Режимы эксплуатации диодных оптопар


СОДЕРЖАНИЕ:

Оптроны и их применение

Введение

История

Идея создания и применения оптронов относится к 1955 г., когда в работе Loebner E. E. «Optoelectronic devices network» была предложена целая серия приборов с оптическими и электрическими связями между элементами, что позволяло осуществлять усиление и спектральное преобразование световых сигналов, создавать приборы с двумя устойчивыми состояниями — бистабильные оптроны, оптоэлектронные устройства накопления и хранения информации логические схемы, регистры сдвига. Там же был предложен и термин «оптрон», образованный как сокращение от английского «optical-electronic device».

Описанные в этой работе оптроны, отлично иллюстрируя принципы, оказались непригодными для промышленной реализации, так как основывались на несовершенной элементарной базе — неэффективных и инерционных порошковых электролюминесцентных конденсаторах (излучатель) и фоторезисторах (приемник). Несовершенны были и важнейшие эксплуатационные характеристики приборов: низкотемпературная и временная стабильность параметров, недостаточная устойчивость к механическим воздействиям. Поэтому. на первых порах оптрон оставался лишь интересным научным достижением не находящим применения в технике.

Лишь в середине 60-х годов развития полупроводниковых светоизлучающих диодов и технологически совершенных высокоэффективных быстродействующих кремниевых фотоприемников с р — n-переходами (фотодиоды и фототранзисторы) начала создаваться элементарная база современной оптронной техники. К началу 70-х годов производство оптронов в ведущих странах мира превратилось в важную и быстро развивающуюся отрасль электронной техники, успешно дополняющую традиционную микроэлектронику.

Основные определения

Оптронами называют такие оптоэлектронные приборы, в которых имеются источник и приемник излучения (светоизлучатель и фотоприемник) с тем или иным видом оптической и электрической связи между ними, конструктивно связанные друг с другом.

Принцип действия оптронов любого вида основан на следующем. В излучателе энергия электрического сигнала преобразуется в световую, в фотоприемнике, наоборот, световой сигнал вызывает электрический отклик.

Практически распространение получили лишь оптроны, у которых имеется прямая оптическая связь от излучателя к фотоприемнику и, как правило, исключены все виды электрической связи между этими элементами.

По степени сложности структурной схемы среди изделий оптронной техники выделяют две группы приборов. Оптопара (говорят также «элементарный оптрон») представляет собой оптоэлектронный полупроводниковый прибор, состоящий из излучающего и фотоприемного элементов, между которыми имеется оптическая связь, обеспечивающая электрическую изоляцию между входом и выходом. Оптоэлектронная интегральная микросхема представляет собой микросхему, состоящую из одной или нескольких оптопар и электрически соединенных с ними одного или нескольких согласующих или усилительных устройств.

Таким образом, в электронной цепи такой прибор выполняет функцию элемента связи, в котором в то же время осуществлена электрическая (гальваническая) развязка входа и выхода.

Отличительные особенности оптронов

Достоинства этих приборов базируются на общем оптоэлектронном принципе использования электрически нейтральных фотонов для переноса информации. Основные из них следующие:

  • возможность обеспечения идеальной электрической (гальванической) развязки между входом и выходом; для оптронов не существует каких-либо принципиальных физических или конструктивных ограничений по достижению сколь угодно высоких напряжений и сопротивлений развязки и сколь угодно малой проходной емкости;
  • возможность реализации бесконтактного оптического управления электронными объектами и обусловленные этим разнообразие и гибкость конструкторских решений управляющих цепей;
  • однонаправленность распространения информации по оптическому каналу, отсутствие обратной реакции приемника на излучатель;
  • широкая частотная полоса пропускания оптрона, отсутствие ограничения со стороны низких частот (что свойственно импульсным трансформаторам); возможность передачи по оптронной цепи, как импульсного сигнала, так и постоянной составляющей;
  • возможность управления выходным сигналом оптрона путем воздействия (в том числе и неэлектрического) на материал оптического канала и вытекающая отсюда возможность создания разнообразных датчиков, а также разнообразных приборов для передачи информации;
  • возможность создания функциональных микроэлектронных устройств с фотоприемниками, характеристики которых при освещении изменяются по сложному заданному закону;
  • невосприимчивость оптических каналов связи к воздействию электромагнитных полей, что в случае «длинных» оптронов (с протяженным волоконно-оптическим световодом между излучателем и приемником) обусловливает их защищенность от помех и утечки информации, а также исключает взаимные наводки ;
  • физическая и конструктивно-технологическая совместимость с другими полупроводниковыми и микроэлектронными приборами.

Оптронам присущи и определенные недостатки:

  • значительная потребляемая мощность, обусловленная необходимостью двойного преобразования энергии (электричество — свет — электричество) и невысокими КПД этих переходов;
  • повышенная чувствительность параметров и характеристик к воздействию повышенной температуры и проникающей ядерной радиации;
  • более или менее заметная временная деградация (ухудшение) параметров;
  • относительно высокий уровень собственных шумов, обусловленный, как и два предыдущих недостатка, особенностями физики светодиодов;
  • сложность реализации обратных связей, вызванная электрической разобщенностью входной и выходной цепей;
  • конструктивно-технологическое несовершенство, связанное с использованием гибридной непланарной технологии, (с необходимостью объединения в одном приборе нескольких — отдельных кристаллов из различных полупроводников, располагаемых в разных плоскостях).

Перечисленные недостатки оптронов по мере совершенствования материалов, технологии, схемотехники частично устраняются, но, тем не менее, еще длительное время будут носить достаточно принципиальный характер. Однако их достоинства столь высоки, что обеспечивают уверенную внеконкурентность оптронов среди других приборов микроэлектроники.

Обобщенная структурная схема

Как элемент связи оптрон характеризуется коэффициентом передачи Кi , определяемым отношением выходного и входного сигналов, и максимальной скоростью передачи информации F. Практически вместо F измеряют длительности нарастания и спада передаваемых импульсов tнар(сп) или граничную частоту. Возможности оптрона как элемента гальванической развязки характеризуются максимальным напряжением и сопротивлением развязки Uразв и Rразв и проходной емкостью Cразв.

В структурной схеме на рис. 1 входное устройство служит для оптимизации рабочего режима излучателя (например, смещения светодиода на линейный участок ватт-амперной характеристики) и преобразования (усиления) внешнего сигнала. Входной блок должен обладать высоким КПД преобразования, высоким быстродействием, широким динамическим диапазоном допустимых входных токов (для линейных систем), малым значением «порогового» входного тока, при котором обеспечивается надежная передача информации по цепи.

Рис 1. Обобщенная структурная схема оптрона

Назначение оптической среды — передача энергии оптического сигнала от излучателя к фотоприемнику, а также во многих случаях обеспечение механической целостности конструкции.

Принципиальная возможность управления оптическими свойствами среды, например, с помощью использования электрооптических или магнитооптических эффектов, отражена введением в схему устройства управления, В этом случае мы получаем оптрон с управляемым оптическим каналом, функционально отличающийся от «обычного» оптрона: изменение выходного сигнала может осуществляться как по входу, так и по цепи управления.

В фотоприемнике происходит «восстановление» информационного сигнала из оптического в электрический; при этом стремятся иметь высокую чувствительность и высокое быстродействие.

Наконец, выходное устройство призвано преобразовать сигнал фотоприемника в стандартную форму, удобную для воздействия на последующие за оптроном каскады. Практически обязательной функцией выходного устройства является усиление сигнала, так как потери после двойного преобразования очень значительны. Нередко функцию усиления выполняет и сам фотоприемник (например, фототранзистор).

Общая структурная схема рис. 1 реализуется в каждом конкретном приборе лишь частью блоков. В соответствии с этим выделяют три основные группы приборов оптронной техники; ранее названные оптопары (элементарные оптроны), использующие блоки светоизлучатель — оптическая среда — фотоприемник; оптоэлектронные (оптронные) микросхемы (оптопары с добавлением выходного, а иногда и входного устройства); специальные виды оптронов — приборы, функционально и конструктивно существенно отличающиеся от элементарных оптронов и оптоэлектронных ИС.

Реальный оптрон может быть устроен и сложнее, чем схема на рис. 1; каждый из указанных блоков может включать в себя не один, а несколько одинаковых или подобных друг другу элементов, связанных электрически и оптически, однако это не изменяет существенно основ физики и электроники оптрона.

Применение

В качестве элементов гальванической развязки оптроны применяются: для связи блоков аппаратуры, между которыми имеется значительная разность потенциалов; для защиты входных цепей измерительных устройств от помех и наводок и т.д.

Другая важнейшая область применения оптронов — оптическое, бесконтактное управление сильноточными и высоковольтными цепями. Запуск мощных тиристоров, триаков, симисторов, управление электромеханическими релейными устройствами.

Специфическую группу управляющих оптронов составляют резисторные оптроны, предназначенные для слаботочных схем коммутации в сложных устройствах визуального отображения информации, выполненных на электролюминесцентных (порошковых) индикаторах, мнемосхемах, экранах.

Создание «длинных» оптронов (приборов с протяженным гибким волоконно-оптическим световодом) открыло совершенно новое направление применения изделий оптронной техники — связь на коротких расстояниях.

Различные оптроны (диодные, резисторные, транзисторные) находят применение и в чисто радиотехнических схемах модуляции, автоматической регулировки усиления и др. Воздействие по оптическому каналу используется здесь для вывода схемы в оптимальный рабочий режим, для бесконтактной перестройки режима и т. п.

Возможность изменения свойств оптического канала при различных внешних воздействиях на него позволяет создать целую серию оптронных датчиков: таковы датчики влажности и загазованности, датчика наличия в объеме той или иной жидкости, датчики чистоты обработки поверхности предмета, скорости его перемещения и т. п.

Достаточно специфическим является использование оптронов в энергетических целях, т. е. работа диодного оптрона в фотовентильном режиме. В таком режиме фотодиод генерирует электрическую мощность в нагрузку и оптрон до определенной степени подобен маломощному вторичному источнику питания, полностью развязанному от первичной цепи.

Создание оптронов с фоторезисторами, свойства которых при освещении меняются по заданному сложному закону, позволяет моделировать математические функции, является шагом на пути создания функциональной оптоэлектроники.

Универсальность оптронов как элементов гальванической развязки и бесконтактного управления, разнообразие и уникальность многих других функций являются причиной того, что сферами применения этих приборов стали вычислительная техника, автоматика, связная и радиотехническая аппаратура, автоматизированные системы управления, измерительная техника, системы контроля и регулирования, медицинская электроника, устройства визуального отображения информации.

Физические основы оптронной техники

Элементная база и устройство оптронов

Элементную основу оптронов составляют фотоприемники и излучатели, а также оптическая среда между ними. Ко всем этим элементам предъявляются такие общие требования, как малые габариты и масса, высокая долговечность и надежность, устойчивость к механическим и климатическим воздействиям, технологичность, низкая стоимость. Желательно также чтобы элементы прошли достаточно широкую и длительную промышленную апробацию.

Функционально (как элемент схемы) оптрон характеризуется в первую очередь тем, какой вид фотоприемника в нем используется.

Успешное использование фотоприемника в оптроне определяется выполнением следующих основных требований: эффективность преобразования энергии квантов излучения в энергию подвижных электрических; наличие и эффективность внутреннего встроенного усиления; высокое быстродействие; широта функциональных возможностей.

В оптронах используются фотоприемники различных структур, чувствительные в видимой и ближней инфракрасной области, так как именно в этом диапазоне спектра имеются интенсивные источники излучения и возможна работа фотоприемников без охлаждения.

Наиболее универсальными являются фотоприемники с р — n-переходами (диоды, транзисторы и т, п.), в подавляющем большинстве случаев они изготовляются на основе кремния и область их максимальной спектральной чувствительности находится вблизи l=0,7. 0,9 мкм.

Многочисленные требования предъявляются и к излучателям оптронов. Основные из них: спектральное согласование с выбранным фотоприемником; высокая эффективность преобразования энергии электрического тока в энергию излучения; преимущественная направленность излучения; высокое быстродействие; простота и удобство возбуждения и модуляции излучения.

