Регулирование напряжения в цепях постоянного тока


СОДЕРЖАНИЕ:

Простые электронные ограничители тока

Infineon IRF9540N

В. И. Иволгин, г. Тамбов

Любое электронное устройство имеет источник питания, за счет энергии которого оно выполняет свои функции. И неудивительно, что в печати значительное место отводится их описаниям, рекомендациям по конструированию, рассмотрению работы отдельных узлов, предложениям по их улучшению.

Следует отметить, что современные источники питания, как правило, обладают довольно низким выходным сопротивлением. И по этой причине в нештатных ситуациях, даже при низких напряжениях на их выходе, не исключены значительные токовые перегрузки, приводящие к повреждению источника или самого устройства. В связи с этим источники питания, как правило, снабжаются системами защиты. Они достаточно разнообразны, обладают большей или меньшей автономностью относительно конструкции самого источника.

Один из вариантов такого устройства, которое можно использовать в виде самостоятельного узла, предлагается в [1]. Его принцип действия основан на ограничении потребляемого тока, в качестве датчика которого применяется низкоомный резистор, включенный последовательно в один из проводов между источником питания и нагрузкой. Напряжение с датчика, пропорциональное потребляемому току, после усиления используется для управления проходным транзистором. Изменением в нужный момент режима его работы и выполняется непосредственная защита от перегрузки.

В указанной статье в качестве прототипа приводится хорошо известная структура на двух биполярных транзисторах (Рисунок 1). Основной недостаток устройства – значительное падение напряжения на нем, которое достигает максимального значения при предельном рабочем токе. По данным автора, оно составляет примерно 1.6 В, причем на проходном транзисторе VT1 падает около 1 В, а на токовом датчике Rs – остальные 0.6 В. В связи с чем автором предлагается другая схема, которая позволяет снизить падение напряжения на нем до 0.235 В при токе ограничения в 1.3 А. Это значение достаточно мало, правда достигается оно использованием более сложной схемы, содержащей около 20 элементов [1].

Рисунок 1. Принципиальная схема прототипа
ограничителя тока.

С другой стороны, эта конструкция, по сравнению с предложенной автором, привлекает своей простотой. И в связи с этим возникает вопрос: а можно ли, оставаясь в рамках такой простой структуры, добиться снижения падения напряжения на подобном предохранителе без ее заметного усложнения? И каким образом?

Как следует из приведенных числовых данных по прототипу, наибольшее падение напряжения приходится на проходной биполярный транзистор VT1. Анализ показывает, что при подобном включении добиться его насыщения, и тем самым достичь малых значений падения напряжения, невозможно без дополнительного источника питания. Но его введение только для этой цели было бы накладным. И хотя можно было бы, наверное, предложить и какие-то другие способы уменьшения этих потерь на VT1, будет рациональнее сразу произвести замену биполярного транзистора на полевой с низким значением сопротивления канала. Это позволит уменьшить как падение напряжения на регулирующем транзисторе, так и собственное потребление ограничителя за счет снижения токов управления. Кроме того, целесообразно изменить связи между транзисторами так, чтобы преобразовать ограничитель в систему двух усилительных каскадов, вместо лишь одного в исходной структуре. В конечном итоге принципиальная схема исследуемого ограничителя будет выглядеть уже так (Рисунок 2), которую можно рассматривать и как упрощенный вариант устройства, приведенного в [2].

Рисунок 2. Принципиальная схема преобразованного
ограничителя тока.

Проверка работоспособности предлагаемого ограничителя, а также выполнение измерений, проводились на макете, в котором использовались в качестве VT1 полевой транзистор IRF9540, установленный на радиаторе, VT2 – транзистор SS8550 с β ≈ 300, RS – резистор 1.2 Ом, R1 – 4.2 кОм, а нагрузкой являлся набор переменных проволочных резисторов необходимой мощности. Напряжение на входе ограничителя составляло 12 В. Результаты измерений приведены на Рисунке 3.

Рисунок 3. Зависимость падений напряжения на датчике
тока RS и проходном транзисторе VT1 на
начальной стадии ограничения.

Испытание ограничителя коротким замыканием показало, что при выполнении этой манипуляции ток через проходной транзистор устанавливается на уровне 0.5 А при напряжении на токовом датчике 0.60 В. И, таким образом, подобный ограничитель тока вполне работоспособен. Можно также отметить его довольно высокое выходное сопротивление в режиме ограничения тока – при изменении напряжения на его выходе в интервале 0…11.3 В ток через нагрузку практически остается равным 0.5 А. Кроме того, в связи с известной зависимостью параметров транзисторов от температуры, была проконтролирована зависимость значения ограничения тока от нагрева VT2. Как оказалось, ее величина составила всего около –0.2% относительной погрешности на градус.

Из анализа графиков следует, что падение напряжения на проходном транзисторе этой конструкции уже достаточно мало и даже на краю токового диапазона не превышает 0.1 В. Можно так же отметить, что на графике зависимости падения напряжения на VT1 визуально можно выделить два интервала. На первом из них, при токах от 0 до 0.45 А, рост падения напряжения является его линейной функцией, что указывает на насыщение транзистора в этой части диапазона. И действительно, вычисленное по этим данным сопротивление канала транзистора составляет приблизительно 0.125 Ом, что практически совпадает с паспортными данными используемого транзистора VT1. При бóльших же токах, в интервале 0.45 – 0.5 А, происходит сначала медленный, а затем резкий нелинейный рост этой величины, связанный уже с включением механизма ограничения тока.

Таким образом, из приведенных выше данных следует, что общее падение напряжения на ограничителе заметно снизилось, и уже определяется в основном не падением напряжения на VT1, а напряжением датчика RS. Каким же образом можно уменьшить последнюю величину?

Ответ напрашивается сам собой – нужно уменьшить значение RS, как это и сделано в [1], а для компенсации снижения уровня сигнала датчика использовать дополнительный усилитель. Но с другой стороны, и в рассмотренной выше схеме (Рисунок 2) такой усилитель, выполненный на транзисторе VT2, уже есть. Тем не менее, его параметры не позволяют снизить падение напряжения RS до меньших значений, хотя он и обладает достаточно высоким коэффициентом усиления. В связи с этой проблемой рассмотрим подробнее особенности работы VT2 в роли предварительного усилителя сигнала с датчика тока.

Как следует из принципиальной схемы (Рисунок 2), ограничение тока через VT1 происходит за счет изменения напряжения на его затворе, возникающего при изменении коллекторного тока транзистора VT2. Управление же его режимом осуществляется напряжением с резистора датчика тока RS. И, как следует из данных последних измерений (Рисунок 3), выход устройства на полное ограничение тока происходит только при напряжениях около 0.6 В на его базе относительно эмиттера. Этим обстоятельством и определяется величина сопротивления резистора RS.

Но характерно, что часть напряжения на датчике в диапазоне от 0 до 0.55 В можно считать «лишней», поскольку в этом интервале VT2 практически не «чувствует» его, а по настоящему «рабочим» для него будет только интервал 0.55 — 0.6 В. Сдвинув же нижнюю границу чувствительности усилителя, визуально составляющую 0.55 В, к нулю, можно будет решить проблему снижения значения RS.

Технически этого результата можно достичь, например, вводом в цепь между базой VT2 и правым выводом RS отдельного вспомогательного источника напряжением 0.55 В. Но удобнее сформировать его применением делителя из двух резисторов, включенных между общим проводом и эмиттером транзистора VT1 (резисторы R2, R3, Рисунок 4). И его параметры должны обеспечивать падение напряжения на R2, равное 0.55 В. Для меньшей зависимости этой величины от входного тока транзистора ток этого делителя желательно выдерживать в пределах 0.5 — 1 мА. При этих условиях уже незначительное напряжение на RS переведет транзистор VT2 в активный режим начала ограничения, а полное ограничение тока произойдет при падения напряжения на RS всего лишь немногим более 0.05 В. Понятно, что изменением этих резисторов можно будет изменять порог ограничения тока. И это будет удобнее, чем подбирать величину RS.

Рисунок 4. Принципиальная схема ограничителя
тока со сниженным падением напряжения
на резистивном датчике.

Новая редакция принципиальной схемы ограничителя, уже с учетом изложенных соображений, представлена на Рисунке 4. Его макет для испытаний был выполнен с сохранением деталей устройства предыдущей версии с изменением сопротивления RS на 0.2 Ом, а установленные дополнительные резисторы R2 и R3 имеют значения, соответственно, 680 Ом и 15 кОм. Условия проведения испытаний и измерений сохранены теми же, что и ранее.

Основные результаты испытаний, как следует из представленных графиков (Рисунок 5), сводятся к следующему. Как и ранее, ток короткого замыкания устройства составляет 0.5 А. Точнее, реально при указанных значениях резисторов R2, R3, он составил 0.48 А, но это значение было скорректировано включением последовательно с R3 дополнительного переменного резистора. Что касается максимального значения падения напряжения на датчике RS, то оно упало пропорционально уменьшению величины установленного RS и составило всего около 0.1 В. График падения напряжения на регулирующем транзисторе, по сравнению с аналогичным параметром предыдущей схемы, в общем, сохранил свои черты, хотя и несколько изменился. Так, например, следует обратить внимание на то, что в этот раз область резко нелинейного роста падения напряжения на проходном транзисторе сместилась в диапазон 0.4 — 0.5 А, а в остальной – растет практически линейно. Из этого следует, что определенный резерв по снижению падения напряжения на датчике тока RS еще есть.

Рисунок 5. Зависимость падения напряжения на RS и
проходном транзисторе VT1.

Как уже отмечалось, незначительная коррекция тока ограничения в этой конструкции была проведена изменением сопротивления R3, но когда требуется его значительное изменение, удобнее пользоваться R2. При расчете его величины целесообразно предварительно задаться величиной максимального падения напряжения VSM на датчике тока RS в режиме ограничения. В принципе, это значение может быть любым из интервала от 0 до 0.6 В. Но нужно иметь в виду, что с его уменьшением ухудшается температурная стабильность предложенного решения. Так при VSM = 0.6 В температурный коэффициент зависимости изменения предела ограничения тока в области комнатных температур не превышает значения 0.2% на градус, а при VSM = 0.1 В этот показатель возрастает уже до 1.5% . Эта величина в ряде случаев может оказаться еще приемлемой, и ее условно можно принять за нижнюю границу интервала допустимых значений VSM, верхняя же будет обусловлена максимальным падением напряжения на базе транзистора VT2 в режиме ограничения тока. Если для расчета выбрать VSM равным 0.15 В, то из этого условия при заданном токе ограничения IM, например, 1.5 А, определится величина

Далее, допустив, что в режиме ограничения сумма падений напряжения на RS и R2 будет равняться 0.6 В, как это следует из результатов предшествующих измерений (Рисунок 3), получим уравнение:

из которого следует, что

При VВХ = 12 В и R3 = 15 кОм получаем, что R2 = 0.58 кОм.

При необходимости этим резистором, если его заменить на переменный, можно будет оперативно менять ток ограничения в значительных пределах, что, правда, будет сопровождаться изменением величины максимального падения напряжения VSM и соответствующего ему изменения температурного коэффициента нестабильности.

Подводя итог обсуждению вопроса о конструкции простого ограничителя тока (Рисунок 4), можно сделать вывод о том, что изменения, внесенные в структуру прототипа (Рисунок 1), в конечном итоге, позволили снизить потери напряжения на нем до десятых долей вольта. Следует также добавить, что его работа выборочно была проверена и в других режимах, не отраженных в статье. В частности, при токах ограничения в диапазоне от 10 мА до 5 А и входных напряжениях 7, 12 и 20 В. Для адаптации к этим условиям изменялись лишь значения RS ( 0.05, 0.2 и 1.2 Ом), а для задания тока ограничения в качестве R2 использовался переменный резистор на 1 кОм, сопротивление которого устанавливалось в соответствии с расчетом по (2). Все остальные элементы, включая и транзисторы, оставались прежними.

Лабораторная работа: Регулирование напряжения и исследование цепи переменного и трехфазного тока Испытание однофазного

Министерство образования Российской Федерации

Лабораторная работа №2

Регулирование напряжения и электрических цепей

Выполнил: Колосов М.В.

Проверил: Первухин М.В.

Красноярск, 2003 г.

1. Исследовать два способа регулирования напряжения в электрических цепях с применением регулировочного процесса;

2. Экспериментально определить диапазоны регулирования при включении регулировочного реостата последовательно с нагрузкой и использовании его в качестве делителя;

3. На основе анализа результатов опытов делают вывод о способе регулирования напряжения в зависимости от пределов регулирования.

1. Собрать цепь согласно схеме рис. 1.

2. Изменяя сопротивление введенной части реостата от R1 =R до R1 =0 выполнить 5-7 замеров тока и напряжения.

3. Рассчитать полное сопротивление цепи Rц , Сопротивление нагрузки Rн , мощность, потребляемую нагрузкой и цепью, коэффициент полезного действия. Результат измерений занести в таблицу 1.

4. Построить графики Uн = f(R1 ) и h = f(R1 ), провести их анализ.

5. Собрать цепь согласно схеме рис. 2.

6. Перемещая движок регулировочного реостата, изменяя сопротивление R2 , от 0 до R. Выполнить 5-7 замеров тока и напряжения.

7. Вычислить полное сопротивление регулировочного реостата R, сопротивление нагрузки Rн , мощность, потребляемую нагрузкой и цепью, коэффициент полезного действия. Результат измерений занести в таблицу 2.

8. графики Uн = f(R2 ) и h = f(R2 ), провести их анализ.

9. Построить вольт Амперную характеристику Iн = f(Uн ) по опытным данным.

2. Pн = I 2 R – формула мощности, потребляемой нагрузкой;

— формула коэффициента полезного действия;

— формула сопротивления введенной части регулировочного реостата.

Ответ: 1) Uн = 40 В; 2) Uн = 240 В.

Ответ: 1) Uн = 200 В; 2) Uн = 100 В; 3) Uн = 50 В.

Министерство образования Российской Федерации

Лабораторная работа №4

Исследование цепи переменного тока с последовательным соединением приемников

Выполнил: Колосов М.В.

Проверил: Первухин М.В.

Красноярск, 2003 г.

1. Исследовать амплитудно-фазовые соотношения в цепи с последовательным соединением резистора и конденсатора.

2. Исследовать резонансный режим в цепи с последовательным соединением индуктивной катушки и конденсатора переменной емкости.

3. Научится экспериментально определять параметры приемника.

1. Собрать цепь согласно схеме рис. 1.

2. Изменяя емкость батареи конденсаторов, выполнить пять-семь замеров тока и напряжений на участках цепи. Напряжения питания Uист определить по показаниям вольтметра V2 при выключенных конденсаторах. Результаты измерений занести в таблицу 1.

3. Рассчитать полное, активное , емкостное сопротивления цепи, емкость конденсаторов, cosj и угол j по показаниям приборов. Результаты расчета вписать в таблицу 1.

4. По результатам эксперимента начертить:

а) Векторные диаграммы для двух значений емкости;

б) Треугольник сопротивлений для одного значения емкости.

C = 2.9 мкФ С = 10,8 мкФ

5. Собрать цепь согласно схеме рис. 2.

6. Показания приборов занести в таблицу 2.

7. Вычислить полное, активное, емкостное, индуктивное сопротивления цепи, емкость батареи конденсаторов, значение cosj.

8. Построить графики зависимостей I = f(C); Z = f(C); cosj = f(C).

Решение: При последовательном соединении

Решение: При последовательном соединении

Uист = UR + Uс => UR = Uист — Uс = 150 – 100 = 50 В

Косинус угла между напряжениями: .

Решение: Соединение последовательное, значит токи, протекающие по всем элементам равны.

так, как при резонансе , то

Ответ: С = 20 мкФ, Iр = 1 А.

Сибирский Федеральный Университет

Лабораторная работа №6

Исследование цепи трехфазного тока с однофазными приемниками, соединенными звездой

Выполнил: студент ТЭ08-07

1. Исследование влияния величины сопротивления одного из трех однофазных приемников, соединенных звездой и включенных в четырех проводную сеть, на ток в нулевом проводе.

2. Исследовать влияние величины сопротивления одного из трех однофазных приемников, соединенных звездой и включенных в трехпроходную сеть, на напряжение между нейтралами.

1. Собрать цепь согласно схеме рис. 1.

2. Увеличивая сопротивление одного из ламповых реостатов до бесконечности, записать значения в таблицу.

3. Отсоединить нулевой провод. Настроить цепь на симметричный режим. Увеличивая сопротивление одного из ламповых реостатов до бесконечности, записать значения в таблицу.

4. Построить график изменения тока в нулевом проводе, в зависимости от сопротивления фазы, у которой его увеличивали.

Министерство образования Российской Федерации

Лабораторная работа №9

Испытание однофазного трансформатора

Выполнил: Колосов М.В.

Проверил: Первухин М.В.

Красноярск, 2003 г.

1. Ознакомится с устройством однофазного трансформатора.

