение функционального и защитного нулевых проводников.

Построенная с использованием глухозаземленной нейтрали, система заземления TN характеризуется подключением функционального «ноля» — проводника N (нейтрали) к контуру заземления, оборудованному рядом с трансформаторной подстанцией. Очевидно, что в данной системе заземление нейтрали посредством специального компенсаторного устройства — дугогасящего реактора не используется. На практике применяются три подвида системы TN: TN-C, TN-S, TN-C-S, которые отличаются друг от друга различными способами подключения нулевых проводников «N» и «PE».

Система заземления TN-C

Система заземления TN-C

Как следует из буквенного обозначения, для системы TN-C характерно объединение функционального и защитного нулевых проводников. Классической TN-C системой является традиционная четырехпроводная схема электроснабжения с тремя фазными и одним нулевым проводом. Основная шина заземления в данном случае – глухозаземленная нейтраль, с которой дополнительными нулевыми проводами необходимо соединить все открытые детали, корпуса и металлические части приборов, способные проводить электрический ток..

Данная система имеет несколько существенных недостатков, главный из которых – утеря защитных функций в случае обрыва или отгорания нулевого провода. При этом на неизолированных поверхностях корпусов приборов и оборудования появится опасное для жизни напряжение. Так как отдельный защитный заземляющий проводник PE в данной системе не используется, все подключенные розетки земли не имеют. Поэтому используемое электрооборудование приходится занулять – соединять корпусные детали с нулевым проводом. .

Если при таком подключении фазный провод коснется корпуса, из-за короткого замыкания сработает автоматический предохранитель, и опасность поражения электрическим током людей или возгорания искрящего оборудования будет устранена быстрым аварийным отключением. Важным ограничением при вынужденном занулении бытовых приборов, о чем следует знать всем проживающим в помещениях, запитанных по системе TN-C, является запрет использования дополнительных контуров уравнивания потенциалов в ванных комнатах.

В настоящее время данная система заземления сохранилась в домах, относящихся к старому жилому фонду, а также применяется в сетях уличного освещения, где степень риска минимальна.

Система TN-S

Система заземления TN-S

Более прогрессивная и безопасная по сравнению с TN-C система с разделенными рабочим и защитным нолями TN-S была разработана и внедрена в 30-е годы прошлого века. При высоком уровне электробезопасности людей и оборудования это решение имеет один, но достаточно очень существенный недостаток — высокую стоимость. Так как разделение рабочего (N) и защитного (PE) ноля реализовано сразу на подстанции, подача трехфазного напряжения производится по пяти проводам, однофазного — по трем. Для подключения обоих нулевых проводников на стороне источника используется глухозаземленная нейтраль генератора или трансформатора.

В ГОСТ Р50571 и обновленной редакции ПУЭ содержится предписание об устройстве на всем ответственных объектах, а также строящихся и капитально ремонтируемых зданиях энергоснабжения на основе системы TN-S, обеспечивающей высокий уровень электробезопасности. К сожалению, широкому распространению и внедрению системы TN-S препятствует высокий уровень затрат и ориентированность российской энергетики на четырехпроводные схемы трехфазного электроснабжения.

Система TN-C-S

Система заземления TN-C-S

С целью удешевления оптимальной по безопасности, но финансово емкой системы TN-S с разделенными нулевыми проводниками N и PE, было создано решение, позволяющее использовать ее преимущества с меньшим бюджетом, незначительно превышающим расходы на энергоснабжение по системе TN-C. Суть данного способа подключения состоит в том, что с подстанции осуществляется подача электричества с использованием комбинированного нуля «PEN», подключенного к глухозаземленной нейтрали. Который при входе в здание разветвляется на «PE» — ноль защитный, и еще один проводник, исполняющий на стороне потребителя функцию рабочего ноля «N».

Данная система имеет существенный недостаток — в случае повреждения или отгорания провода PEN на участке подстанция — здание, на проводнике PE, а, следовательно, и всех связанных с ним корпусных деталях электроприборов, появится опасное напряжение. Поэтому при использовании системы TN-C-S, которая достаточно распространена, нормативные документы требуют обеспечения специальных мер защиты проводника PEN от повреждения.

Система заземления TT

Система заземления TT

При подаче электроэнергии по традиционной для сельской и загородной местности воздушной линии, в случае использования здесь небезопасной системы TN-C-S трудно обеспечить надлежащую защиту проводника комбинированной земли PEN. Здесь все чаще используется система TT, которая предполагает «глухое» заземление нейтрали источника, и передачу трехфазного напряжения по четырем проводам. Четвертый является функциональным нолем «N». На стороне потребителя выполняется местный, как правило, модульно-штыревой заземлитель, к которому подключаются все проводники защитной земли PE, связанные с корпусными деталями.

Совсем недавно разрешенная к использованию на территории РФ, данная система быстро распространилась в российской глубинке для энергоснабжения частных домовладений. В городской местности TT часто используется при электрификации точек временной торговли и оказания услуг. При таком способе устройства заземления обязательным условием является наличие приборов защитного отключения, а также осуществление технических мер грозозащиты.

2. Системы с изолированной нейтралью

Во всех описанных выше системах нейтраль связана с землей, что делает их достаточно надежными, но не лишенными ряда существенных недостатков. Намного более совершенными и безопасными являются системы, в которых используется абсолютно не связанная с землей изолированная нейтраль, либо заземленная при помощи специальных приборов и устройств с большим сопротивлением. Например, как в системе IT. Такие способы подключения часто используются в медицинских учреждениях для электропитания оборудования жизнеобеспечения, на предприятиях нефтепереработки и энергетики, научных лабораториях с особо чувствительными приборами, и других ответственных объектах.

Система IT

Система заземления IT

Классическая система, основным признаком которой является изолированная нейтраль источника – «I», а также наличие на стороне потребителя контура защитного заземления – «Т». Напряжение от источника к потребителю передается по минимально возможному количеству проводов, а все токопроводящие детали корпусов оборудования потребителя должны быть надежно подключены к заземлителю. Нулевой функциональный проводник N на участке источник – потребитель в архитектуре системы IT отсутствует.

Надежное заземление — гарантия безопасности

Все существующие системы устройства заземления предназначены для обеспечения надежного и безопасного функционирования электрических приборов и оборудования, подключенных на стороне потребителя, а также исключения случаев поражения электрическим током людей, использующих это оборудование. При проектировании и устройстве систем энергоснабжения, необъемлемыми элементами которых является как функциональное, так и защитное заземление, должна быть уменьшена до минимума возможность появления на токопроводящих корпусах бытовых приборов и промышленного оборудования напряжения, опасного для жизни и здоровья людей.

Система заземления должна либо снять опасный потенциал с поверхности предмета, либо обеспечить срабатывание соответствующих защитных устройств с минимальным запаздыванием. В каждом таком случае ценой технического совершенства, или наоборот, недостаточного совершенства используемой системы заземления, может быть самое ценное — жизнь человека.

Режимы работы нейтралей в электроустановках.

Нейтралями электроустановок называют общие точки трехфазных обмоток генераторов или трансформаторов, соединенных в звезду.

В зависимости от режима нейтрали электрические сети разделяют на четыре группы:
  • сети с незаземленными (изолированными) нейтралями;
  • сети с резонансно-заземленными (компенсированными) нейтралями;
  • сети с эффективно заземленными нейтралями;
  • сети с глухозаземленными нейтралями.
Согласно требованиям Правил устройства электроустановок (ПУЭ, гл. 1.2).

Сети с номинальным напряжением до 1 кВ, питающиеся от понижающих трансформаторов, присоединенных к сетям с Uном > 1 кВ, выполняются с глухим заземлением нейтрали.

Сети с Uном до 1 кВ, питающиеся от автономного источника или разделительного трансформатора (по условию обеспечения максимальной электробезопасности при замыканиях на землю), выполняются с незаземленной нейтралью.

Сети с Uном = 110 кВ и выше выполняются с эффективным заземлением нейтрали (нейтраль заземляется непосредственно или через небольшое сопротивление).

Сети 3 — 35 кВ, выполненные кабелями, при любых токах замыкания на землю выполняются с заземлением нейтрали через резистор.

Сети 3—35 кВ, имеющие воздушные линии, при токе замыкания не более 30 А выполняются с заземлением нейтрали через резистор.

Компенсация емкостного тока на землю необходима при значениях этого тока в нормальных условиях:
  • в сетях 3 — 20 кВ с железобетонными и металлическими опорами ВЛ и во всех сетях 35 кВ — более 10 А;
  • в сетях, не имеющих железобетонных или металлических опор ВЛ:
    при напряжении 3 — 6 кВ — более 30 А;
    при 10 кВ — более 20 А;
    при 15 — 20 кВ — более 15 А;
  • в схемах 6 — 20 кВ блоков генератор — трансформатор — более 5А

При токах замыкания на землю более 50 А рекомендуется установка не менее двух заземляющих дугогасящих реакторов.