Для использования в оптронах пригодны и доступны несколько разновидностей излучателей:

  • Миниатюрные лампочки накаливания.
  • Неоновые лампочки, в которых используется свечение электрического разряда газовой смеси неон-аргон.
    Этим видам излучателей свойственны невысокая светоотдача, низкая устойчивость к механическим воздействиям, ограниченная долговечность, большие габариты, полная несовместимость с интегральной технологией. Тем не менее, в отдельных видах оптронов они могут находить применение.
  • Порошковая электролюминесцентная ячейка использует в качестве светящегося тела мелкокристаллические зерна сульфида цинка (активированного медью, марганцем или другими присадками), взвешенные в полимеризующемся диэлектрике. При приложении достаточно высоких напряжений переменного тока идет процесс предпробойной люминесценции.
  • Тонкопленочные электролюминесцентные ячейки. Свечение здесь связано с возбуждением атомов марганца «горячими» электронами.

И порошковые, и пленочные электролюминесцентные ячейки имеют невысокую эффективность преобразования электрической энергии в световую, низкую долговечность (особенно — тонкопленочные ), сложны в управлении (например, оптимальный режим для порошковых люминофоров

220 В при f =400 . 800Гц). Основное достоинство этих излучателей — конструктивно-технологическая совместимость с фоторезисторами, возможность создания на этой основе многофункциональных, многоэлементных оптронных структур.

Основным наиболее универсальным видом излучателя, используемым в оптронах, является полупроводниковый инжекционный светоизлучающий диод — светодиод. Это обусловлено следующими его достоинствами: высокое значение КПД преобразования электрической энергии в оптическую; узкий спектр излучения (квазимонохроматичность); широта спектрального диапазона, перекрываемого различными светодиодами; направленность излучения; высокое быстродействие; малые значения питающих напряжений и токов; совместимость с транзисторами и интегральными схемами; простота модуляции мощности излучения путем изменения прямого тока; возможность работы, как в импульсном, так и в непрерывном режиме; линейность ватт-амперной характеристики в более или менее широком диапазоне входных токов; высокая надежность и долговечность; малые габариты; технологическая совместимость с изделиями микроэлектроники.

Общие требования, предъявляемые к оптической иммерсионной среде оптрона, следующие: высокое значение показателя преломления nим; высокое значение удельного сопротивления r им; высокая критическая напряженность поля Еим кр, достаточная теплостойкость D q им раб; хорошая адгезия с кристаллами кремния и арсенида галлия; эластичность (это необходимо, так как не удается обеспечить согласование элементов оптрона по коэффициентам термического расширения); механическая прочность, так как иммерсионная среда в оптопаре выполняет не только светопередающие, но и конструкционные функции; технологичность (удобство использования, воспроизводимость свойств, дешевизна и т. п.).

Основным видом иммерсионной среды, используемой в оптронах, являются полимерные оптические клеи. Для них типично nим =1,4. 1,6, r им > 10 12 . 10 14 Ом см, Еим кр =80 кВ/мм, D q им раб = — 60 . 120 C. Клеи обладают хорошей адгезией к кремнию и арсениду галлия, сочетают высокую механическую прочность и устойчивость к термоциклированию. Используются также незатвердевающие вазелиноподобные и каучукоподобные оптические среды.

Физика преобразования энергии в диодном оптроне

Рассмотрение процессов преобразования энергии в оптроне требует учитывать квантовую природу света. Известно, что электромагнитное излучение может быть представлено в виде потока частиц — квантов (фотонов), энергия. каждого из которых определяется соотношением:

Eф = hn = hc / n l (2.1)

где h — постоянная Планка ;
с — скорость света в вакууме ;
n — показатель преломления полупроводника ;
n, l — частота колебаний и длина волны оптического излучения.

Если плотность потока квантов (т. е. число квантов, пролетающих через единицу площади в единицу времени) равна Nф, то полная удельная мощность излучения составит:

Pф = Nф * Eф (2.2)

и, как видно из (2.1), при заданном Nф она тем больше, чем короче длина волны излучения. Поскольку на практике заданной бывает Pф (энергетическая облученность фотоприемника), то представляется полезным следующее соотношение

Nф = Pф / Eф = 5 * 10 15 l Pф (2.3)

где Nф, см -2 с -1 ; l , мкм; Pф, мВт/см.

Рис. 2. Энергетическая диаграмма прямозонного полупроводника (на примере тройного соединения GaAsP)

Механизм инжекционной люминесценции в светодиоде состоит из трех основных процессов: излучательная (и безызлучательная) рекомбинация в полупроводниках, инжекция избыточных неосновных носителей заряда в базу светодиода и вывод излучения из области генерации.

Рекомбинация носителей заряда в полупроводнике определяется, прежде всего, его зонной диаграммой, наличием и природой примесей и дефектов, степенью нарушения равновесного состояния. Основные материалы оптронных излучателей (GaAs и тройные соединения на его основе GaA1As и GaAsP) относятся к прямозонным полупроводникам, т.е. к таким, в которых разрешенными являются прямые оптические переходы зона-зона (рис. 2). Каждый акт рекомбинации носителя заряда по этой схеме сопровождается излучением кванта, длина волны которого в соответствии с законом сохранения энергии определяется соотношением:

l изл [мкм] = 1,23 / Eф [эB] (2.4)

Следует отметить, Что имеются и конкурирующие безызлучательные — механизмы рекомбинации. К числу важнейших из них относятся:

  1. Рекомбинация на глубоких центрах. Электрон может переходить в валентную зону не прямо, а через те или иные центры рекомбинации, образующие разрешенные энергетические уровни в запрещенной зоне (уровень Et на рисунке 2).
  2. Оже-рекомбинация (или ударная). При очень высоких концентрациях свободных носителей заряда в полупроводнике растет вероятность столкновения трех тел, энергия рекомбинирующей электронно-дырочной пары при этом отдается третьему свободному носителю в форме кинетической энергии, которую он постепенно растрачивает при соударениях с решеткой.

Pис. 3. Электрическая (a) и оптическая (b) модели светодиода. A — оптически «прозрачная» часть кристалла; B — активная часть кристалла; C -«непрозрачная» часть кристалла; D — омические контакты; E — область объемного заряда

Относительная роль различных механизмов рекомбинации описывается введением понятия внутреннего квантового выхода излучения h int, определяемого отношением вероятности излучательной рекомбинации к полной (излучательной и безызлучательной) вероятности рекомбинации (или, иначе, отношением числа генерированных квантов к числу инжектированных за то же время неосновных носителей заряда). Значение h int является важнейшей характеристикой материала, используемого в светодиоде; очевидно, что 0 h int 100%.

Создание избыточной концентрации свободных носителей в активной (излучающей) области кристалла светодиода осуществляется путем инжекции их р-n-переходом, смещенным в прямом направлении.

«Полезной» компонентной тока, поддерживающей излучательную рекомбинацию в активной области диода, является ток электронов In (рис. 3,а), инжектируемых р-n-переходом. К «бесполезным» компонентам прямого тока относятся:

  1. Дырочная составляющая Ip, обусловленная инжекцией дырок в n-область и отражающая тот факт, что р — n-переходов с односторонней инжекцией не бывает, Доля этого тока тем меньше чем сильнее легирована n-область по сравнению с р-областью.
  2. Ток рекомбинации (безызлучательной) в области объемного заряда р — n-перехода Iрек. В полупроводниках с большой шириной запрещенной зоны при малых прямых смещениях доля этого тока может быть заметной.
  3. Туннельный ток Iтун , обусловленный «просачиванием» носителей заряда через потенциальный барьер. Ток переносится основными носителями и вклада в излучательную рекомбинацию не дает. Туннельный ток тем больше, чем уже р — n-переход, он заметен при сильной степени легирования базовой области и при больших прямых смещениях.
  4. Ток поверхностных утечек Iпов, обусловленный отличием свойств поверхности полупроводника от свойств объема и наличием тех или иных закорачивающих включений.

Эффективность р — n-перехода характеризуется коэффициентом инжекции:

Очевидно, что пределы возможного изменения g те же, что и у h int, т. е. 0 g 100%.

При выводе излучения из области генерации имеют место следующие виды потерь энергии (рис. 3, б):

  1. Потери на самопоглощение (лучи 1). Если длина волны генерируемых квантов в точности соответствует формуле (2.4), то она совпадает с «красной границей» поглощения (см. ниже), и такое излучение быстро поглощается в толще полупроводника (самопоглощение). В действительности, излучение в прямозонных полупроводниках идет не по приведенной выше идеальной, схеме. Поэтому длина волны генерируемых квантов несколько больше, чем по (2.4):
  2. Потери на полное внутреннее отражение (лучи 2). Известно, что при падении лучей света на границу раздела оптически плотной среды (полупроводник) с оптически менее плотной (воздух) для части этих лучей выполняется условие полного внутреннего отражения такие лучи, отразившиеся внутрь кристалла, в конечном счете, теряются за счет самопоглощения.
  3. Потери на обратное и торцевое излучение (луч 3 и 4).

Количественно эффективность вывода оптической энергии из кристалла характеризуется коэффициентом вывода Копт определяемым отношением мощности излучения, выходящего в нужном направлении, к мощности излучения, генерируемой внутри кристалла. Так же, как и для коэффициентов h int и g , всегда выполняется условие 0 Копт 100%.
g . Интегральным показателем излучательной способности светодиода является величина внешнего квантового выхода h ext. Из сказанного ясно, что h ext = h int g Копт.

Перейдем к приемному блоку. Принцип действия используемых в оптронах фотприемников основан на внутреннем фотоэффекте, заключающемся в отрыве электронов от атомов внутри тела под действием электромагнитного (оптического) излучения.

Кванты света, поглощаясь в кристалле, могут вызывать отрыв электронов от атомов, как самого полупроводника, так и примеси. В соответствии с этим говорят о собственном (беспримесном) и примесном поглощении (фотоэффекте). Поскольку концентрация примесных атомов мала, фотоэлектрические эффекты, основанные на собственном поглощении, всегда существеннее, чем основанные на примесном. Все используемые в оптронах фотоприемники «работают» на беспримесном фотоэффекте. Для того чтобы квант света вызывал отрыв электрона от атома, необходимо выполнение очевидных энергетических соотношений:

Eф1 = hn1 Ec — Ev (2.6)


Eф2 = hn2 Ec — Et (2.7)

Таким образом, собственный фотоэффект может иметь место лишь при воздействии на полупроводник излучения с длиной волны, меньшей некоторого значения l гр:

l гр = hc / ( Ec — Ev) 1.23/ Eg (2.8)

Второе равенство в (2.8) справедливо, если l гр выражено в микрометрах, а ширина запрещенной зоны полупроводника Eg — в электроновольтах. Величину l гр называют длинноволновой или «красной» границей спектральной чувствительности материала.

Интенсивность протекания фотоэффекта (в той спектральной области, где он может существовать) зависит от квантового выхода, определяемого отношением числа генерированных пар электрон-дырка к числу поглощенных фотонов. Анализ экспериментальных зависимостей от показывает, что в интересной для оптронов спектральной области b = 1.

Образование свободных носителей заряда под действием облучения проявляется в полупроводнике в виде двух фотоэлектрических эффектов: фотопроводимости (возрастание проводимости образца при засветке) и фотовольтаического (возникновение фото-ЭДС на р — n-переходе или другом виде потенциального барьера в полупроводнике при освещении). Оба эффекта используются в практике конструирования фотоприемников; для оптронов предпочтительным и доминирующим является использование фото-ЭДС-эффекта.

Основные параметры и характеристики фотоприемников (безотносительно к физической природе и конструкции этих приборов) можно подразделить на несколько групп , К оптическим характеристикам относятся площадь фоточувствительной поверхности, материал, размеры и конфигурация оптического окна; максимальный и минимальный уровни мощности излучения. К электрооптическим — фоточувствительность, степень однородности распределения чувствительности по фотоприемной площадке; спектральная плотность чувствительности (зависимость параметра, характеризующего чувствительность, от длины волны); собственные шумы фотоприемника и их зависимость от уровня засветки и диапазона рабочих частот; разрешающее время (быстродействие); коэффициент качества (комбинированный показатель, позволяющий сопоставлять различные фотоприемники друг с другом); показатель линейности; динамический диапазон. Как элемент электрической цепи фотоприемник характеризуется, прежде всего, параметрами его эквивалентной схемы, требованиями к рабочим режимам, наличием (или отсутствием) встроенного механизма усиления, видом и формой выходного сигнала. Прочие характеристики: эксплуатационные, надежностные, габаритные, технологические — ничего специфически «фотоприемного» не содержат.

