Решение дифференциальных уравнений операторным методом

Как решить дифференциальное уравнение
методом операционного исчисления?

На данном уроке будет подробно разобрана типовая и широко распространенная задача комплексного анализа – нахождение частного решения ДУ 2-го порядка с постоянными коэффициентами методом операционного исчисления. Снова и снова избавляю вас от предубеждения, что материал немыслимо сложный и недоступный. Забавно, но для освоения примеров можно вообще не уметь дифференцировать, интегрировать и даже не знать, что такое комплексные числа. Потребуется навык применения метода неопределённых коэффициентов, который детально разобран в статье Интегрирование дробно-рациональных функций. Фактически краеугольным камнем задания являются обычные алгебраические действия, и я уверен, что материал доступен даже для школьника.

Сначала сжатые теоретические сведения о рассматриваемом разделе математического анализа. Основная суть операционного исчисления состоит в следующем: функция действительной переменной с помощью так называемого преобразования Лапласа отображается в функцию комплексной переменной :

Терминология и обозначения:
функция называется оригиналом;
функция называется изображением;
заглавной буквой обозначается преобразование Лапласа.

Говоря простым языком, действительную функцию (оригинал) по определённым правилам нужно превратить в комплексную функцию (изображение). Стрелочка обозначает именно это превращение. А сами «определенные правила» и являются преобразованием Лапласа, которое мы рассмотрим лишь формально, чего для решения задач будет вполне достаточно.

Осуществимо и обратное преобразование Лапласа, когда изображение превращается в оригинал:

Зачем всё это нужно? В ряде задач высшей математики бывает очень выгодно перейти от оригиналов к изображениям , поскольку в этом случае решение задания значительно упрощается (шутка). И как раз одну из таких задач мы и рассмотрим. Если вы дожили до операционного исчисления, то формулировка должна быть вам хорошо знакома:

Найти частное решение неоднородного уравнения второго порядка с постоянными коэффициентами при заданных начальных условиях .

Примечание: иногда дифференциальное уравнение может быть и однородным: , для него в вышеизложенной формулировке также применим метод операционного исчисления. Однако в практических примерах однородное ДУ 2-го порядка встречается крайне редко, и далее речь пойдёт о неоднородных уравнениях.

Как известно, неоднородное дифференциальное уравнение 2-го порядка можно решить методом подбора частного решения по виду правой части либо методом вариации произвольных постоянных.

И сейчас будет разобран третий способ – решение ДУ с помощью операционного исчисления. Ещё раз подчеркиваю то обстоятельство, что речь идёт о нахождении частного решения, кроме того, начальные условия строго имеют вид («иксы» равны нулям).

К слову, об «иксах». Уравнение можно переписать в следующем виде:
, где «икс» – независимая переменная, а «игрек» – функция. Я не случайно об этом говорю, поскольку в рассматриваемой задаче чаще всего используются другие буквы:

То есть роль независимой переменной играет переменная «тэ» (вместо «икса»), а роль функции играет переменная «икс» (вместо «игрека»)

Понимаю, неудобно конечно, но лучше придерживаться обозначений, которые встречаются в большинстве задачников и методичек.

Итак, наша задача с другими буквами записывается следующим образом:

Найти частное решение неоднородного уравнения второго порядка с постоянными коэффициентами при заданных начальных условиях .

Смысл задания нисколько не изменился, изменились только буквы.

Как решить данную задачу методом операционного исчисления?

Прежде всего, потребуется таблица оригиналов и изображений. Это ключевой инструмент решения, и без неё не обойтись. Поэтому, по возможности, постарайтесь распечатать указанный справочный материал. Сразу же поясню, что обозначает буква «пэ»: комплексную переменную (вместо привычного «зет»). Хотя для решения задач этот факт не имеет особого значения, «пэ» так «пэ».

Каждый электрик должен знать:  Микроволновая печь LG выдает ошибку E-02 - причина

С помощью таблицы оригиналы и необходимо превратить в некоторые изображения. Далее следует ряд типовых действий, и используется обратное преобразование Лапласа (тоже есть в таблице). Таким образом, будет найдено искомое частное решение.

