Реле, контакторы, датчики


СОДЕРЖАНИЕ:

Электромагнитные реле, пускатели и контакторы

Электромагнитные реле – электрические аппараты дистанционного управления, предназначенные для осуществления скачкообразных изменений в управляемых цепях при заданном значении электрических воздействующих величин.

Все реле делятся по назначению на три группы:

Основные реле, непосредственно реагирующие на изменение контролируемых величин, например тока, напряжения, мощности, частоты, сопротивления и т.д.;

Вспомогательные реле (промежуточные), управляемые другими реле и выполняющие функции введения выдержки времени, размножения контактов, передачи команд от одних реле к другим, воздействия на выключатели, сигналы и т.п.;

Сигнальные (указательные) реле, фиксирующие действие защиты и управляю­щие звуковыми и световыми сигналами.

Воспринимающий орган реле – часть аппарата, которая непосредственно воспринимает изменения электрических величин, подведенных к реле, и произво­дит соответствующие им изменения в других органах или частях реле.

Исполнительный орган реле – часть аппарата, которая, воздействуя на внешние цепи, производит отключение выключателей, подачу предупредительных сигналов или запуск других реле. Исполнительным органом являются контакты реле. Кроме того, некоторые реле имеют орган замедления или выдержки времени.

Реле тока – реле, воспринимающий орган которого реагирует на изменение тока.

Реле напряжения – реле, воспринимающий орган которого реагирует на изменение напряжения.

Максимальные реле – реле, срабатывающие, когда значение воздействующей величины превосходит заданную.

Минимальные реле – реле, срабатывающие, когда значение воздействующей величины снижается ниже заданной.

Электромагнитные контакторы – двухпозиционные электрические аппараты дистанционного управления, предназначенные для частых включений и отключений силовых электрических цепей при нормальных режимах работы.

Включение контактора — переход контактора из начального положения в конечное.

Отключение контактора — переход контактора в начальное положение.

Срабатывание контактора — действие контактора в соответствии с его назначением после получения команды .на срабатывание.

Собственное время включения контактора – интервал времени с момента подачи команды на включение контактора до момента соприкосновения заданного контакта.

Собственное время отключения контактора – интервал времени с момента подачи команды на отключение до момента прекращения соприкосновения контактов полюса, размыкающегося последним.

Механическая износостойкость контактора – способность контактора выполнять в определенных условиях определенное число операций без тока в цепи главных и свободных контактов, оставаясь после этого в предусмотренном состоянии.

Коммутационная износостойкость контактора – способность контактора выполнять в определенных условиях определенное число операций при коммутации его контактами цепей, имеющих заданные параметры, оставаясь после этого в предусмотренном состоянии.

Нормальный режим контактора – режим работы контактора, при котором значения его параметров не выходят за пределы, допустимые при заданных условиях эксплуатации.

Продолжительный режим контактора — режим работы контактора при неизменной нагрузке, продолжающейся не менее, чем необходимо для достижения электротехническим устройством установившейся температуры при неизменной температуре охлаждающей среды.

Кратковременный режим контактора – режим работы контактора, при котором работа с неизменной нагрузкой, продолжающаяся менее, чем необходимо для достижения контактором установившейся температуры при неизменной температуре охлаждающей среды, чередуется с отключениями, во время которых оно охлаждается до температуры окружающей среды.

Перемежающийся режим – режим работы контактора, при котором работа с неизменной нагрузкой чередуется с работой в режиме холостого хода в случаях, когда продолжительность работы .не настолько длительна, чтобы при неизменной температуре охлаждающей среды температура контактора могла достигнуть установившегося значения.

Повторно-кратковременный режим контактора – режим работы контактора, при котором работа с неизменной нагрузкой, продолжающаяся менее, чем необходимо для достижения контактором установившейся температуры при неизменной температуре охлаждающей среды, чередуется с отключениями, во время которых оно не успевает охладиться до температуры охлаждающей среды.

Продолжительность включения (ПВ) – отношение времени пребывания контактора, работающего в повторно-кратковременном режиме во включенном состоянии, к длительности цикла (обычно эта величина выражается в процентах)

Электромагнитные пускатели – электрические аппараты дистанционного управления, предназначенные для дистанционного пуска непосредственным подключением к сети, остановки и реверсирования трехфазных асинхронных электродвигателей с короткозамкнутым ротором при напряжениях до 660 В переменного.

Контакторы, пускатели, реле и аксессуары к ним

«Компания EKF выпускает широкий спектр контакторов, магнитных пускателей, автоматических выключателей пуска двигателя и промежуточных реле. Контактор – коммутационный прибор, способный дистанционно управлять включением и выключением электрической техники и электросистем. В группу контакторов EKF входят аппараты, в том числе и модульные, с номинальным рабочим током от 6 до 1000 А. Пускатель электромагнитный – это контактор с тепловым реле. В ассортименте EKF магнитные пускатели представлены приборами с рабочим током от 0,63 до 95 А. Выпускаются в исполнениях с пластиковой оболочкой (до 40 А) и металлическим корпусом (более 40 А). Еще в ассортименте компании имеются пускатели реверсивного исполнения. Автоматические выключатели пуска двигателя EKF – аппараты, с помощью которых осуществляется размыкание и замыкание цепей переменного тока напряжением не более 690 вольт, защита электродвигателей от последствий превышения максимальной нагрузки в сети, неполнофазных режимов работы и короткого замыкания Промежуточные реле EKF – устройства, которые осуществляют коммутацию силовых цепей до 10 ампер, гальваническую развязку цепей и усиление управляющих сигналов. Могут крепиться к монтажной панели или устанавливаться на DIN-рейку.»

Коммутационные устройства для стабильной работы электрической цепи

Для стабильной работы электрических цепей с частыми включениями и выключениями необходимы специальные коммутационные устройства. Электромагнитные контакторы, пускатели, реле используются для управления электродвигателями, системами освещения, насосным оборудованием, различными технологическими механизмами. Свое основное применение эти устройства нашли в промышленности и на транспорте.

Широкая линейка продукции компании EKF позволяет подобрать коммутационные устройства для самых разных проектов и целей. В перечень продукции входят контакторы нескольких серий, пускатели, автоматические выключатели пуска двигателя, промежуточные и тепловые реле.

Контакторы

Особенности эксплуатации контакторов предъявляют особые требования к их надежности и износостойкости. Аппараты должны справляться с коммутируемой нагрузкой, а их самый важный элемент – контакты – выдерживать постоянные смыкания и размыкания. В контакторах EKF они изготовлены с использованием композитов, содержащих серебро, благодаря чему контакты не окисляются и не обгорают. При полном соответствии международным нормам по качеству и надежности, контакторы EKF заметно выигрывают у зарубежных аналогов по цене.

