Регулировка оборотов асинхронного двигателя способы и схемы


СОДЕРЖАНИЕ:

Регулировка скорости вращения асинхронного электродвигателя 220в

Достаточно часто режим работы вспомогательного механизированного оборудования требует понижения штатных частот вращения. Добиться такого эффекта позволяет регулировка оборотов асинхронного двигателя. Как это сделать своими руками (расчет и сборку), используя стандартные схемы управления или самодельные устройства, попробуем разобраться далее.

  • Что такое асинхронный двигатель?
  • Двигатели с короткозамкнутым ротором (АДКР)
  • Двигатели с фазным ротором
  • Принцип работы и число оборотов асинхронных двигателей
  • Способы изменения оборотов двигателя
  • Типичные схемы регуляторов оборотов

    Что такое асинхронный двигатель?

    Электродвигатели переменного тока нашли довольно широкое применение в различных сферах нашей жизнедеятельности, в подъемно транспортном, обрабатывающем, измерительном оборудовании. Они используются для превращения электрической энергии, которая поступает от сети, в механическую энергию вращающегося вала. Чаще всего используются именно асинхронные преобразователи переменного тока. В них частота вращения ротора и статора отличаются. Между этими активными элементами обеспечивается конструктивный воздушный зазор.

    И статор, и ротор имеют жесткий сердечник из электротехнической стали (наборного типа, из пластин), выступающий в роли магнитопровода, а также обмотку, которая укладывается в конструктивные пазы сердечника. Именно способ организации или укладки обмотки ротора является ключевым критерием классификации этих машин.

    Двигатели с короткозамкнутым ротором (АДКР)

    Здесь используется обмотка в виде алюминиевых, медных или латунных стержней, которые вставляются в пазы сердечника и с обеих сторон замыкаются дисками (кольцами). Тип соединения этих элементов зависит от мощности двигателя: для малых значений используют метод совместной отливки дисков и стержней, а для больших – раздельное изготовление с последующей сваркой между собой. Обмотка статора подключается с использованием схем «треугольника» или «звезды».

    Двигатели с фазным ротором

    К сети подключается трехфазная обмотка ротора, посредством контактных колец на основном валу и щеток. За основу принимается схема «звезда». На рисунке внизу представлена типичная конструкция такого двигателя.

    Принцип работы и число оборотов асинхронных двигателей

    Данный вопрос рассмотрим на примере АДКР, как наиболее распространенного типа электродвигателей подъемно-транспортном и обрабатывающем оборудовании. Напряжение от сети подается на обмотку статора, каждая из трех фаз которой смещена геометрически на 120°. После подачи напряжения возникает магнитное поле, создающее путем индукции ЭДС и ток в обмотках ротора. Последнее вызывает электромагнитные силы, заставляющие ротор вращаться. Еще одна причина, по которой все это происходит, а именно, возникает ЭДС, является разность оборотов статора и ротора.

    Одной из ключевых характеристик любого АДКР является частота вращения, расчет которой можно вести по следующей зависимости:

    n = 60f / p, об/мин

    где f – частота сетевого напряжения, Гц; р – число полюсных пар статора.

    Все технические характеристики указываются на металлической табличке, закрепленной на корпусе. Но если она отсутствует по какой-то причине, то определить число оборотов нужно вручную по косвенным показателям. Как правило, используется три основных метода:

    • Расчет количества катушек. Полученное значение сопоставляется с действующими нормами для напряжения 220 и 380В (см. табл. ниже);
    • Расчет оборотов с учетом диаметрального шага обмотки. Для определения используется формула вида:

    где 2p – число полюсов; Z1 – количество пазов в сердечнике статора; y – собственно, шаг укладки обмотки.

    Стандартные значения оборотов:

    • Расчет числа полюсов по сердечнику статора. Используются математические формулы, где учитываются геометрические параметры изделия:

    2p = 0,35Z1b / h или 2p = 0,5Di / h,

    где 2p – число полюсов; Z1 – количество пазов в статоре; b – ширина зубца, см; h – высота спинки, см; Di – внутренний диаметр, образованный зубцами сердечника, см.

    После этого по полученным данным и магнитной индукции нужно определить количество витков, которое сверяется с паспортными данными двигателей.

    Способы изменения оборотов двигателя

    Регулировка оборотов любого трехфазного электродвигателя, используемого в подъемно-транспортной технике и оборудовании, позволяет добиться требуемых режимов работы точно и плавно, что далеко не всегда возможно, например, за счет механических редукторов. На практике используется семь основных методов коррекции скорости вращения, которые делятся на два ключевых направления:

    1. Изменение скорости магнитного поля в статоре. Достигается за счет частотного регулирования, переключения числа полюсных пар или коррекции напряжения. Следует добавить, что эти методы применимы для электродвигателей с короткозамкнутым ротором;
    2. Изменение величины скольжения. Этот параметр можно откорректировать за счет питающего напряжения, подключения дополнительного сопротивления в электрическую цепь ротора, применения вентильного каскада или двойного питания. Используется для моделей с фазным ротором.

    Наиболее востребованными методами являются регулирование напряжения и частоты (за счет применения преобразователей), а также изменение количества полюсных пар (реализуется путем организации дополнительной обмотки с возможностью переключения).

    Типичные схемы регуляторов оборотов

    На рынке сегодня есть широкий выбор регуляторов и частотных преобразователей для асинхронных двигателей. Тем не менее, для бытовых нужд подъемного или обрабатывающего оборудования вполне можно сделать расчет и сборку на микросхеме самодельного прибора на базе тиристоров или мощных транзисторов.

    Ниже представлен пример схемы достаточно мощного регулятора для асинхронного двигателя. За счет чего можно добиться плавного контроля параметров его работы, снижения энергопотребления до 50%, расходов на техническое обслуживание.

    Данная схема является сложной. Для бытовых нужд ее можно значительно упростить, используя в качестве рабочего элемента симистор, например, ВТ138-600. В этом случае схема будет выглядеть следующим образом:

    Обороты электродвигателя будут регулироваться за счет потенциометра, который определяет фазу входного импульса, открывающего симистор.

    Как можно судить из информации, представленной выше, от оборотов асинхронного двигателя зависят не только параметры его работы, но и эффективность функционирования питаемого подъемного или обрабатывающего оборудования. В торговой сети сегодня можно приобрести самые разнообразные регуляторы, но также можно совершить расчет и собрать эффективное устройство своими руками.

    Модератор форума: Igoran
    Форум радиолюбителей » СХЕМЫ » ТЕХНОЛОГИИ » Регулировка оборотов асинхронного двигателя (Уменьшение оборотов без потери мощности)

    Регулировка оборотов асинхронного двигателя

    Пн, 26.08.2013, 02:10 | Сообщение # 1 megos Пн, 26.08.2013, 13:34 | Сообщение # 2 MAXIMUS

    Добавлено (26.08.2013, 13:34)
    ———————————————
    а знаешь что будет если частота питающей сети отличается от номинала?

    Пн, 26.08.2013, 16:38 | Сообщение # 3 megos Пн, 26.08.2013, 19:50 | Сообщение # 4 Бухарь

    Насколько я знаю, для регулировки оборотов асинхронного двигателя нужно менять частоту тока. Вот скопировал с одного сайта . Сам я это устройство не повторял.

    Как известно можно изменять (регулировать) скорость вращения асинхронного безколлекторного электродвигателя изменяя частоту питающего двигатель переменного напряжения. На этом принципе был разработан, приведенный здесь, электронный регулятор скорости вращения. Регулятор позволяет изменять скорость вращения в довольно широких пределах — от 1000 до 4000 об/мин.
    Регулятор состоит из задающего генератора с регулируемой частотой от 50 до 200 Гц, в который входят мультивибратор на микросхеме К561ЛА7 , счетчик К561ИЕ8 формирующий сигналы управления с фиксированным «мертвым временем» для управления силовыми полевиками полумоста регулятора.

    Выходной трансформатор Т1 обеспечивает развязку верхнего и нижнего транзисторов полумоста. Выпрямитель, удвоитель напряжения питающей сети состоит из диодного моста VD9, включенного по нестандартной схеме и конденсаторов фильтра на которых и удваивается напряжение питания полумоста.
    Демпфирующая цепь С4, R7 гасит всплески напряжения опасные для силовых транзисторов VT3, VT4.
    Для трансформатора управления ключами, использовался каркас трансформатора от БП телевизора KORFUNG Ч/Б. Можно применить любой другой с аналогичным сечением железа — тип магнитопровода не имеет значения. Первичная обмотка содержит 120 витков провода диаметром 0,7мм, с отводом от середины, вторичная — две отдельные обмотки по 60 витков тем же проводом. Данные по вольтажу обмоток: первичка 2х12 вольт, вторички 12 вольт каждая, если сечение железа отличается от заданного, расчитать можно по формулам для трансформаторов на 50Гц. Марка провода роли не играет (медный).
    Обе вторичные обмотки нужно хорошо изолировать друг от друга, так как потенциал между ними достигает 640 вольт. Подключать выходные обмотки к затворам ключей необходимо в противофазе.

    Регулятор может работать с двигателями мощностью до 500Вт. Для применения регулятора с более мощными двигателями необходимо применить в схеме большее число силовых ключей в параллельном включении и увеличить емкость конденсаторов фильтра питания С3 и С4.
    Конструктивно регулятор выполнен на печатной плате размрами 110 х 80мм, трансформатор управления ключами ставится отдельно.

    Добавлено (26.08.2013, 19:50)
    ———————————————
    Он там регулирует от 50гц до 200гц. Но думаю, если изменить емкость С1 можно добиться частоты пониже. Тем самым и уменьшить обороты.

    Долгое время в промышленности использовались нерегулируемые электроприводы на базе АД, но, в последнее время возникла надобность в регулировании скорости асинхронных двигателей.

    Частота вращения ротора равна

    При этом, синхронная частота вращения зависит от частоты напряжения и числа пар полюсов

    Исходя из этого, можно сделать вывод, что регулировать скорость АД можно с помощью изменения скольжения, частоты и числа пар полюсов.

    Рассмотрим основные способы регулировки.

    Регулирование скорости с помощью изменения активного сопротивления в цепи ротора

    Этот способ регулирования скорости применим в двигателях с фазным ротором. При этом в цепь обмотки ротора включается реостат, которым можно плавно увеличивать сопротивление. С увеличением сопротивления, скольжение двигателя растёт, а скорость падает. Таким образом, обеспечивается регулировка скорости вниз от естественной характеристики.

    Недостатком данного способа является его неэкономичность, так как при увеличении скольжения, потери в цепи ротора растут, следовательно, КПД двигателя падает. Плюс к этому, механическая характеристика двигателя становится более пологой и мягкой, из-за чего небольшое изменение момента нагрузки на валу, вызывает большое изменение частоты вращения.

    Регулирование скорости данным способом не эффективно, но, несмотря на это применяется в двигателях с фазным ротором.

    Регулирование скорости двигателя с помощью изменения напряжения питания

    Данный способ регулирования можно осуществить, если включить в цепь автотрансформатор, перед статором, после питающих проводов. При этом, если снижать напряжение на выходе автотрансформатора, то двигатель будет работать на пониженном напряжении. Это приведёт к снижению частоты вращения двигателя, при постоянном моменте нагрузки, а также к снижению перегрузочной способности двигателя. Это связано с тем, что при уменьшении напряжения питания, максимальный момент двигателя уменьшается в квадрат раз. Кроме того, этот момент уменьшается быстрее, чем ток в цепи ротора, а значит, растут и потери, с последующим нагревом двигателя.

    Способ регулирования изменением напряжения, возможен только вниз от естественной характеристики, так как увеличивать напряжение выше номинального нельзя, потому что это может привести к большим потерям в двигателе, перегреву и выходу его из строя.

    Кроме автотрансформатора, можно использовать тиристорный регулятор напряжения.

    Регулирование скорости с помощью изменения частоты питания

    При данном способе регулирования, к двигателю подключается преобразователь частоты (ПЧ). Чаще всего это тиристорный преобразователь частоты. Регулирование скорости осуществляется изменением частоты напряжения f, так как она в данном случае влияет на синхронную скорость вращения двигателя.

    При снижении частоты напряжения, перегрузочная способность двигателя будет падать, чтобы этого не допустить, требуется повысить величину напряжения U1. Значение на которое нужно повысить, зависит от того какой привод. Если регулирование производится с постоянным моментом нагрузки на валу, то напряжение нужно изменять пропорционально изменению частоты (при снижении скорости). При увеличении скорости этого делать не следует, напряжение должно оставаться на номинальном значении, иначе это может причинить вред двигателю.

    Если регулирование скорости производится с постоянной мощностью двигателя (например, в металлорежущих станках), то изменение напряжения U1 необходимо производить пропорционально квадратному корню изменения частоты f1.

    При регулировании установок с вентиляторной характеристикой, необходимо изменять подводимое напряжение U1 пропорционально квадрату изменения частоты f1.

    Регулирование с помощью изменения частоты, является наиболее приемлемым вариантом для асинхронных двигателей, так как при нем обеспечивается регулирование скорости в широком диапазоне, без значительных потерь и снижения перегрузочных способностей двигателя.

    Регулирование скорости АД изменением числа пар полюсов

    Такой способ регулирования возможен только в многоскоростных асинхронных двигателях с короткозамкнутым ротором, так как число полюсов этого ротора, всегда равно количеству полюсов статора.

    В соответствии с формулой, которая рассматривалась выше, скорость двигателя можно регулировать изменением числа пар полюсов. Причём, изменение скорости происходит ступенчато, так как количество полюсов принимают только определённые значения – 1,2,3,4,5.