Каждый электрик должен знать:  Короткое замыкание в распределительной коробке

В зависимости от характера выходного сигнала (напряжение, ток) говорят о вольтовой или токовой фоточувствительности приемника S, измеряемых соответственно в В/Вт или А/Вт. Линейность (или нелинейность) фотоприемника определяется значением показателя степени n в уравнении, связывающем выходной сигнал с входным: Uвых( или Iвых)

Pф. При n 1 фотоприемник линеен; область значений Pф(от Pф max до Pф min), в которой это выполняется, определяет динамический диапазон линейности фотоприемника D , выражаемый обычно в децибелах: D = 10 lg (Pф max / Pф min).

Важнейшим параметром фотоприемника, определяющим порог его чувствительности, является удельная обнаружительная способность D, измеряемая в Вт -1 м Гц 1/2 . При известном значении D порог чувствительности (минимальная фиксируемая мощность излучения) определяется как

Pф min = / D (2.9)

где А — площадь фоточувствительной площадки; D f- диапазон рабочих частот усилителя фотосигналов. Иными словами, параметр D играет роль коэффициента качества фотоприемника.

Рис. 4. Схемы измерения и семейства вольт-амперных характеристик в фотодиодном (а) и фотовентильном (б) режимах работы диода

В применении к оптронам не все перечисленные характеристики оказываются одинаково важными. Как правило, фотоприемники в оптронах работают при облученностях, очень далеких от пороговых, поэтому использование параметров Pф min и D оказывается практически бесполезным. Конструктивно фотоприемник в оптроне обычно, «утоплен» в иммерсионную. среду, соединяющую его с излучателем, поэтому знание оптических характеристик входного окна теряет смысл (как правило, специально такого окна нет). Не очень важно знать и распределение чувствительности по фоточувствительной площадке, так как интерес представляют интегральные эффекты.

Механизм работы фотоприемников, базирующихся на фотовольтаическом эффекте, рассмотрим на примере планарно-эпитаксиальных фотодиодов с р-n-переходом и с р-i-n-структурой, в которых можно выделить n + — подложку, базу n- или i-типа (слабая проводимость n-типа) и тонкий р + -слой. При работе в фотодиодном режиме (рис. 4,а) приложенное извне напряжение заставляет подвижные дырки и электроны уходить от р — n(р — i)-перехода; при этом картина распределения поля в кристалле оказывается резко различной для двух рассматриваемых структур.

Световое излучение, поглощаясь в базовой области диода, генерирует электронно-дырочные пары, которые диффундируют к р — n-переходу, разделяются им и вызывают появление дополнительного тока во внешней цепи. В р — i — n-диодах это разделение происходит в поле i-o6лaсти и вместо процесса диффузии имеет место дрейф носителей заряда под влиянием электрического поля. Каждая генерированная электронно-дырочная пара, прошедшая через р — n-переход, вызывает прохождение во внешней цепи заряда, равного заряду электрона. Чем больше облученность диода, тем больше фототок. Фототок протекает и при смещении диода в прямом направлении (рис. 4, а), однако уже при небольших напряжениях он оказывается намного меньше прямого тока, поэтому его выделение оказывается затруднительным.

Рабочей областью вольт-амперных характеристик фотодиода является III квадрант на рис. 4,а; соответственно этому в качестве важнейшего параметра выступает токовая чувствительность

Второе равенство в (2.10) получено в предположении линейной зависимости Iф = f(Pф), а третье — при условии пренебрежения темновым током (IT 2 — с составным фототранзистором, ДТ — диодно-транзисторная, 2Д (2Т) — диодная (транзисторная) дифференциальная.

Система параметров изделий оптронной техники базируется на системе параметров оптопар, которая формируется из четырех групп параметров и режимов.

Первая группа характеризует входную цепь оптопары (входные параметры), вторая — ее выходную цепь (выходные параметры), третья — объединяет параметры, характеризующие степень воздействия излучателя на фотоприемник и связанные с этим особенности прохождения сигнала через оптопару как элемент связи (параметры передаточной характеристики), наконец, четвертая группа объединяет параметры гальванической развязки, значения которых показывают, насколько приближается оптопара к идеальному элементу развязки. Из четырех перечисленных групп определяющими, специфически «оптронными» являются параметры передаточной характеристики и параметры гальванической развязки.

Важнейшим параметром диодной и транзисторной оптопар является коэффициент передачи тока. Определение импульсных параметров оптронов ясно из (рис. 5). Отсчетными уровнями при измерении параметров tнар(сп), tзд, и tвкл(выкл) обычно служат уровни 0.1 и 0.9, полное время логической задержки сигнала определяется по уровню 0,5 амплитуды импульса.

Параметрами гальванической развязки. Оптопар являются: максимально допустимое пиковое напряжение между входом и выходом Uразв п max; максимально допустимое напряжение между входом и выходом Uразв max; сопротивление гальванической развязки Rразв; проходная емкость Cразв; максимально допустимая скорость изменения напряжения между входом в выходом (dU разв /dt)max. Важнейшим является параметр Uразв п max. Именно он определяет электрическую прочность оптопары и ее возможности как элемента гальванической развязки.

Рассмотренные параметры оптопар полностью или с некоторыми изменениями используются и для описания оптоэлектронных интегральных микросхем.

Диодные оптопары

Рис. 6. Условные обозначения оптопар

Диодные оптопары (рис. 6,а) в большой степени, чем какие-либо: другие приборы, характеризуют уровень оптронной техники. По величине Кi можно судить о достигнутых КПД преобразования энергии в оптроне; значения временных параметров позволяют определить предельные скорости распространения информации. Подключение к диодной оптопаре тех или иных усилительных элементов, весьма полезное и удобное, не может тем не менее дать выигрыша ни по энергетике, ни по предельным частотам.

Транзисторные и тиристорные оптопары

Транзисторные оптопары (рис. 6, c) рядом своих свойств выгодно отличаются от других видов оптронов. Это прежде всего схемотехническая гибкость, проявляющаяся в том, что коллекторным током можно управлять как по цепи светодиода (оптически), так и по базовой цепи (электрически), а также в том, что выходная цепь может работать и в линейном и в ключевом режиме. Механизм внутреннего усиления обеспечивает получение больших значений коэффициента передачи тока Кi, так что последующие усилительные каскады не всегда необходимы. Важно, что при этом инерционность оптопары не очень велика и для многих случаев вполне допустима. Выходные токи фототранзисторов значительно выше, чем, например, у фотодиодов, что делает их пригодными для коммутации широкого круга электрических цепей. Наконец, следует отметить, что все это достигается при относительной технологической простоте транзисторных оптопар.

Тиристорные оптопары (рис. 6, b) наиболее перспективны для коммутации сильноточных высоковольтных цепей: по сочетанию мощности, коммутируемой в нагрузке, и быстродействию они явно предпочтительнее Т 2 -оптопар. Оптопары типа АОУ103 предназначены для использования в качестве бесконтактных ключевых элементов в различных радиоэлектронных схемах: в цепях управления, усилителях мощности, формирователях импульсов и т. п.

Резисторные оптопары

Резисторные оптопары (рис. 6, d) принципиально отличаются от всех других видов оптопар физическими и конструктивно-технологическими особенностями, а также составом и значениями параметров.

В основе принципа действия фоторезистора лежит эффект фотопроводимости, т. е. изменения сопротивления полупроводника при освещении.

Дифференциальные оптопары для передачи аналогового сигнала

Весь изложенный выше материал касается вопросов передачи цифровой информации по гальванически развязанной цепи. Во всех случаях, когда говорилось о линейности, об аналоговых сигналах, речь шла о виде выходной характеристики оптопары. Во всех случаях управление по каналу излучатель — фотоприемник не описывалось линейной зависимостью. Важную задачу представляет собой передача аналоговой информации с помощью оптопары, т.е., обеспечение линейности передаточной характеристики вход — выход [36]. Лишь при наличии таких оптопар становится возможным непосредственное распространение аналоговой информации по гальванически развязанным цепям без преобразования ее к цифровой форме (последовательности импульсов).

Сопоставление свойств различных оптопар по параметрам, важным с точки зрения передачи аналоговых сигналов приводит к заключению, что если эта задача и может быть решена, то только с помощью диодных оптопар, обладающих хорошими частотными и шумовыми характеристиками. Сложность проблемы заключается прежде всего в узком диапазоне линейности передаточной характеристики и степени этой линейности у диодных оптопар.

Следует отметить, что в создании приборов с гальванической развязкой, пригодных для передачи аналоговых сигналов, сделаны лишь первые шаги, и можно ожидать дальнейшего прогресса.

Оптоэлектронные микросхемы и другие приборы оптронного типа

Оптоэлектронные микросхемы представляют собой один из наиболее широко применяемых, развивающихся, перспективных классов изделий оптронной техники. Это обусловлено полной электрической и конструктивной совместимостью оптоэлектронных микросхем с традиционными микросхемами, а также их более широкими по сравнению с элементарными оптронами функциональными возможностями. Как и среди обычных микросхем, наиболее широкое распространение получили переключательные оптоэлектронные микросхемы.

Специальные виды оптронов резко отличаются от традиционных оптопар и оптоэлектронных микросхем. К ним относятся, прежде всего, оптроны с открытым оптическим каналом. В конструкции этих приборов между излучателем и фотоприемником имеется воздушный зазор, так что, помещая в него те или иные механические преграды, можно управлять световым потоком и тем самым выходным сигналом оптрона. Таким образом, оптроны с открытым оптическим каналом выступают в качестве оптоэлектронных датчиков, фиксирующих наличие (или отсутствие) предметов, состояние их поверхности, скорость перемещения или поворота и т. п.

Сферы применения оптронов и оптронных микросхем

Перспективные направления развития и применения оптронной техники в значительной степени определились. Оптроны и оптронные микросхемы эффективно применяются для передачи информации между устройствами, не имеющими замкнутых электрических связей. Традиционно сильными остаются позиции оптоэлектронных приборов в технике получения и отображения информации. Самостоятельное значение в этом направлении имеют оптронные датчики, предназначенные для контроля процессов и объектов, весьма различных по природе и назначении. Заметно прогрессирует функциональная оптронная микросхемотехника, ориентированная на выполнение разнообразных операций, связанных с преобразованием, накоплением и хранением информации. Эффективной и полезной оказывается замена громоздких, недолговечных и нетехнологичных (с позиций микроэлектроники) электромеханических изделий (трансформаторов, потенциометров, реле) оптоэлектронными приборами и устройствами. Достаточно специфическим, но во многих случаях оправданным и полезным является использование оптронных элементов в энергетических целях.

Передача информации

При передаче информации оптроны используются в качестве элементов связи, и, как правило, не несут самостоятельной функциональной нагрузки. Их применение позволяет осуществить весьма эффективную гальваническую развязку устройств управления и нагрузки (рис. 7), действующих в различных электрических условиях и режимах. С введением оптронов резко повышается помехоустойчивость каналов связи; практически устраняются «паразитные» взаимодействия по цепям «земли» и питания. Интерес представляет также рациональное и надежное согласование цифровых интегральных устройств с разнородной элементной базой (ТТЛ, ЭСЛ, И2Л, КМОП и т. п).

Рис. 7. Схема межблочной гальванической развязки

Схема согласования элемента транзисторно-транзисторной логики (ТТЛ) с интегральным устройством на МДП-транзисторах построена на транзисторном оптроне (рис. 8). В конкретном варианте: E1 = Е2 = 5 В, Е3 = 15 В, R1 = 820 Ом, R2 = 24 кОм — светодиод оптрона возбуждается током (5 мА), достаточным для насыщения транзистора и уверенного управления устройством на МДП-транзисторах.

Рис. 8. Схема сопряжения ТТЛ и МДП элементов по оптическому каналу

Активно используются оптические связи в телефонных устройствах и системах. С помощью оптронов технически несложными средствами удается подключать к телефонным линиям микроэлектронные устройства, предназначенные для вызова, индикации, контроля и других целей.

Введение оптических связей в электронную измерительную аппаратуру, кроме полезной во многих отношениях гальванической развязки исследуемого объекта и измерительного прибора, позволяет также резко уменьшить влияние помех, действующих по цепям заземления и питания.

Значительный интерес представляют возможности и опыт использования оптоэлектронных приборов и устройств в биомедицинской аппаратуре. Оптроны позволяют надежно изолировать больного от действия высоких напряжений, имеющихся, например, в электрокардиографических приборах.