2. Произвести испытание трансформатора в режимах холостого хода и короткого замыкания.

3. Исследовать работу нагруженного трансформатора.

1. Собрать цепь согласно рис.1.

2. Разомкнув ключ К и отсоединив провод от амперметра А2 , перевести трансформатор в режим холостого хода. Плавно повышая входное напряжение от U1 x = 0 В до U1 x = 250 В, записать показания вольтметра и амперметра в таблице 1.

3. При номинальном напряжении на входе (U = 220 В) записать показания всех приборов в таблице 2.

4. Рассчитать параметры намагничивания ветви Г – образной схемы замещения трансформатора, коэффициент трансформации, коэффициент мощности cosj10 . результаты расчетов занести в таблицу 2.

5. Понизить напряжение на входе трансформатора до нуля, зашунтировать амперметр А1 в цепи первичной обмотки, коротким проводником замкнуть выводы вторичной обмотки. Плавно повышая напряжения на первичной обмотке установить ток I = 0,28 А. Показания приборов записать в таблицу 3.

6. Рассчитать параметры, определяемые в опыте короткого замыкания трансформатора, коэффициент мощности cosj и результаты занести в таблицу 3.

7. Снять коротко замыкающий проводник с зажимов вторичной обмотки трансформатора в первоначальном варианте по схеме рис.1.

8. Подать на вход трансформатора номинальное напряжение U = 220В и поддерживать его постоянным.

Произвести пять – семь замеров напряжений, токов, мощностей при уменьшении сопротивления нагрузочного реостата до достижения тока I2 = 5 А.

9. Результаты измерений и вычислений занести в таблицу 4.

10. По полученным данным построить характеристику холостого хода (I1 x = f(U1 x )) и внешнюю (U2 = f(I2 )).

a) Схема замещения трансформатора при опыте холостого хода.

б) Схема замещения трансформатора при опыте короткого замыкания.

в) Упрощенная схема замещения трансформатора.

Ответ: Rx = 800 Ом, Xx = 774 Ом, Хк = 293 Ом,
Zк = 293 Ом, Rк = 89 Ом.

Министерство образования Российской Федерации

Лабораторная работа №10

Фазировка и пуск трехфазного асинхронного двигателя с коротко замкнутым ротором

Выполнил: Колосов М.В.

Проверил: Первухин М.В.

Красноярск, 2003 г.

1. Ознакомится с конструктивным устройством трехфазного асинхронного двигателя.

2. Научится определять начала и концы фаз обмотки статора.

3. Ознакомится со схемой переключения обмотки статора с треугольника на звезду в первом этапе пуска.

4. Установить опытным путем соотношение величин линейных токов при соединении обмотки статора звездой и треугольником.

1. Собрать цепь согласно рис.1.

2. С помощью переключателя П произвести пуск двигателя при соединении фаз обмоток обмотки статора звездой. Записать величины пускового и установившегося токов в таблицу 1.

3. Произвести пуск двигателя при соединении фаз обмотки статора треугольником. Записать величины пускового и установившегося токов в таблицу 1.

4. Произвести пуск двигателя при соединении фаз обмотки статора звездой. После разгона двигателя быстро перевести переключатель П в положение «треугольник». Записать значения тока переключения.

5. Составить заключение по результатам выполнения работы.

Переключение фаз обмотки статора с положения «звезда» в положение «треугольник» можно осуществить при условии, что при нормальной работе двигателя фазы его статорной обмотки соединены треугольником. На период пуска обмотка соединяется звездой. При этом фазные напряжения и токи уменьшаются в раз, а пусковой момент и линейный ток в 3 раза, что и показал результат нашего эксперимента.

Ответ: W0 = 1047 рад/с.

Сибирский Федеральный университет

Лабораторная работа №11

Испытание трехфазного асинхронного двигателя

Выполнил: студент ТЭ08-07

1. Ознакомится с конструкцией трехфазного асинхронного двигателя;

2. Научится экспериментально определять рабочие характеристики асинхронного двигателя.

1. Собрать схему согласно рис 1.

2. Установить максимальное значение тока электромагнитного тормоза, равное 16 А на стендах, где амперметр панели тормоза имеет предел 20 А. На стендах, где амперметр тормоза имеет меньший предел измерения, установить максимальное значение тока, равное пределу измерения. Произвести отсчеты по всем приборам (кроме амперметра тормоза) и записать их в табл. 1, после чего уменьшить ток тормоза до нуля.

3. После работы двигателя в режиме холостого хода 2…3 мин., создать момент сопротивления при меньшем токе тормоза, Записать отсчеты, снова перевести двигатель в режим холостого хода. Работа двигателя с нагрузкой меньше номинальной может быть получена, например, при токах тормоза 12, 10, 8, 6, 4, 2 А. Результаты измерений занести в табл. 1.

4. Построить механическую характеристику n2 = f(M) и рабочие характеристики I = f(M), cosj = f(M), h = f(M) трехфазного асинхронного двигателя.

Правда о пяти мифах частотно-регулируемого привода

Независимо от того, насколько давно и каким образом, уже обыденные частотные преобразователи пришли в Вашу жизнь, где-то есть тот, кто впервые стукнулся с ЧРП или только рассматривает возможность их применения. Вспомните, когда вы впервые задумались о применении одного из современных частотных преобразователей с широтно-импульсной модуляцией для двигателя переменного тока. Скорее всего, у вас, на тот момент, было не совсем верное представление об их возможностях и назначении. В этой статье мы рассмотрим и постараемся развеять пять распространенных мифов о частотно регулируемом приводе.

Рис. 1. Частотный преобразователь

Миф № 1: Выходной сигнал частотного преобразователя является синусоидальным

Людям, так или иначе связанные с эксплуатацией электродвигателей в, как правило, знакома работа асинхронных двигателей переменного тока с использованием пускателей. При пуске электродвигателя, пускатель замыкает контакты обмоток электродвигателя с фазами 3-х фазной питающей сети. Напряжение каждой фаза представляет собой синусоидальную волну. Приложенное напряжение создает на клеммах электродвигателя тоже синусоидальной формы с той же частотой (можно убедится проверкой напряжения на клеммах электродвигателя). Пока вроде всё просто и понятно.

А вот что происходит на выходе преобразователя частоты, это совсем другая история. Частотный преобразователь обычно выпрямляет входное трехфазное переменное в постоянное напряжение, которое фильтруется и аккумулируется при помощи больших конденсаторов звена постоянного тока. Напряжение звена постоянного тока затем инвертируется, для получения переменного напряжения, переменной частоты на выходе. Процесс инверсии осуществляется посредством трех изолированных биполярных транзисторов (IGBT) с двумя изолированными затворами — по одной паре на выходную фазу (см. Рис 2). Поскольку выпрямленное напряжение инвертируется в переменное, выходное звено называют «инвертором». Включение, выключение, а также длительность нахождения IGBT-транзисторов в положении ВКЛ или ВЫКЛ может управляться, что и определяет значение частоты выходного напряжения. Отношение выходного среднеквадратического напряжения к выходной частоте определяет магнитный поток, развиваемый в электродвигателе переменного тока. Когда выходная частота увеличивается, выходное напряжение также должно увеличиваться с той же скоростью, чтобы поддерживать постоянство отношения и, следовательно, постоянную скорость вращения двигателя. Обычно соотношение между напряжением и частотой поддерживается по линейному закону, что обеспечивает возможность поддержания постоянного крутящего момента.

Рис. 2. Схема инвертора с IGBT транзисторами

Результирующий сигнал напряжения, прикладываемый к обмотке двигателя, не является синусоидальным (см. Рис. 3). Обратите внимание, что иногда отношение напряжения по частоте (V / f) может быть отличным от линейного, что характерно для вентиляторов, насосов или центробежных нагрузок, которые не требуют постоянного крутящего момента, но обеспечивают тем самым возможность экономии электроэнергии.

Рис. 3. Форма сигнала ШИМ напряжения на выходе частотного преобразователя

Как же отразится пилообразная форма питающего напряжения на работе электродвигателя. Асинхронный двигатель является по своей сути большой катушкой индуктивности. А характерной особенностью индукции является ее устойчивость к изменениям тока. Увеличивается или уменьшается сита ток, индукция будет выступать против этого изменения. Какое же это имеет отношение к форме сигнала напряжения ШИМ на рисунке 3? Вместо того, чтобы позволить импульсу тока увеличиваться в том же порядке, что и приложенный импульс напряжения, ток начнет медленно возрастать. Когда импульс напряжения закончился, ток плавно уменьшается, а не исчезает мгновенно. В общих чертах это происходит следующим образом: до момента, когда ток снизился до нуля, поступает следующий импульс напряжения, и ток начинает плавно увеличиваться. Если последующий импульс становятся шире, ток плавно достигает большего значения, чем раньше. В конце концов, текущий сигнал становится синусоидальным, хотя и с некоторыми зубчатыми переходами (см. Рис. 4).

Рис. 4. Форма сигнала тока на выходе частотного преобразователя

Однако не думайте, что вы можете подключить свой соленоид к фазам выходного напряжения ЧРП. Это всё же не совсем переменное напряжение.

Миф № 2: все частотные преобразователи одинаковы

В общем виде частотно-регулируемый привод сегодня является довольно зрелым продуктом. Большинство коммерчески доступных приводов содержат одни и те же базовые компоненты: мостовой выпрямитель, блок питания, конденсаторный блок постоянного тока и плата выходного инвертора. Разумеется, существуют различия в алгоритмах управления переключением транзисторов IGBT инвертора, надежности компонентов и эффективности схемы теплового рассеивания. Но основные компоненты остаются прежними.

Есть также исключения. Например, в некоторых ЧРП инвертер имеет три вывода. Такая схема позволяет выходным импульсам варьироваться от половинного до полного импульса сигнала напряжения (см. Рис. 5).

Рис. 5. Трехуровневый выходной сигнал напряжения

Для достижения трехуровневого выходного сигнала звено инвертора должно иметь в два раза больше выходных переключателей, а также запирающих диодов (см. Рис. 6). Преимущества трехуровневой схемы заключается в уменьшении перенапряжения на двигателе из-за гармонических волн, снижении синфазных помех, а также снижении паразитных токов на валах и подшипниках.

Рис. 6. Схема трехуровневого инвертора

Матричный инвертор является еще более нетипичным типом ЧРП. Частотные преобразователи с матричными инверторами не имеют шины постоянного тока или мостового выпрямителя. Вместо этого они используют двунаправленные переключатели, которые могут подключать любое из входящих фазных напряжений к любой из трех выходных фаз (см. Рис. 7). Преимущество этой схемы заключается в том, что мощность может свободно протекать от сети к двигателю или от двигателя к сети для рекуперативного привода постоянного тока. Недостатком является то, что на входе необходима установка фильтра, для обеспечения дополнительной индуктивности и фильтрации формы ШИМ, чтобы исключить негативное влияние на питающую сеть.

Рис. 7. Схема матричного ЧРП

Кроме частотных преобразователей с трехуровневыми выходами и инверторами матричного типа существуют также и другие типы частотно-регулируемых приводов. Таким образом миф о том, что все частотные преобразователи одинаковые развеян.

Миф № 3: Частотный преобразователь компенсирует коэффициентом мощности.

Нередко можно увидеть, что производители частотных преобразователей заявляют значение коэффициента мощности, например, равным 0,98 или почти 1. Действительно коэффициент мощности несколько улучшается после установки ЧРП перед асинхронным двигателем. ЧРП компенсирует реактивную мощность за счет конденсаторного звена. Однако полностью компенсировать фазовый сдвиг преобразователь частоты не может.

Полный коэффициент мощности должен включать реактивную мощность, вызываемую гармониками, создаваемыми в звене постоянного тока. Причиной является работа диодного моста. Важно помнить, что диод работает только тогда, когда напряжение на стороне анода выше, чем напряжение на стороне катода (прямое смещение). Это означает, что диоды открыты только на пике каждой временной фазы как положительной, так и отрицательной частей синусоидальной волны. Это приводит к волнообразной форме волны. Это также приводит к искажению входного тока и прерыванию (см. Рис. 8).

Рис. 8. Форма сигналов после выпрямителя

Чтобы вычислить истинный полный коэффициент мощности (PF), необходимо учесть эффекты гармоник. Следующее уравнение показывает, как гармоники влияют на полный коэффициент мощности:

где THD = суммарное гармоническое искажение

Для прерывистого сигнала входного тока в уравнении THD будет находиться в районе 100% или более. Подставляя это в уравнение, получаем истинный коэффициент мощности PF ближе к 0,71, по сравнению с заявленным 0,98, который не учитывает гармоники.

Но не всё так плохо. В настоящее время существует множество способов гармонические искажения, создаваемые в звене постоянного тока. Они используют как пассивные, так и активные методы подавления искажений входного сигнала. Так, например, вышеупомянутый матричный преобразователь частоты является примером активного метода подавления гармонических искажений.

Миф № 4: С частотным преобразователем Вы можете эксплуатировать двигатель на любой скорости.

Особенность применения частотных преобразователей заключается, что они могут изменять как напряжение, так и частоту выходного сигнала. Благодаря возможности обеспечения требуемой скорости вращения электродвигателя ЧРП нашли широкое применение во всех сферах экономики и всех отраслях промышленности ЧРП может легко выдавать сигнал любой частоту в пределах предусмотренного изготовителем диапазона регулирования. Однако необходимо учитывать, что частотный преобразователь работает в составе электродвигателя в реальных условиях. Технологические требования, такие как необходимый крутящий момент, охлаждение, требуемая мощность так или иначе ограничивают фактический диапазон регулирования преобразователя частоты.

Ограничение № 1. С точки зрения охлаждения электродвигателя, низкая скорость вращения — это не очень хорошая идея. В частности, полностью закрытые вентиляторные (TEFC) двигатели имеют охлаждаются только за счет внутреннего вентилятора, который вращается вместе с валом двигателя. Чем медленнее скорость вращения двигатель, тем меньше поток воздуха и тем хуже охлаждение. Закрытые двигатели обычно не рекомендуются эксплуатировать с частотой ниже 15 Гц (диапазон скоростей 4:1).

Ограничение № 2: Электродвигатели имеют определенные ограничения диапазона скоростей, связанные с механическими и динамическими ограничениями нагрузок вращающихся частей. Обычно эта скорость называется максимальной безопасной частотой вращения. Данная характеристика не всегда указывается на шильдике мотора.

Ограничение № 3: При достижении максимальной частоты вращения крутящий момент двигателя может снижаться. Это ограничение скорости связано с ограничением мощности, которое включает в себя скорость вращения и крутящий момент. Если быть еще точнее, что будет снижаться напряжения ЧРП. Обратите внимание, что вращение двигателя также генерирует собственное напряжение, называемое обратной электродвижущей силой (ЭДС), которое увеличивается со скоростью. Обратная ЭДС создается двигателем, чтобы противостоять приложенному напряжению от ПЧ. На более высоких скоростях ПЧ должен подавать еще большее напряжения, чтобы преодолеть обратную ЭДС, и ток мог протекать по обмоткам двигателя, создавая крутящий момент. После определенного максимального значения преобразователь частоты не может преодолеть обратную ЭДС электродвигателя, и, следовательно, крутящий момент двигателя уменьшается, что, в свою очередь, снижает скорость. Снижение скорости опять приводит к более низкой обратной ЭДС, которая, в свою очередь, позволяет протекать току в двигатель снова. Существует точка равновесия, в которой двигатель достигает максимальной скорости при максимальном крутящем моменте.

Как упоминалось выше ЧРП может создавать крутящий момент на двигателе, сохраняя постоянство отношения V/f (см. Рис. 9).

Рис. 9. График зависимости напряжения от частоты

Когда частота выходного сигнала увеличивается, напряжение увеличивается линейно. Проблема возникает, когда частота превышает номинальную частоту двигателя. Помимо номинальной частоты, не может увеличиваться выходное напряжение, что соответственно приводит к уменьшению отношения V / f. Отношение V / f является мерой напряженности магнитного поля в двигателе и влияет на его крутящий момент. Следовательно, способность мотора создавать номинальный крутящий момент при частоте выше номинальной должна уменьшаться со скоростью 1 / частота, при этом произведение крутящего момента и частоты, равное мощности, является постоянным. Область работы над номинальной частотой называется постоянным диапазоном мощности, а работа на скоростях ниже номинальной — диапазоном постоянного крутящего момента (см. Рис. 10).

Рис. 10. Графики зависимости мощности и крутящего момента электродвигателя от частоты

Миф № 5: Входной ток преобразователя частоты выше выходного тока

Возможно, это не миф, а недоразумение. Некоторые пользователи ПЧ измеряют значение выходного и входного тока с помощью измерительного инструмента или с помощью мониторов ПЧ и обнаруживают, что входной ток намного ниже выходного. Это похоже не согласуется с идеей о том, что частотный преобразователь должен иметь некоторые потери и поэтому вход всегда должен быть немного выше, чем выход. Концепция правильная, но она учитывает мощность, а не ток, который следует учитывать:

Входное напряжение всегда находится под напряжением переменного тока. Выходное напряжение изменяется со скоростью по образцу V / f. На самом деле компоненты уравнения немного сложнее. Но ключом к пониманию данного процесса является знание того, что асинхронный двигатель имеет два токовых компонента: один отвечает за создание магнитного поля в двигателе, которое необходимо для вращения двигателя; а второй — ток, создающий крутящий момент, который, как следует из названия, отвечает за создание крутящего момента.