    Изменение количества полюсов достигается переключением катушечных групп статорной обмотки. При этом катушки соединяются различными схемами соединения, например “звезда — звезда” или “звезда – двойная звезда”. Первая схема соединения даёт изменение количества полюсов в соотношении 2:1. При этом обеспечивается постоянная мощность двигателя при переключении. Вторая схема изменяет количество полюсов в таком же соотношении, но при этом обеспечивает постоянный момент двигателя.

    Применение данного способа регулирования оправдано сохранением КПД и коэффициента мощности при переключении. Минусом же является более сложная и увеличенная конструкция двигателя, а также увеличение его стоимости.

    Регулятор Оборотов Асинхронного Двигателя 220в Своими Руками

    Довольно нередко режим работы вспомогательного механизированного оборудования просит снижения штатных частот вращения. Достигнуть такового эффекта позволяет регулировка оборотов асинхронного мотора. Как это сделать самостоятельно (расчет и сборку), используя стандартные схемы управления либо самодельные устройства, попробуем разобраться дальше.

    • Что такое асинхронный движок?
    • Движки с короткозамкнутым ротором (АДКР)
    • Движки с фазным ротором
  • Механизм работы и число оборотов асинхронных движков
  • Методы конфигурации оборотов мотора
  • Обычные схемы регуляторов оборотов

    Электродвигатели переменного тока отыскали достаточно обширное применение в разных сферах нашей жизнедеятельности, в подъемно транспортном, обрабатывающем, измерительном оборудовании. Они употребляются для перевоплощения электронной энергии, которая поступает от сети, в механическую энергию вращающегося вала. В большинстве случаев употребляются конкретно асинхронные преобразователи переменного тока. Там частота вращения ротора и статора отличаются. Меж этими активными элементами обеспечивается конструктивный зазор.

    И статор, и ротор имеют жесткий сердечник из электротехнической стали (наборного типа, из пластинок), выступающий в роли магнитопровода, также обмотку, которая укладывается в конструктивные пазы сердечника. Конкретно метод организации иначе говоря укладки обмотки ротора является главным аспектом систематизации этих машин.

    Тут употребляется обмотка в форме дюралевых, медных как еще его называют латунных стержней, которые вставляются в пазы сердечника и с обеих сторон замыкаются дисками (кольцами). Тип соединения этих частей находится в зависимости от мощности мотора: для малых значений употребляют способ совместной отливки дисков и стержней, для огромных – раздельное изготовка с следующей сваркой друг с другом. Обмотка статора подключается с применением схем «треугольника» или «звезды».

    Диммер своими руками, регулятор мощности. Регулятор оборотов электродвигателя 220В.

    К сети подключается трехфазная обмотка ротора, средством контактных колец по осносному валу и щеток. За базу принимается схема «звезда». На рисунке понизу представлена обычная конструкция такового мотора.

    Данный вопрос разглядим на примере АДКР, как более всераспространенного типа электродвигателей подъемно-транспортном и обрабатывающем оборудовании. Напряжение от сети подается на обмотку статора, любая из 3-х фаз какой занимается смещена геометрически на 120°. После подачи напряжения появляется магнитное поле, создающее методом индукции ЭДС и ток в обмотках ротора. Последнее вызывает электрические силы, заставляющие ротор крутиться. Очередная причина, из-за чего весь ассортимент происходит, а конкретно, появляется ЭДС, является разность оборотов статора и ротора.

    Одной из главных черт хоть какого АДКР является частота вращения, расчет занят конечно вести по последующей зависимости:

    где f – частота сетевого напряжения, Гц; р – число полюсных пар статора.

    Что остается сделать нашему клиенту технические свойства указываются на железной табличке, закрепленной на корпусе. Если она отсутствует по некий причине, то найти число оборотов необходимо вручную по косвенным показателям. Вы, употребляется три главных способа:

    Регулировка оборотов асинхронных двигателей, 3 фазы из одной с регулировкой

    • Расчет количества катушек. Приобретенное значение сопоставляется с действующими нормами для напряжения 220 и 380В (см. табл. ниже);
    • Расчет оборотов учитывая диаметрального шага обмотки. Для определения употребляется формула вида:

    где 2p – число полюсов; Z1 – количество пазов в сердечнике статора; y – фактически, шаг укладки обмотки.

    Стандартные значения оборотов:

    • Расчет числа полюсов по сердечнику статора. Употребляются математические формулы, где учитываются геометрические характеристики изделия:

    2p = 0,35Z1b / h или 2p = 0,5Di / h,

    где 2p – число полюсов; Z1 – количество пазов в статоре; b – ширина зубца, см; h – высота спинки, см; Di – внутренний поперечник, образованный зубцами сердечника, см.

    После такого факта по приобретенным данным и магнитной индукции необходимо найти количество витков, которое сверяется с паспортными данными движков.

    Регулировка оборотов хоть какого трехфазного электродвигателя, применяемого в подъемно-транспортной технике и оборудовании, позволяет достигнуть требуемых режимов работы точно и плавненько, что не каждый раз может быть, к примеру, путем механических редукторов. Практически употребляется семь главных способов корректировки скорости вращения, которые делятся на два главных направления:

    1. Изменение скорости магнитных полей в статоре. Получается из-за частотного регулирования, переключения числа полюсных пар как еще его называют корректировки напряжения. Следует добавить, что эти способы применимы для электродвигателей с короткозамкнутым ротором;
    2. Изменение величины скольжения. миф параметр конечно откорректировать по причине напряжения питания, подключения дополнительного сопротивления в электронную цепь ротора, внедрения вентильного каскада либо двойного питания. Употребляется для моделей с фазным ротором.

    Регулятор напряжения, скорости двигателя на 220v. до 2кВт.

    Более нужными способами являются регулирование напряжения и частоты (за счет применения внедрения преобразователей), кроме того изменение количества полюсных пар (реализуется методом организации дополнительной обмотки с возможностью переключения).

    Способы регулирования скорости асинхронного двигателя

    Читайте также:

    1. A — Статья ID ДВИГАТЕЛЯ/VIN Tex
    2. A — Статья ID ДВИГАТЕЛЯ/VIN Tex
    3. E. Способы передвижений.
    4. III.10. Способы государственного влияния на привлекательность страны для туристов
    5. U–образные и рабочие характеристики синхронного двигателя
    6. VI. По назначению в механизме правового регулирования
    7. А8. Условием успешности рыночного регулирования экономики является
    8. Абсолютные величины, способы их получения, виды и
    9. Административно-правовые инструменты государственного регулирования в сфере сервиса
    10. Административное расследование в системе административно-правового регулирования
    11. Альтернативные способы интернализации внешних эффектов
    12. Анализ схем статистического регулирования

    Почти все станки в качестве электропривода оснащаются асинхронными двигателями. У них простая конструкция и не высокая стоимость. В связи с этим важным оказывается регулирование скорости асинхронного двигателя. Однако в стандартной схеме включения управлять его оборотами можно только с помощью механических передаточных систем (редукторы, шкивы), что не всегда удобно. Электрическое управление оборотами ротора имеет больше преимуществ, хотя оно и усложняет схему подключения асинхронного двигателя.

    Для некоторых узлов автоматического оборудования подходит именно электрическое регулирование скорости вращения вала асинхронного электродвигателя. Только так можно добиться плавной и точной настройки рабочих режимов. Существует несколько способов управления частотой вращения путём манипуляций с частотой, напряжением и формой тока. Все они показаны на схеме.

    Из представленных на рисунке способов, самыми распространёнными для регулирования скорости вращения ротора являются изменение следующих параметров:

    · напряжения подаваемого на статор,

    · вспомогательного сопротивления цепи ротора,

    · числа пар полюсов,

    · частоты рабочего тока.

    Последние два способа позволяют изменять скорость вращения без значительного снижения КПД и потери мощности, остальные способы регулировки способствуют снижению КПД пропорционально величине скольжения. Но и у тех и других есть свои преимущества и недостатки. Поскольку чаще всего на производстве применяются асинхронные двигатели с короткозамкнутым ротором, то все дальнейшие обсуждения будут касаться именно этого типа электродвигателей.

    Для частотного регулирования применяют в основном полупроводниковые преобразователи. Их принцип действия основан на особенности работы асинхронного двигателя, где частота вращения магнитного поля статора зависит от частоты напряжения питающей сети. Скорость вращения поля статора определяется по следующей формуле:

    n1 = 60f/p, где n1 — частота вращения поля (об/мин), f-частота питающей сети (Гц), p-число пар полюсов статора, 60 — коэффициент пересчета мерности.

    Для эффективной работы асинхронного электродвигателя без потерь нужно вместе с частотой изменять и подаваемое напряжение. Напряжение должно меняться в зависимости от момента нагрузки. Если нагрузка постоянная, то напряжение изменяется пропорционально частоте.

    Современные частотные регуляторы позволяют уменьшать и увеличивать обороты в широком диапазоне. Это обеспечило их широкое применение в оборудовании с управляемой протяжкой, например, в многоконтактных станках сварной сетки. В них скорость вращения асинхронного двигателя, приводящего в движение намоточный вал, регулируется полупроводниковым преобразователем. Такая регулировка позволяет оператору, следящему за правильностью выполнения технологических операций, ступенчато ускоряться или замедляться по мере настройки станка.

    Остановимся на принципе работы преобразователя частоты более подробно. В его основе лежит принцип двойного преобразования. Состоит регулятор из выпрямителя, импульсного инвертора и системы управления. В выпрямителе синусоидальное напряжение преобразуется в постоянное и подаётся на инвертор. В составе силового трёхфазного импульсного инвертора есть шесть транзисторных переключателей. Через эти автоматические ключи постоянное напряжение подаётся на обмотки статора так, что в нужный момент на соответствующие обмотки поступает то прямой, то обратный ток со сдвигом фаз 120°. Таким образом, постоянное напряжение трансформируется в переменное трёхфазное напряжение нужной амплитуды и частоты.

    Необходимые параметры задаются через модуль управления. Автоматическая регулировка работы ключей осуществляется по принципу широтно-импульсной модуляции. В качестве силовых переключателей используются мощные IGBT-транзисторы. Они, по сравнению с тиристорами, имеют высокую частоту переключения и выдают почти синусоидальный ток с минимальными искажениями. Не смотря на практичность таких устройств, их стоимость для двигателей средней и высокой мощности остаётся очень высокой.

    Регулировка скорости вращения асинхронного двигателя методомизменения числа пар полюсов также относится к наиболее распространённым методам управления электродвигателей с короткозамкнутым ротором. Такие моторы называются многоскоростными. Есть два способа осуществления этого метода:

    · укладывание сразу нескольких обмоток с разными числами пар полюсов в общие пазы статора,

    · применение специальной намотки с возможностью переключения существующих обмоток под нужное число пар полюсов.

    В первом случае чтобы уложить в пазы дополнительные обмотки нужно уменьшить сечение провода, а это приводит к уменьшению номинальной мощности электродвигателя. Во втором случае имеет место усложнение коммутационной аппаратуры, особенно для трёх и более скоростей, а также ухудшаются энергетические характеристики. Более подробно этот и другие способы регулирования скорости асинхронного двигателя описаны в архивном файле, который можно скачать внизу страницы.

    Обычно многоскоростные двигатели выпускаются на 2, 3 или 4 скорости вращения, причем 2-х скоростные двигатели выпускаются с одной обмоткой на статоре и с переключением числа пар полюсов в отношении 2 : 1 = р2 : pt , 3-х скоростные двигатели — с двумя обмотками на статоре, из которых одна выполняется с переключением 2 : 1 = Рг : Pi , 4-х скоростные двигатели — с двумя обмотками на статоре, каждая из которых выполняется с переключением числа пар полюсов в отношении 2:1. Многоскоростными электродвигателями оснащаются различные станки, грузовые и пассажирских лифты, они используются для приводов вентиляторов, насосов и т.д.

    Каждый электрик должен знать:  Что делать, если греться проводка в доме, как исправить ситуацию
    Нагревание и охлаждение электродвигателей

    При работе любого электродвигателя часть поступающей к тему энергии затрачивается на потери, связанные с нагревом обмоток и магнитопроводов, трением в подшипниках и враща­ющихся частей о воздух. Хотя потери энергии в современных электродвигателях невелики, при их работе все же выделяется значительное количество тепла, что приводит к нагреву элек­тродвигателей. Различают постоянные и переменные потери в электрических машинах. Величина первых не зависит или мало зависит от нагрузки машины. К ним относятся потери на перемагничивание, на вихревые токи, на нагрев параллельных об­моток возбуждения и на трение (о воздух, в подшипниках, на щетках и т. п.). К переменным относят потери, пропорциональ­ные квадрату тока нагрузки. Это потери на нагрев обмотки якоря или статора), последовательных обмоток возбуждения, коллектора и т. п. На холостом ходу нагрев машин определяется постоянными потерями. По мере загрузки машины увеличиваются переменные потери и нагрев ее повышается.

    Таким образом, вопросы нагрева электродвигателей имеют большое практическое значение, так как нагревом должна оп­ределяться допустимая нагрузка электродвигателя. Темпера­тура неработающей машины равна температуре окружающего воздуха. Если машина приведена в рабочее состояние и нагруз­ка на ,нее постоянна, то в каждую единицу времени в ней на­чинают выделяться определенные порции тепла. В начальный момент работы все выделенное в машине тепло почти полно­стью идет на ее нагрев, при этом повышается температура ма­шины, т. е. появляется температурный перепад τ между темпе­ратурой машины и температурой окружающей среды. При по­явлении температурного перепада машина начинает часть вы­деляющегося в ней тепла отдавать окружающей среде путем конвекции, лучеиспускания и теплопроводности.

    Чем выше перепад τ, тем больше тепла машина будет отда­вать окружающей среде. Наконец, перепад достигает такого предельного значения τпр, когда все выделяемое в машине тепло станет отводиться в окружающую среду и нагрев машины прекратится, т. е. ее температура достигнет значения, предель­ного для данной нагрузки.

