Резонанс токов


СОДЕРЖАНИЕ:

Вопрос 4. Резонанс напряжений и резонанс токов.

Подключим к RLC-контуру переменное синусоидальное напряжение

U = Um cosωt. В цепи переменного тока, с последовательно включенными L, C и R, полное сопротивление контура имеет минимальное значение Zmin = R, если ωL = 1/ωC. В этом случае падения напряжения на индуктивности и конденсаторе равны, а их фазы противоположны, т.е. (UL)рез опережает (UС)рез по фазе на π, так что (UС)рез + (UL)рез = 0. Ток в цепи принимает максимальные значения (возможные при данном Um), определяемые минимальным сопротивлением, что свидетельствует о наличии резонансной частоты ωрез для тока, значение которой определяется из условия ωL = 1/ωC, откуда

т.е. резонансная частота для силы тока равна циклической частоте собственных колебаний в контуре. Напряжение UR на активном сопротивлении R в этом случае равно внешнему напряжению, приложенному к цепи (UR =U). При этом сила тока и внешнее напряжение совпадают по фазе.

Явление резкого возрастания амплитуды силы тока в контуре с последовательно включенными L, C, R и U при ωрез = 1/ = ω называется резонансом напряжений (последовательным резонансом).

Частота ωрез не зависит от активного сопротивления контура R. Δω = ω2ω1 – полуширина резонансной кривой. Частоты ω1 и ω2 соответствуют амплитуде силы тока в контуре, которая в раз меньше максимально возможной амплитуды тока.

Поскольку в случае резонанса напряжений (UL)рез = (UС)рез, то подставив сюда значения резонансной частоты (2.27), амплитуды напряжений на катушке индуктивности и конденсаторе (2.25), (2.26), а также значение добротности контура (2. 16) получим

где Q – добротность контура. Добротность контура определяет остроту резонансных кривых. Так как Q обычных колебательных контуров больше единицы, то (UL)рез = (UС)рез > U, т.е. добротность показывает, во сколько раз напряжение на конденсаторе (или катушке) больше напряжения (э.д.с.), приложенного к цепи. Поэтому явление резонанса напряжений используется в технике для усиления колебания напряжения какой-либо определенной частоты, или выделения из многих сигналов одного колебания определенной частоты ν.

Можно показать, что относительная полуширина резонансной кривой связана с добротностью контура следующим соотношением

При резонансной частоте сдвиг фаз φ между током и напряжением обращается в нуль (φ=0), т.е. изменения тока и напряжения происходят синфазно колебаниям внешнего напряжения (внешней э.д.с.):

При ω → 0 резонансные кривые сходятся в одной точке с ординатой UCm = Um – напряжению, возникающему на конденсаторе при подключении его к источнику постоянного напряжения Um. Максимум при резонансе получается тем выше и острее, чем меньше β = R/2L, т.е. чем меньше активное сопротивление и больше индуктивность контура.

Резонанс токов. Рассмотрим цепь переменного электрического тока, содержащую параллельно включенные L и С, рис.2.8. Пусть активное сопротивление R = 0.

Если U = Umcos(ωt), то сила тока, текущего через емкость С, равна

Начальная фаза φ1 определяется условием tg φ1 = – ∞, т.е. φ1 = (2n+3/2)π, n = 1, 2, 3, . , а амплитуда тока (при условии L = 0 и R = 0) равна

Сила тока, текущего через индуктивность L,

а начальная фаза φ2 , определяемая из условия tg φ2 =+∞, равна φ2 = (2n+1/2)π, n=1, 2, 3, . Амплитуда тока (при R = 0 и С = ∞ – условие отсутствия емкости в цепи) равна

Cравнивая выражения (2.30) и (2.31) видим, что φ2 — φ1 = π, т.е. токи в параллельных ветвях электрической цепи противоположны по фазе. Амплитуда тока во внешней (неразветвленной) цепи согласно первому правилу Кирхгофа равна

Явление резкого уменьшения амплитуды силы тока во внешней цепи, питающей параллельно включенные конденсатор С и катушку индуктивности L, при приближении частоты ω приложенного напряжения к резонансной частоте ωрез называется резонансом токов (параллельным резонансом).

Амплитуда тока Im = 0, так как считали, что активное сопротивление контура R = 0. При R ≠ 0 разность фаз φ2φ1 ≠ π, поэтому Im ≠ 0 и сила тока I в подводящих проводах примет наименьшее возможное значение, обусловленное только током через резистор. При резонансе токов силы токов I1 и I2 могут значительно превышать силу тока I во внешней цепи (рис. 2.9).

Амплитуда тока максимальна при wрез=w. Чем больше коэффициент затухания β = R/2L,тем ниже максимум резонансной кривой.

Рассмотренный параллельный контур оказывает большое сопротивление переменному току с частотой, близкой к резонансной. Поэтому его свойства используются в резонансных усилителях, позволяющих выделить одно колебание определенной частоты из сигнала сложной формы.

Резонансные усилители применяются для усиления сигналов, как на высоких, так и на низких частотах. Они используются в селективных вольтметрах, анализаторах спектра, синтезаторах частоты, измерителях нелинейных искажений и многих других радиоизмерительных и телекоммуникационных приборах. Кроме того, такие усилители являются одним из важнейших каскадов радиопередающих и радиоприёмных устройств.

В резонансных усилителях узкая полоса пропускания обеспечивается использованием в качестве нагрузки выходной цепи транзистора параллельного LC-контура, обладающего частотно-избирательными свойствами.

Резонансные усилители подразделяются на одноконтурные, двухконтурные, многоконтурные, усилители с пьезоэлектрическими и электромеханическими фильтрами, усилители с резонансными линиями и объёмными резонаторами. На рисунке 2.10 представлена схема двухконтурного резонансного усилителя а) и его амплитудно-частотная характеристика

б) (АХЧ). Вида АЧХ для этого усилителя близок к прямоугольному.