Режимы нейтрали электрических сетей.

Различают пять типов сетей трёхфазного переменного тока:

1. Трёхпроводная сеть с изолированной от земли нейтралью. В качестве защитного мероприятия применяют заземление корпусов электрооборудования. Буквенное обозначение IT.

I – от французского слова isole, — изолированная

T – от французского слова terre – земля.

Рисунок 1. Система IТ.

2. Трёхпроводная сеть с глухо заземлённой нейтралью с местным защитным заземлением корпусов. Буквенное обозначение ТТ.

1-я Т – заземление нейтрали,

2-я Т –заземление корпусов оборудования.

Рисунок 2. Система ТТ.

3. Четырёхпроводная сеть с глухо заземлённой нейтралью с использованием нейтрали для зануления корпусов электрооборудования. Буквенное обозначение TN-C.

1-я Т – заземление нейтрали,

2-я N – заземление корпусов через нейтральный проводник (N от neutre – нейтральный),

3-я С – что этот проводник является одновременно рабочим и защитным (С от combine – комбинированный, совместный).

Рисунок 3. Система TN-C.

4. Пятипроводная сеть с глухо заземлённой нейтралью и отдельными рабочим и защитным нейтральным (нулевым) проводниками. Буквенное обозначение TN-S.

1-я Т – заземление нейтрали,

2-я N – заземление корпусов через нейтральный проводник (N от neutre – нейтральный),

3-я S – от слова separate – «раздельный».

Рисунок 4. Система TN-S.

5. Частично четырёх, и частично пятипроводная сеть с глухо заземлённой нейтралью – сеть TN – C – S.

Рисунок 5. Система TN-C-S.

Предлагаем вашему вниманию видеоролик о системах заземления. Системы заземления по ПУЭ.

Глухозаземленная нейтраль: принцип работы, устройство, особенности

В подавляющем большинстве электросетей (до 1 кВ) применяется глухозаземленная нейтраль, поскольку такое исполнение наиболее оптимально для действующих требований электробезопасности. Учитывая распространенность этой схемы заземления нейтрали, имеет смысл подробно ознакомиться с ее устройством, принципом работы и техническими особенностями, а также основными требованиями ПУЭ к электроустановкам до 1 кВ.

Что такое глухозаземленная нейтраль?

Начнем с определения нейтрали, в электротехнике под этим термином подразумевается точка в месте соединения всех фазных обмоток трансформаторов и генераторов, когда применяется тип подключения «Звезда». Соответственно, при включении «Треугольником» нейтрали быть не может.

Включение обмоток: а) «звездой»; б) «треугольником»

Если нейтраль обмоток генератора или трансформатора заземлить, то такая система получит название глухозаземленной, с ее организацией можно ознакомиться ниже.


Рис. 2. Сеть с глухозаземленной нейтралью

Устройство сетей с голухозаземленной нейтралью

Как видно из рисунка 2, характерной особенностью электросетей TN типа является заземление нейтрали. Заметим, что в данном случае речь идет не о защитном заземлении, а о рабочем соединении между нейтралью и заземляющим контуром. Согласно действующим нормам, максимальное сопротивление такого соединения — 4-е Ома (для сетей 0,4 кВ). При этом нулевой провод, идущий от глухозаземленной средней точки, должен сохранять свою целостность, то есть, не коммутироваться и не оборудоваться защитными устройствами, например, предохранителями или автоматическими выключателями.

Каждый электрик должен знать:  Встроенные электродвигатели и электродвигатели специальных конструкций

В ВЛ до 1-го кВ, используемых в системах с глухозаземленной нейтралью, нулевые провода прокладываются на опорах, как и фазные. В местах, где делается отвод от ЛЭП, а также через каждые 200,0 метров магистрали, положено повторно заземлять нулевые линии.

Пример устройства сети TN-C-S

Если от трансформаторных подстанций отводятся кабели к потребителю, то при использовании схемы с глухозаземленной нейтралью, длина такой магистрали не может превышать 200,0 метров. На вводных РУ также следует подключать шину РЕ к контуру заземления, что касается нулевого провода, то необходимость в его подключении к «земле» зависит от схемы исполнения.

Технические особенности

В данной системе, где используется общая средняя точка, помимо межфазного присутствует и фазное напряжение. Последнее образуется между рабочим нулем и линейными проводами. Наглядно отличие первого от второго продемонстрировано ниже.

Разница между фазным и линейным напряжением

Разность потенциалов UF1, UF2 и UF3 принято называть фазными, а величины UL1, UL2 и UL3 – линейными или межфазными. Характерно, что UL превышает UF примерно в 1,72 раза.

В идеально сбалансированной сети трехфазного электрического тока должны выполняться поддерживаться следующие соотношения:

На практике добиться такого результата невозможно по ряду причин, например из-за неравномерной нагрузки, токов утечки, плохой изоляции фазных проводников и т.д. Когда нейтраль заземлена, дисбаланс линейных и фазных характеристик энергосистемы существенно снижается, то есть, рабочий ноль позволяет выравнивать потенциалы.

Обрыв нулевого провода считается серьезной аварией, которая с большой вероятностью приведет к нарушению симметрии нагрузки, более известной под термином «перекос фаз». В таких случаях в сетях однофазных потребителей произойдет резкое увеличение амплитуды электрического тока, что с большой вероятностью выведет из строя оборудование, рассчитанное на напряжение 220 В. Получить более подробную информацию о перекосе фаз и способах защиты от него, можно на страницах нашего сайта.

Принцип действия сетей с глухозаземленной нейтралью

Теперь рассмотрим подробно, с какой целью заземляется нейтраль и как подобная реализация обеспечивает должный уровень электробезопасности, для этого перечислим обстоятельства, которые могут привести к поражению электротоком:

  • Непосредственное прикосновение к токоведущим элементам. В данном случае никакое заземление не поможет. Необходимо ограничивать доступ к таким участкам и быть внимательным при приближении к ним.
  • Образование зон с шаговым напряжением в результате аварий на ВЛ или других видах электрохозяйства.
  • Повреждения внутренней изоляции может привести к «пробою» на корпус электроустановки, то есть, на нем появляется опасное для жизни напряжение.
  • В результате нарушения электроизоляции токоведущих линий под напряжением могут оказаться кабельные каналы, короба и другие металлические конструкции, используемые при трассировке.

В идеале между нейтралью и землей разность потенциалов должна стремиться к нулю. Подключение к заземляющему контуру на вводе потребителя существенно способствует выполнению этого условия, в тех случаях, когда ТП находится на значительном удалении. При правильной организации заземления такая особенность может спасти человеческую жизнь, как минимум, в двух последних случаях из указанного выше списка.

Чтобы избежать пагубного воздействия электротока необходимо заземлять корпуса электроприборов, а также и других металлических частей электроустановок зданий. Это приведет к тому, что при «пробое» возникнет замыкание фазы на землю. В результате произойдет автоматическое отключение снабжения питанием электроприемников, вызванное срабатыванием устройства защиты от токов КЗ.

Даже если защита не сработает, а кто-либо прикоснется к металлическому элементу, все равно ток будет течь по заземляющему проводнику, поскольку в этой цепи будет меньшее сопротивление.

Движение тока при КЗ на корпус

Говоря о принципе работы защиты заземленной нейтрали нельзя не отметить быстрый выход в аварийный режим, когда один из фазных проводов замыкается на шину PEN. По сути, это КЗ на нейтраль, следствием которого является резкое возрастание тока, приводящее к защитному отключению энергоустановки или проблемного участка цепи.

При определенных условиях можно даже организовать защиту от образования опасных зон с шаговым напряжением. Для этого на пол в потенциально опасном помещении стелют (если необходимо, то замуровывают в бетон) металлическую сеть, подключенную к общему заземляющему контуру.

Отличия глухозаземленной нейтрали от изолированной

Чтобы дать объяснить различие необходимо, кратко рассказать об основных особенностях изолированной нейтрали, пример такого исполнения приведен ниже.

Рис. 6. Электроустановка с изолированной нейтралью

Как видно из рисунка при данном способе нейтраль изолирована от контура заземления (в случае соединения обмоток «треугольником» она вообще отсутствует), поэтому открытые проводящие части (далее по тексту ОПЧ) электроустановок заземляются независимо от сети. Основное преимущество такой системы заключается в том, что при первом однофазном замыкании можно не производить защитное отключение. Это несомненный плюс для высоковольтных линий, поскольку обеспечивается более высокая надежность электроснабжения. К сожалению, такой режим заземления не удовлетворяет требования электробезопасности для сетей конечных потребителей.