    В случае, когда нагрузка на машину превышает допусти­мую, установившаяся температура может оказаться слишком высокой и превысит допустимую. Установившаяся температу­ра работающей машины не должна превосходить величины, оп­ределяемой теплоемкостью ее изоляции.

    Современные электроизоляционные материалы, используе­мые в электрических машинах, делятся на классы: А, В и др. К материалам класса А относятся хлопок, шелк и другие подоб­ные органические материалы, пропитанные специальными лака­ми или маслами, различные эмали. К материалам класса В отно­сятся материалы из слюды или асбеста, пропитанные органиче­скими связующими составами.

    Для всех изоляционных материалов классов А и В ГОСТом установлены допускаемые превышения температуры при температуре охлаждающего воздуха +35°С. Номинальная мощность электродвигателей нормируется для температуры охлаждающего воздуха до 40°С. Если кран или другой механизм предназначается для работы при температуре окружающей среды более 40°С, при выборе электродвигателей нужно учи­тывать это обстоятельство и вводить соответствующую (поправку, повышающую мощность электродвигателей. В качестве первого приближения можно рекомендовать следующее эмпирическое правило: учитывать повышенную температуру воздуха, увели­чивая мощность выбираемого двигателя на 1% при повышении температуры воздуха на 1 ◦С.

    Для максимального использования (по тепловым возмож­ностям) всех применяемых в электродвигателе материалов не­обходимо, чтобы при полной нагрузке его отдельные части на­гревались до температур, близких к предельно допустимым. С этой же целью используется искусственное охлаждение элек­тродвигателей, позволяющее большую часть выделяющегося при работе машины тепла отдавать окружающей среде и тем самым повышать нагрузку без опасности разрушения изоляции машины. Большинство электродвигателей, используемых для привода подъемно-транспортных машин, оборудуется самовентиляцией. Лишь электродвигатели, работающие в особо тя­желых условиях, могут иметь независимую вентиляцию. В этом случае воздух через внутренние полости машины продувается независимым вентилятором.

    Напрев электрической машины характеризует зависимость вида τ = f(t). Аналитическое определение этой зависимости за­труднено тем, что электрическая машина не является однород­ным телом. Отдельные ее части имеют различные теплоемкости, теплопроводности и теплоотдачу. Они по-разному нагреваются и по-разному отдают тепло окружающей среде. Если для упро­щения принять, что электрическая машина является однород­ным телом, то задача определения зависимости вида τ = f(t) может быть решена следующим образом.

    Предварительно примем следующие обозначения:

    τ — температурный перепад, град;

    q — количество тепла, выделяемого в машине, кал/сек;

    с — теплоемкость машины, кал/град;

    А — теплоотдача машины, кал/градсек.

    За время dt в машине выделится Q=qdt калорий тепла.

    где Q1 — тепло, затрачиваемое за время dt на нагрев машины;

    Q2 — тепло, отданное окружающей среде за это же время. За время dt температурный перепад машины возрастет на вели­чину . Следовательно,

    Подставив эти выражения в уравнение (8), получим диф­ференциальное уравнение теплового баланса машины

    Интеграл этого уравнения, решаемого относительно t,

    Примем за начальные условия t = 0 и τ = τ (τ — темпера­турный перепад машины). Тогда

    Теперь выражение (12) примет вид

    Подставив это выражение в уравнение (11) и произведя пре­образования, получим

    Полученное уравнение и является аналитически выраженной зависимостью температурного перепада τ от времени t. Поло­жив в этом уравнении t =̴, получим значение τпр:

    Следовательно, величина предельного или установившегося пе­репада τпр, а значит, и установившаяся температура машины зависят лишь от количества тепла, выделяемого в машине за единицу времени, и от ее теплоотдачи.

    Величина входящая в показатель степени в уравнении (15), имеет размеренность времени и называется по­стоянной времени нагревания. Эта величина от нагрузки ма­шины не зависит и физически является тем временем, в течение которого машина достигла бы перегрева, равного предель­ному, при отсутствии теплоотдачи в окружающую среду. Зна­чение постоянной времени нагревания зависит от мощности и конструктивных особенностей машины и колеблется в пределах от 1 до 4 ч. Приближенно величину постоянной времени нагревания можно определить по эмпирической формуле:

    где Θ1, Θ2 и Θ3 — значения температуры машины, измеренные че­рез равные промежутки времени Δt.

    Таким образом, уравнение (15) примет вид:

    Из этого уравнения вытекает, что теоретически предельный перегрев достигается машиной по истечении бесконечно боль­шого периода времени.

    Однако практически можно считать, что машина достигает предельного (установившегося) перегрева по истечении времени, равного (3÷4)Т. Действительно, подставив в уравнение (18) значение t = 3Т, получим, чтоτ = 0,95τпр, а при t = 4Т τ = 0,98 τпр

    Кривая, соответствующая уравнению (18), называется экспонентой (рис. 7). Уравне­нию (18) соответствует кри­вая 1. Кривой 2 соответствует уравнение

    которое можно получить, при­няв τ=0. Кривые охлаждения электрических машин подобны кривым нагрева. Действитель­но, если выделение тепла в ма­шине прекратится (q = 0), то уравнения (15) и (18) примут вид:

    которому соответствует кривая 3, представляющая собой кривую охлаждения машины от начального перегрева до нуля.

    Следует иметь в виду, что значения Т в уравнениях (19) и (20) должны быть одинаковыми, если принять электрическую машину за однородное тело. В действительности же постоян­ная времени нагревания вращающейся машины меньше посто­янной времени охлаждения этой же машины и составляет в среднем 0,25÷0,7 Тохл.

    Дата добавления: 2014-12-25 ; Просмотров: 987 ; Нарушение авторских прав? ;

    Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

    Lialko-Valerij › Блог › UX-52 – Китайский регулятор оборотов. Обзор, тестирование, доработка.

    Выписал данный регулятр с Али для своего коллекторного двигателя от стиральной машины (510 W при 15000 об/мин):

    По возможности полностью попытался разобраться с этим девайсом. По обзору в интернете народ в основном себе выписывает и использует вот такой регулятор:

    Мой отличается от них не только ценой (мой 1004 руб. против 697 руб. в апреле 2020 г. на Али с бесплатной доставкой) но и наличием встроенного электронного тахометра с цифровым дисплеем. Внимательно изучив эту железяку пришел к выводу, что она предназначена изначально для регулировки оборотов асинхронного двигателя о чем и свидетельствует схема подключения на корпусе.
    До сих пор я не сталкивался с тем, что регулировать обороты асинхронного двигателя можно не только частотником но и в принципе вот таким регулятором. С трудом нашел в интернете фото асинхронного движка с таходатчиком и видео, где человек подключает асинхронный электродвигатель с немыслимыми для меня и асинхронного электродвигателя 17500 об/мин. и таходатчиком на нем. yandex.ru/v >

    Видимо для таких специальных электродвигателей к стиральным машинам изначально и был изготовлен регулятор UX-52. Потому как на мой взгляд нельзя регулировать обороты у классического асинхронного электродвигателя напряжением без последствий для него. Ну а для коллекторного регулировка этим UX-52 да и US-52 будет в самый раз.
    Так как в наличии у меня такого движка нет провел опыт с подобным движком но без таходатчика.
    Работает зараза, но даже с небольшим напряжением на входе двигатель набирает свои обороты, мощность при этом маленькая – можно остановить за шкив.
    Уверенность в том что регулятор предназначен для асинхронных электродвигателей укрепилась также и в том, что встроенный конденсатор 12Мкф 470V как раз и нужен только для работы асинхронника. Да и схема подключения на самом регуляторе нарисована для работы асинхронного электродвигателя.
    Встроенный тахометр рассчитан на максимальное число оборотов 5000, если поднимаешь выше то несет ерунду. Произвел замеры разных параметров данного регулятора при помощи моего коллекторного электродвигателя на холостом ходу и под нагрузкой – прижимал шкив дощечкой товодя потребляемый ток до 3А. Замерял обороты этим механическим прибором (погрешность 1%) и я ему верю:

    Выводы: не стоит переплачивать за UX-52 так как встроенный цифровой тахометр показывает примерно в 1,5 раза меньше реальных оборотов. Вполне сойдет и US-52 без этой приблуды. Результаты испытаний и схемы:

    Теперь о переделке регулятора для своего электродвигателя. Установленный в данном регуляторе динистор ВТ137 600Е на 8 ампер на явно маловатый радиатор долго не протянет и я выбросив громоздкий конденсатор на 12 Мкф изготовил самопальный радиатор и через пасту КПТ-8 закрепил на его месте на пластиковых стойках – корпус данного динистора с сетью не развязан.

    Безпомеховый регулятор оборотов однофазного асинхронного двигателя вентилятора ВН-2. Делаем вытяжку

    Содержание / Contents

    ↑ Схема регулятора оборотов однофазного асинхронного двигателя на транзисторе D209L

    P.S.: прозрачная термоусадка — самая лучшая из всех, что я видел на киевском радиорынке, она при усаживании не вспучивается и не подгорает, а при соединении двух слоёв они сплавляются, и получается монолитная трубка.

    ↑ Трансформатор

    ↑ Печатная плата

    Важно: если во время «обжига» на меди будут отпечатки пальцев/грязь, то они останутся и на вытравленной плате. Поэтому чистый текстолит я заклеиваю скотчем на время резки/кернения и отклеиваю его только когда рисую дорожки.

    ↑ Травление

    Рекомендуемый способ приготовления травильного раствора:
    В 100 мл аптечной 3% перекиси водорода растворяется 30 г лимонной кислоты и 5 г поваренной соли. Этого раствора должно хватить для травления 100 см2 меди, толщиной 35мкм.

    Соль при подготовке раствора можно не жалеть. Так как она играет роль катализатора, то в процессе травления практически не расходуется. Перекись 3% не стоит разбавлять дополнительно т.к. при добавлении остальных ингредиентов её концентрация снижается.

    Чем больше будет добавлено перекиси водорода (гидроперита) тем быстрее пойдёт процесс, но не переусердствуйте — раствор не хранится, т.е. повторно не используется, а значит и гидроперит будет просто перерасходован. Избыток перекиси легко определить по обильному «пузырению» во время травления.
    Однако добавление лимонной кислоты и перекиси вполне допустимо, но рациональнее приготовить свежий раствор.
    Источник

    ↑ Окончательная сборка регулятора

    Аккуратненько запихиваем все в корпус

    Провод с вилкой я взял готовый и вклеил его в резиновую трубочку-неломайку от корпуса:

    Последней операцией стало подпиливание крепёжных винтов трансформатора бормашиной с отрезным диском:

    Готовый регулятор в корпусе:

    ↑ Видео работы регулятора

    На этом работа над регулятором заканчивается, и я планирую продолжить конструирование самой вытяжки после сессии, уже летом.
    Всем спасибо за внимание!

    регулировка скорости асинхронного двигателя

    Уважаемые Мастера! Посоветуйте ,пожалуйста, каким образом можно регулировать скорость асинхронного двигателя мощностью 0,7 квт.Можно регулировать ступенчато 2-3 скорости. Можно, конечно купить готовые регуляторы , но мой бюджет не позволяет этого сделать. Слышал ,можно регулировать с помощью конденсаторов, но как и какими?
    Заранеее благодарен.

    Casper написал :
    Уважаемые Мастера! Посоветуйте ,пожалуйста, каким образом можно регулировать скорость асинхронного двигателя мощностью 0,7 квт.Можно регулировать ступенчато 2-3 скорости. Можно, конечно купить готовые регуляторы , но мой бюджет не позволяет этого сделать. Слышал ,можно регулировать с помощью конденсаторов, но как и какими?
    Заранеее благодарен.

    Регулировка скорости асинхронного двигателя не такая простая задача. В общем случае для снижения/увеличения скорости при постоянном крутящем моменте следует пропорционально снижать/увеличивать частоту тока и напряжение, что и делает любой нормальный частотный привод. Лучше купить готовый, на такую мощность меньше $200 можно найти.

    2Casper ,
    174 евро бюджет выдержит ?

    Частотник Веспер EI-2MINI S1L (0,75kW) мы брали по 160 причем долларов.
    » >

    Casper написал :
    Уважаемые Мастера! Посоветуйте ,пожалуйста, каким образом можно регулировать скорость асинхронного двигателя мощностью 0,7 квт.Можно регулировать ступенчато 2-3 скорости. Можно, конечно купить готовые регуляторы , но мой бюджет не позволяет этого сделать. Слышал ,можно регулировать с помощью конденсаторов, но как и какими?
    Заранеее благодарен.

    Если двигатель трехфазный, то не так уж и сложно. хотя.
    недавно делал схемку . 3 плеча по два транзистора IRF840 (мостовачя схема в ключевом режиме на три фазы), транзисторы управляются тремя драйверами IR2112, которые в свою очередь управляются микроконтроллером ATmega8. Скорость регулируется переменным резистором на аналоговом входе контроллера, частота вращения зависит от частоты переключения транзисторов, уровень напряжения зависит от скважности высокочастотного ШИМ заполнения. все очень неплохо работает. Подробности интересуют?

    Блок управления асинхронником (до 1 килловата) можно собрать всего на одной специализированной мотороловской микросхеме — MC3PHAC. Все равно, дешевле получится.

    Если заинтересовало, можно почитать статью «Микроконтроллеры компании Freescale/Motorola для систем управления электроприводом» в журнале Электронные компоненты за номером ‘7’ от 2004 года.

    Freescale Semiconductor — это подразделение полупроводников в Motorola.(freescale.com)

    спасибоза помощь, но меня все-таки интересует регулировка скорости на конденсаторах.

