Резонансные частоты

Резонансные частоты

Наиболее известная большинству людей механическая резонансная система — это обычные качели. Если вы будете подталкивать качели в соответствии с их резонансной частотой, размах движения будет увеличиваться, в противном случае движения будут затухать. Резонансную частоту такого маятника с достаточной точностью в диапазоне малых смещений от равновесного состояния, можно найти по формуле:

где g это ускорение свободного падения (9,8 м/с² для поверхности Земли), а L — длина от точки подвешивания маятника до центра его масс. (Более точная формула довольно сложна, и включает эллиптический интеграл). Важно, что резонансная частота не зависит от массы маятника. Также важно, что раскачивать маятник нельзя на кратных частотах (высших гармониках), зато это можно делать на частотах, равных долям от основной (низших гармониках).

Резонансные явления могут вызвать необратимые разрушения в различных механических системах, например, неправильно спроектированных мостах. Так, в 1905 году рухнул Египетский мост в Санкт-Петербурге, когда по нему проходил конный эскадрон, а в 1940 — разрушился Такомский мост в США. Чтобы предотвратить такие повреждения существует правило, заставляющее строй солдат сбивать шаг при прохождении мостов.

В основе работы механических резонаторов лежит преобразование кинетической энергии в потенциальную и обратно. В случае простого маятника, вся его энергия содержится в потенциальной форме, когда он неподвижен и находится в верхних точках траектории, а при прохождении нижней точки на максимальной скорости, она преобразуется в кинетическую. Потенциальная энергия пропорциональна массе маятника и высоте подъёма относительно нижней точки, кинетическая — массе и квадрату скорости в точке измерения.

Другие механические системы могут использовать запас потенциальной энергии в различных формах. Например, пружина запасает энергию сжатия, которая, фактически, является энергией связи её атомов.

Электроника

В электронных устройствах резонанс возникает на определённой частоте, когда индуктивная и ёмкостная составляющие реакции системы уравновешены, что позволяет энергии циркулировать между магнитным полем индуктивного элемента и электрическим полем конденсатора.

Каждый электрик должен знать:  Диоды СВЧ-диапазона

Механизм резонанса заключается в том, что магнитное поле индуктивности генерирует электрический ток, заряжающий конденсатор, а разрядка конденсатора создаёт магнитное поле в индуктивности — процесс, который повторяется многократно, по аналогии с механическим маятником.

Электрическое устройство, состоящее из ёмкости и индуктивности, называется колебательным контуром. Элементы колебательного контура могут быть включены как последовательно, так и параллельно. При достижении резонанса, импеданс последовательно соединённых индуктивности и ёмкости минимален, а при параллельном включении — максимален. Резонансные процессы в колебательных контурах используются в элементах настройки, электрических фильтрах. Частота, на которой происходит резонанс, определяется величинами (номиналами) используемых элементов. В то же время, резонанс может быть и вреден, если он возникает в неожиданном месте по причине повреждения, недостаточно качественного проектирования или производства электронного устройства. Такой резонанс может вызывать паразитный шум, искажения сигнала, и даже повреждение компонентов.

Приняв, что в момент резонанса индуктивная и ёмкостная составляющие импеданса равны, резонансную частоту можно найти из выражения ωL = 1/ωC, где ω = 2πf; f — резонансная частота в герцах; L — индуктивность в генри; C — ёмкость в фарадах. Важно, что в реальных системах понятие резонансной частоты неразрывно связано с полосой пропускания, то есть диапазоном частот, в котором реакция системы мало отличается от реакции на резонансной частоте. Ширина полосы пропускания определяется добротностью системы.

Акустика

Резонанс — один из важнейших физических процессов, используемых при проектировании звуковых устройств, большинство из которых содержат резонаторы, например, струны и корпус скрипки, трубка у флейты, мембрана у барабанов.

Струна

Струны таких инструментов, как лютня, гитара, скрипка или пианино, имеют основную резонансную частоту, напрямую зависящую от длины и силы натяжения струны. Длина волны первого резонанса струны равна её удвоенной длине. При этом, его частота зависит от скорости v, с которой волна распространяется по струне:

где L — длина струны (в случае, если она закреплена с обоих концов). Скорость распространения волны по струне зависит от её натяжения T и массы на единицу длины ρ:

Каждый электрик должен знать:  Параметры полевых транзисторов что написано в даташите

Таким образом, частота главного резонанса зависит от свойств струны и выражается следующим отношением:

где T — сила натяжения, ρ — масса единицы длины струны, а m — полная масса струны.