Низкий уровень электробезопасности основной, но не единственный недостаток изолированной нейтрали, с их полным списком, а также другими особенностями этой схемы электроснабжения, можно ознакомиться на нашем сайте.

Системы TN и её подсистемы

Начнем с аббревиатуры. Первые две буквы характеризуют вариант исполнения заземления для нейтрали и ОПЧ соответственно. Варианты для первой литеры:

  • T (от англ. terra — земля) — обозначает глухозаземленную нейтраль.
  • I (от англ. isolate — изолировать) – указывает, что соединение с «землей» отсутствует.

Варианты вторых литер говорят об исполнении заземления ОПЧ: N или Т, используется глухозаземленная нейтраль или независимый контур, соответственно.

Сейчас практикуется три схемы нейтрали:

  1. Эффективное заземление обозначается, как ТТ. Особенность такой схемы заключается в том, что глухозаземленный вывод (N)считается рабочим проводом, а для защиты используется собственный заземляющий проводник (РЕ). Схема заземления ТТ
  2. Изолированная нейтраль (принятое обозначение IT), схема системы была представлена выше на рис. 6.
  3. Вариант TN (глухозаземленное исполнение).

У последнего варианта исполнения есть три подвида:

  • Совмещенный вариант, принятое обозначение TN-С. У данного подвида защитный нуль соединен с нейтральным проводом, что не обеспечивает должного уровня электробезопасности. При обрыве РЕ+N защитное зануление становится бесполезным. Это основная причина, по которой от системы TN-C постепенно отказываются. Схема заземления TN-С
  • Вариант TN-S, нулевой и защитный проводники проложены раздельно. Такая схема наиболее безопасна, но для нее требуется использовать не 4-х, а 5-ти жильный кабель, что повышает стоимость реализации. Схема заземления TN-S
  • Подсистема, совмещающая в себе два предыдущих варианта – TN-C-S. От подстанции до ввода потребителя идет один провод, в РУ он подключается к шинам PE, N и заземляющему контуру. Такая подсистема заземленной нейтрали сейчас наиболее распространена. Схема заземления TN-C-S

Требования ПУЭ

В Правилах нормам и требованиям к глухозаземленной посвящена глава 1.7, приведем наиболее значимые выдержки из нее:

  • Для подключения нейтрали к контуру заземления необходимо использовать специальный проводник.
  • При выборе места под заземляющее устройство следует исходить из минимально допустимого расстояния между ним и нейтралью.
  • Если в качестве заземления используется жб конструкция фундамента, то к его армирующему основанию следует подключаться не менее чем в 2-х точках, это гарантирует наиболее эффективную защиту.
  • Сопротивление заземляющего проводника для трехфазной цепи электрической сети 0,4 кВ имеет ограничение 4-е Ома. В исключительных случаях эта норма может быть пересмотрена исходя из характеристик грунта.
  • В линии глухозаземленной нейтрали запрещено устанавливать предохранители, защитные устройства и другие элементы, способные нарушить целостность проводника.
  • Правилами предписывается обеспечить заземляющему проводнику надежную защиту от механических повреждений.
  • ВЛ должна быть оборудована дублирующими заземлителями, они устанавливаются в начале и конце линии, на отводах, а также через каждые 200 м.
  • Дублирующее заземление должно выполняться и на вводе потребителя и обязательно указываться в схеме щитка ВРУ.
  • При организации бытовых однофазных сетей от ВРУ должна выполняться разводка тремя проводами, один из которых фаза, второй – ноль (N) и третий – защитный (РЕ).
  • Скорость срабатывания защитных автоматов, установленных в однофазных сетях с глухозаземленной нейтралью, не должна быть продолжительней 0,40 сек.

Режим изолированной нейтрали для операционных блоков

Как показывает практика, проектирование сетей питания медицинских учреждений во многих случаях сопровождается определенными трудностями. Основной причиной является отсутствие единого комплекса современной нормативной базы в данной области. К отечественным документам, регламентирующим проектирование и работы по силовым сетям питания медицинских учреждений, относятся:
Инструкция РТМ – 42 – 80. – организация питания операционных.
ПУЭ п.1.6.12 – пункт об обязательном применении автоматического непрерывного контроля изоляции в сетях переменного тока с изолированной нейтралью до 1 кВ.
ГОСТ 30030 – требования к изолирующим трансформаторам. Практическим выходом из сложившейся ситуации может быть ориентация на международные нормативы, где данные вопросы проработаны весьма тщательно. К таким стандартам относится IEC 60364–7–710. 2001 (стандарт безопасности в медицинских учреждениях).

Классификация помещений
Согласно IEC 60364–7–710. 2001 в зависимости от вида медицинских процедур, проводимых в помещениях, предусмотрена следующая классификация помещений:
Гр 0 – мед. помещения, где не используются электроприборы
Гр 1 – мед. помещения, где приборы используются внешне или внутренне, но авария силового питания не может привести к гибели или серьезному ущербу для жизни пациента.
Гр 2 – помещения, где первичная неисправность в цепи питания не должна приводить к отказу аппаратуры жизнеобеспечения.
К помещениям Гр 2 относятся: операционные, помещения интенсивной терапии, анестезионные, комнаты подготовки к операции, комнаты послеоперационного восстановления, искусственного сердца и помещения с детьми, родившимися недоношенными. Для питания электроприборов в помещениях медицинских учреждений Гр 2 с целью обеспечения максимальной электробезопасности предписывается использование разделительных трансформаторов с системой контроля изоляции сети (режим изолированной нейтрали или IT – сеть).

Построение сети с изолированной нейтралью
Основным способом получения IT – сети является применение разделительного трансформатора (рис.1).

Рисунок 1 – Применение разделительного трансформатора.

Нагрузка подключается к силовым выходам трансформатора, а корпус прибора к заземляющей шине для предотвращения накопления статического заряда.
В случае применения трехфазного трансформатора выходное напряжение может быть как 220/380 В, 50 Гц, так и трехфазное 220 В, 50 Гц без использования нейтрали, где однофазная нагрузка подключается к линейному напряжению.

Цель использования и достоинства IT — сетей

Применение разделительных трансформаторов с системами контроля изоляции требует достаточно больших затрат и возникает законный вопрос о необходимости тратить такое количество средств.

Приведем ряд преимуществ, которые дает сеть с изолированной нейтралью.

1. Первичный пробой (фаза – корпус) в отличие от TN – S сетей не приводит к аварии (рис.2)

Рисунок 2 – Сеть с изолированной нейтралью.

Результатом короткого замыкания любого из выходов трансформатора на заземление (корпус прибора) становится переход IT – сети в разряд сети типа TN – S.

При отсутствии устройства контроля изоляции данная ситуация может пройти незамеченной, поэтому для сетей с изолированной нейтралью обязательным является применение реле контроля изоляции (РКИ), обеспечивающего непрерывный контроль за состоянием изоляции выходной обмотки трансформатора и распределительной сети.

2. Одновременное касание заземленного, неизолированного элемента конструкции и любого из силовых выходов разделительного трансформатора является безопасным. В «идеальной сети» напряжение равно нулю. В реальных сетях токи утечки составляют микроамперы, что значительно меньше уровня токов безопасности и не представляет угрозы.

3. Разделительный трансформатор сам по себе является неплохим фильтром помех и хорошей защитой от импульсных, грозовых перенапряжений, что обеспечивает более надежную работу подключенной аппаратуры. Это свойство часто используется для обеспечения надежной работы цифровой аппаратуры на предприятиях в условиях высокого уровня помех от работы оборудования.

В результате, высокая надежность, электробезопасность и помехозащищенность IT – сетей определило их использование в нефтехимической отрасли, на шахтах, на транспорте и в медицине.

Применение разделительных трансформаторов и организация распределительной сети для питания медицинской аппаратуры имеет ряд специфических требований и правил.

Для сетей питания медицинского оборудования принят пороговый уровень сопротивления изоляции IT – сети в 50 кОм, что соответствует току утечки 4,4 мА.

Принцип организации питания медицинской аппаратуры
В основу организации сети питания для мед. аппаратуры в помещениях Гр 2 заложены три основных принципа:

  • Использование устройств преобразования, передачи и распределения энергии обеспечивающих высокий уровень изоляции и надежности сети.
  • Обеспечение непрерывности питания аппаратуры, как необходимого условия безопасности жизни пациентов.
  • Непрерывный контроль персонала за состоянием IT – сети.