    Casper
    Вы не правы в принципе. На конденсаторах делается сдвиг фазы для питания трехфазника от однофазной сети. Хорошо работает только на определенных оборотах, почему и требует дополнительного пускового конденсатора. Соответственно, можно сделать неправильно, так чтобы не хватило мощности для раскрутки до полных оборотов. Греться будет нехило. Регулировкой оборотов я бы это не назвал.

    вставляешь в каждую фазу последовательно 3 одинаковых кон-ра емкостью от10 до 1мкф , чем ниже емкость, тем ниже скорость вращения.
    да смотри напряжение не ниже 400вольт чтоб было, а так-же смотри електролитические НЕ ВЛЯПАЙ— взорвутся!

    Кстати, электролиты тоже можно, но парой последовательно встречно, диодами зашунтированные.
    P.S. Изврат все это.

    astronom написал :
    вставляешь в каждую фазу последовательно 3 одинаковых кон-ра емкостью от10 до 1мкф , чем ниже емкость, тем ниже скорость вращения.

    • Это за счёт потери мощности. На такой установке можно только ножи точить.

    Casper написал :
    Можно регулировать ступенчато 2-3 скорости. Можно, конечно купить готовые регуляторы , но мой бюджет не позволяет этого сделать.

    Так если надо только ступенчато и не плавно, то может простыми шкивами с ремнем обойтись?
    (Как у сверлильного станка).

    Casper написал :
    Уважаемые Мастера! Посоветуйте ,пожалуйста, каким образом можно регулировать скорость асинхронного двигателя мощностью 0,7 квт.Можно регулировать ступенчато 2-3 скорости. Можно, конечно купить готовые регуляторы , но мой бюджет не позволяет этого сделать. Слышал ,можно регулировать с помощью конденсаторов, но как и какими?
    Заранеее благодарен.

    слышал что повысить частоту (соответственно скорость) в два раза можно с помощью диодного моста.

    Casper написал :
    Уважаемые Мастера! Посоветуйте ,пожалуйста, каким образом можно регулировать скорость асинхронного двигателя мощностью 0,7 квт.Можно регулировать ступенчато 2-3 скорости. Можно, конечно купить готовые регуляторы , но мой бюджет не позволяет этого сделать. Слышал ,можно регулировать с помощью конденсаторов, но как и какими?
    Заранеее благодарен.

    Подключение трехфазного асинхронного электродвигателя в однофазную сеть через конденсатор, со схемой соединения обмоток треугольник
    » >
    Подключение трехфазного асинхронного электродвигателя в однофазную сеть через конденсатор, со схемой соединения обмоток звезда
    » >

    слышал что повысить частоту (соответственно скорость) в два раза можно с помощью диодного моста.

    Можно. Вот только напряжение при этом снизится, тоже вдвое.

    Casper написал :
    Уважаемые Мастера! Посоветуйте ,пожалуйста, каким образом можно регулировать скорость асинхронного двигателя мощностью 0,7 квт.Можно регулировать ступенчато 2-3 скорости. Можно, конечно купить готовые регуляторы , но мой бюджет не позволяет этого сделать. Слышал ,можно регулировать с помощью конденсаторов, но как и какими?
    Заранеее благодарен.

    Щас всех убью и съем. Один останусь. По детству рисовал курсовую по САР ТВС с ЧПУ.
    Там стояли контроллеры Кемрос — Кемток, кажись болгарские. Привода суппорта через винтовую пару (без самоторможения) были выполнены НА АСИНХРОННЫХ ДВИГАТЕЛЯХ. ВОт а теперь все замерли: смертельный номер. (ЛИТАВРЫ) ТОчность выдержки этого привода составляла. УГЛОВЫЕ МИНУТЫ.
    И все на мелкой логике. ВАУ. Матарола.

    Теперь с небес на землю: ротор на асинхроннике — белка? Иди со щетками? Кондерами, это скорее за счет скольжения. А вообще, лучше дараматизируйте, то есть конкретизируйте задачу. Ибо если это привод слежения телескопа — то одно. А если осевой вентилятор из приточки — совершенно третье.
    Приятного погружения в инферно электропривода. (а то в свое время как меня преподы этими электромашинами затиранили. )

    Как сделать регулятор оборотов коллекторного двигателя?

    При использовании электродвигателя в инструментах, одной из серьёзных проблем является регулировка скорости их вращения. Если скорость недостаточно высока, то действие инструмента является недостаточно эффективным.

    Если же она излишне высока, то это приводит не только к существенному перерасходу электрической энергии, но и к возможному пережогу инструмента. При слишком высокой скорости вращения, работа инструмента может стать также менее предсказуемой. Как это исправить? Для этой цели принято использовать специальный регулятор скорости вращения.

    Двигатель для электроинструментов и бытовой техники обычно относится к одному из 2 основных типов:

    1. Коллекторные двигатели.
    2. Асинхронные двигатели.

    В прошлом, вторая из указанных категорий имела наибольшее распространение. Сейчас, примерно 85% двигателей, которые употребляются в электрических инструментах, бытовой или кухонной технике, относятся к коллекторному типу. Объясняется это тем, что они имеют большую степень компактности, они мощнее и процесс управления ими является более простым.

    Действие любого электродвигателя построено на очень простом принципе: если между полюсами магнита поместить прямоугольную рамку, которая может вращаться вокруг своей оси, и пустить по ней постоянный ток, то рамка станет поворачиваться. Направление вращения определяется согласно «правилу правой руки».

    Эту закономерность можно использовать для работы коллекторного двигателя.

    Важным моментом здесь является подключение тока к этой рамке. Поскольку она вращается, для этого используются специальные скользящие контакты. После того, как рамка повернётся на 180 градусов, ток по этим контактам потечёт в обратном направлении. Таким образом, направление вращения останется прежним. При этом, плавного вращения не получится. Для достижения такого эффекта принято использовать несколько десятков рамок.

    Устройство

    Коллекторный двигатель состоит обычно из ротора (якоря), статора, щёток и тахогенератора:

    1. Ротор — это вращающаяся часть, статор — это внешний магнит.
    2. Щётки, сделанные из графита – это основная часть скользящих контактов, через которую на вращающийся якорь подаётся напряжение.
    3. Тахогенератор – это прибор, который отслеживает характеристики вращения. В случае нарушения равномерности движения, он корректирует поступающее в двигатель напряжение, тем самым делая его более плавным.
    4. Статор может содержать не один магнит, а, например, 2 (2 пары полюсов). Также, вместо статических магнитов, здесь могут быть использованы и катушки электромагнитов. Работать такой мотор может как от постоянного, так и от переменного тока.

    Простота регулировки скорости коллекторного двигателя определяется тем, что скорость вращения прямо зависит от величины поданного напряжения.

    Кроме этого, важной особенностью является то, что ось вращения непосредственно можно присоединять к вращающемуся инструменты без использования промежуточных механизмов.

    Если говорить об их классификации, то можно говорить о:

    1. Коллекторных двигателях постоянного тока.
    2. Коллекторных двигателях переменного тока.

    В этом случае, речь идёт о том, каким именно током происходит питание электродвигателей.

    Разница состоит в том, как организованы эти подключения.

    Тут принято различать:

    • Параллельное возбуждение.
    • Последовательное возбуждение.
    • Параллельно-последовательное возбуждение.

    Регулировка

    Теперь расскажем о том, как можно регулировать обороты коллекторных двигателей. В связи с тем, что скорость вращения мотора просто зависит от величины подаваемого напряжения, то любые средства регулировки, которые способны выполнять эту функцию для этого вполне пригодны.

    Перечислим несколько такого рода вариантов для примера:

    1. Лабораторный автотрансформатор (ЛАТР).
    2. Заводские платы регулировки, используемые в бытовых приборах (можно использовать в частности те, которые применяются в миксерах или в пылесосах).
    3. Кнопки, используемые в конструкции электроинструментах.
    4. Бытовые регуляторы освещения с плавным действием.

    Однако, все вышеперечисленные способы имеют очень важный изъян. Вместе с уменьшением оборотов, одновременно уменьшается и мощность работы мотора. В некоторых случаях, его можно остановить даже просто рукой. В некоторых случаях, это может быть приемлемо, но большей частью, это является серьёзным препятствием.

    Хорошим вариантом является выполнение регулировки оборотов посредством использования тахогенератора. Его обычно устанавливают на заводе. При отклонениях в скорости вращения мотора, через симисторы в мотор передаётся уже откорректированное электропитание, соответствующее требуемой скорости вращения. Если в эту схему встроить регулировку вращения мотора, то потери мощности здесь происходить не будет.

    Как это выглядит конструктивно? Наиболее распространены реостатная регулировка вращения, и сделанная на основе использования полупроводников.

    В первом случае, речь идёт о переменном сопротивлении с механической регулировкой. Она последовательно подключается к коллекторному электродвигателю. Недостатком является дополнительное выделение тепла и дополнительная трата ресурса аккумулятора. При таком способе регулировк, происходит потеря мощности вращения мотора. Является дешёвым решением. Не применяется для достаточно мощных моторов по упомянутым причинам.

    Во втором случае, при использовании полупроводников, происходит управление мотором путём подачи определённых импульсов. Схема может менять длительность таких импульсов, что в свою очередь, меняет скорость вращения без потери мощности.

    Как изготовить своими руками?

    Существуют различные варианты схем регулировки. Приведём один из них более подробно.

    Вот схема его работы:

    Первоначально, это устройство было разработана для регулировки коллекторного двигателя на электротранспорте. Речь шла о таком, где напряжение питания составляет 24 В, но эта конструкция применима и для других двигателей.

    Слабым местом схемы, которое было определено при испытаниях её работы, является плохая пригодность при очень больших значениях силы тока. Это связано с некоторым замедлением работы транзисторных элементов схемы.

    Рекомендуется, чтобы ток составлял не более 70 А. В этой схеме нет защиты по току и по температуре, поэтому рекомендуется встроить амперметр и контролировать силу тока визуально. Частота коммутации составит 5 кГц, она определяется конденсатором C2 ёмкостью 20 нф.

    При этом, рекомендуется подобрать величину R1 таким образом, чтобы правильно настроить работу регулятора. С выхода микросхемы, управляющий импульс поступает на двухтактный усилитель на транзисторах КТ815 и КТ816, далее идёт уже на транзисторы.

    Печатная плата имеет размер 50 на 50 мм и изготавливается из одностороннего стеклотекстолита:

    На этой схеме дополнительно указаны 2 резистора по 45 ом. Это сделано для возможного подключения обычного компьютерного вентилятора для охлаждения прибора. При использовании в качестве нагрузки электродвигателя, необходимо схему заблокировать блокирующим (демпферным) диодом, который по своим характеристикам соответствует удвоенному значению тока нагрузки и удвоенному значению питающего напряжения.

    Работа устройства при отсутствии такого диода может привести к поломке вследствие возможного перегрева. При этом, диод нужно будет поместить на теплоотвод. Для этого, можно воспользоваться металлической пластиной, которая имеет площадь 30 см2.

    Регулирующие ключи работают так, что потери мощности на них достаточно малы. В оригинальной схеме, был использован стандартный компьютерный вентилятор. Для его подключения использовалось ограничительное сопротивление 100 Ом и напряжение питания 24 В.

    Собранное устройство выглядит следующим образом:

    При изготовлении силового блока (на нижнем рисунке), провода должны быть присоединены таким образом, чтобы было минимум изгибов тех проводников по которым проходят большие токи.Мы видим, что изготовление такого прибора требует определённых профессиональных знаний и навыков. Возможно, в некоторых случаях имеет смысл воспользоваться покупным устройством.

    Критерии выбора и соимость

    Для того, чтобы правильно выбрать наиболее подходящий тип регулятора, нужно хорошо представлять себе, какие есть разновидности таких устройств:

    1. Различные типы управления. Может быть векторная или скалярная система управления. Первые применяются чаще, а вторые считаются более надёжными.
    2. Мощность регулятора должна соответствовать максимально возможной мощности мотора.
    3. По напряжению удобно выбирать устройство, имеющее наиболее универсальные свойства.
    4. Характеристики по частоте. Регулятор, который вам подходит, должен соответствовать наиболее высокой частоте, которую использует мотор.
    5. Другие характеристики. Здесь речь идёт о величине гарантийного срока, размерах и других характеристиках.
    Каждый электрик должен знать:  Классификация промышленных роботов

    В зависимости от назначения и потребительских свойств, цены на регуляторы могут существенно различаться.

    Большей частью они находятся в диапазоне примерно от 3,5 тысяч рублей до 9 тысяч:

    1. Регулятор оборотов KA-18 ESC, предназначенный для моделей масштаба 1:10. Стоит 6890 рублей.
    2. Регулятор оборотов MEGA коллекторный (влагозащищенный). Стоит 3605 рублей.
    3. Регулятор оборотов для моделей LaTrax 1:18. Его цена 5690 рублей.

    Как изменить скорость вращения асинхронного двигателя

    Наиболее распространены следующие способы регулирования скорости асинхронного двигателя : изменение дополнительного сопротивления цепи ротора, изменение напряжения, подводимого к обмотке статора, двигателя изменение частоты питающего напряжения, а также переключение числа пар полюсов.

    Регулирование частоты вращения асинхронного двигателя путем введения резисторов в цепь ротора

    Введение резисторов в цепь ротора приводит к увеличению потерь мощности и снижению частоты вращения ротора двигателя за счет увеличения скольжения, поскольку n = n о (1 — s).

    Из рис. 1 следует, что при увеличении сопротивления в цепи ротора при том же моменте частота вращения вала двигателя уменьшается.