Увеличение натяжения струны и уменьшение её длины увеличивает её резонансную частоту. Помимо основного резонанса, струны также имеют резонансы на высших гармониках основной частоты f, например, 2f, 3f, 4f, и т. д. Если струне придать колебание коротким воздействием (щипком пальцев или ударом молоточка), струна начнёт колебания на всех частотах, присутствующих в воздействующем импульсе (теоретически, короткий импульс содержит все частоты). Однако частоты, не совпадающие с резонансными, быстро затухнут, и мы услышим только гармонические колебания, которые и воспринимаются как музыкальные ноты.

Примечания

См. также

  • Диссипативная структура
  • Солитон
  • Интерференция
  • Журавлёв, Виктор Филиппович (см. в кн. «Прикладные методы в теории колебаний» (1988, совместно с Д. М. Климовым))

Ссылки

Richardson LF (1922), Weather prediction by numerical process, Cambridge.

Bretherton FP (1964), Resonant interactions between waves. J. Fluid Mech., 20, 457-472.

Бломберген Н. (1965), Нелинейная оптика, М.: Мир — 424 с.

Захаров В.Е. (1974), Гамильтонов формализм для волн в нелинейных средах с дисперсией, Изв. вузов СССР. Радиофизика, 17(4), 431-453.

Арнольд В.И. (1979), Потеря устойчивости автоколебаний вблизи резонансов, Нелинейные волны, ред. А.В. Гапонов-Грехов, М.: Наука, 116-131.

Kaup PJ, Reiman A and Bers A (1979), Space-time evolution of nonlinear three-wave interactions. Interactions in a homogeneous medium, Rev. of Modern Phys, 51(2), 275-309.

Haken H (1983), Advanced Synergetics. Instability Hierarchies of Self-Organizing Systems and devices, Berlin, Springer-Verlag.

Филлипс O.М. (1984), Взаимодействие волн. Эволюция идей, Современная гидродинамика. Успехи и проблемы. М.: Мир, 297-314.

Журавлёв В.Ф., Климов Д.М. (1988), Прикладные методы в теории колебаний, М.:Наука

Сухоруков А.П. (1988), Нелинейные волновые взаимодействия в оптике и радиофизике, М.: Наука — 232 с.

Брюно А.Д. (1990), Ограниченная задача трех тел, М.:Наука

Wikimedia Foundation . 2020 .

Смотреть что такое «Резонансная частота» в других словарях:

резонансная частота — Частота, на которой входной механический импеданс колебательной системы чисто активный и имеет минимальное значение. Единица измерения Гц [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения… … Справочник технического переводчика

Каждый электрик должен знать:  Виды электронных устройств

резонансная частота — 257 резонансная частота Частота электрического тока и электрического напряжения при резонансе в электрической цепи Источник: ГОСТ Р 52002 2003: Электротехника. Термины и определения основных понятий оригинал документа … Словарь-справочник терминов нормативно-технической документации

резонансная частота — rezonanso dažnis statusas T sritis automatika atitikmenys: angl. resonance frequency; resonant frequency vok. Resonanzfrequenz, f rus. резонансная частота, f pranc. fréquence de résonance, f … Automatikos terminų žodynas

резонансная частота — rezonanso dažnis statusas T sritis Standartizacija ir metrologija apibrėžtis Priverstinių virpesių dažnis, kuriam esant virpesių grandinėje įvyksta rezonansas. atitikmenys: angl. resonance frequency; resonant frequency vok. Resonanzfrequenz, f… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

резонансная частота — rezonanso dažnis statusas T sritis fizika atitikmenys: angl. resonance frequency; resonant frequency vok. Resonanzfrequenz, f rus. резонансная частота, f pranc. fréquence de résonance, f … Fizikos terminų žodynas

резонансная частота — Частота тока и напряжения при резонансе в цепи … Политехнический терминологический толковый словарь

резонансная частота — частота резонатора, при которой колеблющаяся величина достигает своего максимального значения … Русский индекс к Англо-русскому словарь по музыкальной терминологии

Резонансная частота — 1. Частота электрического тока и электрического напряжения при резонансе в электрической цепи Употребляется в документе: ГОСТ Р 52002 2003 Электротехника. Термины и определения основных понятий … Телекоммуникационный словарь

резонансная частота — resonance frequency Частота вынужденных колебаний, при которой происходит резонанс. Шифр IFToMM: 3.9.35 Раздел: КОЛЕБАНИЯ В МЕХАНИЗМАХ … Теория механизмов и машин

резонансная частота СВЧ защитного устройства — резонансная частота fрез Частота, при которой потери, вносимые СВЧ защитным устройством, имеют экстремальное значение. [ГОСТ 23769 79] Тематики приборы и устройства защитные СВЧ Обобщающие термины параметры СВЧ защитных устройств Синонимы… … Справочник технического переводчика

Добавить комментарий