Все задачи, что приятно, решаются по достаточно жесткому алгоритму.

С помощью операционного исчисления найти частное решение дифференциального уравнения при заданных начальных условиях.
, ,

Решение: На первом шаге перейдем от оригиналов к соответствующим изображениям. Используем левую сторону таблицы оригиналов и изображений.

Сначала разбираемся с левой частью исходного уравнения. Для преобразования Лапласа справедливы правила линейности, поэтому все константы игнорируем и по отдельности работаем с функцией и её производными.

По табличной формуле №1 превращаем функцию:

По формуле №2 , учитывая начальное условие , превращаем производную:

По формуле №3 , учитывая начальные условия , превращаем вторую производную:

Не путаемся в знаках!

Признаюсь, правильнее говорить не «формулы», а «преобразования», но для простоты время от времени буду называть начинку таблицы формулами.

Теперь разбираемся с правой частью, в которой находится многочлен . В силу того же правила линейности преобразования Лапласа, с каждым слагаемым работаем отдельно.

Смотрим на первое слагаемое: – это независимая переменная «тэ», умноженная на константу. Константу игнорируем и, используя пункт №4 таблицы, выполняем преобразование:

Смотрим на второе слагаемое: –5. Когда константа находится одна-одинёшенька, то пропускать её уже нельзя. С одиночной константой поступают так: для наглядности её можно представить в виде произведения: , а к единице применить преобразование:

Таким образом, для всех элементов (оригиналов) дифференциального уравнения с помощью таблицы найдены соответствующие изображения:

Подставим найденные изображения в исходное уравнение :

Дальнейшая задача состоит в том, чтобы выразить операторное решение через всё остальное, а именно – через одну дробь. При этом целесообразно придерживаться следующего порядка действий:

Для начала раскрываем скобки в левой части:

Приводим подобные слагаемые в левой части (если они есть). В данном случае складываем числа –2 и –3. Чайникам настоятельно рекомендую не пропускать данный этап:

Слева оставляем слагаемые, в которых присутствует , остальные слагаемые переносим направо со сменой знака:

В левой части выносим за скобки операторное решение , в правой части приводим выражение к общему знаменателю:

Многочлен слева следует разложить на множители (если это возможно). Решаем квадратное уравнение:

Сбрасываем в знаменатель правой части:

Цель достигнута – операторное решение выражено через одну дробь.

Действие второе. Используя метод неопределенных коэффициентов, операторное решение уравнения следует разложить в сумму элементарных дробей:

Приравняем коэффициенты при соответствующих степенях и решим систему:

Если возникли затруднения с методом неопределенных коэффициентов, пожалуйста, наверстайте упущенное в статьях Интегрирование дробно-рациональной функции и Как решить систему уравнений? Это очень важно, поскольку разложение на дроби, по существу, самая важная часть задачи.

Итак, коэффициенты найдены: , и операторное решение предстаёт перед нами в разобранном виде:

Обратите внимание, что константы записаны не в числителях дробей. Такая форма записи выгоднее, чем . А выгоднее, потому что финальное действие пройдёт без путаницы и ошибок:

Заключительный этап задачи состоит в том, чтобы с помощью обратного преобразования Лапласа перейти от изображений к соответствующим оригиналам. Используем правый столбец таблицы оригиналов и изображений.

Перейдем от изображений к соответствующим оригиналам:

Возможно, не всем понятно преобразование . Здесь использована формула пункта №5 таблицы: . Если подробнее: . Собственно, для похожих случаев формулу можно модифицировать: . Да и все табличные формулы пункта №5 очень легко переписать аналогичным образом.