    Жесткость механических характеристик значительно снижается с уменьшением частоты вращения, что ограничивает диапазон регулирования до (2 — 3) : 1. Недостатком этого способа являются значительные потери энергии, которые пропорциональны скольжению. Такое регулирование возможно только для двигателя с фазным ротором.

    Регулирование частоты вращения асинхронного двигателя изменением напряжения на статоре

    Изменение напряжения, подводимого к обмотке статора асинхронного двигателя , позволяет регулировать скорость с помощью относительно простых технических средств и схем управления. Для этого между сетью переменного тока со стандартным напряжением U 1ном и статором электродвигателя включается регулятор напряжения .

    При регулировании частоты вращения асинхронного двигателя изменением напряжения, подводимого к обмотке статора, критический момент М кр асинхронного двигателя изменяется пропорционально квадрату подводимого к двигателю напряжения U рет (рис. 3 ), а скольжение от U рег не зависит.

    Рис. 1. Механические характеристики асинхронного двигателя с фазным ротором при различных сопротивлениях резисторов, включенных в цепь ротора

    Рис. 2. Схема регулирования скорости асинхронного двигателя путем изменения напряжения на статоре

    Рис. 3. Механические характеристики асинхронного двигателя при изменении напряжения подводимого к обмоткам статора

    Если момент сопротивления рабочей машины больше пускового момента электродвигателя (Мс > Мпуск), то двигатель не будет вращаться, поэтому необходимо запустить его при номинальном напряжении Uном или на холостом ходу.

    Регулировать частоту вращения короткозамкнутых асинхронных двигателей таким способом можно только при вентиляторном характере нагрузки. Кроме того, должны использоваться специальные электродвигатели с повышенным скольжением. Диапазон регулирования небольшой, до n кр.

    Для изменения напряжения применяют трехфазные автотрансформаторы и тиристорные регуляторы напряжения.

    Рис. 4. Схема замкнутой системы регулирования скорости тиристорный регулятор напряжения — асинхронный двигатель (ТРН — АД)

    Замкнутая схема управления асинхронным двигателем , выполненным по схеме тиристорный регулятор напряжения — электродвигатель позволяет регулировать скорость асинхронного двигателя с повышенным скольжением (такие двигатели применяются в вентиляционных установках).

    Регулирование частоты вращения асинхронного двигателя изменением частоты питающего напряжения

    Так как частота вращения магнитного поля статора n о = 60 f /р, то регулирование частоты вращения асинхронного двигателя можно производить изменением частоты питающего напряжения.

    Принцип частотного метода регулирования скорости асинхронного двигателя заключается в том, что, изменяя частоту питающего напряжения, можно в соответствии с выражением при неизменном числе пар полюсов р изменять угловую скорость n о магнитного поля статора.

    Этот способ обеспечивает плавное регулирование скорости в широком диапазоне, а механические характеристики обладают высокой жесткостью.

    Для получения высоких энергетических показателей асинхронных двигателей (коэффициентов мощности, полезного действия, перегрузочной способности) необходимо одновременно с частотой изменять и подводимое напряжение. Закон изменения напряжения зависит от характера момента нагрузки Мс. При постоянном моменте нагрузки напряжение на статоре должно регулироваться пропорционально частоте.

    Схема частотного электропривода приведена на рис. 5, а механические характеристики АД при частотном регулировании — на рис. 6.

    Рис. 5. Схема частотного электропривода

    Рис. 6. Механические характеристики асинхронного двигателя при частотном регулировании

    С уменьшением частоты f критический момент несколько уменьшается в области малых частот вращения. Это объясняется возрастанием влияния активного сопротивления обмотки статора при одновременном снижении частоты и напряжения.

    Частотное регулирование скорости асинхронного двигателя позволяет изменять частоту вращения в диапазоне (20 — 30) : 1. Частотный способ является наиболее перспективным для регулирования асинхронного двигателя с короткозамкнутым ротором. Потери мощности при таком регулировании невелики, поскольку минимальны потери скольжения.

    Большинство современных преобразователей частоты построено по схеме двойного преобразования. Они состоят из следующих основных частей: звена постоянного тока (неуправляемого выпрямителя), силового импульсного инвертора и системы управления.

    Звено постоянного тока состоит из неуправляемого выпрямителя и фильтра. Переменное напряжение питающей сети преобразуется в нем в напряжение постоянного тока.

    Силовой трехфазный импульсный инвертор содержит шесть транзисторных ключей. Каждая обмотка электродвигателя подключается через соответствующий ключ к положительному и отрицательному выводам выпрямителя. Инвертор осуществляет преобразование выпрямленного напряжения в трехфазное переменное напряжение нужной частоты и амплитуды, которое прикладывается к обмоткам статора электродвигателя.

    В выходных каскадах инвертора в качестве ключей используются силовые IGBT-транзисторы. По сравнению с тиристорами они имеют более высокую частоту переключения, что позволяет вырабатывать выходной сигнал синусоидальной формы с минимальными искажениями. Регулирование выходной частоты I вых и выходного напряжения осуществляется за счет высокочастотной широтно-импульсной модуляции.

    Регулирование частоты вращения асинхронного двигателя переключение числа пар полюсов

    Ступенчатое регулирование скорости можно осуществить, используя специальные многоскоростные асинхронные двигатели с короткозамкнутым ротором.

    Из выражения n о = 60 f /р следует, что при изменении числа пар полюсов р получаются механические характеристики с разной частотой вращения n о магнитного поля статора. Так как значение р определяется целыми числами, то переход от одной характеристики к другой в процессе регулирования носит ступенчатый характер.

    Существует два способа изменения числа пар полюсов. В первом случае в пазы статора укладывают две обмотки с разным числом полюсов. При изменении скорости к сети подключается одна из обмоток. Во втором случае обмотку каждой фазы составляют из двух частей, которые соединяют параллельно или последовательно. При этом число пар полюсов изменяется в два раза.

    Рис. 7. Схемы переключения обмоток асинхронного двигателя: а — с одинарной звезды на двойную; б — с треугольника на двойную звезду

    Регулирование скорости путем изменения числа пар полюсов экономично, а механические характеристики сохраняют жесткость. Недостатком этого способа является ступенчатый характер изменения частоты вращения асинхронного двигателя с короткозамкнутым ротором. Выпускаются двухскоростные двигатели с числом полюсов 4/2, 8/4, 12/6. Четырехскоростной электродвигатель с полюсами 12/8/6/4 имеет две переключаемые обмотки.

    Использованы материалы книги Дайнеко В.А., Ковалинский А.И. Электрооборудование сельскохозяйственных предприятий.

    Благодаря надежности и простоте конструкции асинхронные двигатели (АД) получили широкое распространение. В большинстве станков, промышленном и бытовом оборудовании применяются электродвигатели такого типа. Изменение скорости вращения АД производится механически (дополнительной нагрузкой на валу, балластом, передаточными механизмами, редукторами и т.д.) или электрическими способами. Электрическое регулирование более сложное, но и гораздо более удобное и универсальное.

    Для многих агрегатов применяется именно электрическое управление. Оно обеспечивает точное и плавное регулирование пуска и работы двигателя. Электрическое управление производится за счет:

    • изменения частоты тока;
    • силы тока;
    • уровня напряжения.

    В этой статье мы рассмотрим популярные способы, как может осуществляться регулировка оборотов асинхронного двигателя на 220 и 380В.

    Изменение скорости АД с короткозамкнутым ротором

    Существует несколько способов:

    1. Управление вращением за счет изменения электромагнитного поля статора: частотное регулирование и изменение числа пар полюсов.
    1. Изменение скольжения электромотора за счет уменьшения или увеличения напряжения (может применяться для АД с фазным ротором).

    Частотное регулирование

    В данном случае регулировка производится с помощью подключенного к двигателю устройства для преобразования частоты. Для этого применяются мощные тиристорные преобразователи. Процесс частотного регулирования можно рассмотреть на примере формулы ЭДС трансформатора:

    Данное выражение означает, что для сохранения постоянного магнитного потока, означающего сохранение перегрузочной способности электромотора, следует одновременно с преобразованием частоты корректировать и уровень питающего напряжения. Если сохраняется выражение, вычисленное по формуле:

    то это означает, что критический момент не изменен. А механические характеристики соответствуют рисунку ниже, если вы не понимаете, что значат эти характеристики, то в этом случае регулировка происходит без потери мощности и момента.

    Достоинствами данного метода являются:

    • плавное регулирование;
    • изменение скорости вращения ротора в большую и меньшую сторону;
    • жесткие механические характеристики;
    • экономичность.

    Недостаток один — необходимость в частотном преобразователе, т.е. увеличение стоимости механизма. К слову, на современном рынке представлены модели с однофазным и трёхфазным входом, стоимость которых при мощности 2-3 кВт лежит в диапазоне 100-150 долларов, что не слишком дорого для полноценной регулировки привода станков в частной мастерской.

    Переключение числа пар полюсов

    Данный метод применяется для многоскоростных двигателей со сложной обмоткой, позволяющей изменять число пар ее полюсов. Самое широкое применение получили двухскоростные, трехскоростные и четырехскоростные АД. Принцип регулировки проще всего рассмотреть на основе двухскоростного АД. В такой машине обмотка каждой фазы состоит из двух полуобмоток. Скорость вращения изменяется при подключении их последовательно или параллельно.

    В четырехскоростном электродвигателе обмотка выполнена в виде двух независимых друг от друга частей. При изменении числа пар полюсов первой обмотки производится изменение скорости работы электромотора с 3000 до 1500 оборотов в минуту. При помощи второй обмотки производится регулировка вращения 1000 и 500 оборотов в минуту.

    При изменении числа пар полюсов происходит и изменение критического момента. Для его сохранения неизменным, требуется одновременно с изменением числа пар полюсов регулировать и питающее напряжение, например, переключением схемы звезда-треугольник и их вариациями.

    Достоинства данного метода:

    • жесткие механические характеристики двигателя;
    • высокий КПД.
    • ступенчатая регулировка;
    • большой вес и габаритные размеры;
    • высокая стоимость электромотора.

    Способы управления скоростью АД с фазным ротором

    Изменение скорости вращения АД с фазным ротором производится путем изменения скольжения. Рассмотрим основные варианты и способы.

    Изменение питающего напряжения

    Этот способ также применяется для АД с КЗ ротором. Асинхронный двигатель подключается через автотрансформатор или ЛАТР. Если уменьшать напряжение питания, частота вращения двигателя снизится.

    Но такой режим уменьшает перегрузочную способность двигателя. Этот способ применяется для регулирования в пределах напряжения не выше номинального, так как увеличение номинального напряжения приведет к выходу электродвигателя из строя.

    Активное сопротивление в цепи ротора

    При использовании данного метода в цепь ротора подключается реостат или набор постоянных резисторов большой мощности. Данное устройство предназначено для плавного увеличения сопротивления.

    Скольжение растет пропорционально увеличению сопротивления, а скорость вращения вала электромотора при этом снижается.

    • большой диапазон регулирования в сторону понижения скорости вращения.
    • снижение КПД;
    • увеличение потерь;
    • ухудшение механических характеристик.

    Асинхронный вентильный каскад и машины двойного питания

    Изменение скорости работы асинхронных электромоторов в данных случаях выполняется путем изменения скольжения. При этом скорость вращения электромагнитного поля неизменна. Напряжение подается напрямую на обмотки статора. Регулировка происходит за счет использования мощности скольжения, которая трансформируется в цепь ротора, и образует добавочную ЭДС. Такие методы используются только в специальных машинах и крупных промышленных устройствах.

    Плавный пуск асинхронных электродвигателей

    АД кроме безусловных преимуществ, обладают существенными недостатками. Это рывок на старте и большие пусковые токи, в 7 раз превышающие номинальные. Для мягкого старта электродвигателя используются следующие методы:

    • переключение обмоток по схеме звезда – треугольник;
    • включение электродвигателя через автотрансформатор;
    • использование специализированных устройств для плавного пуска.

    В большинстве частотных регуляторов есть функция плавного пуска двигателя. Это не только снижает пусковые токи, но и уменьшает нагрузки на исполнительные механизмы. Поэтому регулирование частоты и плавный пуск довольно сильно связаны между собой.

    Как сделать устройство для изменения скорости вращения электродвигателя своими руками

    Для регулировки маломощных однофазных АД можно использовать диммеры. Однако этот способ ненадежен и обладает серьезными недостатками: снижением КПД, серьезным перегревом устройства и опасностью повреждения двигателя.

    Для надежного и качественного регулирования оборотов электродвигателей на 220В, лучше всего подходит частотное регулирование.

    Приведенная ниже схема позволяет собрать частотное устройство для регулировки электромоторов мощностью до 500 Вт. Изменение скорости вращения производится в границах от 1000 до 4000 оборотов в минуту.

    Устройство состоит из задающего генератора с изменяемой частотой, состоящего из мультивибратора, собранного на микросхеме К561ЛА7, счетчика на микросхеме К561ИЕ8, полумоста регулятора. Выходной трансформатор Т1 выполняет развязку верхнего и нижнего транзисторов полумоста.

    Демпфирующая цепь С4, R7 гасит всплески напряжения опасные для силовых транзисторов VT3, VT4. Выпрямитель, удвоитель напряжения питающей сети, включает в себя диодный мост VD9, с конденсатором фильтра на которых происходит удвоение напряжения питания полумоста.

    Напряжение первичной обмотки: 2х12В, вторичной обмотки 12В. Первичная обмотка трансформатора управления ключами, состоит из 120 витков медного провода сечением 0,7мм, с отводом от середины. Вторичная – две обмотки, каждая по 60 витков повода сечением 0,7 мм.

    Вторичные обмотки необходимо максимально надежно заизолировать друг от друга, так как разница потенциалов между ними доходит до 640 В. Подключение выходных обмоток к затворам ключей производится в противофазе.