Бесконтактное управление мощными, высоковольтными цепями по оптическим каналам весьма удобно и безопасно в сложных технических режимах, характерных для многих устройств и комплексов промышленной электроники. В этой области сильны позиции тиристорных оптронов (рис. 9).

Рис. 9. Схема коммутации нагрузки переменного тока

Получение и отображение информации

Оптроны и оптронные микросхемы занимают прочные позиции в бесконтактной дистанционной технике оперативного получения и точного отображения информации о характеристиках и свойствах весьма различных (по природе и назначению) процессов и объектов. Уникальными возможностями в этом плане обладают оптроны с открытыми оптическими каналами. Среди них оптоэлектронные прерыватели, реагирующие на пересечение оптического канала непрозрачными объектами (рис. 10), и отражательные оптроны, у которых воздействие светоизлучателей на фотоприемники всецело связано с отражением излучаемого потока от внешних объектов.

Рис. 10. Оптоэлектронный датчик

Круг применений оптронов с открытыми оптическими каналами обширен и разнообразен. Уже в 60-е годы оптроны подобного типа эффективно использовались для регистрации предметов и объектов. При такой регистрации, характерной в первую очередь для устройств автоматического контроля и счета объектов, а также для обнаружения и индикации различного рода дефектов и отказов, важно четко определить местонахождение объекта или отразить факт его существования. Функции регистрации оптроны выполняют надежно и оперативно.

Контроль электрических процессов

Мощность излучения, генерируемого светодиодом, и уровень фототока, возникающего в линейных цепях с фотоприемниками, прямо пропорциональны току электрической проводимости излучателя. Таким образом, по оптическим (бесконтактным, дистанционным) каналам можно получить вполне определенную, информацию о процессах в электрических цепях, гальванически связанных с излучателем. Особенно эффективным оказывается использование светоизлучателей оптронов в качестве датчиков электрических изменений в сильноточных, высоковольтных цепях. Четкая информация о подобных изменениях важна для оперативной защиты источников и потребителей энергии от электрических перегрузок.

Рис. 11. Стабилизатор напряжения с контролирующим оптроном

Оптроны успешно действуют в высоковольтных стабилизаторах напряжения, где они создают оптические каналы отрицательных обратных связей. Рассматриваемый стабилизатор (рис. 11) относятся к устройству последовательного типа, причем регулирующим элементом является биполярный транзистор, а кремниевый стабилитрон действует как источник, опорного (эталонного) напряжения. Сравнивающим элементом служит светодиод.

Если выходное напряжение в схеме рис. 11 возрастает, то увеличивается и ток проводимости светодиода. Фототранзистор оптрона воздействует на транзистор, подавляя возможную нестабильность выходного напряжения.

Замена электромеханических изделий

В комплексе технических решений, ориентированных на повышение эффективности и качества устройств автоматики, радиотехники, электросвязи, промышленной и бытовой электроники, целесообразной и полезной мерой является замена электромеханических изделий (трансформаторов, реле, потенциометров, реостатов, кнопочных и клавишных переключателей) более компактными, долговечными, быстродействующими аналогами. Ведущая роль в этом направлении отводится оптоэлектронным приборам и устройствам. Дело в том, что весьма важные технические достоинства трансформаторов и электромагнитных реле (гальваническая развязка цепей управления и нагрузки, уверенное функционирование в мощных, высоковольтных, сильноточных системах) свойственны и оптронам. Вместе с тем оптоэлектронные изделия существенно превосходят электромагнитные аналоги по надежности, долговечности, переходным и частотным характеристикам. Управление компактными и быстродействующими оптоэлектронными трансформаторами, переключателями, реле уверенно осуществляется с помощью интегральных микросхем цифровой техники без специальных средств электрического согласования.

Пример замены импульсного трансформатора приведен на рис. 12.

Рис. 12. Схема оптоэлектронного трансформатора

Энергетические функции

В энергетическом режиме оптроны используются в качестве вторичных источников ЭДС и тока. КПД оптронных преобразователей энергии невелик. Однако возможность введения дополнительного источника напряжения или тока в любую цепь устройства без гальванической связи с первичным источником питания дает разработчику новую степень свободы, особенно полезную при решении нестандартных технических задач.

Применение светодиодов

Светодиоды применяются в качестве источников света в автоматике, измерительной технике и других областях, благодаря целому ряду преимуществ.

Светодиоды нашли основное применение в качестве световых индикаторов на панелях управления электронной аппаратуры.

Оптроны

Оптрон – это полупроводниковый прибор, в котором конструктивно объединены источник и приёмник излучения, имеющие между собой оптическую связь. В источнике излучения электрические сигналы преобразуются в световые, которые воздействуют на фотоприёмник и создают в нём снова электрические сигналы. Если оптрон имеет только один излучатель и один приёмник излучения, то его называют оптопарой или элементарным оптроном.

Конструктивно в оптронах излучатель и приёмник излучения помещается в корпус и заливается оптически прозрачным клеем.

б)

Особую конструкцию имеют оптопары с открытым оптическим каналом. У них между излучателем и фотоприёмником имеется воздушный зазор.

Рис.7.10. Принцип устройства оптопар: А) 1-излучатель, 2-оптически прозрачный клей, 3-фотоприёмник. Б) оптопары с открытым оптическим каналом: 1-излучатель, 2-фотоприёмник, 3-объект
а)

В другом варианте оптопар с открытым каналом световой поток излучателя попадает в фотоприёмник, отражаясь от какого-либо объекта. Цепь излучателя является управляющей, а цепь фотоприёмника – управляемой и связь входа с выходом осуществляется световым сигналом.

Рассмотрим различные типы оптопар, отличающиеся друг от друга фотоприёмниками.

Резисторные оптопарыимеют в качестве излучателя сверхминиатюрную лампочку накаливания или светодиод, дающие видимое излучение. Приёмником излучения является фоторезистор из селенида кадмия.

Uупр
Е

На рисунке схематически изображена резисторная оптопара (светодиод и фоторезистор), у которой выходная цепь питается от источника постоянного или переменного напряжения Е, и имеет нагрузку Rн. Напряжение Uупр., подаваемое на светодиод, управляет током в нагрузке.

Резисторные оптопары применяются для автоматического регулирования усиления, связи между каскадами, формирования различных сигналов.


Диодные оптопары –имеют обычно кремниевый фотодиод и инфракрасный арсенидо-галлиевый светодиод. Фотодиод может работать в фотогенераторном режиме, создавая фото-ЭДС до 0,8 В.

Основные параметры диодных оптопар – входные и выходные напряжения и токи для непрерывного и импульсного режима, коэффициент передачи тока.

Применение диодных оптопар весьма разнообразно. Например, на основе диодных оптопар создаются импульсные трансформаторы, не имеющие обмоток. Разновидность диодных оптопар – оптопары, в которых фотоприёмником служит фотоварикап.

Транзисторные оптопары – имеют обычно в качестве излучателя арсенидо-галлиевый светодиод, а в качестве приёмника – биполярный кремниевый фототранзистор типа n-p-n. Оптопары этого типа работают главным образом в ключевом режиме и применяются в коммутаторных устройствах.

Разновидность транзисторных оптопар – оптопары с полевым фототранзистором. Они отличаются хорошей линейностью выходной ВАХ в широком диапазоне напряжений и токов, и поэтому удобны для аналоговых схем.

Тиристорные оптопары – имеют в качестве фотоприёмника кремниевый фототиристор и применяются в ключевых режимах. Основная область использования – схемы для формирования мощных импульсов, управление мощными тиристорами. Параметры тиристорных оптопар – входные и выходные токи и напряжения.

Достоинства оптронов:

1.Отсутствие между входом и выходом обратной связи

2.Сопротивление изоляции между входом и выходом может достигать 10 14 Ом, а проходная ёмкость не превышает 2 пФ.

3.Широкая полоса частот пропускаемых колебаний, возможность передачи сигналов с частотой от нуля до Гц.

Недостатки оптронов:

1.Большая потребляемая мощность

2.Невысокая температурная стабильность и радиационная стойкость

3.Сравнительно высокий уровень собственных шумов.

Все эти недостатки устраняются в процессе развития оптоэлектронной техники.

Дата добавления: 2015-12-29 ; просмотров: 512 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

All-Audio.pro

Статьи, Схемы, Справочники

Диодная оптопара

Оптопара диодная. Излучатель — диод на основе твердого раствора галлий-алюминий-мышьяк, приемник — кремниевый эпитаксиальный p-i-n фотодиод. Оптопары транзисторные двухканальные, состоящие из эпитаксиальных излучающих диодов на основе соединения галлий-алюминий-мышьяк и кремниевых фототранзисторов. Оптопары транзисторные, состоящие из излучающего диода на основе соединения галлий-алюминий-мышьяк и кремниевого фототранзистора.

Поиск данных по Вашему запросу:

Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.

Перейти к результатам поиска >>>

оптопара диодная

Забыли пароль? Документация производителя datasheet. Обзор продукции: оптопары, оптроны отечественные. Представленная техническая информация носит справочный характер и не предназначена для использования в конструкторской документации. Для получения актуализированной информации отправьте запрос на адрес techno platan. АОД А, з-д Оптрон. АОД А, г. Нужна помощь в выборе продукции или подборе аналога? Обратитесь к нашему консультанту webmaster platan.

Указано наличие на складе в г. Цены приведены с учетом НДС. Приведенная информация носит справочный характер и не является публичной офертой в соответствии с пунктом 2 статьи ГК РФ. При заказе товара через сайт Вам будет выставлен счет на оплату в режиме онлайн, товар забронирован на 3 рабочих дня и зафиксирована цена на день покупки. Введите номер заказа Узнать Такой заказ не существует. Программа поставок программа поставок каталог новости продукции договор.

Разработчикам наш каталог как выбрать статьи полезные ссылки электронные каталоги. Помощь как заказать поиск товара норма отгрузки оформление заказа регистрация оплата оплата картой доставка пн-пт В количестве больше чем на складе: — для уточнения цены и срока поставки необходимо отправить запрос менеджеру — минимальное количество для заказа шт кратно 1 шт. Информация для заказа Номенклатурный номер Производитель: Россия. Характеристики Документация Количество каналов 1 Постоянное прямое входное напряжение Uвх.

Документация производителя datasheet Обзор продукции: оптопары, оптроны отечественные Представленная техническая информация носит справочный характер и не предназначена для использования в конструкторской документации.

АОД А, з-д Оптрон Другие товары этого производителя: оптопары, оптроны отечественные Россия Вся продукция производителя Россия Посмотреть все Оптопары Посмотреть и скачать электронный каталог Посмотреть новинки продукции. Способы оплаты Оплатить товар можно: Банковским переводом Электронными деньгами Яндекс.

Деньги Наличными при получении товара для клиентов из Москвы и Санкт-Петербурга Наличными через офисы Евросеть, Связной или через любой платежный терминал, принимающий Яндекс. Забрать заказ можно в наших офисах: Москва, м. Молодежная, ул. Ивана Франко, д. Электрозаводская, Семеновская наб.

Зверинская, д. Платан проводит строгую политику в области качества поставляемой продукции: мы являемся официальным дистрибьютором более 20 мировых производителей комплектующих на товар, подлежащий гарантийному обслуживанию, срок гарантии составляет 6 месяцев мы предоставляем все необходимые сертификаты мы поддерживаем собственный сервисный центр.

О компании Контакты Программа поставок Вакансии Новости продукции webmaster platan. Поставляется под заказ В количестве больше чем на складе: — для уточнения цены и срока поставки необходимо отправить запрос менеджеру — минимальное количество для заказа шт кратно 1 шт.

Оптопара 1

Выберите регион , чтобы увидеть способы получения товара. Вход с паролем и Регистрация. Мой регион: Россия. Корзина руб.

Каждый электрик должен знать:  Нет фазы в доме

ОПТОПАРА ДИОДНАЯ АОД101А, (89-92г.)