Требования к разделительному трансформатору

  • Мощность разделительных трансформаторов ограничена диапазоном 0,5 — 10 кВА, как для однофазных, так и для трехфазных трансформаторов.

Данное требование связано с тем, что контроль за множеством потребителей в сильно разветвленной распределительной сети менее эффективен. Возникновение аварии или нарушения изоляции в любой из частей может привести к общей аварии сети и затрудняет поиск места неисправности. С этим связано требование нормативов, определяющее питание каждой операционной от одного трансформатора (РТМ — 42).

  • Выходное напряжение трехфазного изолирующего трансформатора 3 ф 220В.

Наличие линейного напряжения 380В в помещении с медицинским оборудованием запрещено, так как является фактором, снижающим электробезопасность помещения (IEC 60364–7–710, Инструкция РТМ – 42).
Подключение потребителей к трехфазному трансформатору осуществляется по приведенной схеме на рис.3:

Рисунок 3 – Подключение потребителей к трехфазному трансформатору.

Применение трехфазного трансформатора требует соответствующей схемы организации распределительной сети, так как провод нейтрали не используется.

  • Обязательное наличие экранирующей обмотки.

Данное требование уменьшает вероятность пробоя изоляции между первичной и вторичной сетями в случае аварии трансформатора и существенно уменьшает токи утечки вызванные «паразитной» емкостью между обмотками. В-третьих, разделительный трансформатор с экранирующей обмоткой является неплохим фильтром высокочастотных помех, что весьма положительно сказывается на работе аппаратуры.

  • Повышенные требования к изоляции трансформатора соответствующие медицинским стандартам.

Например, испытательное напряжение между обмотками и обмотками и корпусом 4150 В.

  • Система плавного старта.

Обязательное требование ГОСТ 30030. Пусковой ток обычного трансформатора составляет от 5 до 8 крат рабочего тока, что может вызывать срабатывание автоматов защиты стандартного исполнения со стороны питающей сети и влиять на работу стороннего оборудования, инициируя кратковременный провал напряжения питания.

  • Отклонение выходного напряжения на холостом ходу и под нагрузкой не более 5 % от Uвх.
  • Повышенная нагрузочная способность.
  • Обязательный контроль температуры обмоток.

Благодаря измерению этих параметров персонал получает оперативную информацию о перегрузке сети и выполняет необходимые мероприятия (например, отключает неиспользуемые нагрузки).

  • Система контроля изоляции (РКИ).
  • Выход дистанционного контроля (сигнализации) о превышении уровня нагрузки и температуры.
  • Пост дистанционного контроля трансформатора (ПДК).


Требования к посту дистанционного контроля

  • Индикация состояния сопротивления изоляции «НОРМА» при R > 50 кОм, «ПРОБОЙ» при R 2 , либо из другого материала с эквивалентным по проводимости сечением.
    Удельное электрическое сопротивление для различных проводников дано в таблице 1.

    Материал проводника Удельное сопротивление
    мкОм х м
    Коэффициент сопротивления по отношению к меди Требуемое сечение для шины заземления, мм 2
    Медь 0,017 80
    Сталь 0,1 5,88 470

    Операционный стол, наркозный аппарат и вся электромедицинская аппаратура, выполненная по 01 и 1 классам электробезопасности, должны быть соединены с шиной заземления проводниками.
    Выбор сечения заземляющего проводника см. таблице 2.

    Таблица 2.

    Сечение питающего проводника, мм 2 Сечение заземляющего проводника, мм 2
    менее или равно 16 равно питающему
    от 16 до 35 не менее 16
    более 35 1/2 питающего

    Минимальное сечение защитного заземляющего проводника, имеющего механическую защиту, должно быть 2,5 мм 2 , а не имеющего механической защиты – 4 мм 2 .
    Все штепсельные розетки должны быть с заземляющими контактами с сечением проводников подключения 2,5 мм 2 .
    При расположении шины заземления по всему периметру операционной шину выравнивания потенциалов не устанавливают.
    Шина заземления крепится к стене с плотным прилеганием. Щели недопустимы.
    В случае если стены зашиты гипроком, то шина заземления должна проходить по капитальной стене, а в гипроке располагаются специальные розетки заземления, соединенные с основной шиной заземления проводником сечением 4 мм 2 .

    Рисунок 6 – Защитное заземление.

    При согласовании готового проекта в Энергонадзоре, как правило, возникает довольно серьезный и конфликтный вопрос о заземлении розеток, питающихся от разделительного трансформатора. Дело в том, что в ПУЭ присутствует пункт 1.7.85 о подключении нескольких нагрузок к разделительному трансформатору в режиме изолированной нейтрали. Приведем дословно содержание:
    «…Допускается питание нескольких электроприемников от одного разделительного трансформатора при одновременном выполнении следующих условий:
    2) открытые проводящие части отделяемой цепи должны быть соединены между собой изолированными, незаземленными проводниками местной системы уравнивания потенциалов, не имеющей соединений с защитными проводниками и открытыми проводящими частями других цепей;
    3) все штепсельные розетки должны иметь защитный контакт, присоединенный к местной незаземленной системе уравнивания потенциалов…»

    Теперь, для наглядности, нарисуем рекомендуемую данным пунктом схему (рис.7)

    Рисунок 7 – Рекомендуемая схема подключения.

    К сожалению, требования данного пункта пытаются распространить и на подключение аппаратов в операционных.

    Результатом включения при данной схеме будет следующее:

      1. Системы контроля изоляции, как отечественного, так и импортного производства не смогут обнаружить первичный пробой.
      2. Появляется возможность накопления статического электричества на корпусах приборов, находящихся во взрывопожароопасном помещении операционной (мед. газы)

    Пункт 1.7.85 противоречит пункту 1.7.104 того же ПУЭ, где даются расчеты заземления для сетей с изолированной нейтралью, пункту 2.4.4 РТМ–42, а заодно и европейским стандартам.

    С точки зрения здравого смысла, в данном случае, для обеспечения безопасной и надежной работы электроаппаратов оптимально использовать подключение на выделенное технологическое заземление.

    ВЛИЯНИЕ РЕЖИМА РАБОТЫ НЕЙТРАЛИ РАСПРЕДЕЛИТЕЛЬНЫХ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ НА УРОВЕНЬ ПЕРЕНАПРЯЖЕНИЙ ПРИ ОДНОФАЗНОМ ЗАМЫКАНИИ НА ЗЕМЛЮ

    Ощепков В.А. 1 , Владимиров Л.В. 2 , Плотников Д.И. 3 , Шакенов Е.Е. 4 , Мельников С.А. 5 , Паламарчук Д.В. 6

    1 ORCID: 0000-0002-2350-6130, кандидат технических наук, доцент,

    2 ORCID: 0000-0002-7208-0893, кандидат технических наук, доцент,

    3 ORCID: 0000-0002-4566-4885, студент, 4 ORCID: 0000-0001-5086-071Х, студент,

    5 ORCID: 0000-0001-9226-297Х, студент, 6 ORCID: 0000-0002-0498-2991, студент,

    Омский Государственный Технический Университет.

    ВЛИЯНИЕ РЕЖИМА РАБОТЫ НЕЙТРАЛИ РАСПРЕДЕЛИТЕЛЬНЫХ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ НА УРОВЕНЬ ПЕРЕНАПРЯЖЕНИЙ ПРИ ОДНОФАЗНОМ ЗАМЫКАНИИ НА ЗЕМЛЮ

    Аннотация

    В статье рассматривается влияние режима работы нейтрали распределительных электрических сетей на уровень перенапряжений, возникающих при однофазном замыкании на землю. Выполнен расчет параметров электрической сети и математическое моделирование режима однофазного замыкания на землю в сети с изолированной нейтралью и с нейтралью, заземленной через дугогасящий реактор. Определен максимальный уровень перенапряжений на неповрежденных фазах при однофазном замыкании на землю. Доказано снижение кратности перенапряжений в сети при переходе от изолированной нейтрали к компенсации емкостных токов.

    Ключевые слова: изолированная нейтраль, компенсация емкостных токов, дугогасящий реактор, однофазное замыкание на землю.

    Oschepkov V.A. 1 , Vladimirov L.V. 2 , Plotnikov D.I. 3 , Shakenov E.E. 4 , Melnikov S.A. 5 , Palamarchuk D.V. 6

    1 ORCID: 0000-0002-2350-6130, PhD in Engineering, Associate professor,

    2 ORCID: 0000-0002-7208-0893, PhD in Engineering, Associate professor

    3 ORCID: 0000-0002-4566-4885, Student, 4 ORCID: 0000-0001-5086-071Х, Student,;

    5 ORCID: 0000-0001-9226-297Х, Student, 6 ORCID: 0000-0002-0498-2991, Student,

    Omsk State Technical University.