Привод потребляет входной ток, пропорциональный активному крутящему моменту двигателя. Ток, необходимый для создания магнитного поля, обычно не изменяется со скоростью и обеспечивается основными конденсаторами звена постоянного тока, которые заряжаются при включении питания ПЧ. При малых значения крутящего момента выходной ток может быть намного выше, чем входной, поскольку входной ток отражает только составляющую, создающую крутящий момент плюс некоторые гармоники, но не включает ток намагничивания. Ток намагничивания циркулирует между конденсаторами шины постоянного тока и двигателем. Даже при полной нагрузке входной ток обычно будет ниже, чем ток двигателя, поскольку на входе по-прежнему нет составляющей тока намагничивания.

Помните, что в уравнении мы сравниваем входную и выходную мощности. Например, рассмотрим полностью нагруженный двигатель, вращающийся на низких оборотах. Входное напряжение номинальное, а выходное напряжение будет низким из-за низкой скорости вращения. Выходной ток в данном случае будет высокий из-за полной нагрузки на двигатель. А чтобы сбалансировать уравнение мощности, входной ток должен быть ниже выходного тока.

Узнать подробную информацию о частотных преобразователях, ознакомиться с производственной линейкой YASKAWA Вы можете у ООО «КоСПа».

Или в соответствующем разделе преобразователя YASKAWA.

Регулирование напряжения в цепях постоянного тока

Регулирование тока и напряжения

В цепях постоянного тока

Регулирование силы тока реостатом

Цель работы — изучение одного из способов регулирования силы тока.

В работе используются:

— резисторы R1 = 150 Ом (потенциометр); R2 = 30 Ом; 51 Ом;

Соберите схему исследования, приведенную на рис. 1. Установите ось потенциометра R1 в среднее положение. Ручку регулятора выходного напряжения источника питания ИП1 поверните до упора против часовой стрелки.

Включите стенд. Установите на выходе источника питания по вольтметру PV напряжение 3 В.

Название: Регулирование напряжения и исследование цепи переменного и трехфазного тока Испытание однофазного
Раздел: Рефераты по физике
Тип: лабораторная работа Добавлен 05:20:24 10 декабря 2010 Похожие работы
Просмотров: 1803 Комментариев: 14 Оценило: 3 человек Средний балл: 5 Оценка: неизвестно Скачать
Рис. 1

Поверните ось потенциометра R1до упорав сторону уменьшения его сопротивления и измерьте максимальный ток в цепиImax. Поверните ось потенциометра R1до упора в обратном направлении, полностью введя его. При этом ток в цепи станет минимальным Imin. Запишите минимальное и максимальное значение тока в цепи в табл.1.

Рассчитайте кратности регулирования тока в цепи — отношения максимальных Imax и минимальных Imin токов. Этот параметр характеризует эффективность регулирования тока.

Включите шунт RШ3амперметра, получив предел измерения 1 А.. Исключите из цепи резистор R2, закоротив его соединительным проводом.


Постепенно уменьшая сопротивление потенциометра R1 и увеличивая при этом ток в цепи, добейтесь срабатывания электронной защиты источника питания ИП1. Отметьте максимальный выходной ток источника питания ИП1.

Вывод: ток в цепи можно регулировать последовательно включенным переменным резистором — реостатом.

1. Какие способы регулирования силы тока в цепи вы знаете?

2. Можно ли с помощью реостата регулировать силу тока от 0?

3. Составьте схему, которая позволит изменять силу тока в цепи вдвое.

Регулирование напряжения в цепях постоянного тока

Цель работы — изучение схем регулирования постоянного напряжения.

В работе используются:

— резисторы R1 = 150 Ом (потенциометр); R2 = 20 Ом; 51 Ом;

1. Соберите электрическую схему, пользуясь рис.2.

Установите ручку регулятора выходного напряжения источника питания ИП1 в среднее положение. Включите стенд. Поверните ось потенциометра R1в крайнее положение по часовой стрелке, при этом напряжение на нагрузке R2должно быть максимальным Umax. Поверните ось потенциометра в крайнее положение против часовой стрелки — напряжение на нагрузке станет минимальным Umin.

Повторите измерения с резистором нагрузки сопротивлением 51 Ом.

Рассчитайте коэффициенты перекрытия для двух резисторов нагрузки по формуле

Результаты измерений занесите в табл. 2

Сопротивление нагрузки, R Ом
Максимальное напряжение,Umax
Минимальное напряжение, Umin, В
Коэффициент перекрытия, Кпер

2. Соберите электрическую схему исследования, пользуясь рис. 3.

Установите ручку регулятора выходного напряжения источника питания ИП1 в среднее положение. Включите стенд. Поверните ось потенциометра R1 в положение, при котором напряжение на нагрузке максимально. Установите напряжение на нагрузке 5 В. Убедитесь, что при повороте оси потенциометра в противоположное крайнее положение напряжение на нагрузке уменьшится до нуля. Запишите величину Umax и Umin.

Выводы: существует два основных способа регулирования напряжения в цепях постоянного тока — реостатом, включенным последовательно с нагрузкой, и потенциометром;

первый способ позволяет получить ограниченный коэффициент перекрытия, который определяется соотношением максимального сопротивления реостата и сопротивления нагрузки;

второй способ позволяет изменять напряжение на нагрузке от 0 до максимального, но при этом значительная часть мощности теряется на потенциометре, так как в реальных схемах ток потенциометра должен быть в несколько раз больше тока нагрузки — только при таком соотношении удается получить достаточно широкий интервал регулирования.

1. Постройте графики зависимостей напряжения на нагрузке для изученных схем от угла поворота оси потенциометра R1 при условии, что сопротивление потенциометра распределено равномерно по длине намотки.

ТЯГОВЫЕ ТРАНСФОРМАТОРЫ. РЕГУЛИРОВАНИЕ НАПРЯЖЕНИЯ

Трансформаторы.

Как известно, трансформаторы способны повышать или понижать подведенное напряжение переменного тока. Напомним, что на дорогах, электрифицированных на переменном токе, номинальное напряжение в контактной сети равно 25 кВ, а тяговые двигатели работают при номинальном напряжении 900—1600 В. Тяговые трансформаторы электровозов понижают напряжение до значения, наиболее благоприятного для работы тяговых двигателей. Известно, что отношение напряжения первичной обмотки U1 к напряжению вторичной обмотки U2 при холостом ходе может быть принято равным отношению чисел их витков (соответственно w1 и w2), т. е.
U1 : U2 = w1 : w2.
Таким образом, выбирая необходимое соотношение между числом витков первичной и вторичной обмоток, можно менять соотношение напряжений и тем самым регулировать частоту вращения якорей тяговых двигателей. Это проще и экономичнее, чем регулировать ее, включая в цепь тяговых двигателей пусковые резисторы и применяя различные группировки двигателей. Следовательно, то или иное вторичное напряжение можно получить, изменяя число витков в первичной (рис. 52, а) или вторичной (рис. 52, б) обмотке. Какой же способ лучше?

Рис. 52. Схемы, поясняющие регулирование напряжения
на первичной (а) и вторичной (б) сторонах тягового трансформатора

Казалось бы, удобнее изменять число витков в первичной обмотке понижающего трансформатора, так как ток в ней меньше. Однако регулировать напряжение U1 в широких пределах трудно по следующей причине.
Если необходимо постепенно повышать напряжение на вторичной обмотке, то нужно, переключая соответствующие контакты 1, 2, 3, 4, уменьшать число витков первичной обмотки (см. рис. 52, а). Напряжение, приходящееся в этом случае на один виток, будет по мере выполнения переключений увеличиваться. Одновременно магнитный поток в магнитопроводе трансформатора будет индуцировать э. д. с. и в отключенных витках. Поэтому по мере уменьшения числа витков первичной обмотки напряжение между ее началом и концом будет возрастать. Если, например, число витков последней секции меньше числа витков всей обмотки в 5 раз, то при напряжении контактной сети 25 кВ напряжение между началом и концом первичной обмотки составит 25 * 5 = 125 кВ. На это напряжение должна быть рассчитана изоляция трансформатора. Понятно, что такой способ на электровозах, где требуется регулировать напряжение в широких пределах, не применяют.

Регулирование на стороне высшего напряжения тягового трансформатора. Как уже было отмечено (см. рис. 52, а), практически это регулирование нельзя осуществить изменением числа витков обмотки высшего напряжения. Приходится применять трансформаторы с регулировочной обмоткой Р (рис. 53). Эту обмотку размещают на дополнительном стержне сердечника трансформатора, площадь сечения которого вдвое больше, чем у остальных. Выводы (отпайки) регулировочной обмотки, представляющей собой автотрансформатор, используют для регулирования напряжения на первичной обмотке Р трансформатора, имеющего постоянный коэффициент трансформации, а значит, и на вторичной обмотке В.

Рис. 53. Схема регулирования напряжения
на первичной стороне трансформатора с дополнительной регулировочной обмоткой

В начале пуска двигателей замкнут контактор 5 и весь магнитный поток, создаваемый обмоткои Р, замыкается через нижний стержень трансформатора. Напряжение на обмотке В равно нулю. Повышают напряжение на обмотках П и В, переключая контакторы 1—5. В результате этого часть магнитного потока, создаваемого обмоткой Р, ответвляется в средний стержень, а часть проходит через нижний. Число витков обмотки Р вдвое больше, чем обмотки В. Поэтому, когда переключатель секций обмотки Р займет среднее положение и число ее витков, подключенных к обмотке П, станет равным числу витков обмотки В, весь магнитный поток будет замыкаться через средний стержень. Дальнейшее уменьшение числа витков обмотки Р, подключенных к обмотке П, приведет к тому, что магнитный поток в среднем стержне станет больше, чем в верхнем, и избыточная часть его будет замыкаться через нижний стержень. Когда напряжение на обмотке Я достигнет напряжения контактной сети, половина магнитного потока среднего стержня пойдет через верхний и половина через нижний стержень. Следовательно, в верхнем стержне при любой позиции переключателя магнитный поток не изменяется, и поэтому в обмотке Р не возникнет напря­жение, превосходящее напряжение в контактной сети, как это происходит в схеме, показанной на рис. 52, а. Регулировочная обмотка электровозных трансформаторов состоит из 32 — 35 секций.
Достоинства системы регулирования на стороне высшего напряжения заключаются в сравнительно малых габаритных размерах переключающих аппаратов, так как токи здесь в 10—20 раз меньше, чем при регулировании на стороне низшего напряжения. Кроме того, напряжения секций регулировочной обмотки не должны быть обязательно равны, как сопротивления секций пусковых реостатов в параллельных ветвях силовой тяговой цепи электровозов постоянного тока. Ступени напряжения можно выбирать в зависимости от условий работы, на которые рассчитан электровоз.
Однако при такой системе регулирования усложняется конструкция трансформатора и переключающей аппаратуры, рассчитанной на напряжение контактной сети. Кроме того, в этом случае сравнительно невысок коэффициент мощности.
Регулирование на стороне высшего напряжения использовано на электровозах ЧС4 и ЧС8, поставляемых в Советский Союз из Чехословакии. Электрическое оборудование, а также принятый принцип регулирования напряжения этих электровозов отражают традиции, существующие в зарубежном электровозостроении.

Регулирование на стороне низшего напряжения. На отечественных электровозах переменного тока всех серий регулируют напряжение на вторичной стороне трансформаторов (см. рис. 52, б). Осуществить практически это не так просто, как кажется на первый взгляд. Допустим, что в начале пуска был замкнут контактор 1 и к потребителю подводилось напряжение секции а . Чтобы увеличить напряжение, нужно к этой секции подсоединить секцию б, выключив контактор 1 и включив контактор 2. Но при этом на определенный промежуток времени потребитель был бы отключен от источника питания, т. е. электровоз работал бы рывками. Можно сделать и так: не отключая контактор 1, включить контактор 2 и только после этого выключить контактор 1. Однако и это плохо, потому что на некоторое время секция б окажется короткозамкнутой, что недопустимо. Поэтому секции трансформатора переключают, используя переходные реакторы (рис. 54, а) или резисторы.

Рис. 54. Схема переключения секций трансформатора с помощью переходного реактора

Реактор может быть выполнен без стального сердечника с обмоткой, имеющей вывод от средней точки. Особенность такого реактора заключается в том, что его индуктивное сопротивление зависит от направления токов в полуобмотках: при встречном включении сопротивление невелико, а при согласном (или при прохождении тока только в одной из полуобмоток) оно значительно больше.
В исходном положении начало и конец реактора подключены к одному выводу вторичной обмотки трансформатора (допустим, к выводу 2). Ток нагрузки делится между полуобмотками реактора поровну и направлен в них встречно, поэтому индуктивное сопротивление реактора равно нулю. Чтобы увеличить напряжение, подводимое к потребителю, один вывод реактора отсоединяют от вывода 2 трансформатора и присоединяют к выводу 3 (рис.54, б), замыкая тем самым секцию 2—3 на переходной реактор. Ток в короткозамкнутом витке i0 не опасен для обмотки секции, так как он ограничен соответственно выбранным индуктивным сопротивлением реактора. Затем вывод реактора отсоединяют от вывода 2 трансформатора и присоединяют к выводу 3. В таком же порядке осуществляют последующие переключения секций трансформатора.
Переходной реактор используют также и для увеличения числа ступеней регулирования напряжения, подводимого к тяговым двигателям. Для этого присоединяют к каждому выводу обмотки трансформатора два контактора (рис. 55, а).

Рис. 55. Схема включения перходного реактора
на различных ступенях регулирования напряжения

Нечетные и четные контакторы соединяют соответственно с двумя шинами, между которыми включен переходной реактор. Если замкнуты контакты 1 и 2, к тяговым двигателям подводится напряжение первой секции, и ток в полуобмотках реактора направлен встречно так, как показано на рис. 54, б.
Чтобы повысить напряжение, а зна­ит, к скорость электровоза, отключают контактор 2 и включают контактор 4 (рис. 55, б). При этом реактор работает как автотрансформатор и делит напряжение секции Uск пополам: к тяговым двигателям подводится напряжение Uск +0,5Uск = 1.5 Uск.Затем отключают контактор 1 н замыкают контактор 3: к тяговым двигателям подводится напряжение 2Uск и т. д. (потом 2,5Uск, 3Uск). Такой способ перехода позволяет получить числе ступеней, вдвое большее числа выводов трансформатора.
Как видим, при регулировании напряжения контакторы 1—8 (см. рис. 55,а) разрывают и замыкают электрические цепи под током . Поэтому они должны быть снабжены дугогасящими устройствами. Однако обычно применяют несколько десятков контакторов; большое число дугогасящих устройств усложнило бы их размещение на электровозе н обслуживание в процессе эксплуатации. Поэтому на электровозах для переключения секций трансформатора устанавливают дополнительные контакторы с дугогашением, которые, включаясь и выключаясь в определенной последовательности, обеспечивают переключение остальных контакторов при обесточенной цепи.
Для увеличения числа ступеней регулирования напряжения при небольшом числе выводов трансформаторов вторичная обмотка разделена на две. В каждой вторичной обмотке имеется некционированная (нерегулируемая) часть и секционированная (регулируемая); последняя состоит из четырех секций с одинаковым числом витков, а следовательно, одинаковым напряжением Uск.
Вначале регулируемую и нерегулируемую части включают встречно (рис. 56, а).

Рис. 56. Схема включения нерегулируемой и регулируемой
обмоток трансформатора

Напряжение нерегулируемой части обмотки Uн несколько больше суммарного напряжения секции регулируемой части, поэтому подводимое к двигателям напряжение Uд = Uн — 4Uск. Далее последовательно уменьшают число встречно включенных секций. При переключении их используют переходной реактор. Когда все секции выключены, напряжение, подводимое к тяговым двигателям, равно Uн. Для дальнейшего повышения напряжения нерегулируемую и регулируемую части обмотки включают согласно (рис. 56, б), последовательно подключая к нерегулируемой части одну за другой секции регулируемой. Наибольшее напряжение, подводимое к тяговым двигателям, Uд = Uн +4 Uск.
Все переключения обмоток и секций с помощью контакторов с дугогашением и без него должны производиться в строго определенной последовательности. Осуществляют эти переключения групповым аппаратом, называемым главным контроллером.

БЛОГ ЭЛЕКТРОМЕХАНИКА

Студенческий блог для электромеханика. Обучение и практика, новости науки и техники. В помощь студентам и специалистам

26.09.2014

Автоматические регуляторы напряжения генераторов

Одним из наиболее важных условий, обеспечивающих правильную работу электрических установок, является постоянство напряжения питающих генераторов.