R1, R2, R3 – резисторы, C1, C2, C3, C4, C5 – конденсаторы, L1, L2 – катушки индукцивности,VT – транзистор, Uвх – входное напряжение, Uвых – выходное напряжение, E – электродвижущая сила источника, K – коэффициент усиления, f – частота, fн – нижняя частота, fв – верхняя частота, fр – резонансная частота,

П – ширина полосы частот усиления.

Контрольные вопросы:

1. Что такое гармонические колебания? свободные колебания? вынужденные колебания?

2. Какие процессы происходят при свободных гармонических колебаниях в колебательном кон­туре? Чем определяется их период?

3. Запишите и проанализируйте дифференциальное уравнение свободных гармонических колеба­ний в контуре.

4. Запишите дифференциальное уравнение затухающих колебаний и его решение. Проанализи­руйте их для механических и электромагнитных колебаний.

5. По какому закону изменяется амплитуда затухающих колебаний? Являются ли затухающие колебания периодическими?

6. Почему частота затухающих колебаний должна быть меньше частоты собственных колебаний системы?

7. Что такое коэффициент затухания? декремент затухания? логарифмический декремент за­тухания? В чем заключается физический смысл этих величин?

8. При каких условиях наблюдается апериодический разряд конденсатора?

9. Запишите дифференциальное уравнение вынужденных колебаний и решите его.

10. От чего зависит амплитуда вынужденных колебаний? Запишите выражение для амплитуды и фазы при резонансе.

11. Нарисуйте и проанализируйте резонансные кривые для амплитуды заряда и тока. В чем их отличие?

12.Почему добротность является важнейшей характеристикой резонансных свойств системы?

13. От чего зависит индуктивное сопротивление? емкостное сопротивление? Что называется ре­активным сопротивлением?

14. Как сдвинуты по фазе колебания переменного напряжения и переменного тока текущего через конденсатор? катушку индуктивности? резистор? Ответ обосновать также с помощью вектор­ных диаграмм.

Дата добавления: 2020-10-04 ; просмотров: 4513 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Резонанс в электрической цепи

Резонанс в электрической цепи возникает при резком увеличении амплитуды стационарных колебаний при совпадении частоты внешнего воздействия с определенной резонансной частотой системы. Это происходит тогда, когда два элемента противоположного характера компенсируют эффект друг друга в цепи.

Резонанс токов и напряжений

RLC-цепь

Схема RLC – это электрическая цепь с последовательно или параллельно соединенными элементами:

Название RLC связано с тем, что эти буквы являются обычными символами электрических элементов: сопротивления, индуктивности и емкости.

Векторная диаграмма последовательной RLC-цепи представлена в одном из трех вариантов:

В последнем варианте при нулевом сдвиге фаз, равенстве индуктивного и емкостного сопротивлений возникает резонанс напряжений.

Электрический резонанс

В природе бывают резонанс токов и резонанс напряжений. Наблюдаются они в цепи с параллельным и последовательным соединением элементов R, L и С. Резонансная частота одинакова для обеих цепей, она находится из условия противоположности сопротивлений реактивных элементов и вычисляется по нижеследующей формуле.

Векторные диаграммы практически идентичны, только сигналы отличаются. В последовательном контуре резонируют напряжения, в параллельном – ток. Но если отступиться от резонансной частоты такая симметрия естественно нарушится. В первом случае сопротивление возрастет, во втором – уменьшится.

Резонанс напряжений, достигающих максимальной амплитуды

На картинке ниже представлена векторная диаграмма цепи последовательного контура, где:

  • I – вектор общего тока;
  • Ul – опережает I на 900;
  • UС – отстает от I на 900;
  • UR – синфазно I.

Из трех векторов напряжения (Ul, UС, UR) два первых взаимно компенсируют друг друга. Они между собой:

  • противоположны по направлению,
  • равны по амплитуде,
  • отличаются по фазе на пи.

Получается, что напряжение по второму закону Кирхгофа приложено только к резистору. В этот момент:

  • импеданс последовательного контура на резонансной частоте минимален и равен просто R;
  • так как сопротивление цепи минимальное, то соответственно ток по амплитуде максимальный;
  • также приблизительно максимальны напряжения на индуктивности и на емкости.

Если рассматривать отдельно последовательный контур LC, то он даёт нулевое сопротивление на резонансной частоте:

Резонанс напряжений в цепи переменного тока

Важно! Когда установился гармонический режим c резонансной частотой, в контуре происходит следующее: источник обеспечивает установившуюся амплитуду колебаний; мощность источника расходуется лишь на нагрев резистора.

Резонанс токов через реактивные элементы

Диаграмма параллельного контура на той же частоте. Поскольку все элементы соединены параллельно, то диаграмму лучше начать строить с общего напряжения.

  • U – вектор общего тока;
  • Ic – опережает U на 900;
  • IU – отстает от U на 900;
  • Ток в резисторе (IR) синфазен общему напряжению.

Поскольку сопротивления реактивности по модулю равны, то и амплитуды токов Ic и Iu:

  • одинаковы;
  • достигают максимальной амплитуды.

Получается, что по первому закону Кирхгофа IR равен току источника. Другими словами, ток источника течет только через резистор.

Если рассматривать отдельно параллельный контур LC, то на резонансной частоте его сопротивление бесконечно большое:

Когда установится гармонический режим c резонансной частотой, в контуре происходит следующее:

  • источник обеспечивает установившуюся амплитуду колебаний;
  • мощность источника тока расходуется лишь на пополнение потерь в активном сопротивлении.

Двойственность RLC-контуров

Таким образом, можно сделать сравнительный вывод:

  1. У последовательной RLC цепи импеданс минимален на резонансной частоте и равен активному сопротивлению контура;
  2. У параллельной RLC цепи импеданс максимален на резонансной частоте и равен так называемому сопротивлению утечки, фактически тоже активному сопротивлению контура.

Для того чтобы предуготовить условия для резонанса тока или напряжения, требуется проверить электрическую цепь с целью предопределения ее комплексного сопротивления или проводимости. Помимо этого, её мнимую часть необходимо приравнять к нулю.