В средней ценовой линейке PROxima представлены пять моделей: малогабаритные устройства серии КМЭ и КМЭп, мини-контакторы МКЭ, серии КТЭ и КТ-6000.

Линейка Basic также включает малогабаритные контакторы серии КМЭ. Кроме того, к контакторам этой линейке относятся пускатели электромагнитные серии ПМ12.

Ассортимент EKF включает и контактор модульный. Устройство серии КМ EKF PROxima можно приобрести в одно-, двух- и трехмодульном исполнении. Такие контакторы применяют для управления системами освещения, обогрева и вентиляции как в жилых и офисных помещениях, так и на промышленных объектах. С помощью модульных контакторов также автоматизируют управление насосным оборудованием.

Пускатели

Устройство, в комплект которого входят контактор, тепловое реле, а также нередко оболочка с элементами управления, называется магнитный пускатель. Компания EKF выпускает аппараты в разных оболочках. Пускатели линейки PROxima КТЭ и КМЭ, а также ПМ12 из линейки Basic представлены в корпусах со степенью защиты IP65, сделанных из металла. Исключение – аппарат КМЭ, рассчитанный на ток до 40 А: его корпус выполнен из пластика.

Еще одна разновидность аппаратов EKF PROxima – реверсивный магнитный пускатель. В нем установлены не один, а два контактора КМЭ. Характеристика защиты его металлического корпуса – IP44.

Одно из преимуществ всех пускателей EKF – удобство монтажа. Устройство поставляется с уже собранной схемой управления, а значит достаточно установить готовый пускатель в электрическую цепь и можно начинать работать.

Выключатели пуска двигателя и реле

Для защиты трехфазных асинхронных электродвигателей предусмотрены автоматические выключатели пуска двигателя GV2P, АПД-32 и АПД-80, входящие в линейку EKF PROxima. Они расцепляют цепи при появлении перегрузок и коротких замыканий.

В состав пускателей EKF входят тепловые реле РТЭ, которые также нужны для управления трехфазных асинхронных электродвигателей и их защиты. РТЭ позволяют установить точную нагрузку для сети – благодаря этому можно предотвратить перегрузки, возникающие при неисправностях электродвигателей.

Другой вид релейного оборудования – промежуточные реле серии РП. Эти устройства используются в качестве «посредника» между управляющими и исполняющими устройствами. Выполнение подобных задач требуется во многих схемах управления, что делает промежуточные реле востребованным устройством на рынке.

Аксессуары в помощь специалисту

Коммутационное оборудование EKF отличает надежность и простота использования, но чтобы работать с ним было еще удобнее, можно воспользоваться дополнительными аксессуарами. Для контакторов предусмотрены приставки, увеличивающие число контактов, приставки выдержки времени, катушки управления, блокировочные устройства и дугогасительные камеры. В свою очередь, для облегчения установки теплового реле выпускаются специальные держатели.

Наряду с контакторами и пускателями для защиты и управления электрическими сетями используется большой комплекс оборудования, в том числе сильноточные воздушные автоматические выключатели. Это комплексные аппараты защищают как от высоких токов и перегрузок и способны управляться дистанционно и в автоматическом режиме.

Построение схем на реле и контакторах

Схемы оборудования на реле и контакторах

Лето в самом разгаре, а это значит что курсовые (и даже дипломные!) работы у студентов завершены. Ко мне недавно обращались несколько студентов технических учебных заведений, чтобы я сделал описание схем, которые им выдали.

Я берусь за такие работы, если кого-то интересует, заходите сюда.

Конечно, я помог, но меня немного удивляет, что студенты 2-3 курсов, учащихся на электрика, не знают элементарных вещей. А ведь не исключено, что они будут работать по специальности!

Выкладываю описания схем, в помощь моим учащимся и учёным читателям. Схемы рисовали такие же студенты, чуть постарше курсом, поэтому в них тоже встречаются ошибки, которые я отмечал в графическом редакторе. Иногда приходилось изрядно поломать голову, пытаясь понять логику работы схемы, и что имел ввиду её создатель.

Напоминаю, что у меня есть несколько статей, в которых затронута тема схем на контакторах и реле –

Итак, начинаем разбор практических схем на реле и контакторах.

1 Схема управления насосной станцией с задвижкой и двумя насосами

В тексте и схеме выделил места, которые надо согласовать с технологией работы схемы (давление, уровень, и т.д.)

Схема управления насосной станцией с задвижкой и двумя насосами.

Схема содержит двигатель задвижки М1 с реверсивным управлением и два двигателя насосов М2 и М3.

Схема управления насосной станцией с задвижкой и двумя насосами

Рассмотрим работу задвижки.

Двигатель задвижки М1 включается через контакторы КМ1 и КМ2, которые обеспечивают реверс для открытия и закрытия задвижки. Схема управления задвижкой содержит две основные части – схема открытия, схема закрытия, и общие цепи.

Каждый электрик должен знать:  Технические данные бытовой техники как определить

К общим цепям можно отнести:

  • SL – поплавковое реле уровня, его контакты замыкаются при низком уровне жидкости,
  • SP – реле давления, его контакты замыкаются при нужном давлении жидкости.
  • SB1 – кнопка Стоп,
  • SQ3, SQ4 – аварийные выключатели задвижки,
  • KL1 – блокировочное реле, для правильной работы задвижки.

Цепи открытия задвижки:

  • SB2 – ручное открытие,
  • SQ2 – конечный выключатель открытого положения задвижки,
  • КМ1 – катушка контактора открытия задвижки,
  • HL2 – индикатор наличия общего питания и индикатор открывания.

Цепи закрытия задвижки:

  • SB3 – ручное закрытие,
  • SQ1 – конечный выключатель закрытого положения задвижки,
  • КМ2 – катушка контактора закрытия задвижки,
  • HL1 – индикатор наличия питания цепей открывания/закрывания и процесса закрывания.

В исходном состоянии задвижка закрыта, что контролируется конечным выключателем SQ1.

Открытие либо закрытие задвижки может происходить, только при низком уровне и нужном давлении жидкости и не активных аварийных концевых выключателях SQ3, SQ4.

Задвижка может открываться только если работает один из насосов. При этом включается реле KL1, и нормально открытый контакт этого реле включает контактор КМ1, который включает двигатель задвижки в направлении открытия. Задвижка открывается до тех пор, пока не сработает концевой выключатель SQ2.