В установках постоянного тока достаточная степень постоянства напряжения обеспечивается компаундными генераторами. В установках переменного тока для сохранения постоянства напряжения приходится прибегать к автоматическим регуляторам напряжения.

При сохранении постоянства скорости вращения генератора (для сохранения постоянства частоты) регулировка напряжения возможна только за счет изменения магнитного потока, т. е. тока возбуждения. На сегодняшний день наименее распространенным автоматическим регулятором напряжения является угольный. Основная часть угольного регулятора — столбик угольных шайб, включенный в обмотку возбуждения возбудителя генератора.

Работа регулятора основана на том, что в столбике угольных шайб, подвергающихся давлению, электрическое сопротивление изменяется в зависимости от силы сжатия. Чем больше сила сжатия угольного столбика, тем меньше его сопротивление; с уменьшением силы сжатия сопротивление столбика возрастает.

На рис. 1 изображена принципиальная схема включения угольного автоматического регулятора напряжения. В состав схемы входят: угольный реостат 1, электромагнит с двумя обмотками 2 и 3 и пружина 5, создающая усилие, противодействующее электромагниту.

Обмотка 2 электромагнита включена на напряжение генератора Г между фазами А и С через выпрямитель 6.

Обмотка 3 электромагнита включена на вторичную обмотку трансформатора 4, первичная обмотка которого питается от возбудителя генератора В.

При нормальном напряжении генератора втягивающая сила электромагнита уравновешивается силой натяжения пружины. С повышением напряжения генератора сила электромагнита преодолевает натяжение пружины, якорь притягивается к сердечнику электромагнита, и поворачиваясь вокруг своей неподвижной оси, через вертикальный стержень передает растягивающее усилие на угольный столбик.

Сила натяжения на угольные шайбы уменьшается, сопротивление столбика возрастает, напряжение возбудителя уменьшается, в связи с чем уменьшается и напряжение генератора Г.

С уменьшением напряжения генератора Г втягивающая сила электромагнита уменьшается, под действием натяжения пружины якорь поворачивается и увеличивается сжатие угольного реостата.

Сопротивление реостата уменьшается, ток возбуждения увеличивается и напряжение генератора возрастает.

Если бы на электромагните была только обмотка 2, описанный процесс регулирования никогда бы не прекращался и напряжение генератора, изменившись один раз под действием какой-либо внешней причины, в дальнейшем колебалось бы под влиянием работы регулятора вокруг своего номинального значения.

Назначение обмотки 3 — сделать эти колебания затухающими и прекратить их после нескольких циклов с уменьшающейся амплитудой.

Магнитный поток обмотки 3 направлен навстречу потоку обмотки 2 и ослабляет действие обмотки 2 по мере подхода напряжения к номинальному значению, чем способствует быстрейшему прекращению колебаний напряжения.

Сопротивление 1C в цепи питания выпрямителя 6 служит для изменения пределов регулирования. Обычно его выбирают так, чтобы регулятор поддерживал напряжение в пределах от 95 до 105% номинального.

Назначение сопротивления 2С, питаемого от трансформатора тока ТТ, включенного в третью фазу, — создавать на своих зажимах падение напряжения. Падение напряжения на зажимах сопротивления 2С, складываясь геометрически с напряжением между фазами А и С, изменяет выходное напряжение выпрямителя в зависимости от реактивной нагрузки генератора. Это обусловливает постоянное распределение реактивной нагрузки между генераторами при их параллельной работе.

При работе одиночного генератора это устройство (так называемый компенсатор реактивной мощности) следует исключать из схемы регулятора, так как его наличие вызывает увеличение провала напряжения при пуске мощных асинхронных двигателей.

Изменяя величину сопротивления 3С, можно усилить или ослабить действие обмотки 3, т. е. в конечном итоге изменить время, в течение которого генератор достигает номинального напряжения.

Угольные регуляторы имеют ряд недостатков. Одним из наиболее существенных является малый срок службы угольных реостатов. В процессе эксплуатации угольные шайбы, из которых набирается реостат, «стареют», происходит их усадка и износ. Вследствие неравномерности этого явления равенство электрических сопротивлений отдельных угольных столбов нарушается, ток в столбах, имеющих минимальное сопротивление, увеличивается выше допустимого. При этом отдельные шайбы перегреваются, становятся хрупкими и при переменном сжатии их или вследствие вибрации и тряски судна дают трещины или рассыпаются. Иногда часть столба, работающего с перегрузкой, полностью выгорает.

Кроме того, угольным регуляторам свойственна небольшая скорость действия из-за наличия подвижных частей, имеющих определенную инерцию.

Более совершенным методом регулирования напряжения синхронных генераторов является компаундирование возбуждения.

На рис. 2 изображена принципиальная схема компаундирования возбудителя синхронного генератора. Возбудитель В генератора Г, кроме основной обмотки возбуждения ООВ, имеет дополнительную ДОВ. Дополнительная обмотка возбуждения питается током, пропорциональным току нагрузки генератора, получаемому от трансформатора тока ТТ через разделительный трансформатор напряжения РТ и выпрямитель В.

С увеличением тока нагрузки напряжение генератора Г падает. Одновременно увеличивается ток возбуждения в обмотке ДОВ возбудителя, его напряжение возрастает, ток возбуждения генератора Г усиливается и напряжение генератора поднимается.

Схема компаундирования регулируется таким образом, чтобы напряжение генератора сохранялось постоянным при изменении нагрузки от холостого хода до номинальной. Однако напряжение синхронных генераторов, кроме тока нагрузки, зависит также и от коэффициента мощности последней. Чтобы избежать влияние изменяющегося коэффициента мощности, в схему компаундирования вводят электромагнитный корректор.

Наилучшие результаты в части поддержания постоянства напряжения дают синхронные генераторы с самовозбуждением и саморегулированием напряжения.

На рис. 3 дана принципиальная схема системы самовозбуждения и саморегулирования синхронного генератора.

Существенной частью этой системы является специальный трехобмоточный трансформатор Т. Обмотка I (обмотка напряжения) этого трансформатора подключена к клеммам статора генератора и в ней течет ток Iн, пропорциональный напряжению генератора: Iн = K1U. Действие этой обмотки аналогично действию параллельной обмотки возбуждения генераторов постоянного тока со смешанным возбуждением.

Обмотка II (токовая) включена на трансформатор тока главной цепи генератора, через нее проходит ток Iт = K2I, пропорциональный току нагрузки генератора. Назначение этой обмотки аналогично назначению последовательной обмотки генератора со смешанным возбуждением.

Обмотка III является вторичной обмоткой трансформатора, ток в ней Iв равен геометрической сумме токов Iн и Iт. Этот ток, выпрямленный полупроводниковым выпрямителем В, питает обмотку возбуждения генератора ОВ.

Рассмотрим, как работает эта система. При вращении ротора генератора вследствие наличия в стали ротора остаточного магнетизма, генератор разовьет некоторую начальную э. д. с. При этом через обмотку I трансформатора Т пройдет ток. Образовавшееся в сердечнике трансформатора магнитное поле индуктирует вторичную э. д. с. в обмотке III и в ее цепи, а следовательно, и в обмотке ротора генератора потечет ток. Ток ротора усилит магнитное поле генератора, э. д. с. последнего возрастет, что в свою очередь вызовет увеличение тока в обмотке I трансформатора. Этот процесс продолжается до тех пор, пока напряжение на клеммах генератора достигнет номинальной величины. В дальнейшем, при холостом ходе генератора и при сохранении неизменной скорости его вращения, напряжение генератора будет сохраняться постоянным.

Если в статорной обмотке генератора появится ток нагрузки, то он создаст магнитный поток реакции якоря, который ослабит магнитный поток ротора, вследствие чего напряжение на клеммах генератора должно было бы уменьшиться. Однако этому будет противодействовать обмотка II трансформатора. При появлении в ней тока, пропорционального току нагрузки, магнитный поток, создаваемый этим током в сердечнике трансформатора, вызовет увеличение э. д. с. вторичной обмотки и тем самым увеличение тока в обмотке возбуждения генератора. Напряжение на клеммах последнего возрастет до прежней величины.

Таким образом, принцип действия синхронного генератора с самовозбуждением и саморегулированием напряжения подобен принципу действия генератора смешанного возбуждения постоянного тока.

Однако следует учесть, что напряжение, развиваемое синхронным генератором, зависит не только от его нагрузки, но и от величины коэффициента мощности. При уменьшении коэффициента мощности, т, е. при возрастании угла ψ, напряжение генератора уменьшается и для его восстановления до прежней величины необходимо увеличить ток возбуждения.

Для того чтобы получить увеличение тока возбуждения, пропорциональное увеличению угла ψ, обмотку напряжения трансформатора Т подключают к клеммам генератора не непосредственно, а через дроссель Д. Величина индуктивного сопротивления дросселя выбирается такой, чтобы угол сдвига фаз между напряжением генератора и током в обмотке I трансформатора был бы равен почти 90°.

В этом случае диаграмма геометрического сложения токов в обмотках трансформатора Т будет иметь вид, изображенный на рис. 4.

Легко убедиться, что при увеличении угла ψ1 до величины ψ2 результирующий ток возбуждения генератора также возрастает, как это показано на рис. 4, а пунктиром.
Если бы фаза тока в обмотке I трансформатора Т совпадала бы с фазой напряжения генератора (как это изображено на рис. 4, б), то в этом случае, при увеличении угла ψ, величина результирующего тока возбуждения будет уменьшаться.

Уместно отметить еще одну особенность синхронных генераторов описываемой системы по сравнению с генераторами, получающими возбуждение от машинного возбудителя и оборудованными автоматическими регуляторами напряжения.

У генераторов с возбудителем и автоматическим регулятором напряжения неизбежно имеет место некоторое запаздывание восстановления напряжения.

Это запаздывание объясняется следующими причинами.

1. Автоматический регулятор начинает действовать только после того, как на регулятор поступит уже изменившееся напряжение.
2. После поступления на регулятор сигнала об изменении напряжения необходимо некоторое время на срабатывание самого регулятора.
3. Возбудитель генератора вследствие наличия у него электромагнитной инерции изменяет свое напряжение, а следовательно, и напряжение генератора с некоторым замедлением.

У синхронных генераторов с самовозбуждением процесс регулирования напряжения начинается не после изменения напряжения, а одновременно с изменением тока статора, которое должно вызвать изменение напряжения.

Вследствие этой особенности системы как абсолютное значение величины изменения напряжения генератора при резких колебаниях его нагрузки, так и время восстановления напряжения значительно меньше, чем у генераторов с возбудителем и автоматическим регулятором напряжения.

Иногда в схемах самовозбуждения, для облегчения начала процесса самовозбуждения, предусматривают установку конденсаторов, включаемых в цепь дросселя, как указано на рис. 3 пунктиром. Емкость конденсаторов подбирается так, чтобы в их цепи возник резонанс напряжения, тогда начальное напряжение на обмотке III трансформатора Т резко возрастает и генератор уверенно возбуждается. Кроме установки конденсаторов, для тех же целей применяются и другие методы.

В качестве примера конкретных генераторов, выпускаемых промышленностью рассмотрим схему самовозбуждения и саморегулирования отечественных синхронных генераторов серии МСС (рис. 5).

У этих генераторов, так же как и в описанной выше принципиальной схеме, применен трансформатор с тремя обмотками: напряжения I, токовой II и результирующей III. Необходимый сдвиг фазы тока в обмотке I относительно напряжения генератора осуществляется с помощью магнитного шунта, находящегося в трансформаторе, вследствие чего отпадает необходимость в отдельном дросселе. Новым элементом в этой схеме является дроссель Д. Этот дроссель служит для подрегулировки вручную напряжения генератора в пределах ±5% от номинального напряжения. На дросселе, помимо основных обмоток, помещены две дополнительные а и б. Обмотка а питается постоянным током от выпрямителя В3, подключенного к обмотке напряжения трансформатора Т.

С помощью регулировочного реостата Р1 можно менять величину тока в обмотке а. Изменение тока в этой обмотке вызывает изменение магнитного потока в сердечнике дросселя и, как следствие изменение его реактивного сопротивления. При изменении тока в дросселе одновременно изменяется ток, поступающий на выпрямитель B1, а следовательно, и ток возбуждения генератора.

Обмотка б используется при параллельной работе генераторов с разной мощностью, а также для поддержания постоянства напряжения генератора при колебании его частоты.

Для обеспечения начального самовозбуждения у генераторов серии МСС предусмотрен небольшой встроенный, вспомогательный генератор переменного тока с постоянными магнитами. Этот генератор включен на обмотку возбуждения главного генератора через свой выпрямитель В2. Начальный ток возбуждения обмотки ротора генератора получают через этот выпрямитель. В дальнейшем, когда вступит в действие основной выпрямитель B1, вспомогательный генератор возбуждения автоматически исключается из схемы, так как его выпрямитель В2 окажется запертым более высоким напряжением выпрямителя B1.

Элементы системы самовозбуждения и саморегулирования генераторов серии МСС выполняются в виде самостоятельных блоков размещаемых отдельно от генератора.

Следует отметить, что возможно создать очень большое число различных систем самовозбуждения и саморегулирования, отличающихся по числу, типу и способу включения входящих в них элементов. Почти каждая зарубежная фирма выпускает синхронные генераторы со своей системой самовозбуждения и саморегулирования. Изложенные в настоящей статье общие принципы помогут разобраться в особенностях различных систем, могущих встретиться на морских судах.

Регулятор тока.

Основной функцией регулятора тока является регулировка мощности нагрузки, при подключении к постоянному току напряжением от 10 до 75V и потреблении максимального тока не более 150А. Объектом подключения регулятора тока может быть прожектор, подключенный от автомобильной бортовой сети, электродвигатель постоянного тока или прочие.

Регулятор мощности постоянного тока.

В основе работы регулятора тока лежит принцип широтно-импульсной модуляции. Его основным элементом является мультивибратор с регулировкой скважности импульсов, буферного и выходного каскадов.

Сам мультивибратор выполнен на элементах D1.1 и D1.2. Он имеет регулируемую скважность импульсов на выходе. Частота импульсов мультивибратора приблизительно равна 100 Гц. Скважность импульсов регулируется в достаточно широком диапазоне. Так, в среднем положении переменного резистора R1 на выходе из него получите симметричные прямоугольные импульсы. Такое положение переменного резистора позволяет получать мощность отдаваемую в нагрузку на среднем уровне. Это объясняется тем, что полевой транзистор VT1 в течение контрольного участка времени будет одинаковое количество времени открыт и закрыт. Вращение ручки переменного резистора по сторонам приводит к изменению соотношения продолжительности открытого и закрытого состояния транзистора. Таким образом, это приводит к тому, что чем дольше открытое состояние, тем больше мощность в нагрузке и наоборот, более длительное закрытое состояние приводит к тому, что мощность, которая отдается в нагрузку уменьшается.

Мощный полевой транзистор IRFP260N служит для коммутации нагрузки. При этом он имеет относительно большую емкость затвора. Сопротивление затвора этого полевого транзистора практически бесконечно, поскольку он имеет большую емкость. Резкие изменения напряжения заметно проявляются на затворе, так как ток зарядки и разрядки затвора достаточно существенен. В случаях если в определенных устройствах процесс включение / выключение нагрузки происходит достаточно редко, то в цепь затвора можно подключить токоограничительный резистор. В то же время его не можно устанавливать импульсных схемах. В импульсных схемах увеличивается мощность выхода мультивибратора с помощью создания буферного каскада из четырех инверторов микросхемы К561ЛН2 (D1.3-D1.6).

Питание микросхемы происходит от параметрического стабилизатора VD3-R3-R4. Если предполагается работать с напряжением не более 20-25V можно КС512 заменить менее мощным стабилитроном, например, Д814Д, а вместе резисторов R3 и R4 установить один резистор имеющий сопротивление 1-2 кОм и мощность 0,125W.

  1. Транзистор IRFP260N можно заменить на IRFP2907 (при этом выходной ток может быть до 200А), IRFP150N, IRFP3710.
  2. Диоды 1N4148 также заменяются на КД522, КД521.
  3. Стабилитрон КС512 заменяем любым стабилитроном на 10-15V средней или большой мощности.

Тиристорный регулятор мощности: схема, принцип работы и применение. Регулировка напряжения

Способы регулирование напряжения в цепях постоянного тока

Довольно большое количество промышленных электроприводов и технологических процессов для своего питания используют постоянный ток. Причем в таких случаях довольно часто необходимо изменять значение этого напряжения. Такие виды транспорта как метрополитен, троллейбусы, электрокары и другие виды транспорта получают питающее напряжения из сетей постоянного тока с неизменным напряжением. Но ведь многие из них нуждаются в изменении значения напряжения, подводимого к якорю электродвигателя. Классическими средствами получения необходимых значений являются резистивное регулирование и система генератор-двигатель, или система Леонардо. Но эти системы являются устаревшими, и встретить их можно довольно редко (особенно систему генератор-двигатель). Более современными и активно внедряемыми сейчас являются системы тиристорный преобразователь-двигатель, импульсный преобразователь двигатель. Рассмотрим каждую систему более подробно.