    Вот мы и рассмотрели способы регулировки оборотов асинхронных двигателей. Если возникли вопросы, задавайте их в комментариях под статьей!

    Достаточно часто режим работы вспомогательного механизированного оборудования требует понижения штатных частот вращения. Добиться такого эффекта позволяет регулировка оборотов асинхронного двигателя. Как это сделать своими руками (расчет и сборку), используя стандартные схемы управления или самодельные устройства, попробуем разобраться далее.

    • Что такое асинхронный двигатель?
    • Двигатели с короткозамкнутым ротором (АДКР)
    • Двигатели с фазным ротором
  • Принцип работы и число оборотов асинхронных двигателей
  • Способы изменения оборотов двигателя
  • Типичные схемы регуляторов оборотов

    Что такое асинхронный двигатель?

    Электродвигатели переменного тока нашли довольно широкое применение в различных сферах нашей жизнедеятельности, в подъемно транспортном, обрабатывающем, измерительном оборудовании. Они используются для превращения электрической энергии, которая поступает от сети, в механическую энергию вращающегося вала. Чаще всего используются именно асинхронные преобразователи переменного тока. В них частота вращения ротора и статора отличаются. Между этими активными элементами обеспечивается конструктивный воздушный зазор.

    И статор, и ротор имеют жесткий сердечник из электротехнической стали (наборного типа, из пластин), выступающий в роли магнитопровода, а также обмотку, которая укладывается в конструктивные пазы сердечника. Именно способ организации или укладки обмотки ротора является ключевым критерием классификации этих машин.

    Двигатели с короткозамкнутым ротором (АДКР)

    Здесь используется обмотка в виде алюминиевых, медных или латунных стержней, которые вставляются в пазы сердечника и с обеих сторон замыкаются дисками (кольцами). Тип соединения этих элементов зависит от мощности двигателя: для малых значений используют метод совместной отливки дисков и стержней, а для больших – раздельное изготовление с последующей сваркой между собой. Обмотка статора подключается с использованием схем «треугольника» или «звезды».

    Двигатели с фазным ротором

    К сети подключается трехфазная обмотка ротора, посредством контактных колец на основном валу и щеток. За основу принимается схема «звезда». На рисунке внизу представлена типичная конструкция такого двигателя.

    Принцип работы и число оборотов асинхронных двигателей

    Данный вопрос рассмотрим на примере АДКР, как наиболее распространенного типа электродвигателей подъемно-транспортном и обрабатывающем оборудовании. Напряжение от сети подается на обмотку статора, каждая из трех фаз которой смещена геометрически на 120°. После подачи напряжения возникает магнитное поле, создающее путем индукции ЭДС и ток в обмотках ротора. Последнее вызывает электромагнитные силы, заставляющие ротор вращаться. Еще одна причина, по которой все это происходит, а именно, возникает ЭДС, является разность оборотов статора и ротора.

    Одной из ключевых характеристик любого АДКР является частота вращения, расчет которой можно вести по следующей зависимости:

    n = 60f / p, об/мин

    где f – частота сетевого напряжения, Гц; р – число полюсных пар статора.

    Все технические характеристики указываются на металлической табличке, закрепленной на корпусе. Но если она отсутствует по какой-то причине, то определить число оборотов нужно вручную по косвенным показателям. Как правило, используется три основных метода:

    • Расчет количества катушек. Полученное значение сопоставляется с действующими нормами для напряжения 220 и 380В (см. табл. ниже);
    • Расчет оборотов с учетом диаметрального шага обмотки. Для определения используется формула вида:

    где 2p – число полюсов; Z1 – количество пазов в сердечнике статора; y – собственно, шаг укладки обмотки.

    Стандартные значения оборотов:

    • Расчет числа полюсов по сердечнику статора. Используются математические формулы, где учитываются геометрические параметры изделия:

    2p = 0,35Z1b / h или 2p = 0,5Di / h,

    где 2p – число полюсов; Z1 – количество пазов в статоре; b – ширина зубца, см; h – высота спинки, см; Di – внутренний диаметр, образованный зубцами сердечника, см.

    После этого по полученным данным и магнитной индукции нужно определить количество витков, которое сверяется с паспортными данными двигателей.

    Способы изменения оборотов двигателя

    Регулировка оборотов любого трехфазного электродвигателя, используемого в подъемно-транспортной технике и оборудовании, позволяет добиться требуемых режимов работы точно и плавно, что далеко не всегда возможно, например, за счет механических редукторов. На практике используется семь основных методов коррекции скорости вращения, которые делятся на два ключевых направления:

    1. Изменение скорости магнитного поля в статоре. Достигается за счет частотного регулирования, переключения числа полюсных пар или коррекции напряжения. Следует добавить, что эти методы применимы для электродвигателей с короткозамкнутым ротором;
    2. Изменение величины скольжения. Этот параметр можно откорректировать за счет питающего напряжения, подключения дополнительного сопротивления в электрическую цепь ротора, применения вентильного каскада или двойного питания. Используется для моделей с фазным ротором.

    Наиболее востребованными методами являются регулирование напряжения и частоты (за счет применения преобразователей), а также изменение количества полюсных пар (реализуется путем организации дополнительной обмотки с возможностью переключения).

    Типичные схемы регуляторов оборотов

    На рынке сегодня есть широкий выбор регуляторов и частотных преобразователей для асинхронных двигателей. Тем не менее, для бытовых нужд подъемного или обрабатывающего оборудования вполне можно сделать расчет и сборку на микросхеме самодельного прибора на базе тиристоров или мощных транзисторов.

    Ниже представлен пример схемы достаточно мощного регулятора для асинхронного двигателя. За счет чего можно добиться плавного контроля параметров его работы, снижения энергопотребления до 50%, расходов на техническое обслуживание.

    Данная схема является сложной. Для бытовых нужд ее можно значительно упростить, используя в качестве рабочего элемента симистор, например, ВТ138-600. В этом случае схема будет выглядеть следующим образом:

    Обороты электродвигателя будут регулироваться за счет потенциометра, который определяет фазу входного импульса, открывающего симистор.

    Как можно судить из информации, представленной выше, от оборотов асинхронного двигателя зависят не только параметры его работы, но и эффективность функционирования питаемого подъемного или обрабатывающего оборудования. В торговой сети сегодня можно приобрести самые разнообразные регуляторы, но также можно совершить расчет и собрать эффективное устройство своими руками.

    Частотник для регулировки оборотов электродвигателей, особенности использования и варианты регулировки

      0 commentsПрименение Февраль 14, 2020

    Регулируемый асинхронный привод широко распространен и популярен так, что фактически заменил собой синхронные электродвигатели и привод постоянного тока.

    Варианты регулировки скорости электродвигателя включают несколько существующих способов:

    1. Изменение подачи напряжения;
    2. Переключение обмоток асинхронных двигателей;
    3. Частотная регулировка скорости электродвигателя с помощью изменения токовых величин;
    4. Применение электронного коммутатора.

    Во многом это произошло благодаря появлению частотных преобразователей, обеспечивающих энергетические и динамические показатели. Использование частотного регулятора скорости считается самым прогрессивным и востребованным методом, входящим в способы регулировки оборотов вращения асинхронных двигателей.

    Основное предназначение, которое выполняет частотный регулятор скорости для асинхронного двигателя основывается на осуществлении питания таким образом, чтобы рабочие характеристики агрегата радикально отличались от обычных параметров, получаемых из сети. При этом напряжение в сети и частота должны остаться неизменными.

    Устройство и принцип работы, структура частотного регулятора

    Принцип работы частотного регулятора для асинхронного двигателя заключается в питании электродвигателя переменным напряжением с меняющимися по необходимости, параметрами амплитуды и частоты. При этом поддержка соотношения напряжение/частота остаются четко определенными и неизменными. Генерирование переменного напряжения происходит благодаря силовому электронному преобразователю.

    Рис. №1 Принципиальная схема преобразователя частоты.

    Принцип работы подразумевает использование широтно-импульсной модуляции. Принцип подразумевает подачу импульсного напряжения на обмотки двигателя с амплитудой равной напряжению, полученному от выпрямителя. Импульсы модулированы по ширине и создают напряжение переменного тока с изменяющейся амплитудой. Наглядным примером могут считаться кривые междуфазного напряжения и тока в одной обмотке двигателя при соединении обмоток треугольником.

    Рис. №2 График напряжения на выходе ШИМ и ток в двигательной обмотке при соединении трехфазного асинхронного двигателя в треугольник.

    Основные элементы, которые входят в структуру частотного преобразователя

    Частотный преобразователь состоит из следующих компонентов:

    1. Мостовой выпрямитель на 1 или 3 фазы, оборудован конденсатором на выходе, является источником постоянного напряжения.
    2. Мостовой инвертор (IGBT) питается постоянным напряжением с помощью широтно-импульсного метода модуляции, служит для генерации напряжения переменного тока с изменяемой амплитудой и частотой.
    3. Модуль управления, который подает команды проводимости на инвертор. Они зависят от сигналов, подаваемых оператором и сведений о результатах измерений электрических величин (сетевое напряжение, нагрузочный ток двигателя).

    Структура частотного регулятора

    В настоящее время детально разработаны и широко применяются две основные топологии многоуровневых частотных преобразователей. Это каскадные и преобразователи на базе многоуровневых частотных инверторов напряжения.

    Рис. №3 Структурная схема частотного преобразователя многоуровневого типа высокого напряжения, построенная на базе IGBT-транзисторов с воздушным или водяным охлаждением.

    В состав устройства включен многообмоточный трансформатор. К особенностям схемы относится наличие силовых ячеек с последовательным соединением, благодаря чему на выходе устройства получается суммарное высокое напряжение. Подобная схема служит для получения формы выходного напряжения практически приближенной к идеальному синусу. Наличие шунтируемых в момент неисправности ячеек обуславливает высокую надежность схемы.

    Как продолжение предыдущей схемы рассмотрим схему преобразователя на базе трансформаторного многоуровневого инвертора напряжения с широтно-импульсной модуляцией с применением IGBT-модулей. Для устройства характерна фиксированная частота ШИМ – 3кГц. В структуру устройства включены система защиты с использованием микропроцессора.

    Рис. 4 Структурная схема преобразователя.

    На схеме видно, что все блоки функционально взаимосвязаны. На схеме показано как работает частотный регулятор для асинхронного двигателя, устройство и принцип работы.

    В первом блоке находится входной трансформатор, в блоке осуществляется передача электроэнергии от трехфазного высоковольтного источника питания. От многоуровневого трансформатора производится распределение пониженного напряжения в шкаф инвертора на многоуровневый инвертор.

    Шкаф инвертора включает в состав многоуровневый трехфазный инвертор, состоящий из ячеек – преобразователей. В каждой находится шестиимпульсный фильтр для выпрямления звена постоянного тока и мостовой инвертор напряжения на IGBT-транзисторах. По схеме происходит выпрямление входного переменного тока, который благодаря инвертору изменяется в переменный ток, обладающий регулируемыми показателями частоты и напряжения.

    В шкафу защиты управления находятся микропроцессорный блок, обладающий многофункциональными возможностями и системой питания от ТСН преобразователя, устройство ввода преобразователя и первичные сенсоры, обозначающие режимы работы преобразователя.

    Микропроцессор служит для формирования сигналов управления инвертором в зависимости от обозначенного алгоритма работы. Он служит для обработки сведений, собранных с датчиков напряжения и тока. Микропроцессор формирует сигналы для управления защитами и аварийными кнопками управления, корректирует алгоритм управления.

    Для передачи сведений и связи используется оптоволоконный кабель. Для бесперебойной работы имеется независимый встроенный источник питания. Редактирование параметров выполняется пультом дистанционного управления.

    Для надежного отключения и безопасного проведения различного рода работ преобразователь оборудован линейным разъединителем.

    Рис. №5 Обобщенная схема ячейки преобразователя

    Источники управляемого переменного напряжения формируют фазу напряжения для выполнения их последовательного соединения. Выходная схема питающей сети асинхронного двигателя происходит по схеме соединения обмоток «Звезда». Напряжение в трехфазном инверторе распределяется по схеме.

    Рис. №6 Схема распределения напряжения в инверторе на три фазы.

    Частотные преобразователи для однофазного асинхронного электродвигателя

    Использование малогабаритных частотных преобразователей применяется при управлении скоростью вращения однофазных двигателей, применяемых в конструкциях бытовых устройств и для производства технологических процессов. Подробней про регулирование однофазного асинхронного двигателя с помощью частотного преобразователя смотрите здесь.

    Частотный регулятор скорости для асинхронного двигателя будет необычайно актуальным в схемах управления такими приборами, как кондиционеры воздуха, холодильные камеры, электрические вентиляторы, насосы, все оборудование с использованием асинхронных электродвигателей.

    Особенности использования регуляторов скорости для однофазных электродвигателей

    В конструкцию частотного регулятора входит несколько элементов, обеспечивающих эффективность работы устройства, к ним относятся:

    1. Встроенный конвертер интерфейсов RS485 (работает опционно);
    2. Встроенный ПЛК контроллер;
    3. Встроенный ПИД-регулятор (формирует сигнал для управления устройством).
    Каждый электрик должен знать:  Подключение двухклавишного выключателя света

    К преимущественным особенностям использования регуляторов скорости относятся инновационные технологии векторного управления. Значительная энергосберегающая эффективность – это функция, которая обеспечивается в автоматическом режиме. Управление регулятором скорости можно выполнять с помощью дистанционного пульта управления, минимальное расстояние для управления 5м.

    Важно: в конструкции преобразователя частоты предусмотрена возможность автоматически регулировать выходное напряжение.