Каждый электрик должен знать:  Предприятия по ремонту электродвигателей в Брянске

Для информации. Напряжения в последовательной цепи ведут себя очень похоже токам параллельной цепи на резонансной частоте, в этом проявляется двойственность RLC-контуров.

Резонанс в цепи переменного тока

Применение резонансного явления

Хорошим примером применения резонансного явления может служить электрический резонансный трансформатор, разработанный изобретателем Николой Тесла ещё в 1891 году. Тесла проводил эксперименты с различными конфигурациями, состоящими в сочетании из двух, а иногда трех резонансных электрических цепей.

Для информации. Термин «катушки Теслы» применяются к ряду высоковольтных резонансных трансформаторов. Устройства используются для получения высокого напряжения, низкого тока, высокой частоты переменного тока.

В то время как обычный трансформатор предназначен для эффективной передачи энергии с первичной на вторичную обмотку, резонансный трансформатор предназначен для временного хранения электрической энергии. Устройство управляет воздушным сердечником резонансно настроенного трансформатора для получения высоких напряжений при малых токах. Каждая обмотка имеет емкость и функционирует как резонансный контур.

Чтобы произвести наибольшее выходное напряжение, первичный и вторичный контуры настроены в резонанс друг с другом. Оригинальные схемы изобретателя применяются как простые разрядники для возбуждения колебаний с помощью настроенных трансформаторов. В более сложных конструкциях используют транзисторные или тиристорные выключатели.

Для информации. Трансформатор Теслы основан на использовании резонансных стоячих электромагнитных волн в катушках. Своеобразный дизайн катушки продиктован необходимостью достигнуть низкого уровня резистивных потерь энергии (высокая добротность) на высоких частотах, что приводит к увеличению вторичных напряжений.

Резонанс в электрической цепи

Электрический резонанс – одно из самых распространенных в мире физических явлений, без которого не было бы TV, диагностических мед. аппаратов. Одни из самых полезных видов резонанса в электрической цепи – это резонанс токов и резонанс напряжений.

Резонанс токов

а) Параллельный колебательный контур без потерь
В разветвленной цепи (рис. 6-30) с двумя ветвями, одна из которых обладает индуктивностью L , а другая емкостью C , при равенстве сопротивлений ветвей наступает резонанс токов.

Из формулы следует, что резонанс в цепи можно получить подбором индуктивности, емкости или частоты, так как

При резонансе токов токи в ветвях

равны по абсолютной величине и изменяются, находясь в противофазе (рис. 6-31), так как ток I L; отстает по фазе от напряжения на 90°, а ток I Cопережает по фазе напряжение на 90°.
По первому закону Кирхгофа ток в неразветвленной части цепи (общий ток)

т. е. общий ток равен нулю.

На рис. 6-32 даны кривые токов, напряжения и мощности.
Отсутствие в цепи активного сопротивления указывает на то, что энергия, запасенная в контуре, не рассеивается.

В течение первой четверти периода (рис. 6-32) напряжение на конденсаторе от нуля увеличивается до максимума U Cм и в электрическом поле его запасается энергия
W Cм = CU 2 Cм/2.
В течение следующей четверти периода напряжение на конденсаторе уменьшается до нуля, происходит распад электрического поля и освобождение его энергии.
Ток в катушке в течение первой четверти периода от I Lм уменьшается до нуля, происходит распад магнитного поля и освобождение его энергии. В течение следующей четверти периода ток в катушке увеличивается до I Lм и энергия магнитного поля катушки увеличивается от нуля до максимума W Lм = LI 2 Lм/2.
Из сказанного выше и рис. 6-32 нетрудно понять, что в течение первой четверти периода кинетическая энергия магнитного поля преобразуется в потенциальную энергию электрического поля, а в течение второй четверти периода, наоборот, происходит преобразование энергии электрического поля в энергию магнитного поля. Затем процесс периодического обмена энергии повторяется.
Обмена энергии между цепью и источником питания нет, так как ток в неразветвленной части цепи равен нулю.

б) Параллельный колебательный контур с потерями
Цепь рис. 6-33 состоит из параллельно соединенных катушки и конденсатора, находящихся под общим напряжением U .
Ток в катушке

Этот ток отстает по фазе от напряжения на угол φ 1, тангенс которого

Ток катушки можно разложить на две слагающие, активную I а1 = I 1 cos φ 1
совпадающую по фазе с напряжением, и реактивную I р1= I L= I 1 sin φ 1, отстающую по фазе от напряжения на угол π /2 (рис. 6-34).
Ток конденсатора

Он опережает по фазе напряжение на угол π /2.
Общий ток найдем из прямоугольного треугольника токов (рис. 6-34), одним катетом которого является активная слагающая тока I а = I а1, а другим реактивная слагающая общего тока, равная разности реактивной слагающей тока катушки и тока конденсатора
I
р= I р1 I 2 = I L I C

Таким образом, общий ток

Угол сдвига общего тока от напряжения определяется через его тангенс (рис. 6-34):

Ток в неразветвленной части цепи может отставать от напряжения на угол φ при I L > I C , или опережать его при I L I C , или, наконец, совпадать по фазе с напряжением (рис. 6-35) при
I L = I C.
В последнем случае в цепи наступает резонанс токов, при котором , а мощность P = U cos φ = UI , так как φ = 0, a cos φ = 1.
Таким образом, общий ток равен активной составляющей тока катушки.
При этом общий ток всегда меньше тока в катушке, так как активная составляющая тока катушки всегда меньше тока катушки ( I а1 I 1 )
Отношение тока в контуре или в катушке ( I 1 I 2 ) к общему току при резонансе ( I рез )

представляющее собой добротность контура, показывает,во сколько раз ток в параллельном контуре при резонансе больше общего тока в подводящих проводах.
В этом случае максимальная мощность, затрачиваемая на получение магнитного поля ( U I L), равна максимальной мощности, затрачиваемой на получение электрического поля ( U I C ), а следовательно, равны и максимальные значения энергии в магнитном и электрическом полях цепи W Lм = W Cм
Как и в рассмотренном выше колебательном контуре, в течение одной четверти периода энергия, запасаемая в электрическом поле, целиком получается от магнитного поля, а в течение второй четверти периода энергия, запасаемая в магнитном поле, целиком получается от электрического поля. От генератора в цепь поступает только энергия, расходуемая в активном сопротивлении. Так как реактивные слагающие тока компенсируют друг друга, то в цепи генератора проходит только активный ток, обусловленный потерями энергии в активном сопротивлении. На рис. 6-36 представлены кривые токов напряжений и мощности цепи (рис. 6-33) для случая резонанса токов.