Резисторное регулирование

Для регулирования пускового тока и напряжения, подводимого к электродвигателю, в якорную цепь последовательно якорю (или якорю и обмотке возбуждения в случае двигателя последовательного возбуждения) подключают резисторы:

Таким образом, регулируется ток, подводимый к электрической машине. Контакторы К1, К2, К3 шунтируют резисторы при необходимости изменения какого-либо параметра или координаты электропривода. Этот способ довольно еще широко распространен, особенно в тяговых электроприводах, хотя ему сопутствуют большие потери в резисторах и, как следствие, довольно низкий КПД.

Система генератор-двигатель

В такой системе необходимый уровень напряжения формируется путем изменения потока возбуждения генератора:

Наличие в такой системе трех электромашин, больших массогабаритных показателей и длительного времени ремонта при поломках, а также дорогостоящего обслуживания и большую инерционность такой установки сделали КПД такой машины очень низким. Сейчас систем генератор-двигатель практически не осталось, все они активно заменяются на системы тиристорный преобразователь – двигатель ТП-Д, который обладает рядом преимуществ.

Тиристорный преобразователь – двигатель

Получила свое массовое развитие в 60-х годах, когда начали появляться тиристоры. Именно на их базе были созданы первые статичные маломощные тиристорные преобразователи. Такие устройства подключались напрямую к сетям переменного тока:

Регулирование напряжения происходит путем изменения угла открывания тиристора. Регулирование через тиристорный преобразователь имеет ряд преимуществ перед установкой генератор-двигатель, такие как высокое быстродействие и КПД, плавное регулирование напряжения постоянного и много других.

Преобразователь с промежуточным звеном постоянного напряжения

Здесь все немного сложнее. Чтоб получить постоянное напряжение необходимой величины применяют еще вспомогательные устройства, а именно инвертор, трансформатор, выпрямитель:

Здесь постоянный ток преобразуют в переменный с помощью инвертора тока, потом с помощью трансформатора понижают или повышают (в зависимости от надобности), а потом снова выпрямляют. Значительно удорожает установку наличие трансформатора и инвертора, укрупняет систему, чем снижает КПД. Но есть и плюс – гальваническая развязка между сетью и нагрузкой из – за наличия трансформатора. На практике такие устройства встречаются крайне редко.

Импульсные преобразователи постоянного напряжения

Это пожалуй самые современные устройства регулирования в цепях постоянного тока. Его можно сравнить с трансформатором, поскольку поведение импульсного преобразователя подобно трансформатору с плавно меняющимся количеством витков:

Такие системы активно заменяют электроприводы с резистивным регулированием, путем подключения их к якорю машины последовательно, вместо резистивно-контакторной группы. Их довольно часто применяю в электрокарах, а также довольно большую популярность они обрели в подземном транспорте (метрополитен). Такие преобразователи выделяют минимум тепла, что не нагревает тоннелей и могут реализовывать режим рекуперативного торможения, что является большим плюсом для электроприводов с частым пуском и торможением.

Большим плюсом таких устройств есть то, что они могут осуществить рекуперацию энергии в сеть, плавно регулируют скорость нарастания тока, обладают высоким КПД и быстродействием.

ДЕЛАЕМ БЛОК ПИТАНИЯ С РЕГУЛИРОВКОЙ НАПРЯЖЕНИЯ

При занятиях каким-либо делом регулярно, люди стремятся облегчить себе труд, путем создания различных приспособлений и устройств. Это в полной мере относится и к радиоделу. При сборке электронных устройств одним из важных вопросов, остается вопрос питания. Поэтому, одно из первых устройств, которое часто собирает начинающий радиолюбитель, это блок питания с регулировкой напряжения.

Важными характеристиками блока питания, являются его мощность, стабилизация напряжения на выходе, отсутствие пульсаций, что может проявиться, например, при сборке и запитывании усилителя, от этого блока питания в виде фона или гула. И наконец, нам важно, чтобы блок питания был универсальным, чтобы его можно было применить для питания множества устройств. А для этого необходимо, чтобы он мог выдавать различное напряжение на выходе.

Частичным решением проблемы, может стать китайский адаптер с переключением напряжения на выходе. Но такой блок питания не имеет возможности плавной регулировки и в нем отсутствует стабилизация напряжения. Иными словами напряжение на его выходе “скачет” в зависимости от величины питающего напряжения 220 вольт, которое часто проседает по вечерам, особенно если вы живете в частном доме. Также напряжение на выходе блока питания (БП), может уменьшиться при подключении более мощной нагрузки. Всех этих недостатков, лишен предлагаемый в этой статье блок питания, со стабилизацией и регулировкой напряжения на выходе. Вращением ручки переменного резистора мы можем выставить любое напряжение в пределах от 0 и до 10.3 вольт, с возможностью плавной регулировки. Напряжение на выходе блока питания, мы выставляем по показаниям мультиметра в режиме вольтметра, постоянный ток (DCV).

Это может пригодиться не раз, например, при проверке светодиодов, которые, как известно не любят, когда на них подают завышенное, по сравнению с номинальным напряжение. От этого их срок службы может резко сократиться, а в особо тяжелых случаях светодиод может сразу же сгореть. Ниже приведена схема этого блока питания:

Схема данного РБП является стандартной и не претерпела существенных изменений с 70-х годов прошлого века. Первые варианты схем были с применением германиевых транзисторов, более поздние варианты были с применением современной элементной базы. Данный блок питания способен выдавать мощность до 800 – 900 миллиампер, при наличии трансформатора обеспечивающего нужную мощность.

Ограничение в схеме по применяемому диодному мосту, который допускает токи максимум до 1 ампера. Если потребуется увеличить мощность данного блока питания, нужно взять боле мощный трансформатор, диодный мост и увеличить площадь радиатора, либо если размеры корпуса не позволяют это сделать, можно применить активное охлаждение (кулер). Ниже приведен на рисунке список деталей необходимых для сборки:

В данном блоке питания применен отечественный мощный транзистор КТ805АМ. На фото ниже можно ознакомиться с его внешним видом. На соседнем рисунке приведена его цоколевка:

Данный транзистор необходимо будет прикрепить на радиатор. В случае крепления радиатора к металлическому корпусу блока питания, например как это сделано у меня, нужно будет поставить слюдяную прокладку между радиатором и металлической пластиной транзистора, к которой должен прилегать радиатор. Для улучшения теплоотдачи от транзистора к радиатору, нужно применить термопасту. Подойдет в принципе любая, применяемая для нанесения на процессор ПК, например та же КПТ–8.

Трансформатор должен выдавать на вторичной обмотке напряжение 13 вольт, но в принципе допустимо напряжение в пределах 12-14 вольт. В блоке питания установлен фильтрующий электролитический конденсатор, ёмкостью 2200 мкф, (можно больше, меньше нежелательно), на напряжение 25 вольт. Можно взять конденсатор, рассчитанный на большее напряжение, но следует помнить, что у таких конденсаторов обычно и размеры больше. На рисунке ниже приведена печатная плата для программы sprint-layout, которую можно скачать в общем архиве, прикрепленном архиве.

Я собрал блок питания не совсем по этой плате, так как у меня трансформатор с диодным мостом и фильтрующим конденсатором шли на отдельной плате, но сути это не меняет.

Переменный резистор и мощный транзистор, в моем варианте подключены навесным монтажом, на проводках. На плате обозначены контакты переменного резистора R2, R2.1 – R2.3, R2.1 это левый контакт переменного резистора, остальные отсчитываются от него. Если все-таки при подключении были спутаны левый и правый контакты потенциометра, и регулировка осуществляется не слева – минимум, направо — максимум, нужно поменять местами провода, идущие к крайним выводам переменного резистора. В схеме предусмотрена индикация включения на светодиоде. Включение — отключение осуществляется тумблером, путем коммутации питания 220 вольт, подводимого к первичной обмотке трансформатора. Так выглядел блок питания на этапе сборки:

Питание подается на блок питания через родной разъем блока питания АТХ компьютера, с помощью стандартного отсоединяемого кабеля. Такое решение позволяет избежать путаницы проводов, которая часто возникает на столе у радиолюбителя.

Напряжение на выходе блока питания снимается с лабораторных зажимов, под которые можно зажать любой провод. Также в эти зажимы, можно подключить, воткнув сверху, стандартные щупы от мультиметра с крокодилами на концах, для более удобной подачи напряжения на собранную схему.

Хотя при желании сэкономить, можно ограничиться простыми проводками на концах с крокодилами, зажимаемыми с помощью лабораторных зажимов. В случае использования металлического корпуса, наденьте кембрик подходящего размера на винт крепления зажима, во избежание замыкания зажима на корпус. Подобный блок питания трудится у меня уже не меньше 6 лет, и доказал оправданность его сборки, и удобство применения в повседневной практике радиолюбителя. Всем удачной сборки! Специально для сайта «Электронные схемы» AKV.

Поделитесь полезной информацией с друзьями:

схема, принцип работы и применение

В статье рассказывается о том, как работает тиристорный регулятор мощности, схема которого будет представлена ниже

В повседневной жизни очень часто возникает необходимость регулирования мощности бытовых приборов, например электроплиты, паяльника, кипятильников и ТЭНов, на транспорте — оборотов двигателя и т.д. На помощь приходит простейшая радиолюбительская конструкция – регулятор мощности на тиристоре. Собрать такое устройство не составит труда, оно может стать тем самым первым самодельным прибором, который будет выполнять функцию регулировки температуры жала паяльника начинающего радиолюбителя. Стоит отметить, что готовые паяльные станции с контролем температуры и прочими приятными функциями стоят на порядок дороже простого паяльника. Минимальный набор деталей позволяет собрать простой тиристорный регулятор мощности навесным монтажом.

К сведению, навесной монтаж — это способ сборки радиоэлектронных компонентов без применения печатной платы, а при хорошем навыке он позволяет быстро собрать электронные устройства средней сложности.

Вы также можете заказать электронный конструктор тиристорного регулятора, а для тех, кто хочет разобраться во всём самостоятельно, ниже будет представлена схема и объяснён принцип работы.

Область применения тиристорных регуляторов

Между прочим, это однофазный тиристорный регулятор мощности. Такой прибор может быть использован для управления мощностью или количеством оборотов. Однако для начала следует разобраться в принципе работы тиристора, ведь это позволит нам понять, на какую нагрузку лучше использовать такой регулятор.

Как работает тиристор?

Тиристор – это управляемый полупроводниковый прибор, способный проводить ток в одном направлении. Слово «управляемый» употреблено неспроста, поскольку с его помощью, в отличие от диода, который тоже проводит ток только к одному полюсу, можно выбирать момент, когда тиристор начнет проводить ток. Тиристор имеет три вывода:

Для того чтобы ток начал течь через тиристор, необходимо выполнить следующие условия: деталь должна стоять в цепи, находящейся под напряжением, на управляющий электрод должен быть подан кратковременный импульс. В отличие от транзистора, управление тиристором не требует удержания управляющего сигнала. На этом нюансы не заканчиваются: тиристор можно закрыть, лишь прервав ток в цепи, или сформировав обратное напряжение анод — катод. Это значит, что использование тиристора в цепях постоянного тока весьма специфично и часто неблагоразумно, а вот цепях переменного, например в таком приборе как тиристорный регулятор мощности, схема построена таким образом, что обеспечено условие для закрытия. Каждая из полуволн будет закрывать соответствующий тиристор.

Вам, скорее всего, не всё понятно? Не стоит отчаиваться — ниже будет подробно описан процесс работы готового устройства.

Область применения тиристорных регуляторов

В каких цепях эффективно использовать тиристорный регулятор мощности? Схема позволяет отлично регулировать мощность нагревательных приборов, то есть воздействовать на активную нагрузку. При работе с высокоиндуктивной нагрузкой тиристоры могут просто не закрыться, что может привести к выходу регулятора из строя.

Я думаю, многие из читателей видели или пользовались дрелями, углошлифовальными машинами, которые в народе именуют «болгарками», и прочим электроинструментом. Вы могли заметить, что количество оборотов зависит от глубины нажатия на кнопку-курок прибора. Вот в этот элемент как раз и встроен такой тиристорный регулятор мощности (схема которого приведена ниже), с помощью которого осуществляется изменение количества оборотов.

Обратите внимание! Тиристорный регулятор не может изменять обороты асинхронных двигателей. Таким образом, напряжение регулируется на коллекторных двигателях, оборудованных щёточным узлом.

Типовая схема для того, чтобы собрать тиристорный регулятор мощности своими руками изображена на рисунке ниже.

Выходное напряжение у данной схемы от 15 до 215 вольт, в случае применения указанных тиристоров, установленных на теплоотводах, мощность составляет порядка 1 кВт. Кстати выключатель с регулятором яркости света сделан по подобной схеме.

Если у вас нет необходимости полной регулировки напряжения и достаточно получать на выходе от 110 до 220 вольт, воспользуйтесь этой схемой, которая показывает однополупериодный регулятор мощности на тиристоре.

Как это работает?

Описанная ниже информация справедлива для большинства схем. Буквенные обозначения будут браться в соответствии первой схемы тиристорного регулятора

Тиристорный регулятор мощности, принцип работы которого основан на фазовом управлении величиной напряжения, изменяет и мощность. Данный принцип заключается в том, что в нормальных условиях на нагрузку действует переменное напряжение бытовой сети, изменяющееся по синусоидальному закону. Выше, при описании принципа работы тиристора, было сказано, что каждый тиристор работает в одном направлении, то есть управляет своей полуволной от синусоиды. Что это значит?

Если с помощью тиристора периодически подключать нагрузку в строго определенный момент, величина действующего напряжения будет ниже, поскольку часть напряжения (действующая величина, которая «попадёт» на нагрузку) будет меньше, чем сетевое. Данное явление проиллюстрировано на графике.

Заштрихованная область – это и есть область напряжения, которое оказалось под нагрузкой. Буквой «а» на горизонтальной оси обозначен момент открытия тиристора. Когда положительная полуволна закончится и начнется период с отрицательной полуволной, один из тиристоров закрывается, и в тот же момент открывается второй тиристор.

Разберемся, как работает конкретно наш тиристорный регулятор мощности

Оговорим заранее, что вместо слов «положительная» и «отрицательная» будут использованы «первая» и «вторая» (полуволна).

Итак, когда на нашу схему начинает действовать первая полуволна, начинают заряжаться ёмкости C1 и C2. Скорость их заряда ограничена потенциометром R5. данный элемент является переменным, и с его помощью задаётся выходное напряжение. Когда на конденсаторе C1 появляется необходимое для открытия динистора VS3 напряжение, динистор открывается, через него поступает ток, с помощью которого будет открыт тиристор VS1. Момент пробоя динистора и есть точка «а» на графике, представленном в предыдущем разделе статьи. Когда значение напряжения переходит через ноль и схема оказывается под второй полуволной, тиристор VS1 закрывается, и процесс повторяется заново, только для второго динистора, тиристора и конденсатора. Резисторы R3 и R3 служат для ограничения тока управления, а R1 и R2 — для термостабилизации схемы.

Принцип работы второй схемы аналогичен, но в ней идёт управление только одной из полуволн переменного напряжения. Теперь, зная принцип работы и схему, вы можете собрать или починить тиристорный регулятор мощности своими руками.

Применение регулятора в быту и техника безопасности

Нельзя не сказать о том, что данная схема не обеспечивает гальванической развязки от сети, поэтому существует опасность поражения электрическим током. Это значит, что не стоит касаться руками элементов регулятора. Необходимо использовать изолированный корпус. Следует проектировать конструкцию вашего прибора так, чтобы по возможности вы могли спрятать её в регулируемом устройстве, найти свободное место в корпусе. Если регулируемый прибор располагается стационарно, то вообще имеет смысл подключить его через выключатель с регулятором яркости света. Такое решение частично обезопасит от поражения током, избавит от необходимости поиска подходящего корпуса, имеет привлекательный внешний вид и изготовлено промышленным методом.

Как настроить реле напряжения | Электрик

Простой пример — обрив или отгорания нуля в этажном электрощите что неприкословно приведет к сдвигу фаз где напряжение в розетках квартиры «пойдет в разнос» и может составить даже 400 вольт! Естественно все незащищенные электроприборы которые будут подключены к сети в это время выйдут из строя.

Кроме всего прочего по разным причинам в сети могут появится импульсные «скачки» высокого напряжения или же напряжения может «просесть» до критически опасных низких уровней напряжения при которых домашние электроприборы могут также выйти из строя.

Во всех подобных случаях для защиты домашнего оборудования можно применять реле напряжения. Но все же несмотря на такие полезные его свойства пропускать в розетки только оптимальное напряжение, если в вашей электросети бывают частые понижения напряжения, например в сельской местности где еще старое оборудования местних электростанций, стоит обратить внимание на стабилизатор напряжения.