Далее, при выключении насоса выключается реле KL1, и через его нормально закрытый контакт включается контактор КМ2, который включает двигатель задвижки в направлении закрытия. Задвижка закрывается до тех пор, пока не сработает концевой выключатель SQ1.

Задвижка может оставаться в промежуточном положении, если в процессе открытия либо закрытия разомкнутся контакты реле уровня или давления SL и SP.

Задвижкой можно управлять вручную, с помощью кнопок SB1, SB2, SB3.

Двигатель задвижки М1 включается через мотор-автомат SQ1 и силовые контакты КМ1 (открытие) либо КМ2 (закрытие).

Рассмотрим работу насосов.

А что там свежего в группе ВК СамЭлектрик.ру?

Подписывайся, и читай статью дальше:

Система содержит два двигателя насоса, которые работают поочередно. Выбор насоса осуществляется вручную, с помощью переключателя SA1, который имеет 2 положения. В положении 1 (левая верхняя точка на схеме переключателя) работает контактор КМ3 (двигатель М2, насос Н1). В положении 2 работает контактор КМ4 (двигатель М3, насос Н2).

После выбора насоса для его включения нужно нажать кнопку Пуск SB5. Допустим, выбран насос Н1. После нажатия кнопки SB5 напряжение схемы управления поступает через защитный автомат QF2, кнопку Стоп SB4, кнопку Пуск SB5, переключатель SA1, нормально закрытые контакты КМ4, и питают левый вывод катушки контактора КМ3. Правый вывод контактора КМ3 питается через нормально закрытый контакт теплового реле КК1. Контактор КМ3 при отпускании кнопки Пуск SB5 остается включенным, благодаря контакту самопитания КМ3.

Силовые контакты КМ3 замыкаются, три фазы поступают через мотор-автомат QF3, контакты КМ3, тепловое реле КК1 на двигатель М2 насоса Н1.

Насос Н2 при его выборе переключателем SA1 работает аналогично, через свои цепи управления и питания.

Отключение работающего насоса производится тремя путями:

  • Штатно – нажатием кнопки Стоп SB4,
  • Переключателем SA1, после этого оба насоса будут в выключенном состоянии,
  • Аварийно – при срабатывании теплового реле КК1 либо КК2 вследствие перегрузки двигателя либо обрыва фазы.

2 Компрессор сжатого воздуха

Описание схемы электрической принципиальной.

Для рассмотрения схемы разобьем её на 5 частей:

  1. Силовая часть,
  2. Схема с управлением от переключателя SA1,
  3. Схема с управлением от переключателя SA2,
  4. Схема с управлением от переключателя SA3,
  5. Схема с реле времени KT

Компрессор сжатого воздуха. Схема электрическая

1. Силовая часть.

Силовая часть схемы компрессора содержит электродвигатели М1 и М2, а также цепи их питания.

На двигатель М1 трехфазное напряжение подается через защитный автомат (автоматический выключатель) QF1, далее – через силовые контакты контактора КМ1. Затем в цепь питания включено тепловое реле КК1, и через него фазное напряжение поступает на электродвигатель М1.

Электродвигатель М2 подключен аналогично, с использованием элементов QF2, KM2, KK2.

  1. Схема с управлением от переключателяSA1

Данная часть схемы служит для управления контакторами двигателей и содержит следующие элементы:

  • КМ1, КМ2 – катушки контакторов включения электродвигателей М1, М2,
  • YA1, YA2 – электромагниты клапанов включения нагрузки,
  • KL5 – контакты реле включения контакторов,
  • KL1 – контакты реле включения клапанов включения нагрузки.

Схема управляется переключателем SA1, который имеет 4 положения:

  1. В этом положении через соответствующие контакты включаются одновременно оба двигателя М1 и М2. Этот режим – для большого расхода воздуха.
  2. В этом положении будет работать только двигатель М2.
  3. Оба двигателя компрессора выключены.
  4. В этом положении будет работать только двигатель М1.

Катушки пускателей питаются через исполнительные контакты тепловых реле КК1, КК2. При возникновении перегрузки двигателей контакты размыкаются, и двигатель останавливаются. Это событие говорит об аварии (заклинивание, обрыв фазы) и требует вмешательства обслуживающего персонала. Однако, компрессор может продолжать работу на другом двигателе.

  1. Схема с управлением от переключателяSA2

В эту часть схемы входят элементы:

  • KL5 – реле управления контакторами КМ1, КМ2,
  • КР1 – реле рабочего давления компрессора,
  • SA2 – переключатель режимов работы «Ручной» / «Авто».

Переключатель SA2 осуществляет выбор режимов работы реле KL5, которое своими контактами включает контакторы КМ1 и КМ2.

  1. В этом положении реле KL5 включено постоянно, и это соответствует ручному режиму работы, так как двигатели М1 и М2 включаются на постоянную работу.
  2. Во втором положении реле KL5 управляется автоматически от реле давления. При понижении давления ниже минимума контакты реле замыкаются и дают сигнал на включение контакторов КМ1 и КМ2. При достижении нужного давления контакты реле размыкаются, и двигатели М1, М2 останавливаются. Этот режим – автоматический.
  1. Схема с управлением от переключателяSA3

Элементы этой части схемы:

  • НА1 – звонок аварийного снижения давления в магистрали компрессора,
  • HL1 – индикация аварийного снижения давления в магистрали компрессора,
  • КР2 – датчик аварийного снижения давления в магистрали компрессора,
  • KL2 – реле повторения сигнала датчика КР2,
  • KL4 – реле сброса звуковой аварийной сигнализации,
  • SA3 – переключатель с самовозвратом для выключения и подачи звукового сигнала.

Переключатель SA3 исходно стоит в среднем положении (2), при переводе его в положения 1 или 3 происходит самовозврат в положение 2.

Данная часть схемы осуществляет контроль за аварийным понижением давления в магистрали компрессора. Такое понижение может произойти из-за поломки компрессора или из-за утечки воздуха в магистрали.

При давлении в магистрали в пределах нормы контакты датчика КР2 разомкнуты. Звуковая и световая сигнализации отключены. Если давление в магистрали упадёт ниже порогового уровня, реле давления сработает, и его контакт замкнется и включит реле KL2 и индикатор HL1.

Реле KL2 также включит звуковую сигнализацию аварийно пониженного давления НА1 через свой замкнувшийся контакт и нормально закрытый контакт реле KL4.

Аварийная сигнализация будет работать до тех пор, пока давление не войдёт в норму.