Транзисторная оптопара выполняется с фотоприёмным элементом на основе транзистора. В ряде случаев применяется составной фототранзистор, например, АОТ А. Транзисторная оптопара по сравнению с диодной имеет более высокий КПД. Транзисторные оптопары находят преимущественное применение в аналоговых и ключевых коммутаторах сигналов, схемах согласования, гальванической развязки , в линиях связи, оптоэлектронных реле. В тиристорных оптопарах в качестве приёмного элемента используется кремниевый фототиристор. Фототиристор так же, как и фототранзистор, обладает большим внутренним усилением фототока. Тиристорные оптопары применяются для гальванической развязки логических цепей управления от высоковольтных цепей, в качестве переключателей переменного тока и т. Третий указывает тип фотоприёмника: Д — диод, Т — транзистор, У — тиристор;. Принципиальная электрическая схема стенда приведена на рис. Стенд содержит шесть различных оптронов, которые через кнопочный переключатель SA1 подключаются к источнику входного тока VT1 и к цифровому вольтметру.

Оптопара PC817

Таким образом, быстродействие такого типа оптопар определяется чаще всего ее выходной емкостью. Для диодных оптопар характерна относительно слабая температурная зависимость рис. Проходная емкость при этом падает до ничтожных значений, около 0,01 пФ, а электрическая прочность повышается до 20 — 50 кВ. На рис.

1.4. Транзисторные оптопары

В учебном пособии описаны различные явления, происходящие в коммутационных устройствах и электрических контактах, принцип действия и свойства бесконтактных коммутаторов. Рассмотрены процессы, происходящие в контактах различного вида, а также вопросы надежности контактных устройств. Особое внимание уделено состоянию нормативно-технической базы коммутационных устройств. В приложении приведены классификация и обозначение в конструкторской документации контактных устройств. Учебное пособие предназначено для студентов вузов, обучающихся по направлению подготовки «Приборостроение», а также для специалистов, связанных с проектированием, эксплуатацией и ремонтом электронных устройств. Расширенный поиск.

6.1.4. Режимы эксплуатации диодных оптопар

Местонахождение: Любое. Выбрать несколько. К сожалению, не найдено. Подтвердить Отменить. Фильтр по поставщику: Торговая Гарантия. Shenzhen Anterwell Technology Ltd.

Резисторная оптопара

Открытие фототранзистора зависит от освещенности светодиодом. Как это происходит более подробно я разберу в следующей статье где в экспериментах подавая сигналы с генератора и анализируя его при помощи осциллографа можно понять более точную картину работы оптопары. Еще в других статьях я расскажу о нестандартном использовании оптрона первая в роли реле -RS триггера с фиксацией состояний , а во второй генератор периодических сигналов.

К293ЛП1Б, Оптронный переключатель-инвертор (диодная оптопара)

Грамматику Род у существительных, склонение существительных и прилагательных, степени сравнения прилагательных, спряжение глаголов;. Транскрипцию и произношение слов и их переводов Можно прослушать, как произносится искомое слово, а также все его переводы, для английского языка доступна транскрипция;. Примеры переводов Для каждого запроса осуществляется поиск устойчивых словосочетаний с искомым словом в словарной базе и поиск примеров употребления в реальных текстах;. Ссылки на другие ресурсы и словарные сервисы , такие как Википедия, Dictionary. Мы знаем, что часто с помощью нашего сервиса вы изучаете иностранные языки, а также делаете домашние задания в школе, институте и на курсах, и уверены, что наши словари будут незаменимыми помощниками в этом процессе.

Оптопара принцип работы, оптроны принцип работы

Электрика и электрооборудование, электротехника и электроника — информация! Оптроны оптопары — электронные приборы, служащие для преобразования сигнала электрического тока в световой поток. Их световой сигнал передается через каналы оптики, а также происходит обратная передача и преобразование света в электрический сигнал. Устройство оптрона состоит из излучателя света и преобразователя светового луча фотоприемника. В качестве излучателя в современных приборах используют светодиоды. В старых моделях применялись маленькие лампочки накаливания.

Основы электроники. Что такое оптопара. Оптрон — оптоэлектронный прибор, главными функциональными частями которого выступают источник света и фотоприемник, гальванически не связанные друг с другом, но расположенные внутри общего герметичного корпуса.

Светодиоды, оптопары, оптроны и оптоэлектронные микросхемы

Фотоприемные устройства часто применяют совместно с источниками света. В качестве источников света могут использоваться лампы накаливания, газоразрядные лампы, светодиоды и полупроводниковые лазеры. Наиболее подходящими по совместимости с технологией типа ТТЛ и светосиле с рассмотренными фотоприборами являются светодиоды и полупроводниковые лазеры.

Светодиоды имеют ту же полупроводниковую структуру, что и обычные диоды или фотодиоды. При прямом включении электроны проходят через р-п-переход и рекомбинируют (объединяются) с дырками. При этом излучается световая энергия в определенном частотном диапазоне. Если полупроводниковый материал прозрачен для этого диапазона, то излучение будет выходить из области рекомбинации наружу, а светодиод излучать свет. Современные светодиоды с высоким КПД преобразования электрической энергии в световую (« 10%) изготовляют на полупроводниковых структурах из твердых растворов, например галлий — мышьяк GaAs. В зависимости от состава и легирующих присадок получают светодиоды с интенсивным излучением на длинах волн в диапазоне 0,6. 1,1 мкм, причем спектральная ширина излучения составляет 5. 10 нм.

Если полупроводниковую структуру светодиода обработать определенным образом и на торцах создать зеркальные отражатели (один из которых полупрозрачен), то в области излучения сформируется оптический резонатор и на выходе полупрозрачного зеркала будет наблюдаться лазерное излучение. Это излучение характеризуется более высокой яркостью и узкой шириной спектра (

1 нм), а также меньшей угловой расходимостью.

Оптопара с открытым каналом, включающая в себя светодиод и фотодиод, часто используется в схемах автоматики как отдельно взятая пара излучатель —фотоприемник. Их применяют на конвейерах для подсчета деталей, счетчиках оборотов, угловых отсчетов и т. п. При этом используется принцип прерывания светового луча в момент его пересечения каким-либо предметом или специальной шторкой (пластиной). Для угловых отсчетов применяют диск с отверстиями (окнами) для регистрации числа световых импульсов или их положения. Оптопары с открытым оптическим каналом позволяют создавать различные оптоэлсктронныс датчики и упрощают решение задач контроля параметров различных сред (влажности, уровня и цвета жидкости, концентрации пыли, содержания вредных паров и газов и т. п.). Оптопары применяют также в качестве элементов оптического бесконтактного управления сильноточными и высоковольтными устройствами. На оптопарах удобно строить узлы запуска мощных тиратронов, распределительных и релейных устройств, устройств коммутации электропитания и т.д.

С точки зрения функциональных возможностей оптопара позволяет решать те же задачи, что и отдельно взятые пары излучатель— фотоприемник. Однако на практике они, как правило, более удобны, поскольку в них оптимально подобраны характеристики излучателя и фотоприемника, а также их взаимное расположение.

Иногда оптопары используют для дистанционного управления различной электронной и электротехнической аппаратурой. Примером служит пульт дистанционного управления телевизором и освещением в комнатах. Наиболее частое применение оптопар наблюдается в качестве элемента гальванической развязки.

Оптроны — это оптопары, выполненные в виде закрытой микросхемы, включающей в себя излучатель и фотоприемник. Их применяют в качестве устройств связи между блоками аппаратуры, находящимися под различными потенциалами, для сопряжения микросхем, имеющих различные значения электрических уровней. В этих случаях оптрон (оптопара) передает информацию между блоками, не имеющими электрической связи, и самостоятельной функциональной нагрузки не несет (рис. 7.19).

Примером может быть схема двухступенчатого транзисторного усилителя с оптоэлектронной связью (см. рис. 7.19, а). Изменение тока коллектора транзистора VT1 вызывает соответствующее изменение тока светодиода оптопары VU и сопротивления ее фоторезистора, который включен в цепь базы транзистора VT2. На резисторе R2 выделяется усиленный выходной сигнал. Применение оптопары практически полностью устраняет передачу сигнала с выхода на вход усилителя и препятствует самовозбуждению усилителя.

В схеме гальванической развязки, реализуемой с помощью дифференциального оптрона, он имеет общий излучатель и два фотоприемника (см. рис. 7.19, б). Если коэффициенты передачи сигна-

Рис. 7.19. Схемы гальванической развязки на оптронах: а — оптрон, управляемый транзистором; б — двойной оптрон с обратной связью по напряжению; в — межблочная развязка с транзисторным усилительным

ла от излучателя обоим фотоприемникам одинаковы, а также равны коэффициенты усиления усилителей У1 и УЗ, то коэффициент передачи всего узла в целом будет стабилен и приблизительно равен 1 + R2/R1. В таких узлах удобно использовать дифференциальные оптопары КОД301А, КОДЗОЗА.

Оптроны необходимы для межблочной гальванической развязки в электронной и электротехнической аппаратуре. В схеме гальванической развязки двух блоков сигнал с выхода блока 1 передается на вход блока 2 через диодную оптопару VU(см. рис. 1Л9, в). Если в качестве второго блока использована интегральная микросхема с малым входным током, необходимость использования усилителя отпадает, а фотодиод оптопары в этом случае работает в фотогенераторном режиме.

Оптроны и оптоэлектронные микросхемы применяют в устройствах передачи информации между блоками, не имеющими замкнутых электрических связей. Применение оптронов существенно повышает помехоустойчивость каналов связи, устраняет нежелательные взаимодействия развязываемых устройств по цепям питания и общему проводу. Цепи сопряжения с применением оптопар широко используют в вычислительной и измерительной технике, в устройствах автоматики, особенно когда датчики или другие приемные устройства работают в пожаро- и взрывоопасных условиях, где требуется выполнение условий искробезопасности.

Для гальванической развязки электрически несовместимых логических элементов применяют оптоэлектронные переключатели (рис. 7.20, а). Оптоэлектронным переключателем служит микросхема К249ЛП1, в состав которой входят бескорпусная оптопара и стандартный вентиль на логическом элементе И-11Е.

Оптроны упрощают проблемы сопряжения блоков, разнородных по функциональному назначению, характеру питания, на-

Рис. 7.20. Применение оптронов в логических схемах и измерительных

а — развязка между логическими каскадами; б — то же, с транзисторным усилителем; в — развязка между линией датчика и измерительным блоком пример исполнительных механизмов, питаемых от сети переменного тока, и цепей формирования управляющих сигналов, питаемых от низковольтных источников постоянного тока. Они также позволяют решить группу задач, связанных с согласованием цифровых микросхем с разными технологическими видами логических элементов (ТТЛ, ЭСЛ, КМОП и др.). При согласовании элемента типа ТТЛ с МДП с помощью транзисторной оптопары входная и выходная ступени не имеют общих электрических цепей и могут работать в самых различных условиях и режимах (рис. 7.20, б).

Гальваническая развязка необходима во многих практических случаях, например в медицинской диагностической аппаратуре, когда датчик прикреплен к телу человека, а измерительная аппаратура, усиливающая и преобразующая сигналы датчика, подключена к сети. При неисправности измерительной аппаратуры может возникнуть опасность поражения человека электрическим током. Датчик питается от отдельного низковольтного источника питания и подключается к измерительному блоку через развязывающий оптрон или оптопару (рис. 7.20, в).

Оптроны и оптопары необходимы и в других случаях, когда по требованиям повышенной безопасности «незаземленные» входы устройства приходится соединять с «заземляемыми» выходными устройствами. Примерами таких задач являются соединение линии телетайпной связи с дисплеем, устройством «автоматический секретарь», модемом, подключаемым к телефонной линии и т.п. В схеме сопряжения линии связи с дисплеем (рис. 7.21) операционный усилитель обеспечивает требуемый уровень сигналов на входе дисплея. Аналогичную схему можно применить для соединения передающего пульта с линией связи.

Рис. 7.21. Схема применения оптронов в линиях связи при приеме и передаче информации

Рис. 7.22. Принципиальные схемы оптронных коммутаторов на силовых транзисторных ключах:

а — управление током базы; б — управление смещением напряжения

В некоторых случаях слабые сигналы от фотоприемника необходимо передавать на исполнительные механизмы (например, электродвигатели, реле, источники света и т.п.) через оптоэлектронную гальваническую развязку с одновременным усилением. Примерами такой развязки могут служить два варианта наиболее распространенных полупроводниковых коммутаторов на транзисторных оптопарах и транзисторных ключах (рис. 7.22). Ключи коммутируют сигналы постоянного тока. Сигнал, воспринимаемый фототранзистором оптопары, открывает транзисторы VT1 и VT2, а также включает или отключает нагрузку.