    Популярные модели регуляторов скорости для однофазного двигателя

    Среди многообразия устройств, выполняющих функцию управления электродвигателем, существуют две основные разновидности моделей регуляторов оборотов. Это электронные тиристорные однофазные регуляторы скорости, которые работают за счет плавного изменения напряжения питания. Вторая разновидность моделей регуляторов оборотов – трансформаторный однофазный регулятор скорости. Его работа заключается в изменении положения трехступенчатого кулачкового переключателя, с помощью которого происходит изменение комбинации переключения обмоток.

    Частотное управление регулированием скоростью асинхронного электродвигателя в наше время является техническим стандартом. Использование частотного регулятора вытеснило очень многие способы управления. Симметричное и несимметричное управление напряжением и использование добавочных сопротивлений, изменение числа пар полюсов ушли в прошлое.

    Как уменьшить обороты асинхронного электродвигателя 380в

    Регулятор оборотов в двигателе нужен для совершения плавного разгона и торможения. Широкое распространение получили такие приборы в современной промышленности. Благодаря им происходит измерение скорости движения в конвейере, на различных устройствах, а также при вращении вентилятора. Двигатели с производительностью на 12 Вольт применяются в целых системах управления и в автомобилях.

    Устройство системы

    Коллекторный тип двигателя состоит главным образом из ротора, статора, а также щёток и тахогенератора.

    1. Ротор — это часть вращения, статор — это внешний по типу магнит.
    2. Щётки, которые произведены из графита — это главная часть скользящего контакта, через которую на вращающийся якорь и стоит подавать напряжение.
    3. Тахогенератор —это устройство, которое производит слежку за характеристикой вращения прибора. Если происходит нарушение в размеренности процесса вращения, то он корректирует поступающий в двигатель уровень напряжения, тем самым делая его наиболее плавным и медленным.
    4. Статор. Такая деталь может включать в себя не один магнит, а, к примеру, две пары полюсов. Вместе с этим на месте статических магнитов здесь будут находиться катушки электромагнитов. Совершать работу такое устройство способно как от постоянного тока, так и от переменного.

    Схема регулятора оборотов коллекторного двигателя

    В виде регуляторов оборотов электродвигателей 220 В и 380 В применяются особые частотные преобразователи. Такие устройства относят к высокотехнологическим, они и помогают совершить кардинальное преобразование характеристики тока (форму сигнала, а также частоту). В их комплектации имеются мощные полупроводниковые транзисторы, а также широтно-импульсный модулятор. Весь процесс осуществления работы устройства происходит с помощью управления специальным блоком на микроконтроллере. Изменение скорости во вращении ротора двигателей происходит довольно медленно.

    Именно по этой причине частотные преобразователи применяются в нагруженных устройствах. Чем медленнее будет происходить процесс разгона, тем меньшая нагрузка будет совершена на редуктор, а также конвейер. Во всех частотниках можно найти несколько степеней защиты: по нагрузке, току, напряжению и другим показателям.

    Некоторые модели частотных преобразователей совершают питание от однофазового напряжения (оно будет доходить до 220 Вольт), создают из него трехфазовое. Это помогает совершить подключение асинхронного мотора в домашних условиях без применения особо сложных схем и конструкций. При этом потребитель сможет не потерять мощность во время работы с таким прибором.

    Зачем используют такой прибор-регулятор

    Если говорить про двигатели регуляторов, то обороты нужны:

    1. Для существенной экономии электроэнергии. Так, не любому механизму нужно много энергии для выполнения работы вращения мотора, в некоторых случаях можно уменьшить вращение на 20−30 процентов, что поможет значительно сократить расходы на электроэнергию сразу в несколько раз.
    2. Для защиты всех механизмов, а также электронных типов цепей. При помощи преобразовательной частоты можно осуществлять определённый контроль за общей температурой, давлением, а также другими показателями прибора. В случае когда двигатель работает в виде определённого насоса, то в ёмкости, в которую совершается накачка воздуха либо жидкости, стоит вводить определённый датчик давления. Во время достижения максимальной отметки мотор попросту автоматически закончит свою работу.
    3. Для процесса плавного запуска. Нет особой необходимости применять дополнительные электронные виды оборудования — все можно осуществить при помощи изменения в настройках частотного преобразователя.
    4. Для снижения уровня расходов на обслуживание устройств. С помощью таких регуляторов оборотов в двигателях 220 В можно значительно уменьшить возможность выхода из строя приборов, а также отдельных типов механизмов.

    Схемы, по которым происходит создание частотных преобразователей в электродвигателе, широко используются в большинстве бытовых устройств. Такую систему можно найти в источниках беспроводного питания, сварочных аппаратах, зарядках телефона, блоках питания персонального компьютера и ноутбука, стабилизаторах напряжения, блоках розжига ламп для подсветки современных мониторов, а также ЖК-телевизоров.

    Регулятор оборотов электродвигателя 220в

    Его можно изготовить совершенно самостоятельно, но для этого нужно будет изучить все возможные технические особенности прибора. По конструкции можно выделить сразу несколько разновидностей главных деталей. А именно:

    1. Сам электродвигатель.
    2. Микроконтроллерная система управления блока преобразования.
    3. Привод и механические детали, которые связаны с работой системы.

    Перед самым началом запуска устройства, после подачи определённого напряжения на обмотки, начинается процесс вращения двигателя с максимальным показателем мощности. Именно такая особенность и будет отличать асинхронные устройства от остальных видов. Ко всему прочему происходит прибавление нагрузки от механизмов, которые приводят прибор в движение. В конечном счёте на начальном этапе работы устройства мощность, а также потребляемый ток лишь возрастают до максимальной отметки.

    В это время происходит процесс выделения наибольшего количества тепла. Происходит перегрев в обмотках, а также в проводах. Использование частичного преобразования поможет не допустить этого. Если произвести установку плавного пуска, то до максимальной отметки скорости (которая также может регулироваться оборудованием и может быть не 1500 оборотов за минуту, а всего лишь 1000) двигатель начнёт разгоняться не в первый момент работы, а на протяжении последующих 10 секунд (при этом на каждую секунду устройство будет прибавлять по 100−150 оборотов). В это время процесс нагрузки на все механизмы и провода начинает уменьшаться в несколько раз.

    Как сделать регулятор своими руками

    Можно совершенно самостоятельно создать регулятор оборотов электродвигателя около 12 В. Для этого стоит использовать переключатель сразу нескольких положений, а также специальный проволочный резистор. При помощи последнего происходит изменение уровня напряжения питания (а вместе с этим и показателя частоты вращения). Такие же системы можно применять и для совершения асинхронных движений, но они будут менее эффективными.

    Ещё много лет назад широко использовались механические регуляторы — они были построены на основе шестеренчатых приводов или же их вариаторов. Но такие устройства считались не очень надёжными. Электронные средства показывали себя в несколько раз лучше, так как они были не такими большими и позволяли совершать настройку более тонкого привода.

    Для того чтобы создать регулятор вращения электродвигателя, стоит использовать сразу несколько устройств, которые можно либо купить в любом строительном магазине, либо снять со старых инвенторных устройств. Чтобы совершить процесс регулировки, стоит включить специальную схему переменного резистора. С его помощью происходит процесс изменения амплитуды входящего на резистор сигнала.

    Внедрение системы управления

    Чтобы значительно улучшить характеристику даже самого простого оборудования, стоит в схему регулятора оборотов двигателя подключить микроконтроллерное управление. Для этого стоит выбрать тот процессор, в котором есть подходящее количество входов и выходов соответственно: для совершения подключения датчиков, кнопок, а также специальных электронных ключей.

    Для осуществления экспериментов стоит использовать особенный микроконтроллер AtMega 128 — это наиболее простой в применении и широко используемый контроллер. В свободном использовании можно найти большое число схем с его применением. Чтобы устройство совершало правильную работу, в него стоит записать определённый алгоритм действий — отклики на определённые движения. К примеру, при достижении температуры в 60 градусов Цельсия (замер будет отмечаться на графике самого устройства), должно произойти автоматическое отключение работы устройства.

    Регулировка работы

    Теперь стоит поговорить о том, как можно осуществить регулировку оборотов в коллекторном двигателе. В связи с тем, что общая скорость вращения мотора может напрямую зависеть от величины подаваемого уровня напряжения, для этого вполне пригодны совершенно любые системы для регулировки, которые могут осуществлять такую функцию.

    Стоит перечислить несколько разновидностей приборов:

    1. Лабораторные автотрансформеры (ЛАТР).
    2. Заводские платы регулировки, которые применяются в бытовых устройствах (можно взять даже те, которые используются в пылесосах, миксерах).
    3. Кнопки, которые применяются в конструкции электроинструментов.
    4. Бытовые разновидности регуляторов, которые оснащены особым плавным действием.

    Но при этом все такие способы имеют определённый изъян. Совместно с процессами уменьшения оборотов уменьшается и общая мощность работы мотора. Иногда его можно остановить, даже просто дотронувшись рукой. В некоторых случаях это может быть вполне нормальным, но по большей части это считается серьёзной проблемой.

    Наиболее приемлемым вариантом станет выполнение функции регулировки оборотов при помощи применения тахогенератора.

    Его чаще всего устанавливают на заводе. Во время отклонения скорости вращения моторов через симистры в моторе будет происходить передача уже откорректированного электропитания, сопутствующего нужной скорости вращения. Если в такую ёмкость будет встроена регулировка вращения самого мотора, то мощность не будет потеряна.

    Как же это выглядит в виде конструкции? Больше всего используется именно реостатная регулировка процесса вращения, которая создана на основе применения полупроводника.

    В первом случае речь пойдёт о переменном сопротивлении с использованием механического процесса регулировки. Она будет последовательно подключена к коллекторному электродвигателю. Недостатком в этом случае станет дополнительное выделение некоторого количества тепла и дополнительная трата ресурса всего аккумулятора. Во время такой регулировки происходит общая потеря мощности в процессе совершения вращения мотора. Он считается наиболее экономичным вариантом. Не используется для довольно мощных моторов по вышеуказанным причинам.

    Во втором случае во время применения полупроводников происходит процесс управления мотором при помощи подачи определённого числа импульсов. Схема способна совершать изменение длительности таких импульсов, что, в свою очередь, будет изменять общую скорость вращения мотора без потери показателя мощности.

    Если вы не хотите самостоятельно изготавливать оборудование, а хотите купить уже полностью готовое к применению устройство, то стоит обратить особое внимание на главные параметры и характеристики, такие, как мощность, тип системы управления прибором, напряжение в устройстве, частоту, а также напряжение рабочего типа. Лучше всего будет производить расчёт общих характеристик всего механизма, в котором стоит применять регулятор общего напряжения двигателя. Стоит обязательно помнить, что нужно производить сопоставление с параметрами частотного преобразователя.

    Обратные ссылки
    • URL обратной ссылки
    • Подробнее про обратные ссылки
    • Закладки & Поделиться
    • Отправить тему форума в Digg!
    • Добавить тему форума в del.icio.us
    • Разместить в Technorati
    • Разместить в ВКонтакте
    • разместить в Facebook
    • Разместить в MySpace
    • Разместить в Twitter
    • Разместить в ЖЖ
    • Разместить в Google
    • Разместить в Yahoo
    • Разместить в Яндекс.Закладках
    • Разместить в Ссылки@Mail.Ru
    • Reddit!
  • Опции темы

    Надо понизить обороты на электродвигателе

    Сварил бетономешалку.
    Нашел 3х-фазный электродвигатель 2.2 КВатт . по рекомендации «доброжелателей» на 950 Об/мин. Приобрел конденсатор на 500 Микрофарат для сети на 220. Соединил двигатель шкивом через ремень прямо на корпус мешалки.
    Запустил. и печально улыбнулся
    Много оборотов песок прилипает к стенкам.
    Движок менять не хочу, мощность и так на минимальном пределе ибо из-за 220 Вольт потеряна как говорят уже % на 30. Ну и дальше будет теряться.
    А из опыта знаю, что движки около 1 КВатта уже не тянут и их приходится подталкивать при запуске. Этот же движок пока стартует сам даже с загруженными 5 ведрами песка.
    Также узнал, что лучше всего регулировать обороты частотой несмотря на минус — перегрев движка.
    Заводские частотные преобразователи со всякими примочками выравнивающими для моего движка начинаются от 6500 р. Дорого.
    Найденные в нэте схемы хоть и простые с виду но для меня непостижимы (((
    Найти (хоть и ищу) по близости электронщика проблематично — живу в сельской местности.
    Вопрос:
    — Может в природе есть готовая простецкая схемка в продаже с какого нибудь устройства для таких целей, которую я бы приобрел, прикрутил и начал работать.
    Помогите хлопцы.
    Заранее благодарствую.

    Реальных вариантов три .
    1. Понизить частоту сети — ДОРОГО .
    2. Поставить механический редуктор — СЛОЖНО .
    3. Заменить двигатель — НЕОХОТА .

    • Поделиться
    • Поделиться этим сообщением через
    • Digg
    • Del.icio.us
    • Technorati
    • Разместить в ВКонтакте
    • Разместить в Facebook
    • Разместить в MySpace
    • Разместить в Twitter
    • Разместить в ЖЖ
    • Разместить в Google
    • Разместить в Yahoo
    • Разместить в Яндекс.Закладках
    • Разместить в Ссылки@Mail.Ru
    • Reddit!

    Самый простой способ поставить другие шкивы. На мотор поменьше, на б.мешалку побольше.(и крутить будет сильнее) Электр. способы дорогие, сложные в изготовлении и мало вероятности, что реализуемы в Ваших условиях.

    • Поделиться
    • Поделиться этим сообщением через
    • Digg
    • Del.icio.us
    • Technorati
    • Разместить в ВКонтакте
    • Разместить в Facebook
    • Разместить в MySpace
    • Разместить в Twitter
    • Разместить в ЖЖ
    • Разместить в Google
    • Разместить в Yahoo
    • Разместить в Яндекс.Закладках
    • Разместить в Ссылки@Mail.Ru
    • Reddit!