Однако, звуковую сигнализацию можно отключить кратковременным поворотом переключателя SA3 влево. При этом включится реле KL4 и станет на самоподхват через свой контакт. Другой, нормально закрытый контакт этого реле при этом разомкнется, и звонок выключится.

Пока давление не придёт в норму, будет включено реле KL4 и гореть индикатор HL1. За это время обслуживающий персонал должен устранить проблему или остановить компрессор.

Поворотом переключателя SA3 вправо можно вручную подать звуковой сигнал рабочему персоналу.

  1. Схема с реле времениKT1.

Реле времени КТ1 с задержкой времени включения служит для того, чтобы обеспечить легкий разгон двигателей компрессора.

Когда включается реле KL5, которое включает контакторы двигателей компрессора, контакты этого реле также подают питание на реле времени КТ1. Через некоторое время, достаточное для разгона двигателей вхолостую, реле времени замыкает свой контакт, через который включается реле KL1 (см. пункт 1). Таким образом, нагрузка (начало «компрессирования» воздуха) на двигатели М1, М2 включается через время уставки реле времени, что значительно уменьшает пусковые токи компрессора.

3 Схема для котельной

Схема плохого качества, и я её корректировал как смог. Схему подачи воды в котёл на основе устройства плавного пуска я уже рассматривал здесь.

Схема состоит из двух частей – силовой части и схемы управления.

Силовая часть схемы

Силовая часть состоит из цепей питания двух двигателей – двигателя подачи воздуха (продувки) и двигателя насоса подачи воды.

Схема для подачи воздуха и воды в котельную

Рассмотрим силовую часть двигателя подачи воздуха, которая состоит из следующих элементов:

  • QF1 – защитный автоматический выключатель двигателя М1,
  • КМ1 – контактор,
  • КК1 – силовая часть теплового реле,
  • М1 – двигатель воздуха.

Трехфазное напряжение поступает на защитный автоматический выключатель QF1, и через его контакты на контактор КМ1. По команде со схемы управления (её мы рассмотрим ниже) контактор приводится в действие, его контакты замыкаются, и напряжение поступает через тепловое реле КК1 на двигатель М1.

Тепловое реле КК1 защищает двигатель от перегрузки, которая может быть вызвана заклиниванием, механической неисправностью, межвитковым замыканием в двигателе, пропаданием питающей фазы. Ток уставки теплового реле выставляется таким образом, чтобы остановить двигатель в случае отклонения номинального тока по любой из фаз на заданное значение (обычно, 15-20%). В случае перегрузки двигателя тепловое реле срабатывает, и приводит в действие исполнительные контакты (входят в схему управления), которые размыкают цепь питания катушки контактора. Контактор выключается, и двигатель полностью обесточивается.

Защитный автомат QF1 дополнительно защищает цепь питания двигателя от перегрузки и сам двигатель от короткого замыкания. Другая его функция – оперативное выключение двигателя для ремонтных и профилактических работ.

Силовая часть насоса подачи воды состоит из следующих элементов:

  • QF2 – защитный автоматический выключатель двигателя М2,
  • КМ2 – контактор,
  • КК2 – силовая часть теплового реле,
  • М2 – двигатель насоса.

Работа силовой части насоса воды аналогична работе первой части.

Схема управления

Напряжение для питания схемы управления поступает через защитный автоматический выключатель SF1.

Кнопкой SB2 оператор запускает подачу воздуха. При этом контактор КМ1 своим дополнительным контактом становится на самоподхват. Выключение производится кнопкой SB1.

Для включения подачи воды нужно нажать кнопку SB4. Выключение – SB3. Также используется для работы контактора КМ2 контакт самоподхвата.

Подав воздух посредством двигателя М1, оператор подает воду насосом М2. После этого производится розжиг топлива.

Качество сгорания топлива регулируется оператором посредством задвижки воздуха и регулировкой подачи топлива.

Рассмотрим систему контроля наличия воды, которая основана на реле KV1. Это реле работает от контактов датчика низкого уровня воды SQ1. Этот датчик замыкает контакты и подает питание на реле KV1, когда уровень воды в норме, и размыкает контакты, когда уровень воды аварийно низкий.

При включении реле KV1, что говорит о том, что вода в норме, включается клапан подачи газа К1, через который гад поступает в горелку. Если же уровень воды падает ниже критического, реле KV1 выключается, клапан подачи газа выключается, и газ перестает поступать в горелку.

Тем самым предотвращается закипание остатков воды и повреждение котла.

Кроме того, в данной ситуации загорается красный индикатор HL3, который сигнализирует о проблеме с уровнем воды. Питание на него подается через нормально закрытый контакт реле KV1.

В схеме присутствуют индикаторы включения подачи воздуха HL1 и подачи воды HL2.

4 Схема включения насосов подачи воды

Силовая часть

Силовая часть схемы содержит два электродвигателя насосов М1 и М2.

Схема включения насосов подачи воды

Трехфазное питание на М1 поступает с ввода установки через автоматический выключатель QF1, далее через контактор КМ1 и через тепловое реле КК1.

Трехфазное питание на М2 поступает с ввода установки через автоматический выключатель QF2, далее через контактор КМ2 и через тепловое реле КК2.

Каждый электрик должен знать:  Автоматический выключатель выбивает после 5 минут работы

Схема управления. Включение насосов

Схема состоит из двух контакторов КМ1 и КМ2 с коммутацией и другой обвязкой:

  • SA1 – переключатель SA1 режима работы насоса «Ручной» / «Автомат»,
  • SB1, SB3 – кнопки «Стоп» и «Пуск» первого поста управления,
  • SB2, SB4 – кнопки «Стоп» и «Пуск» второго поста управления,
  • КМ1 – катушка и контакт самоподхвата контактора КМ1,
  • КМ2 – катушка и контакт самоподхвата контактора КМ2,
  • KK1, КК2 – исполнительный контакт теплового реле.

Рассмотрим работу контактора КМ1. Фазное питающее напряжение поступает через автоматический выключатель SF1 на переключатель SA1. В положении «Ручной» для запуска насоса (т.е. для подачи питания на катушку КМ1 и через его контакты – на двигатель М1). Нужно нажать кнопку «Пуск» на первом либо втором посту управления. Контактор включится, и зафиксируется посредством контакта самоподхвата во включенном положении. Насос будет в рабочем состоянии.

Для остановки насоса М1 нужно нажать кнопку «Стоп» на одном из постов управления, цепь питания контактора КМ1 разорвется. В случае перегрузки двигателя или обрыва фазы сработает тепловое реле КК1, что также приведет к разрыву цепи питания контактора КМ1 и останову двигателя КМ1.