Несмотря на большое изобилие производителей выпускающих реле напряжения разных моделей у всех моделей принцип работы одинаков и зачастую подключить его не составит проблем.О выборе, параметрах и правильных схемах подключения реле напряжения можно почитать здесь.

Электрическая схема подключения есть и в инструкции и на самом приборе.

После установки реле напряжения в электрощит наступает момент когда его нужно правильно настроить для надежной и безопасной работы домашней электротехники, особенно холодильников, кондиционеров и другой морозильной, компрессорной и не только, техники..

В реле напряжения можно настраивать напряжения сработки (повышенное и пониженное), а также время повторного включения после восстановления заданных параметров напряжения.В большинства реле, параметры такие:Нижний предел 120-200 вольтВерхний предел 210-270 вольтВремя (повторного) включения нагрузки 5-300 (600) секундМаксимальный ток нагрузки 40 амперКроме того очень важные и стоит обратить внимание на параметры аварийного отключения (сработки) реле напряжения, качественные модели срабатывают за 0.04 секунды для верхнего предела и 0.06 для нижнего.

По стандарту напряжение в сети может отличаться от номинала не более чем на 10%, а это 198 — 242 вольт и стоит заметить что большинство электрооборудования росчитаны на нормальную работу в таких пределах. В технической документации к каждому электроприбору (оборудованию), как правило указывается и напряжение питания и процент отклонений от номинала. Правда, сейчас введён новый стандарт номинала — 230 вольт, а это значит, что пределы должны быть от 207 до 253 В.

Но на практике если напряжение сети у вас составляет 190-220 Вольт, то верхний предел лучше всего установить на 245 вольт, а нижний предел на 180 В. Но если же напряжение сети 230-245, верхнее лучше установить на уровне 255 вольт, а нижнее 190 В. Если к данной линии подключены холодильники, кондиционеры или другие приборы с пусковыми рабочими свойствами время восстановления рекомендуется выставлять максимальное 300 сек. Такая выдержка времени подключения отсрочит включение бытовых приборов, и они останутся невредимыми и работоспособными. Если же такая задержка включения вам не по душе, можно применить два варианта, сделать отдельную линию и отдельное реле напряжения для холодильно-компрессорных устройств и с соответствующей задержкой только для того реле в 300-500 секунд, а на реле всех остальных линий дома настроить 5 секунд включения, или второй вариант — настроить реле напряжения (если оно одно и на весь дом) минимум на 150 секунд, но не меньше. Если скачки «верхнего напряжения» будут очень частыми, то стоит попробовать увеличить верхний предел на 5 Вольт, а если вниз—то уменьшить. Но не устанавливать более 260 вольт, лучше в таких случаях применять квартирный стабилизатор напряжения.

Вносить параметри напряжений нужно согласно инструкции к конкретному реле напряжения, рассмотрим пример настройки реле напряжения (и тока) фирмы DigiTOP.

Настройка реле напряжения

В некоторых моделях еще есть кнопка «і» . Прибор запоминает значение напряжения, вызвавшего последнее срабатывание. На дисплей это значение можно вывести нажатием этой кнопки.

Настройка защиты по току в реле типу VA-63(32) делается при помощи нижней кнопки в виде символа «пуск». При ее единоразовом нажатии мы увидим на нижнем табло символ «ON» либо «OFF». Удерживая клавишу, переходим в режим настройки и стрелками устанавливаем подходящий вариант. По умолчанию, с завода, контроль тока включен.

При необходимости в некоторых реле напряжения можно произвести калибровку показаний вольтметра и амперметра.Внимание! Эта операция есть сервисной и обязана производится специалистом, с надлежащими познаниями и устройствами замера напряжения, и исключительно в тех случаях когда часто имеются отличия характеристик питания наружной электросети (отклонение частотных характеристик, искаженная синусоида) что приводит к неверному измерению устройством («реле») настоящего напряжения.

Для исполнения калибровки вольтметра нужно, при отключенном питании, зажать две стрелки (кнопки) устройства и после чего подать входное напряжение. В режиме калибровки, используя внешний цифровой либо стрелочный вольтметр, стрелками на защите подстраиваем показания на верхнем индикаторе под значение нужного нам эталонного устройства. После чего выключаем питание. Конфигурации сберегаются в энергонезависимой памяти.По мере надобности, переходим к амперметру. Вход в режим его калибровки производится параллельным нажатием средней и нижней кнопки при выключенном питании и его следующем подключении при удержании кнопок. Подстройка в верхнюю сторону либо наоборот вниз на основании показаний эталонного амперметра исполняется нажатием и удержанием стрелок вверх-вниз.Обратите внимание! Подстройка показаний случается еще медленнее, нежели в первом варианте с вольтметром.

схема и инструкция. Регулятор постоянного тока

На сегодняшний день многие приборы производятся с возможностью регулировки тока. Таким образом пользователь имеет возможность контролировать мощность устройства. Работать указанные приборы способны в сети с переменным, а также постоянным током. По своей конструкции регуляторы довольно сильно отличаются. Основной деталью устройства можно назвать тиристоры.

Также неотъемлемыми элементами регуляторов являются резисторы и конденсаторы. Магнитные усилители используются только в высоковольтных приборах. Плавность регулировки в устройстве обеспечивается за счет модулятора. Чаще всего можно встретить именно поворотные их модификации. Дополнительно в системе имеются фильтры, которые помогают сглаживать помехи в цепи. За счет этого ток на выходе получается более стабильным, чем на входе.

Схема простого регулятора

Схема регулятора тока обычного типа тиристоры предполагает использовать диодные. На сегодняшний день они отличаются повышенной стабильностью и прослужить способны много лет. В свою очередь, триодные аналоги могут похвастаться своей экономичностью, однако, потенциал у них небольшой. Для хорошей проводимости тока транзисторы применяются полевого типа. Платы в системе могут использоваться самые разнообразные.

Для того чтобы сделать регулятор тока на 15 В, можно смело выбирать модель с маркировкой КУ202. Подача запирающего напряжения происходит за счет конденсаторов, которые устанавливаются в начале цепи. Модуляторы в регуляторах, как правило, применяются поворотного типа. По своей конструкции они довольно просты и позволяют очень плавно изменять уровень тока. Для того чтобы стабилизировать напряжение в конце цепи, применяются специальные фильтры. Высокочастотные их аналоги могут устанавливаться только в регуляторах свыше 50 В. С электромагнитными помехами они справляются довольно хорошо и большой нагрузки на тиристоры не дают.

Устройства постоянного тока

Схема регулятора постоянного тока характеризуется высокой проводимостью. При этом тепловые потери в устройстве являются минимальными. Чтобы сделать регулятор постоянного тока, тиристор требуется диодного типа. Подача импульса в данном случае будет высокой за счет быстрого процесса преобразования напряжения. Резисторы в цепи должны быть способны выдерживать максимальное сопротивление 8 Ом. В данном случае это позволит привести к минимуму тепловые потери. В конечном счете модулятор не будет быстро перегреваться.

Современные аналоги рассчитаны примерно на предельную температуру в 40 градусов, и это следует учитывать. Полевые транзисторы ток способны пропускать в цепи только в одном направлении. Учитывая это, располагаться в устройстве они обязаны за тиристором. В результате уровень отрицательного сопротивления не будет превышать 8 Ом. Высокочастотные фильтры на регулятор постоянного тока устанавливаются довольно редко.

Модели переменного тока

Регулятор переменного тока отличается тем, что тиристоры в нем применяются только триодного типа. В свою очередь, транзисторы стандартно используются полевого вида. Конденсаторы в цепи применяются только для стабилизации. Встретить высокочастотные фильтры в устройствах данного типа можно, но редко. Проблемы с высокой температурой в моделях решаются за счет импульсного преобразователя. Устанавливается он в системе за модулятором. Низкочастотные фильтры используются в регуляторах с мощностью до 5 В. Управление по катоду в устройстве осуществляется за счет подавления входного напряжения.

Стабилизация тока в сети происходит плавно. Для того чтобы справляться с высокими нагрузками, в некоторых случаях применяются стабилитроны обратного направления. Соединяются они транзисторами при помощи дросселя. В данном случае регулятор тока должен быть способным выдерживать максимум нагрузкуи в 7 А. При этом уровень предельного сопротивления в системе обязан не превышать 9 Ом. В этом случае можно надеяться на быстрый процесс преобразования.

Как сделать регулятор для паяльника?

Сделать регулятор тока своими руками для паяльника можно, используя тиристор триодного типа. Дополнительно потребуются биполярные транзисторы и низкочастотный фильтр. Конденсаторы в устройстве применяются в количестве не более двух единиц. Снижение тока анода в данном случае должно происходить быстро. Чтобы решить проблему с отрицательной полярностью, устанавливаются импульсные преобразователи.

Для синусоидального напряжения они подходят идеально. Непосредственно контролировать ток можно за счет регулятора поворотного типа. Однако кнопочные аналоги также встречаются в наше время. Чтобы обезопасить устройство, корпус используется термостойкий. Резонансные преобразователи в моделях также можно встретить. Отличаются они, по сравнению с обычными аналогами, своей дешевизной. На рынке их часто можно встретить с маркировкой РР200. Проводимость тока в данном случае будет невысокой, однако управляющий электрод со своими обязанностями справляться должен.

Приборы для зарядного устройства

Чтобы сделать регулятор тока для зарядного устройства, тиристоры необходимы только триодного типа. Запирающий механизм в данном случае будет контролировать управляющий электрод в цепи. Полевые транзисторы в устройствах используются довольно часто. Максимальной нагрузкой для них является 9 А. Низкочастотные фильтры для таких регуляторов не подходят однозначно. Связано это с тем, что амплитуда электромагнитных помех довольно высокая. Решить эту проблему можно просто, используя резонансные фильтры. В данном случае проводимости сигнала они препятствовать не будут. Тепловые потери в регуляторах также должны быть незначительными.

Применение симисторных регуляторов

Симисторные регуляторы, как правило, применятся в устройствах, мощность которых не превышает 15 В. В данном случае они предельное напряжение способны выдерживать на уровне 14 А. Если говорить про приборы освещения, то они использоваться могут не все. Для высоковольтных трансформаторов они также не подходят. Однако различная радиотехника с ними способна работать стабильно и без каких-либо проблем.

Регуляторы для активной нагрузки

Схема регулятора тока для активной нагрузки тиристоры предполагает использовать триодного типа. Сигнал они способны пропускать в обоих направлениях. Снижение тока анода в цепи происходит за счет понижения предельной частоты устройства. В среднем данный параметр колеблется в районе 5 Гц. Напряжение максимум на выходе должно составлять 5 В. С этой целью резисторы применяются только полевого типа. Дополнительно используются обычные конденсаторы, которые в среднем способны выдерживать сопротивление 9 Ом.

Импульсные стабилитроны в таких регуляторах не редкость. Связано это с тем, что амплитуда электромагнитных колебаний довольно большая и бороться с ней нужно. В противном случае температура транзисторов быстро возрастает, и они приходят в негодность. Чтобы решить проблему с понижающимся импульсом, преобразователи используются самые разнообразные. В данном случае специалистами также могут применяться коммутаторы. Устанавливаются они в регуляторах за полевыми транзисторами. При этом с конденсаторами они соприкасаться не должны.


Как сделать фазовую модель регулятора?

Сделать фазовый регулятор тока своими руками можно при помощи тиристора с маркировкой КУ202. В этом случае подача запирающего напряжения будет проходить беспрепятственно. Дополнительно следует позаботиться о наличии конденсаторов с предельным сопротивлением свыше 8 Ом. Плата для этого дела может быть взята РР12. Управляющий электрод в этом случае обеспечит хорошую проводимость. Импульсные преобразователи в регуляторах данного типа встречаются довольно редко. Связано это с тем, что средний уровень частоты в системе превышает 4 Гц.

В результате на тиристор оказывается сильное напряжение, которое провоцирует возрастание отрицательного сопротивления. Чтобы решить эту задачу, некоторые предлагают использовать двухтактные преобразователи. Принцип их работы построен на инвертировании напряжения. Изготовить самостоятельно регулятор тока данного типа в домашних условиях довольно сложно. Как правило, все упирается в поиски необходимого преобразователя.

Устройство импульсного регулятора

Чтобы сделать импульсный регулятор тока, тиристор потребуется триодного типа. Подача управляющего напряжения осуществляется им с большой скоростью. Проблемы с обратной проводимостью в устройстве решаются за счет транзисторов биполярного типа. Конденсаторы в системе устанавливаются только в парном порядке. Снижение тока анода в цепи происходит за счет смены положения тиристора.

Запирающий механизм в регуляторах данного типа устанавливается за резисторами. Для стабилизации предельной частоты фильтры могут применяться самые разнообразные. Впоследствии отрицательное сопротивление в регуляторе не должно превышать 9 Ом. В данном случае это позволит выдерживать большую токовую нагрузку.

Модели с плавным пуском

Для того чтобы сконструировать тиристорный регулятор тока с плавным пуском, нужно позаботиться о модуляторе. Наиболее популярными на сегодняшний день принято считать поворотные аналоги. Однако они между собой довольно сильно отличаются. В данном случае многое зависит от платы, которая применяется в устройстве.

Если говорить про модификации серии КУ, то они работают на самых простых регуляторах. Особой надежностью они не выделяются и определенные сбои все же дают. Иначе обстоят дела с регуляторами для трансформаторов. Там, как правило, применяются цифровые модификации. В результате уровень искажений сигнала значительно сокращается.

Блок регулирования напряжения и тока для простого лабораторного источника питания

Описание

В любой радиолюбительской мастерской не обойтись без источника питания с возможностью изменения величины напряжения в широких пределах. Представленное устройство предназначено для регулирования напряжения от полвольта почти до величины входного напряжения и регулирования величины ограничения тока нагрузки. При наличии готового нерегулируемого источника питания напряжением 20-30 В и допустимым током нагрузки до 5 А, этот блок позволит сделать источник универсальным.

Схема

За основу взята распространённая схема (рис.1), обсуждаемая на некоторых радиолюбительских форумах.

Рисунок 1. Вырезка из журнала Радио.

Честно говоря, стабилизированной эту схему назвать нельзя однозначно, но тем не менее я рекомендую её для начинающих радиолюбителей, нуждающихся в регулируемом источнике питания. Схема хороша тем, что позволяет регулировать напряжение в широких пределах, а также ограничивать ток нагрузки, что исключает перегрузку источника питания при коротких замыканиях.

У этой схемы есть один существенный недостаток. При регулировании напряжения, оно изменяется не равномерно. От минимума напряжение нарастает очень медленно, но ближе к максимуму процесс становится настолько стремительным, что точная установка требуемого значения весьма затруднительна. По этому поводу на многих форумах не мало соплей и плевков. Не советую уподобляться истерикам и размазывать сопли по этому поводу, всё, что требуется от настоящего радиолюбителя – включать мозг.

Суть проста. Чтобы получить линейный характер регулирования при нелинейном изменении величины регулирования линейным элементом, нужно скорректировать его характеристику в сторону обратной нелинейности… Вот такая не шуточная шутка получилась 🙂

Предлагаю Вам свой вариант схемы, в котором применена отечественная элементная база и добавлен элемент коррекции нелинейности регулировки напряжения – рисунок 2.

Рисунок 2. Схема блока регулирования напряжения и ограничения тока нагрузки.

Обратите внимание на подстроечный резистор R7. Его роль как раз и заключается в коррекции характеристики регулирования.

В качестве регулирующего элемента я применил транзистор КТ819ГМ (просто оказался в наличии). Он выполнен в массивном металлическом корпусе и рассчитан на ток коллектора до 15А. Этот транзистор необходимо размещать на радиаторе для эффективного теплоотвода.

В качестве шунта R2 я использовал параллельную спайку пяти двухваттных резисторов 5,1 Ом по 2 Вт каждый. Этот шунт я так же вынес за пределы платы, расположив рядом с радиатором транзистора.

У меня не оказалось переменного резистора 470 Ом, поэтому мне пришлось для R5 использовать резистор 1 кОм, но и при этом номинале ток регулируется достаточно равномерно.

Настройка схемы

Исходная схема (рисунок 1) практически не нуждается в настройке. Переработанная схема (рисунок 2) требует настройки коррекции характера регулирования напряжения. Настройка очень проста.

Подайте на вход напряжение питания (желательно от того источника, который будете брать за основу). Переменный резистор R6 выведите в крайнее положение, при котором напряжение выхода будет максимальным. Измерьте напряжение на выходе схемы. Переведите движок резистора R6 как Вам кажется точно в среднее положение. Подстроечным резистором R7 добейтесь на выходе схемы ровно половины того напряжения, которое измеряли при установке на максимум. Собственно – всё.

Данная коррекция не гарантирует абсолютную линейность регулировки, но визуально Вам покажется, что напряжение меняется идеально равномерно.