Резонанс токов и напряжение в цепи переменного тока

Резонанс напряжений. Если в цепи переменного тока, содержащей последовательно включенный конденсатор, катушку индуктивности и резистор (рис.21.5(а))

то угол сдвиг фаз между током и напряжением (21.28) обращается в нуль (φ=0), т.е. изменения тока и напряжения происходят синфазно. Условию (21.38) удовлетворяет частота

В данном случае полное сопротивление цепи Z становится минимальным, равным активному сопротивлению R цепи, и ток в цепи определяется этим сопротивлением, принимая максимальные (возможные при данном Um)значения. При этом падение напряжения на активном сопротивлении равно внешнему напряжению, приложенному к цепи (UR=U),а падения напряжений на конденсаторе (Uc)и катушке индуктивности (UL)одинаковы по амплитуде и противоположны по фазе. Это явление называется резонансом напряжений, а зависимость амплитуды силы тока от ω дана на рис. 21.6.

Рис.21.6.

В случае резонанса напряжений , поэтому, подставив в эту формулу значения резонансной частоты и амплитуды напряжений на катушке индуктивности и конденсаторе, получим

где Q – добротность контура, определяемая выражением(21.13). Так как добротностьобычных колебательных контуров больше единицы, то напряжение, как на катушке индуктивности, так и на конденсаторе превышает напряжение, приложенное к цепи. Поэтому явление резонанса напряжений используется в технике для усиления колебания напряжения какой-либо определенной частоты. Например, в случае резонанса на конденсаторе можно получить напряжение с амплитудой QUm, (Q в данном случае—добротность контура), которое может быть значительно больше Um. Это усиление напряжения возможно только для узкого интервала частот вблизи резонансной частоты контура, что позволяет выделить из многих сигналов одно колебание определенной частоты, т. е. на радиоприемнике настроиться на нужную длину волны. Явление резонанса напряжений необходимо учитывать при расчете изоляции электрических линий, содержащих конденсаторы и катушки индуктивности, так как иначе может наблюдаться их пробой.

Резонанс токов. Рассмотрим цепь переменного тока, содержащую параллельно включенные конденсатор емкостью С и катушку индуктивностью L (рис.21.7). Для простоты допустим, что активное сопротивление обеих ветвей настолько мало, что им можно пренебречь.

Рис.21.7.

Если приложенное напряжение изменяется по закону , то согласно формуле (21.30) в ветви 1С2 течет ток

амплитуда которого определяется из выражения (21.29) при условии R=0 и L=

Начальная фаза φ1 этого тока по формуле (21.28)определяется равенством ,

Аналогично сила тока в ветви 1L2 определяется из соотношения (21.29) при условии R=0, C= (условие отсутствия емкости в цепи) . Начальная фаза φ2этого тока , откуда

Из сравнения выражений (20.35) и (20.36) вытекает, что разность фаз токов в ветвях 1С2 и 1L2 равна , т.е. токи в ветвях противоположны по фазе. Амплитуда силы тока во внешней (неразветвленной) цепи

Явление резкого уменьшения амплитуды силы тока во внешней цепи, питающей параллельно включенный конденсатор и катушку индуктивности, при приближении частоты ω приложенного напряжения к резонансной частоте ωрез называется резонансом токов (параллельным резонансом). В данном случае для резонансной частоты получили такое же значение, как и при резонансе напряжений.

Амплитуда сила тока оказалась равна нулю потому, что активным сопротивлением контура пренебрегли. Если учесть сопротивление R,то разность фаз φ1— φ2 не будет равна л, поэтому при резонансе токов амплитуда силы тока будет отлична от нуля, но примет наименьшее возможное значение. Таким образом, при резонансе токов во внешней цепи токи I1 и I2компенсируются и сила тока I, в подводящих проводах, достигает минимального значения, обусловленного только током через резистор. При резонансе токов силы токов I1 и I2могут значительно превышать силу тока I.

Рассмотренный контур оказывает большое сопротивление переменному току с частотой, близкой к резонансной, поэтому это свойство резонанса токов используется в резонансных усилителях, позволяющих выделять одно определенное колебание из сигнала сложной формы. Кроме того, резонанс токов используется в индукционных печах, где нагревание металлов производится вихревыми токами. В них емкость конденсатора, включенного параллельно нагревательной катушке, подбирается так, чтобы при частоте генератора получился резонанс токов, в результате чего сила тока через нагревательную катушку будет гораздо больше, чем сила тока в подводящих проводах.

Резонансные явления в электрических цепях

Режим работы электрической цепи, при котором ток и напряжение на входе цепи совпадают по фазе, называют резонансом. При этом эквивалентное сопротивление всей цепи будет активным. В цепях, состоящих из резистивного, индуктивного и емкостного элементов, различают резонанс напряжений и резонанс токов.

Резонанс напряжений

Резонанс напряжений может иметь место в цепи с последовательно соединенными индуктивным и емкостным элементами. Рассмотрим схему последовательного соединения резистора, индуктивности и емкости (рис. 6.1).

Второй закон Кирхгофа для данной цепи можно записать:

Отсюда комплексное сопротивление цепи

Построим векторную диаграмму. При этом могут иметь место три случая.