    INFLUENCE OF OPERATION MODE OF NEUTRAL OF POWER NETWORKS ON OVERVOLTAGE LEVEL AT SINGLE LINE-TO-GROUND FAULT

    Abstract

    The influence of the operation mode of the neutral of power network on the overvoltage level arising during single line-to-ground fault is considered in the paper. The calculation of the power network parameters and mathematical modeling of a single line-to-ground fault mode in a network with an isolated neutral and with a neutral grounded through an arc-suppression coil were performed. The maximum overvoltages level in undamaged phases with a single line-to-ground fault is determined. The reduction in the number of overvoltages in the network during the transition from isolated neutral to compensation of capacitive currents has been proven.

    Keywords: isolated neutral, compensation of capacitive currents, arc-suppression coil, single line-to-ground fault.

    В электрических сетях среднего класса напряжения нейтраль обычно либо изолируется, либо заземляется через дугогасящий реактор (ДГР). Сети данных классов напряжения в основном имеют большую разветвленность, то есть от шин одной подстанции может получать питание большое число отходящих присоединений, иногда это число переваливает за десяток.

    Согласно статистике, значительная часть всех повреждений, возникающих в электрических сетях указанных классов напряжений, приходится на однофазные замыкания на землю (ОЗЗ). Для повышения уровня надежности электроснабжения потребителей электроэнергии требуется оперативное определение поврежденных участков отходящих присоединений и своевременное, по возможности с минимальным промежутком времени, устранение этих самых повреждений, поскольку ОЗЗ в сети, помимо того, что может перерасти в двухфазное или даже в трехфазное короткое замыкание, что значительно усугубит последствия, в свою очередь также может привести к значительным перенапряжениям и к возникновению различных феррорезонансных явлений.

    Режим работы нейтрали определяет многие технические показатели [1, С. 123]. Прежде всего, это можно отнести к распределительным электрическим сетям при возникновении однофазного замыкания на землю. Для нейтрали с резистивным заземлением или заземлением через ДГР и изолированной нейтрали, данный режим не является аварийным, поскольку не требует быстродействия со стороны защиты поврежденного места. Но следует брать во внимание тот факт, что, если такой режим работы окажется устойчивым, образуются нежелательные явления, несущие за собой различного рода последствия, такие как, например, несвоевременный выход из строя оборудования или же значительное снижение срока его эксплуатации.

    Помимо этого, способ заземления нейтрали влияет на максимально возможную кратность перенапряжений, возникающих при, все том же, ОЗЗ. Следует помнить и о возможности возникновения резонансных и феррорезонансных воздействий, которые, как уже было отмечено выше, негативно сказываются на дорогостоящем электрооборудовании [2, С. 111].

    Режим изолированной нейтрали является основным способом заземления, применяемым в странах СНГ. В этом случае нейтральная точка источника, не присоединяется к контуру общего заземления. Если брать во внимание сети, напряжением 6-10 кВ, где обмотки силовых трансформаторов, обычно, соединяют в треугольник, то нейтральная точка и вовсе отсутствует.

    Заземление нейтрали через ДГР, как правило, находит применение в разветвленных кабельных сетях промышленных предприятий. В данном случае, нейтральная точка сети появляется при условии применения специального нейтралеобразующего трансформатора (ФЗМО).

    В Российской Федерации режим заземления нейтрали через ДГР применяется в основном в разветвленных кабельных сетях, при значительных емкостных токах. Кабельная изоляция, в отличие от воздушной изоляции, не является самовосстанавливающейся. Т.е. при возникновении повреждения, оно не может самоустраниться, даже несмотря на практически полную компенсацию тока в поврежденном месте. Отсюда следует, что для кабельных сетей самоликвидация ОЗЗ, как положительное свойство режима заземления нейтрали через ДГР, не имеет место быть [3, С. 198].

    Моделирование переходных процессов в распределительных сетях позволяет получить представление о том, как происходит изменение тока и напряжения при различных начальных условиях. В режиме ОЗЗ в сетях с изолированной нейтралью возникает недопустимый уровень перенапряжений. Во время переходного процесса, который длится более 1 с, на высоковольтных обмотках трансформатора напряжения происходят, так называемые, биения напряжения. Следовательно, аналогичные биения будут наблюдаться на секциях шин подстанций и на высоковольтных обмотках трансформатора собственных нужд подстанции. В ряде случаев это может привести к негативным последствиям, таким как: ложное срабатывание защиты, необоснованное отключение цепей управления на самой подстанции [4, С. 236].


    Моделирование режима ОЗЗ выполнено на примере электрической сети, схема которой представлена на рис. 1.

    Рис. 1 – Схема электрической сети

    Рассмотрим два способа заземления системы электроснабжения (СЭС), получающей питание через силовой трансформатор типа ТДТН-10000 110/35/10.

    В первом случае будем считать, что нейтраль трансформатора изолирована, во втором – заземлена через ДГР плунжерного типа [5, С. 23].

    Индуктивность реактора принимаем равной L=0.06 Гн. Его внутреннее сопротивление R=10000 Ом [6, С. 26].

    Параметры силового трансформатора:

    • Потери активной мощности при х.х.: =17 кВт;
    • Потери активной мощности при к.з.: =76 кВт;
    • Напряжение короткого замыкания: =10.5% ;
    • Ток х.х.: =1%.

    Расчет был проведен на примере режима работы сети при ОЗЗ фазы «С» с последующим определением значений перенапряжений на неповрежденных фазах. Схемы замещения сетей представлены на рис. 2

    Рис. 2 – Схема замещения для сети: а – с изолированной нейтралью; б – с компенсированной нейтралью

    Для начала необходимо определить следующие параметры схем замещения:

    Номинальный ток силового трансформатора:

    Полное сопротивление при ОЗЗ:

    Активное сопротивление при ОЗЗ:

    Реактивное сопротивление при ОЗЗ:

    Индуктивность при ОЗЗ:

    где f – частота сети, Гц [7, С. 3].

    Емкость линии при ОЗЗ (в данном случае используется провод марки АС 95/16) была определена по методу зеркальных изображений [8, С. 60] и составила:

    Составим уравнения по законам Кирхгофа для представленных схем замещения.

    Для схемы замещения сети с изолированной нейтралью:

    Для схемы замещения сети с компенсированной нейтралью:

    После проведения математических преобразований, полученные системы уравнений были записаны в нормальной форме Коши.

    Для сети с изолированной нейтралью:

    Для сети с компенсированной нейтралью:

    Затем, данные системы дифференциальных уравнений были проинтегрированы методом Рунге-Кутта.

    Полученные результаты проанализируем на основе максимальных значений возникающих перенапряжений (рис. 3) и емкостных токов (рис. 4) на фазе B.

    Рис. 3 – Уровень перенапряжений в сети: а – с изолированной нейтралью; б – с компенсированной нейтралью

    Рис. 4 – Уровень емкостных токов в сети: а – с изолированной нейтралью; б – с компенсированной нейтралью

    Приведенные графические изображения доказывают зависимость уровней перенапряжений и емкостных токов от способа заземления нейтрали.

    Согласно данным, полученным в результате проведенного расчета, можно сделать вывод, что уровень перенапряжений, возникающих при ОЗЗ, в сети с изолированной нейтралью оказался более высоким, по сравнению с тем, каким он получился при заземлении нейтрали через ДГР. Так, максимальное значение перенапряжений, полученное в режиме работы сети с изолированной нейтралью, составляет 110,7 кВ (5,47 Uф), тогда как предельный уровень перенапряжений в сети с компенсированной нейтралью не превышает 81,14 кВ (4,01 Uф).

    То же касается и уровня емкостных токов, максимальное значение которых в сети с изолированной нейтралью составляет 458,681 А, а в сети с компенсированной нейтралью – 332,9 А.

    В сетях высоких и сверхвысоких классов напряжений замыкание любой из фаз линии сопровождается сверхтоками и проводит к мгновенному отключению [9, С. 33]. В сетях средних классов напряжений возникновение ОЗЗ пусть и не приводит к ухудшению условий электроснабжения потребителя, но тем не менее существующий дефект требует своевременного устранения, поскольку неповрежденные фазы сети также находятся под повышенным напряжением, особенно, в случае неустойчивого дугового замыкания, когда возникающие перенапряжения длительные по времени, высокие по величине и, тем самым, негативно воздействуют на, и без того, ослабленную изоляцию [10, С. 135].