В режиме «Автомат» включение контактора происходит через контакт реле KV1 схемы автоматического запуска.


Включение контактора КМ2 происходит аналогично, через свои коммутационные элементы схемы.

HL1 – индикация подачи питания на данную часть схемы.

Схема автоматического запуска

Для автоматического запуска насосов служит часть схемы, которая питается через автоматический выключатель SF2. Она вступает в работу, когда положение переключателя SA1, SA2 – «Автомат». Если оба эти переключателя находятся в положении «Автомат», то одновременно может работать только один насос. Чтобы заработал второй насос, его нужно включить вручную.

В емкости для воды, на которую работают насосы М1 и М2, имеются три датчика уровня:

Посредством этих датчиков и переключателя SA3 выбирается алгоритм работы насосов:

В положении «1» (верхняя точка на схеме переключателя) при замыкании датчика SL1 включается реле KV1, и через его контакт включается контактор КМ1, что описано выше.

В положении «2» КМ1 включается при срабатывании датчика SL2.

В положении «3» включается двигатель насоса М2 через контактор КМ2, который включается через реле KV2. Реле KV2 в данном случае включается при срабатывании датчика SL2.

В положении «4» реле KV2 включается при срабатывании датчика SL1 и также включает двигатель насоса М2.

Если один из контакторов включен, и при этом сработает датчик SL3, то этот контактор останется включенным, пока не разомкнутся контакты этого датчика. (Для чего это нужно, не знаю, т.к. не знаю механики устройства)

При срабатывании датчика SL3 также звенит звонок HA1.

  • HL2 – индикация подачи питания на схему автоматического запуска,
  • HL3 – индикация работы насоса М1,
  • HL4 – индикация работы насоса М2.

5 Сетевой насос для котельной

Одна из самых сложных схем, поскольку периферия не показана, и надо было догадываться, что для чего нужно. Что откуда берётся и куда девается)

Кроме того, надо было ввести новые стандартные обозначения элементов на схеме.

Описание работы схемы управления электроприводом сетевого насоса.

Схема управления состоит из двух основных частей – Схемы включения двигателя дымососа и Схемы включения двигателя дутьевого вентилятора. В свою очередь, каждая схема содержит схему запуска (управления) и схему аварийной звуковой и световой сигнализации.

Управление сетевым насосом котла. Схема электрическая

Схема включения двигателя дымососа.

Дымосос должен включаться первым, чтобы очистить канал прохождения дыма и гарантированно обеспечить розжиг пламени и ровное горение пламени горелки.

В схему управления дымососом входят следующие элементы:

  • 1FU1 – предохранитель цепи управления,
  • 1SF1 – выключатель питания,
  • SA1 – переключатель режимов работы,
  • КА1 – промежуточное реле управления контактором,
  • КМ1 – контактор включения двигателя дымососа,
  • КК1 – контакты теплового реле перегрузки двигателя дымососа.

Схема работает следующим образом.

Однофазное питание 220В поступает на схему через предохранитель 1FU1 и выключатель 1SF1. Далее, в зависимости от положения переключателя SA1, возможны различные режимы работы – принудительное включение, рабочий режим, режим снятия сигнализации.

В рабочем режиме включается реле КА1, и через его контакты подается питание на катушку контактора КМ1. В цепь питания КМ1 также входят контакты теплового реле КК1, которые размыкаются при перегрузке двигателя дымососа.

Схема аварийной звуковой и световой сигнализации двигателя дымососа.

С общих цепей схемы по проводам 701 и 703 приходит питание схемы аварийной сигнализации. При аварийном выключении дымососа (например, при пропадании питания из-за перегорания предохранителя 1FU1) реле КА1 выключается, и через свои контакты подает питание на звуковой сигнализатор. Выключить сигнал можно переключателем SA1, что также обесточит катушку контактора КМ1 и гарантированно выключит схему.

Индикаторная лампа HL1, которая питается через контакты реле КА1, контакты контактора КМ1 и резистор R1, служит для индикации рабочего режима или аварийной ситуации в зависимости от режима и положения переключателя SA1.

Работа схемы управления двигателем дутьевого вентилятора.

В состав схемы управления двигателем дутьевого вентилятора входят следующие элементы:

  • 1FU2 – предохранитель цепи управления,
  • 1SF2 – выключатель питания,
  • SA2 – переключатель режимов работы,
  • SA3 – байпас блокировки включения вентилятора без дымососа,
  • КА2 – промежуточное реле управления контактором дутьевого вентилятора,
  • КМ2 – контактор включения двигателя вентилятора,
  • КК2– контакты теплового реле перегрузки двигателя вентилятора.

Включение дутьевого вентилятора невозможно без включения дымососа. Это необходимо для безопасной и правильной работы всей установки.

Данная проверка обеспечивается включением в цепь питания контактора вентилятора КМ2 контакта реле КА1. Таким образом, запуск вентилятора возможен, только если включено реле КА1 включения дымососа.

Однако, для целей проверки возможно шунтирование данного контакта КА1 переключателем SA3.

Контактор КМ1 включения двигателя дутьевого вентилятора при подаче напряжения на его катушку через предохранитель 1FU2, выключатель 1SF2, реле КА1, КА2, и контакты теплового реле КК2. Управление – через переключатель SA2 и промежуточное реле КА2, как и в схеме управления дымососом.

Схема аварийной звуковой и световой сигнализации двигателя дутьевого вентилятора.

Работа схемы аналогична схеме сигнализации дымососа. Питание схемы – через те же общие цепи.

Для индикации используется звуковой сигнализатор и индикаторная лампа HL2, которая питается через контакты КА2, КМ2 и ограничительный резистор R2.

Силовая часть схемы.

В силовую часть схемы входят два двигателя – М1 (дымосос) и М2 (дутьевой вентилятор).

Двигатель М1 получает трехфазное питание 380В через автоматический выключатель QF1, который защищает его от короткого замыкания и от перегрузки, далее – через контактор КМ1 и тепловое реле КК1. Тепловое реле защищает двигатель от перегрузки и пропадания фазы. Ток уставки теплового реле должен быть выбран таким образом, чтобы он был на 10-20% больше рабочего тока двигателя.

Двигатель дутьевого вентилятора М2 питается через автоматический выключатель QF2, контактор KM2, тепловое реле КК2. Назначение этих элементов – то же, что и для двигателя М1.