Каждый электрик должен знать:  Назначение и типы электроизмерительных приборов

1. Пусть индуктивное сопротивление больше емкостного XL > XC , тогда и индуктивное напряжение будет больше емкостного UL > UC. Векторная диаграмма будет иметь вид (рис. 6.2).

Реактивная составляющая напряжения UХ = UL – UC – положительна, и угол сдвига фаз между током и напряжением φ> 0. Такой характер цепи является активно-индуктивным.

2. Пусть индуктивное сопротивление меньше емкостного XL

то напряжения на зажимах катушки и конденсатора могут существенно превышать напряжение на входе цепи.

Превышение напряжения на реактивных элементах над напряжением на входе принято характеризовать величиной

называемой волновым или характеристическим сопротивлением цепи. Волновое сопротивление численно равно индуктивному или емкостному сопротивлению на резонансной частоте.

Кратность превышения напряжения на зажимах индуктивного и емкостного сопротивлений над входным определяют отношением напряжения на реактивном элементе к напряжению на входе цепи на резонансной частоте:

Эта величина называется добротностью контура.

Величина, обратная добротности

называется затуханием контура.

Избирательные свойства колебательного контура определяются его добротностью. Чем больше добротность контура, тем более узкой будет резонансная кривая (рис. 6.5).

Избирательность контура характеризуется полосой пропускания. Полоса пропускания – это диапазон частот, для которых ток ослабляется не более чем в раз по отношению к максимальному значению

Ширину полосы пропускания можно определить по формуле

Рассмотрим резонансные кривые тока и напряжений (рис. 6.6).

При неизменных параметрах цепи и неизменном входном напряжении ток определится выражением

Рассмотрим это выражение в реперных точках: ; . При нулевой частоте ток в цепи будет постоянным, величина тока , так как конденсатор не пропускает постоянный ток, при резонансной частоте ток максимален – это признак резонанса напряжений . На высоких частотах ток , так как сопротивление катушки становится равным .

Напряжение на индуктивности пропорционально частоте, следовательно, при нулевой частоте напряжение на индуктивности . При все напряжение, подаваемое от источника, приложено к индуктивности, и .

Напряжение на емкости обратно пропорционально частоте, следовательно, при все напряжение приложено к емкости . При , так как равно нулю емкостное сопротивление.

При резонансной частоте индуктивное и емкостное напряжения равны .

Напряжение на резистивном элементе пропорционально току и, следовательно, повторяет форму кривой тока при и , при .

Рассмотрим энергетические соотношения при резонансе.

Мгновенные значения мощности на зажимах катушки и конденсатора определяются выражениями:

Так как при резонансе , эти мощности в любой момент времени равны и противоположны по знаку. Это значит, что происходит обмен энергией между магнитным полем катушки и электрическим полем конденсатора, но не происходит обмена между источником и реактивными элементами, так как

то есть суммарная энергия электрического и магнитного полей остается постоянной. Энергия переходит из конденсатора в катушку в течение четверти периода, когда напряжение на конденсаторе убывает, а ток растет. В течение следующей четверти периода энергия переходит из катушки в конденсатор. Источник энергии питает только активное сопротивление.

Резонанс токов

Резонанс в идеальной цепи

Резонанс токов наступает при параллельном соединении индуктивности и емкости. Для обобщения анализов включим в цепь параллельно индуктивности и емкости активное сопротивление (рис. 6.7).

По первому закону Кирхгофа можно записать:

Запишем это выражение в комплексной форме:

Вынесем напряжение за скобку, получим

Условием резонанса токов является равенство индуктивной и емкостной проводимостей:

Векторная диаграмма для режима резонанса представлена на рис. 6.8. При равенстве индуктивной и емкостной проводимостей будут равны и токи . Направленные в противофазе, эти токи компенсируют друг друга, в цепи остается только активная составляющая тока, и общий ток будет совпадать по фазе с напряжением . Поэтому резонанс называют резонансом токов.

Общий ток в цепи можно представить как ,

где – полная комплексная проводимость, модуль которой равен

С учетом условия резонанса, получим, что , то есть проводимость цепи минимальна, следовательно, и ток будет минимальным – это признак резонанса токов.

Из условия резонанса получим выражение для резонансной частоты

То есть, как и при резонансе напряжений, добиться резонанса токов можно, изменяя один из трех параметров ω, L, C.

Резонанс в реальной цепи

Реальная катушка и реальный конденсатор обладают не только реактивным, но и активным сопротивлением. Катушка – сопротивлением обмотки, конденсатор – сопротивлением токам утечки. В этом случае при большой добротности катушки или конденсатора активное сопротивление может оказаться функцией частоты.

Под добротностью катушки будем понимать отношение её индуктивного сопротивления к активному.

Под добротностью конденсатора – отношение его емкостного сопротивления к активному

Рассмотрим цепь, содержащую реальные катушку и конденсатор, представленную на рис. 6.9.

Условием резонанса токов в такой цепи является равенство нулю реактивной проводимости .

Комплексную проводимость цепи можно выразить через комплексные сопротивления ветвей:

При резонансе b=0, то есть

Из полученного выражения видно, что в отличие от идеальной цепи резонанс можно получить, регулируя не три параметра, а пять: .

Решая уравнение (6.1) относительно частоты, получим выражение для резонансной частоты

Рассмотрим частные случаи:

1. , тогда резонансная частота будет равна , как и в случае идеальной цепи.

2. , тогда при любом значении частоты реактивная проводимость равна нулю, то есть резонанс имеет место при любой частоте.

3. , – добротность невелика, тогда выражение под корнем отрицательно. Резонансная частота мнимая, резонанс невозможен.

При резонансе в реальной цепи, так же, как и в идеальной, ток минимален и имеет чисто активный характер.

Векторная диаграмма для режима резонанса представлена на рис. 6.10.

Из диаграммы видно, что токи в ветвях, содержащих катушку и конденсатор, различны, но равны их реактивные составляющие.