    Список литературы / References

    1. Бурчевский В.А. Обзор режимов заземления нейтрали в электрических сетях 6-35 кВ / В.А. Бурчевский, Л.В. Владимиров, В.А. Ощепков и др. // Омский научный вестник. Серия 77, Приборы, машины и технологии. – 2009. – № 1. – С. 122–126.
    2. Вайнштейн Р.А. Режимы заземления нейтрали в электрических системах / Р.А. Вайнштейн, Н.В. Коломиец, В.В. Шестакова. – Томск: Изд. ТПУ, 2006. – 120 с.
    3. Владимиров Л.В. Моделирование режима однофазного замыкания на землю в распределительной электрической сети с изолированной нейтралью / Л.В. Владимиров, А.А. Вырва, В.А. Ощепков и др. // Омский научный вестник. Серия 107, Приборы, машины и технологии. – 2012. – № 1. – С. 197–201.
    4. Никитин К.И. Токовый принцип определения повреждения присоединения и места однофазного замыкания в сети с изолированной нейтралью / К.И. Никитин, Л.В. Владимиров, Е.Н. Еремин и др. // Омский научный вестник. Серия 107, Приборы, машины и технологии. – 2012. – № 1. – С. 234–236.
    5. Миронов И.А. Особенности применения дугогасящих реакторов / И.А. Миронов, В.А. Кричко // Новости Электротехники. Серия 43. – 2007. – № 1. – С. 21–24.
    6. Gernot Druml. Дугогасящие реакторы 6–35 кВ. Повышение точности настройки / Druml Gernot, Kugi Andreas, Parr Bodo // Новости Электротехники. Серия 43. – 2007. – № 1. – С. 25–28.
    7. ГОСТ 32144–2013. Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения. – Введ. 2014–07–01. – М.: Стандартинформ, 2013. – 62 с.
    8. Бессонов Л.А. Теоретические основы электротехники. Электрические цепи: Учебник для электротехн., энерг., приборостроит. спец. вузов. – 11-е изд., перераб. и доп. / Л.А. Бессонов. – М.: «Гардарики», 2006. – 701 с.
    9. Миронов И.А. Проблемы выбора режимов заземления нейтрали в сетях 6-35 кВ / И.А. Миронов // ЭЛЕКТРО-ИНФО. Серия 46, Эксплуатация. – 2006. – №5. – С. 32–36.
    10. Сирота И.М. Режимы нейтрали электрических сетей / И.М. Сирота, С.Н. Кисленко, С.Н. Михайлов. – Киев: Изд. Наукова думка, 1985. – 265 с.

    Список литературы на английском языке / References in English

    Виды нейтралей электроустановок

    Нейтраль – та часть электроустановки, которая имеет нулевой потенциал относительно физической земли или ее токопроводящих элементов. Трехфазные цепи могут иметь как технологическую, имеющую физическое соединение с токопроводящими частями, так и конструктивную, отдельную от них нейтраль. Это зависит от способа соединения выходных обмоток силовых трансформаторов.

    В первом случае – звездой, во втором – треугольником. Поскольку в этом проводнике течет ток, что происходит в результате или аварии, или технологического перекоса фаз, выражение «режим работы нейтрали» имеет полное право на существование. О том, каким он может быть, и о способах подключения нейтральных проводников пойдет речь в этой статье.

    Режимы заземления нейтрали

    В экзаменационных билетах по электробезопасности для монтеров, работающих с установками напряжением до 1000 вольт, есть вопрос: «С какой нейтралью должны работать электрические сети напряжением 10 кВ?» Правильный ответ: «С изолированной». Однако существуют и другие режимы работы нейтралей в электроустановках:

    1. Эффективное заземление.
    2. Глухое заземление.

    От их выбора зависит множество факторов:

    • Бесперебойность электроснабжения.
    • Безопасность обслуживающего персонала и электроустановок в случае замыкания одной из фаз на землю.
    • Величины токов в местах повреждений.
    • Схема построения релейной защиты.

    Различные типы электрических сетей по-разному подключаются к нейтрали и реагируют на аварийные ситуации.

    Высоковольтные магистральные электросети

    К ним относятся все электросети, линейное (между фазными проводниками) напряжение в которых превышает 35 кВ. Выходные (статорные) обмотки промышленных электрогенераторов соединяют треугольником. Это связано с меньшим уровнем электрических потерь и отсутствием технологического перекоса фаз, что напрямую влияет на качество подаваемой потребителям электрической энергии.

    При однофазном пробое на физическую землю – в случае обрыва провода или изменения диэлектрических свойств изоляторов на опорах, происходит падение линейного напряжения до нуля в аварийной фазе и рост в 1,7 раза в работоспособных.

    Чтобы избежать электрического пробоя изоляторов рабочих фаз и не увеличивать их без того немалые размеры, в этом случае применяется способ подключения, называемый «эффективной нейтралью». Он заключается в том, что на промежуточных силовых подстанциях выходные обмотки трансформаторов, использующиеся для обеспечения их внутренних нужд (например, обогрева, сигнализации), включаются по схеме «звезда», общий провод которой наглухо соединяется с физической землей.

    В результате напряжение в неповрежденных фазах растет не более, чем в 1,4 раза, а ток короткого замыкания ограничивается на уровне, который недостаточен для срабатывания реле защиты. Это позволяет не прерывать электроснабжение на время большее, чем то, что определено нормативами правил эксплуатации электроустановок для различных типов потребителей.

    Магистральные электросети среднего напряжения

    Электрическая сеть, линейное напряжение в которой от 6 до 35 кВ. Обмотки силовых трансформаторов соединяются звездой. Нейтраль изолированная, она не имеет физического контакта с землей. Это делается по трем причинам:

    1. Меньшие токи, что позволяет уменьшить размеры изоляторов – меньше вес, меньше нагрузка на опоры, возможна экономия при их производстве и монтаже.
    2. В сетях с изолированной нейтралью токи между фазами имеют емкостной характер, поэтому при пробое одной из них не возникает короткого замыкания. Ток как бы стекает с поврежденного проводника на землю и рассеивается ею.
    3. Нет необходимости тянуть четвертую линию, не имеющую функционального назначения.

    В результате при аварии линейное напряжение растет в 1,7 раза, что для промежуточных силовых трансформаторов на линии не является критическим режимом. Электроснабжение продолжается по двум оставшимся линиям. Опасность представляет только оборванный провод в радиусе 10–30 метров – создается зона, где возможно возникновение так называемого шагового напряжения.

    Однако при малом сопротивлении физической земли (в результате дождей, при прокладке электролинии по болотам) ток в поврежденном проводнике может достигнуть значения, достаточного для возникновения электрической дуги. В этом случае применяется так называемая компенсированная нейтраль.

    Сущность компенсированной нейтрали заключается в том, что общий для всех обмоток провод все же имеет контакт с землей, но через сопротивление. Оно может иметь индуктивный или активный характер. В первом случае устройство называют дугогасящим реактором.

    Ток, через него текущий, находится в противофазе с тем, который идет на физическую землю через поврежденный проводник. Они компенсируют друг друга, поэтому электрическая дуга не зажигается. Заземление нейтрали через резистор в нашей стране практически не применяется. А если и используется, то в качестве элемента, помогающего определить место повреждения – при его включении параллельно дугогасящему реактору происходит срабатывание релейной защиты на аварийном участке.

    В нашей стране количество линий с компенсированной нейтралью равно 20% от числа всех электрических магистралей. А ее полную изоляцию используют еще только в Финляндии. Большинство европейских стран применяет подключение нейтрали через активное сопротивление большой величины.

    Изолированная нейтраль также применяется в трехфазных сетях напряжением 0,4 кВ, которые прокладываются в шахтах, рудниках и на торфяных выработках. Везде, где пропуск электрического тока по физической земле может привести к поражению людей. А также в передвижных электроустановках при невозможности создания надежного контакта с заземлителем.

    Низковольтные электрические сети

    Все трехфазные электрические линии напряжением 0,4 кВ, от которых питаются конечные потребители, исполняются четырехпроводными. Это так называемые сети с глухозаземленной нейтралью. Выходные обмотки силовых линейных трансформаторов соединяются звездой, а их общий проводник – с физической землей. Делается это исходя из двух соображений:

    1. При однофазном замыкании на землю происходит мгновенное отключение всей линии, что необходимо для предотвращения поражения людей и животных электрическим током. Для этого в ней между фазными проводниками устанавливаются автоматы, реагирующие на сверхтоки (короткое замыкание) или дифференциальный ток.
    2. Кроме линейного напряжения в 380 (400) вольт, используется и фазное (между проводником и нейтралью), равное 220 вольт. При отсутствии надежного контакта с физической землей возможно возникновение технологического перекоса фаз, в результате которого у одного из потребителей на вводах будет 100–110 вольт, а у других – 290–300 вольт, что приводит к выходу из строя электрических приборов.