6 Схема управления насосом подпитки теплотрассы

. Для полного понимания алгоритма работы нужно знать откуда и как работают 1KL, 2KL2, 2KL, 2KM1 – отмечены желтым на схеме, описаны общими фразами.

Схема управления насосом подпитки теплотрассы

Схема собрана в электрощите, расположенном в непосредственной близости от насоса №1. Электрощит питается от сети трехфазного напряжения, и имеет выходы управления на шкаф управления насосом №2, а также выходы для индикации на центральном шкафу управления диспетчера котельной.

Схема состоит из двух основных частей – силовой части и схемы управления, рассмотрим каждую по отдельности.

Схема управления насосом подпитки теплотрассы

Силовая часть

Насос подпитки теплотрассы вращается асинхронным электродвигателем, который подключается через клеммы 15ХТ1. Питание на силовую часть поступает через трехфазный ввод, обозначенный как 1-L11, 1L21, 1L31, далее через автоматический выключатель 15QF1 на контактор 15КМ1. Для включения этого контактора служит схема управления, работу которой рассмотрим ниже.

При замыкании контактов контактора 15КМ1 напряжение поступает на силовые выводы теплового реле 15КК1, которое служит для защиты двигателя насоса при перегрузке либо пропадании фазы. Исполнительные контакты теплового реле 15КК1 входят в схему управления, и отключают питание двигателя в случае аварии.

Через тепловое реле 15КК1 и клеммы 15ХТ1 напряжение поступает на двигатель насоса №1.

Провод первой фазы питания двигателя проходит через токовый трансформатор 15ТА1, к которому подключен амперметр 15РА1. Амперметр расположен на передней панели электрощита и позволяет оперативному персоналу оценить работу двигателя насоса.

Схема управления

Схема управления включением насоса содержит следующие основные элементы:

  • 15SA1 – переключатель выбора режима работы,
  • 15KL1 – промежуточное реле 1,
  • 15КТ1 – реле времени с задержкой включения,
  • 15KL2 – промежуточное реле 2,
  • 15KL3 – промежуточное реле 3 (аварийное),
  • 15КМ1 – катушка контактора двигателя насоса.

Также в схему входят контакты реле, расположенных в центральном шкафу управления и других электрошкафах – 1KL, 2KL2, 2KL, 2KM1. Эти контакты необходимы для корректной работы схемы во взаимодействии с другими электрическими схемами системы – блокировки, предотвращение аварийных и нештатных ситуаций.

Рассмотрим работу схемы управления.

Схема питается напряжением 220В, приходящим на клемму Х18 от любой из фаз, либо от внешнего источника. Со стороны нейтрали напряжение приходит через внешний контакт 1KL, выключение которого делает работу схемы невозможной из соображений безопасности.

Напряжение поступает на переключатель 15SA1, который в режиме «ручной» замыкает верхнюю по схеме линию питания промежуточного реле 15KL1. Реле включается, и его контакты 13 и 14 подают питание через замкнутые контакты внешних реле 2KL, 2KM1 на катушку реле времени 15КТ1.

Контакты 15 и 18 реле времени замыкаются через несколько секунд, и питание подается через замкнутые контакты кнопки «Стоп» SB1 на промежуточное реле 15KL2. Это реле через свои контакты 43, 44, нормально закрытые контакты аварийного реле 15KL3 и исполнительные контакты теплового реле 15КК1 подает питание на катушку контактора двигателя насоса 15КМ1. Его контакты, входящие в силовую часть схемы, подают питание на двигатель.

Для индикации включения контактора двигателя 15КМ1 служит зеленый светодиодный индикатор 15HLG1.

Остановка двигателя (выключение контактора 15КМ1) возможна тремя путями:

  1. Штатный останов – перевод переключателя 15SA1 в положение «Откл.», либо кратковременное нажатие кнопки SB1 «Стоп»,
  2. Внешний останов – размыкание контактов внешних реле,
  3. Аварийный останов – срабатывание теплового реле 15КК1, либо выключение автоматического выключателя 15QF

При аварийном останове включается реле 15KL3, нормально закрытые контакты 21, 22 которого размыкаются, что прекращает подачу питания на катушку контактора двигателя 15КМ1. Одновременно загорается зеленый индикатор 15HLY1, сигнализируя об аварии.

Для сброса аварии нужно выяснить её причину, и затем включить тепловое реле 15КК1, либо автоматический выключатель 15QF1. Только после этого возможен повторный запуск двигателя.

В автоматическом (резервном) режиме переключатель 15SA1 замыкает нижнюю по схеме цепь (контакты 23, 24). В этом случае включение производится внешним контактом 2KL2, а выключение – тремя путями, описанными выше.

Схема управления имеет дополнительные контакты, которые дают различную информацию другим шкафам системы (в центральный шкаф управления и в схему управления насосом №2):

  • 15КМ1, 15KL2 – насос №1 включен, насос №1 выключен,
  • 15KL3 – аварийное отключение насоса №1.

На этом заканчиваю. Как всегда приглашаю тех, кому интересно, в комментарии!

Ещё схемы на реле

Не успела выйти статья – читатель Алексей выслал ещё схемы, описание которых приведено в комментариях.

Схема автоматического переключения фаз от городской электросети и генератора с защитой от дурака:

Схема автоматического переключения фаз от городской электросети и генератора с защитой от дурака

Схема автоматического переключения фаз от городской электросети и генератора с защитой от дурака. За монтаж извиняюсь, тут главное принцип.

Схема автоматического переключения фаз от городской электросети и генератора с защитой от дурака

Каждый электрик должен знать:  Онлайн-тесты для электриков пройти прямо сейчас

Подобные схемы у меня рассматриваются в статье про подключение генератора к домашней электросети.

Вот другая схема, управление по двум проводам тремя нагрузками. Автор подробно рассказывает на видео, как и что работает:

Промежуточные реле, контакторы

    • Меандр
    • Евроавтоматика «F&F»

    По этим критериям поиска ничего не найдено

    • г. Санкт-Петербург, Альпийский пер., д. 29, лит. А, офис 114
    • +7(800)550-9738 (звонок бесплатный)
    • +7(812)905-9738
    • Пн-Пт 9.00 — 18.00
    • sales@energ-on.ru
    • Посмотреть на карте

    © 2015 — 2020 ООО «ЭНЕРГ-ОН». Копирование и использование информации представленной на сайте без соответствующей ссылки на источник запрещено

    Контакторы, пускатели, тепловое реле перегрузки, модульные контакторы.