    Нет денег? Лопата и корыто стоят не дорого.

    • Поделиться
    • Поделиться этим сообщением через
    • Digg
    • Del.icio.us
    • Technorati
    • Разместить в ВКонтакте
    • Разместить в Facebook
    • Разместить в MySpace
    • Разместить в Twitter
    • Разместить в ЖЖ
    • Разместить в Google
    • Разместить в Yahoo
    • Разместить в Яндекс.Закладках
    • Разместить в Ссылки@Mail.Ru
    • Reddit!

    Не знаю какие у ТС обороты, но песок и в фирменных мешалках прилипает к стенкам.
    Просто сначала лью воду, потом щебёнку, потом песок, и в конце цемент + определённый угол наклона.
    И ничего не прилипает.

    • Поделиться
    • Поделиться этим сообщением через
    • Digg
    • Del.icio.us
    • Technorati
    • Разместить в ВКонтакте
    • Разместить в Facebook
    • Разместить в MySpace
    • Разместить в Twitter
    • Разместить в ЖЖ
    • Разместить в Google
    • Разместить в Yahoo
    • Разместить в Яндекс.Закладках
    • Разместить в Ссылки@Mail.Ru
    • Reddit!

    Правильно делаете. Эта последовательность ускоряет и улучшает смешивание, но не гарантирует остаточного залипания на стенках плохо перемешанного раствора. Что гарантированно в моем случае.

    Добавлено через 4 минуты

    Лопата и корыто уже есть. Но также есть желание оставить спину здоровой, а также немного понимания того, что не стоит на эту железку навешивать оборудование которое сделает её неоправданно дорогой.

    Добавлено через 7 минут

    Шкивы поставить уже проблематично ибо на оси емкости не предусмотрено было место для них, ремень надевается с движка прямо на емкость. Делать отдельную понижающую группу из дополнительных 2х шкивов — тоже проблематично — фактически нет места для этого.
    На движке и так стоит маленький шкив выточенный на заказ — диаметром примерно 70 мм.

    Последний раз редактировалось FAI4; 10.08.2012 в 23:04 . Причина: Добавлено сообщение

    • Поделиться
    • Поделиться этим сообщением через
    • Digg
    • Del.icio.us
    • Technorati
    • Разместить в ВКонтакте
    • Разместить в Facebook
    • Разместить в MySpace
    • Разместить в Twitter
    • Разместить в ЖЖ
    • Разместить в Google
    • Разместить в Yahoo
    • Разместить в Яндекс.Закладках
    • Разместить в Ссылки@Mail.Ru
    • Reddit!

    Вы чего то путаете. 10-ти ведёрную бетономешалку свободно крутит 1фазный двигатель от стиралки мощностью 180ватт. Нужно просто подобрать правильно редукцию. Самое простое и надёжное,это найти венец от ЗИЛовского маховика и шестерню от бендекса и сделать ещё один редуктор на основе двух шкивов. шкив который будет на двигателе нужно применить как можно меньшего диаметра,чтобы максимально разгрузить двигатеь. Если Вам интересно,то я могу снять Все размеры со своей мешалки,но только завтра. сейчас уже поздно.

    • Поделиться
    • Поделиться этим сообщением через
    • Digg
    • Del.icio.us
    • Technorati
    • Разместить в ВКонтакте
    • Разместить в Facebook
    • Разместить в MySpace
    • Разместить в Twitter
    • Разместить в ЖЖ
    • Разместить в Google
    • Разместить в Yahoo
    • Разместить в Яндекс.Закладках
    • Разместить в Ссылки@Mail.Ru
    • Reddit!

    Реальных вариантов три .
    1. Понизить частоту сети — ДОРОГО .
    2. Поставить механический редуктор — СЛОЖНО .
    3. Заменить двигатель — НЕОХОТА .

    1. Более простого решения так пока и не последовало . Просто моя логика мне подсказывает, что если заводской частотный преобразователь стоит примерно 6-7 т.р., то совсем простая схема в пластиковой коробке должна как минимум раза в 2.5 стоить меньше.
    2. Про механику я сказал выше.
    3. Буду делать все чтобы оставить именно этот хороший на мой взгляд движок.

    Добавлено через 19 минут

    Спасибо, но мешалка у меня уже готова, переделывать не буду. Так что вопрос изменения редукции отпадает ((
    Ну и не знаю как на 10 ведер, но у меня объем мешалки получился 0,25 м3, а это примерно около 25 ведер. 180 Ватт тут точно не хватит. Я даже в 1 Киловате сомневаюсь.

    Последний раз редактировалось FAI4; 11.08.2012 в 00:03 . Причина: Добавлено сообщение

    • Поделиться
    • Поделиться этим сообщением через
    • Digg
    • Del.icio.us
    • Technorati
    • Разместить в ВКонтакте
    • Разместить в Facebook
    • Разместить в MySpace
    • Разместить в Twitter
    • Разместить в ЖЖ
    • Разместить в Google
    • Разместить в Yahoo
    • Разместить в Яндекс.Закладках
    • Разместить в Ссылки@Mail.Ru
    • Reddit!

    Спасибо за явные советы

    Но ответа на суть вопроса так и не последовало.
    Хорошо. Я нарыл схему в нэте и спрошу по другому:
    — 1. Сколько будет хотябы примерно стоить вот такая рекомендованная для этих целей схема? (с учетом требуемого объема радиатора)
    — 2. Подходит ли она для моего движка с учетом того что я его запускаю с конденсатором? (если да, то где его ставить — в самом начале схемы или наоборот — у двигателя?)

    Последний раз редактировалось FAI4; 11.08.2012 в 00:15 . Причина: дополнение

    • Поделиться
    • Поделиться этим сообщением через
    • Digg
    • Del.icio.us
    • Technorati
    • Разместить в ВКонтакте
    • Разместить в Facebook
    • Разместить в MySpace
    • Разместить в Twitter
    • Разместить в ЖЖ
    • Разместить в Google
    • Разместить в Yahoo
    • Разместить в Яндекс.Закладках
    • Разместить в Ссылки@Mail.Ru
    • Reddit!

    По деталям стоимость 3-5 евро в рубли переводите сами. Но эта схема вам не подойдёт можете сразу о ней забыть.. Подобные тирристорные регуляторы работают неплохо на активную нагрузку. Допустим для регулировки освещения на лампе накаливания, или скажем регулятор температуры паяльника и т.д. Если подключите регулятор к индуктивной нагрузке , эл двигатель как раз кней относится, тирристор откроется практически полностью. Это равносильно что вы подали на эл. двигатель напряжение через диод со всеми вытекающими.. По вашему вопросу либо делайте понижающий редуктор, либо меняйте эл.двигатель .
    По приведённому вами тексту: Все вышеперечисленные эл. двигатели от дрелей, шлифмашинок и т.д. так называемые коллекторные эл. двигатели. Они однофазные в них имеется так называемый «фазный» ротор с намотанными на нём обмотками, питание этот ротор получает от коллектора через щёточный механизм. Т.е. по сути эти эл. двигатели устроены как и эл. двигатели постоянного тока, некоторые такие эл . двигатели даже работают как на постоянном так и на переменном токе. Для них схема регулировки может и подойти. Но у вас двигатель 3х фазный с так называемым «короткозамкнутым ротором» это совсем другая «опера». Регулировка оборотов таких двигателей выполняется либо изменением числа пар полюсов обмотки стартера. Т.е. без перемотки двигателя не обойтись. Либо с применением преобразователя частоты.

    Последний раз редактировалось DF9FXK; 11.08.2012 в 00:48 .

    Достаточно часто режим работы вспомогательного механизированного оборудования требует понижения штатных частот вращения. Добиться такого эффекта позволяет регулировка оборотов асинхронного двигателя. Как это сделать своими руками (расчет и сборку), используя стандартные схемы управления или самодельные устройства, попробуем разобраться далее.

    • Что такое асинхронный двигатель?
    • Двигатели с короткозамкнутым ротором (АДКР)
    • Двигатели с фазным ротором

    Что такое асинхронный двигатель?

    Электродвигатели переменного тока нашли довольно широкое применение в различных сферах нашей жизнедеятельности, в подъемно транспортном, обрабатывающем, измерительном оборудовании. Они используются для превращения электрической энергии, которая поступает от сети, в механическую энергию вращающегося вала. Чаще всего используются именно асинхронные преобразователи переменного тока. В них частота вращения ротора и статора отличаются. Между этими активными элементами обеспечивается конструктивный воздушный зазор.

    И статор, и ротор имеют жесткий сердечник из электротехнической стали (наборного типа, из пластин), выступающий в роли магнитопровода, а также обмотку, которая укладывается в конструктивные пазы сердечника. Именно способ организации или укладки обмотки ротора является ключевым критерием классификации этих машин.

    Двигатели с короткозамкнутым ротором (АДКР)

    Здесь используется обмотка в виде алюминиевых, медных или латунных стержней, которые вставляются в пазы сердечника и с обеих сторон замыкаются дисками (кольцами). Тип соединения этих элементов зависит от мощности двигателя: для малых значений используют метод совместной отливки дисков и стержней, а для больших – раздельное изготовление с последующей сваркой между собой. Обмотка статора подключается с использованием схем «треугольника» или «звезды».

    Двигатели с фазным ротором

    К сети подключается трехфазная обмотка ротора, посредством контактных колец на основном валу и щеток. За основу принимается схема «звезда». На рисунке внизу представлена типичная конструкция такого двигателя.

    Принцип работы и число оборотов асинхронных двигателей

    Данный вопрос рассмотрим на примере АДКР, как наиболее распространенного типа электродвигателей подъемно-транспортном и обрабатывающем оборудовании. Напряжение от сети подается на обмотку статора, каждая из трех фаз которой смещена геометрически на 120°. После подачи напряжения возникает магнитное поле, создающее путем индукции ЭДС и ток в обмотках ротора. Последнее вызывает электромагнитные силы, заставляющие ротор вращаться. Еще одна причина, по которой все это происходит, а именно, возникает ЭДС, является разность оборотов статора и ротора.

    Одной из ключевых характеристик любого АДКР является частота вращения, расчет которой можно вести по следующей зависимости:

    n = 60f / p, об/мин

    где f – частота сетевого напряжения, Гц; р – число полюсных пар статора.

    Все технические характеристики указываются на металлической табличке, закрепленной на корпусе. Но если она отсутствует по какой-то причине, то определить число оборотов нужно вручную по косвенным показателям. Как правило, используется три основных метода:

    • Расчет количества катушек. Полученное значение сопоставляется с действующими нормами для напряжения 220 и 380В (см. табл. ниже);
    • Расчет оборотов с учетом диаметрального шага обмотки. Для определения используется формула вида:

    где 2p – число полюсов; Z1 – количество пазов в сердечнике статора; y – собственно, шаг укладки обмотки.

    Стандартные значения оборотов:

    • Расчет числа полюсов по сердечнику статора. Используются математические формулы, где учитываются геометрические параметры изделия:

    2p = 0,35Z1b / h или 2p = 0,5Di / h,

    где 2p – число полюсов; Z1 – количество пазов в статоре; b – ширина зубца, см; h – высота спинки, см; Di – внутренний диаметр, образованный зубцами сердечника, см.

    После этого по полученным данным и магнитной индукции нужно определить количество витков, которое сверяется с паспортными данными двигателей.

    Способы изменения оборотов двигателя

    Регулировка оборотов любого трехфазного электродвигателя, используемого в подъемно-транспортной технике и оборудовании, позволяет добиться требуемых режимов работы точно и плавно, что далеко не всегда возможно, например, за счет механических редукторов. На практике используется семь основных методов коррекции скорости вращения, которые делятся на два ключевых направления:

    1. Изменение скорости магнитного поля в статоре. Достигается за счет частотного регулирования, переключения числа полюсных пар или коррекции напряжения. Следует добавить, что эти методы применимы для электродвигателей с короткозамкнутым ротором;
    2. Изменение величины скольжения. Этот параметр можно откорректировать за счет питающего напряжения, подключения дополнительного сопротивления в электрическую цепь ротора, применения вентильного каскада или двойного питания. Используется для моделей с фазным ротором.

    Наиболее востребованными методами являются регулирование напряжения и частоты (за счет применения преобразователей), а также изменение количества полюсных пар (реализуется путем организации дополнительной обмотки с возможностью переключения).

    Типичные схемы регуляторов оборотов

    На рынке сегодня есть широкий выбор регуляторов и частотных преобразователей для асинхронных двигателей. Тем не менее, для бытовых нужд подъемного или обрабатывающего оборудования вполне можно сделать расчет и сборку на микросхеме самодельного прибора на базе тиристоров или мощных транзисторов.

    Ниже представлен пример схемы достаточно мощного регулятора для асинхронного двигателя. За счет чего можно добиться плавного контроля параметров его работы, снижения энергопотребления до 50%, расходов на техническое обслуживание.

    Данная схема является сложной. Для бытовых нужд ее можно значительно упростить, используя в качестве рабочего элемента симистор, например, ВТ138-600. В этом случае схема будет выглядеть следующим образом:

    Обороты электродвигателя будут регулироваться за счет потенциометра, который определяет фазу входного импульса, открывающего симистор.

    Как можно судить из информации, представленной выше, от оборотов асинхронного двигателя зависят не только параметры его работы, но и эффективность функционирования питаемого подъемного или обрабатывающего оборудования. В торговой сети сегодня можно приобрести самые разнообразные регуляторы, но также можно совершить расчет и собрать эффективное устройство своими руками.

  • Добавить комментарий