    Если вы увидели на линии высокого напряжения оборванный провод, не подходите к нему близко, наверняка он находится под напряжением, поскольку в режиме изолированной нейтрали мгновенного отключения не происходит. И не относитесь к нейтральному проводнику четырехпроводной бытовой линии 0,4 кВ как к абсолютно безопасной железке. В случае неисправности или аварии по нему течет смертельно опасный ток.

    По режиму работы нейтралей в электроустановках

    Показатели качества электроэнергии являются(Согласно ГОСТ 13109-97 ):

    Отклонение напряжения — отличие фактического напряжения в установившемся режиме работы системы электроснабжения от его номинального значения.

    ГОСТ 13109-97 устанавливает нормально допустимые и предельно допустимые значения установившегося отклонения напряжения dUу на выводах приемников электрической энергии равны соответственно ± 5% и ± 10 % от номинального напряжения электрической сети.

    Колебания напряжения — быстро изменяющиеся отклонения напряжения длительностью от полупериода до нескольких секунд.

    Источниками колебаний напряжения являются мощные электропри?мники с импульсным, резкопеременным характером потребления активной и реактивной мощности: дуговые и индукционные печи; электросварочные машины; электродвигатели при пуске.

    Внезапное и значительное снижение напряжения (менее 90% Uном) длительностью от нескольких периодов до нескольких десятков секунд с последующим восстановлением напряжения.

    Причинами провалов напряжения является срабатывание средств защиты и автоматики при отключении грозовых перенапряжений, токов короткого замыкания (КЗ), а так же при ложных срабатываниях защит или в результате ошибочных действий оперативного персонала. ГОСТ 13109-97 не нормирует провал напряжения, он ограничивает его продолжительностью 30-ю секундами. Правда, эти явления, длительностью больше 30 секунд, практически не случаются — напряжение уже не восстанавливается.

    Внезапное и значительное повышение напряжения (более 110% Uном) длительностью более 10 миллисекунд. Временные перенапряжения возникают при коммутациях оборудования (коммутационные, кратковременные) и при коротких замыканиях на землю. Длительные перенапряжения возникают в сетях с компенсированной нейтралью и четырехпроводных сетях при обрыве нейтрального провода (обрыв «0»), и в сетях с изолированной нейтралью при однофазном КЗ на землю.

    Асимметрия напряжения происходит только в трехфазной сети под воздействием неравномерного распределения нагрузок по ее фазам.

    Источниками асимметрии напряжений являются: дуговые сталеплавильные печи, тяговые подстанции переменного тока, электросварочные машины, однофазные электротермические установки и другие одно-фазные, двухфазные и несимметричные трёхфазные потребители электроэнергии, в том числе бытовые.

    Однофазные, двухфазные потребители и разные фазы трёхфазных потребителей электроэнергии работают на различных не номинальных напряжениях, что вызывает те же последствия, как и при отклонении напряжения.

    Нормально допустимое и предельно допустимое значение коэффициента асимметрии напряжений по нулевой последовательности в точках общего присоединения к четырехпроводным электрическим сетям с номинальным напряжением 0,38 кВ равны 2,0% и 4,0% соответственно.

    Несинусоидальность напряжения — искажение синусоидальной формы кривой напряжения. Источниками несинусоидальности напряжения являются: статические преобразователи, дуговые сталеплавильные и индукционные печи, трансформаторы, синхронные двигатели, сварочные установки, газоразрядные осветительные и бытовые приборы и т.д. Строго говоря, все потребители, кроме ламп накаливания имеют нелинейную вольтамперную характеристику.

    Несинусоидальность напряжения характеризуется : — Коэффициентом искажения синусоидальности кривой напряжения; — Коэффициентом n-ой гармонической составляющей напряжения.

    Влияние несинусоидальности напряжения на работу электрооборудования: выходят из строя компьютеры, пробиваются конденсаторы, неправильно срабатывают устройства управления и защиты.

    Отклонение фактической частоты переменного напряжения от номинального значения в установившемся режиме работы системы электроснабжения.

    Нормы допустимого и предельно допустимого значение отклонения частоты равны ±0,2 и ±0,4 Гц соответственно. Снижение частоты происходит при дефиците мощности работающих в системе электростанций.

    Повышение частоты происходит при резком сбросе нагрузки в системе электроснабжения.

    Влияние отклонения частоты на работу электрооборудования:

    Негативно сказывается на работе асинхронных электродвигателей (возрастает ток обмоток, двигатель греется, КПД снижается), несоответствие фазы(зависит от частоты) параллельно работающих генераторов приводит к снижению КПД и даже к выходу из строя генератора.

    Импульсные перенапряжения возникают при грозовых явлениях и при коммутациях оборудования (трансформаторы, двигатели, конденсаторы, кабели). Величина импульсного перенапряженния зависит от многих условий, , но всегда значительна и может достигать многих сотен тысяч вольт.

    Факторы, негативно влияющие на нормальную работу ВЛ и качество передаваемой электроэнергии:

    ґ Отклонение частоты от номинального значения

    ґ Увеличение силы тока выше номинального значения или КЗ

    ґ Асимметрия токов фаз

    ґ Природные электрические разряды во время грозы

    ґ Возможность пробоя воздуха и возникновения коронного разряда

    ґ Паразитная ёмкость проводников

    ґ Взаимное влияние друг на друга токов, протекающих в соседних проводах трёхфазной сети

    Для обеспечения контроля этих параметров (их измерения), а также их регулирования в электросетях применяют вспомогательные системы и устройства:

    • · система релейной защиты и автоматики
    • · система управления и сигнализации

    Функциональная схема системы защиты содержит следующие основные органы:

    Измерительный орган ИО, непрерывно контролирующий состояние защищаемого объекта и определяющий условия срабатывания (или несрабатывания) в соответствии со значениями параметров электрических сигналов, поступающих на его вход от измерительных преобразователей ИП.

    Логический орган ЛО, формирующий логический сигнал при выполнении определенных условий.

    Исполнительный орган Исп.О, формирующий на основе сигнала логического органа управляющее воздействие УВ на выключатель защищаемого объекта.

    Дополнительно в схеме защиты предусматривается сигнальный орган СО, формирующий логические сигналы о срабатывании защиты.

    Разделение электрических сетей по режиму работы нейтрали

    Режимы нейтрали сетей 6-10-35 кВ.
    Достоинства и недостатки различных режимов

    Юрий Целебровский,
    Новосибирский государственный технический университет

    Прежде чем высказать свои соображения об областях применения различных систем заземления нейтрали в сетях среднего напряжения, хотелось бы кратко остановиться на общепринятых и достаточно хорошо известных положениях, на которых базируются дальнейшие рассуждения.
    Режим изолированной нейтрали имеет одно неоспоримое преимущество – малый ток однофазных замыканий на землю (ОЗЗ), что позволяет:

    • увеличить ресурс выключателей (поскольку однофазные замыкания достигают 90% от общего числа замыканий);
    • снизить требования к заземляющим устройствам, определяемые условиями электробезопасности при однофазных замыканиях на землю.

    Однако этот режим обладает и целым букетом недостатков (по сравнению с режимом эффективно заземленной нейтрали), к которым следует отнести:

    • феррорезонансные явления, вызываемые кратковременными ОЗЗ;
    • дуговые перенапряжения, связанные с появлением перемежающейся дуги при ОЗЗ и приводящие к переходу однофазного замыкания в двух- и трехфазное;
    • сложность построения селективных защит от ОЗЗ при изолированной нейтрали и их недостаточную работоспособность в сетях с различными режимами и конфигурацией.

    К достоинствам сети с изолированной нейтралью часто относят возможность продолжения ее работы при однофазном замыкании, что якобы повышает надежность электроснабжения потребителей. Такое утверждение по меньшей мере архаично. Опыт показывает, что в большинстве случаев однофазные замыкания из-за присущих сети недостатков быстро (если не мгновенно) переходят в двух- и трехфазные (см., например, [4]) и поврежденная линия всё равно отключается.
    При сохранении замыкания на землю у опор воздушных линий или у места падения провода возникают опасные напряжения прикосновения. Известно, что около половины тяжелых и смертельных электропоражений приходится на случаи, связанные с замыканиями на землю, а среди общего электротравматизма на первое место давно вышел электротравматизм в сетях среднего напряжения [5].
    В настоящее время бесперебойность электроснабжения обеспечивается в основном за счет двухстороннего питания и устройств АВР. Сохранять бесперебойность электроснабжения и одновременно сохранять аварийное состояние сети (ОЗЗ) – способ даже менее разумный, чем давно отжившая система ДПЗ.
    Заземление через дугогасящий реактор позволяет в определенных случаях снизить ток замыкания на землю до его погасания, то есть ликвидировать дуговые перенапряжения. Это в свою очередь уменьшает число переходов ОЗЗ в двух- и трехфазные короткие замыкания. Снижение тока ОЗЗ улучшает условия электробезопасности в месте замыкания, хотя полностью не устраняет возможность электропоражения в сетях с воздушными линиями.
    Недостатки заземления через дугогасящий реактор (ДГР):

    • необходимость симметрирования сети до степени 0,75% фазного напряжения (в сетях с воздушными линиями степень несимметрии всегда не ниже 1–2%, а при двухцепных ВЛ нормально может достигать 5–7%; Правилами технической эксплуатации в некоторых случаях допускается напряжение смещения нейтрали до 30% от фазного напряжения [6,7]);
    • сложность и высокая стоимость систем автоматической подстройки ДГР (реакторы с механической подстройкой практически не эксплуатируются); невозможность широкой диапазонной настройки, необходимой для разветвленных городских сетей с часто изменяемой конфигурацией по отношению к питающей подстанции;
    • практически полное отсутствие селективных защит от ОЗЗ для сети с заземлением нейтрали через ДГР.