Каждый электрик должен знать:  Рейтинг производителей водонагревателей - лучшие в 2020 году

После обратного перехода искомое частное решение ДУ получается на блюдечке с голубой каёмочкой:

Ответ: частное решение:

При наличии времени всегда желательно выполнять проверку. Проверка выполняется по стандартной схеме, которая уже рассматривалась на уроке Неоднородные дифференциальные уравнения 2-го порядка. Повторим:

Проверим выполнение начального условия :
– выполнено.

Найдём первую производную:

Проверим выполнение второго начального условия :
– выполнено.

Найдём вторую производную:

Подставим , и в левую часть исходного уравнения :

Получена правая часть исходного уравнения.

Вывод: задание выполнено правильно.

Небольшой пример для самостоятельного решения:

С помощью операционного исчисления найти частное решение дифференциального уравнения при заданных начальных условиях.

Примерный образец чистового оформления задания в конце урока.

Наиболее частный гость в дифференциальных уравнениях, как многие давно заметили, экспоненты, поэтому рассмотрим несколько примеров с ними, родными:

Найти частное решение дифференциального уравнения методом операционного исчисления.
, ,

Решение: С помощью таблицы преобразований Лапласа (левая часть таблицы) перейдем от оригиналов к соответствующим изображениям.

Сначала рассмотрим левую часть уравнения. Там отсутствует первая производная. Ну и что из того? Отлично. Работы поменьше. Учитывая начальные условия , по табличным формулам №№1,3 находим изображения:

Теперь смотрим на правую часть: – произведение двух функций. Для того чтобы воспользоваться свойствами линейности преобразования Лапласа, нужно раскрыть скобки: . Так как константы находятся в произведениях, то на них забиваем, и, используя группу №5 табличных формул, находим изображения:

Подставим найденные изображения в исходное уравнение:

Напоминаю, что дальнейшая задача состоит в том, чтобы выразить операторное решение через единственную дробь.

В левой части оставляем слагаемые, в которых присутствует , остальные слагаемые переносим в правую часть. Заодно в правой части начинаем потихоньку приводить дроби к общему знаменателю:

Слева выносим за скобки, справа приводим выражение к общему знаменателю:

В левой части получен неразложимый на множители многочлен . Если многочлен не раскладывается на множители, то его, бедолагу, сразу нужно сбросить на дно правой части, забетонировав ноги в тазике. А в числителе раскрываем скобки и приводим подобные слагаемые:

Наступил самый кропотливый этап: методом неопределенных коэффициентов разложим операторное решение уравнения в сумму элементарных дробей:

Обратите внимание, как разложена дробь: , скоро поясню, почему именно так.

Финиш: перейдем от изображений к соответствующим оригиналам, используем правый столбец таблицы:

В двух нижних преобразованиях использованы формулы №№6,7 таблицы, и дробь предварительно раскладывалась как раз для «подгонки» под табличные преобразования.

В результате, частное решение:

Ответ: искомое частное решение:

Похожий пример для самостоятельного решения:

Найти частное решение дифференциального уравнения методом операционного исчисления.

Краткое решение и ответ в конце урока.

В Примере 4 одно из начальных условий равно нулю. Это, безусловно, упрощает решение, и самый идеальный вариант, когда оба начальных условия нулевые: . В этом случае производные преобразуются в изображения без хвостов:

Как уже отмечалось, наиболее сложным техническим моментом задачи является разложение дроби методом неопределенных коэффициентов, и в моём распоряжении есть достаточно трудоёмкие примеры. Тем не менее, монстрами запугивать никого не буду, рассмотрим ещё пару типовых разновидностей уравнения:

Методом операционного исчисления найти частное решение дифференциального уравнения, удовлетворяющее заданным начальным условиям.
, ,

Решение: С помощью таблицы преобразований Лапласа перейдем от оригиналов к соответствующим изображениям. Учитывая начальные условия :

С правой частью тоже никаких проблем:

(Напоминаю, что константы-множители игнорируются)

Подставим полученные изображения в исходное уравнение и выполняем стандартные действия, которые, я надеюсь, вы уже хорошо отработали:

Каждый электрик должен знать:  Схема электропроводки в однокомнатной квартире + фото

Константу в знаменателе выносим за пределы дроби, главное, потом про неё не забыть:

Думал, выносить ли ещё дополнительно двойку из числителя, однако, прикинув, пришел к выводу, что данный шаг практически не упростит дальнейшего решения.