Применение

Плюс этой схемы заключается в ограничении максимального тока. Её можно использовать для сборки относительно бюджетного варианта источника питания. Для примера, я использовал в качестве преобразователя сетевого напряжения электронный трансформатор для галогенных ламп. У них есть серьёзный недостаток – отсутствие защиты от перегрузки. Но поскольку регулирующая схема ограничивает ток нагрузки, то практически защищает схему первичного преобразования от КЗ.

Файлы

Схема достаточно проста для повторения даже начинающими радиолюбителями, но, если кого интересует готовая печатка, качайте файл — Регулируемый БП 24 В 5 А

Кроме схемы и печатки в архиве содержится файл таблица с графиком, визуально отражающий изменение харауеристики равномерности регулирования при введении в схему корректирующего резистора, может кому то будет интересно, или даже полезно. Там в красных ячейках можно задавать величину сопротивлений переменного и корректирующего резистора. Изменение характеристики визуально можно наблюдать по представленным в файле графикам.

Предупреждение

Показанный в данной статье способ коррекции пригоден далеко не во всех случаях и может быть непреемлем для отдельного ряда задач!

ВНИМАНИЕ. Показанный способ коррекции следует использовать с особой осторожностью, зная принцип работы настраиваемого устройства и хорошо представляя, что Вы делаете! В других схемах при определённых положениях движка резисторов могут возникать недопустимые токи, способные вывести из строя резисторы или иные детали рабочего устройства. Используя описанный способ коррекции в своём устройстве вы действуете на свой страх и риск, а ещё лучше, представляете, что делаете. Ни какой ответственности за возможные причинённые неисправности Ваших устройств при применении корректирующего резистора по моей схеме лично я не несу.

Данный способ коррекции в конкретной представленной схеме на рисунке 2 абсолютно безопасен при любых номиналах корректирующего резистора и любых положениях движков корректирующего и переменного резисторов R7 и R6.

Пользуйтесь и наслаждайтесь творческим процессом 🙂

Стабилизатор напряжения с регулировкой — выходное напряжение

Простому обывателю при вводе запроса по стабилизаторам в поисковике сразу бросятся в глаза хвалебные или ругательные отзывы о производителях, куча брендов зарубежных стран. А также то, как в активных обсуждениях на многочисленных форумах опытные сподвижники продукции, представляясь в образе обычного пользователя, пытаются давать доверчивым читателям «правильные» советы к приобретению дорогого и ненужного им товара.

Такой массовой неразберихе соответствует жестокая конкуренция, не терпящая в бизнесе просиживания штанов с ожиданием завальных заказов, и активный поиск мечущихся в выборе теоретически неподкованных клиентов. У последних сразу же возникает мысль, что все регуляторы однотипные, и лишь отличаются по стоимости, габаритам и внешнему дизайну устройства. Однако картина в корне обманчива.

Основными различиями в стабилизаторах являются:

  • функциональная начинка;
  • рабочий диапазон,
  • качество,
  • тип исполнения.

Об одной функциональной особенности и пойдёт речь в этой статье.

Что такое стабилизатор напряжения с регулировкой?

Полвека назад для регулировки напряжения использовались автотрансформаторы с ручным управлением. Нужно было неустанно отслеживать показатели на стрелочном циферблате либо светящейся линейке прибора, и, по мере необходимости, самостоятельно выставлять номинальное значение. Сегодня такую коррекцию стабилизаторы с плавной регулировкой осуществляют абсолютно автоматически. Мы к этому еще вернёмся, а пока вспомним о простейших аналогах и том, с чего всё начиналось.

ЛАТРы и последующая их эволюция

Помните, в советские времена широко использовались лабораторные стенды с автотрансформаторами – ЛАТРами с ручной регулировкой? Основным применением их было – лабораторные задания в рамках школьного курса по физике и вузовской телемеханики, где требовалось получить на выходе точную величину нестандартных параметров. Из категории экспериментальных ЛАТРы незаметно перекочевали в образ бытовой техники.

Одно время их можно было видеть при телевизорах, в настоящее же время их использование стало очень многообразным – от разных технологических процессов (в птицеводстве, ремонтных мастерских, стоматологии и т. п.) до устройств на 110 В. На ЛАТРе довольно просто устанавливается и не такой показатель сети.

Существуют ЛАТРы с рабочими пределами 0–250 В, и, более того, до 300 В. Чем больше порог, тем больше дополнительной мощности у прибора, позволяющей с низких значений подниматься до высоких нагрузок. Нужно понимать, что лабораторному автотрансформатору вручную задаётся такой режим, который нужен. Тем самым устанавливается дополнительный диапазон входного напряжения – так называемая дельта.

К примеру, до удалённой розетки из-за сетевого падения доходят только 200 В. При установке ЛАТРа, поворотом ручки управления можно получить на выходе 220 В. «Дельта» в этом случае будет равна 20 В. При дальнейшем падении напряжения до 180 В, ЛАТР добавит лишь выставленную «дельту» в 20 В, и на выходе можно будет получить не более, чем 180+20=200 В.

Для удобства и наблюдения аппараты позже стали выпускаться с жидкокристаллическим дисплеем, позволяющим регулировать технические показатели прибора уже с более высокой точностью. Теперь, если требуется плавная стабилизация напряжения в 220 В, рекомендуется применение таких устройств, как:

  • стабилизатор с регулировкой выходного напряжения;
  • стабилизатор с регулировкой выходного тока.

Приборы с такими названиями нередко встречаются в электрических схемах. Возникают вопросы: какая разница между ними и как они работают?

Экскурс в теорию

Напряжение сети, предназначенное для электропитания, может иметь значительные колебания, ухудшающие работу различной техники. В сетях переменного тока встречаются перепады двух видов: краткосрочные и многочасовые. И те и другие изменения негативно сказываются на работе техники. Есть устройства, которые вообще не способны работать без стабилизации параметров, к ним относятся лампы бегущей волны, электронные вольтметры, осциллографы и т. д.

Стабилизаторы с регулировкой напряжения – это аппараты с функцией поддерживания напряжения на нагрузке с нужной точностью при изменении сопротивления нагрузки и параметров сети в заданном диапазоне.

Стабилизаторы с регулировкой тока при тех же изменениях поддерживают в нагрузке с необходимой точностью величину заданного тока. Стабилизаторы одновременно с главными своими функциями осуществляют также сглаживание пульсаций.

Основные параметры

Качеством работы регуляторов в основном служат такие технические показатели, как:

  • Стабилизирующий коэффициент, вытекающий из отношения изменений напряжения на входе и выходе
  • Показатель нестабильности
  • Внутреннее сопротивление
  • Коэффициент выравнивания всплесков

Коэффициент полезного действия определяется для всех типов стабилизаторов по отношению входной и выходной активных мощностей равен

Функции приборов

Диапазон входного напряжения

Наряду с точностью стабилизации, является важнейшей его характеристикой. Этот диапазон делится на две категории:

  • рабочий с обеспечением заявленной величины стабилизации, к примеру, 220±5%;
  • предельный с сохранением работоспособности при напряжении на выходе, отличающемся от заявленного значения в большей или меньшей степени до 15-18%.

При выходе параметров за рамки предельного, устройство отключает питание, оставаясь в сети для контроля и возможности введения техники вновь в работу при возвращении сети электроснабжения в заданный диапазон.

Системный контроль параметров

В случае выхода корректора из строя или резкого подъёма входного напряжения такая система отключает приборы от нормализатора и предотвращает их выход из строя.

Регулировка выходного напряжения

Некоторые модели имеют возможность регулирования выходного напряжения в пределах 210–230 В, что помогает решить одновременно несколько задач:

  • возможность установить на выходе стабилизатора западные стандарты напряжения 230 В для импортного электрооборудования. Без такой функции стабилизатор постоянно будет выходить за заданный для подобных приборов нижний диапазон напряжения, что может вызвать сбой в их работе;
  • для ламп накаливания лучшим решением будет установка напряжения примерно 210 В, что существенно продлит срок их службы. На силу светового потока ламп это никак не повлияет – пределы останутся такими же, какие заявлены изготовителем.

Еще раз кратко об отличиях

Известны три вида стабилизаторов с регулировкой выходного напряжения: понижающие, повышающие и всеядные. Наиболее интересными являются последние. Независимо от входного, на выходе можно получить необходимое значение напряжения.

Всеядный импульсник как будто не замечает, какое напряжение на входе – ниже или выше требуемого. Аппарат автоматически переключает режимы с повышением или понижением напряжения и удерживает заданное значение на выходе. Помимо этого, такое устройство почти не нагревается.

Пока всё понятно. А как быть со стабилизатором с регулировкой выходного тока? Не станем открывать Америку, если скажем, что такой аппарат нормализует ток. Внешне это устройство напоминает импульсный стабилизатор. Если в паспорте прибора указано значение выходного тока, то именно такой ток и будет. Выходное же напряжение можно изменять в зависимости от нужного значения для потребителя.

Не углубляясь слишком в теорию, просто заметим, что напряжение не требуется регулировать, аппарат сам сделает все исходя из нужд потребителя. С отличиями вроде бы разобрались.

Часто при подключении нагрузки стоит задача, выполнить контроль именно значения тока. Стабилизатором с регулировкой тока, чтобы такая техника не сгорела, ограничивается ток. Следует понимать, что у регуляторов устанавливается пороговое значение тока. После определённого предела приборы начнут нагреваться, и придётся покупать более мощное устройство. Понятно, что при росте тепловыделения, КПД уменьшается.

А насколько это всё нужно-то?

Выбор между регуляторами определяется тем, какой требуется инструмент для облегчения работы или решения определенного круга задач.

Стабилизаторы с регулировкой тока, в отличие от устройств с регулировкой напряжения, нормализуют выходной ток, при этом корректируя напряжение на выходе так, чтобы ток для нагрузки в любой момент оставался одинаковый. Именно в этом заключается основное отличие аппаратов. Путать их между собой не следует, чтобы это не привело к выходу из строя техники.

Ограничитель тока в электрических и электронных сетях

Ограничитель тока (ОТ) — устройство, которое применяется в электрических или электронных схемах для снижения верхнего предела постоянного (DC) или переменного (АС) тока, поступающего к нагрузке. Этим обеспечивается своевременная надёжная защита схем генерации или электронных систем от вредных воздействий из-за короткого замыкания в сети или других негативных процессов, приводящих к резкому росту АС/DC.

Методы ограничения используются для контроля количества тока, протекающего в постоянной или переменной цепи. Устройство гарантирует, что в случае превышения его граничного размера защита надёжно и своевременно сработает. Токоограничивающие устройства могут применяться в различных модификациях в зависимости от чувствительности, нормативной токовой нагрузки, времени отклика и возможных причин возникновения короткого замыкания в сети.

Избыточный АС/DC может возникать во внутренней цепи из-за короткозамкнутых компонентов, таких как диоды, транзисторы, конденсаторы или трансформаторы, а также проблем внешнего характера при перегрузке сетевых объектов, в замыкающей цепи или перенапряжение на входных клеммах питания.

Типы ограничивающих устройств

Выбор защитных устройств зависит от нескольких факторов. Приборы бывают пассивные и активные, могут использоваться индивидуально или в виде комбинации. Обычно ограничитель соединяют последовательно с нагрузкой.

Виды ограничивающих устройств:

  1. Предохранители и резисторы. Они используются для простого ограничения тока. Предохранитель обычно срабатывает, если его АС/DC превышает номинальный размер. Резисторы интегрированы в конструкцию схемы. Правильное значение сопротивления можно рассчитать и с использованием закона Ома I = V / R (где I — ток, V — напряжение и R — сопротивление). На рынке электротоваров имеется большое количество различных предохранителей, которые могут удовлетворить любые потребности для рассеивания мощности.
  2. Автоматические выключатели. Они используются для отключения питания, как и предохранитель, но их реакция медленнее и может не срабатывать для особо чувствительных цепей дорогостоящего оборудования.
  3. Термисторы. Термисторы отрицательных температурных коэффициентов (NTC) используются для ограничения начальных импульсных токов, которые протекают, когда устройство подключено к электросети. Термисторы имеют значительное сопротивление в холодном состоянии и низкое сопротивление при значительных температурах. NTC ограничивает пусковой ток мгновенно.
  4. Транзисторы и диоды. Регулируемые блоки питания используют схемы ограничения, такие как интегральные схемы, транзисторы и диоды. Активные схемы подходят для чувствительных сетей и срабатывают, уменьшая нагрузку или выключают питание, на повреждённую короткозамкнутую цепь или на всю сеть.
  5. Токоограничивающие диоды используются для ограничения или регулировки в широком диапазоне напряжений. Двухконтактное устройство ОТ состоит из затвора, закороченного на источник. Он поддерживает DC независимо от изменений напряжения.

Ограничитель тока нагрузки в электросетях

Системы распределения энергии имеют автоматические выключатели для выключения питания в случае неисправности. Они имеют определённые недостатки в обеспечении необходимой надёжности, так как не всегда могут отключать минимально необходимый аварийный участок сети для ремонта. Проблема возникает при реконструкции электроснабжения путём добавления новой мощности или перекрёстных соединений, которые должны иметь свои шины и выключатели, модернизированные для более высоких пределов тока короткого замыкания (ТКЗ).

Улучшение качества электроэнергии в сетях напрямую зависит от надёжности режима работы сетевого оборудования. Среди различных типов помех, влияющих на качество напряжения в сети (скачки, искажения гармоник и т. д. ), наиболее серьёзным препятствием являются падения напряжения, так как связанные с ним скачки фазового угла могут привести к поломке оборудования, к полной остановке производства, объектов ЖКХ, что со скоростью цепной реакции создаст угрозу жизнеобеспечения населения.

Общей причиной падения напряжения является ток короткого замыкания. При возникновении неисправности в распределительной сети на всех повреждённых шинах резко падает напряжение. Уровень зависит от точки подключения и электрического расстояния шины до места аварии.

Для снижения негативных процессов и отключения неисправных участков сети применяются следующие ограничители:

  • Распределительный статический компенсатор;
  • рекуператор динамического напряжения;
  • конденсатор с контролируемым тиристором;
  • полупроводниковый коммутатор статического переноса;
  • твердотельный ограничитель тока неисправности.

Такие защитные устройства не всегда совершенны. Некоторые из них имеют недостаток из-за высокой стоимости, а другие могут ограничить ток повреждения менее чем в 5 раз от нормального тока, что недостаточно при перегрузках.

Точки применения токовых ограничителей в электросиловом оборудовании:

  • До места срабатывания головного выключателя на аварийном фидере нагрузок потребителей с недопустимостью перерывов в электроснабжении;
  • на оборудовании, рабочие характеристики которого перестают соответствовать предельному току короткого замыкания, возросшему в связи с аварийной ситуацией в системах электроснабжения.

Простым решением ОТ в электросетевом оборудовании является добавление сопротивления в схему. Это ограничивает скорость, с которой может увеличиваться ТКЗ до того, как выключатель разомкнут, но также ограничивает способность схемы удовлетворять быстроменяющийся потребительский спрос, поэтому добавление или удаление больших нагрузок вызывает нестабильную мощность.

Применение токозащиты в электронных схемах

Пусковой ток возникает в момент подачи выключателем напряжения. Это происходит потому, что разница эквивалентного последовательного сопротивления конденсатора и сопротивление линии составляет всего несколько милидолей и приводит к большому пусковому току. Четыре фактора, которые могут влиять на этот процесс:

  1. Значение входного переменного тока.
  2. Минимальное сопротивление, требуемое термистором NTC (при t = 0).
  3. Постоянный DC.
  4. Температура окружающей среды.

Ограничитель тока представляет собой устройство или группу устройств, используемых для защиты элементов схемы от пусковой нагрузки. Термисторы и резисторы с отрицательным температурным коэффициентом (NTC) — это 2 простых варианта защиты. Их основными недостатками являются длительное время охлаждения и большая рассеиваемая мощность. Токоограничивающий диод регулирует или ограничивает ток в широком диапазоне. Они состоят из JFET с затвором, закороченным на источник и функционирующим как двухконтактный ограничитель тока.

Они позволяют проходящему через них току подниматься до определённого значения и сравниться с заданной величиной. В отличие от диодов Зенера, они сохраняют постоянный ток, а не напряжение. Токоограничивающие диоды удерживают ток, протекающий через них, неизменным при любом изменении нагрузки.

Типы токоограничивающих диодов

Существует множество различных типов токоограничивающих диодов, классифицирующихся по:

  • номинальному току регулятора;
  • максимальному предельному напряжению;
  • рабочему напряжению;
  • потребляемой мощности.

Наиболее распространёнными значениями максимального используемого напряжения являются 1, 7 В, 2, 8 В, 3, 1 В, 3, 5 В и 3, 7 В и 4, 5 В. Номинальный ток регулятора может иметь диапазон от 0,31 мА до 10 мА, причём обычно используемый ток регулятора составляет 10 мА .