Распространенным элементом современной радиоэлектронной аппаратуры является импульсный трансформатор. Его используют в различных импульсных генераторах и усилителях, каналах связи, телевизионных системах. Часто он используется для развязки постоянного и переменного напряжений, высоковольтных и низковольтных напряжений. Габаритные размеры и конструкция трансформатора не совместимы с технологией микроэлектроники. Вместо трансформатора удобно использовать оптрон. В схеме оптронной связи ключей и усилительных блоков на транзисторах (см. рис. 7.19, а) транзистор VT1 управляет световым потоком светодиода оптрона.

Сигнал с фотодиода подается на транзистор VT2 и усиленный передается далее на транзистор или логический переключатель.

Быстродействие и качество воспроизведения фронтов импульсов вполне обеспечивается современными оптронами на основе p — i—«-фотодиодов. По своим частотным характеристикам они значительно превосходят высокочастотные импульсные трансформаторы. Длительности фронта и спада высокочастотных оптронов не превышают нескольких наносекунд, что позволяет передавать информацию со скоростью до 2 Гбит/с.

В настоящее время выпускаются оптоэлектронные микросхемы, включающие в себя несколько оптронов в сочетании с другими микроэлектронными элементами, обеспечивающие выполнение функциональных задач. В частности, они включают в себя импульсные усилители, ключи и цифровые логические элементы. Как правило, они удовлетворяют требованиям совместимости с другими стандартными элементами по уровням входных и выходных сигналов и питающего напряжения.

Современная связь развивается в направлении использования оптоволоконных линий передачи информации. В качестве передающего устройства в них применяют полупроводниковый лазер или светодиод, а в качестве приемника — фотодиод. Особенностью такой системы передачи информации является необходимость использования управляющего транзисторного каскада (драйвера) в цепи лазерного диода (рис. 7.23, а). Он играет двоякую роль: обеспечивает оптимальный токовый режим в состоянии ожидания импульсов и ограничивает предельный ток лазера в момент рабочего импульса. Для повышения быстродействия и качества воспроизведения фронтов импульсов в схеме ключевого каскада цепи лазерного диода широко применяют полевые транзисторы (рис. 7.23, б).

Рис. 7.23. Принципиальные схемы включения полупроводникового лазера и (или) светодиода для оптоволоконной линии связи: а — управлением биполярным транзистором; б — управлением полевым транзистором


Фотоприемный блок также имеет особенности, в частности, фотодиод должен принимать очень слабые сигналы и создавать высокое усиление по напряжению. Он так же должен обеспечивать высокое быстродействие. Как правило, в приемных блоках волоконно-оптических линий связи используют р—/— «-фотодиоды и лавинные фотодиоды, а также высокочувствительные фототранзисторы и фототранзисторныс микросхемы.

Диодный оптрон

Диодные оптроны имеют в качестве источника излучения ИК-диод, а в качестве приѐмника излучения фотодиод. Диодные оптроны могут работать в двух режимах: фотогенераторном и фотодиодном.

Свойства диодных оптронов описываются входными и выходными ВАХ, передаточными характеристиками в фотогенераторном и фотодиодном режимах. Характеристики оптронов типа АОД101А, АОД101Д приведены на рис. 5.3; из них ясны свойства диодных оптронов и их зависимость от температуры окружающей среды.

Выходная характеристика оптрона в фотодиодном режиме аналогична обратной ветви ВАХ диода. Обратный ток не зависит от напряжения, но существенно зависит от температуры окружающей среды. Передаточная характеристика в фотодиодном режиме практически линейна. Выходная ВАХ в фотогенераторном режиме существенно зависит от выходного тока. Фото-ЭДС не превышает контактной разности потенциалов на p-n-переходе фотодиода и равна 0,4…0,8 В.

Рис. 5.7. Характеристики диодной оптопары АОД101А-АОД101Д: выходные в фотодиодном режиме (а); передаточная (б); выходная в фотогенераторном режиме (в); зависимость от температуры: коэффициента передачи (г), сопротивления гальванической развязки (д)

Основные параметры диодных оптронов (в скобках приведены значения этих параметров для оптронов типа АОД107А, АОД107Д):

входное напряжение Uвх – постоянное напряжение на диоде излучателя при эаданном входном токе (при Iвх=10 мА, не более 1.5

максимальный входной ток

постоянного или среднего входного тока (20 мА). Импульсный

выходной обратный (тепловой) ток Iвых.обр – ток, протекающий в выходной цепи диодного оптрона при отсутствии входного тока и заданном напряжении на выходе (меньше 5 мкА);

время нарастания tнр и спада tсп выходного импульса – интервал времени, в течение которого выходной сигнал изменяется соответственно от 0,1 до 0,5 и от 0,9 до 0,5 максимального значения (изм. Iнр=tсп≤500 нС);

— статический коэффициент передачи по току (KI) –

отношение разницы выходного тока и выходного теплового тока к входному току, выраженное в процентах (для АОД107А KI=5%, Основным недостатком диодных оптронов является малый коэффициент передачи KI. Для устранения этого недостатка на выходе оптрона включают, например, транзисторный усилитель (рис. 5.4).

Рис. 5.8. Фотодиодный оптрон с усилителем

Материал взят из книги Полупроводниковые приборы в системах транспортной телематики (Асмолов, Г.И.)

Убедитесь в правильном выборе тока светодиода вашего оптоизолятора

Texas Instruments TL431 UCC2897A

Brian King, Texas Instruments

В изолированных источниках питания для передачи сигнала обратной связи через изолирующий барьер используются оптроны. Внутри оптрона размещаются светодиод и фотодетектор. Ток, идущий через светодиод, приводит к появлению пропорционального тока в фотодетекторе. Коэффициент передачи тока (current transfer ratio – CTR) определяется как отношение токов фотодетектора и светодиода и обычно имеет очень большой разброс. Конструируя цепь изолированной обратной связи, необходимо учитывать разброс параметров оптоизолятора и всех других компонентов, определяющих большой коэффициент усиления сигнала. Пренебрежение этой задачей может легко привести к возврату после запуска вашего продукта в массовое производство.

Наиболее распространенная схема изолированной цепи обратной связи показана на Рисунке 1. Микросхема TL431 содержит усилитель ошибки и источник опорного напряжения. Выходное напряжение устанавливается резистивным делителем R3, R5 и внутренним опорным источником микросхемы TL431. Изменяя напряжение на входе обратной связи контроллера ШИМ, цепь обратной связи управляет мощностью, поступающей на выход источника питания. При смещении VOUT вверх катод TL431 отдает оптоизолятору больше тока, и напряжение обратной связи VFB становится ниже. Когда VOUT смещается вниз, катодный ток TL431 уменьшается, и напряжение обратной связи увеличивается.

Рисунок 1. Такая схема формирования сигнала обратной связи чаще
всего используется в изолированных источниках питания.

Правильно сконструированная схема должна быть способна гарантированно управлять входом обратной связи контроллера во всем рабочем динамическом диапазоне при наихудшем сочетании возможных допусков и разбросов параметров всех главных компонентов.

Первым делом необходимо определить рабочий динамический диапазон напряжения на выводе обратной связи контроллера. Все контроллеры отличаются друг от друга, поэтому в каждом случае потребуется обращение к справочной документации. В качестве примера предположим, что для управления прямоходовым преобразователем с активным ограничением мы используем микросхему ШИМ-контроллера UCC2897A. Глядя в раздел «Подробное описание выводов» технического описания UCC2897A, мы видим, что при напряжении 2.5 В на входе обратной связи коэффициент заполнения ШИМ равен нулю, а при напряжении 4.5 В коэффициент заполнения максимален. UCC2897A содержит также источник опорного напряжения 5 В (вывод VREF), к которому можно подключить нагрузочный резистор R6 фототранзистора оптрона, изображенного на Рисунке 1. Минимальное значение опорного напряжения равно 4.75 В, а максимальное – 5.25 В. Рассчитать требуемый диапазон токов транзистора оптрона, в предположении, что сопротивление резистора R6 равно 1 кОм ±1%, можно с помощью формул (1) и (2):

(1)
(2)

Из этих расчетов следует, что схема должна быть способна пропускать через R6 ток от 0.25 мА до 2.78 мА. При выборе соответствующего сопротивления резистора R2 напряжение на катоде TL431 может достигать достаточно высокого уровня, при котором поступление тока в светодиод прекратится. Таким образом, минимальный ток R6 гарантируется конструкцией схемы, и остается побеспокоиться о том, как обеспечить максимальный ток R6.

Рисунок 2. Зависимость CTR оптоизолятора от температуры.

На втором шаге необходимо рассчитать CTR оптрона для наихудшего случая. Оптроны с цифрами «817» в обозначении типа предлагаются многими производителями. Все они совместимы друг с другом по выводам и отличаются только префиксами. В Таблице 1 в качестве примера приведены диапазоны CTR для различных групп оптронов 817, маркируемых однобуквенными суффиксами в конце обозначения. Приведенные в таблице данные справедливы при температуре 25 °C для прямого тока светодиода 5 мА. Показанные на Рисунках 2 и 3 графики зависимостей CTR от окружающей температуры и тока светодиода взяты из справочной документации.

Рисунок 3. Зависимость CTR оптоизолятора
от тока светодиода.

Предположим, что ваш источник питания должен работать в диапазоне температур от –40 °C до 85 °C. На основании Рисунка 2 определяем, что для температуры 85 °C минимальное значение CTR нужно умножить приблизительно на 0.7. Если вы выбрали оптрон 817 группы «A», минимальное значение CTR теперь будет равно всего 56%. Деление результата, полученного из формулы (1), на 0.56 показывает, что без учета зависимости CTR от тока, максимальный ток, который может потребоваться светодиоду, составляет, по крайней мере, 4.96 мА. Впрочем, как видно из Рисунка 3, пологий характер графика при 4.96 мА позволяет этой зависимостью пренебречь.

Таблица 1. Значения CTR для различных групп
оптоизоляторов 817
Суффикс
в обозначении
прибора
Минимальный
CTR
Максимальный
CTR
A 80% 160%
B 130% 260%
C 200% 400%
D 300% 600%
Нет 80% 600%

Третий, и последний шаг – выбор такого значения сопротивления R1, чтобы тока TL431 при любых условиях хватало для управления оптроном. Минимальное напряжение на катоде TL431 равно 2.5 В, а прямое падение напряжения на светодиоде оптрона может достигать 1 В. Используя эти параметры, рассчитаем максимальное значение R1 с помощью формулы (3):

При использовании резистора R1 с сопротивлением более 1.7 кОм выходного тока TL431 для поддержания режима стабилизации может оказаться недостаточно. Тогда выходное напряжение будет продолжать рост до тех пор, пока светодиод оптрона не получит необходимое количество тока. Это приведет к перенапряжению на выходе, и, скорее всего, произойдет при более высоких температурах.

Проблемы разброса параметров часто упускают из виду на этапе проектирования. Источники питания из опытной партии легко могут пройти выходной контроль, а неприятности возникнут позже, когда потребители начнут возвращать продукцию. Следуя описанной здесь простой процедуре расчета, вы можете сэкономить деньги своей компании и не огорчить ее клиентов.

Материалы по теме

Перевод: AlexAAN по заказу РадиоЛоцман

Диодные оптопары

Диодные оптопары (рисунок 2 а) в большой степени, чем какие-либо: другие приборы, характеризуют уровень оптронной техники. Подключение к диодной оптопаре тех или иных усилительных элементов, весьма полезное и удобное, не может, тем не менее, дать выигрыша ни по энергетике, ни по предельным частотам.

Каждый электрик должен знать:  Учебный фильм Инструктаж по электробезопасности. Присвоение 1 Группы по электробезопасности

В диодных оптопарах фотоприемником служит фотодиод на основе кремния, а источником является инфракрасный диод, излучающий на длине волны около 1 мкм. Поскольку фотодиоды могут работать как в диодном, так и фотогенераторном режиме, то выходная цепь при необходимости может работать автономно — без источника питания (например, подавать сигнал непосредственно на измерительную головку, скажем, стрелочный микроамперметр или милливольтметр). Диодный оптрон представляет набор из двух оптопар в одном корпусе, что создает определенные удобства при реализации на них гальванических развязок в электротехнической аппаратуре. Коэффициент передачи по току порядка 1% типичен для диодных оптопар.