Особенностью задания является полученная дробь. Кажется, что её разложение будет долгим и трудным, но впечатление обманчиво. Естественно, бывают сложные вещи, но в любом случае – вперёд, без страха и сомнений:

То, что некоторые коэффициенты получились дробными, смущать не должно, такая ситуация не редкость. Лишь бы техника вычислений не подвела. К тому же, всегда есть возможность выполнить проверку ответа.

В результате, операторное решение:

Перейдем от изображений к соответствующим оригиналам:

Таким образом, частное решение:

На последних двух шагах был проведён, так скажем, косметический ремонт ответа.

Ответ: частное решение:

И, естественно, если в ходе решения получились дроби, то проверка напрашивается сама собой, чтобы развеять все сомнения относительно правильности результата. Я выполнил проверку на черновике, всё сошлось.

Похожий и весьма любопытный пример для самостоятельного решения:

Методом операционного исчисления найти частное решение дифференциального уравнения, удовлетворяющее заданным начальным условиям.
, ,

Он проще, чем кажется, решение и ответ в конце урока.

Рассматриваемые задания сплошь и рядом попадаются в контрольных работах, и я не случайно включаю в урок вроде бы однообразные примеры. В заключение разберу ещё один тип уравнения, который встречается реже, но встречается:

Методом операционного исчисления найти частное решение дифференциального уравнения, удовлетворяющее заданным начальным условиям.
, ,

Решение: С помощью таблицы преобразований Лапласа перейдем от оригиналов к соответствующим изображениям:

Подставим полученные изображения в исходное уравнение и выразим операторное решение:

В левой части получен неразложимый на множители трёхчлен (можете попробовать решить квадратное уравнение). Подобный случай уже встречался в Примере 3. Ну не раскладывается, так не раскладывается, сбрасываем его в правую часть:

Методом неопределенных коэффициентов разложим операторное решение уравнения в сумму элементарных дробей:

Пожалуйста, внимательно просмотрите на манипуляции с дробью . Во-первых, в числителе использован искусственный приём: . Во-вторых, в знаменателе выделяется полный квадрат (если кто забыл о данном действии, читайте статью Интегрирование некоторых дробей). Все эти ухищрения выполнены с единственной целью: нужно преобразовать дробь ТАК, чтобы потом использовать табличные формулы , (№№10,11 таблицы).

В результате, частное решение:

Ответ:

Как видите, помимо навыков решения, в рассмотренной задаче присутствует ещё и творчество. Когда происходит «затык», нужно постараться что-нибудь придумать, проявить смекалку, фантазию. Да и не только в математике.

Решения и ответы:

Пример 2: Решение: С помощью таблицы преобразований Лапласа перейдем от оригиналов к соответствующим изображениям:

Подставим полученные изображения в исходное уравнение:

Методом неопределенных коэффициентов разложим операторное решение уравнения в сумму элементарных дробей:

Таким образом:

Перейдем от изображений к соответствующим оригиналам:

Ответ: частное решение:

Пример 4: Решение: С помощью таблицы преобразований Лапласа перейдем от оригиналов к соответствующим изображениям:

Подставим полученные изображения в исходное уравнение:

Методом неопределенных коэффициентов разложим операторное решение уравнения в сумму элементарных дробей:

Таким образом:

Перейдем от изображений к соответствующим оригиналам:

Ответ: частное решение:

Пример 6: Решение: С помощью таблицы преобразований Лапласа перейдем от оригиналов к соответствующим изображениям. Учитывая начальные условия :

Подставим полученные изображения в исходное уравнение:

Методом неопределенных коэффициентов получим сумму дробей:

В результате:

Перейдем от изображений к соответствующим оригиналам:

Частное решение:

Ответ:

Добавить комментарий