    По поводу последнего недостатка можно возразить, что при хорошей компенсации емкостного тока отключение поврежденного присоединения не обязательно. Принимая это возражение, остается констатировать, что применение дугогасящего реактора – это способ сохранения аварийного режима однофазного замыкания, причем способ не дешевый.

    Заземление нейтрали через резистор имеет несомненные достоинства, подтвержденные мировой практикой и опытом, накопленным в России:

    • полное устранение феррорезонансных явлений;
    • снижение уровня дуговых перенапряжений и устранение перехода ОЗЗ в двух- и трехфазные замыкания;
    • возможность построения простых селективных защит от ОЗЗ.
    • К недостаткам резистивного заземления нейтрали следует отнести:
    • увеличение тока замыкания на землю (максимум на 40%);
    • появление на подстанции греющегося оборудования (резистора мощностью 30–400 кВт).

    Эти недостатки незначительны по следующим причинам:

    • В сетях с заземленной нейтралью токи короткого замыкания составляют тысячи и десятки тысяч ампер; двойные замыкания на землю в сетях 6–35 кВ приводят к токам в сотни и тысячи ампер. В таких условиях названные сети успешно эксплуатируются, и на этом фоне увеличение тока ОЗЗ с 10 до 14 А или даже с 200 до 280 А ситуации не меняет.
    • Нагревающийся при ОЗЗ резистор – более существенный недостаток. Однако определяемые ПУЭ допустимые температуры для другого оборудования, достигающие в аварийных режимах 200–300?С, позволяют спроектировать резистор, нагревающийся только до нижнего из указанных пределов. Установка такого резистора на ОРУ практически снимает вопрос о пожароопасности.

    Области эффективного применения различных режимов заземления нейтрали в сетях среднего напряжения попытаемся определить, основываясь на высказанных выше положениях. В зависимости от типа сети и требуемых параметров эти области отражены в таблице. В ее первом столбце – классификация сетей по конфигурации и особенностям их работы, касающихся способа заземления нейтрали.

    Таблица:Рекомендуемые режимы нейтрали сетей среднего напряжения

    Тип электрической сети Емкостный ток ниже границы ПУЭ* Емкостный ток выше границы ПУЭ*
    Длительная работа с замыканием на землю Однофазное замыкание на землю селективно отключается релейной защитой Длительная работа с замыканием на землю Однофазное замыкание на землю селективно отключается релейной защитой
    Сети генераторного напряжения изолированная ДГР
    Сети собственных нужд электрических станций изолированная, резистор резистор ДГР резистор
    Распределительные сети с воздушными линиями изолированная, резистор резистор резистор (ДГР) резистор
    Городские, поселковые кабельные сети (без ВЛ) изолированная, резистор резистор (ДГР) резистор
    Сети, питающие передвижные подстанции и механизмы, торфяные разработки, шахты и т.п. резистор резистор

    Сети генераторного напряжения – это в основном шинные мосты со стабильными емкостными токами. При замыкании на землю невозможно провести селективное отключение какого-либо участка, необходимо отключать сам генератор по четкому признаку появления напряжения нулевой последовательности. Кратковременная работа генератора до отключения при малых токах возможна при изолированной нейтрали. При емкостном токе, превышающем 5 А, могут возникать серьезные повреждения изоляции, поэтому представляется целесообразным применение дугогасящего реактора. При этом выполнение шинного моста изначально должно быть таким, чтобы не возникало смещения нейтрали и обеспечивалась точная настройка ДГР.
    Сети собственных нужд электрических станций в отличие от сетей генераторного напряжения имеют разветвленную конфигурацию, позволяющую селективно отключать повреждение с ОЗЗ. Поскольку эти сети выполнены кабельными линиями, степень их симметрии достаточная для применения дугогасящего реактора.
    При малых емкостных токах возможно применение изолированной нейтрали, однако при этом сеть нуждается в расчетной проверке на возможность возникновения феррорезонансных явлений. При опасности таковых рекомендуется заземление нейтрали через резистор. Длительная работа сети при ОЗЗ представляется малоцелесообразной, поскольку в таких сетях имеется достаточное резервирование.
    Селективное отключение поврежденного присоединения релейной защитой может быть надежно выполнено при резистивном заземлении нейтрали.
    При больших емкостных токах, если признано рациональным продолжение работы сети при ОЗЗ, наилучшим вариантом является применение ДГР, способствующее (при точной настройке) самоликвидации однофазного замыкания [8]. Селективное отключение релейной защитой ОЗЗ с большим током хорошо реализуется при резистивном заземлении нейтрали.
    Распределительные сети с воздушными линиями, как правило, несимметричны. При малых токах, так же как и в предыдущем случае, возможно применение изолированной нейтрали при отсутствии предпосылок для феррорезонансных явлений. Эксплуатационное изменение конфигурации и размеров сети может привести к появлению таких предпосылок. При этом также возможно и превышение границы емкостного тока. Поэтому наилучшим и универсальным решением для таких сетей является резистивное заземление нейтрали. Применение ДГР проблематично из-за существующей несимметрии и большого диапазона изменения емкостного тока. Опыт показывает, что установленные в таких сетях ДГР практически нигде не работают.
    В воздушных распределительных сетях, питающих нефтяные и газовые месторождения, существует проблема кратковременных отключений ВЛ, связанная с недостаточно отработанной технологией самозапуска двигателей насосов. Поэтому такие сети вынужденно работают при сохранении замыкания на землю. Применение ДГР целесообразно в подобных случаях лишь с позиций улучшения условий электробезопасности при ОЗЗ, что требует точной компенсации емкостного тока. Дуговых процессов при замыканиях на ВЛ, как правило, не бывает.
    Городские, поселковые кабельные сети (без ВЛ) достаточно симметричны для применения ДГР, но в отличие от сетей собственных нужд электрических станций имеют постоянно и значительно изменяющуюся конфигурацию, что требует большого диапазона подстройки. Положение осложняется тем, что питающие подстанции, где устанавливаются ДГР, и распределительные городские сети часто имеют разную подчиненность, в том числе и оперативно-диспетчерскую. Это требует обязательной автоматической широкодиапазонной подстройки ДГР. Поэтому универсальным способом для таких сетей является резистивное заземление нейтрали, о чем свидетельствует обширная мировая практика.
    При наличии в поселковых и городских сетях воздушных линий резко обостряется проблема электробезопасности при ОЗЗ, и в соответствии с новыми требованиями ПУЭ (1.7.64**) однофазные замыкания необходимо отключать релейной защитой. Это является дополнительным доводом в пользу резистивного заземления нейтрали.
    Сети, питающие передвижные подстанции и механизмы, торфяные разработки, шахты и т.п., однозначно, в соответствии с 1.7.64 ПУЭ, требуют отключения ОЗЗ релейной защитой. С учетом тех преимуществ, которые дает резистивное заземление (гашение колебательных процессов в сети и формирование селективного признака в виде активного тока в поврежденном присоединении), режим заземления нейтрали через резистор представляется здесь единственно целесообразным, особенно при разветвленной сети.
    В завершение следует отметить, что ключевой момент в определении режима заземления нейтрали сети – это решение о селективном отключении или длительном сохранении режима однофазного замыкания на землю. При сохранении ОЗЗ можно выбирать среди всех указанных в ПУЭ режимов нейтрали, учитывая высказанные в настоящей работе соображения. Если ОЗЗ должно селективно отключаться релейной защитой, преимущественным решением является заземление нейтрали через резистор.

    Каждый электрик должен знать:  Характеристики УЗО для каждой группы электропроводки
Добавить комментарий