Существенный рост коэффициента передачи по току достигается в диодно-транзисторных оптопарах, у которых приемник — фотодиод — выполнен интегрально на одной пластине с n-р-n-транзистором. Они как бы перекидывают мостик к другому типу оптопар — транзисторным. Рассмотрение процессов преобразования энергии в оптроне требует учитывать квантовую природу света. Известно, что электромагнитное излучение может быть представлено в виде потока частиц — квантов (фотонов), энергия каждого из которых определяется соотношением:

где h — постоянная Планка;

с — скорость света в вакууме;

n — показатель преломления полупроводника;

n, л — частота колебаний и длина волны оптического излучения.

Рисунок 2 — Условные обозначения оптопар

Если плотность потока квантов (т. е. число квантов, пролетающих через единицу площади в единицу времени) равна Nф, то полная удельная мощность излучения составит:

и, как видно из соотношения 1, при заданном Nф она тем больше, чем короче длина волны излучения. Поскольку на практике заданной бывает Pф (энергетическая облученность фотоприемника), то представляется полезным следующее соотношение:

Механизм инжекционной люминесценции в светодиоде состоит из трех основных процессов: излучательная (и безызлучательная) рекомбинация в полупроводниках, инжекция избыточных неосновных носителей заряда в базу светодиода и вывод излучения из области генерации. [7]

Рекомбинация носителей заряда в полупроводнике определяется, прежде всего, его зонной диаграммой, наличием и природой примесей и дефектов, степенью нарушения равновесного состояния. Основные материалы оптронных излучателей относятся к прямозонным полупроводникам, т.е. к таким, в которых разрешенными являются прямые оптические переходы зона-зона (рисунок 3). Каждый акт рекомбинации носителя заряда по этой схеме сопровождается излучением кванта, длина волны которого в соответствии с законом сохранения энергии определяется соотношением:

Следует отметить, что имеются и конкурирующие безызлучательные — механизмы рекомбинации. К числу важнейших из них относятся:

  • 1) рекомбинация на глубоких центрах. Электрон может переходить в валентную зону не прямо, а через те или иные центры рекомбинации, образующие разрешенные энергетические уровни в запрещенной зоне (уровень Et на рисунке 3);
  • 2) оже-рекомбинация (или ударная). При очень высоких концентрациях свободных носителей заряда в полупроводнике растет вероятность столкновения трех тел, энергия рекомбинирующей электронно-дырочной пары при этом отдается третьему свободному носителю в форме кинетической энергии, которую он постепенно растрачивает при соударениях с решеткой.

Рисунок 3 — Энергетическая диаграмма прямозонного полупроводника

Создание избыточной концентрации свободных носителей в активной (излучающей) области кристалла светодиода осуществляется путем инжекции их р-n-переходом, смещенным в прямом направлении.

Количественно эффективность вывода оптической энергии из кристалла характеризуется коэффициентом вывода Копт определяемым отношением мощности излучения, выходящего в нужном направлении, к мощности излучения, генерируемой внутри кристалла. Всегда выполняется условие 0Копт100%. Интегральным показателем излучательной способности светодиода является величина внешнего квантового выхода ?ext, а — внутренний квантовый выход излучения. Из сказанного ясно, что

Перейдем к приемному блоку. Принцип действия используемых в оптронах фотоприемников основан на внутреннем фотоэффекте, заключающемся в отрыве электронов от атомов внутри тела под действием электромагнитного (оптического) излучения. [2]

Кванты света, поглощаясь в кристалле, могут вызывать отрыв электронов от атомов, как самого полупроводника, так и примеси. В соответствии с этим говорят о собственном (беспримесном) и примесном поглощении (фотоэффекте). Поскольку концентрация примесных атомов мала, фотоэлектрические эффекты, основанные на собственном поглощении, всегда существеннее, чем основанные на примесном. Все используемые в оптронах фотоприемники «работают» на беспримесном фотоэффекте. Для того, чтобы квант света вызывал отрыв электрона от атома, необходимо выполнение очевидных энергетических соотношений:

Таким образом, собственный фотоэффект может иметь место лишь при воздействии на полупроводник излучения с длиной волны, меньшей некоторого значения лгр:

Второе равенство в формуле 3 справедливо, если лгр выражено в микрометрах, а ширина запрещенной зоны полупроводника Eg — в электрон-вольтах. Величину лгр называют длинноволновой или «красной» границей спектральной чувствительности материала. [6]

Интенсивность протекания фотоэффекта (в той спектральной области, где он может существовать) зависит от квантового выхода, определяемого отношением числа генерированных пар электрон-дырка к числу поглощенных фотонов.

Образование свободных носителей заряда под действием облучения проявляется в полупроводнике в виде двух фотоэлектрических эффектов: фотопроводимости (возрастание проводимости образца при засветке) и фотовольтаического (возникновение фото-ЭДС на р-n-переходе или другом виде потенциального барьера в полупроводнике при освещении). Оба эффекта используются в практике конструирования фотоприемников; для оптронов предпочтительным и доминирующим является использование фото-ЭДС-эффекта.

Основные параметры и характеристики фотоприемников (безотносительно к физической природе и конструкции этих приборов) можно подразделить на несколько групп, к оптическим характеристикам относятся: площадь фоточувствительной поверхности, материал, размеры и конфигурация оптического окна; максимальный и минимальный уровни мощности излучения.

К электрооптическим: фоточувствительность, степень однородности распределения чувствительности по фотоприемной площадке; спектральная плотность чувствительности (зависимость параметра, характеризующего чувствительность, от длины волны); собственные шумы фотоприемника и их зависимость от уровня засветки и диапазона рабочих частот; разрешающее время (быстродействие); коэффициент качества (комбинированный показатель, позволяющий сопоставлять различные фотоприемники друг с другом); показатель линейности; динамический диапазон.

Как элемент электрической цепи фотоприемник характеризуется, прежде всего, параметрами его эквивалентной схемы, требованиями к рабочим режимам, наличием (или отсутствием) встроенного механизма усиления, видом и формой выходного сигнала.

В зависимости от характера выходного сигнала (напряжение, ток) говорят о вольтовой или токовой фоточувствительности приемника. Линейность (или нелинейность) фотоприемника определяется значением показателя степени в уравнении, связывающем выходной сигнал с n входным: Uвых (или Iвых)

Важнейшим параметром фотоприемника, определяющим порог его чувствительности, является удельная обнаружительная способность D. При известном значении D порог чувствительности (минимальная фиксируемая мощность излучения) определяется как:

где А — площадь фоточувствительной площадки; Д — диапазон рабочих частот усилителя фотосигналов. Иными словами, параметр D играет роль коэффициента качества фотоприемника.

В применении к оптронам не все перечисленные характеристики оказываются одинаково важными. Как правило, фотоприемники в оптронах работают при облученностях, очень далеких от пороговых, поэтому использование параметров чувствительности и удельной обнаружительной способности оказывается практически бесполезным.

Рисунок 4 — Схемы измерения и семейства вольтамперных характеристик в фотодиодном (а) и фотовентильном (б) режимах работы диода

При работе в фотодиодном режиме (рисунок 4 а) приложенное извне напряжение заставляет подвижные дырки и электроны уходить от р-n-перехода; при этом картина распределения поля в кристалле оказывается резко различной для двух рассматриваемых структур. [9]

Световое излучение, поглощаясь в базовой области диода, генерирует электронно-дырочные пары, которые диффундируют к р-n-переходу, разделяются им и вызывают появление дополнительного тока во внешней цепи. В р-i-n-диодах это разделение происходит в поле i-oблaсти и вместо процесса диффузии имеет место дрейф носителей заряда под влиянием электрического поля. Каждая генерированная электронно-дырочная пара, прошедшая через р-n-переход, вызывает прохождение во внешней цепи заряда, равного заряду электрона. Чем больше облученность диода, тем больше фототок. Фототок протекает и при смещении диода в прямом направлении (рисунок 4 а), однако уже при небольших напряжениях он оказывается намного меньше прямого тока, поэтому его выделение оказывается затруднительным.

Если освещать фотодиод без приложения к нему внешнего смещения, то процесс разделения генерируемых электронов и дырок будет протекать благодаря действию собственного встроенного поля р-n-перехода. При этом дырки будут перетекать в р-область и частично компенсировать встроенное поле р-n-перехода. Создается некоторое новое равновесное состояние, при котором на внешних выводах диода возникает фото-ЭДС. Если замкнуть освещенный фотодиод на некоторую нагрузку, то он будет отдавать в нее полезную электрическую мощность Рэ.

Характеристическими точками вольтамперных характеристик диода, работающего в таком — фотовентильном режиме, являются ЭДС холостого хода Uxx и ток короткого замыкания Iкз (рисунок 4 б).

Схематически фотодиод в вентильном режиме работает как своеобразный вторичный источник питания, поэтому его определяющим параметром является КПД преобразования световой энергии в электрическую:

В фотовентильном режиме действует важный класс фотоэлектрических приборов — солнечные батареи.

Исследование интегральных оптопар

Изучить особенности работы и методику измерения параметров интегральных диодных оптопар.

4.2 Подготовка к работе.

4.2.1 Изучить следующие вопросы курса по конспекту лекций к рекомендованной литературе:

-входные и выходные параметры оптопар;


-передаточные параметры и параметры изоляции оптопар;

-режимы эксплуатации диодных оптопар;

-режимы эксплуатации транзисторных оптопар;

-системы обозначения оптопар.

4.2.2 Ответить на следующие контрольные вопросы:

-объясните устройство диодного оптрона;

-для каких цепей используются диодные оптроны;

-объясните причины инерционности диодных оптронов;

-объясните передаточную характеристику оптрона;

-приведите условное графическое обозначение различных типов оптопар;

-приведите и расшифруйте систему обозначений различных типов оптопар.

Тугов Н.Н., Глебов Б.А., Чарыков Н.А. Полупроводниковые приборы: Учебник для студентов Вузов — М.: Энергоатомиздат, 1990 — с. 429-446.

Ефимов И.Е., Козырь И.Я., Горбунов Ю.И. Учебное пособие для Вузов. Издание 2-ое, переработанное и дополненное. — М.: Высшая школа,1987 — с. 374-383.

Батушев В.А. Электронные приборы: Учебник для Вузов — 2-ое издание, переработанное и дополненное — М.: Высшая школа, 1980. -с. 365-371.

Голомедов А.В. Справочник. Полупроводниковые приборы — М.: Радио и связь, 1989.

4.3 Самостоятельная подготовка к работе

При изучении литературы следует иметь в виду, что оптопары являются основными структурными элементами оптоэлектроники — одного из современных направлений функциональной микроэлектроники.

Простейшим диодный оптрон состоит из трех элементов (рисунок 1): светоизлучателя 1, световода 2 и фотоприемника 3, заключенных в светонепроницаемый герметический корпус. При подаче на вход электрического сигнала возбуждается светоизлучатель. Световой поток по световоду попадает в фотоприемник, в котором вырабатывается выходной электрический сигнал.

Существенной особенностью оптрона является то, что его элементы связаны оптически, а электрический вход и выход изолированы друг от друга. Благодаря этому легко обеспечивается соединение высоковольтных и низковольтных, а так же высокочастотных и низкочастотных цепей. Условное обозначение диодного оптрона приведено на рисунке 4.2, а его конструкция на рисунке 3, где 1, 2 – p- и n-области фотодиода, 3, 4 – n- и p-области светодиода, 5 — световод на основе селенового стекла, 6, 7- контакты светодиода, 8, 9 — контакты фотодиода.

Рисунок 1 — Простейший диодный оптрон Рисунок 2- Условное обозначение диодного оптрона

В качестве светоизлучателей оптронов получили распространение инжекционные светодиоды, в которых испускание света определяется механизмом рекомбинации электронов и дырок.

Рисунок 3 — Конструкция диодного оптрона

Физическое явление, лежащее в основе принципа действия светодиода, называется электролюминесценцией. Его сущность заключается в том, что в некоторых полупроводниковых материалах процесс рекомбинации электронов и дырок сопровождается излучением квантов света. Для преобразования световых сигналов в электрические в основном используются фотодиоды (а так же фоторезисторы, фототранзисторы и фототиристоры). Фотодиод представляет собой обычный n-p переход, чаще всего на основе кремния или германия, обратный ток которого определяется скоростью генерации носителей заряда, порождаемых действие падающего света. Данное явление называется внутренним фотоэффектом.