    В нашем Магазине Электрики вы можете приобрести не только контакторы и пускатели различных производителей, но и различное дополнительное оборудование к ним — дополнительные контакты, блокировки и т.д.
    Основной областью применения контакторов является коммутация силовых цепей общего назначения напряжением до 690/1000В переменного тока или 220/440В постоянного тока. Контакторы можно использовать для решения множества задач, например, разделения электрических цепей, коммутации конденсаторов и осветительных ламп, запуска электродвигателей.
    Тепловое реле перегрузки устройство для защиты трехфазных или однофазных электродвигателей в случае перегрузки или обрыва фазы. При перегрузке, ток нагревает биметаллические элементы, пластины изменяют свою форму, отключая тем самым управляющие контакты.

    Чем отличается реле от контактора?

    Основными способами управления электрическими цепями являются включение и отключение потребителей тока. Эту функцию выполняют реле. Для управления работой мощных потребителей, особенно тех, которым необходим большой пусковой ток, потребовались устройства, способные выдержать высокую индуктивную нагрузку. Так появились контакторы и магнитные пускатели. Все подобные устройства можно считать реле с определенной специализацией.

    Основные отличия реле и контакторов

    Основной сферой использования реле являются слаботочные вторичные электрические цепи с малой индуктивностью. Примерами являются системы освещения, сигнализации и другие маломощные потребители, включение которых не приводит к образованию электрической дуги на контактах. Управление ими не представляет опасности и может выполняться при помощи кнопок, тумблеров и прочих устройств, рассчитанных на малый ток.

    Для основной части потребителей, к которым относятся и электродвигатели, необходим большой пусковой ток, создающий высокую индуктивную нагрузку на контакты, что сопровождается появлением электрической дуги. Контакторы предназначены для управления работой этих потребителей. Они имеют следующие конструктивные особенности:

    • дугогасительные камеры для нейтрализации искрения контактов;
    • подвижные контакты, рассчитанные на высокую частоту коммутации – от 30 до 3600 циклов включения в час;
    • управление осуществляется через вспомогательную цепь с более низким напряжением, чем у потребителя тока.

    Другими словами, контактор позволяет безопасно управлять мощной цепью при помощи малого тока. В отличие от него, реле используются для размыкания цепи не только по току, но и по другим параметрам, поэтому имеют множество разновидностей (реле тока, напряжения, мощности и другие). Один из их видов – управляющие реле с нормально-открытыми контактами – в отдельных случаях может использоваться вместо контакторов.

    Подводя итог, можно сказать что набор отличий между реле и контактором может меняться в зависимости от исполнения этих устройств, но у них одинаковый принцип действия.

    Реле для контакторов Уралэлектро CHINT Электротехник TDM ELECTRIC IEK EKF DEKraft EATON КЗЭА ЭТАЛ Hyundai КЭАЗ Legrand ABB LSIS Schne >

    Найдено в категориях:

    С этим покупают Посмотреть

    Реле тепловое TESYS E 5.5. 8A

    • Код товара 8580293
    • Артикул LRE12
    • Производитель Schneider Electric/EasyPact TVS

    С этим покупают Посмотреть

    Реле тепловое TESYS E 2.5. 4A

    • Код товара 2569051
    • Артикул LRE08
    • Производитель Schneider Electric/EasyPact TVS

    С этим покупают Посмотреть

    Реле тепловое LRD06 1-1.7A

    • Код товара 9678705
    • Артикул LRD06
    • Производитель Schneider Electric/TeSys

    С этим покупают Посмотреть

    Реле тепловое TESYS E 4. 6A

    • Код товара 3454176
    • Артикул LRE10
    • Производитель Schneider Electric/EasyPact TVS

    С этим покупают Посмотреть

    Реле тепловое TESYS E 1. 1.6A

    • Код товара 9912838
    • Артикул LRE06
    • Производитель Schneider Electric/EasyPact TVS

    С этим покупают Посмотреть

    Реле тепловое TESYS E 1.6. 2.5A

    • Код товара 2073686
    • Артикул LRE07
    • Производитель Schneider Electric/EasyPact TVS

    С этим покупают Посмотреть

    Реле тепловое TESYS E 7. 10A

    • Код товара 3920637
    • Артикул LRE14
    • Производитель Schneider Electric/EasyPact TVS

    С этим покупают Посмотреть

    Реле тепловое TESYS E 0.63. 1A

    • Код товара 990600
    • Артикул LRE05
    • Производитель Schneider Electric/EasyPact TVS

    С этим покупают Посмотреть

    Реле тепловое LRD10 4-6A

    • Код товара 9676474
    • Артикул LRD10
    • Производитель Schneider Electric/TeSys

    С этим покупают Посмотреть

    Реле тепловое LRD12 5.5-8A

    • Код товара 9679457
    • Артикул LRD12
    • Производитель Schneider Electric/TeSys

    Интеллектуальные гелевые решения от компании Cellpack

    Широкая линейка гелей Cellpack предлагает современные заливочные компаунды для защиты электрических и электронных компонентов при низком напряжении до 1 кВ

    Реле времени астрономическое PCZ-527-1 от СООО Евроавтоматика ФиФ в ассортименте ЭТМ

    Программируемое циклическое реле времени PCZ-527-1 предназначено для включения и отключения освещения в зависимости от географических координат местности и/или включения по недельной программе.

    Купить Реле, контакторы

    Импульсное реле

    Промежуточное реле

    Реле времени

    Реле контроля уровня

    Реле тока, ограничители мощности

    Фотореле

    Реле тепловые, терморегуляторы

    Реле контроля фаз и напряжения

    Контакторы

    Если вы хотите, купить реле и контакторы в интернет-магазине, тогда вам сюда. Огромный выбор — разумные цены! Оплата нал, б\н, карты. Доставка по всей России. Профессиональная консультация на сайте.

    Лидеры продаж

    У нас можно купить:

    Почему стоит купить реле и контакторы, именно у нас:

    Около 2.000 пунктов самовывоза по всей России.

    Огромный выбор релейной защитной автоматики различных производителей: ABB, F&F, Новатек-Электро, DEKraft,ORBIS.

    Оплата нал, б/н, карты.

    Сеть магазинов рядом с домом.

    Доставка PicPoint, СДЭК, ЕМС Почта России, TopDelivery. Курьерская доставка по Москве, в том числе экспресс-доставка в день заказа

    Профессиональная консультация на сайте.

    Подробная информация по телефону: +7 (495) 777-05-30

    Реле контактор

    Коммутация электрических токов в щитах является одной из важнейших задач в электрификации. Можно при достижении определенных граничных состояний производить отключение или менять характеристики, чтобы избежать аварии с порчей дорогостоящего оборудования. В последнее время данная тенденция наблюдается даже в жилых домах и квартирах, ведь используемые приборы постоянно наращивают мощность, сложность и общие требования к подаче электроэнергии.