Схема ограничения постоянного тока

Большинство источников питания имеют отдельные контуры регулирования DC и напряжения для регулирования своих выходов либо в режиме постоянного напряжения (CV), либо в режиме постоянного тока (CC), которые включаются в управление зависимо от того, как сопротивление нагрузки соответствует выходному напряжению и текущим настройкам.

Таким образом, защита выполняется в основном путём ограничения токового значения. При этом можно применять простую схему для ограничителя источника с использованием двух диодов и резистора. В любом источнике питания всегда существует риск того, что на выходе произойдёт короткое замыкание. Соответственно, в этих условиях необходимо защитить его от повреждений. Существует ряд схем, которые можно применить для предохранения электропитания.

Одна из простейших схем включает в себя только два диода и дополнительный резистор. Схема использует резистор для измерения помех, размещённый последовательно с выходным транзистором. Два диода, расположенные между выходом схемы и базой транзистора, обеспечивают защиту. Когда цепь работает в нормальном рабочем диапазоне, на резисторе имеется небольшое напряжение. Это напряжение плюс базовое излучательное транзистора гораздо меньше, чем падение диодного перехода, необходимого для включения двух диодов. Однако по мере увеличения DC растёт напряжение на резисторе. Когда оно равно напряжению, необходимому для работы, они включаются, напряжение транзистора падает, тем самым ограничивая ток.

Цепь этого диодного ограничителя тока для источника питания проста. Значение последовательного резистора может быть рассчитано таким образом, чтобы напряжение на нём возрастало до 0, 6 вольта (напряжение включения для кремниевого диода) при достижении максимального тока. Однако всегда лучше убедиться, что есть некоторый запас защиты, и лучше ограничить его до достижения необходимого уровня.

Ограничитель с обратной связью

Такая же простая диодная форма ограничения тока может быть включена в цепи питания, которые используют обратную связь для определения фактического выходного напряжения и обеспечивают более точно регулируемый выход. Если точка измерения выходного напряжения принимается после последовательного токового резистора, то падение напряжения может быть исправлено на выходе.

Эта схема обеспечивает гораздо лучшее регулирование, чем регулятор прямого эмиттера, также может учитывать падение напряжения в резисторе с токовым пределом, если имеется достаточное падение напряжения на транзисторе в цепи источника питания. Выходное напряжение можно также отрегулировать, чтобы получить требуемое значение с помощью переменного резистора. Диодная форма ограничения тока может быть легко интегрирована в схему питания. Кроме того, это дешёво и удобно.

Области применения токоограничивающих диодов

Токоограничивающие диоды обеспечивают высокую производительность и простоту эксплуатации по сравнению с биполярными транзисторами в системах защиты. Они универсальны, имеют превосходную производительность в отношении динамического температурного дрейфа. Устройств, использующих диоды:

  • схемы генератора сигналов;
  • схемы синхронизации;
  • зарядные устройства;
  • управления светодиодами;
  • замены удерживающих катушек в устройствах телефонной связи.

Токовые ограничивающие диоды выпускаются многими мировыми производителями полупроводников, такими как Calogic, Central Semiconductor, Diodes Inc., O. N. Semiconductor или Zetex. Рынок электроники имеет очень широкий выбор диодов, используемых диодных цепей или любых других устройств, которым может потребоваться ограничение предельного токового значения.

Способы регулирования выходного напряжения источников электропитания

Выходное напряжение ИЭП изменяется в процессе его работы под воздействием изменений тока нагрузки, входного напряжения, температуры окружающей среды, ионизирующих излучений, влажности окружающего воздуха, механических воздействий. Поэтому в процессе эксплуатации ИЭП необходимо поддерживать значение выходного напряжения в определенном диапазоне изменений, т. е. осуществлять процесс регулирования, который может выполняться вручную (оператором) или автоматически. Источник электропитания называют стабилизирующим, если в нем поддерживается уровень напряжения или тока с заданной степенью точности.

В зависимости от в и д а регулирован и я различают параметрические и компенсационные стабилизирующие источники.

Для параметрической стабилизации при постоянном токе применяют стабилитроны и транзисторные переходы с нелинейной характеристикой, а при переменном токе — электромагнитные компоненты. например дроссели.

Компенсационные стабилизирующие ИЭП представляют собой устройства автоматического регулирования с отрицательной обратной связью. Сигнал обратной связи с выхода таких ИЭП воздействует на имеющийся в его составе регулирующий узел. В компенсационных стабилизаторах напряжения сигнал обратной связи определяется уровнем выходного напряжения, в стабилизаторах тока — уровнем выходного тока.

В зависимости от принципа регулирования различают компенсационные ИЭП непрерывного и импульсного действия. Регулирующий узел в ИЭП непрерывного действия включается параллельно или последовательно нагрузке. В источниках электропитания импульсного действия для регулирования выходного напряжения применяются различные виды модуляции’.

  • а) амплитудная модуляция (AM) — регулирование осуществляется изменением амплитуды (при гармонических колебаниях) или максимального значения (при негармонических колебаниях) напряжения;
  • б) частотно-импульсная модуляция (ЧИМ) — регулирование осуществляется изменением частоты следования импульсов напряжения;
  • в) фазоимпульсная модуляция (ФИМ) — регулирование напряжения осуществляется изменением его фазы;
  • г) широтно-импульсная модуляция (ШИМ) — регулирование выходного напряжения осуществляется изменением длительности импульсов при постоянной частоте следования;
  • д) частотно-широтно-нмпульснаямодуляция (ЧШИМ) — водной части диапазона регулирование напряжения осуществляется в режиме ШИМ. а в другой части диапазона происходит переход в режим ЧИМ;
  • е) интегрально-широтно-импульсная модуляция (ИШИМ) — длительность импульсов определяется всей совокупностью значений управляющего сигнала на тактовом промежутке времени.

Наиболее широкое распространение в ИЭП ЭА получила ШИМ. Интерес представляет также ИШИМ, обеспечивающая высокую точность разомкнутых широтно-импульсных устройств регулирования и стабилизации.

Широтно-импульсная модуляция при регулировании и стабилизации напряжения

К достоинствам ШИМ следует отнести отсутствие статических потерь (по сравнению с амплитудной модуляцией), стабильность частоты сигнала и, следовательно, параметров обратной связи (по сравнению с частотной модуляцией). При широтно-импульсной модуляции осуществляется плавное регулирование момента появления сигнала, открывающего или закрывающего транзистор в зависимости от значения сигнала обратной связи с выхода источника электропитания.

При импульсах одной полярности модулирующий сигнал преобразуется в последовательность однополярных периодически повторяющихся широтно-модулированных импульсов. Такая ШИМ получила название однотактная ШИМ. При необходимости использования двухполярного модулирующего сигнала его предварительно преобразуют в однополярный модулирующий сигнал с помощью добавления постоянной составляющей. Длительность импульсов в однотактной ШИМ определяется дискретными значениями модулирующего сигнала. На рис. 1.12 приведена диаграмма, поясняющая действие однотактной ШИМ.

Однотактная ШИМ характеризуется следующими параметрами:

а) относительным значением постоянной составляющей dQ длительности импульсов:

где h() = (U0 /Слотах) — коэффициент уровня постоянной составляющей сигнала; т()п1ах — наибольшее значение постоянной составляющей длительности импульсов при /?() = 1; Ти — период следования импульсов;

б) относительной амплитудой переменной составляющей d длительности импульсов:

где h = (U/ ?/max) Xц длительность импульса; и tn2 моменты начала и окончания /»-го импульса соответственно

При двухтактной ШИМ (рис. 1.13) длительность каждого импульса определяется его абсолютным значением в определенные моменты времени, а полярность импульса — полярностью модулирующего сигнала ?/у11р.

Рис. 1.13. Диаграмма напряжений при двухтактной IIIИМ

Двухтактная ШИМ характеризуется следующими параметрами:

а) коэффициентом d модуляции импульсов по длительности:

б) коэффициентом р следования импульсов:

В стабилизирующих ИЭП должно осуществляться подавление пульсации входного напряжения, поэтому при однотактной или двухтактной ШИМ в последних выражениях необходимо принимать частоту модулирующего сигнала равной частоте oqiX пульсации входного напряжения:

Как при однотактной, так и при двухтактной Ш ИМ длительность импульса может изменяться за счет изменения положения фронта, спада или фронта и спада. Поэтому различают однотактную одностороннюю (ООШИМ), двухтактную одностороннюю (ДОШИМ). однотактную двустороннюю (ОДШ ИМ) и двухтактную двустороннюю (ДДШИМ) широтно-импульсные модуляции.

В зависимости от момента выборки значения сигнала, определяющего длительность импульса, однотактные и двухтактные виды ШИМ делят на четыре вида:

  • 1) при Ш ИМ первого вида (ШИМ-I) фронт импульса определяется значением сигнала в момент времени, совпадающий с модулируемым фронтом импульса;
  • 2) при ШИМ второго вида (ШИМ-П) фронт импульса определяется значением сигнала в тактовый момент времени;
  • 3) при ШИМ третьего вида (ШИМ-Ш) уровень сигнала, определяющий длительность импульса, находится внутри интервала действия импульса и отстоит от модулируемого фронта на некоторую часть длительности импульса;
  • 4) при ШИМ четвертого вида (ШИМ-IV) смещение фронта импульса относительно тактового момента определяется абсолютным значением сигнала в момент времени, который расположен внутри интервала смещения фронта и отстоит от тактового импульса на время, равное некоторой части смещения, соответствующего модулирующему сигналу в тактовый момент времени.

Интегральная широтно-импульсная модуляция при регулировании и стабилизации напряжения

Использование ИШИМ позволяет синтезировать однотактную одностороннюю и двустороннюю ШИМ, обладающую высокими качественными показателями и обеспечивающую требуемую точность разомкнутых шпротно-импульсных устройств регулирования и стабилизации. При осуществлении такого синтеза необходимо удовлетворить противоречивые требования высокой точности устройства и низкой частоты следования импульсов.

При интегральной ШИМ определяется длительность импульсов модуляции в соответствии с результатами анализа входного сигнала на всем тактовом промежутке, что обеспечивает достаточно хорошую помехозащищенность. Подобную модуляцию называют интегральной ШИМ по входу. Однако эта модуляция не учитывает искажения формы импульсов и пульсации напряжения ИЭП, которые могут вызвать паразитную амплитудную модуляцию и ухудшить точность воспроизведения выходного сигнала и стабильность его характеристик. Для работы преобразователя напряжения с неидеальными импульсами и значительной пульсацией напряжения электропитания используется интегральная модуляция по входу и выходу. В этом случае в качестве параметра модуляции используется не длительность импульса, а его площадь, которая выбирается по интегралу входного сигнала на тактовом промежутке. Такая модуляция определяется равенством вольт-секундных площадей (интегралов) сигнала управления S и сигнала обратной связи (сравнения) S’.

Преобразователи с однотактной интегральной ШИМ не нашли широкого применения, так как они обладают низким коэффициентом использования длительности периода (не более 0,5Г), для повышения которого необходимо вводить изменение частоты дискретизации в зависимости от уровня сигнала управления в весьма широких пределах. Однако в ИЭП желательно иметь стабильную частоту дискретизации (преобразования).

Преобразователи с двухтактной интегральной ШИМ бывают с непрерывным и с потактовым занесением сигнала управления в интегратор. В первом случае сигнал управления заносится на всем интервале работы, во втором — лишь во время соответствующего тактового промежутка.

Использование интегральной ШИМ при синусоидальных сигналах сравнения имеет ряд особенностей. Различают три метода формирования импульсов при синусоидальных сигналах сравнения, отличающихся расположением импульса в тактовом промежутке (рис. 1.14). При применении первого метода (рис. 1.14. а) импульс находится в начале тактового промежутка, при втором (рис. 1.14, б) — симметрично относительно середины тактового промежутка, при третьем (рис. 1.14, в) — в конце тактового промежутка.

Рис. 1.14. Методы формирования и мпул ьсов 11ри си I iycoидал ы iых сигналах сравнения и расположении импульса:

а II начале тактового промежутка; б симметрично отпоситсл ьпо середины тактового промежутка; <> в конце тактового и ромежут ка

Третий метод формирования импульсов используется в основном в тиристорных регуляторах с фазовым управлением. Возникающие при этом методе ошибки можно отработать лишь в следующем тактовом промежутке, что ухудшает качественные характеристики интегральной ШИМ.

Основным звеном устройства с интегральной ШИМ является интегратор с потактовым или непрерывным занесением сигнала управления. Рассмотрим структурную схему ИЭП с двухтактной интегральной ШИМ и непрерывным занесением, реализующую первый метод формирования импульсов, и ее временную диаграмму работы (рис. 1.15 и 1.16).

Рис. 1.15. Структур nail схема ИЭП с двухтактной ИШИМ

На интервале занесения ток управления

К моменту прихода тактового импульса напряжение на выходе интегратора достигнет значения

После прихода тактового импульса входной ток интегратора имеет вид

Напряжение на выходе интегратора изменяется согласно выражению

Рис. 1.16. Диаграммы работы ИЭП с двухтактной интегральной широтно-импульсной модуляцией:

а ток управления; 6 напряжение тактовых импульсов; а напряжение на выходе интегратора; / напряжение па выходе пороговой схемы

При условии постоянства U0 выражение (1.2) можно преобразовать:

где — относительный уровень выходного напряжения;

— относительный уровень сигнала занесения.

Выражение (1.1) при этом может быть приведено к следующему виду:

Здес! — относительный входной ток интегратора.

Формирование импульса на выходе устройства заканчивается при достижении напряжением на выходе интегратора нулевого значения, что определяется условием

Однако при определенном значении k2 входной ток интегратора может стать равным нулю прежде, чем напряжение на выходе интегратора достигнет нулевого значения. При этом импульс будет сформирован лишь после прихода тактового импульса, результатом чего будет ошибка в установлении длительности импульса (рис. 1.17).

Рис. 1.17. Диаграммы процесса возникновения ошибки длительности импульса при модуляции с не- преры в 11 ым занесением:

а изменение относительного уронил выходного напряжения; 6 выходной iixi- нулье модулятора

Относительное значение сигнала занесения, при котором возможно формирование ширины импульса без ошибки, может быть определено из условий

Из последней зависимости видно, что тактовый промежуток используется неполностью. Коэффициент его использования уменьшается примерно на 10 %.

Рис. 1.18. Зависимости и k3 от t/Tдля различных значений к2:

На рис. 1.18 приведены графики зависимости коэффициентов и k:i от t / Гдля различных значений k2 На рисунке можно отметить две области: в одной области ошибка сравнения отрабатывается полностью, в другой — переносится из такта в такт с частичной отработкой. Уравнение кривой, разделяющей эти области, определяется равенством k(t) — k$(t) н имеет вид

Перенос ошибки из такта в такт приводит к ее частичной отработке, поэтому в конечном счете в некотором такте она будет отработана полностью. Для определения этого такта предположим, что относительный уровень управляющего сигнала до момента времени т „ / Травен к2к]Г а в момент т „ / Гувеличился до значения k2. На интервале сравнения относительный уровень выходного напряжения интегратора достигает минимального значения

В последующих тактах благодаря частичной отработке ошибки минимальное значение относительного уровня выходного напряжени я интегратора снижается и в некотором такте достигает нуля. Номер такта, при котором ошибка будет отработана полностью, определяется зависимостью

Перенос ошибки в такт до полной отработки приводит к изменениям ширины импульсов с частотой

При некотором значении

ошибка переносится в бесконечность, т. е. ее отработка отсутствует.

При втором методе формирования ширины импульсов также имеет место перенос ошибки. Относительный уровень выходного напряжения интегратора имеет вид

а относительный уровень входного тока выражается зависимостью Критическому значению относительного входного сигнала

соответствует ширина импульса

Таким образом, при втором методе формирования импульсов коэффициент использования периода сигнала снижается примерно на 20 %. Номер такта, в котором заканчивается отработка ошибки, определяется по формуле

Графики зависимости номера такта от уровня k2 приведены на рис. 1.19. В устройстве с потактовым занесением сигнала управления перенос ошибки отсутствует, поэтому коэффициент использования периода сигнала приближается к единице.

Рис. 1.19. Зависимость номера такта п от уровня k.2:

1 первый метод формирования импульсов; 2 второй метод формирования hmi iv.iьсов

Метод фазоимпульсной модуляции используется в основном для управления тиристорами регулируемых выпрямителей и ведомых сетью инверторов, когда управляющий импульс сдвигается по фазе относительно момента изменения полярности напряжения синусоидальной формы. Регулирование методом ФИМ применяется также в автономных инверторах тока и напряжения и в мостовых схемах инверторов на полевых транзисторах путем сдвига фазы управляющих импульсов одного плеча преобразователя относительно другого плеча. Использование метода ФИМ в мощных преобразователях позволяет суммировать выходные мощности двух мостовых схем путем векторного сложения напряжений на выходных обмотках трансформатора при помощи фазового регулирования управляющих импульсов типа меандр.

Каждый электрик должен знать:  Светодиодные светильники Турин работают в постоянном режиме до 100 000 часов
Добавить комментарий