Контрольные вопросы и задания

1. Какой режим работы электрической цепи называют резонансом?

2. В каких цепях возможен резонанс напряжений?

3. Что является условием и признаком резонанса напряжений?

4. Поясните, какова природа резонанса напряжений.

5. Какой характер электрической цепи называют активно-индуктивным, активно-емкостным?

6. Как по векторной диаграмме определить характер электрической цепи?

7. Что называют волновым сопротивлением контура?

8. Что называют добротностью контура?

9. На какие свойства контура влияет добротность?

10. Что называется полосой пропускания?

11. В каких цепях возможен резонанс токов?

12. Что является условием и признаком резонанса токов?

13. Поясните природу резонанса токов.

14. Чем отличается резонанс токов в идеальной и реальной цепях?

15. Что называется добротностью катушки, конденсатора?

16. Какие частные случаи могут иметь место при резонансе в реальной электрической цепи?

17. Какие энергетические соотношения справедливы при резонансе?

Дата добавления: 2020-03-27 ; просмотров: 2086 | Нарушение авторских прав

Резонанс токов

Резонанс токов (параллельный резонанс) — резонанс, происходящий в параллельном колебательном контуре при его подключении к источнику напряжения, частота которого совпадает c резонансной частотой контура.

Содержание

Описание явления [ | ]

С помощью метода комплексных амплитуд определим ток в контуре

Кроме того, полный ток контура является суммой токов, протекающих через конденсатор и катушку индуктивности

Последовательно-параллельный резонанс [ | ]

Кроме параллельного и последовательного резонанса существует также комбинированный, а точнее параллельно-последовательный. В простейшем варианте это две катушки с одинаковой индуктивностью соединённые последовательно. На одной из катушек реализован колебательный контур. При этом на половину проявляется эффект от параллельного резонанса и на половину проявляется эффект от последовательного резонанса. Поэтому при этом происходит частичное увеличение напряжения. Этот способ уместно применять в тех случаях когда генератор не может выдать нужное напряжение или напряжение в сети проседает. Но применяется такой способ только к тем потребителям, у которых нагрузка постоянная, потому что если нагрузка будет меняться, то резонанс будет сбиваться. Для такой схемы годятся не любые трансформаторы, а только те у которых обмотки не накладываются друг на друга и располагаются на разных кернах на против друг друга на сердечнике. Если вторичная обмотка намотана поверх первичной, то на таком трансформаторе параллельный резонанс не работает. Кроме этого существуют и более сложные схемы последовательно-параллельного резонанса использующие полупроводники, такие как транзисторы. [1]

Замечания [ | ]

  • Колебательный контур, работающий в режиме резонанса токов, не является усилителем мощности. Он является усилителем тока.

Большие токи, циркулирующие в контуре, возникают за счет мощного импульса тока от генератора в момент включения, когда заряжается конденсатор. При значительном отборе мощности от контура эти токи «расходуются», и генератору вновь приходится отдавать значительный ток подзарядки. Поэтому внутри контура сопротивление должно быть сведено к минимуму чтобы уменьшить потери.

  • Если генератор слабый, большой ток подзарядки в момент его включения на колебательный контур может сжечь его. Выйти из положения можно, постепенно повышая напряжение на клеммах генератора (постепенно «раскачивая» контур).
  • Колебательный контур с низкой добротностью и катушкой небольшой индуктивности слишком плохо «накачивается» энергией (запасает мало энергии), что понижает КПД системы. Также катушка с маленькой индуктивностью и на низких частотах обладает малым индуктивным сопротивлением, что может привести к «короткому замыканию» генератора по катушке, и вывести генератор из строя.
  • Добротность колебательного контура пропорциональна L/C, колебательный контур с низкой добротностью плохо «запасает» энергию. Для повышения добротности колебательного контура используют несколько путей:
  1. Повышение рабочей частоты;
  2. По возможности увеличить L и уменьшить C. Если увеличить L с помощью увеличения витков катушки или увеличения длины провода не представляется возможным, используют ферромагнитные сердечники или ферромагнитные вставки в катушку; катушка обклеивается пластинками из ферромагнитного материала и т п.
  • При расчёте колебательного контура с катушкой небольшой индуктивности, нужно учитывать индуктивность соединительных шин (от катушки к конденсатору), соединительные провода конденсаторной батареи. Индуктивность соединительных шин может быть намного больше индуктивности катушки и серьёзно понизить частоту колебательного контура.
  • При реализации резонанса токов на трансформаторах, первичная и вторичная обмотки должны располагаться на разных кернах на магнитопроводе, иначе электромагнитные наводки от вторичной обмотки будут мешать резонансу. Поэтому годятся трансформаторы с П образным или Ш образным сердечником. В противном случае обмотки тщательно экранируют друг от друга фольгой.

Энергетические процессы при резонансе

Пусть в цепи протекает ток, мгновенное значение которого описывается соотношением:
,где Im – амплитуда.

Тогда напряжение на конденсаторе:

Магнитная энергия в катушке индуктивности:

Энергия, накопленная на емкости .

В каждый момент времени суммарная энергия контура в режиме резонанса

Таким образом, в последовательном контуре в режиме резонанса происходит обмен энергии между конденсатором и катушкой индуктивности. Сумма энергий электрического и магнитного полей остаётся постоянной. Энергия полностью выделяется на активном сопротивлении, переходя в тепловую энергию.

Резонанс токов

Резонанс (дающий отклик) – явление существенного возрастания амплитуды колебаний под влиянием внешнего воздействия в случае, когда частота внешних колебаний совпадает с частотой, определённой внутренними параметрами системы.

В режиме резонанса на входе такой цепи напряжение и ток совпадают по фазе, т.е критерием резонанса является равенство угла сдвига фаз нулю: Учитывая то, что:

где X,B-реактивные сопротивления и проводимости,а K,G-активные сопротивления и проводисмость,то условием возниновения резонанса является X=0,либо B=0.