Следует понимать, что существует два режима использования диодных оптронов: с преобразованием световой энергии излучателя в электрическую (фотогенераторный режим) и с внешним питанием. Величина фото-ЭДС зависит от степени облучения фотодиода (она пропорциональна величине входного сигнала). Типичные выходные (нагрузочные) характеристики диодных оптопар в фотогенераторном режиме показаны на рисунке 4. Необходимо иметь в виду, что в фотодиодном режиме на фотодиод оптрона падают внешнее обратное смещение. При подаче на оптрон входного сигнала светодиод облучает фотодиод и через p-n переход начинает протекать фототок. Характеристика, отражающая зависимость выходного тока от входного, называется передаточной. Типичная передаточная характеристика диодного оптрона приведена на рисунке 5. Здесь же показана и характеристика зависимости коэффициента передачи по току КI от Iвх. Коэффициент передачи по току КI — отношение приращения выходного тока ко входному.

Рисунок 4 — Выходные характеристики диодных оптопар Рисунок 5 — Простейшая характеристика диодного оптрона

4.4 Лабораторное задание

Перед выполнением работ выписать из таблице 1 предельные значения параметров исследуемой оптопары, а во время эксперимента не допускать напряжений, превышающих допустимые значения. Особое внимание обратите на то, что светодиоды имеют малые допустимые прямые и обратные напряжения 1,5 -2 В.

Таблица 1 — Электрические параметры.

Тип Uвх. обр. max, В Iвх. пр. max, мА Iвых. обр. max, мкА Uвых. обр. max, В
А0Д101А 3,5

4.4.1 Собрать схему в соответствии с рисунком 6.

Рисунок 6 — Схема исследования диодной оптопары

4.4.2 Исследовать зависимость входного тока диодного оптрона от входного напряжения (в области прямых напряжений). Входной ток и напряжение измеряются приборами PА1 и PV1, соответственно. Входная характеристика Iвх=f(Uвх)/Uвых=0 снимается при токах, не превышающих 15мА.

4.4.3 Снять семейство нагрузочных передаточных характеристик для трех значений сопротивления нагрузки Uвых.обр.=f(Iвх) при Rн=1 кОм, 24кОм, 51кОм.

4.4.4. Снять передаточную характеристику оптрона Iвых=f(Iвх) при U вых.обр.= -10 B, Rн=0. Определить коэффициент передачи по току при Iвх=6мА.

4.4.5 Снять семейство нагрузочных выходных характеристик оптрона при обратном напряжении на фотодиоде для трех значений входного тока

4.4.6 Снять семейство нагрузочных выходных характеристик при прямом напряжении на фотодиоде для трех значений входного тока

Для прямого включения фотодиода необходимо изменить полярность источника питания G2.

4.5 Содержание отчета

-схему измерительной установки;

-таблицы и графики полученных зависимостей;

Оптроны и их применение (стр. 5 из 6)

Рис. 3.2. Условные обозначения оптопар.

Параметрами гальванической развязки. Оптопар являются: максимально допустимое пиковое напряжение между входом и выходом Uразв п max ; максимально допустимое напряжение между входом и выходом Uразв max ; сопротивление гальванической развязки Rразв ; проходная емкость Cразв ; максимально допустимая скорость изменения напряжения между входом в выходом (dUразв /dt)max . Важнейшим является параметр Uразв п max . Именно он определяет электрическую прочность оптопары и ее возможности как элемента гальванической развязки.

Рассмотренные параметры оптопар полностью или с некоторыми изменениями используются и для описания оптоэлектронных интегральных микросхем.

Диодные оптопары (рис. 3.2,а) в большой степени, чем какие-либо: другие приборы, характеризуют уровень оптронной техники. По величине Кi можно судить о достигнутых КПД преобразования энергии в оптроне; значения временных параметров позволяют определить предельные скорости распространения информации. Подключение к диодной оптопаре тех или иных усилительных элементов, весьма полезное и удобное, не может тем не менее дать выигрыша ни по энергетике, ни по предельным частотам.

3.3. ТРАНЗИСТОРНЫЕ И ТИРИСТОРНЫЕ ОПТОПАРЫ

Транзисторные оптопары (рис. 3.2, c) рядом своих свойств выгодно отличаются от других видов оптронов. Это прежде всего схемотехническая гибкость, проявляющаяся в том, что коллекторным током можно управлять как по цепи светодиода (оптически), так и по базовой цепи (электрически), а также в том, что выходная цепь может работать и в линейном и в ключевом режиме. Механизм внутреннего усиления обеспечивает получение больших значений коэффициента передачи тока Кi , так что последующие усилительные каскады не всегда необходимы. Важно, что при этом инерционность оптопары не очень велика и для многих случаев вполне допустима. Выходные токи фототранзисторов значительно выше, чем, например, у фотодиодов, что делает их пригодными для коммутации широкого круга электрических цепей. Наконец, следует отметить, что все это достигается при относительной технологической простоте транзисторных оптопар.

Тиристорные оптопары (рис. 3.2, b) наиболее перспективны для коммутации сильноточных высоковольтных цепей: по сочетанию мощности, коммутируемой в нагрузке, и быстродействию они явно предпочтительнее Т 2 -оптопар. Оптопары типа АОУ103 предназначены для использования в качестве бесконтактных ключевых элементов в различных радиоэлектронных схемах: в цепях управления, усилителях мощности, формирователях импульсов и т. п.

3.4. РЕЗИСТОРНЫЕ ОПТОПАРЫ

Резисторные оптопары (рис. 3.2, d) принципиально отличаются от всех других видов оптопар физическими и конструктивно-технологическими особенностями, а также составом и значениями параметров.

В основе принципа действия фоторезистора лежит эффект фотопроводимости, т. е. изменения сопротивления полупроводника при освещении.

3.5. ДИФФЕРЕНЦИАЛЬНЫЕ ОПТОПАРЫ ДЛЯ ПЕРЕДАЧИ АНАЛОГОВОГО СИГНАЛА

Весь изложенный выше материал касается вопросов передачи цифровой информации по гальванически развязанной цепи. Во всех случаях, когда говорилось о линейности, об аналоговых сигналах, речь шла о виде выходной характеристики оптопары. Во всех случаях управление по каналу излучатель — фотоприемник не описывалось линейной зависимостью. Важную задачу представляет собой передача аналоговой информации с помощью оптопары, т.е., обеспечение линейности передаточной характеристики вход — выход [36]. Лишь при наличии таких оптопар становится возможным непосредственное распространение аналоговой информации по гальванически развязанным цепям без преобразования ее к цифровой форме (последовательности импульсов).

Сопоставление свойств различных оптопар по параметрам, важным с точки зрения передачи аналоговых сигналов приводит к заключению, что если эта задача и может быть решена, то только с помощью диодных оптопар, обладающих хорошими частотными и шумовыми характеристиками. Сложность проблемы заключается прежде всего в узком диапазоне линейности передаточной характеристики и степени этой линейности у диодных оптопар.

Следует отметить, что в создании приборов с гальванической развязкой, пригодных для передачи аналоговых сигналов, сделаны лишь первые шаги и можно ожидать дальнейшего прогресса.

3.6. ОПТОЭЛЕКТРОННЫЕ МИКРОСХЕМЫ И ДРУГИЕ ПРИБОРЫ ОПТРОННОГО ТИПА

Оптоэлектронные микросхемы представляют собой один из наиболее широко применяемых, развивающихся, перспективных классов изделий оптронной техники. Это обусловлено полной электрической и конструктивной совместимостью оптоэлектронных микросхем с традиционными микросхемами, а также их более широкими по сравнению с элементарными оптронами функциональными возможностями. Как и среди обычных микросхем, наиболее широкое распространение получили переключательные оптоэлектронные микросхемы.

Специальные виды оптронов резко отличаются от традиционных оптопар и оптоэлектронных микросхем. К ним относятся прежде всего оптроны с открытым оптическим каналом. В конструкции этих приборов между излучателем и фотоприемником имеется воздушный зазор, так что, помещая в него те или иные механические преграды, можно управлять световым потоком и тем самым выходным сигналом оптрона. Таким образом, оптроны с открытым оптическим каналом выступают в качестве оптоэлектронных датчиков, фиксирующих наличие (или отсутствие) предметов, состояние их поверхности, скорость перемещения или поворота и т. п.

4. СФЕРЫ ПРИМЕНЕНИЯ ОПТРОНОВ И ОПТРОННЫХ МИКРОСХЕМ

Перспективные направления развития н применения оптронной техники в значительной степени определились. Оптроны и оптронные микросхемы эффективно применяются для передачи информации между устройствами, не имеющими замкнутых электрических связей. Традиционно сильными остаются позиции оптоэлектронных приборов в технике получения и отображения информации. Самостоятельное значение в этом направлении имеют оптронные датчики, предназначенные для контроля процессов и объектов, весьма различных по природе и назначении. Заметно прогрессирует функциональная оптронная микросхемотехника, ориентированная на выполнение разнообразных операций, связанных с преобразованием, накоплением и хранением информации. Эффективной и полезной оказывается замена громоздких, недолговечных и нетехнологичных (с позиций микроэлектроники) электромеханических изделий (трансформаторов, потенциометров, реле) оптоэлектронными приборами и устройствами. Достаточно специфическим, но во многих случаях оправданным и полезным является использование оптронных элементов в энергетических целях.

4.1. ПЕРЕДАЧА ИНФОРМАЦИИ

Рис 4.1. Схема межблочной гальванической развязки.

При передаче информации оптроны используются в качестве элементов связи, и, как правило, не несут самостоятельной функциональной нагрузки. Их применение позволяет осуществить весьма эффективную гальваническую развязку устройств управления и нагрузки (рис 4.1), действующих в различных электрических условиях и режимах. С введением оптронов резко повышается помехоустойчивость каналов связи; практически устраняются “паразитные” взаимодействия по цепям “земли” и питания.

Интерес представляет также рациональное и надежное согласование цифровых интегральных устройств с разнородной элементной базой (ТТЛ, ЭСЛ, И 2 Л , КМОП и т. п).

Рис 4.2. Схема сопряжения ТТЛ и МДП элементов по оптическому каналу.

Схема согласования элемента транзисторно-транзисторной логики (ТТЛ) с интегральным устройством на МДП-транзисторах построена на транзисторном оптроне (рис. 4.2). В конкретном варианте: E1 = Е2 =5 В, Е3 = 15 В, R1 = 820 Ом, R2 = 24 кОм — светодиод оптрона возбуждается током (5 мА), достаточным для насыщения транзистора и уверенного управления устройством на МДП-транзисторах.

Активно используются оптические связи в телефонных устройствах и системах. С помощью оптронов технически несложными средствами удается подключать к телефонным линиям микроэлектронные устройства, предназначенные для вызова, индикации, контроля и других целей.

Введение оптических связей в электронную измерительную аппаратуру, кроме полезной во многих отношениях гальванической развязки исследуемого объекта и измерительного прибора, позволяет также резко уменьшить влияние помех, действующих по цепям заземления и питания.

Рис 4.3. Схема коммутации нагрузки переменного тока.

Значительный интерес представляют возможности и опыт использования оптоэлектронных приборов и устройств в биомедицинской аппаратуре. Оптроны позволяют надежно изолировать больного от действия высоких напряжений, имеющихся, например, в электрокардиографических приборах.

Бесконтактное управление мощными, высоковольтными цепями по оптическим каналам весьма удобно и безопасно в сложных технических режимах, характерных для многих устройств и комплексов промышленной электроники. В этой области сильны позиции тиристорных оптронов (рис 4.3).

ru_radio_electr

Рождённый с паяльником

Для тех, кто ищет

Скорость работы оптопары.

Есть задача — считать предметы открытой оптопарой.
Устройство автономное, поэтому есть высокие требования к потреблению.

Если светить светодиодом постоянно, то слишком мало будет работать.
Я решил светить короткими импульсами с последующей апаратно-программной обработкой.
Импульс — 31,25мксек, частота повторения — 1кГц (экономия — 1/32 тока).

Оптопара на макете — GP1S55T, схема из даташита.

Но проблема в том, что сигнал с оптопары размазывается даже при импульсе 500мксек, что приводит к невозможности обработки.

Внешние ИС как решение не подходят, поскольку бюджет не резиновый.
МК — не Атмел и не PIC, поэтому решения на них также не подойдут.

Как посоветуете настроить токи/сопротивления в схеме подключения оптопары ?

Добавить комментарий