    Реле коммутаторы являются простейшими устройствами, способными работать с бытовой силой тока и напряжением. Но это не лишает их возможности обрабатывать высокочастотные параметры, что позволяет возлагать на устройства дополнительные функции. В квартире они могут применяться в качестве базового и единственного коммутатора, а на более энергоёмких объектах возможно использование в паре с электромагнитным пускателем. Это требуется, когда существуют агрегаты с крайне большими показателями пускового тока. Это могут быть мощные электродвигатели, насосы или холодильные шкафы. Реле обычно состоит из металлического или пластикового корпуса, пластину из диэлектрика с креплениями проводки, а на неё также расположена электромагнитная катушка и контакты. Всего существует две основных схемы:

    • С одним контактом. Они необходимы для защиты одной единственной линии или конкретного прибора. Срабатывание может быть установлено на различные факторы, начиная от повышения силы тока, заканчивая его падением или появлением скачков напряжения. Также можно применять одноконтактные модели с целью переключения различных линий оборудования. Сигнал может подаваться извне, например, от датчика движения или освещенности.
    • С множеством контактов. Их количество практически не ограничено, поэтому на них может полностью возлагаться управление токами на нескольких сегментах электрической сети. В основном это от 2 до 64 единиц, чего достаточно даже для обработки разводки по большому цеху.

    Общая схема внутреннего устройства

    Катушка является проводником, намотанным на каркас, являющийся по совместительству сердечником. Число витков является расчётной характеристикой. Через плоский металлический проводник возле центральной части через диэлектрическую прокладку производится присоединение ряда контактов. Их количество может измеряться десятками, в зависимости от базовой конструкции. Обычно для их производства используется сплав меди или серебра с покрытием из благородного металла, чтобы препятствовать окислению.

    На катушку подаётся ток, сердечник генерирует магнитное поле. Это позволяет притянуть гибкую пластину с коммутаторной парой. Чтобы всё вернулось в первоначальное положение, с витком снимается ток. Возвратное движение осуществляется при помощи кинетической энергии пружины. Поэтому реле контакторы можно считать электромеханическим устройством.

    Если реле находится в движении, то его относят к подвижному типу. Каждому движимому контакту обязательно отвечает недвижимая пара. Исходя из этого, можно вывести целых три категории принципиальных схем устройств данного типа:

    • Замыкающие. Их ключевой ролью является своевременное замыкание контактов с последующим прохождение электрического тока через их сечение.
    • Размыкающие. Они при наступлении определенного состояния электросети просто прерывают электроснабжение линии или определенного прибора.
    • Переключающие. Их главной ролью является своевременный последовательный запуск различных приборов или агрегатов.

    Замыкающие контакты замыкаются, а размыкающие – размыкаются. Всё просто. При переключении подвижные коммутаторы работают в паре с неподвижными ответными частями. Просто при каждом значении магнитного поля возникает определенная реакция. Корпус реле обязательно должен содержать на поверхности наклеенную или гравированную схему контактов. Это позволяет безошибочно подключить его. Выводы катушки указываются не номерами, а буквами. На электрической схеме реле обычно выглядит как прямоугольник, а рядом ставится литера «К» (коммутатор). Если таких устройств несколько, то также приписывается уникальный цифровой идентификатор.

    Реле и контакторы Leach

    В 1919 году американец Вэл Лич основал первое в США предприятие по производству электромеханических реле для авиации и флота. С тех пор выпущено много поколений реле с маркой LEACH, а фирма прочно завоевала репутацию законодателя наивысших стандартов в области бортовой электрокоммутационной техники. Сегодня марка LEACH символизирует самый высокий уровень разработок, производства и сервиса, подтвержденный многочисленными сертификатами и приемочно-квалификационными документами. Наиболее массовой продукцией фирмы являются герметичные реле с балансированным якорем для переключения нагрузок от 5 до 50 ампер. Их применение позволяет существенно снизить массу и габариты бортового коммутационного оборудования. Высокая надежность продукции, впечатляющие объемно-массовые характеристики и эффективная инженерная поддержка заказчика — основные составляющие стратегии фирмы LEACH INTERNATIONAL.

    Компания Leach признана передовым производителем электрокоммуникационной техники для аэрокосмического производства. Компания leach international является первой в США, кто начал производство электромеханических реле для флота и авиации. За время существования компании было выпущено много продукции разных поколений Лич. Благодаря многолетнему опыту компании стала символом высокого качества, международного стандарта и сервиса.

    Самой популярной продукцией производителя является герметичные реле Leach, которые отличаются наличием сбалансированного якоря, который переключает нагрузки от 5 до 50 ампер. С помощью реле лич можно значительно уменьшить массу бортового оборудования. Реле данной компании отличается надежностью, хорошими характеристиками объема и массы, а также качественной инженерной поддержкой.

    Среди существующей продукции компании можно выделить Реле Leach W 260:

    • в конструкции есть 2 переключающих контактных группы по 2А;
    • обмотка постоянного тока;
    • стандарт Mil-R-39016/6;
    • высокий диапазон коммутируемых нагрузок;
    • работает с разной нагрузкой;
    • работает при температуре от -65 до +125ºС.

    Реле лич М 210:

    • переключающие контакты по 5А;
    • обмотка постоянного тока;
    • СЕСС 16 101 – 027 и СЕСС 16 303 – 803 – приемка;
    • высокий диапазон коммутируемых нагрузок;
    • работает с разной нагрузкой;
    • работает при температуре от -65 до +125ºС.

    Коммутационные компоненты для авиакосмическойнной техники.

    Реле и цоколи

    Отвечающие военным стандартам миниатюрные, субминиатюрные реле и реле в корпусе «пол-кварца» с номиналами от сигнала логического уровня до 75А в версиях для постоянного и переменного тока. Субминиатюрные реле фирмы LEACH International полностью герметичны и защищены от загрязняющих и внешних воздействий. Большинство из них выдерживают вибрацию и шок до 200G. Для миниатюрных и субминиатюрных реле имеется большое количество разнообразных цоколей.

    Технология «Балансированного якоря с полным балансом сил» применяется для всех реле, наряду с разнообразными видами номиналов, конфигураций и креплений. Железнодорожные реле могут быть совмещены с высокотехнологичными панелями в целях экономии и затрат на эксплуатацию подвижного состава.

Добавить комментарий