В электрических цепях имеют место 2 резонанса:

· резонанс тока(B=0). При этом резонансе токи катушки и через конденсатор могут значительно превышать ток источников на входе. Наблюдаются в параллельных цепях.

Каждый электрик должен знать:  Графеновая электроника особенности технологии 21 века

· резонанс напряжения (X=0). При нем для определенных параметров цепи возможно значительное превышение значения напряжения на конденсаторе и катушке. Наблюдаются в последовательных цепях.

Резонанс токов наблюдается в параллельных ветвях. При резонансе токов совпадают по фазе ток общей ветви и напряжение на параллельных участках. Рассмотрим резонанс токов в схеме с параллельными ветвями RL и RC (рис. 4.11, а).

Заменим данную схему эквивалентной, приведенной на рис. 4.11, б.

В этой схеме приняты следующие обозначения:

Для данной схемы справедливо

При резонансе токов понимают отношение тока в реактивных элементах к общему току в цепи в режиме резонанса. В режиме резонанса токи в реактивных элементах цепи могут многократно превышать ток на входе цепи.

В режиме резонанса угол сдвига фаз между напряжением и током =0

Реактивная проводимость ветвей в цепи в режиме резонанса:

При резонансе полная мощность, которая потребляется контуром, минимальна и носит активный характер: S=UI=P= ( )= G

Ток в цепи: =Ů( )=ŮG – т.е. минимальный ток для этой схемы при неизменном напряжении на входе . При G ® 0 I ® 0. Сопротивление такой цепи Z ® ¥. Для резонансной частоты w0 такой контур принято называть фильтром — пробкой.

Величина резонансной частоты для схемы: =0

Резонанс возможен при выполнении условия:

Входная проводимость этой схемы

При резонансе токов В = 0. При этом резонансная частота

Численные значения частот в режиме резонанса токов и напряжений различны для одной и той же схемы.

Таким образом, цепь с несколькими RLC — контурами, которые могут быть соединены произвольно, может давать несколько резонансов токов и напряжений. Анализ осуществляется путем расчета цепи. Рассматривается , которая представляет собой дробь. Известно, что условие резонанса напряжений , т.е. . Следовательно, равенство нулю числителя дает резонансную частоту для резонанса напряжений. Условие резонанса токов B = 0 или , т.е. . Следовательно, равенство нулю знаменателя дает резонансную частоту для резонанса токов. Таким образом, задача сводится к определению нулей и полюсов .

Резонанс токов

Резонанс токов — резонанс, происходящий в параллельном колебательном контуре при его подключении к источнику напряжения, частота которого совпадает с собственной частотой контура.

Содержание

Описание явления [ править ]

Эта статья должна быть полностью переписана.

Пусть имеется колебательный контур с частотой собственных колебаний f, и пусть он подключен к генератору переменного тока такой же частоты f.

В момент подключения конденсатор заряжается от источника. После чего он начинает разряжаться на катушку, причем разряжается с такой же скоростью, с какой убывает напряжение на генераторе. Через некоторое время энергия конденсатора полностью переходит в энергию магнитного поля катушки. Напряжение на клеммах генератора в этот момент равно нулю.

Далее магнитное поле катушки начинает убывать, так как не может существовать стационарно — на выводах катушки появляется ЭДС индукции, которое начинает перезаряжать конденсатор. В цепи колебательного контура течет ток, только уже противоположно току заряда, так как витки пересекаются полем в обратном направлении. Обкладки конденсатора перезаряжаются зарядами, противоположными первоначальным. Одновременно растет напряжение на генераторе, причем с той же скоростью, с какой катушка заряжает конденсатор. Но ток от генератора не может течь через колебательный контур — как только на клеммах генератора появляется напряжение, точно такое же напряжение появляется на выводах конденсатора вследствие перезаряда его катушкой. Напряжения конденсатора и генератора друг друга компенсируют.

Далее энергия магнитного поля катушки полностью переходит в энергию электрического поля конденсатора. Напряжение генератора в этот момент достигает максимума. Далее конденсатор разряжается на катушку, цикл повторяется в обратном направлении. В результате, в колебательном контуре циркулируют весьма большие токи, но за его пределы не выходят — выходить им мешает точно такое же, только противоположно направленное напряжение на генераторе. Большой ток от генератора течет через контур только короткое время после включения, когда заряжается конденсатор. Далее генератор работает почти вхолостую — как только на его клеммах появляется напряжение, точно такое же противоположно направленное напряжение появляется на конденсаторе и не пропускает ток от внешнего источника через контур.

Вышесказанное справедливо для контура с очень хорошей добротностью (низкими потерями энергии за цикл).

Ситуация изменится, если отбирать от контура во время его работы некоторую мощность. Тогда за цикл часть энергии контура будет теряться и конденсатор будет перезаряжаться контурной катушкой до меньшего напряжения, чем напряжение внешнего генератора. В этом случае генератор будет дозаряжать конденсатор, компенсируя таким образом потери за цикл. Через контур потечет переменный ток, который, однако, может быть меньше того, что циркулирует в самом контуре.

Замечания [ править ]

  • Колебательный контур, работающий в режиме резонанса токов, не является усилителем мощности.

Большие токи, циркулирующие в контуре, возникают за счет мощного импульса тока от генератора в момент включения, когда заряжается конденсатор. При значительном отборе мощности от контура эти токи «расходуются», и генератору вновь приходится отдавать значительный ток подзарядки.

  • Если генератор слабый, большой ток подзарядки в момент его включения на колебательный контур может сжечь его. Выйти из положения можно, постепенно повышая напряжение на клеммах генератора (постепенно «раскачивая» контур).
  • Колебательный контур с низкой добротностью и катушкой небольшой индуктивности слишком плохо «накачивается» энергией (запасает мало энергии), что понижает КПД системы. Также катушка с маленькой индуктивностью и на низких частотах обладает малым индуктивным сопротивлением, что может привести к «короткому замыканию» генератора по катушке, и вывести генератор из строя.
  • Добротность колебательного контура пропорциональна L/C, колебательный контур с низкой добротностью плохо «запасает» энергию. Для повышения добротности колебательного контура используют несколько путей:
  1. Повышение рабочей частоты;
  2. По возможности увеличить L и уменьшить C. Если увеличить L с помощью увеличения витков катушки или увеличения длины провода не представляется возможным, используют ферромагнитные сердечники или ферромагнитные вставки в катушку; катушка обклеивается пластинками из ферромагнитного материала и т п.
  • При расчёте колебательного контура с катушкой небольшой индуктивности, нужно учитывать индуктивность соединительных шин (от катушки к конденсатору), соединительные провода конденсаторной батареи. Индуктивность соединительных шин может быть намного больше индуктивности катушки и серьёзно понизить частоту колебательного контура.

Мир науки

Рефераты и конспекты лекций по географии, физике, химии, истории, биологии. Универсальная подготовка к ЕГЭ, ГИА, ЗНО и ДПА!

Физика — рефераты, конспекты, шпаргалки, лекции, семинары

Явления резонанса в цепях переменного тока

Электрическим резонансом называется явление совпадения частоты источника переменного тока с частотой собственных свободных колебаний электрической цепи. Электрические колебания возникают в цепи, которая включает в себя индуктивность и емкость.

Изначально емкость заряжается до начального напряжения Uн, после чего ее замыкают на индуктивность, в результате чего в цепи возникает постепенно увеличивающийся ток i. Сила тока возрастает постепенно, так как ее увеличению препятствует э. д. с. самоиндукции. При увеличении силы тока в магнитном поле индуктивности L накапливается энергия.

Ток достигает максимального значения, после чего уменьшается постепенно, так как его уменьшению препятствует э. д. с. самоиндукции. Она поддерживает ток, благодаря чему конденсатор перезаряжается в обратном направлении.

В случае, когда в колебательном контуре нет потерь, перезарядка емкости продолжается до тех пор, пока емкость не зарядится до первоначального напряжения Uн. Резонанс возникает в цепи, когда цепь подключена к внешнему источнику, а частота этого источника ? равна частоте ?0.

Существуют два основных вида резонанса: резонанс напряжений, который возникает при последовательном соединении реактивных элементов, и резонанс токов — при параллельном соединении.

Резонанс напряжений происходит в неразветвленной цепи переменного тока, которая содержит источник энергии, индуктивность L, емкость С и активное сопротивление R. Когда активное сопротивление цепи R мало, при резонансе сила тока быстро увеличивается, и при этом возрастают напряжения на емкости и индуктивности. Добротностью электрического контура называется величина Q = ? / R.

На практике в устройствах резонанс напряжений является не- желательным явлением, которое связано с возникновением перенапряжений.

Положительное действие резонанса проявляется в радиотехнике, проволочной телефонии, в автоматике и т. п. Резонанс токов возникает при параллельном соединении источника и колебательного контура. Данное явление происходит при условии, что bC = bL, когда I = Ug и cos? = 1. Токи в каждой из реактивных ветвей пропорциональны одному и тому же напряжению и поэтому при резонансе равны:

IC = UbC = IL = UbL.

В реальных цепях не существует катушек, которые обладают индуктивностью и не обладают активным сопротивлением, что относится и к емкости.

Резонанс напряжений, условие возникновения

Явление резонанса электрических напряжений наблюдается в цепи последовательного колебательного контура, состоящего из емкости (конденсатора), индуктивности и резистора (сопротивления). Для обеспечения энергетической подпитки колебательного контура в последовательную цепь включается также источник электродвижущей силы Е. Источник вырабатывает переменное напряжение с частотой W. При резонансе ток, циркулирующий в последовательной цепи, должен совпадать по фазе с э.д.с. Е. Это обеспечивается, если общее сопротивление схемы Z = R+J(WL – 1/WС) будет лишь активным, т.е. Z=R. Равенство:

является математическим условием резонанса в колебательном контуре. При этом величина тока в цепи составит I = E/R. Если преобразовать равенство (1), то получим:

В этом выражении W – является резонансной частотой контура.

Важно то, что в процессе резонанса напряжение на индуктивности равно напряжению на конденсаторе и составляет:

UL = U = WL * I = WLE/R

Общая сумма энергий в индуктивности и емкости (магнитного и электрического полей) постоянна. Это объясняется тем, что между этими полями происходит колебательный обмен энергиями. Суммарное ее количество в любой момент неизменно. При этом обмена энергией между ее источником Е и цепью не происходит. Вместо этого имеет место непрерывное преобразование одного вида энергии в другой.

Для колебательных контуров применятся термин добротность, которая показывает, как соотносятся напряжение на реактивном элемента (емкость или индуктивность) и входное напряжение контура. Добротность вычисляется по формуле:

Для идеальной последовательной цепи с нулевым активным сопротивлением возникновение резонанса сопровождается незатухающими колебаниями. На практике затухание колебаний компенсируется подпиткой контура от генератора колебаний с частотой резонанса.

Применение резонанса напряжений

Явление колебательного резонанса широко используется в радиоэлектронике. В частности, входная цепь любого радиоприемника представляет собой регулируемый колебательный контур. Его резонансная частота, изменяемая с помощью регулировки емкости конденсатора, совпадает с частотой сигнала радиостанции, которую необходимо принять.

В электроэнергетике возникновение резонанса напряжений вследствие сопутствующих ему перенапряжений чревато нежелательными последствиями. Например, в случае подключения к генератору или промежуточному трансформатору длинной кабельной линии (являющейся колебательным контуром с распределенной емкостью и индуктивностью), не соединенной на приемном конце с нагрузкой (это называется режимом холостого хода), весь контур может оказаться в резонансом состоянии. В такой ситуации напряжения, возникающие на некоторых участках цепи, могут оказаться выше расчетных. Это может грозить пробоем изоляции кабеля и выходом его из строя. Такая ситуация предотвращается применением вспомогательной нагрузки.

Добавить комментарий